gdb/DWARF: Support for arrays whose bound is a discriminant.
[binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2015 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "elf-bfd.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "dwarf2.h"
38 #include "buildsym.h"
39 #include "demangle.h"
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "macrotab.h"
44 #include "language.h"
45 #include "complaints.h"
46 #include "bcache.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
50 #include "hashtab.h"
51 #include "command.h"
52 #include "gdbcmd.h"
53 #include "block.h"
54 #include "addrmap.h"
55 #include "typeprint.h"
56 #include "jv-lang.h"
57 #include "psympriv.h"
58 #include <sys/stat.h>
59 #include "completer.h"
60 #include "vec.h"
61 #include "c-lang.h"
62 #include "go-lang.h"
63 #include "valprint.h"
64 #include "gdbcore.h" /* for gnutarget */
65 #include "gdb/gdb-index.h"
66 #include <ctype.h>
67 #include "gdb_bfd.h"
68 #include "f-lang.h"
69 #include "source.h"
70 #include "filestuff.h"
71 #include "build-id.h"
72
73 #include <fcntl.h>
74 #include <sys/types.h>
75
76 typedef struct symbol *symbolp;
77 DEF_VEC_P (symbolp);
78
79 /* When == 1, print basic high level tracing messages.
80 When > 1, be more verbose.
81 This is in contrast to the low level DIE reading of dwarf2_die_debug. */
82 static unsigned int dwarf2_read_debug = 0;
83
84 /* When non-zero, dump DIEs after they are read in. */
85 static unsigned int dwarf2_die_debug = 0;
86
87 /* When non-zero, cross-check physname against demangler. */
88 static int check_physname = 0;
89
90 /* When non-zero, do not reject deprecated .gdb_index sections. */
91 static int use_deprecated_index_sections = 0;
92
93 static const struct objfile_data *dwarf2_objfile_data_key;
94
95 /* The "aclass" indices for various kinds of computed DWARF symbols. */
96
97 static int dwarf2_locexpr_index;
98 static int dwarf2_loclist_index;
99 static int dwarf2_locexpr_block_index;
100 static int dwarf2_loclist_block_index;
101
102 /* A descriptor for dwarf sections.
103
104 S.ASECTION, SIZE are typically initialized when the objfile is first
105 scanned. BUFFER, READIN are filled in later when the section is read.
106 If the section contained compressed data then SIZE is updated to record
107 the uncompressed size of the section.
108
109 DWP file format V2 introduces a wrinkle that is easiest to handle by
110 creating the concept of virtual sections contained within a real section.
111 In DWP V2 the sections of the input DWO files are concatenated together
112 into one section, but section offsets are kept relative to the original
113 input section.
114 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
115 the real section this "virtual" section is contained in, and BUFFER,SIZE
116 describe the virtual section. */
117
118 struct dwarf2_section_info
119 {
120 union
121 {
122 /* If this is a real section, the bfd section. */
123 asection *asection;
124 /* If this is a virtual section, pointer to the containing ("real")
125 section. */
126 struct dwarf2_section_info *containing_section;
127 } s;
128 /* Pointer to section data, only valid if readin. */
129 const gdb_byte *buffer;
130 /* The size of the section, real or virtual. */
131 bfd_size_type size;
132 /* If this is a virtual section, the offset in the real section.
133 Only valid if is_virtual. */
134 bfd_size_type virtual_offset;
135 /* True if we have tried to read this section. */
136 char readin;
137 /* True if this is a virtual section, False otherwise.
138 This specifies which of s.asection and s.containing_section to use. */
139 char is_virtual;
140 };
141
142 typedef struct dwarf2_section_info dwarf2_section_info_def;
143 DEF_VEC_O (dwarf2_section_info_def);
144
145 /* All offsets in the index are of this type. It must be
146 architecture-independent. */
147 typedef uint32_t offset_type;
148
149 DEF_VEC_I (offset_type);
150
151 /* Ensure only legit values are used. */
152 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
153 do { \
154 gdb_assert ((unsigned int) (value) <= 1); \
155 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
156 } while (0)
157
158 /* Ensure only legit values are used. */
159 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
160 do { \
161 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
162 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
163 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
164 } while (0)
165
166 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
167 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
168 do { \
169 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
170 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
171 } while (0)
172
173 /* A description of the mapped index. The file format is described in
174 a comment by the code that writes the index. */
175 struct mapped_index
176 {
177 /* Index data format version. */
178 int version;
179
180 /* The total length of the buffer. */
181 off_t total_size;
182
183 /* A pointer to the address table data. */
184 const gdb_byte *address_table;
185
186 /* Size of the address table data in bytes. */
187 offset_type address_table_size;
188
189 /* The symbol table, implemented as a hash table. */
190 const offset_type *symbol_table;
191
192 /* Size in slots, each slot is 2 offset_types. */
193 offset_type symbol_table_slots;
194
195 /* A pointer to the constant pool. */
196 const char *constant_pool;
197 };
198
199 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
200 DEF_VEC_P (dwarf2_per_cu_ptr);
201
202 /* Collection of data recorded per objfile.
203 This hangs off of dwarf2_objfile_data_key. */
204
205 struct dwarf2_per_objfile
206 {
207 struct dwarf2_section_info info;
208 struct dwarf2_section_info abbrev;
209 struct dwarf2_section_info line;
210 struct dwarf2_section_info loc;
211 struct dwarf2_section_info macinfo;
212 struct dwarf2_section_info macro;
213 struct dwarf2_section_info str;
214 struct dwarf2_section_info ranges;
215 struct dwarf2_section_info addr;
216 struct dwarf2_section_info frame;
217 struct dwarf2_section_info eh_frame;
218 struct dwarf2_section_info gdb_index;
219
220 VEC (dwarf2_section_info_def) *types;
221
222 /* Back link. */
223 struct objfile *objfile;
224
225 /* Table of all the compilation units. This is used to locate
226 the target compilation unit of a particular reference. */
227 struct dwarf2_per_cu_data **all_comp_units;
228
229 /* The number of compilation units in ALL_COMP_UNITS. */
230 int n_comp_units;
231
232 /* The number of .debug_types-related CUs. */
233 int n_type_units;
234
235 /* The number of elements allocated in all_type_units.
236 If there are skeleton-less TUs, we add them to all_type_units lazily. */
237 int n_allocated_type_units;
238
239 /* The .debug_types-related CUs (TUs).
240 This is stored in malloc space because we may realloc it. */
241 struct signatured_type **all_type_units;
242
243 /* Table of struct type_unit_group objects.
244 The hash key is the DW_AT_stmt_list value. */
245 htab_t type_unit_groups;
246
247 /* A table mapping .debug_types signatures to its signatured_type entry.
248 This is NULL if the .debug_types section hasn't been read in yet. */
249 htab_t signatured_types;
250
251 /* Type unit statistics, to see how well the scaling improvements
252 are doing. */
253 struct tu_stats
254 {
255 int nr_uniq_abbrev_tables;
256 int nr_symtabs;
257 int nr_symtab_sharers;
258 int nr_stmt_less_type_units;
259 int nr_all_type_units_reallocs;
260 } tu_stats;
261
262 /* A chain of compilation units that are currently read in, so that
263 they can be freed later. */
264 struct dwarf2_per_cu_data *read_in_chain;
265
266 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
267 This is NULL if the table hasn't been allocated yet. */
268 htab_t dwo_files;
269
270 /* Non-zero if we've check for whether there is a DWP file. */
271 int dwp_checked;
272
273 /* The DWP file if there is one, or NULL. */
274 struct dwp_file *dwp_file;
275
276 /* The shared '.dwz' file, if one exists. This is used when the
277 original data was compressed using 'dwz -m'. */
278 struct dwz_file *dwz_file;
279
280 /* A flag indicating wether this objfile has a section loaded at a
281 VMA of 0. */
282 int has_section_at_zero;
283
284 /* True if we are using the mapped index,
285 or we are faking it for OBJF_READNOW's sake. */
286 unsigned char using_index;
287
288 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
289 struct mapped_index *index_table;
290
291 /* When using index_table, this keeps track of all quick_file_names entries.
292 TUs typically share line table entries with a CU, so we maintain a
293 separate table of all line table entries to support the sharing.
294 Note that while there can be way more TUs than CUs, we've already
295 sorted all the TUs into "type unit groups", grouped by their
296 DW_AT_stmt_list value. Therefore the only sharing done here is with a
297 CU and its associated TU group if there is one. */
298 htab_t quick_file_names_table;
299
300 /* Set during partial symbol reading, to prevent queueing of full
301 symbols. */
302 int reading_partial_symbols;
303
304 /* Table mapping type DIEs to their struct type *.
305 This is NULL if not allocated yet.
306 The mapping is done via (CU/TU + DIE offset) -> type. */
307 htab_t die_type_hash;
308
309 /* The CUs we recently read. */
310 VEC (dwarf2_per_cu_ptr) *just_read_cus;
311
312 /* Table containing line_header indexed by offset and offset_in_dwz. */
313 htab_t line_header_hash;
314 };
315
316 static struct dwarf2_per_objfile *dwarf2_per_objfile;
317
318 /* Default names of the debugging sections. */
319
320 /* Note that if the debugging section has been compressed, it might
321 have a name like .zdebug_info. */
322
323 static const struct dwarf2_debug_sections dwarf2_elf_names =
324 {
325 { ".debug_info", ".zdebug_info" },
326 { ".debug_abbrev", ".zdebug_abbrev" },
327 { ".debug_line", ".zdebug_line" },
328 { ".debug_loc", ".zdebug_loc" },
329 { ".debug_macinfo", ".zdebug_macinfo" },
330 { ".debug_macro", ".zdebug_macro" },
331 { ".debug_str", ".zdebug_str" },
332 { ".debug_ranges", ".zdebug_ranges" },
333 { ".debug_types", ".zdebug_types" },
334 { ".debug_addr", ".zdebug_addr" },
335 { ".debug_frame", ".zdebug_frame" },
336 { ".eh_frame", NULL },
337 { ".gdb_index", ".zgdb_index" },
338 23
339 };
340
341 /* List of DWO/DWP sections. */
342
343 static const struct dwop_section_names
344 {
345 struct dwarf2_section_names abbrev_dwo;
346 struct dwarf2_section_names info_dwo;
347 struct dwarf2_section_names line_dwo;
348 struct dwarf2_section_names loc_dwo;
349 struct dwarf2_section_names macinfo_dwo;
350 struct dwarf2_section_names macro_dwo;
351 struct dwarf2_section_names str_dwo;
352 struct dwarf2_section_names str_offsets_dwo;
353 struct dwarf2_section_names types_dwo;
354 struct dwarf2_section_names cu_index;
355 struct dwarf2_section_names tu_index;
356 }
357 dwop_section_names =
358 {
359 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
360 { ".debug_info.dwo", ".zdebug_info.dwo" },
361 { ".debug_line.dwo", ".zdebug_line.dwo" },
362 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
363 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
364 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
365 { ".debug_str.dwo", ".zdebug_str.dwo" },
366 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
367 { ".debug_types.dwo", ".zdebug_types.dwo" },
368 { ".debug_cu_index", ".zdebug_cu_index" },
369 { ".debug_tu_index", ".zdebug_tu_index" },
370 };
371
372 /* local data types */
373
374 /* The data in a compilation unit header, after target2host
375 translation, looks like this. */
376 struct comp_unit_head
377 {
378 unsigned int length;
379 short version;
380 unsigned char addr_size;
381 unsigned char signed_addr_p;
382 sect_offset abbrev_offset;
383
384 /* Size of file offsets; either 4 or 8. */
385 unsigned int offset_size;
386
387 /* Size of the length field; either 4 or 12. */
388 unsigned int initial_length_size;
389
390 /* Offset to the first byte of this compilation unit header in the
391 .debug_info section, for resolving relative reference dies. */
392 sect_offset offset;
393
394 /* Offset to first die in this cu from the start of the cu.
395 This will be the first byte following the compilation unit header. */
396 cu_offset first_die_offset;
397 };
398
399 /* Type used for delaying computation of method physnames.
400 See comments for compute_delayed_physnames. */
401 struct delayed_method_info
402 {
403 /* The type to which the method is attached, i.e., its parent class. */
404 struct type *type;
405
406 /* The index of the method in the type's function fieldlists. */
407 int fnfield_index;
408
409 /* The index of the method in the fieldlist. */
410 int index;
411
412 /* The name of the DIE. */
413 const char *name;
414
415 /* The DIE associated with this method. */
416 struct die_info *die;
417 };
418
419 typedef struct delayed_method_info delayed_method_info;
420 DEF_VEC_O (delayed_method_info);
421
422 /* Internal state when decoding a particular compilation unit. */
423 struct dwarf2_cu
424 {
425 /* The objfile containing this compilation unit. */
426 struct objfile *objfile;
427
428 /* The header of the compilation unit. */
429 struct comp_unit_head header;
430
431 /* Base address of this compilation unit. */
432 CORE_ADDR base_address;
433
434 /* Non-zero if base_address has been set. */
435 int base_known;
436
437 /* The language we are debugging. */
438 enum language language;
439 const struct language_defn *language_defn;
440
441 const char *producer;
442
443 /* The generic symbol table building routines have separate lists for
444 file scope symbols and all all other scopes (local scopes). So
445 we need to select the right one to pass to add_symbol_to_list().
446 We do it by keeping a pointer to the correct list in list_in_scope.
447
448 FIXME: The original dwarf code just treated the file scope as the
449 first local scope, and all other local scopes as nested local
450 scopes, and worked fine. Check to see if we really need to
451 distinguish these in buildsym.c. */
452 struct pending **list_in_scope;
453
454 /* The abbrev table for this CU.
455 Normally this points to the abbrev table in the objfile.
456 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
457 struct abbrev_table *abbrev_table;
458
459 /* Hash table holding all the loaded partial DIEs
460 with partial_die->offset.SECT_OFF as hash. */
461 htab_t partial_dies;
462
463 /* Storage for things with the same lifetime as this read-in compilation
464 unit, including partial DIEs. */
465 struct obstack comp_unit_obstack;
466
467 /* When multiple dwarf2_cu structures are living in memory, this field
468 chains them all together, so that they can be released efficiently.
469 We will probably also want a generation counter so that most-recently-used
470 compilation units are cached... */
471 struct dwarf2_per_cu_data *read_in_chain;
472
473 /* Backlink to our per_cu entry. */
474 struct dwarf2_per_cu_data *per_cu;
475
476 /* How many compilation units ago was this CU last referenced? */
477 int last_used;
478
479 /* A hash table of DIE cu_offset for following references with
480 die_info->offset.sect_off as hash. */
481 htab_t die_hash;
482
483 /* Full DIEs if read in. */
484 struct die_info *dies;
485
486 /* A set of pointers to dwarf2_per_cu_data objects for compilation
487 units referenced by this one. Only set during full symbol processing;
488 partial symbol tables do not have dependencies. */
489 htab_t dependencies;
490
491 /* Header data from the line table, during full symbol processing. */
492 struct line_header *line_header;
493
494 /* A list of methods which need to have physnames computed
495 after all type information has been read. */
496 VEC (delayed_method_info) *method_list;
497
498 /* To be copied to symtab->call_site_htab. */
499 htab_t call_site_htab;
500
501 /* Non-NULL if this CU came from a DWO file.
502 There is an invariant here that is important to remember:
503 Except for attributes copied from the top level DIE in the "main"
504 (or "stub") file in preparation for reading the DWO file
505 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
506 Either there isn't a DWO file (in which case this is NULL and the point
507 is moot), or there is and either we're not going to read it (in which
508 case this is NULL) or there is and we are reading it (in which case this
509 is non-NULL). */
510 struct dwo_unit *dwo_unit;
511
512 /* The DW_AT_addr_base attribute if present, zero otherwise
513 (zero is a valid value though).
514 Note this value comes from the Fission stub CU/TU's DIE. */
515 ULONGEST addr_base;
516
517 /* The DW_AT_ranges_base attribute if present, zero otherwise
518 (zero is a valid value though).
519 Note this value comes from the Fission stub CU/TU's DIE.
520 Also note that the value is zero in the non-DWO case so this value can
521 be used without needing to know whether DWO files are in use or not.
522 N.B. This does not apply to DW_AT_ranges appearing in
523 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
524 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
525 DW_AT_ranges_base *would* have to be applied, and we'd have to care
526 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
527 ULONGEST ranges_base;
528
529 /* Mark used when releasing cached dies. */
530 unsigned int mark : 1;
531
532 /* This CU references .debug_loc. See the symtab->locations_valid field.
533 This test is imperfect as there may exist optimized debug code not using
534 any location list and still facing inlining issues if handled as
535 unoptimized code. For a future better test see GCC PR other/32998. */
536 unsigned int has_loclist : 1;
537
538 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
539 if all the producer_is_* fields are valid. This information is cached
540 because profiling CU expansion showed excessive time spent in
541 producer_is_gxx_lt_4_6. */
542 unsigned int checked_producer : 1;
543 unsigned int producer_is_gxx_lt_4_6 : 1;
544 unsigned int producer_is_gcc_lt_4_3 : 1;
545 unsigned int producer_is_icc : 1;
546
547 /* When set, the file that we're processing is known to have
548 debugging info for C++ namespaces. GCC 3.3.x did not produce
549 this information, but later versions do. */
550
551 unsigned int processing_has_namespace_info : 1;
552 };
553
554 /* Persistent data held for a compilation unit, even when not
555 processing it. We put a pointer to this structure in the
556 read_symtab_private field of the psymtab. */
557
558 struct dwarf2_per_cu_data
559 {
560 /* The start offset and length of this compilation unit.
561 NOTE: Unlike comp_unit_head.length, this length includes
562 initial_length_size.
563 If the DIE refers to a DWO file, this is always of the original die,
564 not the DWO file. */
565 sect_offset offset;
566 unsigned int length;
567
568 /* Flag indicating this compilation unit will be read in before
569 any of the current compilation units are processed. */
570 unsigned int queued : 1;
571
572 /* This flag will be set when reading partial DIEs if we need to load
573 absolutely all DIEs for this compilation unit, instead of just the ones
574 we think are interesting. It gets set if we look for a DIE in the
575 hash table and don't find it. */
576 unsigned int load_all_dies : 1;
577
578 /* Non-zero if this CU is from .debug_types.
579 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
580 this is non-zero. */
581 unsigned int is_debug_types : 1;
582
583 /* Non-zero if this CU is from the .dwz file. */
584 unsigned int is_dwz : 1;
585
586 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
587 This flag is only valid if is_debug_types is true.
588 We can't read a CU directly from a DWO file: There are required
589 attributes in the stub. */
590 unsigned int reading_dwo_directly : 1;
591
592 /* Non-zero if the TU has been read.
593 This is used to assist the "Stay in DWO Optimization" for Fission:
594 When reading a DWO, it's faster to read TUs from the DWO instead of
595 fetching them from random other DWOs (due to comdat folding).
596 If the TU has already been read, the optimization is unnecessary
597 (and unwise - we don't want to change where gdb thinks the TU lives
598 "midflight").
599 This flag is only valid if is_debug_types is true. */
600 unsigned int tu_read : 1;
601
602 /* The section this CU/TU lives in.
603 If the DIE refers to a DWO file, this is always the original die,
604 not the DWO file. */
605 struct dwarf2_section_info *section;
606
607 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
608 of the CU cache it gets reset to NULL again. */
609 struct dwarf2_cu *cu;
610
611 /* The corresponding objfile.
612 Normally we can get the objfile from dwarf2_per_objfile.
613 However we can enter this file with just a "per_cu" handle. */
614 struct objfile *objfile;
615
616 /* When dwarf2_per_objfile->using_index is true, the 'quick' field
617 is active. Otherwise, the 'psymtab' field is active. */
618 union
619 {
620 /* The partial symbol table associated with this compilation unit,
621 or NULL for unread partial units. */
622 struct partial_symtab *psymtab;
623
624 /* Data needed by the "quick" functions. */
625 struct dwarf2_per_cu_quick_data *quick;
626 } v;
627
628 /* The CUs we import using DW_TAG_imported_unit. This is filled in
629 while reading psymtabs, used to compute the psymtab dependencies,
630 and then cleared. Then it is filled in again while reading full
631 symbols, and only deleted when the objfile is destroyed.
632
633 This is also used to work around a difference between the way gold
634 generates .gdb_index version <=7 and the way gdb does. Arguably this
635 is a gold bug. For symbols coming from TUs, gold records in the index
636 the CU that includes the TU instead of the TU itself. This breaks
637 dw2_lookup_symbol: It assumes that if the index says symbol X lives
638 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
639 will find X. Alas TUs live in their own symtab, so after expanding CU Y
640 we need to look in TU Z to find X. Fortunately, this is akin to
641 DW_TAG_imported_unit, so we just use the same mechanism: For
642 .gdb_index version <=7 this also records the TUs that the CU referred
643 to. Concurrently with this change gdb was modified to emit version 8
644 indices so we only pay a price for gold generated indices.
645 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
646 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
647 };
648
649 /* Entry in the signatured_types hash table. */
650
651 struct signatured_type
652 {
653 /* The "per_cu" object of this type.
654 This struct is used iff per_cu.is_debug_types.
655 N.B.: This is the first member so that it's easy to convert pointers
656 between them. */
657 struct dwarf2_per_cu_data per_cu;
658
659 /* The type's signature. */
660 ULONGEST signature;
661
662 /* Offset in the TU of the type's DIE, as read from the TU header.
663 If this TU is a DWO stub and the definition lives in a DWO file
664 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
665 cu_offset type_offset_in_tu;
666
667 /* Offset in the section of the type's DIE.
668 If the definition lives in a DWO file, this is the offset in the
669 .debug_types.dwo section.
670 The value is zero until the actual value is known.
671 Zero is otherwise not a valid section offset. */
672 sect_offset type_offset_in_section;
673
674 /* Type units are grouped by their DW_AT_stmt_list entry so that they
675 can share them. This points to the containing symtab. */
676 struct type_unit_group *type_unit_group;
677
678 /* The type.
679 The first time we encounter this type we fully read it in and install it
680 in the symbol tables. Subsequent times we only need the type. */
681 struct type *type;
682
683 /* Containing DWO unit.
684 This field is valid iff per_cu.reading_dwo_directly. */
685 struct dwo_unit *dwo_unit;
686 };
687
688 typedef struct signatured_type *sig_type_ptr;
689 DEF_VEC_P (sig_type_ptr);
690
691 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
692 This includes type_unit_group and quick_file_names. */
693
694 struct stmt_list_hash
695 {
696 /* The DWO unit this table is from or NULL if there is none. */
697 struct dwo_unit *dwo_unit;
698
699 /* Offset in .debug_line or .debug_line.dwo. */
700 sect_offset line_offset;
701 };
702
703 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
704 an object of this type. */
705
706 struct type_unit_group
707 {
708 /* dwarf2read.c's main "handle" on a TU symtab.
709 To simplify things we create an artificial CU that "includes" all the
710 type units using this stmt_list so that the rest of the code still has
711 a "per_cu" handle on the symtab.
712 This PER_CU is recognized by having no section. */
713 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
714 struct dwarf2_per_cu_data per_cu;
715
716 /* The TUs that share this DW_AT_stmt_list entry.
717 This is added to while parsing type units to build partial symtabs,
718 and is deleted afterwards and not used again. */
719 VEC (sig_type_ptr) *tus;
720
721 /* The compunit symtab.
722 Type units in a group needn't all be defined in the same source file,
723 so we create an essentially anonymous symtab as the compunit symtab. */
724 struct compunit_symtab *compunit_symtab;
725
726 /* The data used to construct the hash key. */
727 struct stmt_list_hash hash;
728
729 /* The number of symtabs from the line header.
730 The value here must match line_header.num_file_names. */
731 unsigned int num_symtabs;
732
733 /* The symbol tables for this TU (obtained from the files listed in
734 DW_AT_stmt_list).
735 WARNING: The order of entries here must match the order of entries
736 in the line header. After the first TU using this type_unit_group, the
737 line header for the subsequent TUs is recreated from this. This is done
738 because we need to use the same symtabs for each TU using the same
739 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
740 there's no guarantee the line header doesn't have duplicate entries. */
741 struct symtab **symtabs;
742 };
743
744 /* These sections are what may appear in a (real or virtual) DWO file. */
745
746 struct dwo_sections
747 {
748 struct dwarf2_section_info abbrev;
749 struct dwarf2_section_info line;
750 struct dwarf2_section_info loc;
751 struct dwarf2_section_info macinfo;
752 struct dwarf2_section_info macro;
753 struct dwarf2_section_info str;
754 struct dwarf2_section_info str_offsets;
755 /* In the case of a virtual DWO file, these two are unused. */
756 struct dwarf2_section_info info;
757 VEC (dwarf2_section_info_def) *types;
758 };
759
760 /* CUs/TUs in DWP/DWO files. */
761
762 struct dwo_unit
763 {
764 /* Backlink to the containing struct dwo_file. */
765 struct dwo_file *dwo_file;
766
767 /* The "id" that distinguishes this CU/TU.
768 .debug_info calls this "dwo_id", .debug_types calls this "signature".
769 Since signatures came first, we stick with it for consistency. */
770 ULONGEST signature;
771
772 /* The section this CU/TU lives in, in the DWO file. */
773 struct dwarf2_section_info *section;
774
775 /* Same as dwarf2_per_cu_data:{offset,length} but in the DWO section. */
776 sect_offset offset;
777 unsigned int length;
778
779 /* For types, offset in the type's DIE of the type defined by this TU. */
780 cu_offset type_offset_in_tu;
781 };
782
783 /* include/dwarf2.h defines the DWP section codes.
784 It defines a max value but it doesn't define a min value, which we
785 use for error checking, so provide one. */
786
787 enum dwp_v2_section_ids
788 {
789 DW_SECT_MIN = 1
790 };
791
792 /* Data for one DWO file.
793
794 This includes virtual DWO files (a virtual DWO file is a DWO file as it
795 appears in a DWP file). DWP files don't really have DWO files per se -
796 comdat folding of types "loses" the DWO file they came from, and from
797 a high level view DWP files appear to contain a mass of random types.
798 However, to maintain consistency with the non-DWP case we pretend DWP
799 files contain virtual DWO files, and we assign each TU with one virtual
800 DWO file (generally based on the line and abbrev section offsets -
801 a heuristic that seems to work in practice). */
802
803 struct dwo_file
804 {
805 /* The DW_AT_GNU_dwo_name attribute.
806 For virtual DWO files the name is constructed from the section offsets
807 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
808 from related CU+TUs. */
809 const char *dwo_name;
810
811 /* The DW_AT_comp_dir attribute. */
812 const char *comp_dir;
813
814 /* The bfd, when the file is open. Otherwise this is NULL.
815 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
816 bfd *dbfd;
817
818 /* The sections that make up this DWO file.
819 Remember that for virtual DWO files in DWP V2, these are virtual
820 sections (for lack of a better name). */
821 struct dwo_sections sections;
822
823 /* The CU in the file.
824 We only support one because having more than one requires hacking the
825 dwo_name of each to match, which is highly unlikely to happen.
826 Doing this means all TUs can share comp_dir: We also assume that
827 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
828 struct dwo_unit *cu;
829
830 /* Table of TUs in the file.
831 Each element is a struct dwo_unit. */
832 htab_t tus;
833 };
834
835 /* These sections are what may appear in a DWP file. */
836
837 struct dwp_sections
838 {
839 /* These are used by both DWP version 1 and 2. */
840 struct dwarf2_section_info str;
841 struct dwarf2_section_info cu_index;
842 struct dwarf2_section_info tu_index;
843
844 /* These are only used by DWP version 2 files.
845 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
846 sections are referenced by section number, and are not recorded here.
847 In DWP version 2 there is at most one copy of all these sections, each
848 section being (effectively) comprised of the concatenation of all of the
849 individual sections that exist in the version 1 format.
850 To keep the code simple we treat each of these concatenated pieces as a
851 section itself (a virtual section?). */
852 struct dwarf2_section_info abbrev;
853 struct dwarf2_section_info info;
854 struct dwarf2_section_info line;
855 struct dwarf2_section_info loc;
856 struct dwarf2_section_info macinfo;
857 struct dwarf2_section_info macro;
858 struct dwarf2_section_info str_offsets;
859 struct dwarf2_section_info types;
860 };
861
862 /* These sections are what may appear in a virtual DWO file in DWP version 1.
863 A virtual DWO file is a DWO file as it appears in a DWP file. */
864
865 struct virtual_v1_dwo_sections
866 {
867 struct dwarf2_section_info abbrev;
868 struct dwarf2_section_info line;
869 struct dwarf2_section_info loc;
870 struct dwarf2_section_info macinfo;
871 struct dwarf2_section_info macro;
872 struct dwarf2_section_info str_offsets;
873 /* Each DWP hash table entry records one CU or one TU.
874 That is recorded here, and copied to dwo_unit.section. */
875 struct dwarf2_section_info info_or_types;
876 };
877
878 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
879 In version 2, the sections of the DWO files are concatenated together
880 and stored in one section of that name. Thus each ELF section contains
881 several "virtual" sections. */
882
883 struct virtual_v2_dwo_sections
884 {
885 bfd_size_type abbrev_offset;
886 bfd_size_type abbrev_size;
887
888 bfd_size_type line_offset;
889 bfd_size_type line_size;
890
891 bfd_size_type loc_offset;
892 bfd_size_type loc_size;
893
894 bfd_size_type macinfo_offset;
895 bfd_size_type macinfo_size;
896
897 bfd_size_type macro_offset;
898 bfd_size_type macro_size;
899
900 bfd_size_type str_offsets_offset;
901 bfd_size_type str_offsets_size;
902
903 /* Each DWP hash table entry records one CU or one TU.
904 That is recorded here, and copied to dwo_unit.section. */
905 bfd_size_type info_or_types_offset;
906 bfd_size_type info_or_types_size;
907 };
908
909 /* Contents of DWP hash tables. */
910
911 struct dwp_hash_table
912 {
913 uint32_t version, nr_columns;
914 uint32_t nr_units, nr_slots;
915 const gdb_byte *hash_table, *unit_table;
916 union
917 {
918 struct
919 {
920 const gdb_byte *indices;
921 } v1;
922 struct
923 {
924 /* This is indexed by column number and gives the id of the section
925 in that column. */
926 #define MAX_NR_V2_DWO_SECTIONS \
927 (1 /* .debug_info or .debug_types */ \
928 + 1 /* .debug_abbrev */ \
929 + 1 /* .debug_line */ \
930 + 1 /* .debug_loc */ \
931 + 1 /* .debug_str_offsets */ \
932 + 1 /* .debug_macro or .debug_macinfo */)
933 int section_ids[MAX_NR_V2_DWO_SECTIONS];
934 const gdb_byte *offsets;
935 const gdb_byte *sizes;
936 } v2;
937 } section_pool;
938 };
939
940 /* Data for one DWP file. */
941
942 struct dwp_file
943 {
944 /* Name of the file. */
945 const char *name;
946
947 /* File format version. */
948 int version;
949
950 /* The bfd. */
951 bfd *dbfd;
952
953 /* Section info for this file. */
954 struct dwp_sections sections;
955
956 /* Table of CUs in the file. */
957 const struct dwp_hash_table *cus;
958
959 /* Table of TUs in the file. */
960 const struct dwp_hash_table *tus;
961
962 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
963 htab_t loaded_cus;
964 htab_t loaded_tus;
965
966 /* Table to map ELF section numbers to their sections.
967 This is only needed for the DWP V1 file format. */
968 unsigned int num_sections;
969 asection **elf_sections;
970 };
971
972 /* This represents a '.dwz' file. */
973
974 struct dwz_file
975 {
976 /* A dwz file can only contain a few sections. */
977 struct dwarf2_section_info abbrev;
978 struct dwarf2_section_info info;
979 struct dwarf2_section_info str;
980 struct dwarf2_section_info line;
981 struct dwarf2_section_info macro;
982 struct dwarf2_section_info gdb_index;
983
984 /* The dwz's BFD. */
985 bfd *dwz_bfd;
986 };
987
988 /* Struct used to pass misc. parameters to read_die_and_children, et
989 al. which are used for both .debug_info and .debug_types dies.
990 All parameters here are unchanging for the life of the call. This
991 struct exists to abstract away the constant parameters of die reading. */
992
993 struct die_reader_specs
994 {
995 /* The bfd of die_section. */
996 bfd* abfd;
997
998 /* The CU of the DIE we are parsing. */
999 struct dwarf2_cu *cu;
1000
1001 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
1002 struct dwo_file *dwo_file;
1003
1004 /* The section the die comes from.
1005 This is either .debug_info or .debug_types, or the .dwo variants. */
1006 struct dwarf2_section_info *die_section;
1007
1008 /* die_section->buffer. */
1009 const gdb_byte *buffer;
1010
1011 /* The end of the buffer. */
1012 const gdb_byte *buffer_end;
1013
1014 /* The value of the DW_AT_comp_dir attribute. */
1015 const char *comp_dir;
1016 };
1017
1018 /* Type of function passed to init_cutu_and_read_dies, et.al. */
1019 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
1020 const gdb_byte *info_ptr,
1021 struct die_info *comp_unit_die,
1022 int has_children,
1023 void *data);
1024
1025 /* The line number information for a compilation unit (found in the
1026 .debug_line section) begins with a "statement program header",
1027 which contains the following information. */
1028 struct line_header
1029 {
1030 /* Offset of line number information in .debug_line section. */
1031 sect_offset offset;
1032
1033 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1034 unsigned offset_in_dwz : 1;
1035
1036 unsigned int total_length;
1037 unsigned short version;
1038 unsigned int header_length;
1039 unsigned char minimum_instruction_length;
1040 unsigned char maximum_ops_per_instruction;
1041 unsigned char default_is_stmt;
1042 int line_base;
1043 unsigned char line_range;
1044 unsigned char opcode_base;
1045
1046 /* standard_opcode_lengths[i] is the number of operands for the
1047 standard opcode whose value is i. This means that
1048 standard_opcode_lengths[0] is unused, and the last meaningful
1049 element is standard_opcode_lengths[opcode_base - 1]. */
1050 unsigned char *standard_opcode_lengths;
1051
1052 /* The include_directories table. NOTE! These strings are not
1053 allocated with xmalloc; instead, they are pointers into
1054 debug_line_buffer. If you try to free them, `free' will get
1055 indigestion. */
1056 unsigned int num_include_dirs, include_dirs_size;
1057 const char **include_dirs;
1058
1059 /* The file_names table. NOTE! These strings are not allocated
1060 with xmalloc; instead, they are pointers into debug_line_buffer.
1061 Don't try to free them directly. */
1062 unsigned int num_file_names, file_names_size;
1063 struct file_entry
1064 {
1065 const char *name;
1066 unsigned int dir_index;
1067 unsigned int mod_time;
1068 unsigned int length;
1069 int included_p; /* Non-zero if referenced by the Line Number Program. */
1070 struct symtab *symtab; /* The associated symbol table, if any. */
1071 } *file_names;
1072
1073 /* The start and end of the statement program following this
1074 header. These point into dwarf2_per_objfile->line_buffer. */
1075 const gdb_byte *statement_program_start, *statement_program_end;
1076 };
1077
1078 /* When we construct a partial symbol table entry we only
1079 need this much information. */
1080 struct partial_die_info
1081 {
1082 /* Offset of this DIE. */
1083 sect_offset offset;
1084
1085 /* DWARF-2 tag for this DIE. */
1086 ENUM_BITFIELD(dwarf_tag) tag : 16;
1087
1088 /* Assorted flags describing the data found in this DIE. */
1089 unsigned int has_children : 1;
1090 unsigned int is_external : 1;
1091 unsigned int is_declaration : 1;
1092 unsigned int has_type : 1;
1093 unsigned int has_specification : 1;
1094 unsigned int has_pc_info : 1;
1095 unsigned int may_be_inlined : 1;
1096
1097 /* Flag set if the SCOPE field of this structure has been
1098 computed. */
1099 unsigned int scope_set : 1;
1100
1101 /* Flag set if the DIE has a byte_size attribute. */
1102 unsigned int has_byte_size : 1;
1103
1104 /* Flag set if any of the DIE's children are template arguments. */
1105 unsigned int has_template_arguments : 1;
1106
1107 /* Flag set if fixup_partial_die has been called on this die. */
1108 unsigned int fixup_called : 1;
1109
1110 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1111 unsigned int is_dwz : 1;
1112
1113 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1114 unsigned int spec_is_dwz : 1;
1115
1116 /* The name of this DIE. Normally the value of DW_AT_name, but
1117 sometimes a default name for unnamed DIEs. */
1118 const char *name;
1119
1120 /* The linkage name, if present. */
1121 const char *linkage_name;
1122
1123 /* The scope to prepend to our children. This is generally
1124 allocated on the comp_unit_obstack, so will disappear
1125 when this compilation unit leaves the cache. */
1126 const char *scope;
1127
1128 /* Some data associated with the partial DIE. The tag determines
1129 which field is live. */
1130 union
1131 {
1132 /* The location description associated with this DIE, if any. */
1133 struct dwarf_block *locdesc;
1134 /* The offset of an import, for DW_TAG_imported_unit. */
1135 sect_offset offset;
1136 } d;
1137
1138 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1139 CORE_ADDR lowpc;
1140 CORE_ADDR highpc;
1141
1142 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1143 DW_AT_sibling, if any. */
1144 /* NOTE: This member isn't strictly necessary, read_partial_die could
1145 return DW_AT_sibling values to its caller load_partial_dies. */
1146 const gdb_byte *sibling;
1147
1148 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1149 DW_AT_specification (or DW_AT_abstract_origin or
1150 DW_AT_extension). */
1151 sect_offset spec_offset;
1152
1153 /* Pointers to this DIE's parent, first child, and next sibling,
1154 if any. */
1155 struct partial_die_info *die_parent, *die_child, *die_sibling;
1156 };
1157
1158 /* This data structure holds the information of an abbrev. */
1159 struct abbrev_info
1160 {
1161 unsigned int number; /* number identifying abbrev */
1162 enum dwarf_tag tag; /* dwarf tag */
1163 unsigned short has_children; /* boolean */
1164 unsigned short num_attrs; /* number of attributes */
1165 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1166 struct abbrev_info *next; /* next in chain */
1167 };
1168
1169 struct attr_abbrev
1170 {
1171 ENUM_BITFIELD(dwarf_attribute) name : 16;
1172 ENUM_BITFIELD(dwarf_form) form : 16;
1173 };
1174
1175 /* Size of abbrev_table.abbrev_hash_table. */
1176 #define ABBREV_HASH_SIZE 121
1177
1178 /* Top level data structure to contain an abbreviation table. */
1179
1180 struct abbrev_table
1181 {
1182 /* Where the abbrev table came from.
1183 This is used as a sanity check when the table is used. */
1184 sect_offset offset;
1185
1186 /* Storage for the abbrev table. */
1187 struct obstack abbrev_obstack;
1188
1189 /* Hash table of abbrevs.
1190 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1191 It could be statically allocated, but the previous code didn't so we
1192 don't either. */
1193 struct abbrev_info **abbrevs;
1194 };
1195
1196 /* Attributes have a name and a value. */
1197 struct attribute
1198 {
1199 ENUM_BITFIELD(dwarf_attribute) name : 16;
1200 ENUM_BITFIELD(dwarf_form) form : 15;
1201
1202 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1203 field should be in u.str (existing only for DW_STRING) but it is kept
1204 here for better struct attribute alignment. */
1205 unsigned int string_is_canonical : 1;
1206
1207 union
1208 {
1209 const char *str;
1210 struct dwarf_block *blk;
1211 ULONGEST unsnd;
1212 LONGEST snd;
1213 CORE_ADDR addr;
1214 ULONGEST signature;
1215 }
1216 u;
1217 };
1218
1219 /* This data structure holds a complete die structure. */
1220 struct die_info
1221 {
1222 /* DWARF-2 tag for this DIE. */
1223 ENUM_BITFIELD(dwarf_tag) tag : 16;
1224
1225 /* Number of attributes */
1226 unsigned char num_attrs;
1227
1228 /* True if we're presently building the full type name for the
1229 type derived from this DIE. */
1230 unsigned char building_fullname : 1;
1231
1232 /* True if this die is in process. PR 16581. */
1233 unsigned char in_process : 1;
1234
1235 /* Abbrev number */
1236 unsigned int abbrev;
1237
1238 /* Offset in .debug_info or .debug_types section. */
1239 sect_offset offset;
1240
1241 /* The dies in a compilation unit form an n-ary tree. PARENT
1242 points to this die's parent; CHILD points to the first child of
1243 this node; and all the children of a given node are chained
1244 together via their SIBLING fields. */
1245 struct die_info *child; /* Its first child, if any. */
1246 struct die_info *sibling; /* Its next sibling, if any. */
1247 struct die_info *parent; /* Its parent, if any. */
1248
1249 /* An array of attributes, with NUM_ATTRS elements. There may be
1250 zero, but it's not common and zero-sized arrays are not
1251 sufficiently portable C. */
1252 struct attribute attrs[1];
1253 };
1254
1255 /* Get at parts of an attribute structure. */
1256
1257 #define DW_STRING(attr) ((attr)->u.str)
1258 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1259 #define DW_UNSND(attr) ((attr)->u.unsnd)
1260 #define DW_BLOCK(attr) ((attr)->u.blk)
1261 #define DW_SND(attr) ((attr)->u.snd)
1262 #define DW_ADDR(attr) ((attr)->u.addr)
1263 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1264
1265 /* Blocks are a bunch of untyped bytes. */
1266 struct dwarf_block
1267 {
1268 size_t size;
1269
1270 /* Valid only if SIZE is not zero. */
1271 const gdb_byte *data;
1272 };
1273
1274 #ifndef ATTR_ALLOC_CHUNK
1275 #define ATTR_ALLOC_CHUNK 4
1276 #endif
1277
1278 /* Allocate fields for structs, unions and enums in this size. */
1279 #ifndef DW_FIELD_ALLOC_CHUNK
1280 #define DW_FIELD_ALLOC_CHUNK 4
1281 #endif
1282
1283 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1284 but this would require a corresponding change in unpack_field_as_long
1285 and friends. */
1286 static int bits_per_byte = 8;
1287
1288 /* The routines that read and process dies for a C struct or C++ class
1289 pass lists of data member fields and lists of member function fields
1290 in an instance of a field_info structure, as defined below. */
1291 struct field_info
1292 {
1293 /* List of data member and baseclasses fields. */
1294 struct nextfield
1295 {
1296 struct nextfield *next;
1297 int accessibility;
1298 int virtuality;
1299 struct field field;
1300 }
1301 *fields, *baseclasses;
1302
1303 /* Number of fields (including baseclasses). */
1304 int nfields;
1305
1306 /* Number of baseclasses. */
1307 int nbaseclasses;
1308
1309 /* Set if the accesibility of one of the fields is not public. */
1310 int non_public_fields;
1311
1312 /* Member function fields array, entries are allocated in the order they
1313 are encountered in the object file. */
1314 struct nextfnfield
1315 {
1316 struct nextfnfield *next;
1317 struct fn_field fnfield;
1318 }
1319 *fnfields;
1320
1321 /* Member function fieldlist array, contains name of possibly overloaded
1322 member function, number of overloaded member functions and a pointer
1323 to the head of the member function field chain. */
1324 struct fnfieldlist
1325 {
1326 const char *name;
1327 int length;
1328 struct nextfnfield *head;
1329 }
1330 *fnfieldlists;
1331
1332 /* Number of entries in the fnfieldlists array. */
1333 int nfnfields;
1334
1335 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1336 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1337 struct typedef_field_list
1338 {
1339 struct typedef_field field;
1340 struct typedef_field_list *next;
1341 }
1342 *typedef_field_list;
1343 unsigned typedef_field_list_count;
1344 };
1345
1346 /* One item on the queue of compilation units to read in full symbols
1347 for. */
1348 struct dwarf2_queue_item
1349 {
1350 struct dwarf2_per_cu_data *per_cu;
1351 enum language pretend_language;
1352 struct dwarf2_queue_item *next;
1353 };
1354
1355 /* The current queue. */
1356 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1357
1358 /* Loaded secondary compilation units are kept in memory until they
1359 have not been referenced for the processing of this many
1360 compilation units. Set this to zero to disable caching. Cache
1361 sizes of up to at least twenty will improve startup time for
1362 typical inter-CU-reference binaries, at an obvious memory cost. */
1363 static int dwarf2_max_cache_age = 5;
1364 static void
1365 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
1366 struct cmd_list_element *c, const char *value)
1367 {
1368 fprintf_filtered (file, _("The upper bound on the age of cached "
1369 "dwarf2 compilation units is %s.\n"),
1370 value);
1371 }
1372 \f
1373 /* local function prototypes */
1374
1375 static const char *get_section_name (const struct dwarf2_section_info *);
1376
1377 static const char *get_section_file_name (const struct dwarf2_section_info *);
1378
1379 static void dwarf2_locate_sections (bfd *, asection *, void *);
1380
1381 static void dwarf2_find_base_address (struct die_info *die,
1382 struct dwarf2_cu *cu);
1383
1384 static struct partial_symtab *create_partial_symtab
1385 (struct dwarf2_per_cu_data *per_cu, const char *name);
1386
1387 static void dwarf2_build_psymtabs_hard (struct objfile *);
1388
1389 static void scan_partial_symbols (struct partial_die_info *,
1390 CORE_ADDR *, CORE_ADDR *,
1391 int, struct dwarf2_cu *);
1392
1393 static void add_partial_symbol (struct partial_die_info *,
1394 struct dwarf2_cu *);
1395
1396 static void add_partial_namespace (struct partial_die_info *pdi,
1397 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1398 int set_addrmap, struct dwarf2_cu *cu);
1399
1400 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1401 CORE_ADDR *highpc, int set_addrmap,
1402 struct dwarf2_cu *cu);
1403
1404 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1405 struct dwarf2_cu *cu);
1406
1407 static void add_partial_subprogram (struct partial_die_info *pdi,
1408 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1409 int need_pc, struct dwarf2_cu *cu);
1410
1411 static void dwarf2_read_symtab (struct partial_symtab *,
1412 struct objfile *);
1413
1414 static void psymtab_to_symtab_1 (struct partial_symtab *);
1415
1416 static struct abbrev_info *abbrev_table_lookup_abbrev
1417 (const struct abbrev_table *, unsigned int);
1418
1419 static struct abbrev_table *abbrev_table_read_table
1420 (struct dwarf2_section_info *, sect_offset);
1421
1422 static void abbrev_table_free (struct abbrev_table *);
1423
1424 static void abbrev_table_free_cleanup (void *);
1425
1426 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1427 struct dwarf2_section_info *);
1428
1429 static void dwarf2_free_abbrev_table (void *);
1430
1431 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1432
1433 static struct partial_die_info *load_partial_dies
1434 (const struct die_reader_specs *, const gdb_byte *, int);
1435
1436 static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1437 struct partial_die_info *,
1438 struct abbrev_info *,
1439 unsigned int,
1440 const gdb_byte *);
1441
1442 static struct partial_die_info *find_partial_die (sect_offset, int,
1443 struct dwarf2_cu *);
1444
1445 static void fixup_partial_die (struct partial_die_info *,
1446 struct dwarf2_cu *);
1447
1448 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1449 struct attribute *, struct attr_abbrev *,
1450 const gdb_byte *);
1451
1452 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1453
1454 static int read_1_signed_byte (bfd *, const gdb_byte *);
1455
1456 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1457
1458 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1459
1460 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1461
1462 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1463 unsigned int *);
1464
1465 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1466
1467 static LONGEST read_checked_initial_length_and_offset
1468 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1469 unsigned int *, unsigned int *);
1470
1471 static LONGEST read_offset (bfd *, const gdb_byte *,
1472 const struct comp_unit_head *,
1473 unsigned int *);
1474
1475 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1476
1477 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1478 sect_offset);
1479
1480 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1481
1482 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1483
1484 static const char *read_indirect_string (bfd *, const gdb_byte *,
1485 const struct comp_unit_head *,
1486 unsigned int *);
1487
1488 static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1489
1490 static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
1491
1492 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1493
1494 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1495 const gdb_byte *,
1496 unsigned int *);
1497
1498 static const char *read_str_index (const struct die_reader_specs *reader,
1499 ULONGEST str_index);
1500
1501 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1502
1503 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1504 struct dwarf2_cu *);
1505
1506 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1507 unsigned int);
1508
1509 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1510 struct dwarf2_cu *cu);
1511
1512 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1513
1514 static struct die_info *die_specification (struct die_info *die,
1515 struct dwarf2_cu **);
1516
1517 static void free_line_header (struct line_header *lh);
1518
1519 static struct line_header *dwarf_decode_line_header (unsigned int offset,
1520 struct dwarf2_cu *cu);
1521
1522 static void dwarf_decode_lines (struct line_header *, const char *,
1523 struct dwarf2_cu *, struct partial_symtab *,
1524 CORE_ADDR, int decode_mapping);
1525
1526 static void dwarf2_start_subfile (const char *, const char *);
1527
1528 static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1529 const char *, const char *,
1530 CORE_ADDR);
1531
1532 static struct symbol *new_symbol (struct die_info *, struct type *,
1533 struct dwarf2_cu *);
1534
1535 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1536 struct dwarf2_cu *, struct symbol *);
1537
1538 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1539 struct dwarf2_cu *);
1540
1541 static void dwarf2_const_value_attr (const struct attribute *attr,
1542 struct type *type,
1543 const char *name,
1544 struct obstack *obstack,
1545 struct dwarf2_cu *cu, LONGEST *value,
1546 const gdb_byte **bytes,
1547 struct dwarf2_locexpr_baton **baton);
1548
1549 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1550
1551 static int need_gnat_info (struct dwarf2_cu *);
1552
1553 static struct type *die_descriptive_type (struct die_info *,
1554 struct dwarf2_cu *);
1555
1556 static void set_descriptive_type (struct type *, struct die_info *,
1557 struct dwarf2_cu *);
1558
1559 static struct type *die_containing_type (struct die_info *,
1560 struct dwarf2_cu *);
1561
1562 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1563 struct dwarf2_cu *);
1564
1565 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1566
1567 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1568
1569 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1570
1571 static char *typename_concat (struct obstack *obs, const char *prefix,
1572 const char *suffix, int physname,
1573 struct dwarf2_cu *cu);
1574
1575 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1576
1577 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1578
1579 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1580
1581 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1582
1583 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1584
1585 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1586 struct dwarf2_cu *, struct partial_symtab *);
1587
1588 static int dwarf2_get_pc_bounds (struct die_info *,
1589 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1590 struct partial_symtab *);
1591
1592 static void get_scope_pc_bounds (struct die_info *,
1593 CORE_ADDR *, CORE_ADDR *,
1594 struct dwarf2_cu *);
1595
1596 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1597 CORE_ADDR, struct dwarf2_cu *);
1598
1599 static void dwarf2_add_field (struct field_info *, struct die_info *,
1600 struct dwarf2_cu *);
1601
1602 static void dwarf2_attach_fields_to_type (struct field_info *,
1603 struct type *, struct dwarf2_cu *);
1604
1605 static void dwarf2_add_member_fn (struct field_info *,
1606 struct die_info *, struct type *,
1607 struct dwarf2_cu *);
1608
1609 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1610 struct type *,
1611 struct dwarf2_cu *);
1612
1613 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1614
1615 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1616
1617 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1618
1619 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1620
1621 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1622
1623 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1624
1625 static struct type *read_module_type (struct die_info *die,
1626 struct dwarf2_cu *cu);
1627
1628 static const char *namespace_name (struct die_info *die,
1629 int *is_anonymous, struct dwarf2_cu *);
1630
1631 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1632
1633 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1634
1635 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1636 struct dwarf2_cu *);
1637
1638 static struct die_info *read_die_and_siblings_1
1639 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1640 struct die_info *);
1641
1642 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1643 const gdb_byte *info_ptr,
1644 const gdb_byte **new_info_ptr,
1645 struct die_info *parent);
1646
1647 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1648 struct die_info **, const gdb_byte *,
1649 int *, int);
1650
1651 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1652 struct die_info **, const gdb_byte *,
1653 int *);
1654
1655 static void process_die (struct die_info *, struct dwarf2_cu *);
1656
1657 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1658 struct obstack *);
1659
1660 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1661
1662 static const char *dwarf2_full_name (const char *name,
1663 struct die_info *die,
1664 struct dwarf2_cu *cu);
1665
1666 static const char *dwarf2_physname (const char *name, struct die_info *die,
1667 struct dwarf2_cu *cu);
1668
1669 static struct die_info *dwarf2_extension (struct die_info *die,
1670 struct dwarf2_cu **);
1671
1672 static const char *dwarf_tag_name (unsigned int);
1673
1674 static const char *dwarf_attr_name (unsigned int);
1675
1676 static const char *dwarf_form_name (unsigned int);
1677
1678 static char *dwarf_bool_name (unsigned int);
1679
1680 static const char *dwarf_type_encoding_name (unsigned int);
1681
1682 static struct die_info *sibling_die (struct die_info *);
1683
1684 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1685
1686 static void dump_die_for_error (struct die_info *);
1687
1688 static void dump_die_1 (struct ui_file *, int level, int max_level,
1689 struct die_info *);
1690
1691 /*static*/ void dump_die (struct die_info *, int max_level);
1692
1693 static void store_in_ref_table (struct die_info *,
1694 struct dwarf2_cu *);
1695
1696 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1697
1698 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1699
1700 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1701 const struct attribute *,
1702 struct dwarf2_cu **);
1703
1704 static struct die_info *follow_die_ref (struct die_info *,
1705 const struct attribute *,
1706 struct dwarf2_cu **);
1707
1708 static struct die_info *follow_die_sig (struct die_info *,
1709 const struct attribute *,
1710 struct dwarf2_cu **);
1711
1712 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1713 struct dwarf2_cu *);
1714
1715 static struct type *get_DW_AT_signature_type (struct die_info *,
1716 const struct attribute *,
1717 struct dwarf2_cu *);
1718
1719 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1720
1721 static void read_signatured_type (struct signatured_type *);
1722
1723 /* memory allocation interface */
1724
1725 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1726
1727 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1728
1729 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1730
1731 static int attr_form_is_block (const struct attribute *);
1732
1733 static int attr_form_is_section_offset (const struct attribute *);
1734
1735 static int attr_form_is_constant (const struct attribute *);
1736
1737 static int attr_form_is_ref (const struct attribute *);
1738
1739 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1740 struct dwarf2_loclist_baton *baton,
1741 const struct attribute *attr);
1742
1743 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1744 struct symbol *sym,
1745 struct dwarf2_cu *cu,
1746 int is_block);
1747
1748 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1749 const gdb_byte *info_ptr,
1750 struct abbrev_info *abbrev);
1751
1752 static void free_stack_comp_unit (void *);
1753
1754 static hashval_t partial_die_hash (const void *item);
1755
1756 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1757
1758 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1759 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
1760
1761 static void init_one_comp_unit (struct dwarf2_cu *cu,
1762 struct dwarf2_per_cu_data *per_cu);
1763
1764 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1765 struct die_info *comp_unit_die,
1766 enum language pretend_language);
1767
1768 static void free_heap_comp_unit (void *);
1769
1770 static void free_cached_comp_units (void *);
1771
1772 static void age_cached_comp_units (void);
1773
1774 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1775
1776 static struct type *set_die_type (struct die_info *, struct type *,
1777 struct dwarf2_cu *);
1778
1779 static void create_all_comp_units (struct objfile *);
1780
1781 static int create_all_type_units (struct objfile *);
1782
1783 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1784 enum language);
1785
1786 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1787 enum language);
1788
1789 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1790 enum language);
1791
1792 static void dwarf2_add_dependence (struct dwarf2_cu *,
1793 struct dwarf2_per_cu_data *);
1794
1795 static void dwarf2_mark (struct dwarf2_cu *);
1796
1797 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1798
1799 static struct type *get_die_type_at_offset (sect_offset,
1800 struct dwarf2_per_cu_data *);
1801
1802 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1803
1804 static void dwarf2_release_queue (void *dummy);
1805
1806 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1807 enum language pretend_language);
1808
1809 static void process_queue (void);
1810
1811 static void find_file_and_directory (struct die_info *die,
1812 struct dwarf2_cu *cu,
1813 const char **name, const char **comp_dir);
1814
1815 static char *file_full_name (int file, struct line_header *lh,
1816 const char *comp_dir);
1817
1818 static const gdb_byte *read_and_check_comp_unit_head
1819 (struct comp_unit_head *header,
1820 struct dwarf2_section_info *section,
1821 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1822 int is_debug_types_section);
1823
1824 static void init_cutu_and_read_dies
1825 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1826 int use_existing_cu, int keep,
1827 die_reader_func_ftype *die_reader_func, void *data);
1828
1829 static void init_cutu_and_read_dies_simple
1830 (struct dwarf2_per_cu_data *this_cu,
1831 die_reader_func_ftype *die_reader_func, void *data);
1832
1833 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1834
1835 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1836
1837 static struct dwo_unit *lookup_dwo_unit_in_dwp
1838 (struct dwp_file *dwp_file, const char *comp_dir,
1839 ULONGEST signature, int is_debug_types);
1840
1841 static struct dwp_file *get_dwp_file (void);
1842
1843 static struct dwo_unit *lookup_dwo_comp_unit
1844 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1845
1846 static struct dwo_unit *lookup_dwo_type_unit
1847 (struct signatured_type *, const char *, const char *);
1848
1849 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1850
1851 static void free_dwo_file_cleanup (void *);
1852
1853 static void process_cu_includes (void);
1854
1855 static void check_producer (struct dwarf2_cu *cu);
1856
1857 static void free_line_header_voidp (void *arg);
1858 \f
1859 /* Various complaints about symbol reading that don't abort the process. */
1860
1861 static void
1862 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1863 {
1864 complaint (&symfile_complaints,
1865 _("statement list doesn't fit in .debug_line section"));
1866 }
1867
1868 static void
1869 dwarf2_debug_line_missing_file_complaint (void)
1870 {
1871 complaint (&symfile_complaints,
1872 _(".debug_line section has line data without a file"));
1873 }
1874
1875 static void
1876 dwarf2_debug_line_missing_end_sequence_complaint (void)
1877 {
1878 complaint (&symfile_complaints,
1879 _(".debug_line section has line "
1880 "program sequence without an end"));
1881 }
1882
1883 static void
1884 dwarf2_complex_location_expr_complaint (void)
1885 {
1886 complaint (&symfile_complaints, _("location expression too complex"));
1887 }
1888
1889 static void
1890 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1891 int arg3)
1892 {
1893 complaint (&symfile_complaints,
1894 _("const value length mismatch for '%s', got %d, expected %d"),
1895 arg1, arg2, arg3);
1896 }
1897
1898 static void
1899 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1900 {
1901 complaint (&symfile_complaints,
1902 _("debug info runs off end of %s section"
1903 " [in module %s]"),
1904 get_section_name (section),
1905 get_section_file_name (section));
1906 }
1907
1908 static void
1909 dwarf2_macro_malformed_definition_complaint (const char *arg1)
1910 {
1911 complaint (&symfile_complaints,
1912 _("macro debug info contains a "
1913 "malformed macro definition:\n`%s'"),
1914 arg1);
1915 }
1916
1917 static void
1918 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1919 {
1920 complaint (&symfile_complaints,
1921 _("invalid attribute class or form for '%s' in '%s'"),
1922 arg1, arg2);
1923 }
1924
1925 /* Hash function for line_header_hash. */
1926
1927 static hashval_t
1928 line_header_hash (const struct line_header *ofs)
1929 {
1930 return ofs->offset.sect_off ^ ofs->offset_in_dwz;
1931 }
1932
1933 /* Hash function for htab_create_alloc_ex for line_header_hash. */
1934
1935 static hashval_t
1936 line_header_hash_voidp (const void *item)
1937 {
1938 const struct line_header *ofs = item;
1939
1940 return line_header_hash (ofs);
1941 }
1942
1943 /* Equality function for line_header_hash. */
1944
1945 static int
1946 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
1947 {
1948 const struct line_header *ofs_lhs = item_lhs;
1949 const struct line_header *ofs_rhs = item_rhs;
1950
1951 return (ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off
1952 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
1953 }
1954
1955 \f
1956 #if WORDS_BIGENDIAN
1957
1958 /* Convert VALUE between big- and little-endian. */
1959 static offset_type
1960 byte_swap (offset_type value)
1961 {
1962 offset_type result;
1963
1964 result = (value & 0xff) << 24;
1965 result |= (value & 0xff00) << 8;
1966 result |= (value & 0xff0000) >> 8;
1967 result |= (value & 0xff000000) >> 24;
1968 return result;
1969 }
1970
1971 #define MAYBE_SWAP(V) byte_swap (V)
1972
1973 #else
1974 #define MAYBE_SWAP(V) (V)
1975 #endif /* WORDS_BIGENDIAN */
1976
1977 /* Read the given attribute value as an address, taking the attribute's
1978 form into account. */
1979
1980 static CORE_ADDR
1981 attr_value_as_address (struct attribute *attr)
1982 {
1983 CORE_ADDR addr;
1984
1985 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
1986 {
1987 /* Aside from a few clearly defined exceptions, attributes that
1988 contain an address must always be in DW_FORM_addr form.
1989 Unfortunately, some compilers happen to be violating this
1990 requirement by encoding addresses using other forms, such
1991 as DW_FORM_data4 for example. For those broken compilers,
1992 we try to do our best, without any guarantee of success,
1993 to interpret the address correctly. It would also be nice
1994 to generate a complaint, but that would require us to maintain
1995 a list of legitimate cases where a non-address form is allowed,
1996 as well as update callers to pass in at least the CU's DWARF
1997 version. This is more overhead than what we're willing to
1998 expand for a pretty rare case. */
1999 addr = DW_UNSND (attr);
2000 }
2001 else
2002 addr = DW_ADDR (attr);
2003
2004 return addr;
2005 }
2006
2007 /* The suffix for an index file. */
2008 #define INDEX_SUFFIX ".gdb-index"
2009
2010 /* Try to locate the sections we need for DWARF 2 debugging
2011 information and return true if we have enough to do something.
2012 NAMES points to the dwarf2 section names, or is NULL if the standard
2013 ELF names are used. */
2014
2015 int
2016 dwarf2_has_info (struct objfile *objfile,
2017 const struct dwarf2_debug_sections *names)
2018 {
2019 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
2020 if (!dwarf2_per_objfile)
2021 {
2022 /* Initialize per-objfile state. */
2023 struct dwarf2_per_objfile *data
2024 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
2025
2026 memset (data, 0, sizeof (*data));
2027 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
2028 dwarf2_per_objfile = data;
2029
2030 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
2031 (void *) names);
2032 dwarf2_per_objfile->objfile = objfile;
2033 }
2034 return (!dwarf2_per_objfile->info.is_virtual
2035 && dwarf2_per_objfile->info.s.asection != NULL
2036 && !dwarf2_per_objfile->abbrev.is_virtual
2037 && dwarf2_per_objfile->abbrev.s.asection != NULL);
2038 }
2039
2040 /* Return the containing section of virtual section SECTION. */
2041
2042 static struct dwarf2_section_info *
2043 get_containing_section (const struct dwarf2_section_info *section)
2044 {
2045 gdb_assert (section->is_virtual);
2046 return section->s.containing_section;
2047 }
2048
2049 /* Return the bfd owner of SECTION. */
2050
2051 static struct bfd *
2052 get_section_bfd_owner (const struct dwarf2_section_info *section)
2053 {
2054 if (section->is_virtual)
2055 {
2056 section = get_containing_section (section);
2057 gdb_assert (!section->is_virtual);
2058 }
2059 return section->s.asection->owner;
2060 }
2061
2062 /* Return the bfd section of SECTION.
2063 Returns NULL if the section is not present. */
2064
2065 static asection *
2066 get_section_bfd_section (const struct dwarf2_section_info *section)
2067 {
2068 if (section->is_virtual)
2069 {
2070 section = get_containing_section (section);
2071 gdb_assert (!section->is_virtual);
2072 }
2073 return section->s.asection;
2074 }
2075
2076 /* Return the name of SECTION. */
2077
2078 static const char *
2079 get_section_name (const struct dwarf2_section_info *section)
2080 {
2081 asection *sectp = get_section_bfd_section (section);
2082
2083 gdb_assert (sectp != NULL);
2084 return bfd_section_name (get_section_bfd_owner (section), sectp);
2085 }
2086
2087 /* Return the name of the file SECTION is in. */
2088
2089 static const char *
2090 get_section_file_name (const struct dwarf2_section_info *section)
2091 {
2092 bfd *abfd = get_section_bfd_owner (section);
2093
2094 return bfd_get_filename (abfd);
2095 }
2096
2097 /* Return the id of SECTION.
2098 Returns 0 if SECTION doesn't exist. */
2099
2100 static int
2101 get_section_id (const struct dwarf2_section_info *section)
2102 {
2103 asection *sectp = get_section_bfd_section (section);
2104
2105 if (sectp == NULL)
2106 return 0;
2107 return sectp->id;
2108 }
2109
2110 /* Return the flags of SECTION.
2111 SECTION (or containing section if this is a virtual section) must exist. */
2112
2113 static int
2114 get_section_flags (const struct dwarf2_section_info *section)
2115 {
2116 asection *sectp = get_section_bfd_section (section);
2117
2118 gdb_assert (sectp != NULL);
2119 return bfd_get_section_flags (sectp->owner, sectp);
2120 }
2121
2122 /* When loading sections, we look either for uncompressed section or for
2123 compressed section names. */
2124
2125 static int
2126 section_is_p (const char *section_name,
2127 const struct dwarf2_section_names *names)
2128 {
2129 if (names->normal != NULL
2130 && strcmp (section_name, names->normal) == 0)
2131 return 1;
2132 if (names->compressed != NULL
2133 && strcmp (section_name, names->compressed) == 0)
2134 return 1;
2135 return 0;
2136 }
2137
2138 /* This function is mapped across the sections and remembers the
2139 offset and size of each of the debugging sections we are interested
2140 in. */
2141
2142 static void
2143 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
2144 {
2145 const struct dwarf2_debug_sections *names;
2146 flagword aflag = bfd_get_section_flags (abfd, sectp);
2147
2148 if (vnames == NULL)
2149 names = &dwarf2_elf_names;
2150 else
2151 names = (const struct dwarf2_debug_sections *) vnames;
2152
2153 if ((aflag & SEC_HAS_CONTENTS) == 0)
2154 {
2155 }
2156 else if (section_is_p (sectp->name, &names->info))
2157 {
2158 dwarf2_per_objfile->info.s.asection = sectp;
2159 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
2160 }
2161 else if (section_is_p (sectp->name, &names->abbrev))
2162 {
2163 dwarf2_per_objfile->abbrev.s.asection = sectp;
2164 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
2165 }
2166 else if (section_is_p (sectp->name, &names->line))
2167 {
2168 dwarf2_per_objfile->line.s.asection = sectp;
2169 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
2170 }
2171 else if (section_is_p (sectp->name, &names->loc))
2172 {
2173 dwarf2_per_objfile->loc.s.asection = sectp;
2174 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
2175 }
2176 else if (section_is_p (sectp->name, &names->macinfo))
2177 {
2178 dwarf2_per_objfile->macinfo.s.asection = sectp;
2179 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
2180 }
2181 else if (section_is_p (sectp->name, &names->macro))
2182 {
2183 dwarf2_per_objfile->macro.s.asection = sectp;
2184 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
2185 }
2186 else if (section_is_p (sectp->name, &names->str))
2187 {
2188 dwarf2_per_objfile->str.s.asection = sectp;
2189 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
2190 }
2191 else if (section_is_p (sectp->name, &names->addr))
2192 {
2193 dwarf2_per_objfile->addr.s.asection = sectp;
2194 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
2195 }
2196 else if (section_is_p (sectp->name, &names->frame))
2197 {
2198 dwarf2_per_objfile->frame.s.asection = sectp;
2199 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
2200 }
2201 else if (section_is_p (sectp->name, &names->eh_frame))
2202 {
2203 dwarf2_per_objfile->eh_frame.s.asection = sectp;
2204 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
2205 }
2206 else if (section_is_p (sectp->name, &names->ranges))
2207 {
2208 dwarf2_per_objfile->ranges.s.asection = sectp;
2209 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
2210 }
2211 else if (section_is_p (sectp->name, &names->types))
2212 {
2213 struct dwarf2_section_info type_section;
2214
2215 memset (&type_section, 0, sizeof (type_section));
2216 type_section.s.asection = sectp;
2217 type_section.size = bfd_get_section_size (sectp);
2218
2219 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
2220 &type_section);
2221 }
2222 else if (section_is_p (sectp->name, &names->gdb_index))
2223 {
2224 dwarf2_per_objfile->gdb_index.s.asection = sectp;
2225 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
2226 }
2227
2228 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
2229 && bfd_section_vma (abfd, sectp) == 0)
2230 dwarf2_per_objfile->has_section_at_zero = 1;
2231 }
2232
2233 /* A helper function that decides whether a section is empty,
2234 or not present. */
2235
2236 static int
2237 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2238 {
2239 if (section->is_virtual)
2240 return section->size == 0;
2241 return section->s.asection == NULL || section->size == 0;
2242 }
2243
2244 /* Read the contents of the section INFO.
2245 OBJFILE is the main object file, but not necessarily the file where
2246 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2247 of the DWO file.
2248 If the section is compressed, uncompress it before returning. */
2249
2250 static void
2251 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
2252 {
2253 asection *sectp;
2254 bfd *abfd;
2255 gdb_byte *buf, *retbuf;
2256
2257 if (info->readin)
2258 return;
2259 info->buffer = NULL;
2260 info->readin = 1;
2261
2262 if (dwarf2_section_empty_p (info))
2263 return;
2264
2265 sectp = get_section_bfd_section (info);
2266
2267 /* If this is a virtual section we need to read in the real one first. */
2268 if (info->is_virtual)
2269 {
2270 struct dwarf2_section_info *containing_section =
2271 get_containing_section (info);
2272
2273 gdb_assert (sectp != NULL);
2274 if ((sectp->flags & SEC_RELOC) != 0)
2275 {
2276 error (_("Dwarf Error: DWP format V2 with relocations is not"
2277 " supported in section %s [in module %s]"),
2278 get_section_name (info), get_section_file_name (info));
2279 }
2280 dwarf2_read_section (objfile, containing_section);
2281 /* Other code should have already caught virtual sections that don't
2282 fit. */
2283 gdb_assert (info->virtual_offset + info->size
2284 <= containing_section->size);
2285 /* If the real section is empty or there was a problem reading the
2286 section we shouldn't get here. */
2287 gdb_assert (containing_section->buffer != NULL);
2288 info->buffer = containing_section->buffer + info->virtual_offset;
2289 return;
2290 }
2291
2292 /* If the section has relocations, we must read it ourselves.
2293 Otherwise we attach it to the BFD. */
2294 if ((sectp->flags & SEC_RELOC) == 0)
2295 {
2296 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2297 return;
2298 }
2299
2300 buf = obstack_alloc (&objfile->objfile_obstack, info->size);
2301 info->buffer = buf;
2302
2303 /* When debugging .o files, we may need to apply relocations; see
2304 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2305 We never compress sections in .o files, so we only need to
2306 try this when the section is not compressed. */
2307 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2308 if (retbuf != NULL)
2309 {
2310 info->buffer = retbuf;
2311 return;
2312 }
2313
2314 abfd = get_section_bfd_owner (info);
2315 gdb_assert (abfd != NULL);
2316
2317 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2318 || bfd_bread (buf, info->size, abfd) != info->size)
2319 {
2320 error (_("Dwarf Error: Can't read DWARF data"
2321 " in section %s [in module %s]"),
2322 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2323 }
2324 }
2325
2326 /* A helper function that returns the size of a section in a safe way.
2327 If you are positive that the section has been read before using the
2328 size, then it is safe to refer to the dwarf2_section_info object's
2329 "size" field directly. In other cases, you must call this
2330 function, because for compressed sections the size field is not set
2331 correctly until the section has been read. */
2332
2333 static bfd_size_type
2334 dwarf2_section_size (struct objfile *objfile,
2335 struct dwarf2_section_info *info)
2336 {
2337 if (!info->readin)
2338 dwarf2_read_section (objfile, info);
2339 return info->size;
2340 }
2341
2342 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2343 SECTION_NAME. */
2344
2345 void
2346 dwarf2_get_section_info (struct objfile *objfile,
2347 enum dwarf2_section_enum sect,
2348 asection **sectp, const gdb_byte **bufp,
2349 bfd_size_type *sizep)
2350 {
2351 struct dwarf2_per_objfile *data
2352 = objfile_data (objfile, dwarf2_objfile_data_key);
2353 struct dwarf2_section_info *info;
2354
2355 /* We may see an objfile without any DWARF, in which case we just
2356 return nothing. */
2357 if (data == NULL)
2358 {
2359 *sectp = NULL;
2360 *bufp = NULL;
2361 *sizep = 0;
2362 return;
2363 }
2364 switch (sect)
2365 {
2366 case DWARF2_DEBUG_FRAME:
2367 info = &data->frame;
2368 break;
2369 case DWARF2_EH_FRAME:
2370 info = &data->eh_frame;
2371 break;
2372 default:
2373 gdb_assert_not_reached ("unexpected section");
2374 }
2375
2376 dwarf2_read_section (objfile, info);
2377
2378 *sectp = get_section_bfd_section (info);
2379 *bufp = info->buffer;
2380 *sizep = info->size;
2381 }
2382
2383 /* A helper function to find the sections for a .dwz file. */
2384
2385 static void
2386 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2387 {
2388 struct dwz_file *dwz_file = arg;
2389
2390 /* Note that we only support the standard ELF names, because .dwz
2391 is ELF-only (at the time of writing). */
2392 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2393 {
2394 dwz_file->abbrev.s.asection = sectp;
2395 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2396 }
2397 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2398 {
2399 dwz_file->info.s.asection = sectp;
2400 dwz_file->info.size = bfd_get_section_size (sectp);
2401 }
2402 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2403 {
2404 dwz_file->str.s.asection = sectp;
2405 dwz_file->str.size = bfd_get_section_size (sectp);
2406 }
2407 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2408 {
2409 dwz_file->line.s.asection = sectp;
2410 dwz_file->line.size = bfd_get_section_size (sectp);
2411 }
2412 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2413 {
2414 dwz_file->macro.s.asection = sectp;
2415 dwz_file->macro.size = bfd_get_section_size (sectp);
2416 }
2417 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2418 {
2419 dwz_file->gdb_index.s.asection = sectp;
2420 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2421 }
2422 }
2423
2424 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2425 there is no .gnu_debugaltlink section in the file. Error if there
2426 is such a section but the file cannot be found. */
2427
2428 static struct dwz_file *
2429 dwarf2_get_dwz_file (void)
2430 {
2431 bfd *dwz_bfd;
2432 char *data;
2433 struct cleanup *cleanup;
2434 const char *filename;
2435 struct dwz_file *result;
2436 bfd_size_type buildid_len_arg;
2437 size_t buildid_len;
2438 bfd_byte *buildid;
2439
2440 if (dwarf2_per_objfile->dwz_file != NULL)
2441 return dwarf2_per_objfile->dwz_file;
2442
2443 bfd_set_error (bfd_error_no_error);
2444 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2445 &buildid_len_arg, &buildid);
2446 if (data == NULL)
2447 {
2448 if (bfd_get_error () == bfd_error_no_error)
2449 return NULL;
2450 error (_("could not read '.gnu_debugaltlink' section: %s"),
2451 bfd_errmsg (bfd_get_error ()));
2452 }
2453 cleanup = make_cleanup (xfree, data);
2454 make_cleanup (xfree, buildid);
2455
2456 buildid_len = (size_t) buildid_len_arg;
2457
2458 filename = (const char *) data;
2459 if (!IS_ABSOLUTE_PATH (filename))
2460 {
2461 char *abs = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2462 char *rel;
2463
2464 make_cleanup (xfree, abs);
2465 abs = ldirname (abs);
2466 make_cleanup (xfree, abs);
2467
2468 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2469 make_cleanup (xfree, rel);
2470 filename = rel;
2471 }
2472
2473 /* First try the file name given in the section. If that doesn't
2474 work, try to use the build-id instead. */
2475 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
2476 if (dwz_bfd != NULL)
2477 {
2478 if (!build_id_verify (dwz_bfd, buildid_len, buildid))
2479 {
2480 gdb_bfd_unref (dwz_bfd);
2481 dwz_bfd = NULL;
2482 }
2483 }
2484
2485 if (dwz_bfd == NULL)
2486 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2487
2488 if (dwz_bfd == NULL)
2489 error (_("could not find '.gnu_debugaltlink' file for %s"),
2490 objfile_name (dwarf2_per_objfile->objfile));
2491
2492 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2493 struct dwz_file);
2494 result->dwz_bfd = dwz_bfd;
2495
2496 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2497
2498 do_cleanups (cleanup);
2499
2500 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, dwz_bfd);
2501 dwarf2_per_objfile->dwz_file = result;
2502 return result;
2503 }
2504 \f
2505 /* DWARF quick_symbols_functions support. */
2506
2507 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2508 unique line tables, so we maintain a separate table of all .debug_line
2509 derived entries to support the sharing.
2510 All the quick functions need is the list of file names. We discard the
2511 line_header when we're done and don't need to record it here. */
2512 struct quick_file_names
2513 {
2514 /* The data used to construct the hash key. */
2515 struct stmt_list_hash hash;
2516
2517 /* The number of entries in file_names, real_names. */
2518 unsigned int num_file_names;
2519
2520 /* The file names from the line table, after being run through
2521 file_full_name. */
2522 const char **file_names;
2523
2524 /* The file names from the line table after being run through
2525 gdb_realpath. These are computed lazily. */
2526 const char **real_names;
2527 };
2528
2529 /* When using the index (and thus not using psymtabs), each CU has an
2530 object of this type. This is used to hold information needed by
2531 the various "quick" methods. */
2532 struct dwarf2_per_cu_quick_data
2533 {
2534 /* The file table. This can be NULL if there was no file table
2535 or it's currently not read in.
2536 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2537 struct quick_file_names *file_names;
2538
2539 /* The corresponding symbol table. This is NULL if symbols for this
2540 CU have not yet been read. */
2541 struct compunit_symtab *compunit_symtab;
2542
2543 /* A temporary mark bit used when iterating over all CUs in
2544 expand_symtabs_matching. */
2545 unsigned int mark : 1;
2546
2547 /* True if we've tried to read the file table and found there isn't one.
2548 There will be no point in trying to read it again next time. */
2549 unsigned int no_file_data : 1;
2550 };
2551
2552 /* Utility hash function for a stmt_list_hash. */
2553
2554 static hashval_t
2555 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2556 {
2557 hashval_t v = 0;
2558
2559 if (stmt_list_hash->dwo_unit != NULL)
2560 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2561 v += stmt_list_hash->line_offset.sect_off;
2562 return v;
2563 }
2564
2565 /* Utility equality function for a stmt_list_hash. */
2566
2567 static int
2568 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2569 const struct stmt_list_hash *rhs)
2570 {
2571 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2572 return 0;
2573 if (lhs->dwo_unit != NULL
2574 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2575 return 0;
2576
2577 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2578 }
2579
2580 /* Hash function for a quick_file_names. */
2581
2582 static hashval_t
2583 hash_file_name_entry (const void *e)
2584 {
2585 const struct quick_file_names *file_data = e;
2586
2587 return hash_stmt_list_entry (&file_data->hash);
2588 }
2589
2590 /* Equality function for a quick_file_names. */
2591
2592 static int
2593 eq_file_name_entry (const void *a, const void *b)
2594 {
2595 const struct quick_file_names *ea = a;
2596 const struct quick_file_names *eb = b;
2597
2598 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2599 }
2600
2601 /* Delete function for a quick_file_names. */
2602
2603 static void
2604 delete_file_name_entry (void *e)
2605 {
2606 struct quick_file_names *file_data = e;
2607 int i;
2608
2609 for (i = 0; i < file_data->num_file_names; ++i)
2610 {
2611 xfree ((void*) file_data->file_names[i]);
2612 if (file_data->real_names)
2613 xfree ((void*) file_data->real_names[i]);
2614 }
2615
2616 /* The space for the struct itself lives on objfile_obstack,
2617 so we don't free it here. */
2618 }
2619
2620 /* Create a quick_file_names hash table. */
2621
2622 static htab_t
2623 create_quick_file_names_table (unsigned int nr_initial_entries)
2624 {
2625 return htab_create_alloc (nr_initial_entries,
2626 hash_file_name_entry, eq_file_name_entry,
2627 delete_file_name_entry, xcalloc, xfree);
2628 }
2629
2630 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2631 have to be created afterwards. You should call age_cached_comp_units after
2632 processing PER_CU->CU. dw2_setup must have been already called. */
2633
2634 static void
2635 load_cu (struct dwarf2_per_cu_data *per_cu)
2636 {
2637 if (per_cu->is_debug_types)
2638 load_full_type_unit (per_cu);
2639 else
2640 load_full_comp_unit (per_cu, language_minimal);
2641
2642 gdb_assert (per_cu->cu != NULL);
2643
2644 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2645 }
2646
2647 /* Read in the symbols for PER_CU. */
2648
2649 static void
2650 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2651 {
2652 struct cleanup *back_to;
2653
2654 /* Skip type_unit_groups, reading the type units they contain
2655 is handled elsewhere. */
2656 if (IS_TYPE_UNIT_GROUP (per_cu))
2657 return;
2658
2659 back_to = make_cleanup (dwarf2_release_queue, NULL);
2660
2661 if (dwarf2_per_objfile->using_index
2662 ? per_cu->v.quick->compunit_symtab == NULL
2663 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2664 {
2665 queue_comp_unit (per_cu, language_minimal);
2666 load_cu (per_cu);
2667
2668 /* If we just loaded a CU from a DWO, and we're working with an index
2669 that may badly handle TUs, load all the TUs in that DWO as well.
2670 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2671 if (!per_cu->is_debug_types
2672 && per_cu->cu->dwo_unit != NULL
2673 && dwarf2_per_objfile->index_table != NULL
2674 && dwarf2_per_objfile->index_table->version <= 7
2675 /* DWP files aren't supported yet. */
2676 && get_dwp_file () == NULL)
2677 queue_and_load_all_dwo_tus (per_cu);
2678 }
2679
2680 process_queue ();
2681
2682 /* Age the cache, releasing compilation units that have not
2683 been used recently. */
2684 age_cached_comp_units ();
2685
2686 do_cleanups (back_to);
2687 }
2688
2689 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2690 the objfile from which this CU came. Returns the resulting symbol
2691 table. */
2692
2693 static struct compunit_symtab *
2694 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2695 {
2696 gdb_assert (dwarf2_per_objfile->using_index);
2697 if (!per_cu->v.quick->compunit_symtab)
2698 {
2699 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2700 increment_reading_symtab ();
2701 dw2_do_instantiate_symtab (per_cu);
2702 process_cu_includes ();
2703 do_cleanups (back_to);
2704 }
2705
2706 return per_cu->v.quick->compunit_symtab;
2707 }
2708
2709 /* Return the CU/TU given its index.
2710
2711 This is intended for loops like:
2712
2713 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2714 + dwarf2_per_objfile->n_type_units); ++i)
2715 {
2716 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
2717
2718 ...;
2719 }
2720 */
2721
2722 static struct dwarf2_per_cu_data *
2723 dw2_get_cutu (int index)
2724 {
2725 if (index >= dwarf2_per_objfile->n_comp_units)
2726 {
2727 index -= dwarf2_per_objfile->n_comp_units;
2728 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2729 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2730 }
2731
2732 return dwarf2_per_objfile->all_comp_units[index];
2733 }
2734
2735 /* Return the CU given its index.
2736 This differs from dw2_get_cutu in that it's for when you know INDEX
2737 refers to a CU. */
2738
2739 static struct dwarf2_per_cu_data *
2740 dw2_get_cu (int index)
2741 {
2742 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
2743
2744 return dwarf2_per_objfile->all_comp_units[index];
2745 }
2746
2747 /* A helper for create_cus_from_index that handles a given list of
2748 CUs. */
2749
2750 static void
2751 create_cus_from_index_list (struct objfile *objfile,
2752 const gdb_byte *cu_list, offset_type n_elements,
2753 struct dwarf2_section_info *section,
2754 int is_dwz,
2755 int base_offset)
2756 {
2757 offset_type i;
2758
2759 for (i = 0; i < n_elements; i += 2)
2760 {
2761 struct dwarf2_per_cu_data *the_cu;
2762 ULONGEST offset, length;
2763
2764 gdb_static_assert (sizeof (ULONGEST) >= 8);
2765 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2766 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2767 cu_list += 2 * 8;
2768
2769 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2770 struct dwarf2_per_cu_data);
2771 the_cu->offset.sect_off = offset;
2772 the_cu->length = length;
2773 the_cu->objfile = objfile;
2774 the_cu->section = section;
2775 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2776 struct dwarf2_per_cu_quick_data);
2777 the_cu->is_dwz = is_dwz;
2778 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
2779 }
2780 }
2781
2782 /* Read the CU list from the mapped index, and use it to create all
2783 the CU objects for this objfile. */
2784
2785 static void
2786 create_cus_from_index (struct objfile *objfile,
2787 const gdb_byte *cu_list, offset_type cu_list_elements,
2788 const gdb_byte *dwz_list, offset_type dwz_elements)
2789 {
2790 struct dwz_file *dwz;
2791
2792 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2793 dwarf2_per_objfile->all_comp_units
2794 = obstack_alloc (&objfile->objfile_obstack,
2795 dwarf2_per_objfile->n_comp_units
2796 * sizeof (struct dwarf2_per_cu_data *));
2797
2798 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2799 &dwarf2_per_objfile->info, 0, 0);
2800
2801 if (dwz_elements == 0)
2802 return;
2803
2804 dwz = dwarf2_get_dwz_file ();
2805 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2806 cu_list_elements / 2);
2807 }
2808
2809 /* Create the signatured type hash table from the index. */
2810
2811 static void
2812 create_signatured_type_table_from_index (struct objfile *objfile,
2813 struct dwarf2_section_info *section,
2814 const gdb_byte *bytes,
2815 offset_type elements)
2816 {
2817 offset_type i;
2818 htab_t sig_types_hash;
2819
2820 dwarf2_per_objfile->n_type_units
2821 = dwarf2_per_objfile->n_allocated_type_units
2822 = elements / 3;
2823 dwarf2_per_objfile->all_type_units
2824 = xmalloc (dwarf2_per_objfile->n_type_units
2825 * sizeof (struct signatured_type *));
2826
2827 sig_types_hash = allocate_signatured_type_table (objfile);
2828
2829 for (i = 0; i < elements; i += 3)
2830 {
2831 struct signatured_type *sig_type;
2832 ULONGEST offset, type_offset_in_tu, signature;
2833 void **slot;
2834
2835 gdb_static_assert (sizeof (ULONGEST) >= 8);
2836 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2837 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2838 BFD_ENDIAN_LITTLE);
2839 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2840 bytes += 3 * 8;
2841
2842 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2843 struct signatured_type);
2844 sig_type->signature = signature;
2845 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2846 sig_type->per_cu.is_debug_types = 1;
2847 sig_type->per_cu.section = section;
2848 sig_type->per_cu.offset.sect_off = offset;
2849 sig_type->per_cu.objfile = objfile;
2850 sig_type->per_cu.v.quick
2851 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2852 struct dwarf2_per_cu_quick_data);
2853
2854 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2855 *slot = sig_type;
2856
2857 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
2858 }
2859
2860 dwarf2_per_objfile->signatured_types = sig_types_hash;
2861 }
2862
2863 /* Read the address map data from the mapped index, and use it to
2864 populate the objfile's psymtabs_addrmap. */
2865
2866 static void
2867 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2868 {
2869 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2870 const gdb_byte *iter, *end;
2871 struct obstack temp_obstack;
2872 struct addrmap *mutable_map;
2873 struct cleanup *cleanup;
2874 CORE_ADDR baseaddr;
2875
2876 obstack_init (&temp_obstack);
2877 cleanup = make_cleanup_obstack_free (&temp_obstack);
2878 mutable_map = addrmap_create_mutable (&temp_obstack);
2879
2880 iter = index->address_table;
2881 end = iter + index->address_table_size;
2882
2883 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2884
2885 while (iter < end)
2886 {
2887 ULONGEST hi, lo, cu_index;
2888 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2889 iter += 8;
2890 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2891 iter += 8;
2892 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2893 iter += 4;
2894
2895 if (lo > hi)
2896 {
2897 complaint (&symfile_complaints,
2898 _(".gdb_index address table has invalid range (%s - %s)"),
2899 hex_string (lo), hex_string (hi));
2900 continue;
2901 }
2902
2903 if (cu_index >= dwarf2_per_objfile->n_comp_units)
2904 {
2905 complaint (&symfile_complaints,
2906 _(".gdb_index address table has invalid CU number %u"),
2907 (unsigned) cu_index);
2908 continue;
2909 }
2910
2911 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
2912 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
2913 addrmap_set_empty (mutable_map, lo, hi - 1, dw2_get_cutu (cu_index));
2914 }
2915
2916 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2917 &objfile->objfile_obstack);
2918 do_cleanups (cleanup);
2919 }
2920
2921 /* The hash function for strings in the mapped index. This is the same as
2922 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2923 implementation. This is necessary because the hash function is tied to the
2924 format of the mapped index file. The hash values do not have to match with
2925 SYMBOL_HASH_NEXT.
2926
2927 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2928
2929 static hashval_t
2930 mapped_index_string_hash (int index_version, const void *p)
2931 {
2932 const unsigned char *str = (const unsigned char *) p;
2933 hashval_t r = 0;
2934 unsigned char c;
2935
2936 while ((c = *str++) != 0)
2937 {
2938 if (index_version >= 5)
2939 c = tolower (c);
2940 r = r * 67 + c - 113;
2941 }
2942
2943 return r;
2944 }
2945
2946 /* Find a slot in the mapped index INDEX for the object named NAME.
2947 If NAME is found, set *VEC_OUT to point to the CU vector in the
2948 constant pool and return 1. If NAME cannot be found, return 0. */
2949
2950 static int
2951 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2952 offset_type **vec_out)
2953 {
2954 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2955 offset_type hash;
2956 offset_type slot, step;
2957 int (*cmp) (const char *, const char *);
2958
2959 if (current_language->la_language == language_cplus
2960 || current_language->la_language == language_java
2961 || current_language->la_language == language_fortran)
2962 {
2963 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2964 not contain any. */
2965
2966 if (strchr (name, '(') != NULL)
2967 {
2968 char *without_params = cp_remove_params (name);
2969
2970 if (without_params != NULL)
2971 {
2972 make_cleanup (xfree, without_params);
2973 name = without_params;
2974 }
2975 }
2976 }
2977
2978 /* Index version 4 did not support case insensitive searches. But the
2979 indices for case insensitive languages are built in lowercase, therefore
2980 simulate our NAME being searched is also lowercased. */
2981 hash = mapped_index_string_hash ((index->version == 4
2982 && case_sensitivity == case_sensitive_off
2983 ? 5 : index->version),
2984 name);
2985
2986 slot = hash & (index->symbol_table_slots - 1);
2987 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
2988 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
2989
2990 for (;;)
2991 {
2992 /* Convert a slot number to an offset into the table. */
2993 offset_type i = 2 * slot;
2994 const char *str;
2995 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
2996 {
2997 do_cleanups (back_to);
2998 return 0;
2999 }
3000
3001 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
3002 if (!cmp (name, str))
3003 {
3004 *vec_out = (offset_type *) (index->constant_pool
3005 + MAYBE_SWAP (index->symbol_table[i + 1]));
3006 do_cleanups (back_to);
3007 return 1;
3008 }
3009
3010 slot = (slot + step) & (index->symbol_table_slots - 1);
3011 }
3012 }
3013
3014 /* A helper function that reads the .gdb_index from SECTION and fills
3015 in MAP. FILENAME is the name of the file containing the section;
3016 it is used for error reporting. DEPRECATED_OK is nonzero if it is
3017 ok to use deprecated sections.
3018
3019 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3020 out parameters that are filled in with information about the CU and
3021 TU lists in the section.
3022
3023 Returns 1 if all went well, 0 otherwise. */
3024
3025 static int
3026 read_index_from_section (struct objfile *objfile,
3027 const char *filename,
3028 int deprecated_ok,
3029 struct dwarf2_section_info *section,
3030 struct mapped_index *map,
3031 const gdb_byte **cu_list,
3032 offset_type *cu_list_elements,
3033 const gdb_byte **types_list,
3034 offset_type *types_list_elements)
3035 {
3036 const gdb_byte *addr;
3037 offset_type version;
3038 offset_type *metadata;
3039 int i;
3040
3041 if (dwarf2_section_empty_p (section))
3042 return 0;
3043
3044 /* Older elfutils strip versions could keep the section in the main
3045 executable while splitting it for the separate debug info file. */
3046 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
3047 return 0;
3048
3049 dwarf2_read_section (objfile, section);
3050
3051 addr = section->buffer;
3052 /* Version check. */
3053 version = MAYBE_SWAP (*(offset_type *) addr);
3054 /* Versions earlier than 3 emitted every copy of a psymbol. This
3055 causes the index to behave very poorly for certain requests. Version 3
3056 contained incomplete addrmap. So, it seems better to just ignore such
3057 indices. */
3058 if (version < 4)
3059 {
3060 static int warning_printed = 0;
3061 if (!warning_printed)
3062 {
3063 warning (_("Skipping obsolete .gdb_index section in %s."),
3064 filename);
3065 warning_printed = 1;
3066 }
3067 return 0;
3068 }
3069 /* Index version 4 uses a different hash function than index version
3070 5 and later.
3071
3072 Versions earlier than 6 did not emit psymbols for inlined
3073 functions. Using these files will cause GDB not to be able to
3074 set breakpoints on inlined functions by name, so we ignore these
3075 indices unless the user has done
3076 "set use-deprecated-index-sections on". */
3077 if (version < 6 && !deprecated_ok)
3078 {
3079 static int warning_printed = 0;
3080 if (!warning_printed)
3081 {
3082 warning (_("\
3083 Skipping deprecated .gdb_index section in %s.\n\
3084 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3085 to use the section anyway."),
3086 filename);
3087 warning_printed = 1;
3088 }
3089 return 0;
3090 }
3091 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3092 of the TU (for symbols coming from TUs),
3093 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3094 Plus gold-generated indices can have duplicate entries for global symbols,
3095 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3096 These are just performance bugs, and we can't distinguish gdb-generated
3097 indices from gold-generated ones, so issue no warning here. */
3098
3099 /* Indexes with higher version than the one supported by GDB may be no
3100 longer backward compatible. */
3101 if (version > 8)
3102 return 0;
3103
3104 map->version = version;
3105 map->total_size = section->size;
3106
3107 metadata = (offset_type *) (addr + sizeof (offset_type));
3108
3109 i = 0;
3110 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3111 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3112 / 8);
3113 ++i;
3114
3115 *types_list = addr + MAYBE_SWAP (metadata[i]);
3116 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3117 - MAYBE_SWAP (metadata[i]))
3118 / 8);
3119 ++i;
3120
3121 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3122 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3123 - MAYBE_SWAP (metadata[i]));
3124 ++i;
3125
3126 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3127 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3128 - MAYBE_SWAP (metadata[i]))
3129 / (2 * sizeof (offset_type)));
3130 ++i;
3131
3132 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3133
3134 return 1;
3135 }
3136
3137
3138 /* Read the index file. If everything went ok, initialize the "quick"
3139 elements of all the CUs and return 1. Otherwise, return 0. */
3140
3141 static int
3142 dwarf2_read_index (struct objfile *objfile)
3143 {
3144 struct mapped_index local_map, *map;
3145 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3146 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3147 struct dwz_file *dwz;
3148
3149 if (!read_index_from_section (objfile, objfile_name (objfile),
3150 use_deprecated_index_sections,
3151 &dwarf2_per_objfile->gdb_index, &local_map,
3152 &cu_list, &cu_list_elements,
3153 &types_list, &types_list_elements))
3154 return 0;
3155
3156 /* Don't use the index if it's empty. */
3157 if (local_map.symbol_table_slots == 0)
3158 return 0;
3159
3160 /* If there is a .dwz file, read it so we can get its CU list as
3161 well. */
3162 dwz = dwarf2_get_dwz_file ();
3163 if (dwz != NULL)
3164 {
3165 struct mapped_index dwz_map;
3166 const gdb_byte *dwz_types_ignore;
3167 offset_type dwz_types_elements_ignore;
3168
3169 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3170 1,
3171 &dwz->gdb_index, &dwz_map,
3172 &dwz_list, &dwz_list_elements,
3173 &dwz_types_ignore,
3174 &dwz_types_elements_ignore))
3175 {
3176 warning (_("could not read '.gdb_index' section from %s; skipping"),
3177 bfd_get_filename (dwz->dwz_bfd));
3178 return 0;
3179 }
3180 }
3181
3182 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3183 dwz_list_elements);
3184
3185 if (types_list_elements)
3186 {
3187 struct dwarf2_section_info *section;
3188
3189 /* We can only handle a single .debug_types when we have an
3190 index. */
3191 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3192 return 0;
3193
3194 section = VEC_index (dwarf2_section_info_def,
3195 dwarf2_per_objfile->types, 0);
3196
3197 create_signatured_type_table_from_index (objfile, section, types_list,
3198 types_list_elements);
3199 }
3200
3201 create_addrmap_from_index (objfile, &local_map);
3202
3203 map = obstack_alloc (&objfile->objfile_obstack, sizeof (struct mapped_index));
3204 *map = local_map;
3205
3206 dwarf2_per_objfile->index_table = map;
3207 dwarf2_per_objfile->using_index = 1;
3208 dwarf2_per_objfile->quick_file_names_table =
3209 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3210
3211 return 1;
3212 }
3213
3214 /* A helper for the "quick" functions which sets the global
3215 dwarf2_per_objfile according to OBJFILE. */
3216
3217 static void
3218 dw2_setup (struct objfile *objfile)
3219 {
3220 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
3221 gdb_assert (dwarf2_per_objfile);
3222 }
3223
3224 /* die_reader_func for dw2_get_file_names. */
3225
3226 static void
3227 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3228 const gdb_byte *info_ptr,
3229 struct die_info *comp_unit_die,
3230 int has_children,
3231 void *data)
3232 {
3233 struct dwarf2_cu *cu = reader->cu;
3234 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3235 struct objfile *objfile = dwarf2_per_objfile->objfile;
3236 struct dwarf2_per_cu_data *lh_cu;
3237 struct line_header *lh;
3238 struct attribute *attr;
3239 int i;
3240 const char *name, *comp_dir;
3241 void **slot;
3242 struct quick_file_names *qfn;
3243 unsigned int line_offset;
3244
3245 gdb_assert (! this_cu->is_debug_types);
3246
3247 /* Our callers never want to match partial units -- instead they
3248 will match the enclosing full CU. */
3249 if (comp_unit_die->tag == DW_TAG_partial_unit)
3250 {
3251 this_cu->v.quick->no_file_data = 1;
3252 return;
3253 }
3254
3255 lh_cu = this_cu;
3256 lh = NULL;
3257 slot = NULL;
3258 line_offset = 0;
3259
3260 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3261 if (attr)
3262 {
3263 struct quick_file_names find_entry;
3264
3265 line_offset = DW_UNSND (attr);
3266
3267 /* We may have already read in this line header (TU line header sharing).
3268 If we have we're done. */
3269 find_entry.hash.dwo_unit = cu->dwo_unit;
3270 find_entry.hash.line_offset.sect_off = line_offset;
3271 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3272 &find_entry, INSERT);
3273 if (*slot != NULL)
3274 {
3275 lh_cu->v.quick->file_names = *slot;
3276 return;
3277 }
3278
3279 lh = dwarf_decode_line_header (line_offset, cu);
3280 }
3281 if (lh == NULL)
3282 {
3283 lh_cu->v.quick->no_file_data = 1;
3284 return;
3285 }
3286
3287 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
3288 qfn->hash.dwo_unit = cu->dwo_unit;
3289 qfn->hash.line_offset.sect_off = line_offset;
3290 gdb_assert (slot != NULL);
3291 *slot = qfn;
3292
3293 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
3294
3295 qfn->num_file_names = lh->num_file_names;
3296 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
3297 lh->num_file_names * sizeof (char *));
3298 for (i = 0; i < lh->num_file_names; ++i)
3299 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
3300 qfn->real_names = NULL;
3301
3302 free_line_header (lh);
3303
3304 lh_cu->v.quick->file_names = qfn;
3305 }
3306
3307 /* A helper for the "quick" functions which attempts to read the line
3308 table for THIS_CU. */
3309
3310 static struct quick_file_names *
3311 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3312 {
3313 /* This should never be called for TUs. */
3314 gdb_assert (! this_cu->is_debug_types);
3315 /* Nor type unit groups. */
3316 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3317
3318 if (this_cu->v.quick->file_names != NULL)
3319 return this_cu->v.quick->file_names;
3320 /* If we know there is no line data, no point in looking again. */
3321 if (this_cu->v.quick->no_file_data)
3322 return NULL;
3323
3324 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3325
3326 if (this_cu->v.quick->no_file_data)
3327 return NULL;
3328 return this_cu->v.quick->file_names;
3329 }
3330
3331 /* A helper for the "quick" functions which computes and caches the
3332 real path for a given file name from the line table. */
3333
3334 static const char *
3335 dw2_get_real_path (struct objfile *objfile,
3336 struct quick_file_names *qfn, int index)
3337 {
3338 if (qfn->real_names == NULL)
3339 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3340 qfn->num_file_names, const char *);
3341
3342 if (qfn->real_names[index] == NULL)
3343 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
3344
3345 return qfn->real_names[index];
3346 }
3347
3348 static struct symtab *
3349 dw2_find_last_source_symtab (struct objfile *objfile)
3350 {
3351 struct compunit_symtab *cust;
3352 int index;
3353
3354 dw2_setup (objfile);
3355 index = dwarf2_per_objfile->n_comp_units - 1;
3356 cust = dw2_instantiate_symtab (dw2_get_cutu (index));
3357 if (cust == NULL)
3358 return NULL;
3359 return compunit_primary_filetab (cust);
3360 }
3361
3362 /* Traversal function for dw2_forget_cached_source_info. */
3363
3364 static int
3365 dw2_free_cached_file_names (void **slot, void *info)
3366 {
3367 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3368
3369 if (file_data->real_names)
3370 {
3371 int i;
3372
3373 for (i = 0; i < file_data->num_file_names; ++i)
3374 {
3375 xfree ((void*) file_data->real_names[i]);
3376 file_data->real_names[i] = NULL;
3377 }
3378 }
3379
3380 return 1;
3381 }
3382
3383 static void
3384 dw2_forget_cached_source_info (struct objfile *objfile)
3385 {
3386 dw2_setup (objfile);
3387
3388 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3389 dw2_free_cached_file_names, NULL);
3390 }
3391
3392 /* Helper function for dw2_map_symtabs_matching_filename that expands
3393 the symtabs and calls the iterator. */
3394
3395 static int
3396 dw2_map_expand_apply (struct objfile *objfile,
3397 struct dwarf2_per_cu_data *per_cu,
3398 const char *name, const char *real_path,
3399 int (*callback) (struct symtab *, void *),
3400 void *data)
3401 {
3402 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3403
3404 /* Don't visit already-expanded CUs. */
3405 if (per_cu->v.quick->compunit_symtab)
3406 return 0;
3407
3408 /* This may expand more than one symtab, and we want to iterate over
3409 all of them. */
3410 dw2_instantiate_symtab (per_cu);
3411
3412 return iterate_over_some_symtabs (name, real_path, callback, data,
3413 objfile->compunit_symtabs, last_made);
3414 }
3415
3416 /* Implementation of the map_symtabs_matching_filename method. */
3417
3418 static int
3419 dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
3420 const char *real_path,
3421 int (*callback) (struct symtab *, void *),
3422 void *data)
3423 {
3424 int i;
3425 const char *name_basename = lbasename (name);
3426
3427 dw2_setup (objfile);
3428
3429 /* The rule is CUs specify all the files, including those used by
3430 any TU, so there's no need to scan TUs here. */
3431
3432 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3433 {
3434 int j;
3435 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3436 struct quick_file_names *file_data;
3437
3438 /* We only need to look at symtabs not already expanded. */
3439 if (per_cu->v.quick->compunit_symtab)
3440 continue;
3441
3442 file_data = dw2_get_file_names (per_cu);
3443 if (file_data == NULL)
3444 continue;
3445
3446 for (j = 0; j < file_data->num_file_names; ++j)
3447 {
3448 const char *this_name = file_data->file_names[j];
3449 const char *this_real_name;
3450
3451 if (compare_filenames_for_search (this_name, name))
3452 {
3453 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3454 callback, data))
3455 return 1;
3456 continue;
3457 }
3458
3459 /* Before we invoke realpath, which can get expensive when many
3460 files are involved, do a quick comparison of the basenames. */
3461 if (! basenames_may_differ
3462 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3463 continue;
3464
3465 this_real_name = dw2_get_real_path (objfile, file_data, j);
3466 if (compare_filenames_for_search (this_real_name, name))
3467 {
3468 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3469 callback, data))
3470 return 1;
3471 continue;
3472 }
3473
3474 if (real_path != NULL)
3475 {
3476 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3477 gdb_assert (IS_ABSOLUTE_PATH (name));
3478 if (this_real_name != NULL
3479 && FILENAME_CMP (real_path, this_real_name) == 0)
3480 {
3481 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3482 callback, data))
3483 return 1;
3484 continue;
3485 }
3486 }
3487 }
3488 }
3489
3490 return 0;
3491 }
3492
3493 /* Struct used to manage iterating over all CUs looking for a symbol. */
3494
3495 struct dw2_symtab_iterator
3496 {
3497 /* The internalized form of .gdb_index. */
3498 struct mapped_index *index;
3499 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3500 int want_specific_block;
3501 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3502 Unused if !WANT_SPECIFIC_BLOCK. */
3503 int block_index;
3504 /* The kind of symbol we're looking for. */
3505 domain_enum domain;
3506 /* The list of CUs from the index entry of the symbol,
3507 or NULL if not found. */
3508 offset_type *vec;
3509 /* The next element in VEC to look at. */
3510 int next;
3511 /* The number of elements in VEC, or zero if there is no match. */
3512 int length;
3513 /* Have we seen a global version of the symbol?
3514 If so we can ignore all further global instances.
3515 This is to work around gold/15646, inefficient gold-generated
3516 indices. */
3517 int global_seen;
3518 };
3519
3520 /* Initialize the index symtab iterator ITER.
3521 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3522 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3523
3524 static void
3525 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3526 struct mapped_index *index,
3527 int want_specific_block,
3528 int block_index,
3529 domain_enum domain,
3530 const char *name)
3531 {
3532 iter->index = index;
3533 iter->want_specific_block = want_specific_block;
3534 iter->block_index = block_index;
3535 iter->domain = domain;
3536 iter->next = 0;
3537 iter->global_seen = 0;
3538
3539 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3540 iter->length = MAYBE_SWAP (*iter->vec);
3541 else
3542 {
3543 iter->vec = NULL;
3544 iter->length = 0;
3545 }
3546 }
3547
3548 /* Return the next matching CU or NULL if there are no more. */
3549
3550 static struct dwarf2_per_cu_data *
3551 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3552 {
3553 for ( ; iter->next < iter->length; ++iter->next)
3554 {
3555 offset_type cu_index_and_attrs =
3556 MAYBE_SWAP (iter->vec[iter->next + 1]);
3557 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3558 struct dwarf2_per_cu_data *per_cu;
3559 int want_static = iter->block_index != GLOBAL_BLOCK;
3560 /* This value is only valid for index versions >= 7. */
3561 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3562 gdb_index_symbol_kind symbol_kind =
3563 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3564 /* Only check the symbol attributes if they're present.
3565 Indices prior to version 7 don't record them,
3566 and indices >= 7 may elide them for certain symbols
3567 (gold does this). */
3568 int attrs_valid =
3569 (iter->index->version >= 7
3570 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3571
3572 /* Don't crash on bad data. */
3573 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3574 + dwarf2_per_objfile->n_type_units))
3575 {
3576 complaint (&symfile_complaints,
3577 _(".gdb_index entry has bad CU index"
3578 " [in module %s]"),
3579 objfile_name (dwarf2_per_objfile->objfile));
3580 continue;
3581 }
3582
3583 per_cu = dw2_get_cutu (cu_index);
3584
3585 /* Skip if already read in. */
3586 if (per_cu->v.quick->compunit_symtab)
3587 continue;
3588
3589 /* Check static vs global. */
3590 if (attrs_valid)
3591 {
3592 if (iter->want_specific_block
3593 && want_static != is_static)
3594 continue;
3595 /* Work around gold/15646. */
3596 if (!is_static && iter->global_seen)
3597 continue;
3598 if (!is_static)
3599 iter->global_seen = 1;
3600 }
3601
3602 /* Only check the symbol's kind if it has one. */
3603 if (attrs_valid)
3604 {
3605 switch (iter->domain)
3606 {
3607 case VAR_DOMAIN:
3608 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3609 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3610 /* Some types are also in VAR_DOMAIN. */
3611 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3612 continue;
3613 break;
3614 case STRUCT_DOMAIN:
3615 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3616 continue;
3617 break;
3618 case LABEL_DOMAIN:
3619 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3620 continue;
3621 break;
3622 default:
3623 break;
3624 }
3625 }
3626
3627 ++iter->next;
3628 return per_cu;
3629 }
3630
3631 return NULL;
3632 }
3633
3634 static struct compunit_symtab *
3635 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3636 const char *name, domain_enum domain)
3637 {
3638 struct compunit_symtab *stab_best = NULL;
3639 struct mapped_index *index;
3640
3641 dw2_setup (objfile);
3642
3643 index = dwarf2_per_objfile->index_table;
3644
3645 /* index is NULL if OBJF_READNOW. */
3646 if (index)
3647 {
3648 struct dw2_symtab_iterator iter;
3649 struct dwarf2_per_cu_data *per_cu;
3650
3651 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
3652
3653 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3654 {
3655 struct symbol *sym = NULL;
3656 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
3657 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
3658 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3659
3660 /* Some caution must be observed with overloaded functions
3661 and methods, since the index will not contain any overload
3662 information (but NAME might contain it). */
3663 sym = block_lookup_symbol (block, name, domain);
3664
3665 if (sym && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3666 {
3667 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
3668 return stab;
3669
3670 stab_best = stab;
3671 }
3672
3673 /* Keep looking through other CUs. */
3674 }
3675 }
3676
3677 return stab_best;
3678 }
3679
3680 static void
3681 dw2_print_stats (struct objfile *objfile)
3682 {
3683 int i, total, count;
3684
3685 dw2_setup (objfile);
3686 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
3687 count = 0;
3688 for (i = 0; i < total; ++i)
3689 {
3690 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3691
3692 if (!per_cu->v.quick->compunit_symtab)
3693 ++count;
3694 }
3695 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3696 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3697 }
3698
3699 /* This dumps minimal information about the index.
3700 It is called via "mt print objfiles".
3701 One use is to verify .gdb_index has been loaded by the
3702 gdb.dwarf2/gdb-index.exp testcase. */
3703
3704 static void
3705 dw2_dump (struct objfile *objfile)
3706 {
3707 dw2_setup (objfile);
3708 gdb_assert (dwarf2_per_objfile->using_index);
3709 printf_filtered (".gdb_index:");
3710 if (dwarf2_per_objfile->index_table != NULL)
3711 {
3712 printf_filtered (" version %d\n",
3713 dwarf2_per_objfile->index_table->version);
3714 }
3715 else
3716 printf_filtered (" faked for \"readnow\"\n");
3717 printf_filtered ("\n");
3718 }
3719
3720 static void
3721 dw2_relocate (struct objfile *objfile,
3722 const struct section_offsets *new_offsets,
3723 const struct section_offsets *delta)
3724 {
3725 /* There's nothing to relocate here. */
3726 }
3727
3728 static void
3729 dw2_expand_symtabs_for_function (struct objfile *objfile,
3730 const char *func_name)
3731 {
3732 struct mapped_index *index;
3733
3734 dw2_setup (objfile);
3735
3736 index = dwarf2_per_objfile->index_table;
3737
3738 /* index is NULL if OBJF_READNOW. */
3739 if (index)
3740 {
3741 struct dw2_symtab_iterator iter;
3742 struct dwarf2_per_cu_data *per_cu;
3743
3744 /* Note: It doesn't matter what we pass for block_index here. */
3745 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3746 func_name);
3747
3748 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3749 dw2_instantiate_symtab (per_cu);
3750 }
3751 }
3752
3753 static void
3754 dw2_expand_all_symtabs (struct objfile *objfile)
3755 {
3756 int i;
3757
3758 dw2_setup (objfile);
3759
3760 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3761 + dwarf2_per_objfile->n_type_units); ++i)
3762 {
3763 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3764
3765 dw2_instantiate_symtab (per_cu);
3766 }
3767 }
3768
3769 static void
3770 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3771 const char *fullname)
3772 {
3773 int i;
3774
3775 dw2_setup (objfile);
3776
3777 /* We don't need to consider type units here.
3778 This is only called for examining code, e.g. expand_line_sal.
3779 There can be an order of magnitude (or more) more type units
3780 than comp units, and we avoid them if we can. */
3781
3782 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3783 {
3784 int j;
3785 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3786 struct quick_file_names *file_data;
3787
3788 /* We only need to look at symtabs not already expanded. */
3789 if (per_cu->v.quick->compunit_symtab)
3790 continue;
3791
3792 file_data = dw2_get_file_names (per_cu);
3793 if (file_data == NULL)
3794 continue;
3795
3796 for (j = 0; j < file_data->num_file_names; ++j)
3797 {
3798 const char *this_fullname = file_data->file_names[j];
3799
3800 if (filename_cmp (this_fullname, fullname) == 0)
3801 {
3802 dw2_instantiate_symtab (per_cu);
3803 break;
3804 }
3805 }
3806 }
3807 }
3808
3809 static void
3810 dw2_map_matching_symbols (struct objfile *objfile,
3811 const char * name, domain_enum namespace,
3812 int global,
3813 int (*callback) (struct block *,
3814 struct symbol *, void *),
3815 void *data, symbol_compare_ftype *match,
3816 symbol_compare_ftype *ordered_compare)
3817 {
3818 /* Currently unimplemented; used for Ada. The function can be called if the
3819 current language is Ada for a non-Ada objfile using GNU index. As Ada
3820 does not look for non-Ada symbols this function should just return. */
3821 }
3822
3823 static void
3824 dw2_expand_symtabs_matching
3825 (struct objfile *objfile,
3826 expand_symtabs_file_matcher_ftype *file_matcher,
3827 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
3828 enum search_domain kind,
3829 void *data)
3830 {
3831 int i;
3832 offset_type iter;
3833 struct mapped_index *index;
3834
3835 dw2_setup (objfile);
3836
3837 /* index_table is NULL if OBJF_READNOW. */
3838 if (!dwarf2_per_objfile->index_table)
3839 return;
3840 index = dwarf2_per_objfile->index_table;
3841
3842 if (file_matcher != NULL)
3843 {
3844 struct cleanup *cleanup;
3845 htab_t visited_found, visited_not_found;
3846
3847 visited_found = htab_create_alloc (10,
3848 htab_hash_pointer, htab_eq_pointer,
3849 NULL, xcalloc, xfree);
3850 cleanup = make_cleanup_htab_delete (visited_found);
3851 visited_not_found = htab_create_alloc (10,
3852 htab_hash_pointer, htab_eq_pointer,
3853 NULL, xcalloc, xfree);
3854 make_cleanup_htab_delete (visited_not_found);
3855
3856 /* The rule is CUs specify all the files, including those used by
3857 any TU, so there's no need to scan TUs here. */
3858
3859 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3860 {
3861 int j;
3862 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3863 struct quick_file_names *file_data;
3864 void **slot;
3865
3866 per_cu->v.quick->mark = 0;
3867
3868 /* We only need to look at symtabs not already expanded. */
3869 if (per_cu->v.quick->compunit_symtab)
3870 continue;
3871
3872 file_data = dw2_get_file_names (per_cu);
3873 if (file_data == NULL)
3874 continue;
3875
3876 if (htab_find (visited_not_found, file_data) != NULL)
3877 continue;
3878 else if (htab_find (visited_found, file_data) != NULL)
3879 {
3880 per_cu->v.quick->mark = 1;
3881 continue;
3882 }
3883
3884 for (j = 0; j < file_data->num_file_names; ++j)
3885 {
3886 const char *this_real_name;
3887
3888 if (file_matcher (file_data->file_names[j], data, 0))
3889 {
3890 per_cu->v.quick->mark = 1;
3891 break;
3892 }
3893
3894 /* Before we invoke realpath, which can get expensive when many
3895 files are involved, do a quick comparison of the basenames. */
3896 if (!basenames_may_differ
3897 && !file_matcher (lbasename (file_data->file_names[j]),
3898 data, 1))
3899 continue;
3900
3901 this_real_name = dw2_get_real_path (objfile, file_data, j);
3902 if (file_matcher (this_real_name, data, 0))
3903 {
3904 per_cu->v.quick->mark = 1;
3905 break;
3906 }
3907 }
3908
3909 slot = htab_find_slot (per_cu->v.quick->mark
3910 ? visited_found
3911 : visited_not_found,
3912 file_data, INSERT);
3913 *slot = file_data;
3914 }
3915
3916 do_cleanups (cleanup);
3917 }
3918
3919 for (iter = 0; iter < index->symbol_table_slots; ++iter)
3920 {
3921 offset_type idx = 2 * iter;
3922 const char *name;
3923 offset_type *vec, vec_len, vec_idx;
3924 int global_seen = 0;
3925
3926 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
3927 continue;
3928
3929 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
3930
3931 if (! (*symbol_matcher) (name, data))
3932 continue;
3933
3934 /* The name was matched, now expand corresponding CUs that were
3935 marked. */
3936 vec = (offset_type *) (index->constant_pool
3937 + MAYBE_SWAP (index->symbol_table[idx + 1]));
3938 vec_len = MAYBE_SWAP (vec[0]);
3939 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3940 {
3941 struct dwarf2_per_cu_data *per_cu;
3942 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
3943 /* This value is only valid for index versions >= 7. */
3944 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3945 gdb_index_symbol_kind symbol_kind =
3946 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3947 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3948 /* Only check the symbol attributes if they're present.
3949 Indices prior to version 7 don't record them,
3950 and indices >= 7 may elide them for certain symbols
3951 (gold does this). */
3952 int attrs_valid =
3953 (index->version >= 7
3954 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3955
3956 /* Work around gold/15646. */
3957 if (attrs_valid)
3958 {
3959 if (!is_static && global_seen)
3960 continue;
3961 if (!is_static)
3962 global_seen = 1;
3963 }
3964
3965 /* Only check the symbol's kind if it has one. */
3966 if (attrs_valid)
3967 {
3968 switch (kind)
3969 {
3970 case VARIABLES_DOMAIN:
3971 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
3972 continue;
3973 break;
3974 case FUNCTIONS_DOMAIN:
3975 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
3976 continue;
3977 break;
3978 case TYPES_DOMAIN:
3979 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3980 continue;
3981 break;
3982 default:
3983 break;
3984 }
3985 }
3986
3987 /* Don't crash on bad data. */
3988 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3989 + dwarf2_per_objfile->n_type_units))
3990 {
3991 complaint (&symfile_complaints,
3992 _(".gdb_index entry has bad CU index"
3993 " [in module %s]"), objfile_name (objfile));
3994 continue;
3995 }
3996
3997 per_cu = dw2_get_cutu (cu_index);
3998 if (file_matcher == NULL || per_cu->v.quick->mark)
3999 dw2_instantiate_symtab (per_cu);
4000 }
4001 }
4002 }
4003
4004 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
4005 symtab. */
4006
4007 static struct compunit_symtab *
4008 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
4009 CORE_ADDR pc)
4010 {
4011 int i;
4012
4013 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
4014 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
4015 return cust;
4016
4017 if (cust->includes == NULL)
4018 return NULL;
4019
4020 for (i = 0; cust->includes[i]; ++i)
4021 {
4022 struct compunit_symtab *s = cust->includes[i];
4023
4024 s = recursively_find_pc_sect_compunit_symtab (s, pc);
4025 if (s != NULL)
4026 return s;
4027 }
4028
4029 return NULL;
4030 }
4031
4032 static struct compunit_symtab *
4033 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
4034 struct bound_minimal_symbol msymbol,
4035 CORE_ADDR pc,
4036 struct obj_section *section,
4037 int warn_if_readin)
4038 {
4039 struct dwarf2_per_cu_data *data;
4040 struct compunit_symtab *result;
4041
4042 dw2_setup (objfile);
4043
4044 if (!objfile->psymtabs_addrmap)
4045 return NULL;
4046
4047 data = addrmap_find (objfile->psymtabs_addrmap, pc);
4048 if (!data)
4049 return NULL;
4050
4051 if (warn_if_readin && data->v.quick->compunit_symtab)
4052 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
4053 paddress (get_objfile_arch (objfile), pc));
4054
4055 result
4056 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data),
4057 pc);
4058 gdb_assert (result != NULL);
4059 return result;
4060 }
4061
4062 static void
4063 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
4064 void *data, int need_fullname)
4065 {
4066 int i;
4067 struct cleanup *cleanup;
4068 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
4069 NULL, xcalloc, xfree);
4070
4071 cleanup = make_cleanup_htab_delete (visited);
4072 dw2_setup (objfile);
4073
4074 /* The rule is CUs specify all the files, including those used by
4075 any TU, so there's no need to scan TUs here.
4076 We can ignore file names coming from already-expanded CUs. */
4077
4078 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4079 {
4080 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4081
4082 if (per_cu->v.quick->compunit_symtab)
4083 {
4084 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
4085 INSERT);
4086
4087 *slot = per_cu->v.quick->file_names;
4088 }
4089 }
4090
4091 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4092 {
4093 int j;
4094 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4095 struct quick_file_names *file_data;
4096 void **slot;
4097
4098 /* We only need to look at symtabs not already expanded. */
4099 if (per_cu->v.quick->compunit_symtab)
4100 continue;
4101
4102 file_data = dw2_get_file_names (per_cu);
4103 if (file_data == NULL)
4104 continue;
4105
4106 slot = htab_find_slot (visited, file_data, INSERT);
4107 if (*slot)
4108 {
4109 /* Already visited. */
4110 continue;
4111 }
4112 *slot = file_data;
4113
4114 for (j = 0; j < file_data->num_file_names; ++j)
4115 {
4116 const char *this_real_name;
4117
4118 if (need_fullname)
4119 this_real_name = dw2_get_real_path (objfile, file_data, j);
4120 else
4121 this_real_name = NULL;
4122 (*fun) (file_data->file_names[j], this_real_name, data);
4123 }
4124 }
4125
4126 do_cleanups (cleanup);
4127 }
4128
4129 static int
4130 dw2_has_symbols (struct objfile *objfile)
4131 {
4132 return 1;
4133 }
4134
4135 const struct quick_symbol_functions dwarf2_gdb_index_functions =
4136 {
4137 dw2_has_symbols,
4138 dw2_find_last_source_symtab,
4139 dw2_forget_cached_source_info,
4140 dw2_map_symtabs_matching_filename,
4141 dw2_lookup_symbol,
4142 dw2_print_stats,
4143 dw2_dump,
4144 dw2_relocate,
4145 dw2_expand_symtabs_for_function,
4146 dw2_expand_all_symtabs,
4147 dw2_expand_symtabs_with_fullname,
4148 dw2_map_matching_symbols,
4149 dw2_expand_symtabs_matching,
4150 dw2_find_pc_sect_compunit_symtab,
4151 dw2_map_symbol_filenames
4152 };
4153
4154 /* Initialize for reading DWARF for this objfile. Return 0 if this
4155 file will use psymtabs, or 1 if using the GNU index. */
4156
4157 int
4158 dwarf2_initialize_objfile (struct objfile *objfile)
4159 {
4160 /* If we're about to read full symbols, don't bother with the
4161 indices. In this case we also don't care if some other debug
4162 format is making psymtabs, because they are all about to be
4163 expanded anyway. */
4164 if ((objfile->flags & OBJF_READNOW))
4165 {
4166 int i;
4167
4168 dwarf2_per_objfile->using_index = 1;
4169 create_all_comp_units (objfile);
4170 create_all_type_units (objfile);
4171 dwarf2_per_objfile->quick_file_names_table =
4172 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
4173
4174 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
4175 + dwarf2_per_objfile->n_type_units); ++i)
4176 {
4177 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4178
4179 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4180 struct dwarf2_per_cu_quick_data);
4181 }
4182
4183 /* Return 1 so that gdb sees the "quick" functions. However,
4184 these functions will be no-ops because we will have expanded
4185 all symtabs. */
4186 return 1;
4187 }
4188
4189 if (dwarf2_read_index (objfile))
4190 return 1;
4191
4192 return 0;
4193 }
4194
4195 \f
4196
4197 /* Build a partial symbol table. */
4198
4199 void
4200 dwarf2_build_psymtabs (struct objfile *objfile)
4201 {
4202 volatile struct gdb_exception except;
4203
4204 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
4205 {
4206 init_psymbol_list (objfile, 1024);
4207 }
4208
4209 TRY_CATCH (except, RETURN_MASK_ERROR)
4210 {
4211 /* This isn't really ideal: all the data we allocate on the
4212 objfile's obstack is still uselessly kept around. However,
4213 freeing it seems unsafe. */
4214 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
4215
4216 dwarf2_build_psymtabs_hard (objfile);
4217 discard_cleanups (cleanups);
4218 }
4219 if (except.reason < 0)
4220 exception_print (gdb_stderr, except);
4221 }
4222
4223 /* Return the total length of the CU described by HEADER. */
4224
4225 static unsigned int
4226 get_cu_length (const struct comp_unit_head *header)
4227 {
4228 return header->initial_length_size + header->length;
4229 }
4230
4231 /* Return TRUE if OFFSET is within CU_HEADER. */
4232
4233 static inline int
4234 offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
4235 {
4236 sect_offset bottom = { cu_header->offset.sect_off };
4237 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
4238
4239 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
4240 }
4241
4242 /* Find the base address of the compilation unit for range lists and
4243 location lists. It will normally be specified by DW_AT_low_pc.
4244 In DWARF-3 draft 4, the base address could be overridden by
4245 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4246 compilation units with discontinuous ranges. */
4247
4248 static void
4249 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4250 {
4251 struct attribute *attr;
4252
4253 cu->base_known = 0;
4254 cu->base_address = 0;
4255
4256 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4257 if (attr)
4258 {
4259 cu->base_address = attr_value_as_address (attr);
4260 cu->base_known = 1;
4261 }
4262 else
4263 {
4264 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4265 if (attr)
4266 {
4267 cu->base_address = attr_value_as_address (attr);
4268 cu->base_known = 1;
4269 }
4270 }
4271 }
4272
4273 /* Read in the comp unit header information from the debug_info at info_ptr.
4274 NOTE: This leaves members offset, first_die_offset to be filled in
4275 by the caller. */
4276
4277 static const gdb_byte *
4278 read_comp_unit_head (struct comp_unit_head *cu_header,
4279 const gdb_byte *info_ptr, bfd *abfd)
4280 {
4281 int signed_addr;
4282 unsigned int bytes_read;
4283
4284 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4285 cu_header->initial_length_size = bytes_read;
4286 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
4287 info_ptr += bytes_read;
4288 cu_header->version = read_2_bytes (abfd, info_ptr);
4289 info_ptr += 2;
4290 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
4291 &bytes_read);
4292 info_ptr += bytes_read;
4293 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4294 info_ptr += 1;
4295 signed_addr = bfd_get_sign_extend_vma (abfd);
4296 if (signed_addr < 0)
4297 internal_error (__FILE__, __LINE__,
4298 _("read_comp_unit_head: dwarf from non elf file"));
4299 cu_header->signed_addr_p = signed_addr;
4300
4301 return info_ptr;
4302 }
4303
4304 /* Helper function that returns the proper abbrev section for
4305 THIS_CU. */
4306
4307 static struct dwarf2_section_info *
4308 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4309 {
4310 struct dwarf2_section_info *abbrev;
4311
4312 if (this_cu->is_dwz)
4313 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4314 else
4315 abbrev = &dwarf2_per_objfile->abbrev;
4316
4317 return abbrev;
4318 }
4319
4320 /* Subroutine of read_and_check_comp_unit_head and
4321 read_and_check_type_unit_head to simplify them.
4322 Perform various error checking on the header. */
4323
4324 static void
4325 error_check_comp_unit_head (struct comp_unit_head *header,
4326 struct dwarf2_section_info *section,
4327 struct dwarf2_section_info *abbrev_section)
4328 {
4329 bfd *abfd = get_section_bfd_owner (section);
4330 const char *filename = get_section_file_name (section);
4331
4332 if (header->version != 2 && header->version != 3 && header->version != 4)
4333 error (_("Dwarf Error: wrong version in compilation unit header "
4334 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
4335 filename);
4336
4337 if (header->abbrev_offset.sect_off
4338 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
4339 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
4340 "(offset 0x%lx + 6) [in module %s]"),
4341 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
4342 filename);
4343
4344 /* Cast to unsigned long to use 64-bit arithmetic when possible to
4345 avoid potential 32-bit overflow. */
4346 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
4347 > section->size)
4348 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4349 "(offset 0x%lx + 0) [in module %s]"),
4350 (long) header->length, (long) header->offset.sect_off,
4351 filename);
4352 }
4353
4354 /* Read in a CU/TU header and perform some basic error checking.
4355 The contents of the header are stored in HEADER.
4356 The result is a pointer to the start of the first DIE. */
4357
4358 static const gdb_byte *
4359 read_and_check_comp_unit_head (struct comp_unit_head *header,
4360 struct dwarf2_section_info *section,
4361 struct dwarf2_section_info *abbrev_section,
4362 const gdb_byte *info_ptr,
4363 int is_debug_types_section)
4364 {
4365 const gdb_byte *beg_of_comp_unit = info_ptr;
4366 bfd *abfd = get_section_bfd_owner (section);
4367
4368 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4369
4370 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4371
4372 /* If we're reading a type unit, skip over the signature and
4373 type_offset fields. */
4374 if (is_debug_types_section)
4375 info_ptr += 8 /*signature*/ + header->offset_size;
4376
4377 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4378
4379 error_check_comp_unit_head (header, section, abbrev_section);
4380
4381 return info_ptr;
4382 }
4383
4384 /* Read in the types comp unit header information from .debug_types entry at
4385 types_ptr. The result is a pointer to one past the end of the header. */
4386
4387 static const gdb_byte *
4388 read_and_check_type_unit_head (struct comp_unit_head *header,
4389 struct dwarf2_section_info *section,
4390 struct dwarf2_section_info *abbrev_section,
4391 const gdb_byte *info_ptr,
4392 ULONGEST *signature,
4393 cu_offset *type_offset_in_tu)
4394 {
4395 const gdb_byte *beg_of_comp_unit = info_ptr;
4396 bfd *abfd = get_section_bfd_owner (section);
4397
4398 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4399
4400 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4401
4402 /* If we're reading a type unit, skip over the signature and
4403 type_offset fields. */
4404 if (signature != NULL)
4405 *signature = read_8_bytes (abfd, info_ptr);
4406 info_ptr += 8;
4407 if (type_offset_in_tu != NULL)
4408 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4409 header->offset_size);
4410 info_ptr += header->offset_size;
4411
4412 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4413
4414 error_check_comp_unit_head (header, section, abbrev_section);
4415
4416 return info_ptr;
4417 }
4418
4419 /* Fetch the abbreviation table offset from a comp or type unit header. */
4420
4421 static sect_offset
4422 read_abbrev_offset (struct dwarf2_section_info *section,
4423 sect_offset offset)
4424 {
4425 bfd *abfd = get_section_bfd_owner (section);
4426 const gdb_byte *info_ptr;
4427 unsigned int length, initial_length_size, offset_size;
4428 sect_offset abbrev_offset;
4429
4430 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4431 info_ptr = section->buffer + offset.sect_off;
4432 length = read_initial_length (abfd, info_ptr, &initial_length_size);
4433 offset_size = initial_length_size == 4 ? 4 : 8;
4434 info_ptr += initial_length_size + 2 /*version*/;
4435 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4436 return abbrev_offset;
4437 }
4438
4439 /* Allocate a new partial symtab for file named NAME and mark this new
4440 partial symtab as being an include of PST. */
4441
4442 static void
4443 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
4444 struct objfile *objfile)
4445 {
4446 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4447
4448 if (!IS_ABSOLUTE_PATH (subpst->filename))
4449 {
4450 /* It shares objfile->objfile_obstack. */
4451 subpst->dirname = pst->dirname;
4452 }
4453
4454 subpst->section_offsets = pst->section_offsets;
4455 subpst->textlow = 0;
4456 subpst->texthigh = 0;
4457
4458 subpst->dependencies = (struct partial_symtab **)
4459 obstack_alloc (&objfile->objfile_obstack,
4460 sizeof (struct partial_symtab *));
4461 subpst->dependencies[0] = pst;
4462 subpst->number_of_dependencies = 1;
4463
4464 subpst->globals_offset = 0;
4465 subpst->n_global_syms = 0;
4466 subpst->statics_offset = 0;
4467 subpst->n_static_syms = 0;
4468 subpst->compunit_symtab = NULL;
4469 subpst->read_symtab = pst->read_symtab;
4470 subpst->readin = 0;
4471
4472 /* No private part is necessary for include psymtabs. This property
4473 can be used to differentiate between such include psymtabs and
4474 the regular ones. */
4475 subpst->read_symtab_private = NULL;
4476 }
4477
4478 /* Read the Line Number Program data and extract the list of files
4479 included by the source file represented by PST. Build an include
4480 partial symtab for each of these included files. */
4481
4482 static void
4483 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
4484 struct die_info *die,
4485 struct partial_symtab *pst)
4486 {
4487 struct line_header *lh = NULL;
4488 struct attribute *attr;
4489
4490 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4491 if (attr)
4492 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
4493 if (lh == NULL)
4494 return; /* No linetable, so no includes. */
4495
4496 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
4497 dwarf_decode_lines (lh, pst->dirname, cu, pst, pst->textlow, 1);
4498
4499 free_line_header (lh);
4500 }
4501
4502 static hashval_t
4503 hash_signatured_type (const void *item)
4504 {
4505 const struct signatured_type *sig_type = item;
4506
4507 /* This drops the top 32 bits of the signature, but is ok for a hash. */
4508 return sig_type->signature;
4509 }
4510
4511 static int
4512 eq_signatured_type (const void *item_lhs, const void *item_rhs)
4513 {
4514 const struct signatured_type *lhs = item_lhs;
4515 const struct signatured_type *rhs = item_rhs;
4516
4517 return lhs->signature == rhs->signature;
4518 }
4519
4520 /* Allocate a hash table for signatured types. */
4521
4522 static htab_t
4523 allocate_signatured_type_table (struct objfile *objfile)
4524 {
4525 return htab_create_alloc_ex (41,
4526 hash_signatured_type,
4527 eq_signatured_type,
4528 NULL,
4529 &objfile->objfile_obstack,
4530 hashtab_obstack_allocate,
4531 dummy_obstack_deallocate);
4532 }
4533
4534 /* A helper function to add a signatured type CU to a table. */
4535
4536 static int
4537 add_signatured_type_cu_to_table (void **slot, void *datum)
4538 {
4539 struct signatured_type *sigt = *slot;
4540 struct signatured_type ***datap = datum;
4541
4542 **datap = sigt;
4543 ++*datap;
4544
4545 return 1;
4546 }
4547
4548 /* Create the hash table of all entries in the .debug_types
4549 (or .debug_types.dwo) section(s).
4550 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4551 otherwise it is NULL.
4552
4553 The result is a pointer to the hash table or NULL if there are no types.
4554
4555 Note: This function processes DWO files only, not DWP files. */
4556
4557 static htab_t
4558 create_debug_types_hash_table (struct dwo_file *dwo_file,
4559 VEC (dwarf2_section_info_def) *types)
4560 {
4561 struct objfile *objfile = dwarf2_per_objfile->objfile;
4562 htab_t types_htab = NULL;
4563 int ix;
4564 struct dwarf2_section_info *section;
4565 struct dwarf2_section_info *abbrev_section;
4566
4567 if (VEC_empty (dwarf2_section_info_def, types))
4568 return NULL;
4569
4570 abbrev_section = (dwo_file != NULL
4571 ? &dwo_file->sections.abbrev
4572 : &dwarf2_per_objfile->abbrev);
4573
4574 if (dwarf2_read_debug)
4575 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4576 dwo_file ? ".dwo" : "",
4577 get_section_file_name (abbrev_section));
4578
4579 for (ix = 0;
4580 VEC_iterate (dwarf2_section_info_def, types, ix, section);
4581 ++ix)
4582 {
4583 bfd *abfd;
4584 const gdb_byte *info_ptr, *end_ptr;
4585
4586 dwarf2_read_section (objfile, section);
4587 info_ptr = section->buffer;
4588
4589 if (info_ptr == NULL)
4590 continue;
4591
4592 /* We can't set abfd until now because the section may be empty or
4593 not present, in which case the bfd is unknown. */
4594 abfd = get_section_bfd_owner (section);
4595
4596 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4597 because we don't need to read any dies: the signature is in the
4598 header. */
4599
4600 end_ptr = info_ptr + section->size;
4601 while (info_ptr < end_ptr)
4602 {
4603 sect_offset offset;
4604 cu_offset type_offset_in_tu;
4605 ULONGEST signature;
4606 struct signatured_type *sig_type;
4607 struct dwo_unit *dwo_tu;
4608 void **slot;
4609 const gdb_byte *ptr = info_ptr;
4610 struct comp_unit_head header;
4611 unsigned int length;
4612
4613 offset.sect_off = ptr - section->buffer;
4614
4615 /* We need to read the type's signature in order to build the hash
4616 table, but we don't need anything else just yet. */
4617
4618 ptr = read_and_check_type_unit_head (&header, section,
4619 abbrev_section, ptr,
4620 &signature, &type_offset_in_tu);
4621
4622 length = get_cu_length (&header);
4623
4624 /* Skip dummy type units. */
4625 if (ptr >= info_ptr + length
4626 || peek_abbrev_code (abfd, ptr) == 0)
4627 {
4628 info_ptr += length;
4629 continue;
4630 }
4631
4632 if (types_htab == NULL)
4633 {
4634 if (dwo_file)
4635 types_htab = allocate_dwo_unit_table (objfile);
4636 else
4637 types_htab = allocate_signatured_type_table (objfile);
4638 }
4639
4640 if (dwo_file)
4641 {
4642 sig_type = NULL;
4643 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4644 struct dwo_unit);
4645 dwo_tu->dwo_file = dwo_file;
4646 dwo_tu->signature = signature;
4647 dwo_tu->type_offset_in_tu = type_offset_in_tu;
4648 dwo_tu->section = section;
4649 dwo_tu->offset = offset;
4650 dwo_tu->length = length;
4651 }
4652 else
4653 {
4654 /* N.B.: type_offset is not usable if this type uses a DWO file.
4655 The real type_offset is in the DWO file. */
4656 dwo_tu = NULL;
4657 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4658 struct signatured_type);
4659 sig_type->signature = signature;
4660 sig_type->type_offset_in_tu = type_offset_in_tu;
4661 sig_type->per_cu.objfile = objfile;
4662 sig_type->per_cu.is_debug_types = 1;
4663 sig_type->per_cu.section = section;
4664 sig_type->per_cu.offset = offset;
4665 sig_type->per_cu.length = length;
4666 }
4667
4668 slot = htab_find_slot (types_htab,
4669 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4670 INSERT);
4671 gdb_assert (slot != NULL);
4672 if (*slot != NULL)
4673 {
4674 sect_offset dup_offset;
4675
4676 if (dwo_file)
4677 {
4678 const struct dwo_unit *dup_tu = *slot;
4679
4680 dup_offset = dup_tu->offset;
4681 }
4682 else
4683 {
4684 const struct signatured_type *dup_tu = *slot;
4685
4686 dup_offset = dup_tu->per_cu.offset;
4687 }
4688
4689 complaint (&symfile_complaints,
4690 _("debug type entry at offset 0x%x is duplicate to"
4691 " the entry at offset 0x%x, signature %s"),
4692 offset.sect_off, dup_offset.sect_off,
4693 hex_string (signature));
4694 }
4695 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4696
4697 if (dwarf2_read_debug > 1)
4698 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
4699 offset.sect_off,
4700 hex_string (signature));
4701
4702 info_ptr += length;
4703 }
4704 }
4705
4706 return types_htab;
4707 }
4708
4709 /* Create the hash table of all entries in the .debug_types section,
4710 and initialize all_type_units.
4711 The result is zero if there is an error (e.g. missing .debug_types section),
4712 otherwise non-zero. */
4713
4714 static int
4715 create_all_type_units (struct objfile *objfile)
4716 {
4717 htab_t types_htab;
4718 struct signatured_type **iter;
4719
4720 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4721 if (types_htab == NULL)
4722 {
4723 dwarf2_per_objfile->signatured_types = NULL;
4724 return 0;
4725 }
4726
4727 dwarf2_per_objfile->signatured_types = types_htab;
4728
4729 dwarf2_per_objfile->n_type_units
4730 = dwarf2_per_objfile->n_allocated_type_units
4731 = htab_elements (types_htab);
4732 dwarf2_per_objfile->all_type_units
4733 = xmalloc (dwarf2_per_objfile->n_type_units
4734 * sizeof (struct signatured_type *));
4735 iter = &dwarf2_per_objfile->all_type_units[0];
4736 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4737 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4738 == dwarf2_per_objfile->n_type_units);
4739
4740 return 1;
4741 }
4742
4743 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
4744 If SLOT is non-NULL, it is the entry to use in the hash table.
4745 Otherwise we find one. */
4746
4747 static struct signatured_type *
4748 add_type_unit (ULONGEST sig, void **slot)
4749 {
4750 struct objfile *objfile = dwarf2_per_objfile->objfile;
4751 int n_type_units = dwarf2_per_objfile->n_type_units;
4752 struct signatured_type *sig_type;
4753
4754 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
4755 ++n_type_units;
4756 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
4757 {
4758 if (dwarf2_per_objfile->n_allocated_type_units == 0)
4759 dwarf2_per_objfile->n_allocated_type_units = 1;
4760 dwarf2_per_objfile->n_allocated_type_units *= 2;
4761 dwarf2_per_objfile->all_type_units
4762 = xrealloc (dwarf2_per_objfile->all_type_units,
4763 dwarf2_per_objfile->n_allocated_type_units
4764 * sizeof (struct signatured_type *));
4765 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
4766 }
4767 dwarf2_per_objfile->n_type_units = n_type_units;
4768
4769 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4770 struct signatured_type);
4771 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4772 sig_type->signature = sig;
4773 sig_type->per_cu.is_debug_types = 1;
4774 if (dwarf2_per_objfile->using_index)
4775 {
4776 sig_type->per_cu.v.quick =
4777 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4778 struct dwarf2_per_cu_quick_data);
4779 }
4780
4781 if (slot == NULL)
4782 {
4783 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4784 sig_type, INSERT);
4785 }
4786 gdb_assert (*slot == NULL);
4787 *slot = sig_type;
4788 /* The rest of sig_type must be filled in by the caller. */
4789 return sig_type;
4790 }
4791
4792 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4793 Fill in SIG_ENTRY with DWO_ENTRY. */
4794
4795 static void
4796 fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4797 struct signatured_type *sig_entry,
4798 struct dwo_unit *dwo_entry)
4799 {
4800 /* Make sure we're not clobbering something we don't expect to. */
4801 gdb_assert (! sig_entry->per_cu.queued);
4802 gdb_assert (sig_entry->per_cu.cu == NULL);
4803 if (dwarf2_per_objfile->using_index)
4804 {
4805 gdb_assert (sig_entry->per_cu.v.quick != NULL);
4806 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
4807 }
4808 else
4809 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
4810 gdb_assert (sig_entry->signature == dwo_entry->signature);
4811 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4812 gdb_assert (sig_entry->type_unit_group == NULL);
4813 gdb_assert (sig_entry->dwo_unit == NULL);
4814
4815 sig_entry->per_cu.section = dwo_entry->section;
4816 sig_entry->per_cu.offset = dwo_entry->offset;
4817 sig_entry->per_cu.length = dwo_entry->length;
4818 sig_entry->per_cu.reading_dwo_directly = 1;
4819 sig_entry->per_cu.objfile = objfile;
4820 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4821 sig_entry->dwo_unit = dwo_entry;
4822 }
4823
4824 /* Subroutine of lookup_signatured_type.
4825 If we haven't read the TU yet, create the signatured_type data structure
4826 for a TU to be read in directly from a DWO file, bypassing the stub.
4827 This is the "Stay in DWO Optimization": When there is no DWP file and we're
4828 using .gdb_index, then when reading a CU we want to stay in the DWO file
4829 containing that CU. Otherwise we could end up reading several other DWO
4830 files (due to comdat folding) to process the transitive closure of all the
4831 mentioned TUs, and that can be slow. The current DWO file will have every
4832 type signature that it needs.
4833 We only do this for .gdb_index because in the psymtab case we already have
4834 to read all the DWOs to build the type unit groups. */
4835
4836 static struct signatured_type *
4837 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4838 {
4839 struct objfile *objfile = dwarf2_per_objfile->objfile;
4840 struct dwo_file *dwo_file;
4841 struct dwo_unit find_dwo_entry, *dwo_entry;
4842 struct signatured_type find_sig_entry, *sig_entry;
4843 void **slot;
4844
4845 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4846
4847 /* If TU skeletons have been removed then we may not have read in any
4848 TUs yet. */
4849 if (dwarf2_per_objfile->signatured_types == NULL)
4850 {
4851 dwarf2_per_objfile->signatured_types
4852 = allocate_signatured_type_table (objfile);
4853 }
4854
4855 /* We only ever need to read in one copy of a signatured type.
4856 Use the global signatured_types array to do our own comdat-folding
4857 of types. If this is the first time we're reading this TU, and
4858 the TU has an entry in .gdb_index, replace the recorded data from
4859 .gdb_index with this TU. */
4860
4861 find_sig_entry.signature = sig;
4862 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4863 &find_sig_entry, INSERT);
4864 sig_entry = *slot;
4865
4866 /* We can get here with the TU already read, *or* in the process of being
4867 read. Don't reassign the global entry to point to this DWO if that's
4868 the case. Also note that if the TU is already being read, it may not
4869 have come from a DWO, the program may be a mix of Fission-compiled
4870 code and non-Fission-compiled code. */
4871
4872 /* Have we already tried to read this TU?
4873 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4874 needn't exist in the global table yet). */
4875 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
4876 return sig_entry;
4877
4878 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
4879 dwo_unit of the TU itself. */
4880 dwo_file = cu->dwo_unit->dwo_file;
4881
4882 /* Ok, this is the first time we're reading this TU. */
4883 if (dwo_file->tus == NULL)
4884 return NULL;
4885 find_dwo_entry.signature = sig;
4886 dwo_entry = htab_find (dwo_file->tus, &find_dwo_entry);
4887 if (dwo_entry == NULL)
4888 return NULL;
4889
4890 /* If the global table doesn't have an entry for this TU, add one. */
4891 if (sig_entry == NULL)
4892 sig_entry = add_type_unit (sig, slot);
4893
4894 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4895 sig_entry->per_cu.tu_read = 1;
4896 return sig_entry;
4897 }
4898
4899 /* Subroutine of lookup_signatured_type.
4900 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
4901 then try the DWP file. If the TU stub (skeleton) has been removed then
4902 it won't be in .gdb_index. */
4903
4904 static struct signatured_type *
4905 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4906 {
4907 struct objfile *objfile = dwarf2_per_objfile->objfile;
4908 struct dwp_file *dwp_file = get_dwp_file ();
4909 struct dwo_unit *dwo_entry;
4910 struct signatured_type find_sig_entry, *sig_entry;
4911 void **slot;
4912
4913 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4914 gdb_assert (dwp_file != NULL);
4915
4916 /* If TU skeletons have been removed then we may not have read in any
4917 TUs yet. */
4918 if (dwarf2_per_objfile->signatured_types == NULL)
4919 {
4920 dwarf2_per_objfile->signatured_types
4921 = allocate_signatured_type_table (objfile);
4922 }
4923
4924 find_sig_entry.signature = sig;
4925 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4926 &find_sig_entry, INSERT);
4927 sig_entry = *slot;
4928
4929 /* Have we already tried to read this TU?
4930 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4931 needn't exist in the global table yet). */
4932 if (sig_entry != NULL)
4933 return sig_entry;
4934
4935 if (dwp_file->tus == NULL)
4936 return NULL;
4937 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
4938 sig, 1 /* is_debug_types */);
4939 if (dwo_entry == NULL)
4940 return NULL;
4941
4942 sig_entry = add_type_unit (sig, slot);
4943 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4944
4945 return sig_entry;
4946 }
4947
4948 /* Lookup a signature based type for DW_FORM_ref_sig8.
4949 Returns NULL if signature SIG is not present in the table.
4950 It is up to the caller to complain about this. */
4951
4952 static struct signatured_type *
4953 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4954 {
4955 if (cu->dwo_unit
4956 && dwarf2_per_objfile->using_index)
4957 {
4958 /* We're in a DWO/DWP file, and we're using .gdb_index.
4959 These cases require special processing. */
4960 if (get_dwp_file () == NULL)
4961 return lookup_dwo_signatured_type (cu, sig);
4962 else
4963 return lookup_dwp_signatured_type (cu, sig);
4964 }
4965 else
4966 {
4967 struct signatured_type find_entry, *entry;
4968
4969 if (dwarf2_per_objfile->signatured_types == NULL)
4970 return NULL;
4971 find_entry.signature = sig;
4972 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
4973 return entry;
4974 }
4975 }
4976 \f
4977 /* Low level DIE reading support. */
4978
4979 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
4980
4981 static void
4982 init_cu_die_reader (struct die_reader_specs *reader,
4983 struct dwarf2_cu *cu,
4984 struct dwarf2_section_info *section,
4985 struct dwo_file *dwo_file)
4986 {
4987 gdb_assert (section->readin && section->buffer != NULL);
4988 reader->abfd = get_section_bfd_owner (section);
4989 reader->cu = cu;
4990 reader->dwo_file = dwo_file;
4991 reader->die_section = section;
4992 reader->buffer = section->buffer;
4993 reader->buffer_end = section->buffer + section->size;
4994 reader->comp_dir = NULL;
4995 }
4996
4997 /* Subroutine of init_cutu_and_read_dies to simplify it.
4998 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
4999 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
5000 already.
5001
5002 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
5003 from it to the DIE in the DWO. If NULL we are skipping the stub.
5004 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
5005 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
5006 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
5007 STUB_COMP_DIR may be non-NULL.
5008 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
5009 are filled in with the info of the DIE from the DWO file.
5010 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
5011 provided an abbrev table to use.
5012 The result is non-zero if a valid (non-dummy) DIE was found. */
5013
5014 static int
5015 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
5016 struct dwo_unit *dwo_unit,
5017 int abbrev_table_provided,
5018 struct die_info *stub_comp_unit_die,
5019 const char *stub_comp_dir,
5020 struct die_reader_specs *result_reader,
5021 const gdb_byte **result_info_ptr,
5022 struct die_info **result_comp_unit_die,
5023 int *result_has_children)
5024 {
5025 struct objfile *objfile = dwarf2_per_objfile->objfile;
5026 struct dwarf2_cu *cu = this_cu->cu;
5027 struct dwarf2_section_info *section;
5028 bfd *abfd;
5029 const gdb_byte *begin_info_ptr, *info_ptr;
5030 ULONGEST signature; /* Or dwo_id. */
5031 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
5032 int i,num_extra_attrs;
5033 struct dwarf2_section_info *dwo_abbrev_section;
5034 struct attribute *attr;
5035 struct die_info *comp_unit_die;
5036
5037 /* At most one of these may be provided. */
5038 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
5039
5040 /* These attributes aren't processed until later:
5041 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
5042 DW_AT_comp_dir is used now, to find the DWO file, but it is also
5043 referenced later. However, these attributes are found in the stub
5044 which we won't have later. In order to not impose this complication
5045 on the rest of the code, we read them here and copy them to the
5046 DWO CU/TU die. */
5047
5048 stmt_list = NULL;
5049 low_pc = NULL;
5050 high_pc = NULL;
5051 ranges = NULL;
5052 comp_dir = NULL;
5053
5054 if (stub_comp_unit_die != NULL)
5055 {
5056 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
5057 DWO file. */
5058 if (! this_cu->is_debug_types)
5059 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
5060 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
5061 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
5062 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
5063 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
5064
5065 /* There should be a DW_AT_addr_base attribute here (if needed).
5066 We need the value before we can process DW_FORM_GNU_addr_index. */
5067 cu->addr_base = 0;
5068 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
5069 if (attr)
5070 cu->addr_base = DW_UNSND (attr);
5071
5072 /* There should be a DW_AT_ranges_base attribute here (if needed).
5073 We need the value before we can process DW_AT_ranges. */
5074 cu->ranges_base = 0;
5075 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
5076 if (attr)
5077 cu->ranges_base = DW_UNSND (attr);
5078 }
5079 else if (stub_comp_dir != NULL)
5080 {
5081 /* Reconstruct the comp_dir attribute to simplify the code below. */
5082 comp_dir = (struct attribute *)
5083 obstack_alloc (&cu->comp_unit_obstack, sizeof (*comp_dir));
5084 comp_dir->name = DW_AT_comp_dir;
5085 comp_dir->form = DW_FORM_string;
5086 DW_STRING_IS_CANONICAL (comp_dir) = 0;
5087 DW_STRING (comp_dir) = stub_comp_dir;
5088 }
5089
5090 /* Set up for reading the DWO CU/TU. */
5091 cu->dwo_unit = dwo_unit;
5092 section = dwo_unit->section;
5093 dwarf2_read_section (objfile, section);
5094 abfd = get_section_bfd_owner (section);
5095 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
5096 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5097 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5098
5099 if (this_cu->is_debug_types)
5100 {
5101 ULONGEST header_signature;
5102 cu_offset type_offset_in_tu;
5103 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5104
5105 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5106 dwo_abbrev_section,
5107 info_ptr,
5108 &header_signature,
5109 &type_offset_in_tu);
5110 /* This is not an assert because it can be caused by bad debug info. */
5111 if (sig_type->signature != header_signature)
5112 {
5113 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5114 " TU at offset 0x%x [in module %s]"),
5115 hex_string (sig_type->signature),
5116 hex_string (header_signature),
5117 dwo_unit->offset.sect_off,
5118 bfd_get_filename (abfd));
5119 }
5120 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5121 /* For DWOs coming from DWP files, we don't know the CU length
5122 nor the type's offset in the TU until now. */
5123 dwo_unit->length = get_cu_length (&cu->header);
5124 dwo_unit->type_offset_in_tu = type_offset_in_tu;
5125
5126 /* Establish the type offset that can be used to lookup the type.
5127 For DWO files, we don't know it until now. */
5128 sig_type->type_offset_in_section.sect_off =
5129 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
5130 }
5131 else
5132 {
5133 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5134 dwo_abbrev_section,
5135 info_ptr, 0);
5136 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5137 /* For DWOs coming from DWP files, we don't know the CU length
5138 until now. */
5139 dwo_unit->length = get_cu_length (&cu->header);
5140 }
5141
5142 /* Replace the CU's original abbrev table with the DWO's.
5143 Reminder: We can't read the abbrev table until we've read the header. */
5144 if (abbrev_table_provided)
5145 {
5146 /* Don't free the provided abbrev table, the caller of
5147 init_cutu_and_read_dies owns it. */
5148 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5149 /* Ensure the DWO abbrev table gets freed. */
5150 make_cleanup (dwarf2_free_abbrev_table, cu);
5151 }
5152 else
5153 {
5154 dwarf2_free_abbrev_table (cu);
5155 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5156 /* Leave any existing abbrev table cleanup as is. */
5157 }
5158
5159 /* Read in the die, but leave space to copy over the attributes
5160 from the stub. This has the benefit of simplifying the rest of
5161 the code - all the work to maintain the illusion of a single
5162 DW_TAG_{compile,type}_unit DIE is done here. */
5163 num_extra_attrs = ((stmt_list != NULL)
5164 + (low_pc != NULL)
5165 + (high_pc != NULL)
5166 + (ranges != NULL)
5167 + (comp_dir != NULL));
5168 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5169 result_has_children, num_extra_attrs);
5170
5171 /* Copy over the attributes from the stub to the DIE we just read in. */
5172 comp_unit_die = *result_comp_unit_die;
5173 i = comp_unit_die->num_attrs;
5174 if (stmt_list != NULL)
5175 comp_unit_die->attrs[i++] = *stmt_list;
5176 if (low_pc != NULL)
5177 comp_unit_die->attrs[i++] = *low_pc;
5178 if (high_pc != NULL)
5179 comp_unit_die->attrs[i++] = *high_pc;
5180 if (ranges != NULL)
5181 comp_unit_die->attrs[i++] = *ranges;
5182 if (comp_dir != NULL)
5183 comp_unit_die->attrs[i++] = *comp_dir;
5184 comp_unit_die->num_attrs += num_extra_attrs;
5185
5186 if (dwarf2_die_debug)
5187 {
5188 fprintf_unfiltered (gdb_stdlog,
5189 "Read die from %s@0x%x of %s:\n",
5190 get_section_name (section),
5191 (unsigned) (begin_info_ptr - section->buffer),
5192 bfd_get_filename (abfd));
5193 dump_die (comp_unit_die, dwarf2_die_debug);
5194 }
5195
5196 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5197 TUs by skipping the stub and going directly to the entry in the DWO file.
5198 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5199 to get it via circuitous means. Blech. */
5200 if (comp_dir != NULL)
5201 result_reader->comp_dir = DW_STRING (comp_dir);
5202
5203 /* Skip dummy compilation units. */
5204 if (info_ptr >= begin_info_ptr + dwo_unit->length
5205 || peek_abbrev_code (abfd, info_ptr) == 0)
5206 return 0;
5207
5208 *result_info_ptr = info_ptr;
5209 return 1;
5210 }
5211
5212 /* Subroutine of init_cutu_and_read_dies to simplify it.
5213 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
5214 Returns NULL if the specified DWO unit cannot be found. */
5215
5216 static struct dwo_unit *
5217 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5218 struct die_info *comp_unit_die)
5219 {
5220 struct dwarf2_cu *cu = this_cu->cu;
5221 struct attribute *attr;
5222 ULONGEST signature;
5223 struct dwo_unit *dwo_unit;
5224 const char *comp_dir, *dwo_name;
5225
5226 gdb_assert (cu != NULL);
5227
5228 /* Yeah, we look dwo_name up again, but it simplifies the code. */
5229 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5230 gdb_assert (attr != NULL);
5231 dwo_name = DW_STRING (attr);
5232 comp_dir = NULL;
5233 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5234 if (attr)
5235 comp_dir = DW_STRING (attr);
5236
5237 if (this_cu->is_debug_types)
5238 {
5239 struct signatured_type *sig_type;
5240
5241 /* Since this_cu is the first member of struct signatured_type,
5242 we can go from a pointer to one to a pointer to the other. */
5243 sig_type = (struct signatured_type *) this_cu;
5244 signature = sig_type->signature;
5245 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5246 }
5247 else
5248 {
5249 struct attribute *attr;
5250
5251 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5252 if (! attr)
5253 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5254 " [in module %s]"),
5255 dwo_name, objfile_name (this_cu->objfile));
5256 signature = DW_UNSND (attr);
5257 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5258 signature);
5259 }
5260
5261 return dwo_unit;
5262 }
5263
5264 /* Subroutine of init_cutu_and_read_dies to simplify it.
5265 See it for a description of the parameters.
5266 Read a TU directly from a DWO file, bypassing the stub.
5267
5268 Note: This function could be a little bit simpler if we shared cleanups
5269 with our caller, init_cutu_and_read_dies. That's generally a fragile thing
5270 to do, so we keep this function self-contained. Or we could move this
5271 into our caller, but it's complex enough already. */
5272
5273 static void
5274 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
5275 int use_existing_cu, int keep,
5276 die_reader_func_ftype *die_reader_func,
5277 void *data)
5278 {
5279 struct dwarf2_cu *cu;
5280 struct signatured_type *sig_type;
5281 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5282 struct die_reader_specs reader;
5283 const gdb_byte *info_ptr;
5284 struct die_info *comp_unit_die;
5285 int has_children;
5286
5287 /* Verify we can do the following downcast, and that we have the
5288 data we need. */
5289 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5290 sig_type = (struct signatured_type *) this_cu;
5291 gdb_assert (sig_type->dwo_unit != NULL);
5292
5293 cleanups = make_cleanup (null_cleanup, NULL);
5294
5295 if (use_existing_cu && this_cu->cu != NULL)
5296 {
5297 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
5298 cu = this_cu->cu;
5299 /* There's no need to do the rereading_dwo_cu handling that
5300 init_cutu_and_read_dies does since we don't read the stub. */
5301 }
5302 else
5303 {
5304 /* If !use_existing_cu, this_cu->cu must be NULL. */
5305 gdb_assert (this_cu->cu == NULL);
5306 cu = xmalloc (sizeof (*cu));
5307 init_one_comp_unit (cu, this_cu);
5308 /* If an error occurs while loading, release our storage. */
5309 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5310 }
5311
5312 /* A future optimization, if needed, would be to use an existing
5313 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
5314 could share abbrev tables. */
5315
5316 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5317 0 /* abbrev_table_provided */,
5318 NULL /* stub_comp_unit_die */,
5319 sig_type->dwo_unit->dwo_file->comp_dir,
5320 &reader, &info_ptr,
5321 &comp_unit_die, &has_children) == 0)
5322 {
5323 /* Dummy die. */
5324 do_cleanups (cleanups);
5325 return;
5326 }
5327
5328 /* All the "real" work is done here. */
5329 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5330
5331 /* This duplicates the code in init_cutu_and_read_dies,
5332 but the alternative is making the latter more complex.
5333 This function is only for the special case of using DWO files directly:
5334 no point in overly complicating the general case just to handle this. */
5335 if (free_cu_cleanup != NULL)
5336 {
5337 if (keep)
5338 {
5339 /* We've successfully allocated this compilation unit. Let our
5340 caller clean it up when finished with it. */
5341 discard_cleanups (free_cu_cleanup);
5342
5343 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5344 So we have to manually free the abbrev table. */
5345 dwarf2_free_abbrev_table (cu);
5346
5347 /* Link this CU into read_in_chain. */
5348 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5349 dwarf2_per_objfile->read_in_chain = this_cu;
5350 }
5351 else
5352 do_cleanups (free_cu_cleanup);
5353 }
5354
5355 do_cleanups (cleanups);
5356 }
5357
5358 /* Initialize a CU (or TU) and read its DIEs.
5359 If the CU defers to a DWO file, read the DWO file as well.
5360
5361 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5362 Otherwise the table specified in the comp unit header is read in and used.
5363 This is an optimization for when we already have the abbrev table.
5364
5365 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5366 Otherwise, a new CU is allocated with xmalloc.
5367
5368 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5369 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5370
5371 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5372 linker) then DIE_READER_FUNC will not get called. */
5373
5374 static void
5375 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
5376 struct abbrev_table *abbrev_table,
5377 int use_existing_cu, int keep,
5378 die_reader_func_ftype *die_reader_func,
5379 void *data)
5380 {
5381 struct objfile *objfile = dwarf2_per_objfile->objfile;
5382 struct dwarf2_section_info *section = this_cu->section;
5383 bfd *abfd = get_section_bfd_owner (section);
5384 struct dwarf2_cu *cu;
5385 const gdb_byte *begin_info_ptr, *info_ptr;
5386 struct die_reader_specs reader;
5387 struct die_info *comp_unit_die;
5388 int has_children;
5389 struct attribute *attr;
5390 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5391 struct signatured_type *sig_type = NULL;
5392 struct dwarf2_section_info *abbrev_section;
5393 /* Non-zero if CU currently points to a DWO file and we need to
5394 reread it. When this happens we need to reread the skeleton die
5395 before we can reread the DWO file (this only applies to CUs, not TUs). */
5396 int rereading_dwo_cu = 0;
5397
5398 if (dwarf2_die_debug)
5399 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5400 this_cu->is_debug_types ? "type" : "comp",
5401 this_cu->offset.sect_off);
5402
5403 if (use_existing_cu)
5404 gdb_assert (keep);
5405
5406 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5407 file (instead of going through the stub), short-circuit all of this. */
5408 if (this_cu->reading_dwo_directly)
5409 {
5410 /* Narrow down the scope of possibilities to have to understand. */
5411 gdb_assert (this_cu->is_debug_types);
5412 gdb_assert (abbrev_table == NULL);
5413 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
5414 die_reader_func, data);
5415 return;
5416 }
5417
5418 cleanups = make_cleanup (null_cleanup, NULL);
5419
5420 /* This is cheap if the section is already read in. */
5421 dwarf2_read_section (objfile, section);
5422
5423 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5424
5425 abbrev_section = get_abbrev_section_for_cu (this_cu);
5426
5427 if (use_existing_cu && this_cu->cu != NULL)
5428 {
5429 cu = this_cu->cu;
5430 /* If this CU is from a DWO file we need to start over, we need to
5431 refetch the attributes from the skeleton CU.
5432 This could be optimized by retrieving those attributes from when we
5433 were here the first time: the previous comp_unit_die was stored in
5434 comp_unit_obstack. But there's no data yet that we need this
5435 optimization. */
5436 if (cu->dwo_unit != NULL)
5437 rereading_dwo_cu = 1;
5438 }
5439 else
5440 {
5441 /* If !use_existing_cu, this_cu->cu must be NULL. */
5442 gdb_assert (this_cu->cu == NULL);
5443 cu = xmalloc (sizeof (*cu));
5444 init_one_comp_unit (cu, this_cu);
5445 /* If an error occurs while loading, release our storage. */
5446 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5447 }
5448
5449 /* Get the header. */
5450 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5451 {
5452 /* We already have the header, there's no need to read it in again. */
5453 info_ptr += cu->header.first_die_offset.cu_off;
5454 }
5455 else
5456 {
5457 if (this_cu->is_debug_types)
5458 {
5459 ULONGEST signature;
5460 cu_offset type_offset_in_tu;
5461
5462 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5463 abbrev_section, info_ptr,
5464 &signature,
5465 &type_offset_in_tu);
5466
5467 /* Since per_cu is the first member of struct signatured_type,
5468 we can go from a pointer to one to a pointer to the other. */
5469 sig_type = (struct signatured_type *) this_cu;
5470 gdb_assert (sig_type->signature == signature);
5471 gdb_assert (sig_type->type_offset_in_tu.cu_off
5472 == type_offset_in_tu.cu_off);
5473 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5474
5475 /* LENGTH has not been set yet for type units if we're
5476 using .gdb_index. */
5477 this_cu->length = get_cu_length (&cu->header);
5478
5479 /* Establish the type offset that can be used to lookup the type. */
5480 sig_type->type_offset_in_section.sect_off =
5481 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
5482 }
5483 else
5484 {
5485 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5486 abbrev_section,
5487 info_ptr, 0);
5488
5489 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5490 gdb_assert (this_cu->length == get_cu_length (&cu->header));
5491 }
5492 }
5493
5494 /* Skip dummy compilation units. */
5495 if (info_ptr >= begin_info_ptr + this_cu->length
5496 || peek_abbrev_code (abfd, info_ptr) == 0)
5497 {
5498 do_cleanups (cleanups);
5499 return;
5500 }
5501
5502 /* If we don't have them yet, read the abbrevs for this compilation unit.
5503 And if we need to read them now, make sure they're freed when we're
5504 done. Note that it's important that if the CU had an abbrev table
5505 on entry we don't free it when we're done: Somewhere up the call stack
5506 it may be in use. */
5507 if (abbrev_table != NULL)
5508 {
5509 gdb_assert (cu->abbrev_table == NULL);
5510 gdb_assert (cu->header.abbrev_offset.sect_off
5511 == abbrev_table->offset.sect_off);
5512 cu->abbrev_table = abbrev_table;
5513 }
5514 else if (cu->abbrev_table == NULL)
5515 {
5516 dwarf2_read_abbrevs (cu, abbrev_section);
5517 make_cleanup (dwarf2_free_abbrev_table, cu);
5518 }
5519 else if (rereading_dwo_cu)
5520 {
5521 dwarf2_free_abbrev_table (cu);
5522 dwarf2_read_abbrevs (cu, abbrev_section);
5523 }
5524
5525 /* Read the top level CU/TU die. */
5526 init_cu_die_reader (&reader, cu, section, NULL);
5527 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5528
5529 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5530 from the DWO file.
5531 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5532 DWO CU, that this test will fail (the attribute will not be present). */
5533 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5534 if (attr)
5535 {
5536 struct dwo_unit *dwo_unit;
5537 struct die_info *dwo_comp_unit_die;
5538
5539 if (has_children)
5540 {
5541 complaint (&symfile_complaints,
5542 _("compilation unit with DW_AT_GNU_dwo_name"
5543 " has children (offset 0x%x) [in module %s]"),
5544 this_cu->offset.sect_off, bfd_get_filename (abfd));
5545 }
5546 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
5547 if (dwo_unit != NULL)
5548 {
5549 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5550 abbrev_table != NULL,
5551 comp_unit_die, NULL,
5552 &reader, &info_ptr,
5553 &dwo_comp_unit_die, &has_children) == 0)
5554 {
5555 /* Dummy die. */
5556 do_cleanups (cleanups);
5557 return;
5558 }
5559 comp_unit_die = dwo_comp_unit_die;
5560 }
5561 else
5562 {
5563 /* Yikes, we couldn't find the rest of the DIE, we only have
5564 the stub. A complaint has already been logged. There's
5565 not much more we can do except pass on the stub DIE to
5566 die_reader_func. We don't want to throw an error on bad
5567 debug info. */
5568 }
5569 }
5570
5571 /* All of the above is setup for this call. Yikes. */
5572 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5573
5574 /* Done, clean up. */
5575 if (free_cu_cleanup != NULL)
5576 {
5577 if (keep)
5578 {
5579 /* We've successfully allocated this compilation unit. Let our
5580 caller clean it up when finished with it. */
5581 discard_cleanups (free_cu_cleanup);
5582
5583 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5584 So we have to manually free the abbrev table. */
5585 dwarf2_free_abbrev_table (cu);
5586
5587 /* Link this CU into read_in_chain. */
5588 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5589 dwarf2_per_objfile->read_in_chain = this_cu;
5590 }
5591 else
5592 do_cleanups (free_cu_cleanup);
5593 }
5594
5595 do_cleanups (cleanups);
5596 }
5597
5598 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
5599 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
5600 to have already done the lookup to find the DWO file).
5601
5602 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
5603 THIS_CU->is_debug_types, but nothing else.
5604
5605 We fill in THIS_CU->length.
5606
5607 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5608 linker) then DIE_READER_FUNC will not get called.
5609
5610 THIS_CU->cu is always freed when done.
5611 This is done in order to not leave THIS_CU->cu in a state where we have
5612 to care whether it refers to the "main" CU or the DWO CU. */
5613
5614 static void
5615 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
5616 struct dwo_file *dwo_file,
5617 die_reader_func_ftype *die_reader_func,
5618 void *data)
5619 {
5620 struct objfile *objfile = dwarf2_per_objfile->objfile;
5621 struct dwarf2_section_info *section = this_cu->section;
5622 bfd *abfd = get_section_bfd_owner (section);
5623 struct dwarf2_section_info *abbrev_section;
5624 struct dwarf2_cu cu;
5625 const gdb_byte *begin_info_ptr, *info_ptr;
5626 struct die_reader_specs reader;
5627 struct cleanup *cleanups;
5628 struct die_info *comp_unit_die;
5629 int has_children;
5630
5631 if (dwarf2_die_debug)
5632 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5633 this_cu->is_debug_types ? "type" : "comp",
5634 this_cu->offset.sect_off);
5635
5636 gdb_assert (this_cu->cu == NULL);
5637
5638 abbrev_section = (dwo_file != NULL
5639 ? &dwo_file->sections.abbrev
5640 : get_abbrev_section_for_cu (this_cu));
5641
5642 /* This is cheap if the section is already read in. */
5643 dwarf2_read_section (objfile, section);
5644
5645 init_one_comp_unit (&cu, this_cu);
5646
5647 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5648
5649 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5650 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5651 abbrev_section, info_ptr,
5652 this_cu->is_debug_types);
5653
5654 this_cu->length = get_cu_length (&cu.header);
5655
5656 /* Skip dummy compilation units. */
5657 if (info_ptr >= begin_info_ptr + this_cu->length
5658 || peek_abbrev_code (abfd, info_ptr) == 0)
5659 {
5660 do_cleanups (cleanups);
5661 return;
5662 }
5663
5664 dwarf2_read_abbrevs (&cu, abbrev_section);
5665 make_cleanup (dwarf2_free_abbrev_table, &cu);
5666
5667 init_cu_die_reader (&reader, &cu, section, dwo_file);
5668 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5669
5670 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5671
5672 do_cleanups (cleanups);
5673 }
5674
5675 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5676 does not lookup the specified DWO file.
5677 This cannot be used to read DWO files.
5678
5679 THIS_CU->cu is always freed when done.
5680 This is done in order to not leave THIS_CU->cu in a state where we have
5681 to care whether it refers to the "main" CU or the DWO CU.
5682 We can revisit this if the data shows there's a performance issue. */
5683
5684 static void
5685 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5686 die_reader_func_ftype *die_reader_func,
5687 void *data)
5688 {
5689 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
5690 }
5691 \f
5692 /* Type Unit Groups.
5693
5694 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5695 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5696 so that all types coming from the same compilation (.o file) are grouped
5697 together. A future step could be to put the types in the same symtab as
5698 the CU the types ultimately came from. */
5699
5700 static hashval_t
5701 hash_type_unit_group (const void *item)
5702 {
5703 const struct type_unit_group *tu_group = item;
5704
5705 return hash_stmt_list_entry (&tu_group->hash);
5706 }
5707
5708 static int
5709 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
5710 {
5711 const struct type_unit_group *lhs = item_lhs;
5712 const struct type_unit_group *rhs = item_rhs;
5713
5714 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
5715 }
5716
5717 /* Allocate a hash table for type unit groups. */
5718
5719 static htab_t
5720 allocate_type_unit_groups_table (void)
5721 {
5722 return htab_create_alloc_ex (3,
5723 hash_type_unit_group,
5724 eq_type_unit_group,
5725 NULL,
5726 &dwarf2_per_objfile->objfile->objfile_obstack,
5727 hashtab_obstack_allocate,
5728 dummy_obstack_deallocate);
5729 }
5730
5731 /* Type units that don't have DW_AT_stmt_list are grouped into their own
5732 partial symtabs. We combine several TUs per psymtab to not let the size
5733 of any one psymtab grow too big. */
5734 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5735 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
5736
5737 /* Helper routine for get_type_unit_group.
5738 Create the type_unit_group object used to hold one or more TUs. */
5739
5740 static struct type_unit_group *
5741 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
5742 {
5743 struct objfile *objfile = dwarf2_per_objfile->objfile;
5744 struct dwarf2_per_cu_data *per_cu;
5745 struct type_unit_group *tu_group;
5746
5747 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5748 struct type_unit_group);
5749 per_cu = &tu_group->per_cu;
5750 per_cu->objfile = objfile;
5751
5752 if (dwarf2_per_objfile->using_index)
5753 {
5754 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5755 struct dwarf2_per_cu_quick_data);
5756 }
5757 else
5758 {
5759 unsigned int line_offset = line_offset_struct.sect_off;
5760 struct partial_symtab *pst;
5761 char *name;
5762
5763 /* Give the symtab a useful name for debug purposes. */
5764 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5765 name = xstrprintf ("<type_units_%d>",
5766 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5767 else
5768 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5769
5770 pst = create_partial_symtab (per_cu, name);
5771 pst->anonymous = 1;
5772
5773 xfree (name);
5774 }
5775
5776 tu_group->hash.dwo_unit = cu->dwo_unit;
5777 tu_group->hash.line_offset = line_offset_struct;
5778
5779 return tu_group;
5780 }
5781
5782 /* Look up the type_unit_group for type unit CU, and create it if necessary.
5783 STMT_LIST is a DW_AT_stmt_list attribute. */
5784
5785 static struct type_unit_group *
5786 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
5787 {
5788 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5789 struct type_unit_group *tu_group;
5790 void **slot;
5791 unsigned int line_offset;
5792 struct type_unit_group type_unit_group_for_lookup;
5793
5794 if (dwarf2_per_objfile->type_unit_groups == NULL)
5795 {
5796 dwarf2_per_objfile->type_unit_groups =
5797 allocate_type_unit_groups_table ();
5798 }
5799
5800 /* Do we need to create a new group, or can we use an existing one? */
5801
5802 if (stmt_list)
5803 {
5804 line_offset = DW_UNSND (stmt_list);
5805 ++tu_stats->nr_symtab_sharers;
5806 }
5807 else
5808 {
5809 /* Ugh, no stmt_list. Rare, but we have to handle it.
5810 We can do various things here like create one group per TU or
5811 spread them over multiple groups to split up the expansion work.
5812 To avoid worst case scenarios (too many groups or too large groups)
5813 we, umm, group them in bunches. */
5814 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5815 | (tu_stats->nr_stmt_less_type_units
5816 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5817 ++tu_stats->nr_stmt_less_type_units;
5818 }
5819
5820 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5821 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
5822 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5823 &type_unit_group_for_lookup, INSERT);
5824 if (*slot != NULL)
5825 {
5826 tu_group = *slot;
5827 gdb_assert (tu_group != NULL);
5828 }
5829 else
5830 {
5831 sect_offset line_offset_struct;
5832
5833 line_offset_struct.sect_off = line_offset;
5834 tu_group = create_type_unit_group (cu, line_offset_struct);
5835 *slot = tu_group;
5836 ++tu_stats->nr_symtabs;
5837 }
5838
5839 return tu_group;
5840 }
5841 \f
5842 /* Partial symbol tables. */
5843
5844 /* Create a psymtab named NAME and assign it to PER_CU.
5845
5846 The caller must fill in the following details:
5847 dirname, textlow, texthigh. */
5848
5849 static struct partial_symtab *
5850 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5851 {
5852 struct objfile *objfile = per_cu->objfile;
5853 struct partial_symtab *pst;
5854
5855 pst = start_psymtab_common (objfile, objfile->section_offsets,
5856 name, 0,
5857 objfile->global_psymbols.next,
5858 objfile->static_psymbols.next);
5859
5860 pst->psymtabs_addrmap_supported = 1;
5861
5862 /* This is the glue that links PST into GDB's symbol API. */
5863 pst->read_symtab_private = per_cu;
5864 pst->read_symtab = dwarf2_read_symtab;
5865 per_cu->v.psymtab = pst;
5866
5867 return pst;
5868 }
5869
5870 /* The DATA object passed to process_psymtab_comp_unit_reader has this
5871 type. */
5872
5873 struct process_psymtab_comp_unit_data
5874 {
5875 /* True if we are reading a DW_TAG_partial_unit. */
5876
5877 int want_partial_unit;
5878
5879 /* The "pretend" language that is used if the CU doesn't declare a
5880 language. */
5881
5882 enum language pretend_language;
5883 };
5884
5885 /* die_reader_func for process_psymtab_comp_unit. */
5886
5887 static void
5888 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
5889 const gdb_byte *info_ptr,
5890 struct die_info *comp_unit_die,
5891 int has_children,
5892 void *data)
5893 {
5894 struct dwarf2_cu *cu = reader->cu;
5895 struct objfile *objfile = cu->objfile;
5896 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5897 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5898 struct attribute *attr;
5899 CORE_ADDR baseaddr;
5900 CORE_ADDR best_lowpc = 0, best_highpc = 0;
5901 struct partial_symtab *pst;
5902 int has_pc_info;
5903 const char *filename;
5904 struct process_psymtab_comp_unit_data *info = data;
5905
5906 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
5907 return;
5908
5909 gdb_assert (! per_cu->is_debug_types);
5910
5911 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
5912
5913 cu->list_in_scope = &file_symbols;
5914
5915 /* Allocate a new partial symbol table structure. */
5916 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
5917 if (attr == NULL || !DW_STRING (attr))
5918 filename = "";
5919 else
5920 filename = DW_STRING (attr);
5921
5922 pst = create_partial_symtab (per_cu, filename);
5923
5924 /* This must be done before calling dwarf2_build_include_psymtabs. */
5925 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5926 if (attr != NULL)
5927 pst->dirname = DW_STRING (attr);
5928
5929 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5930
5931 dwarf2_find_base_address (comp_unit_die, cu);
5932
5933 /* Possibly set the default values of LOWPC and HIGHPC from
5934 `DW_AT_ranges'. */
5935 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
5936 &best_highpc, cu, pst);
5937 if (has_pc_info == 1 && best_lowpc < best_highpc)
5938 /* Store the contiguous range if it is not empty; it can be empty for
5939 CUs with no code. */
5940 addrmap_set_empty (objfile->psymtabs_addrmap,
5941 gdbarch_adjust_dwarf2_addr (gdbarch,
5942 best_lowpc + baseaddr),
5943 gdbarch_adjust_dwarf2_addr (gdbarch,
5944 best_highpc + baseaddr) - 1,
5945 pst);
5946
5947 /* Check if comp unit has_children.
5948 If so, read the rest of the partial symbols from this comp unit.
5949 If not, there's no more debug_info for this comp unit. */
5950 if (has_children)
5951 {
5952 struct partial_die_info *first_die;
5953 CORE_ADDR lowpc, highpc;
5954
5955 lowpc = ((CORE_ADDR) -1);
5956 highpc = ((CORE_ADDR) 0);
5957
5958 first_die = load_partial_dies (reader, info_ptr, 1);
5959
5960 scan_partial_symbols (first_die, &lowpc, &highpc,
5961 ! has_pc_info, cu);
5962
5963 /* If we didn't find a lowpc, set it to highpc to avoid
5964 complaints from `maint check'. */
5965 if (lowpc == ((CORE_ADDR) -1))
5966 lowpc = highpc;
5967
5968 /* If the compilation unit didn't have an explicit address range,
5969 then use the information extracted from its child dies. */
5970 if (! has_pc_info)
5971 {
5972 best_lowpc = lowpc;
5973 best_highpc = highpc;
5974 }
5975 }
5976 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
5977 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
5978
5979 pst->n_global_syms = objfile->global_psymbols.next -
5980 (objfile->global_psymbols.list + pst->globals_offset);
5981 pst->n_static_syms = objfile->static_psymbols.next -
5982 (objfile->static_psymbols.list + pst->statics_offset);
5983 sort_pst_symbols (objfile, pst);
5984
5985 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
5986 {
5987 int i;
5988 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
5989 struct dwarf2_per_cu_data *iter;
5990
5991 /* Fill in 'dependencies' here; we fill in 'users' in a
5992 post-pass. */
5993 pst->number_of_dependencies = len;
5994 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
5995 len * sizeof (struct symtab *));
5996 for (i = 0;
5997 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
5998 i, iter);
5999 ++i)
6000 pst->dependencies[i] = iter->v.psymtab;
6001
6002 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6003 }
6004
6005 /* Get the list of files included in the current compilation unit,
6006 and build a psymtab for each of them. */
6007 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
6008
6009 if (dwarf2_read_debug)
6010 {
6011 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6012
6013 fprintf_unfiltered (gdb_stdlog,
6014 "Psymtab for %s unit @0x%x: %s - %s"
6015 ", %d global, %d static syms\n",
6016 per_cu->is_debug_types ? "type" : "comp",
6017 per_cu->offset.sect_off,
6018 paddress (gdbarch, pst->textlow),
6019 paddress (gdbarch, pst->texthigh),
6020 pst->n_global_syms, pst->n_static_syms);
6021 }
6022 }
6023
6024 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6025 Process compilation unit THIS_CU for a psymtab. */
6026
6027 static void
6028 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
6029 int want_partial_unit,
6030 enum language pretend_language)
6031 {
6032 struct process_psymtab_comp_unit_data info;
6033
6034 /* If this compilation unit was already read in, free the
6035 cached copy in order to read it in again. This is
6036 necessary because we skipped some symbols when we first
6037 read in the compilation unit (see load_partial_dies).
6038 This problem could be avoided, but the benefit is unclear. */
6039 if (this_cu->cu != NULL)
6040 free_one_cached_comp_unit (this_cu);
6041
6042 gdb_assert (! this_cu->is_debug_types);
6043 info.want_partial_unit = want_partial_unit;
6044 info.pretend_language = pretend_language;
6045 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
6046 process_psymtab_comp_unit_reader,
6047 &info);
6048
6049 /* Age out any secondary CUs. */
6050 age_cached_comp_units ();
6051 }
6052
6053 /* Reader function for build_type_psymtabs. */
6054
6055 static void
6056 build_type_psymtabs_reader (const struct die_reader_specs *reader,
6057 const gdb_byte *info_ptr,
6058 struct die_info *type_unit_die,
6059 int has_children,
6060 void *data)
6061 {
6062 struct objfile *objfile = dwarf2_per_objfile->objfile;
6063 struct dwarf2_cu *cu = reader->cu;
6064 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
6065 struct signatured_type *sig_type;
6066 struct type_unit_group *tu_group;
6067 struct attribute *attr;
6068 struct partial_die_info *first_die;
6069 CORE_ADDR lowpc, highpc;
6070 struct partial_symtab *pst;
6071
6072 gdb_assert (data == NULL);
6073 gdb_assert (per_cu->is_debug_types);
6074 sig_type = (struct signatured_type *) per_cu;
6075
6076 if (! has_children)
6077 return;
6078
6079 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
6080 tu_group = get_type_unit_group (cu, attr);
6081
6082 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
6083
6084 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6085 cu->list_in_scope = &file_symbols;
6086 pst = create_partial_symtab (per_cu, "");
6087 pst->anonymous = 1;
6088
6089 first_die = load_partial_dies (reader, info_ptr, 1);
6090
6091 lowpc = (CORE_ADDR) -1;
6092 highpc = (CORE_ADDR) 0;
6093 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6094
6095 pst->n_global_syms = objfile->global_psymbols.next -
6096 (objfile->global_psymbols.list + pst->globals_offset);
6097 pst->n_static_syms = objfile->static_psymbols.next -
6098 (objfile->static_psymbols.list + pst->statics_offset);
6099 sort_pst_symbols (objfile, pst);
6100 }
6101
6102 /* Struct used to sort TUs by their abbreviation table offset. */
6103
6104 struct tu_abbrev_offset
6105 {
6106 struct signatured_type *sig_type;
6107 sect_offset abbrev_offset;
6108 };
6109
6110 /* Helper routine for build_type_psymtabs_1, passed to qsort. */
6111
6112 static int
6113 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
6114 {
6115 const struct tu_abbrev_offset * const *a = ap;
6116 const struct tu_abbrev_offset * const *b = bp;
6117 unsigned int aoff = (*a)->abbrev_offset.sect_off;
6118 unsigned int boff = (*b)->abbrev_offset.sect_off;
6119
6120 return (aoff > boff) - (aoff < boff);
6121 }
6122
6123 /* Efficiently read all the type units.
6124 This does the bulk of the work for build_type_psymtabs.
6125
6126 The efficiency is because we sort TUs by the abbrev table they use and
6127 only read each abbrev table once. In one program there are 200K TUs
6128 sharing 8K abbrev tables.
6129
6130 The main purpose of this function is to support building the
6131 dwarf2_per_objfile->type_unit_groups table.
6132 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
6133 can collapse the search space by grouping them by stmt_list.
6134 The savings can be significant, in the same program from above the 200K TUs
6135 share 8K stmt_list tables.
6136
6137 FUNC is expected to call get_type_unit_group, which will create the
6138 struct type_unit_group if necessary and add it to
6139 dwarf2_per_objfile->type_unit_groups. */
6140
6141 static void
6142 build_type_psymtabs_1 (void)
6143 {
6144 struct objfile *objfile = dwarf2_per_objfile->objfile;
6145 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6146 struct cleanup *cleanups;
6147 struct abbrev_table *abbrev_table;
6148 sect_offset abbrev_offset;
6149 struct tu_abbrev_offset *sorted_by_abbrev;
6150 struct type_unit_group **iter;
6151 int i;
6152
6153 /* It's up to the caller to not call us multiple times. */
6154 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
6155
6156 if (dwarf2_per_objfile->n_type_units == 0)
6157 return;
6158
6159 /* TUs typically share abbrev tables, and there can be way more TUs than
6160 abbrev tables. Sort by abbrev table to reduce the number of times we
6161 read each abbrev table in.
6162 Alternatives are to punt or to maintain a cache of abbrev tables.
6163 This is simpler and efficient enough for now.
6164
6165 Later we group TUs by their DW_AT_stmt_list value (as this defines the
6166 symtab to use). Typically TUs with the same abbrev offset have the same
6167 stmt_list value too so in practice this should work well.
6168
6169 The basic algorithm here is:
6170
6171 sort TUs by abbrev table
6172 for each TU with same abbrev table:
6173 read abbrev table if first user
6174 read TU top level DIE
6175 [IWBN if DWO skeletons had DW_AT_stmt_list]
6176 call FUNC */
6177
6178 if (dwarf2_read_debug)
6179 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
6180
6181 /* Sort in a separate table to maintain the order of all_type_units
6182 for .gdb_index: TU indices directly index all_type_units. */
6183 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
6184 dwarf2_per_objfile->n_type_units);
6185 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6186 {
6187 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
6188
6189 sorted_by_abbrev[i].sig_type = sig_type;
6190 sorted_by_abbrev[i].abbrev_offset =
6191 read_abbrev_offset (sig_type->per_cu.section,
6192 sig_type->per_cu.offset);
6193 }
6194 cleanups = make_cleanup (xfree, sorted_by_abbrev);
6195 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
6196 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
6197
6198 abbrev_offset.sect_off = ~(unsigned) 0;
6199 abbrev_table = NULL;
6200 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
6201
6202 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6203 {
6204 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
6205
6206 /* Switch to the next abbrev table if necessary. */
6207 if (abbrev_table == NULL
6208 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
6209 {
6210 if (abbrev_table != NULL)
6211 {
6212 abbrev_table_free (abbrev_table);
6213 /* Reset to NULL in case abbrev_table_read_table throws
6214 an error: abbrev_table_free_cleanup will get called. */
6215 abbrev_table = NULL;
6216 }
6217 abbrev_offset = tu->abbrev_offset;
6218 abbrev_table =
6219 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
6220 abbrev_offset);
6221 ++tu_stats->nr_uniq_abbrev_tables;
6222 }
6223
6224 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
6225 build_type_psymtabs_reader, NULL);
6226 }
6227
6228 do_cleanups (cleanups);
6229 }
6230
6231 /* Print collected type unit statistics. */
6232
6233 static void
6234 print_tu_stats (void)
6235 {
6236 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6237
6238 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
6239 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
6240 dwarf2_per_objfile->n_type_units);
6241 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
6242 tu_stats->nr_uniq_abbrev_tables);
6243 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
6244 tu_stats->nr_symtabs);
6245 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
6246 tu_stats->nr_symtab_sharers);
6247 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
6248 tu_stats->nr_stmt_less_type_units);
6249 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
6250 tu_stats->nr_all_type_units_reallocs);
6251 }
6252
6253 /* Traversal function for build_type_psymtabs. */
6254
6255 static int
6256 build_type_psymtab_dependencies (void **slot, void *info)
6257 {
6258 struct objfile *objfile = dwarf2_per_objfile->objfile;
6259 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
6260 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
6261 struct partial_symtab *pst = per_cu->v.psymtab;
6262 int len = VEC_length (sig_type_ptr, tu_group->tus);
6263 struct signatured_type *iter;
6264 int i;
6265
6266 gdb_assert (len > 0);
6267 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
6268
6269 pst->number_of_dependencies = len;
6270 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
6271 len * sizeof (struct psymtab *));
6272 for (i = 0;
6273 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
6274 ++i)
6275 {
6276 gdb_assert (iter->per_cu.is_debug_types);
6277 pst->dependencies[i] = iter->per_cu.v.psymtab;
6278 iter->type_unit_group = tu_group;
6279 }
6280
6281 VEC_free (sig_type_ptr, tu_group->tus);
6282
6283 return 1;
6284 }
6285
6286 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6287 Build partial symbol tables for the .debug_types comp-units. */
6288
6289 static void
6290 build_type_psymtabs (struct objfile *objfile)
6291 {
6292 if (! create_all_type_units (objfile))
6293 return;
6294
6295 build_type_psymtabs_1 ();
6296 }
6297
6298 /* Traversal function for process_skeletonless_type_unit.
6299 Read a TU in a DWO file and build partial symbols for it. */
6300
6301 static int
6302 process_skeletonless_type_unit (void **slot, void *info)
6303 {
6304 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
6305 struct objfile *objfile = info;
6306 struct signatured_type find_entry, *entry;
6307
6308 /* If this TU doesn't exist in the global table, add it and read it in. */
6309
6310 if (dwarf2_per_objfile->signatured_types == NULL)
6311 {
6312 dwarf2_per_objfile->signatured_types
6313 = allocate_signatured_type_table (objfile);
6314 }
6315
6316 find_entry.signature = dwo_unit->signature;
6317 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
6318 INSERT);
6319 /* If we've already seen this type there's nothing to do. What's happening
6320 is we're doing our own version of comdat-folding here. */
6321 if (*slot != NULL)
6322 return 1;
6323
6324 /* This does the job that create_all_type_units would have done for
6325 this TU. */
6326 entry = add_type_unit (dwo_unit->signature, slot);
6327 fill_in_sig_entry_from_dwo_entry (objfile, entry, dwo_unit);
6328 *slot = entry;
6329
6330 /* This does the job that build_type_psymtabs_1 would have done. */
6331 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
6332 build_type_psymtabs_reader, NULL);
6333
6334 return 1;
6335 }
6336
6337 /* Traversal function for process_skeletonless_type_units. */
6338
6339 static int
6340 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
6341 {
6342 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
6343
6344 if (dwo_file->tus != NULL)
6345 {
6346 htab_traverse_noresize (dwo_file->tus,
6347 process_skeletonless_type_unit, info);
6348 }
6349
6350 return 1;
6351 }
6352
6353 /* Scan all TUs of DWO files, verifying we've processed them.
6354 This is needed in case a TU was emitted without its skeleton.
6355 Note: This can't be done until we know what all the DWO files are. */
6356
6357 static void
6358 process_skeletonless_type_units (struct objfile *objfile)
6359 {
6360 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
6361 if (get_dwp_file () == NULL
6362 && dwarf2_per_objfile->dwo_files != NULL)
6363 {
6364 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
6365 process_dwo_file_for_skeletonless_type_units,
6366 objfile);
6367 }
6368 }
6369
6370 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
6371
6372 static void
6373 psymtabs_addrmap_cleanup (void *o)
6374 {
6375 struct objfile *objfile = o;
6376
6377 objfile->psymtabs_addrmap = NULL;
6378 }
6379
6380 /* Compute the 'user' field for each psymtab in OBJFILE. */
6381
6382 static void
6383 set_partial_user (struct objfile *objfile)
6384 {
6385 int i;
6386
6387 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6388 {
6389 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6390 struct partial_symtab *pst = per_cu->v.psymtab;
6391 int j;
6392
6393 if (pst == NULL)
6394 continue;
6395
6396 for (j = 0; j < pst->number_of_dependencies; ++j)
6397 {
6398 /* Set the 'user' field only if it is not already set. */
6399 if (pst->dependencies[j]->user == NULL)
6400 pst->dependencies[j]->user = pst;
6401 }
6402 }
6403 }
6404
6405 /* Build the partial symbol table by doing a quick pass through the
6406 .debug_info and .debug_abbrev sections. */
6407
6408 static void
6409 dwarf2_build_psymtabs_hard (struct objfile *objfile)
6410 {
6411 struct cleanup *back_to, *addrmap_cleanup;
6412 struct obstack temp_obstack;
6413 int i;
6414
6415 if (dwarf2_read_debug)
6416 {
6417 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
6418 objfile_name (objfile));
6419 }
6420
6421 dwarf2_per_objfile->reading_partial_symbols = 1;
6422
6423 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
6424
6425 /* Any cached compilation units will be linked by the per-objfile
6426 read_in_chain. Make sure to free them when we're done. */
6427 back_to = make_cleanup (free_cached_comp_units, NULL);
6428
6429 build_type_psymtabs (objfile);
6430
6431 create_all_comp_units (objfile);
6432
6433 /* Create a temporary address map on a temporary obstack. We later
6434 copy this to the final obstack. */
6435 obstack_init (&temp_obstack);
6436 make_cleanup_obstack_free (&temp_obstack);
6437 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6438 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
6439
6440 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6441 {
6442 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6443
6444 process_psymtab_comp_unit (per_cu, 0, language_minimal);
6445 }
6446
6447 /* This has to wait until we read the CUs, we need the list of DWOs. */
6448 process_skeletonless_type_units (objfile);
6449
6450 /* Now that all TUs have been processed we can fill in the dependencies. */
6451 if (dwarf2_per_objfile->type_unit_groups != NULL)
6452 {
6453 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6454 build_type_psymtab_dependencies, NULL);
6455 }
6456
6457 if (dwarf2_read_debug)
6458 print_tu_stats ();
6459
6460 set_partial_user (objfile);
6461
6462 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6463 &objfile->objfile_obstack);
6464 discard_cleanups (addrmap_cleanup);
6465
6466 do_cleanups (back_to);
6467
6468 if (dwarf2_read_debug)
6469 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
6470 objfile_name (objfile));
6471 }
6472
6473 /* die_reader_func for load_partial_comp_unit. */
6474
6475 static void
6476 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
6477 const gdb_byte *info_ptr,
6478 struct die_info *comp_unit_die,
6479 int has_children,
6480 void *data)
6481 {
6482 struct dwarf2_cu *cu = reader->cu;
6483
6484 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
6485
6486 /* Check if comp unit has_children.
6487 If so, read the rest of the partial symbols from this comp unit.
6488 If not, there's no more debug_info for this comp unit. */
6489 if (has_children)
6490 load_partial_dies (reader, info_ptr, 0);
6491 }
6492
6493 /* Load the partial DIEs for a secondary CU into memory.
6494 This is also used when rereading a primary CU with load_all_dies. */
6495
6496 static void
6497 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6498 {
6499 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6500 load_partial_comp_unit_reader, NULL);
6501 }
6502
6503 static void
6504 read_comp_units_from_section (struct objfile *objfile,
6505 struct dwarf2_section_info *section,
6506 unsigned int is_dwz,
6507 int *n_allocated,
6508 int *n_comp_units,
6509 struct dwarf2_per_cu_data ***all_comp_units)
6510 {
6511 const gdb_byte *info_ptr;
6512 bfd *abfd = get_section_bfd_owner (section);
6513
6514 if (dwarf2_read_debug)
6515 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
6516 get_section_name (section),
6517 get_section_file_name (section));
6518
6519 dwarf2_read_section (objfile, section);
6520
6521 info_ptr = section->buffer;
6522
6523 while (info_ptr < section->buffer + section->size)
6524 {
6525 unsigned int length, initial_length_size;
6526 struct dwarf2_per_cu_data *this_cu;
6527 sect_offset offset;
6528
6529 offset.sect_off = info_ptr - section->buffer;
6530
6531 /* Read just enough information to find out where the next
6532 compilation unit is. */
6533 length = read_initial_length (abfd, info_ptr, &initial_length_size);
6534
6535 /* Save the compilation unit for later lookup. */
6536 this_cu = obstack_alloc (&objfile->objfile_obstack,
6537 sizeof (struct dwarf2_per_cu_data));
6538 memset (this_cu, 0, sizeof (*this_cu));
6539 this_cu->offset = offset;
6540 this_cu->length = length + initial_length_size;
6541 this_cu->is_dwz = is_dwz;
6542 this_cu->objfile = objfile;
6543 this_cu->section = section;
6544
6545 if (*n_comp_units == *n_allocated)
6546 {
6547 *n_allocated *= 2;
6548 *all_comp_units = xrealloc (*all_comp_units,
6549 *n_allocated
6550 * sizeof (struct dwarf2_per_cu_data *));
6551 }
6552 (*all_comp_units)[*n_comp_units] = this_cu;
6553 ++*n_comp_units;
6554
6555 info_ptr = info_ptr + this_cu->length;
6556 }
6557 }
6558
6559 /* Create a list of all compilation units in OBJFILE.
6560 This is only done for -readnow and building partial symtabs. */
6561
6562 static void
6563 create_all_comp_units (struct objfile *objfile)
6564 {
6565 int n_allocated;
6566 int n_comp_units;
6567 struct dwarf2_per_cu_data **all_comp_units;
6568 struct dwz_file *dwz;
6569
6570 n_comp_units = 0;
6571 n_allocated = 10;
6572 all_comp_units = xmalloc (n_allocated
6573 * sizeof (struct dwarf2_per_cu_data *));
6574
6575 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6576 &n_allocated, &n_comp_units, &all_comp_units);
6577
6578 dwz = dwarf2_get_dwz_file ();
6579 if (dwz != NULL)
6580 read_comp_units_from_section (objfile, &dwz->info, 1,
6581 &n_allocated, &n_comp_units,
6582 &all_comp_units);
6583
6584 dwarf2_per_objfile->all_comp_units
6585 = obstack_alloc (&objfile->objfile_obstack,
6586 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6587 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6588 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6589 xfree (all_comp_units);
6590 dwarf2_per_objfile->n_comp_units = n_comp_units;
6591 }
6592
6593 /* Process all loaded DIEs for compilation unit CU, starting at
6594 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
6595 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
6596 DW_AT_ranges). See the comments of add_partial_subprogram on how
6597 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
6598
6599 static void
6600 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
6601 CORE_ADDR *highpc, int set_addrmap,
6602 struct dwarf2_cu *cu)
6603 {
6604 struct partial_die_info *pdi;
6605
6606 /* Now, march along the PDI's, descending into ones which have
6607 interesting children but skipping the children of the other ones,
6608 until we reach the end of the compilation unit. */
6609
6610 pdi = first_die;
6611
6612 while (pdi != NULL)
6613 {
6614 fixup_partial_die (pdi, cu);
6615
6616 /* Anonymous namespaces or modules have no name but have interesting
6617 children, so we need to look at them. Ditto for anonymous
6618 enums. */
6619
6620 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
6621 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6622 || pdi->tag == DW_TAG_imported_unit)
6623 {
6624 switch (pdi->tag)
6625 {
6626 case DW_TAG_subprogram:
6627 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
6628 break;
6629 case DW_TAG_constant:
6630 case DW_TAG_variable:
6631 case DW_TAG_typedef:
6632 case DW_TAG_union_type:
6633 if (!pdi->is_declaration)
6634 {
6635 add_partial_symbol (pdi, cu);
6636 }
6637 break;
6638 case DW_TAG_class_type:
6639 case DW_TAG_interface_type:
6640 case DW_TAG_structure_type:
6641 if (!pdi->is_declaration)
6642 {
6643 add_partial_symbol (pdi, cu);
6644 }
6645 break;
6646 case DW_TAG_enumeration_type:
6647 if (!pdi->is_declaration)
6648 add_partial_enumeration (pdi, cu);
6649 break;
6650 case DW_TAG_base_type:
6651 case DW_TAG_subrange_type:
6652 /* File scope base type definitions are added to the partial
6653 symbol table. */
6654 add_partial_symbol (pdi, cu);
6655 break;
6656 case DW_TAG_namespace:
6657 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
6658 break;
6659 case DW_TAG_module:
6660 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
6661 break;
6662 case DW_TAG_imported_unit:
6663 {
6664 struct dwarf2_per_cu_data *per_cu;
6665
6666 /* For now we don't handle imported units in type units. */
6667 if (cu->per_cu->is_debug_types)
6668 {
6669 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6670 " supported in type units [in module %s]"),
6671 objfile_name (cu->objfile));
6672 }
6673
6674 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
6675 pdi->is_dwz,
6676 cu->objfile);
6677
6678 /* Go read the partial unit, if needed. */
6679 if (per_cu->v.psymtab == NULL)
6680 process_psymtab_comp_unit (per_cu, 1, cu->language);
6681
6682 VEC_safe_push (dwarf2_per_cu_ptr,
6683 cu->per_cu->imported_symtabs, per_cu);
6684 }
6685 break;
6686 case DW_TAG_imported_declaration:
6687 add_partial_symbol (pdi, cu);
6688 break;
6689 default:
6690 break;
6691 }
6692 }
6693
6694 /* If the die has a sibling, skip to the sibling. */
6695
6696 pdi = pdi->die_sibling;
6697 }
6698 }
6699
6700 /* Functions used to compute the fully scoped name of a partial DIE.
6701
6702 Normally, this is simple. For C++, the parent DIE's fully scoped
6703 name is concatenated with "::" and the partial DIE's name. For
6704 Java, the same thing occurs except that "." is used instead of "::".
6705 Enumerators are an exception; they use the scope of their parent
6706 enumeration type, i.e. the name of the enumeration type is not
6707 prepended to the enumerator.
6708
6709 There are two complexities. One is DW_AT_specification; in this
6710 case "parent" means the parent of the target of the specification,
6711 instead of the direct parent of the DIE. The other is compilers
6712 which do not emit DW_TAG_namespace; in this case we try to guess
6713 the fully qualified name of structure types from their members'
6714 linkage names. This must be done using the DIE's children rather
6715 than the children of any DW_AT_specification target. We only need
6716 to do this for structures at the top level, i.e. if the target of
6717 any DW_AT_specification (if any; otherwise the DIE itself) does not
6718 have a parent. */
6719
6720 /* Compute the scope prefix associated with PDI's parent, in
6721 compilation unit CU. The result will be allocated on CU's
6722 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6723 field. NULL is returned if no prefix is necessary. */
6724 static const char *
6725 partial_die_parent_scope (struct partial_die_info *pdi,
6726 struct dwarf2_cu *cu)
6727 {
6728 const char *grandparent_scope;
6729 struct partial_die_info *parent, *real_pdi;
6730
6731 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6732 then this means the parent of the specification DIE. */
6733
6734 real_pdi = pdi;
6735 while (real_pdi->has_specification)
6736 real_pdi = find_partial_die (real_pdi->spec_offset,
6737 real_pdi->spec_is_dwz, cu);
6738
6739 parent = real_pdi->die_parent;
6740 if (parent == NULL)
6741 return NULL;
6742
6743 if (parent->scope_set)
6744 return parent->scope;
6745
6746 fixup_partial_die (parent, cu);
6747
6748 grandparent_scope = partial_die_parent_scope (parent, cu);
6749
6750 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6751 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6752 Work around this problem here. */
6753 if (cu->language == language_cplus
6754 && parent->tag == DW_TAG_namespace
6755 && strcmp (parent->name, "::") == 0
6756 && grandparent_scope == NULL)
6757 {
6758 parent->scope = NULL;
6759 parent->scope_set = 1;
6760 return NULL;
6761 }
6762
6763 if (pdi->tag == DW_TAG_enumerator)
6764 /* Enumerators should not get the name of the enumeration as a prefix. */
6765 parent->scope = grandparent_scope;
6766 else if (parent->tag == DW_TAG_namespace
6767 || parent->tag == DW_TAG_module
6768 || parent->tag == DW_TAG_structure_type
6769 || parent->tag == DW_TAG_class_type
6770 || parent->tag == DW_TAG_interface_type
6771 || parent->tag == DW_TAG_union_type
6772 || parent->tag == DW_TAG_enumeration_type)
6773 {
6774 if (grandparent_scope == NULL)
6775 parent->scope = parent->name;
6776 else
6777 parent->scope = typename_concat (&cu->comp_unit_obstack,
6778 grandparent_scope,
6779 parent->name, 0, cu);
6780 }
6781 else
6782 {
6783 /* FIXME drow/2004-04-01: What should we be doing with
6784 function-local names? For partial symbols, we should probably be
6785 ignoring them. */
6786 complaint (&symfile_complaints,
6787 _("unhandled containing DIE tag %d for DIE at %d"),
6788 parent->tag, pdi->offset.sect_off);
6789 parent->scope = grandparent_scope;
6790 }
6791
6792 parent->scope_set = 1;
6793 return parent->scope;
6794 }
6795
6796 /* Return the fully scoped name associated with PDI, from compilation unit
6797 CU. The result will be allocated with malloc. */
6798
6799 static char *
6800 partial_die_full_name (struct partial_die_info *pdi,
6801 struct dwarf2_cu *cu)
6802 {
6803 const char *parent_scope;
6804
6805 /* If this is a template instantiation, we can not work out the
6806 template arguments from partial DIEs. So, unfortunately, we have
6807 to go through the full DIEs. At least any work we do building
6808 types here will be reused if full symbols are loaded later. */
6809 if (pdi->has_template_arguments)
6810 {
6811 fixup_partial_die (pdi, cu);
6812
6813 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6814 {
6815 struct die_info *die;
6816 struct attribute attr;
6817 struct dwarf2_cu *ref_cu = cu;
6818
6819 /* DW_FORM_ref_addr is using section offset. */
6820 attr.name = 0;
6821 attr.form = DW_FORM_ref_addr;
6822 attr.u.unsnd = pdi->offset.sect_off;
6823 die = follow_die_ref (NULL, &attr, &ref_cu);
6824
6825 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6826 }
6827 }
6828
6829 parent_scope = partial_die_parent_scope (pdi, cu);
6830 if (parent_scope == NULL)
6831 return NULL;
6832 else
6833 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
6834 }
6835
6836 static void
6837 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
6838 {
6839 struct objfile *objfile = cu->objfile;
6840 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6841 CORE_ADDR addr = 0;
6842 const char *actual_name = NULL;
6843 CORE_ADDR baseaddr;
6844 char *built_actual_name;
6845
6846 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6847
6848 built_actual_name = partial_die_full_name (pdi, cu);
6849 if (built_actual_name != NULL)
6850 actual_name = built_actual_name;
6851
6852 if (actual_name == NULL)
6853 actual_name = pdi->name;
6854
6855 switch (pdi->tag)
6856 {
6857 case DW_TAG_subprogram:
6858 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
6859 if (pdi->is_external || cu->language == language_ada)
6860 {
6861 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6862 of the global scope. But in Ada, we want to be able to access
6863 nested procedures globally. So all Ada subprograms are stored
6864 in the global scope. */
6865 /* prim_record_minimal_symbol (actual_name, addr, mst_text,
6866 objfile); */
6867 add_psymbol_to_list (actual_name, strlen (actual_name),
6868 built_actual_name != NULL,
6869 VAR_DOMAIN, LOC_BLOCK,
6870 &objfile->global_psymbols,
6871 0, addr, cu->language, objfile);
6872 }
6873 else
6874 {
6875 /* prim_record_minimal_symbol (actual_name, addr, mst_file_text,
6876 objfile); */
6877 add_psymbol_to_list (actual_name, strlen (actual_name),
6878 built_actual_name != NULL,
6879 VAR_DOMAIN, LOC_BLOCK,
6880 &objfile->static_psymbols,
6881 0, addr, cu->language, objfile);
6882 }
6883 break;
6884 case DW_TAG_constant:
6885 {
6886 struct psymbol_allocation_list *list;
6887
6888 if (pdi->is_external)
6889 list = &objfile->global_psymbols;
6890 else
6891 list = &objfile->static_psymbols;
6892 add_psymbol_to_list (actual_name, strlen (actual_name),
6893 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
6894 list, 0, 0, cu->language, objfile);
6895 }
6896 break;
6897 case DW_TAG_variable:
6898 if (pdi->d.locdesc)
6899 addr = decode_locdesc (pdi->d.locdesc, cu);
6900
6901 if (pdi->d.locdesc
6902 && addr == 0
6903 && !dwarf2_per_objfile->has_section_at_zero)
6904 {
6905 /* A global or static variable may also have been stripped
6906 out by the linker if unused, in which case its address
6907 will be nullified; do not add such variables into partial
6908 symbol table then. */
6909 }
6910 else if (pdi->is_external)
6911 {
6912 /* Global Variable.
6913 Don't enter into the minimal symbol tables as there is
6914 a minimal symbol table entry from the ELF symbols already.
6915 Enter into partial symbol table if it has a location
6916 descriptor or a type.
6917 If the location descriptor is missing, new_symbol will create
6918 a LOC_UNRESOLVED symbol, the address of the variable will then
6919 be determined from the minimal symbol table whenever the variable
6920 is referenced.
6921 The address for the partial symbol table entry is not
6922 used by GDB, but it comes in handy for debugging partial symbol
6923 table building. */
6924
6925 if (pdi->d.locdesc || pdi->has_type)
6926 add_psymbol_to_list (actual_name, strlen (actual_name),
6927 built_actual_name != NULL,
6928 VAR_DOMAIN, LOC_STATIC,
6929 &objfile->global_psymbols,
6930 0, addr + baseaddr,
6931 cu->language, objfile);
6932 }
6933 else
6934 {
6935 /* Static Variable. Skip symbols without location descriptors. */
6936 if (pdi->d.locdesc == NULL)
6937 {
6938 xfree (built_actual_name);
6939 return;
6940 }
6941 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
6942 mst_file_data, objfile); */
6943 add_psymbol_to_list (actual_name, strlen (actual_name),
6944 built_actual_name != NULL,
6945 VAR_DOMAIN, LOC_STATIC,
6946 &objfile->static_psymbols,
6947 0, addr + baseaddr,
6948 cu->language, objfile);
6949 }
6950 break;
6951 case DW_TAG_typedef:
6952 case DW_TAG_base_type:
6953 case DW_TAG_subrange_type:
6954 add_psymbol_to_list (actual_name, strlen (actual_name),
6955 built_actual_name != NULL,
6956 VAR_DOMAIN, LOC_TYPEDEF,
6957 &objfile->static_psymbols,
6958 0, (CORE_ADDR) 0, cu->language, objfile);
6959 break;
6960 case DW_TAG_imported_declaration:
6961 case DW_TAG_namespace:
6962 add_psymbol_to_list (actual_name, strlen (actual_name),
6963 built_actual_name != NULL,
6964 VAR_DOMAIN, LOC_TYPEDEF,
6965 &objfile->global_psymbols,
6966 0, (CORE_ADDR) 0, cu->language, objfile);
6967 break;
6968 case DW_TAG_module:
6969 add_psymbol_to_list (actual_name, strlen (actual_name),
6970 built_actual_name != NULL,
6971 MODULE_DOMAIN, LOC_TYPEDEF,
6972 &objfile->global_psymbols,
6973 0, (CORE_ADDR) 0, cu->language, objfile);
6974 break;
6975 case DW_TAG_class_type:
6976 case DW_TAG_interface_type:
6977 case DW_TAG_structure_type:
6978 case DW_TAG_union_type:
6979 case DW_TAG_enumeration_type:
6980 /* Skip external references. The DWARF standard says in the section
6981 about "Structure, Union, and Class Type Entries": "An incomplete
6982 structure, union or class type is represented by a structure,
6983 union or class entry that does not have a byte size attribute
6984 and that has a DW_AT_declaration attribute." */
6985 if (!pdi->has_byte_size && pdi->is_declaration)
6986 {
6987 xfree (built_actual_name);
6988 return;
6989 }
6990
6991 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
6992 static vs. global. */
6993 add_psymbol_to_list (actual_name, strlen (actual_name),
6994 built_actual_name != NULL,
6995 STRUCT_DOMAIN, LOC_TYPEDEF,
6996 (cu->language == language_cplus
6997 || cu->language == language_java)
6998 ? &objfile->global_psymbols
6999 : &objfile->static_psymbols,
7000 0, (CORE_ADDR) 0, cu->language, objfile);
7001
7002 break;
7003 case DW_TAG_enumerator:
7004 add_psymbol_to_list (actual_name, strlen (actual_name),
7005 built_actual_name != NULL,
7006 VAR_DOMAIN, LOC_CONST,
7007 (cu->language == language_cplus
7008 || cu->language == language_java)
7009 ? &objfile->global_psymbols
7010 : &objfile->static_psymbols,
7011 0, (CORE_ADDR) 0, cu->language, objfile);
7012 break;
7013 default:
7014 break;
7015 }
7016
7017 xfree (built_actual_name);
7018 }
7019
7020 /* Read a partial die corresponding to a namespace; also, add a symbol
7021 corresponding to that namespace to the symbol table. NAMESPACE is
7022 the name of the enclosing namespace. */
7023
7024 static void
7025 add_partial_namespace (struct partial_die_info *pdi,
7026 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7027 int set_addrmap, struct dwarf2_cu *cu)
7028 {
7029 /* Add a symbol for the namespace. */
7030
7031 add_partial_symbol (pdi, cu);
7032
7033 /* Now scan partial symbols in that namespace. */
7034
7035 if (pdi->has_children)
7036 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7037 }
7038
7039 /* Read a partial die corresponding to a Fortran module. */
7040
7041 static void
7042 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
7043 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
7044 {
7045 /* Add a symbol for the namespace. */
7046
7047 add_partial_symbol (pdi, cu);
7048
7049 /* Now scan partial symbols in that module. */
7050
7051 if (pdi->has_children)
7052 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7053 }
7054
7055 /* Read a partial die corresponding to a subprogram and create a partial
7056 symbol for that subprogram. When the CU language allows it, this
7057 routine also defines a partial symbol for each nested subprogram
7058 that this subprogram contains. If SET_ADDRMAP is true, record the
7059 covered ranges in the addrmap. Set *LOWPC and *HIGHPC to the lowest
7060 and highest PC values found in PDI.
7061
7062 PDI may also be a lexical block, in which case we simply search
7063 recursively for subprograms defined inside that lexical block.
7064 Again, this is only performed when the CU language allows this
7065 type of definitions. */
7066
7067 static void
7068 add_partial_subprogram (struct partial_die_info *pdi,
7069 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7070 int set_addrmap, struct dwarf2_cu *cu)
7071 {
7072 if (pdi->tag == DW_TAG_subprogram)
7073 {
7074 if (pdi->has_pc_info)
7075 {
7076 if (pdi->lowpc < *lowpc)
7077 *lowpc = pdi->lowpc;
7078 if (pdi->highpc > *highpc)
7079 *highpc = pdi->highpc;
7080 if (set_addrmap)
7081 {
7082 struct objfile *objfile = cu->objfile;
7083 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7084 CORE_ADDR baseaddr;
7085 CORE_ADDR highpc;
7086 CORE_ADDR lowpc;
7087
7088 baseaddr = ANOFFSET (objfile->section_offsets,
7089 SECT_OFF_TEXT (objfile));
7090 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7091 pdi->lowpc + baseaddr);
7092 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7093 pdi->highpc + baseaddr);
7094 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
7095 cu->per_cu->v.psymtab);
7096 }
7097 }
7098
7099 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
7100 {
7101 if (!pdi->is_declaration)
7102 /* Ignore subprogram DIEs that do not have a name, they are
7103 illegal. Do not emit a complaint at this point, we will
7104 do so when we convert this psymtab into a symtab. */
7105 if (pdi->name)
7106 add_partial_symbol (pdi, cu);
7107 }
7108 }
7109
7110 if (! pdi->has_children)
7111 return;
7112
7113 if (cu->language == language_ada)
7114 {
7115 pdi = pdi->die_child;
7116 while (pdi != NULL)
7117 {
7118 fixup_partial_die (pdi, cu);
7119 if (pdi->tag == DW_TAG_subprogram
7120 || pdi->tag == DW_TAG_lexical_block)
7121 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
7122 pdi = pdi->die_sibling;
7123 }
7124 }
7125 }
7126
7127 /* Read a partial die corresponding to an enumeration type. */
7128
7129 static void
7130 add_partial_enumeration (struct partial_die_info *enum_pdi,
7131 struct dwarf2_cu *cu)
7132 {
7133 struct partial_die_info *pdi;
7134
7135 if (enum_pdi->name != NULL)
7136 add_partial_symbol (enum_pdi, cu);
7137
7138 pdi = enum_pdi->die_child;
7139 while (pdi)
7140 {
7141 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
7142 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
7143 else
7144 add_partial_symbol (pdi, cu);
7145 pdi = pdi->die_sibling;
7146 }
7147 }
7148
7149 /* Return the initial uleb128 in the die at INFO_PTR. */
7150
7151 static unsigned int
7152 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
7153 {
7154 unsigned int bytes_read;
7155
7156 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7157 }
7158
7159 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
7160 Return the corresponding abbrev, or NULL if the number is zero (indicating
7161 an empty DIE). In either case *BYTES_READ will be set to the length of
7162 the initial number. */
7163
7164 static struct abbrev_info *
7165 peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
7166 struct dwarf2_cu *cu)
7167 {
7168 bfd *abfd = cu->objfile->obfd;
7169 unsigned int abbrev_number;
7170 struct abbrev_info *abbrev;
7171
7172 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
7173
7174 if (abbrev_number == 0)
7175 return NULL;
7176
7177 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
7178 if (!abbrev)
7179 {
7180 error (_("Dwarf Error: Could not find abbrev number %d in %s"
7181 " at offset 0x%x [in module %s]"),
7182 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
7183 cu->header.offset.sect_off, bfd_get_filename (abfd));
7184 }
7185
7186 return abbrev;
7187 }
7188
7189 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7190 Returns a pointer to the end of a series of DIEs, terminated by an empty
7191 DIE. Any children of the skipped DIEs will also be skipped. */
7192
7193 static const gdb_byte *
7194 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
7195 {
7196 struct dwarf2_cu *cu = reader->cu;
7197 struct abbrev_info *abbrev;
7198 unsigned int bytes_read;
7199
7200 while (1)
7201 {
7202 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7203 if (abbrev == NULL)
7204 return info_ptr + bytes_read;
7205 else
7206 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
7207 }
7208 }
7209
7210 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7211 INFO_PTR should point just after the initial uleb128 of a DIE, and the
7212 abbrev corresponding to that skipped uleb128 should be passed in
7213 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7214 children. */
7215
7216 static const gdb_byte *
7217 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
7218 struct abbrev_info *abbrev)
7219 {
7220 unsigned int bytes_read;
7221 struct attribute attr;
7222 bfd *abfd = reader->abfd;
7223 struct dwarf2_cu *cu = reader->cu;
7224 const gdb_byte *buffer = reader->buffer;
7225 const gdb_byte *buffer_end = reader->buffer_end;
7226 const gdb_byte *start_info_ptr = info_ptr;
7227 unsigned int form, i;
7228
7229 for (i = 0; i < abbrev->num_attrs; i++)
7230 {
7231 /* The only abbrev we care about is DW_AT_sibling. */
7232 if (abbrev->attrs[i].name == DW_AT_sibling)
7233 {
7234 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
7235 if (attr.form == DW_FORM_ref_addr)
7236 complaint (&symfile_complaints,
7237 _("ignoring absolute DW_AT_sibling"));
7238 else
7239 {
7240 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
7241 const gdb_byte *sibling_ptr = buffer + off;
7242
7243 if (sibling_ptr < info_ptr)
7244 complaint (&symfile_complaints,
7245 _("DW_AT_sibling points backwards"));
7246 else if (sibling_ptr > reader->buffer_end)
7247 dwarf2_section_buffer_overflow_complaint (reader->die_section);
7248 else
7249 return sibling_ptr;
7250 }
7251 }
7252
7253 /* If it isn't DW_AT_sibling, skip this attribute. */
7254 form = abbrev->attrs[i].form;
7255 skip_attribute:
7256 switch (form)
7257 {
7258 case DW_FORM_ref_addr:
7259 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7260 and later it is offset sized. */
7261 if (cu->header.version == 2)
7262 info_ptr += cu->header.addr_size;
7263 else
7264 info_ptr += cu->header.offset_size;
7265 break;
7266 case DW_FORM_GNU_ref_alt:
7267 info_ptr += cu->header.offset_size;
7268 break;
7269 case DW_FORM_addr:
7270 info_ptr += cu->header.addr_size;
7271 break;
7272 case DW_FORM_data1:
7273 case DW_FORM_ref1:
7274 case DW_FORM_flag:
7275 info_ptr += 1;
7276 break;
7277 case DW_FORM_flag_present:
7278 break;
7279 case DW_FORM_data2:
7280 case DW_FORM_ref2:
7281 info_ptr += 2;
7282 break;
7283 case DW_FORM_data4:
7284 case DW_FORM_ref4:
7285 info_ptr += 4;
7286 break;
7287 case DW_FORM_data8:
7288 case DW_FORM_ref8:
7289 case DW_FORM_ref_sig8:
7290 info_ptr += 8;
7291 break;
7292 case DW_FORM_string:
7293 read_direct_string (abfd, info_ptr, &bytes_read);
7294 info_ptr += bytes_read;
7295 break;
7296 case DW_FORM_sec_offset:
7297 case DW_FORM_strp:
7298 case DW_FORM_GNU_strp_alt:
7299 info_ptr += cu->header.offset_size;
7300 break;
7301 case DW_FORM_exprloc:
7302 case DW_FORM_block:
7303 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7304 info_ptr += bytes_read;
7305 break;
7306 case DW_FORM_block1:
7307 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7308 break;
7309 case DW_FORM_block2:
7310 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7311 break;
7312 case DW_FORM_block4:
7313 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7314 break;
7315 case DW_FORM_sdata:
7316 case DW_FORM_udata:
7317 case DW_FORM_ref_udata:
7318 case DW_FORM_GNU_addr_index:
7319 case DW_FORM_GNU_str_index:
7320 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
7321 break;
7322 case DW_FORM_indirect:
7323 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7324 info_ptr += bytes_read;
7325 /* We need to continue parsing from here, so just go back to
7326 the top. */
7327 goto skip_attribute;
7328
7329 default:
7330 error (_("Dwarf Error: Cannot handle %s "
7331 "in DWARF reader [in module %s]"),
7332 dwarf_form_name (form),
7333 bfd_get_filename (abfd));
7334 }
7335 }
7336
7337 if (abbrev->has_children)
7338 return skip_children (reader, info_ptr);
7339 else
7340 return info_ptr;
7341 }
7342
7343 /* Locate ORIG_PDI's sibling.
7344 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
7345
7346 static const gdb_byte *
7347 locate_pdi_sibling (const struct die_reader_specs *reader,
7348 struct partial_die_info *orig_pdi,
7349 const gdb_byte *info_ptr)
7350 {
7351 /* Do we know the sibling already? */
7352
7353 if (orig_pdi->sibling)
7354 return orig_pdi->sibling;
7355
7356 /* Are there any children to deal with? */
7357
7358 if (!orig_pdi->has_children)
7359 return info_ptr;
7360
7361 /* Skip the children the long way. */
7362
7363 return skip_children (reader, info_ptr);
7364 }
7365
7366 /* Expand this partial symbol table into a full symbol table. SELF is
7367 not NULL. */
7368
7369 static void
7370 dwarf2_read_symtab (struct partial_symtab *self,
7371 struct objfile *objfile)
7372 {
7373 if (self->readin)
7374 {
7375 warning (_("bug: psymtab for %s is already read in."),
7376 self->filename);
7377 }
7378 else
7379 {
7380 if (info_verbose)
7381 {
7382 printf_filtered (_("Reading in symbols for %s..."),
7383 self->filename);
7384 gdb_flush (gdb_stdout);
7385 }
7386
7387 /* Restore our global data. */
7388 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
7389
7390 /* If this psymtab is constructed from a debug-only objfile, the
7391 has_section_at_zero flag will not necessarily be correct. We
7392 can get the correct value for this flag by looking at the data
7393 associated with the (presumably stripped) associated objfile. */
7394 if (objfile->separate_debug_objfile_backlink)
7395 {
7396 struct dwarf2_per_objfile *dpo_backlink
7397 = objfile_data (objfile->separate_debug_objfile_backlink,
7398 dwarf2_objfile_data_key);
7399
7400 dwarf2_per_objfile->has_section_at_zero
7401 = dpo_backlink->has_section_at_zero;
7402 }
7403
7404 dwarf2_per_objfile->reading_partial_symbols = 0;
7405
7406 psymtab_to_symtab_1 (self);
7407
7408 /* Finish up the debug error message. */
7409 if (info_verbose)
7410 printf_filtered (_("done.\n"));
7411 }
7412
7413 process_cu_includes ();
7414 }
7415 \f
7416 /* Reading in full CUs. */
7417
7418 /* Add PER_CU to the queue. */
7419
7420 static void
7421 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7422 enum language pretend_language)
7423 {
7424 struct dwarf2_queue_item *item;
7425
7426 per_cu->queued = 1;
7427 item = xmalloc (sizeof (*item));
7428 item->per_cu = per_cu;
7429 item->pretend_language = pretend_language;
7430 item->next = NULL;
7431
7432 if (dwarf2_queue == NULL)
7433 dwarf2_queue = item;
7434 else
7435 dwarf2_queue_tail->next = item;
7436
7437 dwarf2_queue_tail = item;
7438 }
7439
7440 /* If PER_CU is not yet queued, add it to the queue.
7441 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7442 dependency.
7443 The result is non-zero if PER_CU was queued, otherwise the result is zero
7444 meaning either PER_CU is already queued or it is already loaded.
7445
7446 N.B. There is an invariant here that if a CU is queued then it is loaded.
7447 The caller is required to load PER_CU if we return non-zero. */
7448
7449 static int
7450 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
7451 struct dwarf2_per_cu_data *per_cu,
7452 enum language pretend_language)
7453 {
7454 /* We may arrive here during partial symbol reading, if we need full
7455 DIEs to process an unusual case (e.g. template arguments). Do
7456 not queue PER_CU, just tell our caller to load its DIEs. */
7457 if (dwarf2_per_objfile->reading_partial_symbols)
7458 {
7459 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7460 return 1;
7461 return 0;
7462 }
7463
7464 /* Mark the dependence relation so that we don't flush PER_CU
7465 too early. */
7466 if (dependent_cu != NULL)
7467 dwarf2_add_dependence (dependent_cu, per_cu);
7468
7469 /* If it's already on the queue, we have nothing to do. */
7470 if (per_cu->queued)
7471 return 0;
7472
7473 /* If the compilation unit is already loaded, just mark it as
7474 used. */
7475 if (per_cu->cu != NULL)
7476 {
7477 per_cu->cu->last_used = 0;
7478 return 0;
7479 }
7480
7481 /* Add it to the queue. */
7482 queue_comp_unit (per_cu, pretend_language);
7483
7484 return 1;
7485 }
7486
7487 /* Process the queue. */
7488
7489 static void
7490 process_queue (void)
7491 {
7492 struct dwarf2_queue_item *item, *next_item;
7493
7494 if (dwarf2_read_debug)
7495 {
7496 fprintf_unfiltered (gdb_stdlog,
7497 "Expanding one or more symtabs of objfile %s ...\n",
7498 objfile_name (dwarf2_per_objfile->objfile));
7499 }
7500
7501 /* The queue starts out with one item, but following a DIE reference
7502 may load a new CU, adding it to the end of the queue. */
7503 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7504 {
7505 if (dwarf2_per_objfile->using_index
7506 ? !item->per_cu->v.quick->compunit_symtab
7507 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
7508 {
7509 struct dwarf2_per_cu_data *per_cu = item->per_cu;
7510 unsigned int debug_print_threshold;
7511 char buf[100];
7512
7513 if (per_cu->is_debug_types)
7514 {
7515 struct signatured_type *sig_type =
7516 (struct signatured_type *) per_cu;
7517
7518 sprintf (buf, "TU %s at offset 0x%x",
7519 hex_string (sig_type->signature),
7520 per_cu->offset.sect_off);
7521 /* There can be 100s of TUs.
7522 Only print them in verbose mode. */
7523 debug_print_threshold = 2;
7524 }
7525 else
7526 {
7527 sprintf (buf, "CU at offset 0x%x", per_cu->offset.sect_off);
7528 debug_print_threshold = 1;
7529 }
7530
7531 if (dwarf2_read_debug >= debug_print_threshold)
7532 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
7533
7534 if (per_cu->is_debug_types)
7535 process_full_type_unit (per_cu, item->pretend_language);
7536 else
7537 process_full_comp_unit (per_cu, item->pretend_language);
7538
7539 if (dwarf2_read_debug >= debug_print_threshold)
7540 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
7541 }
7542
7543 item->per_cu->queued = 0;
7544 next_item = item->next;
7545 xfree (item);
7546 }
7547
7548 dwarf2_queue_tail = NULL;
7549
7550 if (dwarf2_read_debug)
7551 {
7552 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
7553 objfile_name (dwarf2_per_objfile->objfile));
7554 }
7555 }
7556
7557 /* Free all allocated queue entries. This function only releases anything if
7558 an error was thrown; if the queue was processed then it would have been
7559 freed as we went along. */
7560
7561 static void
7562 dwarf2_release_queue (void *dummy)
7563 {
7564 struct dwarf2_queue_item *item, *last;
7565
7566 item = dwarf2_queue;
7567 while (item)
7568 {
7569 /* Anything still marked queued is likely to be in an
7570 inconsistent state, so discard it. */
7571 if (item->per_cu->queued)
7572 {
7573 if (item->per_cu->cu != NULL)
7574 free_one_cached_comp_unit (item->per_cu);
7575 item->per_cu->queued = 0;
7576 }
7577
7578 last = item;
7579 item = item->next;
7580 xfree (last);
7581 }
7582
7583 dwarf2_queue = dwarf2_queue_tail = NULL;
7584 }
7585
7586 /* Read in full symbols for PST, and anything it depends on. */
7587
7588 static void
7589 psymtab_to_symtab_1 (struct partial_symtab *pst)
7590 {
7591 struct dwarf2_per_cu_data *per_cu;
7592 int i;
7593
7594 if (pst->readin)
7595 return;
7596
7597 for (i = 0; i < pst->number_of_dependencies; i++)
7598 if (!pst->dependencies[i]->readin
7599 && pst->dependencies[i]->user == NULL)
7600 {
7601 /* Inform about additional files that need to be read in. */
7602 if (info_verbose)
7603 {
7604 /* FIXME: i18n: Need to make this a single string. */
7605 fputs_filtered (" ", gdb_stdout);
7606 wrap_here ("");
7607 fputs_filtered ("and ", gdb_stdout);
7608 wrap_here ("");
7609 printf_filtered ("%s...", pst->dependencies[i]->filename);
7610 wrap_here (""); /* Flush output. */
7611 gdb_flush (gdb_stdout);
7612 }
7613 psymtab_to_symtab_1 (pst->dependencies[i]);
7614 }
7615
7616 per_cu = pst->read_symtab_private;
7617
7618 if (per_cu == NULL)
7619 {
7620 /* It's an include file, no symbols to read for it.
7621 Everything is in the parent symtab. */
7622 pst->readin = 1;
7623 return;
7624 }
7625
7626 dw2_do_instantiate_symtab (per_cu);
7627 }
7628
7629 /* Trivial hash function for die_info: the hash value of a DIE
7630 is its offset in .debug_info for this objfile. */
7631
7632 static hashval_t
7633 die_hash (const void *item)
7634 {
7635 const struct die_info *die = item;
7636
7637 return die->offset.sect_off;
7638 }
7639
7640 /* Trivial comparison function for die_info structures: two DIEs
7641 are equal if they have the same offset. */
7642
7643 static int
7644 die_eq (const void *item_lhs, const void *item_rhs)
7645 {
7646 const struct die_info *die_lhs = item_lhs;
7647 const struct die_info *die_rhs = item_rhs;
7648
7649 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7650 }
7651
7652 /* die_reader_func for load_full_comp_unit.
7653 This is identical to read_signatured_type_reader,
7654 but is kept separate for now. */
7655
7656 static void
7657 load_full_comp_unit_reader (const struct die_reader_specs *reader,
7658 const gdb_byte *info_ptr,
7659 struct die_info *comp_unit_die,
7660 int has_children,
7661 void *data)
7662 {
7663 struct dwarf2_cu *cu = reader->cu;
7664 enum language *language_ptr = data;
7665
7666 gdb_assert (cu->die_hash == NULL);
7667 cu->die_hash =
7668 htab_create_alloc_ex (cu->header.length / 12,
7669 die_hash,
7670 die_eq,
7671 NULL,
7672 &cu->comp_unit_obstack,
7673 hashtab_obstack_allocate,
7674 dummy_obstack_deallocate);
7675
7676 if (has_children)
7677 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7678 &info_ptr, comp_unit_die);
7679 cu->dies = comp_unit_die;
7680 /* comp_unit_die is not stored in die_hash, no need. */
7681
7682 /* We try not to read any attributes in this function, because not
7683 all CUs needed for references have been loaded yet, and symbol
7684 table processing isn't initialized. But we have to set the CU language,
7685 or we won't be able to build types correctly.
7686 Similarly, if we do not read the producer, we can not apply
7687 producer-specific interpretation. */
7688 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
7689 }
7690
7691 /* Load the DIEs associated with PER_CU into memory. */
7692
7693 static void
7694 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7695 enum language pretend_language)
7696 {
7697 gdb_assert (! this_cu->is_debug_types);
7698
7699 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7700 load_full_comp_unit_reader, &pretend_language);
7701 }
7702
7703 /* Add a DIE to the delayed physname list. */
7704
7705 static void
7706 add_to_method_list (struct type *type, int fnfield_index, int index,
7707 const char *name, struct die_info *die,
7708 struct dwarf2_cu *cu)
7709 {
7710 struct delayed_method_info mi;
7711 mi.type = type;
7712 mi.fnfield_index = fnfield_index;
7713 mi.index = index;
7714 mi.name = name;
7715 mi.die = die;
7716 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7717 }
7718
7719 /* A cleanup for freeing the delayed method list. */
7720
7721 static void
7722 free_delayed_list (void *ptr)
7723 {
7724 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7725 if (cu->method_list != NULL)
7726 {
7727 VEC_free (delayed_method_info, cu->method_list);
7728 cu->method_list = NULL;
7729 }
7730 }
7731
7732 /* Compute the physnames of any methods on the CU's method list.
7733
7734 The computation of method physnames is delayed in order to avoid the
7735 (bad) condition that one of the method's formal parameters is of an as yet
7736 incomplete type. */
7737
7738 static void
7739 compute_delayed_physnames (struct dwarf2_cu *cu)
7740 {
7741 int i;
7742 struct delayed_method_info *mi;
7743 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7744 {
7745 const char *physname;
7746 struct fn_fieldlist *fn_flp
7747 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7748 physname = dwarf2_physname (mi->name, mi->die, cu);
7749 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi->index)
7750 = physname ? physname : "";
7751 }
7752 }
7753
7754 /* Go objects should be embedded in a DW_TAG_module DIE,
7755 and it's not clear if/how imported objects will appear.
7756 To keep Go support simple until that's worked out,
7757 go back through what we've read and create something usable.
7758 We could do this while processing each DIE, and feels kinda cleaner,
7759 but that way is more invasive.
7760 This is to, for example, allow the user to type "p var" or "b main"
7761 without having to specify the package name, and allow lookups
7762 of module.object to work in contexts that use the expression
7763 parser. */
7764
7765 static void
7766 fixup_go_packaging (struct dwarf2_cu *cu)
7767 {
7768 char *package_name = NULL;
7769 struct pending *list;
7770 int i;
7771
7772 for (list = global_symbols; list != NULL; list = list->next)
7773 {
7774 for (i = 0; i < list->nsyms; ++i)
7775 {
7776 struct symbol *sym = list->symbol[i];
7777
7778 if (SYMBOL_LANGUAGE (sym) == language_go
7779 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7780 {
7781 char *this_package_name = go_symbol_package_name (sym);
7782
7783 if (this_package_name == NULL)
7784 continue;
7785 if (package_name == NULL)
7786 package_name = this_package_name;
7787 else
7788 {
7789 if (strcmp (package_name, this_package_name) != 0)
7790 complaint (&symfile_complaints,
7791 _("Symtab %s has objects from two different Go packages: %s and %s"),
7792 (symbol_symtab (sym) != NULL
7793 ? symtab_to_filename_for_display
7794 (symbol_symtab (sym))
7795 : objfile_name (cu->objfile)),
7796 this_package_name, package_name);
7797 xfree (this_package_name);
7798 }
7799 }
7800 }
7801 }
7802
7803 if (package_name != NULL)
7804 {
7805 struct objfile *objfile = cu->objfile;
7806 const char *saved_package_name
7807 = obstack_copy0 (&objfile->per_bfd->storage_obstack,
7808 package_name,
7809 strlen (package_name));
7810 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
7811 saved_package_name, objfile);
7812 struct symbol *sym;
7813
7814 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7815
7816 sym = allocate_symbol (objfile);
7817 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
7818 SYMBOL_SET_NAMES (sym, saved_package_name,
7819 strlen (saved_package_name), 0, objfile);
7820 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7821 e.g., "main" finds the "main" module and not C's main(). */
7822 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
7823 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
7824 SYMBOL_TYPE (sym) = type;
7825
7826 add_symbol_to_list (sym, &global_symbols);
7827
7828 xfree (package_name);
7829 }
7830 }
7831
7832 /* Return the symtab for PER_CU. This works properly regardless of
7833 whether we're using the index or psymtabs. */
7834
7835 static struct compunit_symtab *
7836 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
7837 {
7838 return (dwarf2_per_objfile->using_index
7839 ? per_cu->v.quick->compunit_symtab
7840 : per_cu->v.psymtab->compunit_symtab);
7841 }
7842
7843 /* A helper function for computing the list of all symbol tables
7844 included by PER_CU. */
7845
7846 static void
7847 recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
7848 htab_t all_children, htab_t all_type_symtabs,
7849 struct dwarf2_per_cu_data *per_cu,
7850 struct compunit_symtab *immediate_parent)
7851 {
7852 void **slot;
7853 int ix;
7854 struct compunit_symtab *cust;
7855 struct dwarf2_per_cu_data *iter;
7856
7857 slot = htab_find_slot (all_children, per_cu, INSERT);
7858 if (*slot != NULL)
7859 {
7860 /* This inclusion and its children have been processed. */
7861 return;
7862 }
7863
7864 *slot = per_cu;
7865 /* Only add a CU if it has a symbol table. */
7866 cust = get_compunit_symtab (per_cu);
7867 if (cust != NULL)
7868 {
7869 /* If this is a type unit only add its symbol table if we haven't
7870 seen it yet (type unit per_cu's can share symtabs). */
7871 if (per_cu->is_debug_types)
7872 {
7873 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
7874 if (*slot == NULL)
7875 {
7876 *slot = cust;
7877 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7878 if (cust->user == NULL)
7879 cust->user = immediate_parent;
7880 }
7881 }
7882 else
7883 {
7884 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7885 if (cust->user == NULL)
7886 cust->user = immediate_parent;
7887 }
7888 }
7889
7890 for (ix = 0;
7891 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
7892 ++ix)
7893 {
7894 recursively_compute_inclusions (result, all_children,
7895 all_type_symtabs, iter, cust);
7896 }
7897 }
7898
7899 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
7900 PER_CU. */
7901
7902 static void
7903 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
7904 {
7905 gdb_assert (! per_cu->is_debug_types);
7906
7907 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
7908 {
7909 int ix, len;
7910 struct dwarf2_per_cu_data *per_cu_iter;
7911 struct compunit_symtab *compunit_symtab_iter;
7912 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
7913 htab_t all_children, all_type_symtabs;
7914 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
7915
7916 /* If we don't have a symtab, we can just skip this case. */
7917 if (cust == NULL)
7918 return;
7919
7920 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7921 NULL, xcalloc, xfree);
7922 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7923 NULL, xcalloc, xfree);
7924
7925 for (ix = 0;
7926 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
7927 ix, per_cu_iter);
7928 ++ix)
7929 {
7930 recursively_compute_inclusions (&result_symtabs, all_children,
7931 all_type_symtabs, per_cu_iter,
7932 cust);
7933 }
7934
7935 /* Now we have a transitive closure of all the included symtabs. */
7936 len = VEC_length (compunit_symtab_ptr, result_symtabs);
7937 cust->includes
7938 = obstack_alloc (&dwarf2_per_objfile->objfile->objfile_obstack,
7939 (len + 1) * sizeof (struct symtab *));
7940 for (ix = 0;
7941 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
7942 compunit_symtab_iter);
7943 ++ix)
7944 cust->includes[ix] = compunit_symtab_iter;
7945 cust->includes[len] = NULL;
7946
7947 VEC_free (compunit_symtab_ptr, result_symtabs);
7948 htab_delete (all_children);
7949 htab_delete (all_type_symtabs);
7950 }
7951 }
7952
7953 /* Compute the 'includes' field for the symtabs of all the CUs we just
7954 read. */
7955
7956 static void
7957 process_cu_includes (void)
7958 {
7959 int ix;
7960 struct dwarf2_per_cu_data *iter;
7961
7962 for (ix = 0;
7963 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
7964 ix, iter);
7965 ++ix)
7966 {
7967 if (! iter->is_debug_types)
7968 compute_compunit_symtab_includes (iter);
7969 }
7970
7971 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
7972 }
7973
7974 /* Generate full symbol information for PER_CU, whose DIEs have
7975 already been loaded into memory. */
7976
7977 static void
7978 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
7979 enum language pretend_language)
7980 {
7981 struct dwarf2_cu *cu = per_cu->cu;
7982 struct objfile *objfile = per_cu->objfile;
7983 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7984 CORE_ADDR lowpc, highpc;
7985 struct compunit_symtab *cust;
7986 struct cleanup *back_to, *delayed_list_cleanup;
7987 CORE_ADDR baseaddr;
7988 struct block *static_block;
7989 CORE_ADDR addr;
7990
7991 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7992
7993 buildsym_init ();
7994 back_to = make_cleanup (really_free_pendings, NULL);
7995 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
7996
7997 cu->list_in_scope = &file_symbols;
7998
7999 cu->language = pretend_language;
8000 cu->language_defn = language_def (cu->language);
8001
8002 /* Do line number decoding in read_file_scope () */
8003 process_die (cu->dies, cu);
8004
8005 /* For now fudge the Go package. */
8006 if (cu->language == language_go)
8007 fixup_go_packaging (cu);
8008
8009 /* Now that we have processed all the DIEs in the CU, all the types
8010 should be complete, and it should now be safe to compute all of the
8011 physnames. */
8012 compute_delayed_physnames (cu);
8013 do_cleanups (delayed_list_cleanup);
8014
8015 /* Some compilers don't define a DW_AT_high_pc attribute for the
8016 compilation unit. If the DW_AT_high_pc is missing, synthesize
8017 it, by scanning the DIE's below the compilation unit. */
8018 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
8019
8020 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
8021 static_block = end_symtab_get_static_block (addr, 0, 1);
8022
8023 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
8024 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
8025 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
8026 addrmap to help ensure it has an accurate map of pc values belonging to
8027 this comp unit. */
8028 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
8029
8030 cust = end_symtab_from_static_block (static_block,
8031 SECT_OFF_TEXT (objfile), 0);
8032
8033 if (cust != NULL)
8034 {
8035 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
8036
8037 /* Set symtab language to language from DW_AT_language. If the
8038 compilation is from a C file generated by language preprocessors, do
8039 not set the language if it was already deduced by start_subfile. */
8040 if (!(cu->language == language_c
8041 && COMPUNIT_FILETABS (cust)->language != language_c))
8042 COMPUNIT_FILETABS (cust)->language = cu->language;
8043
8044 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
8045 produce DW_AT_location with location lists but it can be possibly
8046 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
8047 there were bugs in prologue debug info, fixed later in GCC-4.5
8048 by "unwind info for epilogues" patch (which is not directly related).
8049
8050 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
8051 needed, it would be wrong due to missing DW_AT_producer there.
8052
8053 Still one can confuse GDB by using non-standard GCC compilation
8054 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
8055 */
8056 if (cu->has_loclist && gcc_4_minor >= 5)
8057 cust->locations_valid = 1;
8058
8059 if (gcc_4_minor >= 5)
8060 cust->epilogue_unwind_valid = 1;
8061
8062 cust->call_site_htab = cu->call_site_htab;
8063 }
8064
8065 if (dwarf2_per_objfile->using_index)
8066 per_cu->v.quick->compunit_symtab = cust;
8067 else
8068 {
8069 struct partial_symtab *pst = per_cu->v.psymtab;
8070 pst->compunit_symtab = cust;
8071 pst->readin = 1;
8072 }
8073
8074 /* Push it for inclusion processing later. */
8075 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
8076
8077 do_cleanups (back_to);
8078 }
8079
8080 /* Generate full symbol information for type unit PER_CU, whose DIEs have
8081 already been loaded into memory. */
8082
8083 static void
8084 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
8085 enum language pretend_language)
8086 {
8087 struct dwarf2_cu *cu = per_cu->cu;
8088 struct objfile *objfile = per_cu->objfile;
8089 struct compunit_symtab *cust;
8090 struct cleanup *back_to, *delayed_list_cleanup;
8091 struct signatured_type *sig_type;
8092
8093 gdb_assert (per_cu->is_debug_types);
8094 sig_type = (struct signatured_type *) per_cu;
8095
8096 buildsym_init ();
8097 back_to = make_cleanup (really_free_pendings, NULL);
8098 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8099
8100 cu->list_in_scope = &file_symbols;
8101
8102 cu->language = pretend_language;
8103 cu->language_defn = language_def (cu->language);
8104
8105 /* The symbol tables are set up in read_type_unit_scope. */
8106 process_die (cu->dies, cu);
8107
8108 /* For now fudge the Go package. */
8109 if (cu->language == language_go)
8110 fixup_go_packaging (cu);
8111
8112 /* Now that we have processed all the DIEs in the CU, all the types
8113 should be complete, and it should now be safe to compute all of the
8114 physnames. */
8115 compute_delayed_physnames (cu);
8116 do_cleanups (delayed_list_cleanup);
8117
8118 /* TUs share symbol tables.
8119 If this is the first TU to use this symtab, complete the construction
8120 of it with end_expandable_symtab. Otherwise, complete the addition of
8121 this TU's symbols to the existing symtab. */
8122 if (sig_type->type_unit_group->compunit_symtab == NULL)
8123 {
8124 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
8125 sig_type->type_unit_group->compunit_symtab = cust;
8126
8127 if (cust != NULL)
8128 {
8129 /* Set symtab language to language from DW_AT_language. If the
8130 compilation is from a C file generated by language preprocessors,
8131 do not set the language if it was already deduced by
8132 start_subfile. */
8133 if (!(cu->language == language_c
8134 && COMPUNIT_FILETABS (cust)->language != language_c))
8135 COMPUNIT_FILETABS (cust)->language = cu->language;
8136 }
8137 }
8138 else
8139 {
8140 augment_type_symtab ();
8141 cust = sig_type->type_unit_group->compunit_symtab;
8142 }
8143
8144 if (dwarf2_per_objfile->using_index)
8145 per_cu->v.quick->compunit_symtab = cust;
8146 else
8147 {
8148 struct partial_symtab *pst = per_cu->v.psymtab;
8149 pst->compunit_symtab = cust;
8150 pst->readin = 1;
8151 }
8152
8153 do_cleanups (back_to);
8154 }
8155
8156 /* Process an imported unit DIE. */
8157
8158 static void
8159 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
8160 {
8161 struct attribute *attr;
8162
8163 /* For now we don't handle imported units in type units. */
8164 if (cu->per_cu->is_debug_types)
8165 {
8166 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8167 " supported in type units [in module %s]"),
8168 objfile_name (cu->objfile));
8169 }
8170
8171 attr = dwarf2_attr (die, DW_AT_import, cu);
8172 if (attr != NULL)
8173 {
8174 struct dwarf2_per_cu_data *per_cu;
8175 struct symtab *imported_symtab;
8176 sect_offset offset;
8177 int is_dwz;
8178
8179 offset = dwarf2_get_ref_die_offset (attr);
8180 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
8181 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
8182
8183 /* If necessary, add it to the queue and load its DIEs. */
8184 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
8185 load_full_comp_unit (per_cu, cu->language);
8186
8187 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8188 per_cu);
8189 }
8190 }
8191
8192 /* Reset the in_process bit of a die. */
8193
8194 static void
8195 reset_die_in_process (void *arg)
8196 {
8197 struct die_info *die = arg;
8198
8199 die->in_process = 0;
8200 }
8201
8202 /* Process a die and its children. */
8203
8204 static void
8205 process_die (struct die_info *die, struct dwarf2_cu *cu)
8206 {
8207 struct cleanup *in_process;
8208
8209 /* We should only be processing those not already in process. */
8210 gdb_assert (!die->in_process);
8211
8212 die->in_process = 1;
8213 in_process = make_cleanup (reset_die_in_process,die);
8214
8215 switch (die->tag)
8216 {
8217 case DW_TAG_padding:
8218 break;
8219 case DW_TAG_compile_unit:
8220 case DW_TAG_partial_unit:
8221 read_file_scope (die, cu);
8222 break;
8223 case DW_TAG_type_unit:
8224 read_type_unit_scope (die, cu);
8225 break;
8226 case DW_TAG_subprogram:
8227 case DW_TAG_inlined_subroutine:
8228 read_func_scope (die, cu);
8229 break;
8230 case DW_TAG_lexical_block:
8231 case DW_TAG_try_block:
8232 case DW_TAG_catch_block:
8233 read_lexical_block_scope (die, cu);
8234 break;
8235 case DW_TAG_GNU_call_site:
8236 read_call_site_scope (die, cu);
8237 break;
8238 case DW_TAG_class_type:
8239 case DW_TAG_interface_type:
8240 case DW_TAG_structure_type:
8241 case DW_TAG_union_type:
8242 process_structure_scope (die, cu);
8243 break;
8244 case DW_TAG_enumeration_type:
8245 process_enumeration_scope (die, cu);
8246 break;
8247
8248 /* These dies have a type, but processing them does not create
8249 a symbol or recurse to process the children. Therefore we can
8250 read them on-demand through read_type_die. */
8251 case DW_TAG_subroutine_type:
8252 case DW_TAG_set_type:
8253 case DW_TAG_array_type:
8254 case DW_TAG_pointer_type:
8255 case DW_TAG_ptr_to_member_type:
8256 case DW_TAG_reference_type:
8257 case DW_TAG_string_type:
8258 break;
8259
8260 case DW_TAG_base_type:
8261 case DW_TAG_subrange_type:
8262 case DW_TAG_typedef:
8263 /* Add a typedef symbol for the type definition, if it has a
8264 DW_AT_name. */
8265 new_symbol (die, read_type_die (die, cu), cu);
8266 break;
8267 case DW_TAG_common_block:
8268 read_common_block (die, cu);
8269 break;
8270 case DW_TAG_common_inclusion:
8271 break;
8272 case DW_TAG_namespace:
8273 cu->processing_has_namespace_info = 1;
8274 read_namespace (die, cu);
8275 break;
8276 case DW_TAG_module:
8277 cu->processing_has_namespace_info = 1;
8278 read_module (die, cu);
8279 break;
8280 case DW_TAG_imported_declaration:
8281 cu->processing_has_namespace_info = 1;
8282 if (read_namespace_alias (die, cu))
8283 break;
8284 /* The declaration is not a global namespace alias: fall through. */
8285 case DW_TAG_imported_module:
8286 cu->processing_has_namespace_info = 1;
8287 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8288 || cu->language != language_fortran))
8289 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8290 dwarf_tag_name (die->tag));
8291 read_import_statement (die, cu);
8292 break;
8293
8294 case DW_TAG_imported_unit:
8295 process_imported_unit_die (die, cu);
8296 break;
8297
8298 default:
8299 new_symbol (die, NULL, cu);
8300 break;
8301 }
8302
8303 do_cleanups (in_process);
8304 }
8305 \f
8306 /* DWARF name computation. */
8307
8308 /* A helper function for dwarf2_compute_name which determines whether DIE
8309 needs to have the name of the scope prepended to the name listed in the
8310 die. */
8311
8312 static int
8313 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8314 {
8315 struct attribute *attr;
8316
8317 switch (die->tag)
8318 {
8319 case DW_TAG_namespace:
8320 case DW_TAG_typedef:
8321 case DW_TAG_class_type:
8322 case DW_TAG_interface_type:
8323 case DW_TAG_structure_type:
8324 case DW_TAG_union_type:
8325 case DW_TAG_enumeration_type:
8326 case DW_TAG_enumerator:
8327 case DW_TAG_subprogram:
8328 case DW_TAG_member:
8329 case DW_TAG_imported_declaration:
8330 return 1;
8331
8332 case DW_TAG_variable:
8333 case DW_TAG_constant:
8334 /* We only need to prefix "globally" visible variables. These include
8335 any variable marked with DW_AT_external or any variable that
8336 lives in a namespace. [Variables in anonymous namespaces
8337 require prefixing, but they are not DW_AT_external.] */
8338
8339 if (dwarf2_attr (die, DW_AT_specification, cu))
8340 {
8341 struct dwarf2_cu *spec_cu = cu;
8342
8343 return die_needs_namespace (die_specification (die, &spec_cu),
8344 spec_cu);
8345 }
8346
8347 attr = dwarf2_attr (die, DW_AT_external, cu);
8348 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8349 && die->parent->tag != DW_TAG_module)
8350 return 0;
8351 /* A variable in a lexical block of some kind does not need a
8352 namespace, even though in C++ such variables may be external
8353 and have a mangled name. */
8354 if (die->parent->tag == DW_TAG_lexical_block
8355 || die->parent->tag == DW_TAG_try_block
8356 || die->parent->tag == DW_TAG_catch_block
8357 || die->parent->tag == DW_TAG_subprogram)
8358 return 0;
8359 return 1;
8360
8361 default:
8362 return 0;
8363 }
8364 }
8365
8366 /* Retrieve the last character from a mem_file. */
8367
8368 static void
8369 do_ui_file_peek_last (void *object, const char *buffer, long length)
8370 {
8371 char *last_char_p = (char *) object;
8372
8373 if (length > 0)
8374 *last_char_p = buffer[length - 1];
8375 }
8376
8377 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
8378 compute the physname for the object, which include a method's:
8379 - formal parameters (C++/Java),
8380 - receiver type (Go),
8381 - return type (Java).
8382
8383 The term "physname" is a bit confusing.
8384 For C++, for example, it is the demangled name.
8385 For Go, for example, it's the mangled name.
8386
8387 For Ada, return the DIE's linkage name rather than the fully qualified
8388 name. PHYSNAME is ignored..
8389
8390 The result is allocated on the objfile_obstack and canonicalized. */
8391
8392 static const char *
8393 dwarf2_compute_name (const char *name,
8394 struct die_info *die, struct dwarf2_cu *cu,
8395 int physname)
8396 {
8397 struct objfile *objfile = cu->objfile;
8398
8399 if (name == NULL)
8400 name = dwarf2_name (die, cu);
8401
8402 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
8403 compute it by typename_concat inside GDB. */
8404 if (cu->language == language_ada
8405 || (cu->language == language_fortran && physname))
8406 {
8407 /* For Ada unit, we prefer the linkage name over the name, as
8408 the former contains the exported name, which the user expects
8409 to be able to reference. Ideally, we want the user to be able
8410 to reference this entity using either natural or linkage name,
8411 but we haven't started looking at this enhancement yet. */
8412 struct attribute *attr;
8413
8414 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8415 if (attr == NULL)
8416 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8417 if (attr && DW_STRING (attr))
8418 return DW_STRING (attr);
8419 }
8420
8421 /* These are the only languages we know how to qualify names in. */
8422 if (name != NULL
8423 && (cu->language == language_cplus || cu->language == language_java
8424 || cu->language == language_fortran))
8425 {
8426 if (die_needs_namespace (die, cu))
8427 {
8428 long length;
8429 const char *prefix;
8430 struct ui_file *buf;
8431 char *intermediate_name;
8432 const char *canonical_name = NULL;
8433
8434 prefix = determine_prefix (die, cu);
8435 buf = mem_fileopen ();
8436 if (*prefix != '\0')
8437 {
8438 char *prefixed_name = typename_concat (NULL, prefix, name,
8439 physname, cu);
8440
8441 fputs_unfiltered (prefixed_name, buf);
8442 xfree (prefixed_name);
8443 }
8444 else
8445 fputs_unfiltered (name, buf);
8446
8447 /* Template parameters may be specified in the DIE's DW_AT_name, or
8448 as children with DW_TAG_template_type_param or
8449 DW_TAG_value_type_param. If the latter, add them to the name
8450 here. If the name already has template parameters, then
8451 skip this step; some versions of GCC emit both, and
8452 it is more efficient to use the pre-computed name.
8453
8454 Something to keep in mind about this process: it is very
8455 unlikely, or in some cases downright impossible, to produce
8456 something that will match the mangled name of a function.
8457 If the definition of the function has the same debug info,
8458 we should be able to match up with it anyway. But fallbacks
8459 using the minimal symbol, for instance to find a method
8460 implemented in a stripped copy of libstdc++, will not work.
8461 If we do not have debug info for the definition, we will have to
8462 match them up some other way.
8463
8464 When we do name matching there is a related problem with function
8465 templates; two instantiated function templates are allowed to
8466 differ only by their return types, which we do not add here. */
8467
8468 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8469 {
8470 struct attribute *attr;
8471 struct die_info *child;
8472 int first = 1;
8473
8474 die->building_fullname = 1;
8475
8476 for (child = die->child; child != NULL; child = child->sibling)
8477 {
8478 struct type *type;
8479 LONGEST value;
8480 const gdb_byte *bytes;
8481 struct dwarf2_locexpr_baton *baton;
8482 struct value *v;
8483
8484 if (child->tag != DW_TAG_template_type_param
8485 && child->tag != DW_TAG_template_value_param)
8486 continue;
8487
8488 if (first)
8489 {
8490 fputs_unfiltered ("<", buf);
8491 first = 0;
8492 }
8493 else
8494 fputs_unfiltered (", ", buf);
8495
8496 attr = dwarf2_attr (child, DW_AT_type, cu);
8497 if (attr == NULL)
8498 {
8499 complaint (&symfile_complaints,
8500 _("template parameter missing DW_AT_type"));
8501 fputs_unfiltered ("UNKNOWN_TYPE", buf);
8502 continue;
8503 }
8504 type = die_type (child, cu);
8505
8506 if (child->tag == DW_TAG_template_type_param)
8507 {
8508 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
8509 continue;
8510 }
8511
8512 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8513 if (attr == NULL)
8514 {
8515 complaint (&symfile_complaints,
8516 _("template parameter missing "
8517 "DW_AT_const_value"));
8518 fputs_unfiltered ("UNKNOWN_VALUE", buf);
8519 continue;
8520 }
8521
8522 dwarf2_const_value_attr (attr, type, name,
8523 &cu->comp_unit_obstack, cu,
8524 &value, &bytes, &baton);
8525
8526 if (TYPE_NOSIGN (type))
8527 /* GDB prints characters as NUMBER 'CHAR'. If that's
8528 changed, this can use value_print instead. */
8529 c_printchar (value, type, buf);
8530 else
8531 {
8532 struct value_print_options opts;
8533
8534 if (baton != NULL)
8535 v = dwarf2_evaluate_loc_desc (type, NULL,
8536 baton->data,
8537 baton->size,
8538 baton->per_cu);
8539 else if (bytes != NULL)
8540 {
8541 v = allocate_value (type);
8542 memcpy (value_contents_writeable (v), bytes,
8543 TYPE_LENGTH (type));
8544 }
8545 else
8546 v = value_from_longest (type, value);
8547
8548 /* Specify decimal so that we do not depend on
8549 the radix. */
8550 get_formatted_print_options (&opts, 'd');
8551 opts.raw = 1;
8552 value_print (v, buf, &opts);
8553 release_value (v);
8554 value_free (v);
8555 }
8556 }
8557
8558 die->building_fullname = 0;
8559
8560 if (!first)
8561 {
8562 /* Close the argument list, with a space if necessary
8563 (nested templates). */
8564 char last_char = '\0';
8565 ui_file_put (buf, do_ui_file_peek_last, &last_char);
8566 if (last_char == '>')
8567 fputs_unfiltered (" >", buf);
8568 else
8569 fputs_unfiltered (">", buf);
8570 }
8571 }
8572
8573 /* For Java and C++ methods, append formal parameter type
8574 information, if PHYSNAME. */
8575
8576 if (physname && die->tag == DW_TAG_subprogram
8577 && (cu->language == language_cplus
8578 || cu->language == language_java))
8579 {
8580 struct type *type = read_type_die (die, cu);
8581
8582 c_type_print_args (type, buf, 1, cu->language,
8583 &type_print_raw_options);
8584
8585 if (cu->language == language_java)
8586 {
8587 /* For java, we must append the return type to method
8588 names. */
8589 if (die->tag == DW_TAG_subprogram)
8590 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
8591 0, 0, &type_print_raw_options);
8592 }
8593 else if (cu->language == language_cplus)
8594 {
8595 /* Assume that an artificial first parameter is
8596 "this", but do not crash if it is not. RealView
8597 marks unnamed (and thus unused) parameters as
8598 artificial; there is no way to differentiate
8599 the two cases. */
8600 if (TYPE_NFIELDS (type) > 0
8601 && TYPE_FIELD_ARTIFICIAL (type, 0)
8602 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
8603 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8604 0))))
8605 fputs_unfiltered (" const", buf);
8606 }
8607 }
8608
8609 intermediate_name = ui_file_xstrdup (buf, &length);
8610 ui_file_delete (buf);
8611
8612 if (cu->language == language_cplus)
8613 canonical_name
8614 = dwarf2_canonicalize_name (intermediate_name, cu,
8615 &objfile->per_bfd->storage_obstack);
8616
8617 /* If we only computed INTERMEDIATE_NAME, or if
8618 INTERMEDIATE_NAME is already canonical, then we need to
8619 copy it to the appropriate obstack. */
8620 if (canonical_name == NULL || canonical_name == intermediate_name)
8621 name = obstack_copy0 (&objfile->per_bfd->storage_obstack,
8622 intermediate_name,
8623 strlen (intermediate_name));
8624 else
8625 name = canonical_name;
8626
8627 xfree (intermediate_name);
8628 }
8629 }
8630
8631 return name;
8632 }
8633
8634 /* Return the fully qualified name of DIE, based on its DW_AT_name.
8635 If scope qualifiers are appropriate they will be added. The result
8636 will be allocated on the storage_obstack, or NULL if the DIE does
8637 not have a name. NAME may either be from a previous call to
8638 dwarf2_name or NULL.
8639
8640 The output string will be canonicalized (if C++/Java). */
8641
8642 static const char *
8643 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8644 {
8645 return dwarf2_compute_name (name, die, cu, 0);
8646 }
8647
8648 /* Construct a physname for the given DIE in CU. NAME may either be
8649 from a previous call to dwarf2_name or NULL. The result will be
8650 allocated on the objfile_objstack or NULL if the DIE does not have a
8651 name.
8652
8653 The output string will be canonicalized (if C++/Java). */
8654
8655 static const char *
8656 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8657 {
8658 struct objfile *objfile = cu->objfile;
8659 struct attribute *attr;
8660 const char *retval, *mangled = NULL, *canon = NULL;
8661 struct cleanup *back_to;
8662 int need_copy = 1;
8663
8664 /* In this case dwarf2_compute_name is just a shortcut not building anything
8665 on its own. */
8666 if (!die_needs_namespace (die, cu))
8667 return dwarf2_compute_name (name, die, cu, 1);
8668
8669 back_to = make_cleanup (null_cleanup, NULL);
8670
8671 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8672 if (!attr)
8673 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8674
8675 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8676 has computed. */
8677 if (attr && DW_STRING (attr))
8678 {
8679 char *demangled;
8680
8681 mangled = DW_STRING (attr);
8682
8683 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8684 type. It is easier for GDB users to search for such functions as
8685 `name(params)' than `long name(params)'. In such case the minimal
8686 symbol names do not match the full symbol names but for template
8687 functions there is never a need to look up their definition from their
8688 declaration so the only disadvantage remains the minimal symbol
8689 variant `long name(params)' does not have the proper inferior type.
8690 */
8691
8692 if (cu->language == language_go)
8693 {
8694 /* This is a lie, but we already lie to the caller new_symbol_full.
8695 new_symbol_full assumes we return the mangled name.
8696 This just undoes that lie until things are cleaned up. */
8697 demangled = NULL;
8698 }
8699 else
8700 {
8701 demangled = gdb_demangle (mangled,
8702 (DMGL_PARAMS | DMGL_ANSI
8703 | (cu->language == language_java
8704 ? DMGL_JAVA | DMGL_RET_POSTFIX
8705 : DMGL_RET_DROP)));
8706 }
8707 if (demangled)
8708 {
8709 make_cleanup (xfree, demangled);
8710 canon = demangled;
8711 }
8712 else
8713 {
8714 canon = mangled;
8715 need_copy = 0;
8716 }
8717 }
8718
8719 if (canon == NULL || check_physname)
8720 {
8721 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8722
8723 if (canon != NULL && strcmp (physname, canon) != 0)
8724 {
8725 /* It may not mean a bug in GDB. The compiler could also
8726 compute DW_AT_linkage_name incorrectly. But in such case
8727 GDB would need to be bug-to-bug compatible. */
8728
8729 complaint (&symfile_complaints,
8730 _("Computed physname <%s> does not match demangled <%s> "
8731 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
8732 physname, canon, mangled, die->offset.sect_off,
8733 objfile_name (objfile));
8734
8735 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8736 is available here - over computed PHYSNAME. It is safer
8737 against both buggy GDB and buggy compilers. */
8738
8739 retval = canon;
8740 }
8741 else
8742 {
8743 retval = physname;
8744 need_copy = 0;
8745 }
8746 }
8747 else
8748 retval = canon;
8749
8750 if (need_copy)
8751 retval = obstack_copy0 (&objfile->per_bfd->storage_obstack,
8752 retval, strlen (retval));
8753
8754 do_cleanups (back_to);
8755 return retval;
8756 }
8757
8758 /* Inspect DIE in CU for a namespace alias. If one exists, record
8759 a new symbol for it.
8760
8761 Returns 1 if a namespace alias was recorded, 0 otherwise. */
8762
8763 static int
8764 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
8765 {
8766 struct attribute *attr;
8767
8768 /* If the die does not have a name, this is not a namespace
8769 alias. */
8770 attr = dwarf2_attr (die, DW_AT_name, cu);
8771 if (attr != NULL)
8772 {
8773 int num;
8774 struct die_info *d = die;
8775 struct dwarf2_cu *imported_cu = cu;
8776
8777 /* If the compiler has nested DW_AT_imported_declaration DIEs,
8778 keep inspecting DIEs until we hit the underlying import. */
8779 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
8780 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
8781 {
8782 attr = dwarf2_attr (d, DW_AT_import, cu);
8783 if (attr == NULL)
8784 break;
8785
8786 d = follow_die_ref (d, attr, &imported_cu);
8787 if (d->tag != DW_TAG_imported_declaration)
8788 break;
8789 }
8790
8791 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
8792 {
8793 complaint (&symfile_complaints,
8794 _("DIE at 0x%x has too many recursively imported "
8795 "declarations"), d->offset.sect_off);
8796 return 0;
8797 }
8798
8799 if (attr != NULL)
8800 {
8801 struct type *type;
8802 sect_offset offset = dwarf2_get_ref_die_offset (attr);
8803
8804 type = get_die_type_at_offset (offset, cu->per_cu);
8805 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
8806 {
8807 /* This declaration is a global namespace alias. Add
8808 a symbol for it whose type is the aliased namespace. */
8809 new_symbol (die, type, cu);
8810 return 1;
8811 }
8812 }
8813 }
8814
8815 return 0;
8816 }
8817
8818 /* Read the import statement specified by the given die and record it. */
8819
8820 static void
8821 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8822 {
8823 struct objfile *objfile = cu->objfile;
8824 struct attribute *import_attr;
8825 struct die_info *imported_die, *child_die;
8826 struct dwarf2_cu *imported_cu;
8827 const char *imported_name;
8828 const char *imported_name_prefix;
8829 const char *canonical_name;
8830 const char *import_alias;
8831 const char *imported_declaration = NULL;
8832 const char *import_prefix;
8833 VEC (const_char_ptr) *excludes = NULL;
8834 struct cleanup *cleanups;
8835
8836 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8837 if (import_attr == NULL)
8838 {
8839 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8840 dwarf_tag_name (die->tag));
8841 return;
8842 }
8843
8844 imported_cu = cu;
8845 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8846 imported_name = dwarf2_name (imported_die, imported_cu);
8847 if (imported_name == NULL)
8848 {
8849 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8850
8851 The import in the following code:
8852 namespace A
8853 {
8854 typedef int B;
8855 }
8856
8857 int main ()
8858 {
8859 using A::B;
8860 B b;
8861 return b;
8862 }
8863
8864 ...
8865 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8866 <52> DW_AT_decl_file : 1
8867 <53> DW_AT_decl_line : 6
8868 <54> DW_AT_import : <0x75>
8869 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
8870 <59> DW_AT_name : B
8871 <5b> DW_AT_decl_file : 1
8872 <5c> DW_AT_decl_line : 2
8873 <5d> DW_AT_type : <0x6e>
8874 ...
8875 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
8876 <76> DW_AT_byte_size : 4
8877 <77> DW_AT_encoding : 5 (signed)
8878
8879 imports the wrong die ( 0x75 instead of 0x58 ).
8880 This case will be ignored until the gcc bug is fixed. */
8881 return;
8882 }
8883
8884 /* Figure out the local name after import. */
8885 import_alias = dwarf2_name (die, cu);
8886
8887 /* Figure out where the statement is being imported to. */
8888 import_prefix = determine_prefix (die, cu);
8889
8890 /* Figure out what the scope of the imported die is and prepend it
8891 to the name of the imported die. */
8892 imported_name_prefix = determine_prefix (imported_die, imported_cu);
8893
8894 if (imported_die->tag != DW_TAG_namespace
8895 && imported_die->tag != DW_TAG_module)
8896 {
8897 imported_declaration = imported_name;
8898 canonical_name = imported_name_prefix;
8899 }
8900 else if (strlen (imported_name_prefix) > 0)
8901 canonical_name = obconcat (&objfile->objfile_obstack,
8902 imported_name_prefix, "::", imported_name,
8903 (char *) NULL);
8904 else
8905 canonical_name = imported_name;
8906
8907 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
8908
8909 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
8910 for (child_die = die->child; child_die && child_die->tag;
8911 child_die = sibling_die (child_die))
8912 {
8913 /* DWARF-4: A Fortran use statement with a “rename list” may be
8914 represented by an imported module entry with an import attribute
8915 referring to the module and owned entries corresponding to those
8916 entities that are renamed as part of being imported. */
8917
8918 if (child_die->tag != DW_TAG_imported_declaration)
8919 {
8920 complaint (&symfile_complaints,
8921 _("child DW_TAG_imported_declaration expected "
8922 "- DIE at 0x%x [in module %s]"),
8923 child_die->offset.sect_off, objfile_name (objfile));
8924 continue;
8925 }
8926
8927 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
8928 if (import_attr == NULL)
8929 {
8930 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8931 dwarf_tag_name (child_die->tag));
8932 continue;
8933 }
8934
8935 imported_cu = cu;
8936 imported_die = follow_die_ref_or_sig (child_die, import_attr,
8937 &imported_cu);
8938 imported_name = dwarf2_name (imported_die, imported_cu);
8939 if (imported_name == NULL)
8940 {
8941 complaint (&symfile_complaints,
8942 _("child DW_TAG_imported_declaration has unknown "
8943 "imported name - DIE at 0x%x [in module %s]"),
8944 child_die->offset.sect_off, objfile_name (objfile));
8945 continue;
8946 }
8947
8948 VEC_safe_push (const_char_ptr, excludes, imported_name);
8949
8950 process_die (child_die, cu);
8951 }
8952
8953 cp_add_using_directive (import_prefix,
8954 canonical_name,
8955 import_alias,
8956 imported_declaration,
8957 excludes,
8958 0,
8959 &objfile->objfile_obstack);
8960
8961 do_cleanups (cleanups);
8962 }
8963
8964 /* Cleanup function for handle_DW_AT_stmt_list. */
8965
8966 static void
8967 free_cu_line_header (void *arg)
8968 {
8969 struct dwarf2_cu *cu = arg;
8970
8971 free_line_header (cu->line_header);
8972 cu->line_header = NULL;
8973 }
8974
8975 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
8976 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
8977 this, it was first present in GCC release 4.3.0. */
8978
8979 static int
8980 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
8981 {
8982 if (!cu->checked_producer)
8983 check_producer (cu);
8984
8985 return cu->producer_is_gcc_lt_4_3;
8986 }
8987
8988 static void
8989 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
8990 const char **name, const char **comp_dir)
8991 {
8992 struct attribute *attr;
8993
8994 *name = NULL;
8995 *comp_dir = NULL;
8996
8997 /* Find the filename. Do not use dwarf2_name here, since the filename
8998 is not a source language identifier. */
8999 attr = dwarf2_attr (die, DW_AT_name, cu);
9000 if (attr)
9001 {
9002 *name = DW_STRING (attr);
9003 }
9004
9005 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
9006 if (attr)
9007 *comp_dir = DW_STRING (attr);
9008 else if (producer_is_gcc_lt_4_3 (cu) && *name != NULL
9009 && IS_ABSOLUTE_PATH (*name))
9010 {
9011 char *d = ldirname (*name);
9012
9013 *comp_dir = d;
9014 if (d != NULL)
9015 make_cleanup (xfree, d);
9016 }
9017 if (*comp_dir != NULL)
9018 {
9019 /* Irix 6.2 native cc prepends <machine>.: to the compilation
9020 directory, get rid of it. */
9021 char *cp = strchr (*comp_dir, ':');
9022
9023 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
9024 *comp_dir = cp + 1;
9025 }
9026
9027 if (*name == NULL)
9028 *name = "<unknown>";
9029 }
9030
9031 /* Handle DW_AT_stmt_list for a compilation unit.
9032 DIE is the DW_TAG_compile_unit die for CU.
9033 COMP_DIR is the compilation directory. LOWPC is passed to
9034 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
9035
9036 static void
9037 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
9038 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
9039 {
9040 struct objfile *objfile = dwarf2_per_objfile->objfile;
9041 struct attribute *attr;
9042 unsigned int line_offset;
9043 struct line_header line_header_local;
9044 hashval_t line_header_local_hash;
9045 unsigned u;
9046 void **slot;
9047 int decode_mapping;
9048
9049 gdb_assert (! cu->per_cu->is_debug_types);
9050
9051 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9052 if (attr == NULL)
9053 return;
9054
9055 line_offset = DW_UNSND (attr);
9056
9057 /* The line header hash table is only created if needed (it exists to
9058 prevent redundant reading of the line table for partial_units).
9059 If we're given a partial_unit, we'll need it. If we're given a
9060 compile_unit, then use the line header hash table if it's already
9061 created, but don't create one just yet. */
9062
9063 if (dwarf2_per_objfile->line_header_hash == NULL
9064 && die->tag == DW_TAG_partial_unit)
9065 {
9066 dwarf2_per_objfile->line_header_hash
9067 = htab_create_alloc_ex (127, line_header_hash_voidp,
9068 line_header_eq_voidp,
9069 free_line_header_voidp,
9070 &objfile->objfile_obstack,
9071 hashtab_obstack_allocate,
9072 dummy_obstack_deallocate);
9073 }
9074
9075 line_header_local.offset.sect_off = line_offset;
9076 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
9077 line_header_local_hash = line_header_hash (&line_header_local);
9078 if (dwarf2_per_objfile->line_header_hash != NULL)
9079 {
9080 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9081 &line_header_local,
9082 line_header_local_hash, NO_INSERT);
9083
9084 /* For DW_TAG_compile_unit we need info like symtab::linetable which
9085 is not present in *SLOT (since if there is something in *SLOT then
9086 it will be for a partial_unit). */
9087 if (die->tag == DW_TAG_partial_unit && slot != NULL)
9088 {
9089 gdb_assert (*slot != NULL);
9090 cu->line_header = *slot;
9091 return;
9092 }
9093 }
9094
9095 /* dwarf_decode_line_header does not yet provide sufficient information.
9096 We always have to call also dwarf_decode_lines for it. */
9097 cu->line_header = dwarf_decode_line_header (line_offset, cu);
9098 if (cu->line_header == NULL)
9099 return;
9100
9101 if (dwarf2_per_objfile->line_header_hash == NULL)
9102 slot = NULL;
9103 else
9104 {
9105 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9106 &line_header_local,
9107 line_header_local_hash, INSERT);
9108 gdb_assert (slot != NULL);
9109 }
9110 if (slot != NULL && *slot == NULL)
9111 {
9112 /* This newly decoded line number information unit will be owned
9113 by line_header_hash hash table. */
9114 *slot = cu->line_header;
9115 }
9116 else
9117 {
9118 /* We cannot free any current entry in (*slot) as that struct line_header
9119 may be already used by multiple CUs. Create only temporary decoded
9120 line_header for this CU - it may happen at most once for each line
9121 number information unit. And if we're not using line_header_hash
9122 then this is what we want as well. */
9123 gdb_assert (die->tag != DW_TAG_partial_unit);
9124 make_cleanup (free_cu_line_header, cu);
9125 }
9126 decode_mapping = (die->tag != DW_TAG_partial_unit);
9127 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
9128 decode_mapping);
9129 }
9130
9131 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
9132
9133 static void
9134 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
9135 {
9136 struct objfile *objfile = dwarf2_per_objfile->objfile;
9137 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9138 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
9139 CORE_ADDR lowpc = ((CORE_ADDR) -1);
9140 CORE_ADDR highpc = ((CORE_ADDR) 0);
9141 struct attribute *attr;
9142 const char *name = NULL;
9143 const char *comp_dir = NULL;
9144 struct die_info *child_die;
9145 bfd *abfd = objfile->obfd;
9146 CORE_ADDR baseaddr;
9147
9148 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9149
9150 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
9151
9152 /* If we didn't find a lowpc, set it to highpc to avoid complaints
9153 from finish_block. */
9154 if (lowpc == ((CORE_ADDR) -1))
9155 lowpc = highpc;
9156 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
9157
9158 find_file_and_directory (die, cu, &name, &comp_dir);
9159
9160 prepare_one_comp_unit (cu, die, cu->language);
9161
9162 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
9163 standardised yet. As a workaround for the language detection we fall
9164 back to the DW_AT_producer string. */
9165 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
9166 cu->language = language_opencl;
9167
9168 /* Similar hack for Go. */
9169 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
9170 set_cu_language (DW_LANG_Go, cu);
9171
9172 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
9173
9174 /* Decode line number information if present. We do this before
9175 processing child DIEs, so that the line header table is available
9176 for DW_AT_decl_file. */
9177 handle_DW_AT_stmt_list (die, cu, comp_dir, lowpc);
9178
9179 /* Process all dies in compilation unit. */
9180 if (die->child != NULL)
9181 {
9182 child_die = die->child;
9183 while (child_die && child_die->tag)
9184 {
9185 process_die (child_die, cu);
9186 child_die = sibling_die (child_die);
9187 }
9188 }
9189
9190 /* Decode macro information, if present. Dwarf 2 macro information
9191 refers to information in the line number info statement program
9192 header, so we can only read it if we've read the header
9193 successfully. */
9194 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
9195 if (attr && cu->line_header)
9196 {
9197 if (dwarf2_attr (die, DW_AT_macro_info, cu))
9198 complaint (&symfile_complaints,
9199 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
9200
9201 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
9202 }
9203 else
9204 {
9205 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
9206 if (attr && cu->line_header)
9207 {
9208 unsigned int macro_offset = DW_UNSND (attr);
9209
9210 dwarf_decode_macros (cu, macro_offset, 0);
9211 }
9212 }
9213
9214 do_cleanups (back_to);
9215 }
9216
9217 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
9218 Create the set of symtabs used by this TU, or if this TU is sharing
9219 symtabs with another TU and the symtabs have already been created
9220 then restore those symtabs in the line header.
9221 We don't need the pc/line-number mapping for type units. */
9222
9223 static void
9224 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
9225 {
9226 struct objfile *objfile = dwarf2_per_objfile->objfile;
9227 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
9228 struct type_unit_group *tu_group;
9229 int first_time;
9230 struct line_header *lh;
9231 struct attribute *attr;
9232 unsigned int i, line_offset;
9233 struct signatured_type *sig_type;
9234
9235 gdb_assert (per_cu->is_debug_types);
9236 sig_type = (struct signatured_type *) per_cu;
9237
9238 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9239
9240 /* If we're using .gdb_index (includes -readnow) then
9241 per_cu->type_unit_group may not have been set up yet. */
9242 if (sig_type->type_unit_group == NULL)
9243 sig_type->type_unit_group = get_type_unit_group (cu, attr);
9244 tu_group = sig_type->type_unit_group;
9245
9246 /* If we've already processed this stmt_list there's no real need to
9247 do it again, we could fake it and just recreate the part we need
9248 (file name,index -> symtab mapping). If data shows this optimization
9249 is useful we can do it then. */
9250 first_time = tu_group->compunit_symtab == NULL;
9251
9252 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
9253 debug info. */
9254 lh = NULL;
9255 if (attr != NULL)
9256 {
9257 line_offset = DW_UNSND (attr);
9258 lh = dwarf_decode_line_header (line_offset, cu);
9259 }
9260 if (lh == NULL)
9261 {
9262 if (first_time)
9263 dwarf2_start_symtab (cu, "", NULL, 0);
9264 else
9265 {
9266 gdb_assert (tu_group->symtabs == NULL);
9267 restart_symtab (tu_group->compunit_symtab, "", 0);
9268 }
9269 return;
9270 }
9271
9272 cu->line_header = lh;
9273 make_cleanup (free_cu_line_header, cu);
9274
9275 if (first_time)
9276 {
9277 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
9278
9279 tu_group->num_symtabs = lh->num_file_names;
9280 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
9281
9282 for (i = 0; i < lh->num_file_names; ++i)
9283 {
9284 const char *dir = NULL;
9285 struct file_entry *fe = &lh->file_names[i];
9286
9287 if (fe->dir_index)
9288 dir = lh->include_dirs[fe->dir_index - 1];
9289 dwarf2_start_subfile (fe->name, dir);
9290
9291 if (current_subfile->symtab == NULL)
9292 {
9293 /* NOTE: start_subfile will recognize when it's been passed
9294 a file it has already seen. So we can't assume there's a
9295 simple mapping from lh->file_names to subfiles, plus
9296 lh->file_names may contain dups. */
9297 current_subfile->symtab
9298 = allocate_symtab (cust, current_subfile->name);
9299 }
9300
9301 fe->symtab = current_subfile->symtab;
9302 tu_group->symtabs[i] = fe->symtab;
9303 }
9304 }
9305 else
9306 {
9307 restart_symtab (tu_group->compunit_symtab, "", 0);
9308
9309 for (i = 0; i < lh->num_file_names; ++i)
9310 {
9311 struct file_entry *fe = &lh->file_names[i];
9312
9313 fe->symtab = tu_group->symtabs[i];
9314 }
9315 }
9316
9317 /* The main symtab is allocated last. Type units don't have DW_AT_name
9318 so they don't have a "real" (so to speak) symtab anyway.
9319 There is later code that will assign the main symtab to all symbols
9320 that don't have one. We need to handle the case of a symbol with a
9321 missing symtab (DW_AT_decl_file) anyway. */
9322 }
9323
9324 /* Process DW_TAG_type_unit.
9325 For TUs we want to skip the first top level sibling if it's not the
9326 actual type being defined by this TU. In this case the first top
9327 level sibling is there to provide context only. */
9328
9329 static void
9330 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9331 {
9332 struct die_info *child_die;
9333
9334 prepare_one_comp_unit (cu, die, language_minimal);
9335
9336 /* Initialize (or reinitialize) the machinery for building symtabs.
9337 We do this before processing child DIEs, so that the line header table
9338 is available for DW_AT_decl_file. */
9339 setup_type_unit_groups (die, cu);
9340
9341 if (die->child != NULL)
9342 {
9343 child_die = die->child;
9344 while (child_die && child_die->tag)
9345 {
9346 process_die (child_die, cu);
9347 child_die = sibling_die (child_die);
9348 }
9349 }
9350 }
9351 \f
9352 /* DWO/DWP files.
9353
9354 http://gcc.gnu.org/wiki/DebugFission
9355 http://gcc.gnu.org/wiki/DebugFissionDWP
9356
9357 To simplify handling of both DWO files ("object" files with the DWARF info)
9358 and DWP files (a file with the DWOs packaged up into one file), we treat
9359 DWP files as having a collection of virtual DWO files. */
9360
9361 static hashval_t
9362 hash_dwo_file (const void *item)
9363 {
9364 const struct dwo_file *dwo_file = item;
9365 hashval_t hash;
9366
9367 hash = htab_hash_string (dwo_file->dwo_name);
9368 if (dwo_file->comp_dir != NULL)
9369 hash += htab_hash_string (dwo_file->comp_dir);
9370 return hash;
9371 }
9372
9373 static int
9374 eq_dwo_file (const void *item_lhs, const void *item_rhs)
9375 {
9376 const struct dwo_file *lhs = item_lhs;
9377 const struct dwo_file *rhs = item_rhs;
9378
9379 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9380 return 0;
9381 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9382 return lhs->comp_dir == rhs->comp_dir;
9383 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
9384 }
9385
9386 /* Allocate a hash table for DWO files. */
9387
9388 static htab_t
9389 allocate_dwo_file_hash_table (void)
9390 {
9391 struct objfile *objfile = dwarf2_per_objfile->objfile;
9392
9393 return htab_create_alloc_ex (41,
9394 hash_dwo_file,
9395 eq_dwo_file,
9396 NULL,
9397 &objfile->objfile_obstack,
9398 hashtab_obstack_allocate,
9399 dummy_obstack_deallocate);
9400 }
9401
9402 /* Lookup DWO file DWO_NAME. */
9403
9404 static void **
9405 lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
9406 {
9407 struct dwo_file find_entry;
9408 void **slot;
9409
9410 if (dwarf2_per_objfile->dwo_files == NULL)
9411 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9412
9413 memset (&find_entry, 0, sizeof (find_entry));
9414 find_entry.dwo_name = dwo_name;
9415 find_entry.comp_dir = comp_dir;
9416 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9417
9418 return slot;
9419 }
9420
9421 static hashval_t
9422 hash_dwo_unit (const void *item)
9423 {
9424 const struct dwo_unit *dwo_unit = item;
9425
9426 /* This drops the top 32 bits of the id, but is ok for a hash. */
9427 return dwo_unit->signature;
9428 }
9429
9430 static int
9431 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9432 {
9433 const struct dwo_unit *lhs = item_lhs;
9434 const struct dwo_unit *rhs = item_rhs;
9435
9436 /* The signature is assumed to be unique within the DWO file.
9437 So while object file CU dwo_id's always have the value zero,
9438 that's OK, assuming each object file DWO file has only one CU,
9439 and that's the rule for now. */
9440 return lhs->signature == rhs->signature;
9441 }
9442
9443 /* Allocate a hash table for DWO CUs,TUs.
9444 There is one of these tables for each of CUs,TUs for each DWO file. */
9445
9446 static htab_t
9447 allocate_dwo_unit_table (struct objfile *objfile)
9448 {
9449 /* Start out with a pretty small number.
9450 Generally DWO files contain only one CU and maybe some TUs. */
9451 return htab_create_alloc_ex (3,
9452 hash_dwo_unit,
9453 eq_dwo_unit,
9454 NULL,
9455 &objfile->objfile_obstack,
9456 hashtab_obstack_allocate,
9457 dummy_obstack_deallocate);
9458 }
9459
9460 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
9461
9462 struct create_dwo_cu_data
9463 {
9464 struct dwo_file *dwo_file;
9465 struct dwo_unit dwo_unit;
9466 };
9467
9468 /* die_reader_func for create_dwo_cu. */
9469
9470 static void
9471 create_dwo_cu_reader (const struct die_reader_specs *reader,
9472 const gdb_byte *info_ptr,
9473 struct die_info *comp_unit_die,
9474 int has_children,
9475 void *datap)
9476 {
9477 struct dwarf2_cu *cu = reader->cu;
9478 struct objfile *objfile = dwarf2_per_objfile->objfile;
9479 sect_offset offset = cu->per_cu->offset;
9480 struct dwarf2_section_info *section = cu->per_cu->section;
9481 struct create_dwo_cu_data *data = datap;
9482 struct dwo_file *dwo_file = data->dwo_file;
9483 struct dwo_unit *dwo_unit = &data->dwo_unit;
9484 struct attribute *attr;
9485
9486 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9487 if (attr == NULL)
9488 {
9489 complaint (&symfile_complaints,
9490 _("Dwarf Error: debug entry at offset 0x%x is missing"
9491 " its dwo_id [in module %s]"),
9492 offset.sect_off, dwo_file->dwo_name);
9493 return;
9494 }
9495
9496 dwo_unit->dwo_file = dwo_file;
9497 dwo_unit->signature = DW_UNSND (attr);
9498 dwo_unit->section = section;
9499 dwo_unit->offset = offset;
9500 dwo_unit->length = cu->per_cu->length;
9501
9502 if (dwarf2_read_debug)
9503 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9504 offset.sect_off, hex_string (dwo_unit->signature));
9505 }
9506
9507 /* Create the dwo_unit for the lone CU in DWO_FILE.
9508 Note: This function processes DWO files only, not DWP files. */
9509
9510 static struct dwo_unit *
9511 create_dwo_cu (struct dwo_file *dwo_file)
9512 {
9513 struct objfile *objfile = dwarf2_per_objfile->objfile;
9514 struct dwarf2_section_info *section = &dwo_file->sections.info;
9515 bfd *abfd;
9516 htab_t cu_htab;
9517 const gdb_byte *info_ptr, *end_ptr;
9518 struct create_dwo_cu_data create_dwo_cu_data;
9519 struct dwo_unit *dwo_unit;
9520
9521 dwarf2_read_section (objfile, section);
9522 info_ptr = section->buffer;
9523
9524 if (info_ptr == NULL)
9525 return NULL;
9526
9527 /* We can't set abfd until now because the section may be empty or
9528 not present, in which case section->asection will be NULL. */
9529 abfd = get_section_bfd_owner (section);
9530
9531 if (dwarf2_read_debug)
9532 {
9533 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
9534 get_section_name (section),
9535 get_section_file_name (section));
9536 }
9537
9538 create_dwo_cu_data.dwo_file = dwo_file;
9539 dwo_unit = NULL;
9540
9541 end_ptr = info_ptr + section->size;
9542 while (info_ptr < end_ptr)
9543 {
9544 struct dwarf2_per_cu_data per_cu;
9545
9546 memset (&create_dwo_cu_data.dwo_unit, 0,
9547 sizeof (create_dwo_cu_data.dwo_unit));
9548 memset (&per_cu, 0, sizeof (per_cu));
9549 per_cu.objfile = objfile;
9550 per_cu.is_debug_types = 0;
9551 per_cu.offset.sect_off = info_ptr - section->buffer;
9552 per_cu.section = section;
9553
9554 init_cutu_and_read_dies_no_follow (&per_cu, dwo_file,
9555 create_dwo_cu_reader,
9556 &create_dwo_cu_data);
9557
9558 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
9559 {
9560 /* If we've already found one, complain. We only support one
9561 because having more than one requires hacking the dwo_name of
9562 each to match, which is highly unlikely to happen. */
9563 if (dwo_unit != NULL)
9564 {
9565 complaint (&symfile_complaints,
9566 _("Multiple CUs in DWO file %s [in module %s]"),
9567 dwo_file->dwo_name, objfile_name (objfile));
9568 break;
9569 }
9570
9571 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9572 *dwo_unit = create_dwo_cu_data.dwo_unit;
9573 }
9574
9575 info_ptr += per_cu.length;
9576 }
9577
9578 return dwo_unit;
9579 }
9580
9581 /* DWP file .debug_{cu,tu}_index section format:
9582 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9583
9584 DWP Version 1:
9585
9586 Both index sections have the same format, and serve to map a 64-bit
9587 signature to a set of section numbers. Each section begins with a header,
9588 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9589 indexes, and a pool of 32-bit section numbers. The index sections will be
9590 aligned at 8-byte boundaries in the file.
9591
9592 The index section header consists of:
9593
9594 V, 32 bit version number
9595 -, 32 bits unused
9596 N, 32 bit number of compilation units or type units in the index
9597 M, 32 bit number of slots in the hash table
9598
9599 Numbers are recorded using the byte order of the application binary.
9600
9601 The hash table begins at offset 16 in the section, and consists of an array
9602 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9603 order of the application binary). Unused slots in the hash table are 0.
9604 (We rely on the extreme unlikeliness of a signature being exactly 0.)
9605
9606 The parallel table begins immediately after the hash table
9607 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9608 array of 32-bit indexes (using the byte order of the application binary),
9609 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9610 table contains a 32-bit index into the pool of section numbers. For unused
9611 hash table slots, the corresponding entry in the parallel table will be 0.
9612
9613 The pool of section numbers begins immediately following the hash table
9614 (at offset 16 + 12 * M from the beginning of the section). The pool of
9615 section numbers consists of an array of 32-bit words (using the byte order
9616 of the application binary). Each item in the array is indexed starting
9617 from 0. The hash table entry provides the index of the first section
9618 number in the set. Additional section numbers in the set follow, and the
9619 set is terminated by a 0 entry (section number 0 is not used in ELF).
9620
9621 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9622 section must be the first entry in the set, and the .debug_abbrev.dwo must
9623 be the second entry. Other members of the set may follow in any order.
9624
9625 ---
9626
9627 DWP Version 2:
9628
9629 DWP Version 2 combines all the .debug_info, etc. sections into one,
9630 and the entries in the index tables are now offsets into these sections.
9631 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
9632 section.
9633
9634 Index Section Contents:
9635 Header
9636 Hash Table of Signatures dwp_hash_table.hash_table
9637 Parallel Table of Indices dwp_hash_table.unit_table
9638 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
9639 Table of Section Sizes dwp_hash_table.v2.sizes
9640
9641 The index section header consists of:
9642
9643 V, 32 bit version number
9644 L, 32 bit number of columns in the table of section offsets
9645 N, 32 bit number of compilation units or type units in the index
9646 M, 32 bit number of slots in the hash table
9647
9648 Numbers are recorded using the byte order of the application binary.
9649
9650 The hash table has the same format as version 1.
9651 The parallel table of indices has the same format as version 1,
9652 except that the entries are origin-1 indices into the table of sections
9653 offsets and the table of section sizes.
9654
9655 The table of offsets begins immediately following the parallel table
9656 (at offset 16 + 12 * M from the beginning of the section). The table is
9657 a two-dimensional array of 32-bit words (using the byte order of the
9658 application binary), with L columns and N+1 rows, in row-major order.
9659 Each row in the array is indexed starting from 0. The first row provides
9660 a key to the remaining rows: each column in this row provides an identifier
9661 for a debug section, and the offsets in the same column of subsequent rows
9662 refer to that section. The section identifiers are:
9663
9664 DW_SECT_INFO 1 .debug_info.dwo
9665 DW_SECT_TYPES 2 .debug_types.dwo
9666 DW_SECT_ABBREV 3 .debug_abbrev.dwo
9667 DW_SECT_LINE 4 .debug_line.dwo
9668 DW_SECT_LOC 5 .debug_loc.dwo
9669 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
9670 DW_SECT_MACINFO 7 .debug_macinfo.dwo
9671 DW_SECT_MACRO 8 .debug_macro.dwo
9672
9673 The offsets provided by the CU and TU index sections are the base offsets
9674 for the contributions made by each CU or TU to the corresponding section
9675 in the package file. Each CU and TU header contains an abbrev_offset
9676 field, used to find the abbreviations table for that CU or TU within the
9677 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
9678 be interpreted as relative to the base offset given in the index section.
9679 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
9680 should be interpreted as relative to the base offset for .debug_line.dwo,
9681 and offsets into other debug sections obtained from DWARF attributes should
9682 also be interpreted as relative to the corresponding base offset.
9683
9684 The table of sizes begins immediately following the table of offsets.
9685 Like the table of offsets, it is a two-dimensional array of 32-bit words,
9686 with L columns and N rows, in row-major order. Each row in the array is
9687 indexed starting from 1 (row 0 is shared by the two tables).
9688
9689 ---
9690
9691 Hash table lookup is handled the same in version 1 and 2:
9692
9693 We assume that N and M will not exceed 2^32 - 1.
9694 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
9695
9696 Given a 64-bit compilation unit signature or a type signature S, an entry
9697 in the hash table is located as follows:
9698
9699 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
9700 the low-order k bits all set to 1.
9701
9702 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
9703
9704 3) If the hash table entry at index H matches the signature, use that
9705 entry. If the hash table entry at index H is unused (all zeroes),
9706 terminate the search: the signature is not present in the table.
9707
9708 4) Let H = (H + H') modulo M. Repeat at Step 3.
9709
9710 Because M > N and H' and M are relatively prime, the search is guaranteed
9711 to stop at an unused slot or find the match. */
9712
9713 /* Create a hash table to map DWO IDs to their CU/TU entry in
9714 .debug_{info,types}.dwo in DWP_FILE.
9715 Returns NULL if there isn't one.
9716 Note: This function processes DWP files only, not DWO files. */
9717
9718 static struct dwp_hash_table *
9719 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
9720 {
9721 struct objfile *objfile = dwarf2_per_objfile->objfile;
9722 bfd *dbfd = dwp_file->dbfd;
9723 const gdb_byte *index_ptr, *index_end;
9724 struct dwarf2_section_info *index;
9725 uint32_t version, nr_columns, nr_units, nr_slots;
9726 struct dwp_hash_table *htab;
9727
9728 if (is_debug_types)
9729 index = &dwp_file->sections.tu_index;
9730 else
9731 index = &dwp_file->sections.cu_index;
9732
9733 if (dwarf2_section_empty_p (index))
9734 return NULL;
9735 dwarf2_read_section (objfile, index);
9736
9737 index_ptr = index->buffer;
9738 index_end = index_ptr + index->size;
9739
9740 version = read_4_bytes (dbfd, index_ptr);
9741 index_ptr += 4;
9742 if (version == 2)
9743 nr_columns = read_4_bytes (dbfd, index_ptr);
9744 else
9745 nr_columns = 0;
9746 index_ptr += 4;
9747 nr_units = read_4_bytes (dbfd, index_ptr);
9748 index_ptr += 4;
9749 nr_slots = read_4_bytes (dbfd, index_ptr);
9750 index_ptr += 4;
9751
9752 if (version != 1 && version != 2)
9753 {
9754 error (_("Dwarf Error: unsupported DWP file version (%s)"
9755 " [in module %s]"),
9756 pulongest (version), dwp_file->name);
9757 }
9758 if (nr_slots != (nr_slots & -nr_slots))
9759 {
9760 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
9761 " is not power of 2 [in module %s]"),
9762 pulongest (nr_slots), dwp_file->name);
9763 }
9764
9765 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
9766 htab->version = version;
9767 htab->nr_columns = nr_columns;
9768 htab->nr_units = nr_units;
9769 htab->nr_slots = nr_slots;
9770 htab->hash_table = index_ptr;
9771 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
9772
9773 /* Exit early if the table is empty. */
9774 if (nr_slots == 0 || nr_units == 0
9775 || (version == 2 && nr_columns == 0))
9776 {
9777 /* All must be zero. */
9778 if (nr_slots != 0 || nr_units != 0
9779 || (version == 2 && nr_columns != 0))
9780 {
9781 complaint (&symfile_complaints,
9782 _("Empty DWP but nr_slots,nr_units,nr_columns not"
9783 " all zero [in modules %s]"),
9784 dwp_file->name);
9785 }
9786 return htab;
9787 }
9788
9789 if (version == 1)
9790 {
9791 htab->section_pool.v1.indices =
9792 htab->unit_table + sizeof (uint32_t) * nr_slots;
9793 /* It's harder to decide whether the section is too small in v1.
9794 V1 is deprecated anyway so we punt. */
9795 }
9796 else
9797 {
9798 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
9799 int *ids = htab->section_pool.v2.section_ids;
9800 /* Reverse map for error checking. */
9801 int ids_seen[DW_SECT_MAX + 1];
9802 int i;
9803
9804 if (nr_columns < 2)
9805 {
9806 error (_("Dwarf Error: bad DWP hash table, too few columns"
9807 " in section table [in module %s]"),
9808 dwp_file->name);
9809 }
9810 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
9811 {
9812 error (_("Dwarf Error: bad DWP hash table, too many columns"
9813 " in section table [in module %s]"),
9814 dwp_file->name);
9815 }
9816 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9817 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9818 for (i = 0; i < nr_columns; ++i)
9819 {
9820 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
9821
9822 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
9823 {
9824 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
9825 " in section table [in module %s]"),
9826 id, dwp_file->name);
9827 }
9828 if (ids_seen[id] != -1)
9829 {
9830 error (_("Dwarf Error: bad DWP hash table, duplicate section"
9831 " id %d in section table [in module %s]"),
9832 id, dwp_file->name);
9833 }
9834 ids_seen[id] = i;
9835 ids[i] = id;
9836 }
9837 /* Must have exactly one info or types section. */
9838 if (((ids_seen[DW_SECT_INFO] != -1)
9839 + (ids_seen[DW_SECT_TYPES] != -1))
9840 != 1)
9841 {
9842 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
9843 " DWO info/types section [in module %s]"),
9844 dwp_file->name);
9845 }
9846 /* Must have an abbrev section. */
9847 if (ids_seen[DW_SECT_ABBREV] == -1)
9848 {
9849 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
9850 " section [in module %s]"),
9851 dwp_file->name);
9852 }
9853 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
9854 htab->section_pool.v2.sizes =
9855 htab->section_pool.v2.offsets + (sizeof (uint32_t)
9856 * nr_units * nr_columns);
9857 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
9858 * nr_units * nr_columns))
9859 > index_end)
9860 {
9861 error (_("Dwarf Error: DWP index section is corrupt (too small)"
9862 " [in module %s]"),
9863 dwp_file->name);
9864 }
9865 }
9866
9867 return htab;
9868 }
9869
9870 /* Update SECTIONS with the data from SECTP.
9871
9872 This function is like the other "locate" section routines that are
9873 passed to bfd_map_over_sections, but in this context the sections to
9874 read comes from the DWP V1 hash table, not the full ELF section table.
9875
9876 The result is non-zero for success, or zero if an error was found. */
9877
9878 static int
9879 locate_v1_virtual_dwo_sections (asection *sectp,
9880 struct virtual_v1_dwo_sections *sections)
9881 {
9882 const struct dwop_section_names *names = &dwop_section_names;
9883
9884 if (section_is_p (sectp->name, &names->abbrev_dwo))
9885 {
9886 /* There can be only one. */
9887 if (sections->abbrev.s.asection != NULL)
9888 return 0;
9889 sections->abbrev.s.asection = sectp;
9890 sections->abbrev.size = bfd_get_section_size (sectp);
9891 }
9892 else if (section_is_p (sectp->name, &names->info_dwo)
9893 || section_is_p (sectp->name, &names->types_dwo))
9894 {
9895 /* There can be only one. */
9896 if (sections->info_or_types.s.asection != NULL)
9897 return 0;
9898 sections->info_or_types.s.asection = sectp;
9899 sections->info_or_types.size = bfd_get_section_size (sectp);
9900 }
9901 else if (section_is_p (sectp->name, &names->line_dwo))
9902 {
9903 /* There can be only one. */
9904 if (sections->line.s.asection != NULL)
9905 return 0;
9906 sections->line.s.asection = sectp;
9907 sections->line.size = bfd_get_section_size (sectp);
9908 }
9909 else if (section_is_p (sectp->name, &names->loc_dwo))
9910 {
9911 /* There can be only one. */
9912 if (sections->loc.s.asection != NULL)
9913 return 0;
9914 sections->loc.s.asection = sectp;
9915 sections->loc.size = bfd_get_section_size (sectp);
9916 }
9917 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9918 {
9919 /* There can be only one. */
9920 if (sections->macinfo.s.asection != NULL)
9921 return 0;
9922 sections->macinfo.s.asection = sectp;
9923 sections->macinfo.size = bfd_get_section_size (sectp);
9924 }
9925 else if (section_is_p (sectp->name, &names->macro_dwo))
9926 {
9927 /* There can be only one. */
9928 if (sections->macro.s.asection != NULL)
9929 return 0;
9930 sections->macro.s.asection = sectp;
9931 sections->macro.size = bfd_get_section_size (sectp);
9932 }
9933 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9934 {
9935 /* There can be only one. */
9936 if (sections->str_offsets.s.asection != NULL)
9937 return 0;
9938 sections->str_offsets.s.asection = sectp;
9939 sections->str_offsets.size = bfd_get_section_size (sectp);
9940 }
9941 else
9942 {
9943 /* No other kind of section is valid. */
9944 return 0;
9945 }
9946
9947 return 1;
9948 }
9949
9950 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
9951 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
9952 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
9953 This is for DWP version 1 files. */
9954
9955 static struct dwo_unit *
9956 create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
9957 uint32_t unit_index,
9958 const char *comp_dir,
9959 ULONGEST signature, int is_debug_types)
9960 {
9961 struct objfile *objfile = dwarf2_per_objfile->objfile;
9962 const struct dwp_hash_table *dwp_htab =
9963 is_debug_types ? dwp_file->tus : dwp_file->cus;
9964 bfd *dbfd = dwp_file->dbfd;
9965 const char *kind = is_debug_types ? "TU" : "CU";
9966 struct dwo_file *dwo_file;
9967 struct dwo_unit *dwo_unit;
9968 struct virtual_v1_dwo_sections sections;
9969 void **dwo_file_slot;
9970 char *virtual_dwo_name;
9971 struct dwarf2_section_info *cutu;
9972 struct cleanup *cleanups;
9973 int i;
9974
9975 gdb_assert (dwp_file->version == 1);
9976
9977 if (dwarf2_read_debug)
9978 {
9979 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
9980 kind,
9981 pulongest (unit_index), hex_string (signature),
9982 dwp_file->name);
9983 }
9984
9985 /* Fetch the sections of this DWO unit.
9986 Put a limit on the number of sections we look for so that bad data
9987 doesn't cause us to loop forever. */
9988
9989 #define MAX_NR_V1_DWO_SECTIONS \
9990 (1 /* .debug_info or .debug_types */ \
9991 + 1 /* .debug_abbrev */ \
9992 + 1 /* .debug_line */ \
9993 + 1 /* .debug_loc */ \
9994 + 1 /* .debug_str_offsets */ \
9995 + 1 /* .debug_macro or .debug_macinfo */ \
9996 + 1 /* trailing zero */)
9997
9998 memset (&sections, 0, sizeof (sections));
9999 cleanups = make_cleanup (null_cleanup, 0);
10000
10001 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
10002 {
10003 asection *sectp;
10004 uint32_t section_nr =
10005 read_4_bytes (dbfd,
10006 dwp_htab->section_pool.v1.indices
10007 + (unit_index + i) * sizeof (uint32_t));
10008
10009 if (section_nr == 0)
10010 break;
10011 if (section_nr >= dwp_file->num_sections)
10012 {
10013 error (_("Dwarf Error: bad DWP hash table, section number too large"
10014 " [in module %s]"),
10015 dwp_file->name);
10016 }
10017
10018 sectp = dwp_file->elf_sections[section_nr];
10019 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
10020 {
10021 error (_("Dwarf Error: bad DWP hash table, invalid section found"
10022 " [in module %s]"),
10023 dwp_file->name);
10024 }
10025 }
10026
10027 if (i < 2
10028 || dwarf2_section_empty_p (&sections.info_or_types)
10029 || dwarf2_section_empty_p (&sections.abbrev))
10030 {
10031 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
10032 " [in module %s]"),
10033 dwp_file->name);
10034 }
10035 if (i == MAX_NR_V1_DWO_SECTIONS)
10036 {
10037 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
10038 " [in module %s]"),
10039 dwp_file->name);
10040 }
10041
10042 /* It's easier for the rest of the code if we fake a struct dwo_file and
10043 have dwo_unit "live" in that. At least for now.
10044
10045 The DWP file can be made up of a random collection of CUs and TUs.
10046 However, for each CU + set of TUs that came from the same original DWO
10047 file, we can combine them back into a virtual DWO file to save space
10048 (fewer struct dwo_file objects to allocate). Remember that for really
10049 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10050
10051 virtual_dwo_name =
10052 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
10053 get_section_id (&sections.abbrev),
10054 get_section_id (&sections.line),
10055 get_section_id (&sections.loc),
10056 get_section_id (&sections.str_offsets));
10057 make_cleanup (xfree, virtual_dwo_name);
10058 /* Can we use an existing virtual DWO file? */
10059 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10060 /* Create one if necessary. */
10061 if (*dwo_file_slot == NULL)
10062 {
10063 if (dwarf2_read_debug)
10064 {
10065 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10066 virtual_dwo_name);
10067 }
10068 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10069 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
10070 virtual_dwo_name,
10071 strlen (virtual_dwo_name));
10072 dwo_file->comp_dir = comp_dir;
10073 dwo_file->sections.abbrev = sections.abbrev;
10074 dwo_file->sections.line = sections.line;
10075 dwo_file->sections.loc = sections.loc;
10076 dwo_file->sections.macinfo = sections.macinfo;
10077 dwo_file->sections.macro = sections.macro;
10078 dwo_file->sections.str_offsets = sections.str_offsets;
10079 /* The "str" section is global to the entire DWP file. */
10080 dwo_file->sections.str = dwp_file->sections.str;
10081 /* The info or types section is assigned below to dwo_unit,
10082 there's no need to record it in dwo_file.
10083 Also, we can't simply record type sections in dwo_file because
10084 we record a pointer into the vector in dwo_unit. As we collect more
10085 types we'll grow the vector and eventually have to reallocate space
10086 for it, invalidating all copies of pointers into the previous
10087 contents. */
10088 *dwo_file_slot = dwo_file;
10089 }
10090 else
10091 {
10092 if (dwarf2_read_debug)
10093 {
10094 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10095 virtual_dwo_name);
10096 }
10097 dwo_file = *dwo_file_slot;
10098 }
10099 do_cleanups (cleanups);
10100
10101 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10102 dwo_unit->dwo_file = dwo_file;
10103 dwo_unit->signature = signature;
10104 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
10105 sizeof (struct dwarf2_section_info));
10106 *dwo_unit->section = sections.info_or_types;
10107 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10108
10109 return dwo_unit;
10110 }
10111
10112 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
10113 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
10114 piece within that section used by a TU/CU, return a virtual section
10115 of just that piece. */
10116
10117 static struct dwarf2_section_info
10118 create_dwp_v2_section (struct dwarf2_section_info *section,
10119 bfd_size_type offset, bfd_size_type size)
10120 {
10121 struct dwarf2_section_info result;
10122 asection *sectp;
10123
10124 gdb_assert (section != NULL);
10125 gdb_assert (!section->is_virtual);
10126
10127 memset (&result, 0, sizeof (result));
10128 result.s.containing_section = section;
10129 result.is_virtual = 1;
10130
10131 if (size == 0)
10132 return result;
10133
10134 sectp = get_section_bfd_section (section);
10135
10136 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
10137 bounds of the real section. This is a pretty-rare event, so just
10138 flag an error (easier) instead of a warning and trying to cope. */
10139 if (sectp == NULL
10140 || offset + size > bfd_get_section_size (sectp))
10141 {
10142 bfd *abfd = sectp->owner;
10143
10144 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
10145 " in section %s [in module %s]"),
10146 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
10147 objfile_name (dwarf2_per_objfile->objfile));
10148 }
10149
10150 result.virtual_offset = offset;
10151 result.size = size;
10152 return result;
10153 }
10154
10155 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10156 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10157 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10158 This is for DWP version 2 files. */
10159
10160 static struct dwo_unit *
10161 create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
10162 uint32_t unit_index,
10163 const char *comp_dir,
10164 ULONGEST signature, int is_debug_types)
10165 {
10166 struct objfile *objfile = dwarf2_per_objfile->objfile;
10167 const struct dwp_hash_table *dwp_htab =
10168 is_debug_types ? dwp_file->tus : dwp_file->cus;
10169 bfd *dbfd = dwp_file->dbfd;
10170 const char *kind = is_debug_types ? "TU" : "CU";
10171 struct dwo_file *dwo_file;
10172 struct dwo_unit *dwo_unit;
10173 struct virtual_v2_dwo_sections sections;
10174 void **dwo_file_slot;
10175 char *virtual_dwo_name;
10176 struct dwarf2_section_info *cutu;
10177 struct cleanup *cleanups;
10178 int i;
10179
10180 gdb_assert (dwp_file->version == 2);
10181
10182 if (dwarf2_read_debug)
10183 {
10184 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
10185 kind,
10186 pulongest (unit_index), hex_string (signature),
10187 dwp_file->name);
10188 }
10189
10190 /* Fetch the section offsets of this DWO unit. */
10191
10192 memset (&sections, 0, sizeof (sections));
10193 cleanups = make_cleanup (null_cleanup, 0);
10194
10195 for (i = 0; i < dwp_htab->nr_columns; ++i)
10196 {
10197 uint32_t offset = read_4_bytes (dbfd,
10198 dwp_htab->section_pool.v2.offsets
10199 + (((unit_index - 1) * dwp_htab->nr_columns
10200 + i)
10201 * sizeof (uint32_t)));
10202 uint32_t size = read_4_bytes (dbfd,
10203 dwp_htab->section_pool.v2.sizes
10204 + (((unit_index - 1) * dwp_htab->nr_columns
10205 + i)
10206 * sizeof (uint32_t)));
10207
10208 switch (dwp_htab->section_pool.v2.section_ids[i])
10209 {
10210 case DW_SECT_INFO:
10211 case DW_SECT_TYPES:
10212 sections.info_or_types_offset = offset;
10213 sections.info_or_types_size = size;
10214 break;
10215 case DW_SECT_ABBREV:
10216 sections.abbrev_offset = offset;
10217 sections.abbrev_size = size;
10218 break;
10219 case DW_SECT_LINE:
10220 sections.line_offset = offset;
10221 sections.line_size = size;
10222 break;
10223 case DW_SECT_LOC:
10224 sections.loc_offset = offset;
10225 sections.loc_size = size;
10226 break;
10227 case DW_SECT_STR_OFFSETS:
10228 sections.str_offsets_offset = offset;
10229 sections.str_offsets_size = size;
10230 break;
10231 case DW_SECT_MACINFO:
10232 sections.macinfo_offset = offset;
10233 sections.macinfo_size = size;
10234 break;
10235 case DW_SECT_MACRO:
10236 sections.macro_offset = offset;
10237 sections.macro_size = size;
10238 break;
10239 }
10240 }
10241
10242 /* It's easier for the rest of the code if we fake a struct dwo_file and
10243 have dwo_unit "live" in that. At least for now.
10244
10245 The DWP file can be made up of a random collection of CUs and TUs.
10246 However, for each CU + set of TUs that came from the same original DWO
10247 file, we can combine them back into a virtual DWO file to save space
10248 (fewer struct dwo_file objects to allocate). Remember that for really
10249 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10250
10251 virtual_dwo_name =
10252 xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
10253 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
10254 (long) (sections.line_size ? sections.line_offset : 0),
10255 (long) (sections.loc_size ? sections.loc_offset : 0),
10256 (long) (sections.str_offsets_size
10257 ? sections.str_offsets_offset : 0));
10258 make_cleanup (xfree, virtual_dwo_name);
10259 /* Can we use an existing virtual DWO file? */
10260 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10261 /* Create one if necessary. */
10262 if (*dwo_file_slot == NULL)
10263 {
10264 if (dwarf2_read_debug)
10265 {
10266 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10267 virtual_dwo_name);
10268 }
10269 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10270 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
10271 virtual_dwo_name,
10272 strlen (virtual_dwo_name));
10273 dwo_file->comp_dir = comp_dir;
10274 dwo_file->sections.abbrev =
10275 create_dwp_v2_section (&dwp_file->sections.abbrev,
10276 sections.abbrev_offset, sections.abbrev_size);
10277 dwo_file->sections.line =
10278 create_dwp_v2_section (&dwp_file->sections.line,
10279 sections.line_offset, sections.line_size);
10280 dwo_file->sections.loc =
10281 create_dwp_v2_section (&dwp_file->sections.loc,
10282 sections.loc_offset, sections.loc_size);
10283 dwo_file->sections.macinfo =
10284 create_dwp_v2_section (&dwp_file->sections.macinfo,
10285 sections.macinfo_offset, sections.macinfo_size);
10286 dwo_file->sections.macro =
10287 create_dwp_v2_section (&dwp_file->sections.macro,
10288 sections.macro_offset, sections.macro_size);
10289 dwo_file->sections.str_offsets =
10290 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10291 sections.str_offsets_offset,
10292 sections.str_offsets_size);
10293 /* The "str" section is global to the entire DWP file. */
10294 dwo_file->sections.str = dwp_file->sections.str;
10295 /* The info or types section is assigned below to dwo_unit,
10296 there's no need to record it in dwo_file.
10297 Also, we can't simply record type sections in dwo_file because
10298 we record a pointer into the vector in dwo_unit. As we collect more
10299 types we'll grow the vector and eventually have to reallocate space
10300 for it, invalidating all copies of pointers into the previous
10301 contents. */
10302 *dwo_file_slot = dwo_file;
10303 }
10304 else
10305 {
10306 if (dwarf2_read_debug)
10307 {
10308 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10309 virtual_dwo_name);
10310 }
10311 dwo_file = *dwo_file_slot;
10312 }
10313 do_cleanups (cleanups);
10314
10315 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10316 dwo_unit->dwo_file = dwo_file;
10317 dwo_unit->signature = signature;
10318 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
10319 sizeof (struct dwarf2_section_info));
10320 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10321 ? &dwp_file->sections.types
10322 : &dwp_file->sections.info,
10323 sections.info_or_types_offset,
10324 sections.info_or_types_size);
10325 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10326
10327 return dwo_unit;
10328 }
10329
10330 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10331 Returns NULL if the signature isn't found. */
10332
10333 static struct dwo_unit *
10334 lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10335 ULONGEST signature, int is_debug_types)
10336 {
10337 const struct dwp_hash_table *dwp_htab =
10338 is_debug_types ? dwp_file->tus : dwp_file->cus;
10339 bfd *dbfd = dwp_file->dbfd;
10340 uint32_t mask = dwp_htab->nr_slots - 1;
10341 uint32_t hash = signature & mask;
10342 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10343 unsigned int i;
10344 void **slot;
10345 struct dwo_unit find_dwo_cu, *dwo_cu;
10346
10347 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10348 find_dwo_cu.signature = signature;
10349 slot = htab_find_slot (is_debug_types
10350 ? dwp_file->loaded_tus
10351 : dwp_file->loaded_cus,
10352 &find_dwo_cu, INSERT);
10353
10354 if (*slot != NULL)
10355 return *slot;
10356
10357 /* Use a for loop so that we don't loop forever on bad debug info. */
10358 for (i = 0; i < dwp_htab->nr_slots; ++i)
10359 {
10360 ULONGEST signature_in_table;
10361
10362 signature_in_table =
10363 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
10364 if (signature_in_table == signature)
10365 {
10366 uint32_t unit_index =
10367 read_4_bytes (dbfd,
10368 dwp_htab->unit_table + hash * sizeof (uint32_t));
10369
10370 if (dwp_file->version == 1)
10371 {
10372 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10373 comp_dir, signature,
10374 is_debug_types);
10375 }
10376 else
10377 {
10378 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10379 comp_dir, signature,
10380 is_debug_types);
10381 }
10382 return *slot;
10383 }
10384 if (signature_in_table == 0)
10385 return NULL;
10386 hash = (hash + hash2) & mask;
10387 }
10388
10389 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10390 " [in module %s]"),
10391 dwp_file->name);
10392 }
10393
10394 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
10395 Open the file specified by FILE_NAME and hand it off to BFD for
10396 preliminary analysis. Return a newly initialized bfd *, which
10397 includes a canonicalized copy of FILE_NAME.
10398 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
10399 SEARCH_CWD is true if the current directory is to be searched.
10400 It will be searched before debug-file-directory.
10401 If successful, the file is added to the bfd include table of the
10402 objfile's bfd (see gdb_bfd_record_inclusion).
10403 If unable to find/open the file, return NULL.
10404 NOTE: This function is derived from symfile_bfd_open. */
10405
10406 static bfd *
10407 try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
10408 {
10409 bfd *sym_bfd;
10410 int desc, flags;
10411 char *absolute_name;
10412 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10413 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10414 to debug_file_directory. */
10415 char *search_path;
10416 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10417
10418 if (search_cwd)
10419 {
10420 if (*debug_file_directory != '\0')
10421 search_path = concat (".", dirname_separator_string,
10422 debug_file_directory, NULL);
10423 else
10424 search_path = xstrdup (".");
10425 }
10426 else
10427 search_path = xstrdup (debug_file_directory);
10428
10429 flags = OPF_RETURN_REALPATH;
10430 if (is_dwp)
10431 flags |= OPF_SEARCH_IN_PATH;
10432 desc = openp (search_path, flags, file_name,
10433 O_RDONLY | O_BINARY, &absolute_name);
10434 xfree (search_path);
10435 if (desc < 0)
10436 return NULL;
10437
10438 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
10439 xfree (absolute_name);
10440 if (sym_bfd == NULL)
10441 return NULL;
10442 bfd_set_cacheable (sym_bfd, 1);
10443
10444 if (!bfd_check_format (sym_bfd, bfd_object))
10445 {
10446 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
10447 return NULL;
10448 }
10449
10450 /* Success. Record the bfd as having been included by the objfile's bfd.
10451 This is important because things like demangled_names_hash lives in the
10452 objfile's per_bfd space and may have references to things like symbol
10453 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
10454 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd);
10455
10456 return sym_bfd;
10457 }
10458
10459 /* Try to open DWO file FILE_NAME.
10460 COMP_DIR is the DW_AT_comp_dir attribute.
10461 The result is the bfd handle of the file.
10462 If there is a problem finding or opening the file, return NULL.
10463 Upon success, the canonicalized path of the file is stored in the bfd,
10464 same as symfile_bfd_open. */
10465
10466 static bfd *
10467 open_dwo_file (const char *file_name, const char *comp_dir)
10468 {
10469 bfd *abfd;
10470
10471 if (IS_ABSOLUTE_PATH (file_name))
10472 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
10473
10474 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10475
10476 if (comp_dir != NULL)
10477 {
10478 char *path_to_try = concat (comp_dir, SLASH_STRING, file_name, NULL);
10479
10480 /* NOTE: If comp_dir is a relative path, this will also try the
10481 search path, which seems useful. */
10482 abfd = try_open_dwop_file (path_to_try, 0 /*is_dwp*/, 1 /*search_cwd*/);
10483 xfree (path_to_try);
10484 if (abfd != NULL)
10485 return abfd;
10486 }
10487
10488 /* That didn't work, try debug-file-directory, which, despite its name,
10489 is a list of paths. */
10490
10491 if (*debug_file_directory == '\0')
10492 return NULL;
10493
10494 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
10495 }
10496
10497 /* This function is mapped across the sections and remembers the offset and
10498 size of each of the DWO debugging sections we are interested in. */
10499
10500 static void
10501 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10502 {
10503 struct dwo_sections *dwo_sections = dwo_sections_ptr;
10504 const struct dwop_section_names *names = &dwop_section_names;
10505
10506 if (section_is_p (sectp->name, &names->abbrev_dwo))
10507 {
10508 dwo_sections->abbrev.s.asection = sectp;
10509 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10510 }
10511 else if (section_is_p (sectp->name, &names->info_dwo))
10512 {
10513 dwo_sections->info.s.asection = sectp;
10514 dwo_sections->info.size = bfd_get_section_size (sectp);
10515 }
10516 else if (section_is_p (sectp->name, &names->line_dwo))
10517 {
10518 dwo_sections->line.s.asection = sectp;
10519 dwo_sections->line.size = bfd_get_section_size (sectp);
10520 }
10521 else if (section_is_p (sectp->name, &names->loc_dwo))
10522 {
10523 dwo_sections->loc.s.asection = sectp;
10524 dwo_sections->loc.size = bfd_get_section_size (sectp);
10525 }
10526 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10527 {
10528 dwo_sections->macinfo.s.asection = sectp;
10529 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10530 }
10531 else if (section_is_p (sectp->name, &names->macro_dwo))
10532 {
10533 dwo_sections->macro.s.asection = sectp;
10534 dwo_sections->macro.size = bfd_get_section_size (sectp);
10535 }
10536 else if (section_is_p (sectp->name, &names->str_dwo))
10537 {
10538 dwo_sections->str.s.asection = sectp;
10539 dwo_sections->str.size = bfd_get_section_size (sectp);
10540 }
10541 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10542 {
10543 dwo_sections->str_offsets.s.asection = sectp;
10544 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10545 }
10546 else if (section_is_p (sectp->name, &names->types_dwo))
10547 {
10548 struct dwarf2_section_info type_section;
10549
10550 memset (&type_section, 0, sizeof (type_section));
10551 type_section.s.asection = sectp;
10552 type_section.size = bfd_get_section_size (sectp);
10553 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10554 &type_section);
10555 }
10556 }
10557
10558 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
10559 by PER_CU. This is for the non-DWP case.
10560 The result is NULL if DWO_NAME can't be found. */
10561
10562 static struct dwo_file *
10563 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10564 const char *dwo_name, const char *comp_dir)
10565 {
10566 struct objfile *objfile = dwarf2_per_objfile->objfile;
10567 struct dwo_file *dwo_file;
10568 bfd *dbfd;
10569 struct cleanup *cleanups;
10570
10571 dbfd = open_dwo_file (dwo_name, comp_dir);
10572 if (dbfd == NULL)
10573 {
10574 if (dwarf2_read_debug)
10575 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10576 return NULL;
10577 }
10578 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10579 dwo_file->dwo_name = dwo_name;
10580 dwo_file->comp_dir = comp_dir;
10581 dwo_file->dbfd = dbfd;
10582
10583 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10584
10585 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
10586
10587 dwo_file->cu = create_dwo_cu (dwo_file);
10588
10589 dwo_file->tus = create_debug_types_hash_table (dwo_file,
10590 dwo_file->sections.types);
10591
10592 discard_cleanups (cleanups);
10593
10594 if (dwarf2_read_debug)
10595 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10596
10597 return dwo_file;
10598 }
10599
10600 /* This function is mapped across the sections and remembers the offset and
10601 size of each of the DWP debugging sections common to version 1 and 2 that
10602 we are interested in. */
10603
10604 static void
10605 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10606 void *dwp_file_ptr)
10607 {
10608 struct dwp_file *dwp_file = dwp_file_ptr;
10609 const struct dwop_section_names *names = &dwop_section_names;
10610 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10611
10612 /* Record the ELF section number for later lookup: this is what the
10613 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10614 gdb_assert (elf_section_nr < dwp_file->num_sections);
10615 dwp_file->elf_sections[elf_section_nr] = sectp;
10616
10617 /* Look for specific sections that we need. */
10618 if (section_is_p (sectp->name, &names->str_dwo))
10619 {
10620 dwp_file->sections.str.s.asection = sectp;
10621 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10622 }
10623 else if (section_is_p (sectp->name, &names->cu_index))
10624 {
10625 dwp_file->sections.cu_index.s.asection = sectp;
10626 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10627 }
10628 else if (section_is_p (sectp->name, &names->tu_index))
10629 {
10630 dwp_file->sections.tu_index.s.asection = sectp;
10631 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
10632 }
10633 }
10634
10635 /* This function is mapped across the sections and remembers the offset and
10636 size of each of the DWP version 2 debugging sections that we are interested
10637 in. This is split into a separate function because we don't know if we
10638 have version 1 or 2 until we parse the cu_index/tu_index sections. */
10639
10640 static void
10641 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
10642 {
10643 struct dwp_file *dwp_file = dwp_file_ptr;
10644 const struct dwop_section_names *names = &dwop_section_names;
10645 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10646
10647 /* Record the ELF section number for later lookup: this is what the
10648 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10649 gdb_assert (elf_section_nr < dwp_file->num_sections);
10650 dwp_file->elf_sections[elf_section_nr] = sectp;
10651
10652 /* Look for specific sections that we need. */
10653 if (section_is_p (sectp->name, &names->abbrev_dwo))
10654 {
10655 dwp_file->sections.abbrev.s.asection = sectp;
10656 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
10657 }
10658 else if (section_is_p (sectp->name, &names->info_dwo))
10659 {
10660 dwp_file->sections.info.s.asection = sectp;
10661 dwp_file->sections.info.size = bfd_get_section_size (sectp);
10662 }
10663 else if (section_is_p (sectp->name, &names->line_dwo))
10664 {
10665 dwp_file->sections.line.s.asection = sectp;
10666 dwp_file->sections.line.size = bfd_get_section_size (sectp);
10667 }
10668 else if (section_is_p (sectp->name, &names->loc_dwo))
10669 {
10670 dwp_file->sections.loc.s.asection = sectp;
10671 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
10672 }
10673 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10674 {
10675 dwp_file->sections.macinfo.s.asection = sectp;
10676 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
10677 }
10678 else if (section_is_p (sectp->name, &names->macro_dwo))
10679 {
10680 dwp_file->sections.macro.s.asection = sectp;
10681 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
10682 }
10683 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10684 {
10685 dwp_file->sections.str_offsets.s.asection = sectp;
10686 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
10687 }
10688 else if (section_is_p (sectp->name, &names->types_dwo))
10689 {
10690 dwp_file->sections.types.s.asection = sectp;
10691 dwp_file->sections.types.size = bfd_get_section_size (sectp);
10692 }
10693 }
10694
10695 /* Hash function for dwp_file loaded CUs/TUs. */
10696
10697 static hashval_t
10698 hash_dwp_loaded_cutus (const void *item)
10699 {
10700 const struct dwo_unit *dwo_unit = item;
10701
10702 /* This drops the top 32 bits of the signature, but is ok for a hash. */
10703 return dwo_unit->signature;
10704 }
10705
10706 /* Equality function for dwp_file loaded CUs/TUs. */
10707
10708 static int
10709 eq_dwp_loaded_cutus (const void *a, const void *b)
10710 {
10711 const struct dwo_unit *dua = a;
10712 const struct dwo_unit *dub = b;
10713
10714 return dua->signature == dub->signature;
10715 }
10716
10717 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
10718
10719 static htab_t
10720 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
10721 {
10722 return htab_create_alloc_ex (3,
10723 hash_dwp_loaded_cutus,
10724 eq_dwp_loaded_cutus,
10725 NULL,
10726 &objfile->objfile_obstack,
10727 hashtab_obstack_allocate,
10728 dummy_obstack_deallocate);
10729 }
10730
10731 /* Try to open DWP file FILE_NAME.
10732 The result is the bfd handle of the file.
10733 If there is a problem finding or opening the file, return NULL.
10734 Upon success, the canonicalized path of the file is stored in the bfd,
10735 same as symfile_bfd_open. */
10736
10737 static bfd *
10738 open_dwp_file (const char *file_name)
10739 {
10740 bfd *abfd;
10741
10742 abfd = try_open_dwop_file (file_name, 1 /*is_dwp*/, 1 /*search_cwd*/);
10743 if (abfd != NULL)
10744 return abfd;
10745
10746 /* Work around upstream bug 15652.
10747 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
10748 [Whether that's a "bug" is debatable, but it is getting in our way.]
10749 We have no real idea where the dwp file is, because gdb's realpath-ing
10750 of the executable's path may have discarded the needed info.
10751 [IWBN if the dwp file name was recorded in the executable, akin to
10752 .gnu_debuglink, but that doesn't exist yet.]
10753 Strip the directory from FILE_NAME and search again. */
10754 if (*debug_file_directory != '\0')
10755 {
10756 /* Don't implicitly search the current directory here.
10757 If the user wants to search "." to handle this case,
10758 it must be added to debug-file-directory. */
10759 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
10760 0 /*search_cwd*/);
10761 }
10762
10763 return NULL;
10764 }
10765
10766 /* Initialize the use of the DWP file for the current objfile.
10767 By convention the name of the DWP file is ${objfile}.dwp.
10768 The result is NULL if it can't be found. */
10769
10770 static struct dwp_file *
10771 open_and_init_dwp_file (void)
10772 {
10773 struct objfile *objfile = dwarf2_per_objfile->objfile;
10774 struct dwp_file *dwp_file;
10775 char *dwp_name;
10776 bfd *dbfd;
10777 struct cleanup *cleanups;
10778
10779 /* Try to find first .dwp for the binary file before any symbolic links
10780 resolving. */
10781 dwp_name = xstrprintf ("%s.dwp", objfile->original_name);
10782 cleanups = make_cleanup (xfree, dwp_name);
10783
10784 dbfd = open_dwp_file (dwp_name);
10785 if (dbfd == NULL
10786 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
10787 {
10788 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
10789 dwp_name = xstrprintf ("%s.dwp", objfile_name (objfile));
10790 make_cleanup (xfree, dwp_name);
10791 dbfd = open_dwp_file (dwp_name);
10792 }
10793
10794 if (dbfd == NULL)
10795 {
10796 if (dwarf2_read_debug)
10797 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
10798 do_cleanups (cleanups);
10799 return NULL;
10800 }
10801 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
10802 dwp_file->name = bfd_get_filename (dbfd);
10803 dwp_file->dbfd = dbfd;
10804 do_cleanups (cleanups);
10805
10806 /* +1: section 0 is unused */
10807 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
10808 dwp_file->elf_sections =
10809 OBSTACK_CALLOC (&objfile->objfile_obstack,
10810 dwp_file->num_sections, asection *);
10811
10812 bfd_map_over_sections (dbfd, dwarf2_locate_common_dwp_sections, dwp_file);
10813
10814 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
10815
10816 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
10817
10818 /* The DWP file version is stored in the hash table. Oh well. */
10819 if (dwp_file->cus->version != dwp_file->tus->version)
10820 {
10821 /* Technically speaking, we should try to limp along, but this is
10822 pretty bizarre. We use pulongest here because that's the established
10823 portability solution (e.g, we cannot use %u for uint32_t). */
10824 error (_("Dwarf Error: DWP file CU version %s doesn't match"
10825 " TU version %s [in DWP file %s]"),
10826 pulongest (dwp_file->cus->version),
10827 pulongest (dwp_file->tus->version), dwp_name);
10828 }
10829 dwp_file->version = dwp_file->cus->version;
10830
10831 if (dwp_file->version == 2)
10832 bfd_map_over_sections (dbfd, dwarf2_locate_v2_dwp_sections, dwp_file);
10833
10834 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
10835 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
10836
10837 if (dwarf2_read_debug)
10838 {
10839 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
10840 fprintf_unfiltered (gdb_stdlog,
10841 " %s CUs, %s TUs\n",
10842 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
10843 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
10844 }
10845
10846 return dwp_file;
10847 }
10848
10849 /* Wrapper around open_and_init_dwp_file, only open it once. */
10850
10851 static struct dwp_file *
10852 get_dwp_file (void)
10853 {
10854 if (! dwarf2_per_objfile->dwp_checked)
10855 {
10856 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
10857 dwarf2_per_objfile->dwp_checked = 1;
10858 }
10859 return dwarf2_per_objfile->dwp_file;
10860 }
10861
10862 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
10863 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
10864 or in the DWP file for the objfile, referenced by THIS_UNIT.
10865 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
10866 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
10867
10868 This is called, for example, when wanting to read a variable with a
10869 complex location. Therefore we don't want to do file i/o for every call.
10870 Therefore we don't want to look for a DWO file on every call.
10871 Therefore we first see if we've already seen SIGNATURE in a DWP file,
10872 then we check if we've already seen DWO_NAME, and only THEN do we check
10873 for a DWO file.
10874
10875 The result is a pointer to the dwo_unit object or NULL if we didn't find it
10876 (dwo_id mismatch or couldn't find the DWO/DWP file). */
10877
10878 static struct dwo_unit *
10879 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
10880 const char *dwo_name, const char *comp_dir,
10881 ULONGEST signature, int is_debug_types)
10882 {
10883 struct objfile *objfile = dwarf2_per_objfile->objfile;
10884 const char *kind = is_debug_types ? "TU" : "CU";
10885 void **dwo_file_slot;
10886 struct dwo_file *dwo_file;
10887 struct dwp_file *dwp_file;
10888
10889 /* First see if there's a DWP file.
10890 If we have a DWP file but didn't find the DWO inside it, don't
10891 look for the original DWO file. It makes gdb behave differently
10892 depending on whether one is debugging in the build tree. */
10893
10894 dwp_file = get_dwp_file ();
10895 if (dwp_file != NULL)
10896 {
10897 const struct dwp_hash_table *dwp_htab =
10898 is_debug_types ? dwp_file->tus : dwp_file->cus;
10899
10900 if (dwp_htab != NULL)
10901 {
10902 struct dwo_unit *dwo_cutu =
10903 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
10904 signature, is_debug_types);
10905
10906 if (dwo_cutu != NULL)
10907 {
10908 if (dwarf2_read_debug)
10909 {
10910 fprintf_unfiltered (gdb_stdlog,
10911 "Virtual DWO %s %s found: @%s\n",
10912 kind, hex_string (signature),
10913 host_address_to_string (dwo_cutu));
10914 }
10915 return dwo_cutu;
10916 }
10917 }
10918 }
10919 else
10920 {
10921 /* No DWP file, look for the DWO file. */
10922
10923 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
10924 if (*dwo_file_slot == NULL)
10925 {
10926 /* Read in the file and build a table of the CUs/TUs it contains. */
10927 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
10928 }
10929 /* NOTE: This will be NULL if unable to open the file. */
10930 dwo_file = *dwo_file_slot;
10931
10932 if (dwo_file != NULL)
10933 {
10934 struct dwo_unit *dwo_cutu = NULL;
10935
10936 if (is_debug_types && dwo_file->tus)
10937 {
10938 struct dwo_unit find_dwo_cutu;
10939
10940 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
10941 find_dwo_cutu.signature = signature;
10942 dwo_cutu = htab_find (dwo_file->tus, &find_dwo_cutu);
10943 }
10944 else if (!is_debug_types && dwo_file->cu)
10945 {
10946 if (signature == dwo_file->cu->signature)
10947 dwo_cutu = dwo_file->cu;
10948 }
10949
10950 if (dwo_cutu != NULL)
10951 {
10952 if (dwarf2_read_debug)
10953 {
10954 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
10955 kind, dwo_name, hex_string (signature),
10956 host_address_to_string (dwo_cutu));
10957 }
10958 return dwo_cutu;
10959 }
10960 }
10961 }
10962
10963 /* We didn't find it. This could mean a dwo_id mismatch, or
10964 someone deleted the DWO/DWP file, or the search path isn't set up
10965 correctly to find the file. */
10966
10967 if (dwarf2_read_debug)
10968 {
10969 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
10970 kind, dwo_name, hex_string (signature));
10971 }
10972
10973 /* This is a warning and not a complaint because it can be caused by
10974 pilot error (e.g., user accidentally deleting the DWO). */
10975 {
10976 /* Print the name of the DWP file if we looked there, helps the user
10977 better diagnose the problem. */
10978 char *dwp_text = NULL;
10979 struct cleanup *cleanups;
10980
10981 if (dwp_file != NULL)
10982 dwp_text = xstrprintf (" [in DWP file %s]", lbasename (dwp_file->name));
10983 cleanups = make_cleanup (xfree, dwp_text);
10984
10985 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
10986 " [in module %s]"),
10987 kind, dwo_name, hex_string (signature),
10988 dwp_text != NULL ? dwp_text : "",
10989 this_unit->is_debug_types ? "TU" : "CU",
10990 this_unit->offset.sect_off, objfile_name (objfile));
10991
10992 do_cleanups (cleanups);
10993 }
10994 return NULL;
10995 }
10996
10997 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
10998 See lookup_dwo_cutu_unit for details. */
10999
11000 static struct dwo_unit *
11001 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
11002 const char *dwo_name, const char *comp_dir,
11003 ULONGEST signature)
11004 {
11005 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
11006 }
11007
11008 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
11009 See lookup_dwo_cutu_unit for details. */
11010
11011 static struct dwo_unit *
11012 lookup_dwo_type_unit (struct signatured_type *this_tu,
11013 const char *dwo_name, const char *comp_dir)
11014 {
11015 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
11016 }
11017
11018 /* Traversal function for queue_and_load_all_dwo_tus. */
11019
11020 static int
11021 queue_and_load_dwo_tu (void **slot, void *info)
11022 {
11023 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
11024 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
11025 ULONGEST signature = dwo_unit->signature;
11026 struct signatured_type *sig_type =
11027 lookup_dwo_signatured_type (per_cu->cu, signature);
11028
11029 if (sig_type != NULL)
11030 {
11031 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
11032
11033 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
11034 a real dependency of PER_CU on SIG_TYPE. That is detected later
11035 while processing PER_CU. */
11036 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
11037 load_full_type_unit (sig_cu);
11038 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
11039 }
11040
11041 return 1;
11042 }
11043
11044 /* Queue all TUs contained in the DWO of PER_CU to be read in.
11045 The DWO may have the only definition of the type, though it may not be
11046 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
11047 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
11048
11049 static void
11050 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
11051 {
11052 struct dwo_unit *dwo_unit;
11053 struct dwo_file *dwo_file;
11054
11055 gdb_assert (!per_cu->is_debug_types);
11056 gdb_assert (get_dwp_file () == NULL);
11057 gdb_assert (per_cu->cu != NULL);
11058
11059 dwo_unit = per_cu->cu->dwo_unit;
11060 gdb_assert (dwo_unit != NULL);
11061
11062 dwo_file = dwo_unit->dwo_file;
11063 if (dwo_file->tus != NULL)
11064 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
11065 }
11066
11067 /* Free all resources associated with DWO_FILE.
11068 Close the DWO file and munmap the sections.
11069 All memory should be on the objfile obstack. */
11070
11071 static void
11072 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
11073 {
11074 int ix;
11075 struct dwarf2_section_info *section;
11076
11077 /* Note: dbfd is NULL for virtual DWO files. */
11078 gdb_bfd_unref (dwo_file->dbfd);
11079
11080 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
11081 }
11082
11083 /* Wrapper for free_dwo_file for use in cleanups. */
11084
11085 static void
11086 free_dwo_file_cleanup (void *arg)
11087 {
11088 struct dwo_file *dwo_file = (struct dwo_file *) arg;
11089 struct objfile *objfile = dwarf2_per_objfile->objfile;
11090
11091 free_dwo_file (dwo_file, objfile);
11092 }
11093
11094 /* Traversal function for free_dwo_files. */
11095
11096 static int
11097 free_dwo_file_from_slot (void **slot, void *info)
11098 {
11099 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
11100 struct objfile *objfile = (struct objfile *) info;
11101
11102 free_dwo_file (dwo_file, objfile);
11103
11104 return 1;
11105 }
11106
11107 /* Free all resources associated with DWO_FILES. */
11108
11109 static void
11110 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
11111 {
11112 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
11113 }
11114 \f
11115 /* Read in various DIEs. */
11116
11117 /* qsort helper for inherit_abstract_dies. */
11118
11119 static int
11120 unsigned_int_compar (const void *ap, const void *bp)
11121 {
11122 unsigned int a = *(unsigned int *) ap;
11123 unsigned int b = *(unsigned int *) bp;
11124
11125 return (a > b) - (b > a);
11126 }
11127
11128 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
11129 Inherit only the children of the DW_AT_abstract_origin DIE not being
11130 already referenced by DW_AT_abstract_origin from the children of the
11131 current DIE. */
11132
11133 static void
11134 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
11135 {
11136 struct die_info *child_die;
11137 unsigned die_children_count;
11138 /* CU offsets which were referenced by children of the current DIE. */
11139 sect_offset *offsets;
11140 sect_offset *offsets_end, *offsetp;
11141 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
11142 struct die_info *origin_die;
11143 /* Iterator of the ORIGIN_DIE children. */
11144 struct die_info *origin_child_die;
11145 struct cleanup *cleanups;
11146 struct attribute *attr;
11147 struct dwarf2_cu *origin_cu;
11148 struct pending **origin_previous_list_in_scope;
11149
11150 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11151 if (!attr)
11152 return;
11153
11154 /* Note that following die references may follow to a die in a
11155 different cu. */
11156
11157 origin_cu = cu;
11158 origin_die = follow_die_ref (die, attr, &origin_cu);
11159
11160 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
11161 symbols in. */
11162 origin_previous_list_in_scope = origin_cu->list_in_scope;
11163 origin_cu->list_in_scope = cu->list_in_scope;
11164
11165 if (die->tag != origin_die->tag
11166 && !(die->tag == DW_TAG_inlined_subroutine
11167 && origin_die->tag == DW_TAG_subprogram))
11168 complaint (&symfile_complaints,
11169 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
11170 die->offset.sect_off, origin_die->offset.sect_off);
11171
11172 child_die = die->child;
11173 die_children_count = 0;
11174 while (child_die && child_die->tag)
11175 {
11176 child_die = sibling_die (child_die);
11177 die_children_count++;
11178 }
11179 offsets = xmalloc (sizeof (*offsets) * die_children_count);
11180 cleanups = make_cleanup (xfree, offsets);
11181
11182 offsets_end = offsets;
11183 child_die = die->child;
11184 while (child_die && child_die->tag)
11185 {
11186 /* For each CHILD_DIE, find the corresponding child of
11187 ORIGIN_DIE. If there is more than one layer of
11188 DW_AT_abstract_origin, follow them all; there shouldn't be,
11189 but GCC versions at least through 4.4 generate this (GCC PR
11190 40573). */
11191 struct die_info *child_origin_die = child_die;
11192 struct dwarf2_cu *child_origin_cu = cu;
11193
11194 while (1)
11195 {
11196 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
11197 child_origin_cu);
11198 if (attr == NULL)
11199 break;
11200 child_origin_die = follow_die_ref (child_origin_die, attr,
11201 &child_origin_cu);
11202 }
11203
11204 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
11205 counterpart may exist. */
11206 if (child_origin_die != child_die)
11207 {
11208 if (child_die->tag != child_origin_die->tag
11209 && !(child_die->tag == DW_TAG_inlined_subroutine
11210 && child_origin_die->tag == DW_TAG_subprogram))
11211 complaint (&symfile_complaints,
11212 _("Child DIE 0x%x and its abstract origin 0x%x have "
11213 "different tags"), child_die->offset.sect_off,
11214 child_origin_die->offset.sect_off);
11215 if (child_origin_die->parent != origin_die)
11216 complaint (&symfile_complaints,
11217 _("Child DIE 0x%x and its abstract origin 0x%x have "
11218 "different parents"), child_die->offset.sect_off,
11219 child_origin_die->offset.sect_off);
11220 else
11221 *offsets_end++ = child_origin_die->offset;
11222 }
11223 child_die = sibling_die (child_die);
11224 }
11225 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
11226 unsigned_int_compar);
11227 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
11228 if (offsetp[-1].sect_off == offsetp->sect_off)
11229 complaint (&symfile_complaints,
11230 _("Multiple children of DIE 0x%x refer "
11231 "to DIE 0x%x as their abstract origin"),
11232 die->offset.sect_off, offsetp->sect_off);
11233
11234 offsetp = offsets;
11235 origin_child_die = origin_die->child;
11236 while (origin_child_die && origin_child_die->tag)
11237 {
11238 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
11239 while (offsetp < offsets_end
11240 && offsetp->sect_off < origin_child_die->offset.sect_off)
11241 offsetp++;
11242 if (offsetp >= offsets_end
11243 || offsetp->sect_off > origin_child_die->offset.sect_off)
11244 {
11245 /* Found that ORIGIN_CHILD_DIE is really not referenced.
11246 Check whether we're already processing ORIGIN_CHILD_DIE.
11247 This can happen with mutually referenced abstract_origins.
11248 PR 16581. */
11249 if (!origin_child_die->in_process)
11250 process_die (origin_child_die, origin_cu);
11251 }
11252 origin_child_die = sibling_die (origin_child_die);
11253 }
11254 origin_cu->list_in_scope = origin_previous_list_in_scope;
11255
11256 do_cleanups (cleanups);
11257 }
11258
11259 static void
11260 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
11261 {
11262 struct objfile *objfile = cu->objfile;
11263 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11264 struct context_stack *new;
11265 CORE_ADDR lowpc;
11266 CORE_ADDR highpc;
11267 struct die_info *child_die;
11268 struct attribute *attr, *call_line, *call_file;
11269 const char *name;
11270 CORE_ADDR baseaddr;
11271 struct block *block;
11272 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
11273 VEC (symbolp) *template_args = NULL;
11274 struct template_symbol *templ_func = NULL;
11275
11276 if (inlined_func)
11277 {
11278 /* If we do not have call site information, we can't show the
11279 caller of this inlined function. That's too confusing, so
11280 only use the scope for local variables. */
11281 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
11282 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
11283 if (call_line == NULL || call_file == NULL)
11284 {
11285 read_lexical_block_scope (die, cu);
11286 return;
11287 }
11288 }
11289
11290 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11291
11292 name = dwarf2_name (die, cu);
11293
11294 /* Ignore functions with missing or empty names. These are actually
11295 illegal according to the DWARF standard. */
11296 if (name == NULL)
11297 {
11298 complaint (&symfile_complaints,
11299 _("missing name for subprogram DIE at %d"),
11300 die->offset.sect_off);
11301 return;
11302 }
11303
11304 /* Ignore functions with missing or invalid low and high pc attributes. */
11305 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11306 {
11307 attr = dwarf2_attr (die, DW_AT_external, cu);
11308 if (!attr || !DW_UNSND (attr))
11309 complaint (&symfile_complaints,
11310 _("cannot get low and high bounds "
11311 "for subprogram DIE at %d"),
11312 die->offset.sect_off);
11313 return;
11314 }
11315
11316 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11317 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
11318
11319 /* If we have any template arguments, then we must allocate a
11320 different sort of symbol. */
11321 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11322 {
11323 if (child_die->tag == DW_TAG_template_type_param
11324 || child_die->tag == DW_TAG_template_value_param)
11325 {
11326 templ_func = allocate_template_symbol (objfile);
11327 templ_func->base.is_cplus_template_function = 1;
11328 break;
11329 }
11330 }
11331
11332 new = push_context (0, lowpc);
11333 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
11334 (struct symbol *) templ_func);
11335
11336 /* If there is a location expression for DW_AT_frame_base, record
11337 it. */
11338 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
11339 if (attr)
11340 dwarf2_symbol_mark_computed (attr, new->name, cu, 1);
11341
11342 cu->list_in_scope = &local_symbols;
11343
11344 if (die->child != NULL)
11345 {
11346 child_die = die->child;
11347 while (child_die && child_die->tag)
11348 {
11349 if (child_die->tag == DW_TAG_template_type_param
11350 || child_die->tag == DW_TAG_template_value_param)
11351 {
11352 struct symbol *arg = new_symbol (child_die, NULL, cu);
11353
11354 if (arg != NULL)
11355 VEC_safe_push (symbolp, template_args, arg);
11356 }
11357 else
11358 process_die (child_die, cu);
11359 child_die = sibling_die (child_die);
11360 }
11361 }
11362
11363 inherit_abstract_dies (die, cu);
11364
11365 /* If we have a DW_AT_specification, we might need to import using
11366 directives from the context of the specification DIE. See the
11367 comment in determine_prefix. */
11368 if (cu->language == language_cplus
11369 && dwarf2_attr (die, DW_AT_specification, cu))
11370 {
11371 struct dwarf2_cu *spec_cu = cu;
11372 struct die_info *spec_die = die_specification (die, &spec_cu);
11373
11374 while (spec_die)
11375 {
11376 child_die = spec_die->child;
11377 while (child_die && child_die->tag)
11378 {
11379 if (child_die->tag == DW_TAG_imported_module)
11380 process_die (child_die, spec_cu);
11381 child_die = sibling_die (child_die);
11382 }
11383
11384 /* In some cases, GCC generates specification DIEs that
11385 themselves contain DW_AT_specification attributes. */
11386 spec_die = die_specification (spec_die, &spec_cu);
11387 }
11388 }
11389
11390 new = pop_context ();
11391 /* Make a block for the local symbols within. */
11392 block = finish_block (new->name, &local_symbols, new->old_blocks,
11393 lowpc, highpc);
11394
11395 /* For C++, set the block's scope. */
11396 if ((cu->language == language_cplus || cu->language == language_fortran)
11397 && cu->processing_has_namespace_info)
11398 block_set_scope (block, determine_prefix (die, cu),
11399 &objfile->objfile_obstack);
11400
11401 /* If we have address ranges, record them. */
11402 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11403
11404 gdbarch_make_symbol_special (gdbarch, new->name, objfile);
11405
11406 /* Attach template arguments to function. */
11407 if (! VEC_empty (symbolp, template_args))
11408 {
11409 gdb_assert (templ_func != NULL);
11410
11411 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11412 templ_func->template_arguments
11413 = obstack_alloc (&objfile->objfile_obstack,
11414 (templ_func->n_template_arguments
11415 * sizeof (struct symbol *)));
11416 memcpy (templ_func->template_arguments,
11417 VEC_address (symbolp, template_args),
11418 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11419 VEC_free (symbolp, template_args);
11420 }
11421
11422 /* In C++, we can have functions nested inside functions (e.g., when
11423 a function declares a class that has methods). This means that
11424 when we finish processing a function scope, we may need to go
11425 back to building a containing block's symbol lists. */
11426 local_symbols = new->locals;
11427 using_directives = new->using_directives;
11428
11429 /* If we've finished processing a top-level function, subsequent
11430 symbols go in the file symbol list. */
11431 if (outermost_context_p ())
11432 cu->list_in_scope = &file_symbols;
11433 }
11434
11435 /* Process all the DIES contained within a lexical block scope. Start
11436 a new scope, process the dies, and then close the scope. */
11437
11438 static void
11439 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
11440 {
11441 struct objfile *objfile = cu->objfile;
11442 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11443 struct context_stack *new;
11444 CORE_ADDR lowpc, highpc;
11445 struct die_info *child_die;
11446 CORE_ADDR baseaddr;
11447
11448 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11449
11450 /* Ignore blocks with missing or invalid low and high pc attributes. */
11451 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11452 as multiple lexical blocks? Handling children in a sane way would
11453 be nasty. Might be easier to properly extend generic blocks to
11454 describe ranges. */
11455 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11456 return;
11457 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11458 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
11459
11460 push_context (0, lowpc);
11461 if (die->child != NULL)
11462 {
11463 child_die = die->child;
11464 while (child_die && child_die->tag)
11465 {
11466 process_die (child_die, cu);
11467 child_die = sibling_die (child_die);
11468 }
11469 }
11470 new = pop_context ();
11471
11472 if (local_symbols != NULL || using_directives != NULL)
11473 {
11474 struct block *block
11475 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
11476 highpc);
11477
11478 /* Note that recording ranges after traversing children, as we
11479 do here, means that recording a parent's ranges entails
11480 walking across all its children's ranges as they appear in
11481 the address map, which is quadratic behavior.
11482
11483 It would be nicer to record the parent's ranges before
11484 traversing its children, simply overriding whatever you find
11485 there. But since we don't even decide whether to create a
11486 block until after we've traversed its children, that's hard
11487 to do. */
11488 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11489 }
11490 local_symbols = new->locals;
11491 using_directives = new->using_directives;
11492 }
11493
11494 /* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
11495
11496 static void
11497 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11498 {
11499 struct objfile *objfile = cu->objfile;
11500 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11501 CORE_ADDR pc, baseaddr;
11502 struct attribute *attr;
11503 struct call_site *call_site, call_site_local;
11504 void **slot;
11505 int nparams;
11506 struct die_info *child_die;
11507
11508 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11509
11510 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11511 if (!attr)
11512 {
11513 complaint (&symfile_complaints,
11514 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
11515 "DIE 0x%x [in module %s]"),
11516 die->offset.sect_off, objfile_name (objfile));
11517 return;
11518 }
11519 pc = attr_value_as_address (attr) + baseaddr;
11520 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
11521
11522 if (cu->call_site_htab == NULL)
11523 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11524 NULL, &objfile->objfile_obstack,
11525 hashtab_obstack_allocate, NULL);
11526 call_site_local.pc = pc;
11527 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11528 if (*slot != NULL)
11529 {
11530 complaint (&symfile_complaints,
11531 _("Duplicate PC %s for DW_TAG_GNU_call_site "
11532 "DIE 0x%x [in module %s]"),
11533 paddress (gdbarch, pc), die->offset.sect_off,
11534 objfile_name (objfile));
11535 return;
11536 }
11537
11538 /* Count parameters at the caller. */
11539
11540 nparams = 0;
11541 for (child_die = die->child; child_die && child_die->tag;
11542 child_die = sibling_die (child_die))
11543 {
11544 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11545 {
11546 complaint (&symfile_complaints,
11547 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
11548 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11549 child_die->tag, child_die->offset.sect_off,
11550 objfile_name (objfile));
11551 continue;
11552 }
11553
11554 nparams++;
11555 }
11556
11557 call_site = obstack_alloc (&objfile->objfile_obstack,
11558 (sizeof (*call_site)
11559 + (sizeof (*call_site->parameter)
11560 * (nparams - 1))));
11561 *slot = call_site;
11562 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11563 call_site->pc = pc;
11564
11565 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
11566 {
11567 struct die_info *func_die;
11568
11569 /* Skip also over DW_TAG_inlined_subroutine. */
11570 for (func_die = die->parent;
11571 func_die && func_die->tag != DW_TAG_subprogram
11572 && func_die->tag != DW_TAG_subroutine_type;
11573 func_die = func_die->parent);
11574
11575 /* DW_AT_GNU_all_call_sites is a superset
11576 of DW_AT_GNU_all_tail_call_sites. */
11577 if (func_die
11578 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
11579 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
11580 {
11581 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
11582 not complete. But keep CALL_SITE for look ups via call_site_htab,
11583 both the initial caller containing the real return address PC and
11584 the final callee containing the current PC of a chain of tail
11585 calls do not need to have the tail call list complete. But any
11586 function candidate for a virtual tail call frame searched via
11587 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
11588 determined unambiguously. */
11589 }
11590 else
11591 {
11592 struct type *func_type = NULL;
11593
11594 if (func_die)
11595 func_type = get_die_type (func_die, cu);
11596 if (func_type != NULL)
11597 {
11598 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
11599
11600 /* Enlist this call site to the function. */
11601 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
11602 TYPE_TAIL_CALL_LIST (func_type) = call_site;
11603 }
11604 else
11605 complaint (&symfile_complaints,
11606 _("Cannot find function owning DW_TAG_GNU_call_site "
11607 "DIE 0x%x [in module %s]"),
11608 die->offset.sect_off, objfile_name (objfile));
11609 }
11610 }
11611
11612 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
11613 if (attr == NULL)
11614 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11615 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
11616 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
11617 /* Keep NULL DWARF_BLOCK. */;
11618 else if (attr_form_is_block (attr))
11619 {
11620 struct dwarf2_locexpr_baton *dlbaton;
11621
11622 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
11623 dlbaton->data = DW_BLOCK (attr)->data;
11624 dlbaton->size = DW_BLOCK (attr)->size;
11625 dlbaton->per_cu = cu->per_cu;
11626
11627 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
11628 }
11629 else if (attr_form_is_ref (attr))
11630 {
11631 struct dwarf2_cu *target_cu = cu;
11632 struct die_info *target_die;
11633
11634 target_die = follow_die_ref (die, attr, &target_cu);
11635 gdb_assert (target_cu->objfile == objfile);
11636 if (die_is_declaration (target_die, target_cu))
11637 {
11638 const char *target_physname = NULL;
11639 struct attribute *target_attr;
11640
11641 /* Prefer the mangled name; otherwise compute the demangled one. */
11642 target_attr = dwarf2_attr (target_die, DW_AT_linkage_name, target_cu);
11643 if (target_attr == NULL)
11644 target_attr = dwarf2_attr (target_die, DW_AT_MIPS_linkage_name,
11645 target_cu);
11646 if (target_attr != NULL && DW_STRING (target_attr) != NULL)
11647 target_physname = DW_STRING (target_attr);
11648 else
11649 target_physname = dwarf2_physname (NULL, target_die, target_cu);
11650 if (target_physname == NULL)
11651 complaint (&symfile_complaints,
11652 _("DW_AT_GNU_call_site_target target DIE has invalid "
11653 "physname, for referencing DIE 0x%x [in module %s]"),
11654 die->offset.sect_off, objfile_name (objfile));
11655 else
11656 SET_FIELD_PHYSNAME (call_site->target, target_physname);
11657 }
11658 else
11659 {
11660 CORE_ADDR lowpc;
11661
11662 /* DW_AT_entry_pc should be preferred. */
11663 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
11664 complaint (&symfile_complaints,
11665 _("DW_AT_GNU_call_site_target target DIE has invalid "
11666 "low pc, for referencing DIE 0x%x [in module %s]"),
11667 die->offset.sect_off, objfile_name (objfile));
11668 else
11669 {
11670 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11671 SET_FIELD_PHYSADDR (call_site->target, lowpc);
11672 }
11673 }
11674 }
11675 else
11676 complaint (&symfile_complaints,
11677 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
11678 "block nor reference, for DIE 0x%x [in module %s]"),
11679 die->offset.sect_off, objfile_name (objfile));
11680
11681 call_site->per_cu = cu->per_cu;
11682
11683 for (child_die = die->child;
11684 child_die && child_die->tag;
11685 child_die = sibling_die (child_die))
11686 {
11687 struct call_site_parameter *parameter;
11688 struct attribute *loc, *origin;
11689
11690 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11691 {
11692 /* Already printed the complaint above. */
11693 continue;
11694 }
11695
11696 gdb_assert (call_site->parameter_count < nparams);
11697 parameter = &call_site->parameter[call_site->parameter_count];
11698
11699 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
11700 specifies DW_TAG_formal_parameter. Value of the data assumed for the
11701 register is contained in DW_AT_GNU_call_site_value. */
11702
11703 loc = dwarf2_attr (child_die, DW_AT_location, cu);
11704 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
11705 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
11706 {
11707 sect_offset offset;
11708
11709 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
11710 offset = dwarf2_get_ref_die_offset (origin);
11711 if (!offset_in_cu_p (&cu->header, offset))
11712 {
11713 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
11714 binding can be done only inside one CU. Such referenced DIE
11715 therefore cannot be even moved to DW_TAG_partial_unit. */
11716 complaint (&symfile_complaints,
11717 _("DW_AT_abstract_origin offset is not in CU for "
11718 "DW_TAG_GNU_call_site child DIE 0x%x "
11719 "[in module %s]"),
11720 child_die->offset.sect_off, objfile_name (objfile));
11721 continue;
11722 }
11723 parameter->u.param_offset.cu_off = (offset.sect_off
11724 - cu->header.offset.sect_off);
11725 }
11726 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
11727 {
11728 complaint (&symfile_complaints,
11729 _("No DW_FORM_block* DW_AT_location for "
11730 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11731 child_die->offset.sect_off, objfile_name (objfile));
11732 continue;
11733 }
11734 else
11735 {
11736 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
11737 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
11738 if (parameter->u.dwarf_reg != -1)
11739 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
11740 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
11741 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
11742 &parameter->u.fb_offset))
11743 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
11744 else
11745 {
11746 complaint (&symfile_complaints,
11747 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
11748 "for DW_FORM_block* DW_AT_location is supported for "
11749 "DW_TAG_GNU_call_site child DIE 0x%x "
11750 "[in module %s]"),
11751 child_die->offset.sect_off, objfile_name (objfile));
11752 continue;
11753 }
11754 }
11755
11756 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
11757 if (!attr_form_is_block (attr))
11758 {
11759 complaint (&symfile_complaints,
11760 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
11761 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11762 child_die->offset.sect_off, objfile_name (objfile));
11763 continue;
11764 }
11765 parameter->value = DW_BLOCK (attr)->data;
11766 parameter->value_size = DW_BLOCK (attr)->size;
11767
11768 /* Parameters are not pre-cleared by memset above. */
11769 parameter->data_value = NULL;
11770 parameter->data_value_size = 0;
11771 call_site->parameter_count++;
11772
11773 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
11774 if (attr)
11775 {
11776 if (!attr_form_is_block (attr))
11777 complaint (&symfile_complaints,
11778 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
11779 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11780 child_die->offset.sect_off, objfile_name (objfile));
11781 else
11782 {
11783 parameter->data_value = DW_BLOCK (attr)->data;
11784 parameter->data_value_size = DW_BLOCK (attr)->size;
11785 }
11786 }
11787 }
11788 }
11789
11790 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
11791 Return 1 if the attributes are present and valid, otherwise, return 0.
11792 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
11793
11794 static int
11795 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
11796 CORE_ADDR *high_return, struct dwarf2_cu *cu,
11797 struct partial_symtab *ranges_pst)
11798 {
11799 struct objfile *objfile = cu->objfile;
11800 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11801 struct comp_unit_head *cu_header = &cu->header;
11802 bfd *obfd = objfile->obfd;
11803 unsigned int addr_size = cu_header->addr_size;
11804 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
11805 /* Base address selection entry. */
11806 CORE_ADDR base;
11807 int found_base;
11808 unsigned int dummy;
11809 const gdb_byte *buffer;
11810 CORE_ADDR marker;
11811 int low_set;
11812 CORE_ADDR low = 0;
11813 CORE_ADDR high = 0;
11814 CORE_ADDR baseaddr;
11815
11816 found_base = cu->base_known;
11817 base = cu->base_address;
11818
11819 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
11820 if (offset >= dwarf2_per_objfile->ranges.size)
11821 {
11822 complaint (&symfile_complaints,
11823 _("Offset %d out of bounds for DW_AT_ranges attribute"),
11824 offset);
11825 return 0;
11826 }
11827 buffer = dwarf2_per_objfile->ranges.buffer + offset;
11828
11829 /* Read in the largest possible address. */
11830 marker = read_address (obfd, buffer, cu, &dummy);
11831 if ((marker & mask) == mask)
11832 {
11833 /* If we found the largest possible address, then
11834 read the base address. */
11835 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11836 buffer += 2 * addr_size;
11837 offset += 2 * addr_size;
11838 found_base = 1;
11839 }
11840
11841 low_set = 0;
11842
11843 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11844
11845 while (1)
11846 {
11847 CORE_ADDR range_beginning, range_end;
11848
11849 range_beginning = read_address (obfd, buffer, cu, &dummy);
11850 buffer += addr_size;
11851 range_end = read_address (obfd, buffer, cu, &dummy);
11852 buffer += addr_size;
11853 offset += 2 * addr_size;
11854
11855 /* An end of list marker is a pair of zero addresses. */
11856 if (range_beginning == 0 && range_end == 0)
11857 /* Found the end of list entry. */
11858 break;
11859
11860 /* Each base address selection entry is a pair of 2 values.
11861 The first is the largest possible address, the second is
11862 the base address. Check for a base address here. */
11863 if ((range_beginning & mask) == mask)
11864 {
11865 /* If we found the largest possible address, then
11866 read the base address. */
11867 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11868 found_base = 1;
11869 continue;
11870 }
11871
11872 if (!found_base)
11873 {
11874 /* We have no valid base address for the ranges
11875 data. */
11876 complaint (&symfile_complaints,
11877 _("Invalid .debug_ranges data (no base address)"));
11878 return 0;
11879 }
11880
11881 if (range_beginning > range_end)
11882 {
11883 /* Inverted range entries are invalid. */
11884 complaint (&symfile_complaints,
11885 _("Invalid .debug_ranges data (inverted range)"));
11886 return 0;
11887 }
11888
11889 /* Empty range entries have no effect. */
11890 if (range_beginning == range_end)
11891 continue;
11892
11893 range_beginning += base;
11894 range_end += base;
11895
11896 /* A not-uncommon case of bad debug info.
11897 Don't pollute the addrmap with bad data. */
11898 if (range_beginning + baseaddr == 0
11899 && !dwarf2_per_objfile->has_section_at_zero)
11900 {
11901 complaint (&symfile_complaints,
11902 _(".debug_ranges entry has start address of zero"
11903 " [in module %s]"), objfile_name (objfile));
11904 continue;
11905 }
11906
11907 if (ranges_pst != NULL)
11908 {
11909 CORE_ADDR lowpc;
11910 CORE_ADDR highpc;
11911
11912 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
11913 range_beginning + baseaddr);
11914 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
11915 range_end + baseaddr);
11916 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
11917 ranges_pst);
11918 }
11919
11920 /* FIXME: This is recording everything as a low-high
11921 segment of consecutive addresses. We should have a
11922 data structure for discontiguous block ranges
11923 instead. */
11924 if (! low_set)
11925 {
11926 low = range_beginning;
11927 high = range_end;
11928 low_set = 1;
11929 }
11930 else
11931 {
11932 if (range_beginning < low)
11933 low = range_beginning;
11934 if (range_end > high)
11935 high = range_end;
11936 }
11937 }
11938
11939 if (! low_set)
11940 /* If the first entry is an end-of-list marker, the range
11941 describes an empty scope, i.e. no instructions. */
11942 return 0;
11943
11944 if (low_return)
11945 *low_return = low;
11946 if (high_return)
11947 *high_return = high;
11948 return 1;
11949 }
11950
11951 /* Get low and high pc attributes from a die. Return 1 if the attributes
11952 are present and valid, otherwise, return 0. Return -1 if the range is
11953 discontinuous, i.e. derived from DW_AT_ranges information. */
11954
11955 static int
11956 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
11957 CORE_ADDR *highpc, struct dwarf2_cu *cu,
11958 struct partial_symtab *pst)
11959 {
11960 struct attribute *attr;
11961 struct attribute *attr_high;
11962 CORE_ADDR low = 0;
11963 CORE_ADDR high = 0;
11964 int ret = 0;
11965
11966 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
11967 if (attr_high)
11968 {
11969 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11970 if (attr)
11971 {
11972 low = attr_value_as_address (attr);
11973 high = attr_value_as_address (attr_high);
11974 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
11975 high += low;
11976 }
11977 else
11978 /* Found high w/o low attribute. */
11979 return 0;
11980
11981 /* Found consecutive range of addresses. */
11982 ret = 1;
11983 }
11984 else
11985 {
11986 attr = dwarf2_attr (die, DW_AT_ranges, cu);
11987 if (attr != NULL)
11988 {
11989 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
11990 We take advantage of the fact that DW_AT_ranges does not appear
11991 in DW_TAG_compile_unit of DWO files. */
11992 int need_ranges_base = die->tag != DW_TAG_compile_unit;
11993 unsigned int ranges_offset = (DW_UNSND (attr)
11994 + (need_ranges_base
11995 ? cu->ranges_base
11996 : 0));
11997
11998 /* Value of the DW_AT_ranges attribute is the offset in the
11999 .debug_ranges section. */
12000 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
12001 return 0;
12002 /* Found discontinuous range of addresses. */
12003 ret = -1;
12004 }
12005 }
12006
12007 /* read_partial_die has also the strict LOW < HIGH requirement. */
12008 if (high <= low)
12009 return 0;
12010
12011 /* When using the GNU linker, .gnu.linkonce. sections are used to
12012 eliminate duplicate copies of functions and vtables and such.
12013 The linker will arbitrarily choose one and discard the others.
12014 The AT_*_pc values for such functions refer to local labels in
12015 these sections. If the section from that file was discarded, the
12016 labels are not in the output, so the relocs get a value of 0.
12017 If this is a discarded function, mark the pc bounds as invalid,
12018 so that GDB will ignore it. */
12019 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
12020 return 0;
12021
12022 *lowpc = low;
12023 if (highpc)
12024 *highpc = high;
12025 return ret;
12026 }
12027
12028 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
12029 its low and high PC addresses. Do nothing if these addresses could not
12030 be determined. Otherwise, set LOWPC to the low address if it is smaller,
12031 and HIGHPC to the high address if greater than HIGHPC. */
12032
12033 static void
12034 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
12035 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12036 struct dwarf2_cu *cu)
12037 {
12038 CORE_ADDR low, high;
12039 struct die_info *child = die->child;
12040
12041 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
12042 {
12043 *lowpc = min (*lowpc, low);
12044 *highpc = max (*highpc, high);
12045 }
12046
12047 /* If the language does not allow nested subprograms (either inside
12048 subprograms or lexical blocks), we're done. */
12049 if (cu->language != language_ada)
12050 return;
12051
12052 /* Check all the children of the given DIE. If it contains nested
12053 subprograms, then check their pc bounds. Likewise, we need to
12054 check lexical blocks as well, as they may also contain subprogram
12055 definitions. */
12056 while (child && child->tag)
12057 {
12058 if (child->tag == DW_TAG_subprogram
12059 || child->tag == DW_TAG_lexical_block)
12060 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
12061 child = sibling_die (child);
12062 }
12063 }
12064
12065 /* Get the low and high pc's represented by the scope DIE, and store
12066 them in *LOWPC and *HIGHPC. If the correct values can't be
12067 determined, set *LOWPC to -1 and *HIGHPC to 0. */
12068
12069 static void
12070 get_scope_pc_bounds (struct die_info *die,
12071 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12072 struct dwarf2_cu *cu)
12073 {
12074 CORE_ADDR best_low = (CORE_ADDR) -1;
12075 CORE_ADDR best_high = (CORE_ADDR) 0;
12076 CORE_ADDR current_low, current_high;
12077
12078 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
12079 {
12080 best_low = current_low;
12081 best_high = current_high;
12082 }
12083 else
12084 {
12085 struct die_info *child = die->child;
12086
12087 while (child && child->tag)
12088 {
12089 switch (child->tag) {
12090 case DW_TAG_subprogram:
12091 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
12092 break;
12093 case DW_TAG_namespace:
12094 case DW_TAG_module:
12095 /* FIXME: carlton/2004-01-16: Should we do this for
12096 DW_TAG_class_type/DW_TAG_structure_type, too? I think
12097 that current GCC's always emit the DIEs corresponding
12098 to definitions of methods of classes as children of a
12099 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
12100 the DIEs giving the declarations, which could be
12101 anywhere). But I don't see any reason why the
12102 standards says that they have to be there. */
12103 get_scope_pc_bounds (child, &current_low, &current_high, cu);
12104
12105 if (current_low != ((CORE_ADDR) -1))
12106 {
12107 best_low = min (best_low, current_low);
12108 best_high = max (best_high, current_high);
12109 }
12110 break;
12111 default:
12112 /* Ignore. */
12113 break;
12114 }
12115
12116 child = sibling_die (child);
12117 }
12118 }
12119
12120 *lowpc = best_low;
12121 *highpc = best_high;
12122 }
12123
12124 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
12125 in DIE. */
12126
12127 static void
12128 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
12129 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
12130 {
12131 struct objfile *objfile = cu->objfile;
12132 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12133 struct attribute *attr;
12134 struct attribute *attr_high;
12135
12136 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12137 if (attr_high)
12138 {
12139 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12140 if (attr)
12141 {
12142 CORE_ADDR low = attr_value_as_address (attr);
12143 CORE_ADDR high = attr_value_as_address (attr_high);
12144
12145 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12146 high += low;
12147
12148 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
12149 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
12150 record_block_range (block, low, high - 1);
12151 }
12152 }
12153
12154 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12155 if (attr)
12156 {
12157 bfd *obfd = objfile->obfd;
12158 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12159 We take advantage of the fact that DW_AT_ranges does not appear
12160 in DW_TAG_compile_unit of DWO files. */
12161 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12162
12163 /* The value of the DW_AT_ranges attribute is the offset of the
12164 address range list in the .debug_ranges section. */
12165 unsigned long offset = (DW_UNSND (attr)
12166 + (need_ranges_base ? cu->ranges_base : 0));
12167 const gdb_byte *buffer;
12168
12169 /* For some target architectures, but not others, the
12170 read_address function sign-extends the addresses it returns.
12171 To recognize base address selection entries, we need a
12172 mask. */
12173 unsigned int addr_size = cu->header.addr_size;
12174 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12175
12176 /* The base address, to which the next pair is relative. Note
12177 that this 'base' is a DWARF concept: most entries in a range
12178 list are relative, to reduce the number of relocs against the
12179 debugging information. This is separate from this function's
12180 'baseaddr' argument, which GDB uses to relocate debugging
12181 information from a shared library based on the address at
12182 which the library was loaded. */
12183 CORE_ADDR base = cu->base_address;
12184 int base_known = cu->base_known;
12185
12186 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
12187 if (offset >= dwarf2_per_objfile->ranges.size)
12188 {
12189 complaint (&symfile_complaints,
12190 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
12191 offset);
12192 return;
12193 }
12194 buffer = dwarf2_per_objfile->ranges.buffer + offset;
12195
12196 for (;;)
12197 {
12198 unsigned int bytes_read;
12199 CORE_ADDR start, end;
12200
12201 start = read_address (obfd, buffer, cu, &bytes_read);
12202 buffer += bytes_read;
12203 end = read_address (obfd, buffer, cu, &bytes_read);
12204 buffer += bytes_read;
12205
12206 /* Did we find the end of the range list? */
12207 if (start == 0 && end == 0)
12208 break;
12209
12210 /* Did we find a base address selection entry? */
12211 else if ((start & base_select_mask) == base_select_mask)
12212 {
12213 base = end;
12214 base_known = 1;
12215 }
12216
12217 /* We found an ordinary address range. */
12218 else
12219 {
12220 if (!base_known)
12221 {
12222 complaint (&symfile_complaints,
12223 _("Invalid .debug_ranges data "
12224 "(no base address)"));
12225 return;
12226 }
12227
12228 if (start > end)
12229 {
12230 /* Inverted range entries are invalid. */
12231 complaint (&symfile_complaints,
12232 _("Invalid .debug_ranges data "
12233 "(inverted range)"));
12234 return;
12235 }
12236
12237 /* Empty range entries have no effect. */
12238 if (start == end)
12239 continue;
12240
12241 start += base + baseaddr;
12242 end += base + baseaddr;
12243
12244 /* A not-uncommon case of bad debug info.
12245 Don't pollute the addrmap with bad data. */
12246 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
12247 {
12248 complaint (&symfile_complaints,
12249 _(".debug_ranges entry has start address of zero"
12250 " [in module %s]"), objfile_name (objfile));
12251 continue;
12252 }
12253
12254 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
12255 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
12256 record_block_range (block, start, end - 1);
12257 }
12258 }
12259 }
12260 }
12261
12262 /* Check whether the producer field indicates either of GCC < 4.6, or the
12263 Intel C/C++ compiler, and cache the result in CU. */
12264
12265 static void
12266 check_producer (struct dwarf2_cu *cu)
12267 {
12268 const char *cs;
12269 int major, minor, release;
12270
12271 if (cu->producer == NULL)
12272 {
12273 /* For unknown compilers expect their behavior is DWARF version
12274 compliant.
12275
12276 GCC started to support .debug_types sections by -gdwarf-4 since
12277 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
12278 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
12279 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
12280 interpreted incorrectly by GDB now - GCC PR debug/48229. */
12281 }
12282 else if (strncmp (cu->producer, "GNU ", strlen ("GNU ")) == 0)
12283 {
12284 /* Skip any identifier after "GNU " - such as "C++" or "Java". */
12285
12286 cs = &cu->producer[strlen ("GNU ")];
12287 while (*cs && !isdigit (*cs))
12288 cs++;
12289 if (sscanf (cs, "%d.%d.%d", &major, &minor, &release) != 3)
12290 {
12291 /* Not recognized as GCC. */
12292 }
12293 else
12294 {
12295 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
12296 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
12297 }
12298 }
12299 else if (strncmp (cu->producer, "Intel(R) C", strlen ("Intel(R) C")) == 0)
12300 cu->producer_is_icc = 1;
12301 else
12302 {
12303 /* For other non-GCC compilers, expect their behavior is DWARF version
12304 compliant. */
12305 }
12306
12307 cu->checked_producer = 1;
12308 }
12309
12310 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
12311 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
12312 during 4.6.0 experimental. */
12313
12314 static int
12315 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
12316 {
12317 if (!cu->checked_producer)
12318 check_producer (cu);
12319
12320 return cu->producer_is_gxx_lt_4_6;
12321 }
12322
12323 /* Return the default accessibility type if it is not overriden by
12324 DW_AT_accessibility. */
12325
12326 static enum dwarf_access_attribute
12327 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
12328 {
12329 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
12330 {
12331 /* The default DWARF 2 accessibility for members is public, the default
12332 accessibility for inheritance is private. */
12333
12334 if (die->tag != DW_TAG_inheritance)
12335 return DW_ACCESS_public;
12336 else
12337 return DW_ACCESS_private;
12338 }
12339 else
12340 {
12341 /* DWARF 3+ defines the default accessibility a different way. The same
12342 rules apply now for DW_TAG_inheritance as for the members and it only
12343 depends on the container kind. */
12344
12345 if (die->parent->tag == DW_TAG_class_type)
12346 return DW_ACCESS_private;
12347 else
12348 return DW_ACCESS_public;
12349 }
12350 }
12351
12352 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12353 offset. If the attribute was not found return 0, otherwise return
12354 1. If it was found but could not properly be handled, set *OFFSET
12355 to 0. */
12356
12357 static int
12358 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12359 LONGEST *offset)
12360 {
12361 struct attribute *attr;
12362
12363 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12364 if (attr != NULL)
12365 {
12366 *offset = 0;
12367
12368 /* Note that we do not check for a section offset first here.
12369 This is because DW_AT_data_member_location is new in DWARF 4,
12370 so if we see it, we can assume that a constant form is really
12371 a constant and not a section offset. */
12372 if (attr_form_is_constant (attr))
12373 *offset = dwarf2_get_attr_constant_value (attr, 0);
12374 else if (attr_form_is_section_offset (attr))
12375 dwarf2_complex_location_expr_complaint ();
12376 else if (attr_form_is_block (attr))
12377 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12378 else
12379 dwarf2_complex_location_expr_complaint ();
12380
12381 return 1;
12382 }
12383
12384 return 0;
12385 }
12386
12387 /* Add an aggregate field to the field list. */
12388
12389 static void
12390 dwarf2_add_field (struct field_info *fip, struct die_info *die,
12391 struct dwarf2_cu *cu)
12392 {
12393 struct objfile *objfile = cu->objfile;
12394 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12395 struct nextfield *new_field;
12396 struct attribute *attr;
12397 struct field *fp;
12398 const char *fieldname = "";
12399
12400 /* Allocate a new field list entry and link it in. */
12401 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
12402 make_cleanup (xfree, new_field);
12403 memset (new_field, 0, sizeof (struct nextfield));
12404
12405 if (die->tag == DW_TAG_inheritance)
12406 {
12407 new_field->next = fip->baseclasses;
12408 fip->baseclasses = new_field;
12409 }
12410 else
12411 {
12412 new_field->next = fip->fields;
12413 fip->fields = new_field;
12414 }
12415 fip->nfields++;
12416
12417 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12418 if (attr)
12419 new_field->accessibility = DW_UNSND (attr);
12420 else
12421 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
12422 if (new_field->accessibility != DW_ACCESS_public)
12423 fip->non_public_fields = 1;
12424
12425 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12426 if (attr)
12427 new_field->virtuality = DW_UNSND (attr);
12428 else
12429 new_field->virtuality = DW_VIRTUALITY_none;
12430
12431 fp = &new_field->field;
12432
12433 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
12434 {
12435 LONGEST offset;
12436
12437 /* Data member other than a C++ static data member. */
12438
12439 /* Get type of field. */
12440 fp->type = die_type (die, cu);
12441
12442 SET_FIELD_BITPOS (*fp, 0);
12443
12444 /* Get bit size of field (zero if none). */
12445 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
12446 if (attr)
12447 {
12448 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
12449 }
12450 else
12451 {
12452 FIELD_BITSIZE (*fp) = 0;
12453 }
12454
12455 /* Get bit offset of field. */
12456 if (handle_data_member_location (die, cu, &offset))
12457 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12458 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
12459 if (attr)
12460 {
12461 if (gdbarch_bits_big_endian (gdbarch))
12462 {
12463 /* For big endian bits, the DW_AT_bit_offset gives the
12464 additional bit offset from the MSB of the containing
12465 anonymous object to the MSB of the field. We don't
12466 have to do anything special since we don't need to
12467 know the size of the anonymous object. */
12468 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
12469 }
12470 else
12471 {
12472 /* For little endian bits, compute the bit offset to the
12473 MSB of the anonymous object, subtract off the number of
12474 bits from the MSB of the field to the MSB of the
12475 object, and then subtract off the number of bits of
12476 the field itself. The result is the bit offset of
12477 the LSB of the field. */
12478 int anonymous_size;
12479 int bit_offset = DW_UNSND (attr);
12480
12481 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12482 if (attr)
12483 {
12484 /* The size of the anonymous object containing
12485 the bit field is explicit, so use the
12486 indicated size (in bytes). */
12487 anonymous_size = DW_UNSND (attr);
12488 }
12489 else
12490 {
12491 /* The size of the anonymous object containing
12492 the bit field must be inferred from the type
12493 attribute of the data member containing the
12494 bit field. */
12495 anonymous_size = TYPE_LENGTH (fp->type);
12496 }
12497 SET_FIELD_BITPOS (*fp,
12498 (FIELD_BITPOS (*fp)
12499 + anonymous_size * bits_per_byte
12500 - bit_offset - FIELD_BITSIZE (*fp)));
12501 }
12502 }
12503
12504 /* Get name of field. */
12505 fieldname = dwarf2_name (die, cu);
12506 if (fieldname == NULL)
12507 fieldname = "";
12508
12509 /* The name is already allocated along with this objfile, so we don't
12510 need to duplicate it for the type. */
12511 fp->name = fieldname;
12512
12513 /* Change accessibility for artificial fields (e.g. virtual table
12514 pointer or virtual base class pointer) to private. */
12515 if (dwarf2_attr (die, DW_AT_artificial, cu))
12516 {
12517 FIELD_ARTIFICIAL (*fp) = 1;
12518 new_field->accessibility = DW_ACCESS_private;
12519 fip->non_public_fields = 1;
12520 }
12521 }
12522 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
12523 {
12524 /* C++ static member. */
12525
12526 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
12527 is a declaration, but all versions of G++ as of this writing
12528 (so through at least 3.2.1) incorrectly generate
12529 DW_TAG_variable tags. */
12530
12531 const char *physname;
12532
12533 /* Get name of field. */
12534 fieldname = dwarf2_name (die, cu);
12535 if (fieldname == NULL)
12536 return;
12537
12538 attr = dwarf2_attr (die, DW_AT_const_value, cu);
12539 if (attr
12540 /* Only create a symbol if this is an external value.
12541 new_symbol checks this and puts the value in the global symbol
12542 table, which we want. If it is not external, new_symbol
12543 will try to put the value in cu->list_in_scope which is wrong. */
12544 && dwarf2_flag_true_p (die, DW_AT_external, cu))
12545 {
12546 /* A static const member, not much different than an enum as far as
12547 we're concerned, except that we can support more types. */
12548 new_symbol (die, NULL, cu);
12549 }
12550
12551 /* Get physical name. */
12552 physname = dwarf2_physname (fieldname, die, cu);
12553
12554 /* The name is already allocated along with this objfile, so we don't
12555 need to duplicate it for the type. */
12556 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
12557 FIELD_TYPE (*fp) = die_type (die, cu);
12558 FIELD_NAME (*fp) = fieldname;
12559 }
12560 else if (die->tag == DW_TAG_inheritance)
12561 {
12562 LONGEST offset;
12563
12564 /* C++ base class field. */
12565 if (handle_data_member_location (die, cu, &offset))
12566 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12567 FIELD_BITSIZE (*fp) = 0;
12568 FIELD_TYPE (*fp) = die_type (die, cu);
12569 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
12570 fip->nbaseclasses++;
12571 }
12572 }
12573
12574 /* Add a typedef defined in the scope of the FIP's class. */
12575
12576 static void
12577 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
12578 struct dwarf2_cu *cu)
12579 {
12580 struct objfile *objfile = cu->objfile;
12581 struct typedef_field_list *new_field;
12582 struct attribute *attr;
12583 struct typedef_field *fp;
12584 char *fieldname = "";
12585
12586 /* Allocate a new field list entry and link it in. */
12587 new_field = xzalloc (sizeof (*new_field));
12588 make_cleanup (xfree, new_field);
12589
12590 gdb_assert (die->tag == DW_TAG_typedef);
12591
12592 fp = &new_field->field;
12593
12594 /* Get name of field. */
12595 fp->name = dwarf2_name (die, cu);
12596 if (fp->name == NULL)
12597 return;
12598
12599 fp->type = read_type_die (die, cu);
12600
12601 new_field->next = fip->typedef_field_list;
12602 fip->typedef_field_list = new_field;
12603 fip->typedef_field_list_count++;
12604 }
12605
12606 /* Create the vector of fields, and attach it to the type. */
12607
12608 static void
12609 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
12610 struct dwarf2_cu *cu)
12611 {
12612 int nfields = fip->nfields;
12613
12614 /* Record the field count, allocate space for the array of fields,
12615 and create blank accessibility bitfields if necessary. */
12616 TYPE_NFIELDS (type) = nfields;
12617 TYPE_FIELDS (type) = (struct field *)
12618 TYPE_ALLOC (type, sizeof (struct field) * nfields);
12619 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
12620
12621 if (fip->non_public_fields && cu->language != language_ada)
12622 {
12623 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12624
12625 TYPE_FIELD_PRIVATE_BITS (type) =
12626 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12627 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
12628
12629 TYPE_FIELD_PROTECTED_BITS (type) =
12630 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12631 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
12632
12633 TYPE_FIELD_IGNORE_BITS (type) =
12634 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12635 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
12636 }
12637
12638 /* If the type has baseclasses, allocate and clear a bit vector for
12639 TYPE_FIELD_VIRTUAL_BITS. */
12640 if (fip->nbaseclasses && cu->language != language_ada)
12641 {
12642 int num_bytes = B_BYTES (fip->nbaseclasses);
12643 unsigned char *pointer;
12644
12645 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12646 pointer = TYPE_ALLOC (type, num_bytes);
12647 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
12648 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
12649 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
12650 }
12651
12652 /* Copy the saved-up fields into the field vector. Start from the head of
12653 the list, adding to the tail of the field array, so that they end up in
12654 the same order in the array in which they were added to the list. */
12655 while (nfields-- > 0)
12656 {
12657 struct nextfield *fieldp;
12658
12659 if (fip->fields)
12660 {
12661 fieldp = fip->fields;
12662 fip->fields = fieldp->next;
12663 }
12664 else
12665 {
12666 fieldp = fip->baseclasses;
12667 fip->baseclasses = fieldp->next;
12668 }
12669
12670 TYPE_FIELD (type, nfields) = fieldp->field;
12671 switch (fieldp->accessibility)
12672 {
12673 case DW_ACCESS_private:
12674 if (cu->language != language_ada)
12675 SET_TYPE_FIELD_PRIVATE (type, nfields);
12676 break;
12677
12678 case DW_ACCESS_protected:
12679 if (cu->language != language_ada)
12680 SET_TYPE_FIELD_PROTECTED (type, nfields);
12681 break;
12682
12683 case DW_ACCESS_public:
12684 break;
12685
12686 default:
12687 /* Unknown accessibility. Complain and treat it as public. */
12688 {
12689 complaint (&symfile_complaints, _("unsupported accessibility %d"),
12690 fieldp->accessibility);
12691 }
12692 break;
12693 }
12694 if (nfields < fip->nbaseclasses)
12695 {
12696 switch (fieldp->virtuality)
12697 {
12698 case DW_VIRTUALITY_virtual:
12699 case DW_VIRTUALITY_pure_virtual:
12700 if (cu->language == language_ada)
12701 error (_("unexpected virtuality in component of Ada type"));
12702 SET_TYPE_FIELD_VIRTUAL (type, nfields);
12703 break;
12704 }
12705 }
12706 }
12707 }
12708
12709 /* Return true if this member function is a constructor, false
12710 otherwise. */
12711
12712 static int
12713 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
12714 {
12715 const char *fieldname;
12716 const char *typename;
12717 int len;
12718
12719 if (die->parent == NULL)
12720 return 0;
12721
12722 if (die->parent->tag != DW_TAG_structure_type
12723 && die->parent->tag != DW_TAG_union_type
12724 && die->parent->tag != DW_TAG_class_type)
12725 return 0;
12726
12727 fieldname = dwarf2_name (die, cu);
12728 typename = dwarf2_name (die->parent, cu);
12729 if (fieldname == NULL || typename == NULL)
12730 return 0;
12731
12732 len = strlen (fieldname);
12733 return (strncmp (fieldname, typename, len) == 0
12734 && (typename[len] == '\0' || typename[len] == '<'));
12735 }
12736
12737 /* Add a member function to the proper fieldlist. */
12738
12739 static void
12740 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
12741 struct type *type, struct dwarf2_cu *cu)
12742 {
12743 struct objfile *objfile = cu->objfile;
12744 struct attribute *attr;
12745 struct fnfieldlist *flp;
12746 int i;
12747 struct fn_field *fnp;
12748 const char *fieldname;
12749 struct nextfnfield *new_fnfield;
12750 struct type *this_type;
12751 enum dwarf_access_attribute accessibility;
12752
12753 if (cu->language == language_ada)
12754 error (_("unexpected member function in Ada type"));
12755
12756 /* Get name of member function. */
12757 fieldname = dwarf2_name (die, cu);
12758 if (fieldname == NULL)
12759 return;
12760
12761 /* Look up member function name in fieldlist. */
12762 for (i = 0; i < fip->nfnfields; i++)
12763 {
12764 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
12765 break;
12766 }
12767
12768 /* Create new list element if necessary. */
12769 if (i < fip->nfnfields)
12770 flp = &fip->fnfieldlists[i];
12771 else
12772 {
12773 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
12774 {
12775 fip->fnfieldlists = (struct fnfieldlist *)
12776 xrealloc (fip->fnfieldlists,
12777 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
12778 * sizeof (struct fnfieldlist));
12779 if (fip->nfnfields == 0)
12780 make_cleanup (free_current_contents, &fip->fnfieldlists);
12781 }
12782 flp = &fip->fnfieldlists[fip->nfnfields];
12783 flp->name = fieldname;
12784 flp->length = 0;
12785 flp->head = NULL;
12786 i = fip->nfnfields++;
12787 }
12788
12789 /* Create a new member function field and chain it to the field list
12790 entry. */
12791 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
12792 make_cleanup (xfree, new_fnfield);
12793 memset (new_fnfield, 0, sizeof (struct nextfnfield));
12794 new_fnfield->next = flp->head;
12795 flp->head = new_fnfield;
12796 flp->length++;
12797
12798 /* Fill in the member function field info. */
12799 fnp = &new_fnfield->fnfield;
12800
12801 /* Delay processing of the physname until later. */
12802 if (cu->language == language_cplus || cu->language == language_java)
12803 {
12804 add_to_method_list (type, i, flp->length - 1, fieldname,
12805 die, cu);
12806 }
12807 else
12808 {
12809 const char *physname = dwarf2_physname (fieldname, die, cu);
12810 fnp->physname = physname ? physname : "";
12811 }
12812
12813 fnp->type = alloc_type (objfile);
12814 this_type = read_type_die (die, cu);
12815 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
12816 {
12817 int nparams = TYPE_NFIELDS (this_type);
12818
12819 /* TYPE is the domain of this method, and THIS_TYPE is the type
12820 of the method itself (TYPE_CODE_METHOD). */
12821 smash_to_method_type (fnp->type, type,
12822 TYPE_TARGET_TYPE (this_type),
12823 TYPE_FIELDS (this_type),
12824 TYPE_NFIELDS (this_type),
12825 TYPE_VARARGS (this_type));
12826
12827 /* Handle static member functions.
12828 Dwarf2 has no clean way to discern C++ static and non-static
12829 member functions. G++ helps GDB by marking the first
12830 parameter for non-static member functions (which is the this
12831 pointer) as artificial. We obtain this information from
12832 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
12833 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
12834 fnp->voffset = VOFFSET_STATIC;
12835 }
12836 else
12837 complaint (&symfile_complaints, _("member function type missing for '%s'"),
12838 dwarf2_full_name (fieldname, die, cu));
12839
12840 /* Get fcontext from DW_AT_containing_type if present. */
12841 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
12842 fnp->fcontext = die_containing_type (die, cu);
12843
12844 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
12845 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
12846
12847 /* Get accessibility. */
12848 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12849 if (attr)
12850 accessibility = DW_UNSND (attr);
12851 else
12852 accessibility = dwarf2_default_access_attribute (die, cu);
12853 switch (accessibility)
12854 {
12855 case DW_ACCESS_private:
12856 fnp->is_private = 1;
12857 break;
12858 case DW_ACCESS_protected:
12859 fnp->is_protected = 1;
12860 break;
12861 }
12862
12863 /* Check for artificial methods. */
12864 attr = dwarf2_attr (die, DW_AT_artificial, cu);
12865 if (attr && DW_UNSND (attr) != 0)
12866 fnp->is_artificial = 1;
12867
12868 fnp->is_constructor = dwarf2_is_constructor (die, cu);
12869
12870 /* Get index in virtual function table if it is a virtual member
12871 function. For older versions of GCC, this is an offset in the
12872 appropriate virtual table, as specified by DW_AT_containing_type.
12873 For everyone else, it is an expression to be evaluated relative
12874 to the object address. */
12875
12876 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
12877 if (attr)
12878 {
12879 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
12880 {
12881 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
12882 {
12883 /* Old-style GCC. */
12884 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
12885 }
12886 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
12887 || (DW_BLOCK (attr)->size > 1
12888 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
12889 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
12890 {
12891 struct dwarf_block blk;
12892 int offset;
12893
12894 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
12895 ? 1 : 2);
12896 blk.size = DW_BLOCK (attr)->size - offset;
12897 blk.data = DW_BLOCK (attr)->data + offset;
12898 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
12899 if ((fnp->voffset % cu->header.addr_size) != 0)
12900 dwarf2_complex_location_expr_complaint ();
12901 else
12902 fnp->voffset /= cu->header.addr_size;
12903 fnp->voffset += 2;
12904 }
12905 else
12906 dwarf2_complex_location_expr_complaint ();
12907
12908 if (!fnp->fcontext)
12909 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
12910 }
12911 else if (attr_form_is_section_offset (attr))
12912 {
12913 dwarf2_complex_location_expr_complaint ();
12914 }
12915 else
12916 {
12917 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
12918 fieldname);
12919 }
12920 }
12921 else
12922 {
12923 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12924 if (attr && DW_UNSND (attr))
12925 {
12926 /* GCC does this, as of 2008-08-25; PR debug/37237. */
12927 complaint (&symfile_complaints,
12928 _("Member function \"%s\" (offset %d) is virtual "
12929 "but the vtable offset is not specified"),
12930 fieldname, die->offset.sect_off);
12931 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12932 TYPE_CPLUS_DYNAMIC (type) = 1;
12933 }
12934 }
12935 }
12936
12937 /* Create the vector of member function fields, and attach it to the type. */
12938
12939 static void
12940 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
12941 struct dwarf2_cu *cu)
12942 {
12943 struct fnfieldlist *flp;
12944 int i;
12945
12946 if (cu->language == language_ada)
12947 error (_("unexpected member functions in Ada type"));
12948
12949 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12950 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
12951 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
12952
12953 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
12954 {
12955 struct nextfnfield *nfp = flp->head;
12956 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
12957 int k;
12958
12959 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
12960 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
12961 fn_flp->fn_fields = (struct fn_field *)
12962 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
12963 for (k = flp->length; (k--, nfp); nfp = nfp->next)
12964 fn_flp->fn_fields[k] = nfp->fnfield;
12965 }
12966
12967 TYPE_NFN_FIELDS (type) = fip->nfnfields;
12968 }
12969
12970 /* Returns non-zero if NAME is the name of a vtable member in CU's
12971 language, zero otherwise. */
12972 static int
12973 is_vtable_name (const char *name, struct dwarf2_cu *cu)
12974 {
12975 static const char vptr[] = "_vptr";
12976 static const char vtable[] = "vtable";
12977
12978 /* Look for the C++ and Java forms of the vtable. */
12979 if ((cu->language == language_java
12980 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
12981 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
12982 && is_cplus_marker (name[sizeof (vptr) - 1])))
12983 return 1;
12984
12985 return 0;
12986 }
12987
12988 /* GCC outputs unnamed structures that are really pointers to member
12989 functions, with the ABI-specified layout. If TYPE describes
12990 such a structure, smash it into a member function type.
12991
12992 GCC shouldn't do this; it should just output pointer to member DIEs.
12993 This is GCC PR debug/28767. */
12994
12995 static void
12996 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
12997 {
12998 struct type *pfn_type, *domain_type, *new_type;
12999
13000 /* Check for a structure with no name and two children. */
13001 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
13002 return;
13003
13004 /* Check for __pfn and __delta members. */
13005 if (TYPE_FIELD_NAME (type, 0) == NULL
13006 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
13007 || TYPE_FIELD_NAME (type, 1) == NULL
13008 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
13009 return;
13010
13011 /* Find the type of the method. */
13012 pfn_type = TYPE_FIELD_TYPE (type, 0);
13013 if (pfn_type == NULL
13014 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
13015 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
13016 return;
13017
13018 /* Look for the "this" argument. */
13019 pfn_type = TYPE_TARGET_TYPE (pfn_type);
13020 if (TYPE_NFIELDS (pfn_type) == 0
13021 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
13022 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
13023 return;
13024
13025 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
13026 new_type = alloc_type (objfile);
13027 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
13028 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
13029 TYPE_VARARGS (pfn_type));
13030 smash_to_methodptr_type (type, new_type);
13031 }
13032
13033 /* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
13034 (icc). */
13035
13036 static int
13037 producer_is_icc (struct dwarf2_cu *cu)
13038 {
13039 if (!cu->checked_producer)
13040 check_producer (cu);
13041
13042 return cu->producer_is_icc;
13043 }
13044
13045 /* Called when we find the DIE that starts a structure or union scope
13046 (definition) to create a type for the structure or union. Fill in
13047 the type's name and general properties; the members will not be
13048 processed until process_structure_scope. A symbol table entry for
13049 the type will also not be done until process_structure_scope (assuming
13050 the type has a name).
13051
13052 NOTE: we need to call these functions regardless of whether or not the
13053 DIE has a DW_AT_name attribute, since it might be an anonymous
13054 structure or union. This gets the type entered into our set of
13055 user defined types. */
13056
13057 static struct type *
13058 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
13059 {
13060 struct objfile *objfile = cu->objfile;
13061 struct type *type;
13062 struct attribute *attr;
13063 const char *name;
13064
13065 /* If the definition of this type lives in .debug_types, read that type.
13066 Don't follow DW_AT_specification though, that will take us back up
13067 the chain and we want to go down. */
13068 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13069 if (attr)
13070 {
13071 type = get_DW_AT_signature_type (die, attr, cu);
13072
13073 /* The type's CU may not be the same as CU.
13074 Ensure TYPE is recorded with CU in die_type_hash. */
13075 return set_die_type (die, type, cu);
13076 }
13077
13078 type = alloc_type (objfile);
13079 INIT_CPLUS_SPECIFIC (type);
13080
13081 name = dwarf2_name (die, cu);
13082 if (name != NULL)
13083 {
13084 if (cu->language == language_cplus
13085 || cu->language == language_java)
13086 {
13087 const char *full_name = dwarf2_full_name (name, die, cu);
13088
13089 /* dwarf2_full_name might have already finished building the DIE's
13090 type. If so, there is no need to continue. */
13091 if (get_die_type (die, cu) != NULL)
13092 return get_die_type (die, cu);
13093
13094 TYPE_TAG_NAME (type) = full_name;
13095 if (die->tag == DW_TAG_structure_type
13096 || die->tag == DW_TAG_class_type)
13097 TYPE_NAME (type) = TYPE_TAG_NAME (type);
13098 }
13099 else
13100 {
13101 /* The name is already allocated along with this objfile, so
13102 we don't need to duplicate it for the type. */
13103 TYPE_TAG_NAME (type) = name;
13104 if (die->tag == DW_TAG_class_type)
13105 TYPE_NAME (type) = TYPE_TAG_NAME (type);
13106 }
13107 }
13108
13109 if (die->tag == DW_TAG_structure_type)
13110 {
13111 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13112 }
13113 else if (die->tag == DW_TAG_union_type)
13114 {
13115 TYPE_CODE (type) = TYPE_CODE_UNION;
13116 }
13117 else
13118 {
13119 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13120 }
13121
13122 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
13123 TYPE_DECLARED_CLASS (type) = 1;
13124
13125 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13126 if (attr)
13127 {
13128 TYPE_LENGTH (type) = DW_UNSND (attr);
13129 }
13130 else
13131 {
13132 TYPE_LENGTH (type) = 0;
13133 }
13134
13135 if (producer_is_icc (cu) && (TYPE_LENGTH (type) == 0))
13136 {
13137 /* ICC does not output the required DW_AT_declaration
13138 on incomplete types, but gives them a size of zero. */
13139 TYPE_STUB (type) = 1;
13140 }
13141 else
13142 TYPE_STUB_SUPPORTED (type) = 1;
13143
13144 if (die_is_declaration (die, cu))
13145 TYPE_STUB (type) = 1;
13146 else if (attr == NULL && die->child == NULL
13147 && producer_is_realview (cu->producer))
13148 /* RealView does not output the required DW_AT_declaration
13149 on incomplete types. */
13150 TYPE_STUB (type) = 1;
13151
13152 /* We need to add the type field to the die immediately so we don't
13153 infinitely recurse when dealing with pointers to the structure
13154 type within the structure itself. */
13155 set_die_type (die, type, cu);
13156
13157 /* set_die_type should be already done. */
13158 set_descriptive_type (type, die, cu);
13159
13160 return type;
13161 }
13162
13163 /* Finish creating a structure or union type, including filling in
13164 its members and creating a symbol for it. */
13165
13166 static void
13167 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
13168 {
13169 struct objfile *objfile = cu->objfile;
13170 struct die_info *child_die;
13171 struct type *type;
13172
13173 type = get_die_type (die, cu);
13174 if (type == NULL)
13175 type = read_structure_type (die, cu);
13176
13177 if (die->child != NULL && ! die_is_declaration (die, cu))
13178 {
13179 struct field_info fi;
13180 VEC (symbolp) *template_args = NULL;
13181 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
13182
13183 memset (&fi, 0, sizeof (struct field_info));
13184
13185 child_die = die->child;
13186
13187 while (child_die && child_die->tag)
13188 {
13189 if (child_die->tag == DW_TAG_member
13190 || child_die->tag == DW_TAG_variable)
13191 {
13192 /* NOTE: carlton/2002-11-05: A C++ static data member
13193 should be a DW_TAG_member that is a declaration, but
13194 all versions of G++ as of this writing (so through at
13195 least 3.2.1) incorrectly generate DW_TAG_variable
13196 tags for them instead. */
13197 dwarf2_add_field (&fi, child_die, cu);
13198 }
13199 else if (child_die->tag == DW_TAG_subprogram)
13200 {
13201 /* C++ member function. */
13202 dwarf2_add_member_fn (&fi, child_die, type, cu);
13203 }
13204 else if (child_die->tag == DW_TAG_inheritance)
13205 {
13206 /* C++ base class field. */
13207 dwarf2_add_field (&fi, child_die, cu);
13208 }
13209 else if (child_die->tag == DW_TAG_typedef)
13210 dwarf2_add_typedef (&fi, child_die, cu);
13211 else if (child_die->tag == DW_TAG_template_type_param
13212 || child_die->tag == DW_TAG_template_value_param)
13213 {
13214 struct symbol *arg = new_symbol (child_die, NULL, cu);
13215
13216 if (arg != NULL)
13217 VEC_safe_push (symbolp, template_args, arg);
13218 }
13219
13220 child_die = sibling_die (child_die);
13221 }
13222
13223 /* Attach template arguments to type. */
13224 if (! VEC_empty (symbolp, template_args))
13225 {
13226 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13227 TYPE_N_TEMPLATE_ARGUMENTS (type)
13228 = VEC_length (symbolp, template_args);
13229 TYPE_TEMPLATE_ARGUMENTS (type)
13230 = obstack_alloc (&objfile->objfile_obstack,
13231 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13232 * sizeof (struct symbol *)));
13233 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
13234 VEC_address (symbolp, template_args),
13235 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13236 * sizeof (struct symbol *)));
13237 VEC_free (symbolp, template_args);
13238 }
13239
13240 /* Attach fields and member functions to the type. */
13241 if (fi.nfields)
13242 dwarf2_attach_fields_to_type (&fi, type, cu);
13243 if (fi.nfnfields)
13244 {
13245 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
13246
13247 /* Get the type which refers to the base class (possibly this
13248 class itself) which contains the vtable pointer for the current
13249 class from the DW_AT_containing_type attribute. This use of
13250 DW_AT_containing_type is a GNU extension. */
13251
13252 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
13253 {
13254 struct type *t = die_containing_type (die, cu);
13255
13256 TYPE_VPTR_BASETYPE (type) = t;
13257 if (type == t)
13258 {
13259 int i;
13260
13261 /* Our own class provides vtbl ptr. */
13262 for (i = TYPE_NFIELDS (t) - 1;
13263 i >= TYPE_N_BASECLASSES (t);
13264 --i)
13265 {
13266 const char *fieldname = TYPE_FIELD_NAME (t, i);
13267
13268 if (is_vtable_name (fieldname, cu))
13269 {
13270 TYPE_VPTR_FIELDNO (type) = i;
13271 break;
13272 }
13273 }
13274
13275 /* Complain if virtual function table field not found. */
13276 if (i < TYPE_N_BASECLASSES (t))
13277 complaint (&symfile_complaints,
13278 _("virtual function table pointer "
13279 "not found when defining class '%s'"),
13280 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
13281 "");
13282 }
13283 else
13284 {
13285 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
13286 }
13287 }
13288 else if (cu->producer
13289 && strncmp (cu->producer,
13290 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
13291 {
13292 /* The IBM XLC compiler does not provide direct indication
13293 of the containing type, but the vtable pointer is
13294 always named __vfp. */
13295
13296 int i;
13297
13298 for (i = TYPE_NFIELDS (type) - 1;
13299 i >= TYPE_N_BASECLASSES (type);
13300 --i)
13301 {
13302 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
13303 {
13304 TYPE_VPTR_FIELDNO (type) = i;
13305 TYPE_VPTR_BASETYPE (type) = type;
13306 break;
13307 }
13308 }
13309 }
13310 }
13311
13312 /* Copy fi.typedef_field_list linked list elements content into the
13313 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13314 if (fi.typedef_field_list)
13315 {
13316 int i = fi.typedef_field_list_count;
13317
13318 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13319 TYPE_TYPEDEF_FIELD_ARRAY (type)
13320 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
13321 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
13322
13323 /* Reverse the list order to keep the debug info elements order. */
13324 while (--i >= 0)
13325 {
13326 struct typedef_field *dest, *src;
13327
13328 dest = &TYPE_TYPEDEF_FIELD (type, i);
13329 src = &fi.typedef_field_list->field;
13330 fi.typedef_field_list = fi.typedef_field_list->next;
13331 *dest = *src;
13332 }
13333 }
13334
13335 do_cleanups (back_to);
13336
13337 if (HAVE_CPLUS_STRUCT (type))
13338 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
13339 }
13340
13341 quirk_gcc_member_function_pointer (type, objfile);
13342
13343 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13344 snapshots) has been known to create a die giving a declaration
13345 for a class that has, as a child, a die giving a definition for a
13346 nested class. So we have to process our children even if the
13347 current die is a declaration. Normally, of course, a declaration
13348 won't have any children at all. */
13349
13350 child_die = die->child;
13351
13352 while (child_die != NULL && child_die->tag)
13353 {
13354 if (child_die->tag == DW_TAG_member
13355 || child_die->tag == DW_TAG_variable
13356 || child_die->tag == DW_TAG_inheritance
13357 || child_die->tag == DW_TAG_template_value_param
13358 || child_die->tag == DW_TAG_template_type_param)
13359 {
13360 /* Do nothing. */
13361 }
13362 else
13363 process_die (child_die, cu);
13364
13365 child_die = sibling_die (child_die);
13366 }
13367
13368 /* Do not consider external references. According to the DWARF standard,
13369 these DIEs are identified by the fact that they have no byte_size
13370 attribute, and a declaration attribute. */
13371 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13372 || !die_is_declaration (die, cu))
13373 new_symbol (die, type, cu);
13374 }
13375
13376 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
13377 update TYPE using some information only available in DIE's children. */
13378
13379 static void
13380 update_enumeration_type_from_children (struct die_info *die,
13381 struct type *type,
13382 struct dwarf2_cu *cu)
13383 {
13384 struct obstack obstack;
13385 struct die_info *child_die;
13386 int unsigned_enum = 1;
13387 int flag_enum = 1;
13388 ULONGEST mask = 0;
13389 struct cleanup *old_chain;
13390
13391 obstack_init (&obstack);
13392 old_chain = make_cleanup_obstack_free (&obstack);
13393
13394 for (child_die = die->child;
13395 child_die != NULL && child_die->tag;
13396 child_die = sibling_die (child_die))
13397 {
13398 struct attribute *attr;
13399 LONGEST value;
13400 const gdb_byte *bytes;
13401 struct dwarf2_locexpr_baton *baton;
13402 const char *name;
13403
13404 if (child_die->tag != DW_TAG_enumerator)
13405 continue;
13406
13407 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
13408 if (attr == NULL)
13409 continue;
13410
13411 name = dwarf2_name (child_die, cu);
13412 if (name == NULL)
13413 name = "<anonymous enumerator>";
13414
13415 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
13416 &value, &bytes, &baton);
13417 if (value < 0)
13418 {
13419 unsigned_enum = 0;
13420 flag_enum = 0;
13421 }
13422 else if ((mask & value) != 0)
13423 flag_enum = 0;
13424 else
13425 mask |= value;
13426
13427 /* If we already know that the enum type is neither unsigned, nor
13428 a flag type, no need to look at the rest of the enumerates. */
13429 if (!unsigned_enum && !flag_enum)
13430 break;
13431 }
13432
13433 if (unsigned_enum)
13434 TYPE_UNSIGNED (type) = 1;
13435 if (flag_enum)
13436 TYPE_FLAG_ENUM (type) = 1;
13437
13438 do_cleanups (old_chain);
13439 }
13440
13441 /* Given a DW_AT_enumeration_type die, set its type. We do not
13442 complete the type's fields yet, or create any symbols. */
13443
13444 static struct type *
13445 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
13446 {
13447 struct objfile *objfile = cu->objfile;
13448 struct type *type;
13449 struct attribute *attr;
13450 const char *name;
13451
13452 /* If the definition of this type lives in .debug_types, read that type.
13453 Don't follow DW_AT_specification though, that will take us back up
13454 the chain and we want to go down. */
13455 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13456 if (attr)
13457 {
13458 type = get_DW_AT_signature_type (die, attr, cu);
13459
13460 /* The type's CU may not be the same as CU.
13461 Ensure TYPE is recorded with CU in die_type_hash. */
13462 return set_die_type (die, type, cu);
13463 }
13464
13465 type = alloc_type (objfile);
13466
13467 TYPE_CODE (type) = TYPE_CODE_ENUM;
13468 name = dwarf2_full_name (NULL, die, cu);
13469 if (name != NULL)
13470 TYPE_TAG_NAME (type) = name;
13471
13472 attr = dwarf2_attr (die, DW_AT_type, cu);
13473 if (attr != NULL)
13474 {
13475 struct type *underlying_type = die_type (die, cu);
13476
13477 TYPE_TARGET_TYPE (type) = underlying_type;
13478 }
13479
13480 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13481 if (attr)
13482 {
13483 TYPE_LENGTH (type) = DW_UNSND (attr);
13484 }
13485 else
13486 {
13487 TYPE_LENGTH (type) = 0;
13488 }
13489
13490 /* The enumeration DIE can be incomplete. In Ada, any type can be
13491 declared as private in the package spec, and then defined only
13492 inside the package body. Such types are known as Taft Amendment
13493 Types. When another package uses such a type, an incomplete DIE
13494 may be generated by the compiler. */
13495 if (die_is_declaration (die, cu))
13496 TYPE_STUB (type) = 1;
13497
13498 /* Finish the creation of this type by using the enum's children.
13499 We must call this even when the underlying type has been provided
13500 so that we can determine if we're looking at a "flag" enum. */
13501 update_enumeration_type_from_children (die, type, cu);
13502
13503 /* If this type has an underlying type that is not a stub, then we
13504 may use its attributes. We always use the "unsigned" attribute
13505 in this situation, because ordinarily we guess whether the type
13506 is unsigned -- but the guess can be wrong and the underlying type
13507 can tell us the reality. However, we defer to a local size
13508 attribute if one exists, because this lets the compiler override
13509 the underlying type if needed. */
13510 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
13511 {
13512 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
13513 if (TYPE_LENGTH (type) == 0)
13514 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
13515 }
13516
13517 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
13518
13519 return set_die_type (die, type, cu);
13520 }
13521
13522 /* Given a pointer to a die which begins an enumeration, process all
13523 the dies that define the members of the enumeration, and create the
13524 symbol for the enumeration type.
13525
13526 NOTE: We reverse the order of the element list. */
13527
13528 static void
13529 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
13530 {
13531 struct type *this_type;
13532
13533 this_type = get_die_type (die, cu);
13534 if (this_type == NULL)
13535 this_type = read_enumeration_type (die, cu);
13536
13537 if (die->child != NULL)
13538 {
13539 struct die_info *child_die;
13540 struct symbol *sym;
13541 struct field *fields = NULL;
13542 int num_fields = 0;
13543 const char *name;
13544
13545 child_die = die->child;
13546 while (child_die && child_die->tag)
13547 {
13548 if (child_die->tag != DW_TAG_enumerator)
13549 {
13550 process_die (child_die, cu);
13551 }
13552 else
13553 {
13554 name = dwarf2_name (child_die, cu);
13555 if (name)
13556 {
13557 sym = new_symbol (child_die, this_type, cu);
13558
13559 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
13560 {
13561 fields = (struct field *)
13562 xrealloc (fields,
13563 (num_fields + DW_FIELD_ALLOC_CHUNK)
13564 * sizeof (struct field));
13565 }
13566
13567 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
13568 FIELD_TYPE (fields[num_fields]) = NULL;
13569 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
13570 FIELD_BITSIZE (fields[num_fields]) = 0;
13571
13572 num_fields++;
13573 }
13574 }
13575
13576 child_die = sibling_die (child_die);
13577 }
13578
13579 if (num_fields)
13580 {
13581 TYPE_NFIELDS (this_type) = num_fields;
13582 TYPE_FIELDS (this_type) = (struct field *)
13583 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
13584 memcpy (TYPE_FIELDS (this_type), fields,
13585 sizeof (struct field) * num_fields);
13586 xfree (fields);
13587 }
13588 }
13589
13590 /* If we are reading an enum from a .debug_types unit, and the enum
13591 is a declaration, and the enum is not the signatured type in the
13592 unit, then we do not want to add a symbol for it. Adding a
13593 symbol would in some cases obscure the true definition of the
13594 enum, giving users an incomplete type when the definition is
13595 actually available. Note that we do not want to do this for all
13596 enums which are just declarations, because C++0x allows forward
13597 enum declarations. */
13598 if (cu->per_cu->is_debug_types
13599 && die_is_declaration (die, cu))
13600 {
13601 struct signatured_type *sig_type;
13602
13603 sig_type = (struct signatured_type *) cu->per_cu;
13604 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
13605 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
13606 return;
13607 }
13608
13609 new_symbol (die, this_type, cu);
13610 }
13611
13612 /* Extract all information from a DW_TAG_array_type DIE and put it in
13613 the DIE's type field. For now, this only handles one dimensional
13614 arrays. */
13615
13616 static struct type *
13617 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
13618 {
13619 struct objfile *objfile = cu->objfile;
13620 struct die_info *child_die;
13621 struct type *type;
13622 struct type *element_type, *range_type, *index_type;
13623 struct type **range_types = NULL;
13624 struct attribute *attr;
13625 int ndim = 0;
13626 struct cleanup *back_to;
13627 const char *name;
13628 unsigned int bit_stride = 0;
13629
13630 element_type = die_type (die, cu);
13631
13632 /* The die_type call above may have already set the type for this DIE. */
13633 type = get_die_type (die, cu);
13634 if (type)
13635 return type;
13636
13637 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
13638 if (attr != NULL)
13639 bit_stride = DW_UNSND (attr) * 8;
13640
13641 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
13642 if (attr != NULL)
13643 bit_stride = DW_UNSND (attr);
13644
13645 /* Irix 6.2 native cc creates array types without children for
13646 arrays with unspecified length. */
13647 if (die->child == NULL)
13648 {
13649 index_type = objfile_type (objfile)->builtin_int;
13650 range_type = create_static_range_type (NULL, index_type, 0, -1);
13651 type = create_array_type_with_stride (NULL, element_type, range_type,
13652 bit_stride);
13653 return set_die_type (die, type, cu);
13654 }
13655
13656 back_to = make_cleanup (null_cleanup, NULL);
13657 child_die = die->child;
13658 while (child_die && child_die->tag)
13659 {
13660 if (child_die->tag == DW_TAG_subrange_type)
13661 {
13662 struct type *child_type = read_type_die (child_die, cu);
13663
13664 if (child_type != NULL)
13665 {
13666 /* The range type was succesfully read. Save it for the
13667 array type creation. */
13668 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
13669 {
13670 range_types = (struct type **)
13671 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
13672 * sizeof (struct type *));
13673 if (ndim == 0)
13674 make_cleanup (free_current_contents, &range_types);
13675 }
13676 range_types[ndim++] = child_type;
13677 }
13678 }
13679 child_die = sibling_die (child_die);
13680 }
13681
13682 /* Dwarf2 dimensions are output from left to right, create the
13683 necessary array types in backwards order. */
13684
13685 type = element_type;
13686
13687 if (read_array_order (die, cu) == DW_ORD_col_major)
13688 {
13689 int i = 0;
13690
13691 while (i < ndim)
13692 type = create_array_type_with_stride (NULL, type, range_types[i++],
13693 bit_stride);
13694 }
13695 else
13696 {
13697 while (ndim-- > 0)
13698 type = create_array_type_with_stride (NULL, type, range_types[ndim],
13699 bit_stride);
13700 }
13701
13702 /* Understand Dwarf2 support for vector types (like they occur on
13703 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
13704 array type. This is not part of the Dwarf2/3 standard yet, but a
13705 custom vendor extension. The main difference between a regular
13706 array and the vector variant is that vectors are passed by value
13707 to functions. */
13708 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
13709 if (attr)
13710 make_vector_type (type);
13711
13712 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
13713 implementation may choose to implement triple vectors using this
13714 attribute. */
13715 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13716 if (attr)
13717 {
13718 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
13719 TYPE_LENGTH (type) = DW_UNSND (attr);
13720 else
13721 complaint (&symfile_complaints,
13722 _("DW_AT_byte_size for array type smaller "
13723 "than the total size of elements"));
13724 }
13725
13726 name = dwarf2_name (die, cu);
13727 if (name)
13728 TYPE_NAME (type) = name;
13729
13730 /* Install the type in the die. */
13731 set_die_type (die, type, cu);
13732
13733 /* set_die_type should be already done. */
13734 set_descriptive_type (type, die, cu);
13735
13736 do_cleanups (back_to);
13737
13738 return type;
13739 }
13740
13741 static enum dwarf_array_dim_ordering
13742 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
13743 {
13744 struct attribute *attr;
13745
13746 attr = dwarf2_attr (die, DW_AT_ordering, cu);
13747
13748 if (attr) return DW_SND (attr);
13749
13750 /* GNU F77 is a special case, as at 08/2004 array type info is the
13751 opposite order to the dwarf2 specification, but data is still
13752 laid out as per normal fortran.
13753
13754 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
13755 version checking. */
13756
13757 if (cu->language == language_fortran
13758 && cu->producer && strstr (cu->producer, "GNU F77"))
13759 {
13760 return DW_ORD_row_major;
13761 }
13762
13763 switch (cu->language_defn->la_array_ordering)
13764 {
13765 case array_column_major:
13766 return DW_ORD_col_major;
13767 case array_row_major:
13768 default:
13769 return DW_ORD_row_major;
13770 };
13771 }
13772
13773 /* Extract all information from a DW_TAG_set_type DIE and put it in
13774 the DIE's type field. */
13775
13776 static struct type *
13777 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
13778 {
13779 struct type *domain_type, *set_type;
13780 struct attribute *attr;
13781
13782 domain_type = die_type (die, cu);
13783
13784 /* The die_type call above may have already set the type for this DIE. */
13785 set_type = get_die_type (die, cu);
13786 if (set_type)
13787 return set_type;
13788
13789 set_type = create_set_type (NULL, domain_type);
13790
13791 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13792 if (attr)
13793 TYPE_LENGTH (set_type) = DW_UNSND (attr);
13794
13795 return set_die_type (die, set_type, cu);
13796 }
13797
13798 /* A helper for read_common_block that creates a locexpr baton.
13799 SYM is the symbol which we are marking as computed.
13800 COMMON_DIE is the DIE for the common block.
13801 COMMON_LOC is the location expression attribute for the common
13802 block itself.
13803 MEMBER_LOC is the location expression attribute for the particular
13804 member of the common block that we are processing.
13805 CU is the CU from which the above come. */
13806
13807 static void
13808 mark_common_block_symbol_computed (struct symbol *sym,
13809 struct die_info *common_die,
13810 struct attribute *common_loc,
13811 struct attribute *member_loc,
13812 struct dwarf2_cu *cu)
13813 {
13814 struct objfile *objfile = dwarf2_per_objfile->objfile;
13815 struct dwarf2_locexpr_baton *baton;
13816 gdb_byte *ptr;
13817 unsigned int cu_off;
13818 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
13819 LONGEST offset = 0;
13820
13821 gdb_assert (common_loc && member_loc);
13822 gdb_assert (attr_form_is_block (common_loc));
13823 gdb_assert (attr_form_is_block (member_loc)
13824 || attr_form_is_constant (member_loc));
13825
13826 baton = obstack_alloc (&objfile->objfile_obstack,
13827 sizeof (struct dwarf2_locexpr_baton));
13828 baton->per_cu = cu->per_cu;
13829 gdb_assert (baton->per_cu);
13830
13831 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
13832
13833 if (attr_form_is_constant (member_loc))
13834 {
13835 offset = dwarf2_get_attr_constant_value (member_loc, 0);
13836 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
13837 }
13838 else
13839 baton->size += DW_BLOCK (member_loc)->size;
13840
13841 ptr = obstack_alloc (&objfile->objfile_obstack, baton->size);
13842 baton->data = ptr;
13843
13844 *ptr++ = DW_OP_call4;
13845 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
13846 store_unsigned_integer (ptr, 4, byte_order, cu_off);
13847 ptr += 4;
13848
13849 if (attr_form_is_constant (member_loc))
13850 {
13851 *ptr++ = DW_OP_addr;
13852 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
13853 ptr += cu->header.addr_size;
13854 }
13855 else
13856 {
13857 /* We have to copy the data here, because DW_OP_call4 will only
13858 use a DW_AT_location attribute. */
13859 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
13860 ptr += DW_BLOCK (member_loc)->size;
13861 }
13862
13863 *ptr++ = DW_OP_plus;
13864 gdb_assert (ptr - baton->data == baton->size);
13865
13866 SYMBOL_LOCATION_BATON (sym) = baton;
13867 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
13868 }
13869
13870 /* Create appropriate locally-scoped variables for all the
13871 DW_TAG_common_block entries. Also create a struct common_block
13872 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
13873 is used to sepate the common blocks name namespace from regular
13874 variable names. */
13875
13876 static void
13877 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
13878 {
13879 struct attribute *attr;
13880
13881 attr = dwarf2_attr (die, DW_AT_location, cu);
13882 if (attr)
13883 {
13884 /* Support the .debug_loc offsets. */
13885 if (attr_form_is_block (attr))
13886 {
13887 /* Ok. */
13888 }
13889 else if (attr_form_is_section_offset (attr))
13890 {
13891 dwarf2_complex_location_expr_complaint ();
13892 attr = NULL;
13893 }
13894 else
13895 {
13896 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
13897 "common block member");
13898 attr = NULL;
13899 }
13900 }
13901
13902 if (die->child != NULL)
13903 {
13904 struct objfile *objfile = cu->objfile;
13905 struct die_info *child_die;
13906 size_t n_entries = 0, size;
13907 struct common_block *common_block;
13908 struct symbol *sym;
13909
13910 for (child_die = die->child;
13911 child_die && child_die->tag;
13912 child_die = sibling_die (child_die))
13913 ++n_entries;
13914
13915 size = (sizeof (struct common_block)
13916 + (n_entries - 1) * sizeof (struct symbol *));
13917 common_block = obstack_alloc (&objfile->objfile_obstack, size);
13918 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
13919 common_block->n_entries = 0;
13920
13921 for (child_die = die->child;
13922 child_die && child_die->tag;
13923 child_die = sibling_die (child_die))
13924 {
13925 /* Create the symbol in the DW_TAG_common_block block in the current
13926 symbol scope. */
13927 sym = new_symbol (child_die, NULL, cu);
13928 if (sym != NULL)
13929 {
13930 struct attribute *member_loc;
13931
13932 common_block->contents[common_block->n_entries++] = sym;
13933
13934 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
13935 cu);
13936 if (member_loc)
13937 {
13938 /* GDB has handled this for a long time, but it is
13939 not specified by DWARF. It seems to have been
13940 emitted by gfortran at least as recently as:
13941 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
13942 complaint (&symfile_complaints,
13943 _("Variable in common block has "
13944 "DW_AT_data_member_location "
13945 "- DIE at 0x%x [in module %s]"),
13946 child_die->offset.sect_off,
13947 objfile_name (cu->objfile));
13948
13949 if (attr_form_is_section_offset (member_loc))
13950 dwarf2_complex_location_expr_complaint ();
13951 else if (attr_form_is_constant (member_loc)
13952 || attr_form_is_block (member_loc))
13953 {
13954 if (attr)
13955 mark_common_block_symbol_computed (sym, die, attr,
13956 member_loc, cu);
13957 }
13958 else
13959 dwarf2_complex_location_expr_complaint ();
13960 }
13961 }
13962 }
13963
13964 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
13965 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
13966 }
13967 }
13968
13969 /* Create a type for a C++ namespace. */
13970
13971 static struct type *
13972 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
13973 {
13974 struct objfile *objfile = cu->objfile;
13975 const char *previous_prefix, *name;
13976 int is_anonymous;
13977 struct type *type;
13978
13979 /* For extensions, reuse the type of the original namespace. */
13980 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
13981 {
13982 struct die_info *ext_die;
13983 struct dwarf2_cu *ext_cu = cu;
13984
13985 ext_die = dwarf2_extension (die, &ext_cu);
13986 type = read_type_die (ext_die, ext_cu);
13987
13988 /* EXT_CU may not be the same as CU.
13989 Ensure TYPE is recorded with CU in die_type_hash. */
13990 return set_die_type (die, type, cu);
13991 }
13992
13993 name = namespace_name (die, &is_anonymous, cu);
13994
13995 /* Now build the name of the current namespace. */
13996
13997 previous_prefix = determine_prefix (die, cu);
13998 if (previous_prefix[0] != '\0')
13999 name = typename_concat (&objfile->objfile_obstack,
14000 previous_prefix, name, 0, cu);
14001
14002 /* Create the type. */
14003 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
14004 objfile);
14005 TYPE_NAME (type) = name;
14006 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14007
14008 return set_die_type (die, type, cu);
14009 }
14010
14011 /* Read a C++ namespace. */
14012
14013 static void
14014 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
14015 {
14016 struct objfile *objfile = cu->objfile;
14017 int is_anonymous;
14018
14019 /* Add a symbol associated to this if we haven't seen the namespace
14020 before. Also, add a using directive if it's an anonymous
14021 namespace. */
14022
14023 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
14024 {
14025 struct type *type;
14026
14027 type = read_type_die (die, cu);
14028 new_symbol (die, type, cu);
14029
14030 namespace_name (die, &is_anonymous, cu);
14031 if (is_anonymous)
14032 {
14033 const char *previous_prefix = determine_prefix (die, cu);
14034
14035 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
14036 NULL, NULL, 0, &objfile->objfile_obstack);
14037 }
14038 }
14039
14040 if (die->child != NULL)
14041 {
14042 struct die_info *child_die = die->child;
14043
14044 while (child_die && child_die->tag)
14045 {
14046 process_die (child_die, cu);
14047 child_die = sibling_die (child_die);
14048 }
14049 }
14050 }
14051
14052 /* Read a Fortran module as type. This DIE can be only a declaration used for
14053 imported module. Still we need that type as local Fortran "use ... only"
14054 declaration imports depend on the created type in determine_prefix. */
14055
14056 static struct type *
14057 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
14058 {
14059 struct objfile *objfile = cu->objfile;
14060 const char *module_name;
14061 struct type *type;
14062
14063 module_name = dwarf2_name (die, cu);
14064 if (!module_name)
14065 complaint (&symfile_complaints,
14066 _("DW_TAG_module has no name, offset 0x%x"),
14067 die->offset.sect_off);
14068 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
14069
14070 /* determine_prefix uses TYPE_TAG_NAME. */
14071 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14072
14073 return set_die_type (die, type, cu);
14074 }
14075
14076 /* Read a Fortran module. */
14077
14078 static void
14079 read_module (struct die_info *die, struct dwarf2_cu *cu)
14080 {
14081 struct die_info *child_die = die->child;
14082 struct type *type;
14083
14084 type = read_type_die (die, cu);
14085 new_symbol (die, type, cu);
14086
14087 while (child_die && child_die->tag)
14088 {
14089 process_die (child_die, cu);
14090 child_die = sibling_die (child_die);
14091 }
14092 }
14093
14094 /* Return the name of the namespace represented by DIE. Set
14095 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
14096 namespace. */
14097
14098 static const char *
14099 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
14100 {
14101 struct die_info *current_die;
14102 const char *name = NULL;
14103
14104 /* Loop through the extensions until we find a name. */
14105
14106 for (current_die = die;
14107 current_die != NULL;
14108 current_die = dwarf2_extension (die, &cu))
14109 {
14110 name = dwarf2_name (current_die, cu);
14111 if (name != NULL)
14112 break;
14113 }
14114
14115 /* Is it an anonymous namespace? */
14116
14117 *is_anonymous = (name == NULL);
14118 if (*is_anonymous)
14119 name = CP_ANONYMOUS_NAMESPACE_STR;
14120
14121 return name;
14122 }
14123
14124 /* Extract all information from a DW_TAG_pointer_type DIE and add to
14125 the user defined type vector. */
14126
14127 static struct type *
14128 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
14129 {
14130 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
14131 struct comp_unit_head *cu_header = &cu->header;
14132 struct type *type;
14133 struct attribute *attr_byte_size;
14134 struct attribute *attr_address_class;
14135 int byte_size, addr_class;
14136 struct type *target_type;
14137
14138 target_type = die_type (die, cu);
14139
14140 /* The die_type call above may have already set the type for this DIE. */
14141 type = get_die_type (die, cu);
14142 if (type)
14143 return type;
14144
14145 type = lookup_pointer_type (target_type);
14146
14147 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
14148 if (attr_byte_size)
14149 byte_size = DW_UNSND (attr_byte_size);
14150 else
14151 byte_size = cu_header->addr_size;
14152
14153 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
14154 if (attr_address_class)
14155 addr_class = DW_UNSND (attr_address_class);
14156 else
14157 addr_class = DW_ADDR_none;
14158
14159 /* If the pointer size or address class is different than the
14160 default, create a type variant marked as such and set the
14161 length accordingly. */
14162 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
14163 {
14164 if (gdbarch_address_class_type_flags_p (gdbarch))
14165 {
14166 int type_flags;
14167
14168 type_flags = gdbarch_address_class_type_flags
14169 (gdbarch, byte_size, addr_class);
14170 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
14171 == 0);
14172 type = make_type_with_address_space (type, type_flags);
14173 }
14174 else if (TYPE_LENGTH (type) != byte_size)
14175 {
14176 complaint (&symfile_complaints,
14177 _("invalid pointer size %d"), byte_size);
14178 }
14179 else
14180 {
14181 /* Should we also complain about unhandled address classes? */
14182 }
14183 }
14184
14185 TYPE_LENGTH (type) = byte_size;
14186 return set_die_type (die, type, cu);
14187 }
14188
14189 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
14190 the user defined type vector. */
14191
14192 static struct type *
14193 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
14194 {
14195 struct type *type;
14196 struct type *to_type;
14197 struct type *domain;
14198
14199 to_type = die_type (die, cu);
14200 domain = die_containing_type (die, cu);
14201
14202 /* The calls above may have already set the type for this DIE. */
14203 type = get_die_type (die, cu);
14204 if (type)
14205 return type;
14206
14207 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
14208 type = lookup_methodptr_type (to_type);
14209 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
14210 {
14211 struct type *new_type = alloc_type (cu->objfile);
14212
14213 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
14214 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
14215 TYPE_VARARGS (to_type));
14216 type = lookup_methodptr_type (new_type);
14217 }
14218 else
14219 type = lookup_memberptr_type (to_type, domain);
14220
14221 return set_die_type (die, type, cu);
14222 }
14223
14224 /* Extract all information from a DW_TAG_reference_type DIE and add to
14225 the user defined type vector. */
14226
14227 static struct type *
14228 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
14229 {
14230 struct comp_unit_head *cu_header = &cu->header;
14231 struct type *type, *target_type;
14232 struct attribute *attr;
14233
14234 target_type = die_type (die, cu);
14235
14236 /* The die_type call above may have already set the type for this DIE. */
14237 type = get_die_type (die, cu);
14238 if (type)
14239 return type;
14240
14241 type = lookup_reference_type (target_type);
14242 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14243 if (attr)
14244 {
14245 TYPE_LENGTH (type) = DW_UNSND (attr);
14246 }
14247 else
14248 {
14249 TYPE_LENGTH (type) = cu_header->addr_size;
14250 }
14251 return set_die_type (die, type, cu);
14252 }
14253
14254 /* Add the given cv-qualifiers to the element type of the array. GCC
14255 outputs DWARF type qualifiers that apply to an array, not the
14256 element type. But GDB relies on the array element type to carry
14257 the cv-qualifiers. This mimics section 6.7.3 of the C99
14258 specification. */
14259
14260 static struct type *
14261 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
14262 struct type *base_type, int cnst, int voltl)
14263 {
14264 struct type *el_type, *inner_array;
14265
14266 base_type = copy_type (base_type);
14267 inner_array = base_type;
14268
14269 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
14270 {
14271 TYPE_TARGET_TYPE (inner_array) =
14272 copy_type (TYPE_TARGET_TYPE (inner_array));
14273 inner_array = TYPE_TARGET_TYPE (inner_array);
14274 }
14275
14276 el_type = TYPE_TARGET_TYPE (inner_array);
14277 cnst |= TYPE_CONST (el_type);
14278 voltl |= TYPE_VOLATILE (el_type);
14279 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
14280
14281 return set_die_type (die, base_type, cu);
14282 }
14283
14284 static struct type *
14285 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
14286 {
14287 struct type *base_type, *cv_type;
14288
14289 base_type = die_type (die, cu);
14290
14291 /* The die_type call above may have already set the type for this DIE. */
14292 cv_type = get_die_type (die, cu);
14293 if (cv_type)
14294 return cv_type;
14295
14296 /* In case the const qualifier is applied to an array type, the element type
14297 is so qualified, not the array type (section 6.7.3 of C99). */
14298 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14299 return add_array_cv_type (die, cu, base_type, 1, 0);
14300
14301 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
14302 return set_die_type (die, cv_type, cu);
14303 }
14304
14305 static struct type *
14306 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
14307 {
14308 struct type *base_type, *cv_type;
14309
14310 base_type = die_type (die, cu);
14311
14312 /* The die_type call above may have already set the type for this DIE. */
14313 cv_type = get_die_type (die, cu);
14314 if (cv_type)
14315 return cv_type;
14316
14317 /* In case the volatile qualifier is applied to an array type, the
14318 element type is so qualified, not the array type (section 6.7.3
14319 of C99). */
14320 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14321 return add_array_cv_type (die, cu, base_type, 0, 1);
14322
14323 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
14324 return set_die_type (die, cv_type, cu);
14325 }
14326
14327 /* Handle DW_TAG_restrict_type. */
14328
14329 static struct type *
14330 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
14331 {
14332 struct type *base_type, *cv_type;
14333
14334 base_type = die_type (die, cu);
14335
14336 /* The die_type call above may have already set the type for this DIE. */
14337 cv_type = get_die_type (die, cu);
14338 if (cv_type)
14339 return cv_type;
14340
14341 cv_type = make_restrict_type (base_type);
14342 return set_die_type (die, cv_type, cu);
14343 }
14344
14345 /* Extract all information from a DW_TAG_string_type DIE and add to
14346 the user defined type vector. It isn't really a user defined type,
14347 but it behaves like one, with other DIE's using an AT_user_def_type
14348 attribute to reference it. */
14349
14350 static struct type *
14351 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
14352 {
14353 struct objfile *objfile = cu->objfile;
14354 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14355 struct type *type, *range_type, *index_type, *char_type;
14356 struct attribute *attr;
14357 unsigned int length;
14358
14359 attr = dwarf2_attr (die, DW_AT_string_length, cu);
14360 if (attr)
14361 {
14362 length = DW_UNSND (attr);
14363 }
14364 else
14365 {
14366 /* Check for the DW_AT_byte_size attribute. */
14367 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14368 if (attr)
14369 {
14370 length = DW_UNSND (attr);
14371 }
14372 else
14373 {
14374 length = 1;
14375 }
14376 }
14377
14378 index_type = objfile_type (objfile)->builtin_int;
14379 range_type = create_static_range_type (NULL, index_type, 1, length);
14380 char_type = language_string_char_type (cu->language_defn, gdbarch);
14381 type = create_string_type (NULL, char_type, range_type);
14382
14383 return set_die_type (die, type, cu);
14384 }
14385
14386 /* Assuming that DIE corresponds to a function, returns nonzero
14387 if the function is prototyped. */
14388
14389 static int
14390 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
14391 {
14392 struct attribute *attr;
14393
14394 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
14395 if (attr && (DW_UNSND (attr) != 0))
14396 return 1;
14397
14398 /* The DWARF standard implies that the DW_AT_prototyped attribute
14399 is only meaninful for C, but the concept also extends to other
14400 languages that allow unprototyped functions (Eg: Objective C).
14401 For all other languages, assume that functions are always
14402 prototyped. */
14403 if (cu->language != language_c
14404 && cu->language != language_objc
14405 && cu->language != language_opencl)
14406 return 1;
14407
14408 /* RealView does not emit DW_AT_prototyped. We can not distinguish
14409 prototyped and unprototyped functions; default to prototyped,
14410 since that is more common in modern code (and RealView warns
14411 about unprototyped functions). */
14412 if (producer_is_realview (cu->producer))
14413 return 1;
14414
14415 return 0;
14416 }
14417
14418 /* Handle DIES due to C code like:
14419
14420 struct foo
14421 {
14422 int (*funcp)(int a, long l);
14423 int b;
14424 };
14425
14426 ('funcp' generates a DW_TAG_subroutine_type DIE). */
14427
14428 static struct type *
14429 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
14430 {
14431 struct objfile *objfile = cu->objfile;
14432 struct type *type; /* Type that this function returns. */
14433 struct type *ftype; /* Function that returns above type. */
14434 struct attribute *attr;
14435
14436 type = die_type (die, cu);
14437
14438 /* The die_type call above may have already set the type for this DIE. */
14439 ftype = get_die_type (die, cu);
14440 if (ftype)
14441 return ftype;
14442
14443 ftype = lookup_function_type (type);
14444
14445 if (prototyped_function_p (die, cu))
14446 TYPE_PROTOTYPED (ftype) = 1;
14447
14448 /* Store the calling convention in the type if it's available in
14449 the subroutine die. Otherwise set the calling convention to
14450 the default value DW_CC_normal. */
14451 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
14452 if (attr)
14453 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
14454 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
14455 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
14456 else
14457 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
14458
14459 /* Record whether the function returns normally to its caller or not
14460 if the DWARF producer set that information. */
14461 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
14462 if (attr && (DW_UNSND (attr) != 0))
14463 TYPE_NO_RETURN (ftype) = 1;
14464
14465 /* We need to add the subroutine type to the die immediately so
14466 we don't infinitely recurse when dealing with parameters
14467 declared as the same subroutine type. */
14468 set_die_type (die, ftype, cu);
14469
14470 if (die->child != NULL)
14471 {
14472 struct type *void_type = objfile_type (objfile)->builtin_void;
14473 struct die_info *child_die;
14474 int nparams, iparams;
14475
14476 /* Count the number of parameters.
14477 FIXME: GDB currently ignores vararg functions, but knows about
14478 vararg member functions. */
14479 nparams = 0;
14480 child_die = die->child;
14481 while (child_die && child_die->tag)
14482 {
14483 if (child_die->tag == DW_TAG_formal_parameter)
14484 nparams++;
14485 else if (child_die->tag == DW_TAG_unspecified_parameters)
14486 TYPE_VARARGS (ftype) = 1;
14487 child_die = sibling_die (child_die);
14488 }
14489
14490 /* Allocate storage for parameters and fill them in. */
14491 TYPE_NFIELDS (ftype) = nparams;
14492 TYPE_FIELDS (ftype) = (struct field *)
14493 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
14494
14495 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
14496 even if we error out during the parameters reading below. */
14497 for (iparams = 0; iparams < nparams; iparams++)
14498 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
14499
14500 iparams = 0;
14501 child_die = die->child;
14502 while (child_die && child_die->tag)
14503 {
14504 if (child_die->tag == DW_TAG_formal_parameter)
14505 {
14506 struct type *arg_type;
14507
14508 /* DWARF version 2 has no clean way to discern C++
14509 static and non-static member functions. G++ helps
14510 GDB by marking the first parameter for non-static
14511 member functions (which is the this pointer) as
14512 artificial. We pass this information to
14513 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
14514
14515 DWARF version 3 added DW_AT_object_pointer, which GCC
14516 4.5 does not yet generate. */
14517 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
14518 if (attr)
14519 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
14520 else
14521 {
14522 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
14523
14524 /* GCC/43521: In java, the formal parameter
14525 "this" is sometimes not marked with DW_AT_artificial. */
14526 if (cu->language == language_java)
14527 {
14528 const char *name = dwarf2_name (child_die, cu);
14529
14530 if (name && !strcmp (name, "this"))
14531 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
14532 }
14533 }
14534 arg_type = die_type (child_die, cu);
14535
14536 /* RealView does not mark THIS as const, which the testsuite
14537 expects. GCC marks THIS as const in method definitions,
14538 but not in the class specifications (GCC PR 43053). */
14539 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
14540 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
14541 {
14542 int is_this = 0;
14543 struct dwarf2_cu *arg_cu = cu;
14544 const char *name = dwarf2_name (child_die, cu);
14545
14546 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
14547 if (attr)
14548 {
14549 /* If the compiler emits this, use it. */
14550 if (follow_die_ref (die, attr, &arg_cu) == child_die)
14551 is_this = 1;
14552 }
14553 else if (name && strcmp (name, "this") == 0)
14554 /* Function definitions will have the argument names. */
14555 is_this = 1;
14556 else if (name == NULL && iparams == 0)
14557 /* Declarations may not have the names, so like
14558 elsewhere in GDB, assume an artificial first
14559 argument is "this". */
14560 is_this = 1;
14561
14562 if (is_this)
14563 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
14564 arg_type, 0);
14565 }
14566
14567 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
14568 iparams++;
14569 }
14570 child_die = sibling_die (child_die);
14571 }
14572 }
14573
14574 return ftype;
14575 }
14576
14577 static struct type *
14578 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
14579 {
14580 struct objfile *objfile = cu->objfile;
14581 const char *name = NULL;
14582 struct type *this_type, *target_type;
14583
14584 name = dwarf2_full_name (NULL, die, cu);
14585 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
14586 TYPE_FLAG_TARGET_STUB, NULL, objfile);
14587 TYPE_NAME (this_type) = name;
14588 set_die_type (die, this_type, cu);
14589 target_type = die_type (die, cu);
14590 if (target_type != this_type)
14591 TYPE_TARGET_TYPE (this_type) = target_type;
14592 else
14593 {
14594 /* Self-referential typedefs are, it seems, not allowed by the DWARF
14595 spec and cause infinite loops in GDB. */
14596 complaint (&symfile_complaints,
14597 _("Self-referential DW_TAG_typedef "
14598 "- DIE at 0x%x [in module %s]"),
14599 die->offset.sect_off, objfile_name (objfile));
14600 TYPE_TARGET_TYPE (this_type) = NULL;
14601 }
14602 return this_type;
14603 }
14604
14605 /* Find a representation of a given base type and install
14606 it in the TYPE field of the die. */
14607
14608 static struct type *
14609 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
14610 {
14611 struct objfile *objfile = cu->objfile;
14612 struct type *type;
14613 struct attribute *attr;
14614 int encoding = 0, size = 0;
14615 const char *name;
14616 enum type_code code = TYPE_CODE_INT;
14617 int type_flags = 0;
14618 struct type *target_type = NULL;
14619
14620 attr = dwarf2_attr (die, DW_AT_encoding, cu);
14621 if (attr)
14622 {
14623 encoding = DW_UNSND (attr);
14624 }
14625 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14626 if (attr)
14627 {
14628 size = DW_UNSND (attr);
14629 }
14630 name = dwarf2_name (die, cu);
14631 if (!name)
14632 {
14633 complaint (&symfile_complaints,
14634 _("DW_AT_name missing from DW_TAG_base_type"));
14635 }
14636
14637 switch (encoding)
14638 {
14639 case DW_ATE_address:
14640 /* Turn DW_ATE_address into a void * pointer. */
14641 code = TYPE_CODE_PTR;
14642 type_flags |= TYPE_FLAG_UNSIGNED;
14643 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
14644 break;
14645 case DW_ATE_boolean:
14646 code = TYPE_CODE_BOOL;
14647 type_flags |= TYPE_FLAG_UNSIGNED;
14648 break;
14649 case DW_ATE_complex_float:
14650 code = TYPE_CODE_COMPLEX;
14651 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
14652 break;
14653 case DW_ATE_decimal_float:
14654 code = TYPE_CODE_DECFLOAT;
14655 break;
14656 case DW_ATE_float:
14657 code = TYPE_CODE_FLT;
14658 break;
14659 case DW_ATE_signed:
14660 break;
14661 case DW_ATE_unsigned:
14662 type_flags |= TYPE_FLAG_UNSIGNED;
14663 if (cu->language == language_fortran
14664 && name
14665 && strncmp (name, "character(", sizeof ("character(") - 1) == 0)
14666 code = TYPE_CODE_CHAR;
14667 break;
14668 case DW_ATE_signed_char:
14669 if (cu->language == language_ada || cu->language == language_m2
14670 || cu->language == language_pascal
14671 || cu->language == language_fortran)
14672 code = TYPE_CODE_CHAR;
14673 break;
14674 case DW_ATE_unsigned_char:
14675 if (cu->language == language_ada || cu->language == language_m2
14676 || cu->language == language_pascal
14677 || cu->language == language_fortran)
14678 code = TYPE_CODE_CHAR;
14679 type_flags |= TYPE_FLAG_UNSIGNED;
14680 break;
14681 case DW_ATE_UTF:
14682 /* We just treat this as an integer and then recognize the
14683 type by name elsewhere. */
14684 break;
14685
14686 default:
14687 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
14688 dwarf_type_encoding_name (encoding));
14689 break;
14690 }
14691
14692 type = init_type (code, size, type_flags, NULL, objfile);
14693 TYPE_NAME (type) = name;
14694 TYPE_TARGET_TYPE (type) = target_type;
14695
14696 if (name && strcmp (name, "char") == 0)
14697 TYPE_NOSIGN (type) = 1;
14698
14699 return set_die_type (die, type, cu);
14700 }
14701
14702 /* Parse dwarf attribute if it's a block, reference or constant and put the
14703 resulting value of the attribute into struct bound_prop.
14704 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
14705
14706 static int
14707 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
14708 struct dwarf2_cu *cu, struct dynamic_prop *prop)
14709 {
14710 struct dwarf2_property_baton *baton;
14711 struct obstack *obstack = &cu->objfile->objfile_obstack;
14712
14713 if (attr == NULL || prop == NULL)
14714 return 0;
14715
14716 if (attr_form_is_block (attr))
14717 {
14718 baton = obstack_alloc (obstack, sizeof (*baton));
14719 baton->referenced_type = NULL;
14720 baton->locexpr.per_cu = cu->per_cu;
14721 baton->locexpr.size = DW_BLOCK (attr)->size;
14722 baton->locexpr.data = DW_BLOCK (attr)->data;
14723 prop->data.baton = baton;
14724 prop->kind = PROP_LOCEXPR;
14725 gdb_assert (prop->data.baton != NULL);
14726 }
14727 else if (attr_form_is_ref (attr))
14728 {
14729 struct dwarf2_cu *target_cu = cu;
14730 struct die_info *target_die;
14731 struct attribute *target_attr;
14732
14733 target_die = follow_die_ref (die, attr, &target_cu);
14734 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
14735 if (target_attr == NULL)
14736 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
14737 target_cu);
14738 if (target_attr == NULL)
14739 return 0;
14740
14741 switch (target_attr->name)
14742 {
14743 case DW_AT_location:
14744 if (attr_form_is_section_offset (target_attr))
14745 {
14746 baton = obstack_alloc (obstack, sizeof (*baton));
14747 baton->referenced_type = die_type (target_die, target_cu);
14748 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
14749 prop->data.baton = baton;
14750 prop->kind = PROP_LOCLIST;
14751 gdb_assert (prop->data.baton != NULL);
14752 }
14753 else if (attr_form_is_block (target_attr))
14754 {
14755 baton = obstack_alloc (obstack, sizeof (*baton));
14756 baton->referenced_type = die_type (target_die, target_cu);
14757 baton->locexpr.per_cu = cu->per_cu;
14758 baton->locexpr.size = DW_BLOCK (target_attr)->size;
14759 baton->locexpr.data = DW_BLOCK (target_attr)->data;
14760 prop->data.baton = baton;
14761 prop->kind = PROP_LOCEXPR;
14762 gdb_assert (prop->data.baton != NULL);
14763 }
14764 else
14765 {
14766 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14767 "dynamic property");
14768 return 0;
14769 }
14770 break;
14771 case DW_AT_data_member_location:
14772 {
14773 LONGEST offset;
14774
14775 if (!handle_data_member_location (target_die, target_cu,
14776 &offset))
14777 return 0;
14778
14779 baton = obstack_alloc (obstack, sizeof (*baton));
14780 baton->referenced_type = get_die_type (target_die->parent,
14781 target_cu);
14782 baton->offset_info.offset = offset;
14783 baton->offset_info.type = die_type (target_die, target_cu);
14784 prop->data.baton = baton;
14785 prop->kind = PROP_ADDR_OFFSET;
14786 break;
14787 }
14788 }
14789 }
14790 else if (attr_form_is_constant (attr))
14791 {
14792 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
14793 prop->kind = PROP_CONST;
14794 }
14795 else
14796 {
14797 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
14798 dwarf2_name (die, cu));
14799 return 0;
14800 }
14801
14802 return 1;
14803 }
14804
14805 /* Read the given DW_AT_subrange DIE. */
14806
14807 static struct type *
14808 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
14809 {
14810 struct type *base_type, *orig_base_type;
14811 struct type *range_type;
14812 struct attribute *attr;
14813 struct dynamic_prop low, high;
14814 int low_default_is_valid;
14815 int high_bound_is_count = 0;
14816 const char *name;
14817 LONGEST negative_mask;
14818
14819 orig_base_type = die_type (die, cu);
14820 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
14821 whereas the real type might be. So, we use ORIG_BASE_TYPE when
14822 creating the range type, but we use the result of check_typedef
14823 when examining properties of the type. */
14824 base_type = check_typedef (orig_base_type);
14825
14826 /* The die_type call above may have already set the type for this DIE. */
14827 range_type = get_die_type (die, cu);
14828 if (range_type)
14829 return range_type;
14830
14831 low.kind = PROP_CONST;
14832 high.kind = PROP_CONST;
14833 high.data.const_val = 0;
14834
14835 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
14836 omitting DW_AT_lower_bound. */
14837 switch (cu->language)
14838 {
14839 case language_c:
14840 case language_cplus:
14841 low.data.const_val = 0;
14842 low_default_is_valid = 1;
14843 break;
14844 case language_fortran:
14845 low.data.const_val = 1;
14846 low_default_is_valid = 1;
14847 break;
14848 case language_d:
14849 case language_java:
14850 case language_objc:
14851 low.data.const_val = 0;
14852 low_default_is_valid = (cu->header.version >= 4);
14853 break;
14854 case language_ada:
14855 case language_m2:
14856 case language_pascal:
14857 low.data.const_val = 1;
14858 low_default_is_valid = (cu->header.version >= 4);
14859 break;
14860 default:
14861 low.data.const_val = 0;
14862 low_default_is_valid = 0;
14863 break;
14864 }
14865
14866 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
14867 if (attr)
14868 attr_to_dynamic_prop (attr, die, cu, &low);
14869 else if (!low_default_is_valid)
14870 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
14871 "- DIE at 0x%x [in module %s]"),
14872 die->offset.sect_off, objfile_name (cu->objfile));
14873
14874 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
14875 if (!attr_to_dynamic_prop (attr, die, cu, &high))
14876 {
14877 attr = dwarf2_attr (die, DW_AT_count, cu);
14878 if (attr_to_dynamic_prop (attr, die, cu, &high))
14879 {
14880 /* If bounds are constant do the final calculation here. */
14881 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
14882 high.data.const_val = low.data.const_val + high.data.const_val - 1;
14883 else
14884 high_bound_is_count = 1;
14885 }
14886 }
14887
14888 /* Dwarf-2 specifications explicitly allows to create subrange types
14889 without specifying a base type.
14890 In that case, the base type must be set to the type of
14891 the lower bound, upper bound or count, in that order, if any of these
14892 three attributes references an object that has a type.
14893 If no base type is found, the Dwarf-2 specifications say that
14894 a signed integer type of size equal to the size of an address should
14895 be used.
14896 For the following C code: `extern char gdb_int [];'
14897 GCC produces an empty range DIE.
14898 FIXME: muller/2010-05-28: Possible references to object for low bound,
14899 high bound or count are not yet handled by this code. */
14900 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
14901 {
14902 struct objfile *objfile = cu->objfile;
14903 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14904 int addr_size = gdbarch_addr_bit (gdbarch) /8;
14905 struct type *int_type = objfile_type (objfile)->builtin_int;
14906
14907 /* Test "int", "long int", and "long long int" objfile types,
14908 and select the first one having a size above or equal to the
14909 architecture address size. */
14910 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14911 base_type = int_type;
14912 else
14913 {
14914 int_type = objfile_type (objfile)->builtin_long;
14915 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14916 base_type = int_type;
14917 else
14918 {
14919 int_type = objfile_type (objfile)->builtin_long_long;
14920 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14921 base_type = int_type;
14922 }
14923 }
14924 }
14925
14926 /* Normally, the DWARF producers are expected to use a signed
14927 constant form (Eg. DW_FORM_sdata) to express negative bounds.
14928 But this is unfortunately not always the case, as witnessed
14929 with GCC, for instance, where the ambiguous DW_FORM_dataN form
14930 is used instead. To work around that ambiguity, we treat
14931 the bounds as signed, and thus sign-extend their values, when
14932 the base type is signed. */
14933 negative_mask =
14934 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
14935 if (low.kind == PROP_CONST
14936 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
14937 low.data.const_val |= negative_mask;
14938 if (high.kind == PROP_CONST
14939 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
14940 high.data.const_val |= negative_mask;
14941
14942 range_type = create_range_type (NULL, orig_base_type, &low, &high);
14943
14944 if (high_bound_is_count)
14945 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
14946
14947 /* Ada expects an empty array on no boundary attributes. */
14948 if (attr == NULL && cu->language != language_ada)
14949 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
14950
14951 name = dwarf2_name (die, cu);
14952 if (name)
14953 TYPE_NAME (range_type) = name;
14954
14955 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14956 if (attr)
14957 TYPE_LENGTH (range_type) = DW_UNSND (attr);
14958
14959 set_die_type (die, range_type, cu);
14960
14961 /* set_die_type should be already done. */
14962 set_descriptive_type (range_type, die, cu);
14963
14964 return range_type;
14965 }
14966
14967 static struct type *
14968 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
14969 {
14970 struct type *type;
14971
14972 /* For now, we only support the C meaning of an unspecified type: void. */
14973
14974 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
14975 TYPE_NAME (type) = dwarf2_name (die, cu);
14976
14977 return set_die_type (die, type, cu);
14978 }
14979
14980 /* Read a single die and all its descendents. Set the die's sibling
14981 field to NULL; set other fields in the die correctly, and set all
14982 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
14983 location of the info_ptr after reading all of those dies. PARENT
14984 is the parent of the die in question. */
14985
14986 static struct die_info *
14987 read_die_and_children (const struct die_reader_specs *reader,
14988 const gdb_byte *info_ptr,
14989 const gdb_byte **new_info_ptr,
14990 struct die_info *parent)
14991 {
14992 struct die_info *die;
14993 const gdb_byte *cur_ptr;
14994 int has_children;
14995
14996 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
14997 if (die == NULL)
14998 {
14999 *new_info_ptr = cur_ptr;
15000 return NULL;
15001 }
15002 store_in_ref_table (die, reader->cu);
15003
15004 if (has_children)
15005 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
15006 else
15007 {
15008 die->child = NULL;
15009 *new_info_ptr = cur_ptr;
15010 }
15011
15012 die->sibling = NULL;
15013 die->parent = parent;
15014 return die;
15015 }
15016
15017 /* Read a die, all of its descendents, and all of its siblings; set
15018 all of the fields of all of the dies correctly. Arguments are as
15019 in read_die_and_children. */
15020
15021 static struct die_info *
15022 read_die_and_siblings_1 (const struct die_reader_specs *reader,
15023 const gdb_byte *info_ptr,
15024 const gdb_byte **new_info_ptr,
15025 struct die_info *parent)
15026 {
15027 struct die_info *first_die, *last_sibling;
15028 const gdb_byte *cur_ptr;
15029
15030 cur_ptr = info_ptr;
15031 first_die = last_sibling = NULL;
15032
15033 while (1)
15034 {
15035 struct die_info *die
15036 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
15037
15038 if (die == NULL)
15039 {
15040 *new_info_ptr = cur_ptr;
15041 return first_die;
15042 }
15043
15044 if (!first_die)
15045 first_die = die;
15046 else
15047 last_sibling->sibling = die;
15048
15049 last_sibling = die;
15050 }
15051 }
15052
15053 /* Read a die, all of its descendents, and all of its siblings; set
15054 all of the fields of all of the dies correctly. Arguments are as
15055 in read_die_and_children.
15056 This the main entry point for reading a DIE and all its children. */
15057
15058 static struct die_info *
15059 read_die_and_siblings (const struct die_reader_specs *reader,
15060 const gdb_byte *info_ptr,
15061 const gdb_byte **new_info_ptr,
15062 struct die_info *parent)
15063 {
15064 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
15065 new_info_ptr, parent);
15066
15067 if (dwarf2_die_debug)
15068 {
15069 fprintf_unfiltered (gdb_stdlog,
15070 "Read die from %s@0x%x of %s:\n",
15071 get_section_name (reader->die_section),
15072 (unsigned) (info_ptr - reader->die_section->buffer),
15073 bfd_get_filename (reader->abfd));
15074 dump_die (die, dwarf2_die_debug);
15075 }
15076
15077 return die;
15078 }
15079
15080 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
15081 attributes.
15082 The caller is responsible for filling in the extra attributes
15083 and updating (*DIEP)->num_attrs.
15084 Set DIEP to point to a newly allocated die with its information,
15085 except for its child, sibling, and parent fields.
15086 Set HAS_CHILDREN to tell whether the die has children or not. */
15087
15088 static const gdb_byte *
15089 read_full_die_1 (const struct die_reader_specs *reader,
15090 struct die_info **diep, const gdb_byte *info_ptr,
15091 int *has_children, int num_extra_attrs)
15092 {
15093 unsigned int abbrev_number, bytes_read, i;
15094 sect_offset offset;
15095 struct abbrev_info *abbrev;
15096 struct die_info *die;
15097 struct dwarf2_cu *cu = reader->cu;
15098 bfd *abfd = reader->abfd;
15099
15100 offset.sect_off = info_ptr - reader->buffer;
15101 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15102 info_ptr += bytes_read;
15103 if (!abbrev_number)
15104 {
15105 *diep = NULL;
15106 *has_children = 0;
15107 return info_ptr;
15108 }
15109
15110 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
15111 if (!abbrev)
15112 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
15113 abbrev_number,
15114 bfd_get_filename (abfd));
15115
15116 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
15117 die->offset = offset;
15118 die->tag = abbrev->tag;
15119 die->abbrev = abbrev_number;
15120
15121 /* Make the result usable.
15122 The caller needs to update num_attrs after adding the extra
15123 attributes. */
15124 die->num_attrs = abbrev->num_attrs;
15125
15126 for (i = 0; i < abbrev->num_attrs; ++i)
15127 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
15128 info_ptr);
15129
15130 *diep = die;
15131 *has_children = abbrev->has_children;
15132 return info_ptr;
15133 }
15134
15135 /* Read a die and all its attributes.
15136 Set DIEP to point to a newly allocated die with its information,
15137 except for its child, sibling, and parent fields.
15138 Set HAS_CHILDREN to tell whether the die has children or not. */
15139
15140 static const gdb_byte *
15141 read_full_die (const struct die_reader_specs *reader,
15142 struct die_info **diep, const gdb_byte *info_ptr,
15143 int *has_children)
15144 {
15145 const gdb_byte *result;
15146
15147 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
15148
15149 if (dwarf2_die_debug)
15150 {
15151 fprintf_unfiltered (gdb_stdlog,
15152 "Read die from %s@0x%x of %s:\n",
15153 get_section_name (reader->die_section),
15154 (unsigned) (info_ptr - reader->die_section->buffer),
15155 bfd_get_filename (reader->abfd));
15156 dump_die (*diep, dwarf2_die_debug);
15157 }
15158
15159 return result;
15160 }
15161 \f
15162 /* Abbreviation tables.
15163
15164 In DWARF version 2, the description of the debugging information is
15165 stored in a separate .debug_abbrev section. Before we read any
15166 dies from a section we read in all abbreviations and install them
15167 in a hash table. */
15168
15169 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
15170
15171 static struct abbrev_info *
15172 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
15173 {
15174 struct abbrev_info *abbrev;
15175
15176 abbrev = (struct abbrev_info *)
15177 obstack_alloc (&abbrev_table->abbrev_obstack, sizeof (struct abbrev_info));
15178 memset (abbrev, 0, sizeof (struct abbrev_info));
15179 return abbrev;
15180 }
15181
15182 /* Add an abbreviation to the table. */
15183
15184 static void
15185 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
15186 unsigned int abbrev_number,
15187 struct abbrev_info *abbrev)
15188 {
15189 unsigned int hash_number;
15190
15191 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15192 abbrev->next = abbrev_table->abbrevs[hash_number];
15193 abbrev_table->abbrevs[hash_number] = abbrev;
15194 }
15195
15196 /* Look up an abbrev in the table.
15197 Returns NULL if the abbrev is not found. */
15198
15199 static struct abbrev_info *
15200 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
15201 unsigned int abbrev_number)
15202 {
15203 unsigned int hash_number;
15204 struct abbrev_info *abbrev;
15205
15206 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15207 abbrev = abbrev_table->abbrevs[hash_number];
15208
15209 while (abbrev)
15210 {
15211 if (abbrev->number == abbrev_number)
15212 return abbrev;
15213 abbrev = abbrev->next;
15214 }
15215 return NULL;
15216 }
15217
15218 /* Read in an abbrev table. */
15219
15220 static struct abbrev_table *
15221 abbrev_table_read_table (struct dwarf2_section_info *section,
15222 sect_offset offset)
15223 {
15224 struct objfile *objfile = dwarf2_per_objfile->objfile;
15225 bfd *abfd = get_section_bfd_owner (section);
15226 struct abbrev_table *abbrev_table;
15227 const gdb_byte *abbrev_ptr;
15228 struct abbrev_info *cur_abbrev;
15229 unsigned int abbrev_number, bytes_read, abbrev_name;
15230 unsigned int abbrev_form;
15231 struct attr_abbrev *cur_attrs;
15232 unsigned int allocated_attrs;
15233
15234 abbrev_table = XNEW (struct abbrev_table);
15235 abbrev_table->offset = offset;
15236 obstack_init (&abbrev_table->abbrev_obstack);
15237 abbrev_table->abbrevs = obstack_alloc (&abbrev_table->abbrev_obstack,
15238 (ABBREV_HASH_SIZE
15239 * sizeof (struct abbrev_info *)));
15240 memset (abbrev_table->abbrevs, 0,
15241 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
15242
15243 dwarf2_read_section (objfile, section);
15244 abbrev_ptr = section->buffer + offset.sect_off;
15245 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15246 abbrev_ptr += bytes_read;
15247
15248 allocated_attrs = ATTR_ALLOC_CHUNK;
15249 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
15250
15251 /* Loop until we reach an abbrev number of 0. */
15252 while (abbrev_number)
15253 {
15254 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
15255
15256 /* read in abbrev header */
15257 cur_abbrev->number = abbrev_number;
15258 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15259 abbrev_ptr += bytes_read;
15260 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
15261 abbrev_ptr += 1;
15262
15263 /* now read in declarations */
15264 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15265 abbrev_ptr += bytes_read;
15266 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15267 abbrev_ptr += bytes_read;
15268 while (abbrev_name)
15269 {
15270 if (cur_abbrev->num_attrs == allocated_attrs)
15271 {
15272 allocated_attrs += ATTR_ALLOC_CHUNK;
15273 cur_attrs
15274 = xrealloc (cur_attrs, (allocated_attrs
15275 * sizeof (struct attr_abbrev)));
15276 }
15277
15278 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
15279 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
15280 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15281 abbrev_ptr += bytes_read;
15282 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15283 abbrev_ptr += bytes_read;
15284 }
15285
15286 cur_abbrev->attrs = obstack_alloc (&abbrev_table->abbrev_obstack,
15287 (cur_abbrev->num_attrs
15288 * sizeof (struct attr_abbrev)));
15289 memcpy (cur_abbrev->attrs, cur_attrs,
15290 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
15291
15292 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
15293
15294 /* Get next abbreviation.
15295 Under Irix6 the abbreviations for a compilation unit are not
15296 always properly terminated with an abbrev number of 0.
15297 Exit loop if we encounter an abbreviation which we have
15298 already read (which means we are about to read the abbreviations
15299 for the next compile unit) or if the end of the abbreviation
15300 table is reached. */
15301 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
15302 break;
15303 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15304 abbrev_ptr += bytes_read;
15305 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
15306 break;
15307 }
15308
15309 xfree (cur_attrs);
15310 return abbrev_table;
15311 }
15312
15313 /* Free the resources held by ABBREV_TABLE. */
15314
15315 static void
15316 abbrev_table_free (struct abbrev_table *abbrev_table)
15317 {
15318 obstack_free (&abbrev_table->abbrev_obstack, NULL);
15319 xfree (abbrev_table);
15320 }
15321
15322 /* Same as abbrev_table_free but as a cleanup.
15323 We pass in a pointer to the pointer to the table so that we can
15324 set the pointer to NULL when we're done. It also simplifies
15325 build_type_psymtabs_1. */
15326
15327 static void
15328 abbrev_table_free_cleanup (void *table_ptr)
15329 {
15330 struct abbrev_table **abbrev_table_ptr = table_ptr;
15331
15332 if (*abbrev_table_ptr != NULL)
15333 abbrev_table_free (*abbrev_table_ptr);
15334 *abbrev_table_ptr = NULL;
15335 }
15336
15337 /* Read the abbrev table for CU from ABBREV_SECTION. */
15338
15339 static void
15340 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
15341 struct dwarf2_section_info *abbrev_section)
15342 {
15343 cu->abbrev_table =
15344 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
15345 }
15346
15347 /* Release the memory used by the abbrev table for a compilation unit. */
15348
15349 static void
15350 dwarf2_free_abbrev_table (void *ptr_to_cu)
15351 {
15352 struct dwarf2_cu *cu = ptr_to_cu;
15353
15354 if (cu->abbrev_table != NULL)
15355 abbrev_table_free (cu->abbrev_table);
15356 /* Set this to NULL so that we SEGV if we try to read it later,
15357 and also because free_comp_unit verifies this is NULL. */
15358 cu->abbrev_table = NULL;
15359 }
15360 \f
15361 /* Returns nonzero if TAG represents a type that we might generate a partial
15362 symbol for. */
15363
15364 static int
15365 is_type_tag_for_partial (int tag)
15366 {
15367 switch (tag)
15368 {
15369 #if 0
15370 /* Some types that would be reasonable to generate partial symbols for,
15371 that we don't at present. */
15372 case DW_TAG_array_type:
15373 case DW_TAG_file_type:
15374 case DW_TAG_ptr_to_member_type:
15375 case DW_TAG_set_type:
15376 case DW_TAG_string_type:
15377 case DW_TAG_subroutine_type:
15378 #endif
15379 case DW_TAG_base_type:
15380 case DW_TAG_class_type:
15381 case DW_TAG_interface_type:
15382 case DW_TAG_enumeration_type:
15383 case DW_TAG_structure_type:
15384 case DW_TAG_subrange_type:
15385 case DW_TAG_typedef:
15386 case DW_TAG_union_type:
15387 return 1;
15388 default:
15389 return 0;
15390 }
15391 }
15392
15393 /* Load all DIEs that are interesting for partial symbols into memory. */
15394
15395 static struct partial_die_info *
15396 load_partial_dies (const struct die_reader_specs *reader,
15397 const gdb_byte *info_ptr, int building_psymtab)
15398 {
15399 struct dwarf2_cu *cu = reader->cu;
15400 struct objfile *objfile = cu->objfile;
15401 struct partial_die_info *part_die;
15402 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
15403 struct abbrev_info *abbrev;
15404 unsigned int bytes_read;
15405 unsigned int load_all = 0;
15406 int nesting_level = 1;
15407
15408 parent_die = NULL;
15409 last_die = NULL;
15410
15411 gdb_assert (cu->per_cu != NULL);
15412 if (cu->per_cu->load_all_dies)
15413 load_all = 1;
15414
15415 cu->partial_dies
15416 = htab_create_alloc_ex (cu->header.length / 12,
15417 partial_die_hash,
15418 partial_die_eq,
15419 NULL,
15420 &cu->comp_unit_obstack,
15421 hashtab_obstack_allocate,
15422 dummy_obstack_deallocate);
15423
15424 part_die = obstack_alloc (&cu->comp_unit_obstack,
15425 sizeof (struct partial_die_info));
15426
15427 while (1)
15428 {
15429 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
15430
15431 /* A NULL abbrev means the end of a series of children. */
15432 if (abbrev == NULL)
15433 {
15434 if (--nesting_level == 0)
15435 {
15436 /* PART_DIE was probably the last thing allocated on the
15437 comp_unit_obstack, so we could call obstack_free
15438 here. We don't do that because the waste is small,
15439 and will be cleaned up when we're done with this
15440 compilation unit. This way, we're also more robust
15441 against other users of the comp_unit_obstack. */
15442 return first_die;
15443 }
15444 info_ptr += bytes_read;
15445 last_die = parent_die;
15446 parent_die = parent_die->die_parent;
15447 continue;
15448 }
15449
15450 /* Check for template arguments. We never save these; if
15451 they're seen, we just mark the parent, and go on our way. */
15452 if (parent_die != NULL
15453 && cu->language == language_cplus
15454 && (abbrev->tag == DW_TAG_template_type_param
15455 || abbrev->tag == DW_TAG_template_value_param))
15456 {
15457 parent_die->has_template_arguments = 1;
15458
15459 if (!load_all)
15460 {
15461 /* We don't need a partial DIE for the template argument. */
15462 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15463 continue;
15464 }
15465 }
15466
15467 /* We only recurse into c++ subprograms looking for template arguments.
15468 Skip their other children. */
15469 if (!load_all
15470 && cu->language == language_cplus
15471 && parent_die != NULL
15472 && parent_die->tag == DW_TAG_subprogram)
15473 {
15474 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15475 continue;
15476 }
15477
15478 /* Check whether this DIE is interesting enough to save. Normally
15479 we would not be interested in members here, but there may be
15480 later variables referencing them via DW_AT_specification (for
15481 static members). */
15482 if (!load_all
15483 && !is_type_tag_for_partial (abbrev->tag)
15484 && abbrev->tag != DW_TAG_constant
15485 && abbrev->tag != DW_TAG_enumerator
15486 && abbrev->tag != DW_TAG_subprogram
15487 && abbrev->tag != DW_TAG_lexical_block
15488 && abbrev->tag != DW_TAG_variable
15489 && abbrev->tag != DW_TAG_namespace
15490 && abbrev->tag != DW_TAG_module
15491 && abbrev->tag != DW_TAG_member
15492 && abbrev->tag != DW_TAG_imported_unit
15493 && abbrev->tag != DW_TAG_imported_declaration)
15494 {
15495 /* Otherwise we skip to the next sibling, if any. */
15496 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15497 continue;
15498 }
15499
15500 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
15501 info_ptr);
15502
15503 /* This two-pass algorithm for processing partial symbols has a
15504 high cost in cache pressure. Thus, handle some simple cases
15505 here which cover the majority of C partial symbols. DIEs
15506 which neither have specification tags in them, nor could have
15507 specification tags elsewhere pointing at them, can simply be
15508 processed and discarded.
15509
15510 This segment is also optional; scan_partial_symbols and
15511 add_partial_symbol will handle these DIEs if we chain
15512 them in normally. When compilers which do not emit large
15513 quantities of duplicate debug information are more common,
15514 this code can probably be removed. */
15515
15516 /* Any complete simple types at the top level (pretty much all
15517 of them, for a language without namespaces), can be processed
15518 directly. */
15519 if (parent_die == NULL
15520 && part_die->has_specification == 0
15521 && part_die->is_declaration == 0
15522 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
15523 || part_die->tag == DW_TAG_base_type
15524 || part_die->tag == DW_TAG_subrange_type))
15525 {
15526 if (building_psymtab && part_die->name != NULL)
15527 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15528 VAR_DOMAIN, LOC_TYPEDEF,
15529 &objfile->static_psymbols,
15530 0, (CORE_ADDR) 0, cu->language, objfile);
15531 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15532 continue;
15533 }
15534
15535 /* The exception for DW_TAG_typedef with has_children above is
15536 a workaround of GCC PR debug/47510. In the case of this complaint
15537 type_name_no_tag_or_error will error on such types later.
15538
15539 GDB skipped children of DW_TAG_typedef by the shortcut above and then
15540 it could not find the child DIEs referenced later, this is checked
15541 above. In correct DWARF DW_TAG_typedef should have no children. */
15542
15543 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
15544 complaint (&symfile_complaints,
15545 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
15546 "- DIE at 0x%x [in module %s]"),
15547 part_die->offset.sect_off, objfile_name (objfile));
15548
15549 /* If we're at the second level, and we're an enumerator, and
15550 our parent has no specification (meaning possibly lives in a
15551 namespace elsewhere), then we can add the partial symbol now
15552 instead of queueing it. */
15553 if (part_die->tag == DW_TAG_enumerator
15554 && parent_die != NULL
15555 && parent_die->die_parent == NULL
15556 && parent_die->tag == DW_TAG_enumeration_type
15557 && parent_die->has_specification == 0)
15558 {
15559 if (part_die->name == NULL)
15560 complaint (&symfile_complaints,
15561 _("malformed enumerator DIE ignored"));
15562 else if (building_psymtab)
15563 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15564 VAR_DOMAIN, LOC_CONST,
15565 (cu->language == language_cplus
15566 || cu->language == language_java)
15567 ? &objfile->global_psymbols
15568 : &objfile->static_psymbols,
15569 0, (CORE_ADDR) 0, cu->language, objfile);
15570
15571 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15572 continue;
15573 }
15574
15575 /* We'll save this DIE so link it in. */
15576 part_die->die_parent = parent_die;
15577 part_die->die_sibling = NULL;
15578 part_die->die_child = NULL;
15579
15580 if (last_die && last_die == parent_die)
15581 last_die->die_child = part_die;
15582 else if (last_die)
15583 last_die->die_sibling = part_die;
15584
15585 last_die = part_die;
15586
15587 if (first_die == NULL)
15588 first_die = part_die;
15589
15590 /* Maybe add the DIE to the hash table. Not all DIEs that we
15591 find interesting need to be in the hash table, because we
15592 also have the parent/sibling/child chains; only those that we
15593 might refer to by offset later during partial symbol reading.
15594
15595 For now this means things that might have be the target of a
15596 DW_AT_specification, DW_AT_abstract_origin, or
15597 DW_AT_extension. DW_AT_extension will refer only to
15598 namespaces; DW_AT_abstract_origin refers to functions (and
15599 many things under the function DIE, but we do not recurse
15600 into function DIEs during partial symbol reading) and
15601 possibly variables as well; DW_AT_specification refers to
15602 declarations. Declarations ought to have the DW_AT_declaration
15603 flag. It happens that GCC forgets to put it in sometimes, but
15604 only for functions, not for types.
15605
15606 Adding more things than necessary to the hash table is harmless
15607 except for the performance cost. Adding too few will result in
15608 wasted time in find_partial_die, when we reread the compilation
15609 unit with load_all_dies set. */
15610
15611 if (load_all
15612 || abbrev->tag == DW_TAG_constant
15613 || abbrev->tag == DW_TAG_subprogram
15614 || abbrev->tag == DW_TAG_variable
15615 || abbrev->tag == DW_TAG_namespace
15616 || part_die->is_declaration)
15617 {
15618 void **slot;
15619
15620 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
15621 part_die->offset.sect_off, INSERT);
15622 *slot = part_die;
15623 }
15624
15625 part_die = obstack_alloc (&cu->comp_unit_obstack,
15626 sizeof (struct partial_die_info));
15627
15628 /* For some DIEs we want to follow their children (if any). For C
15629 we have no reason to follow the children of structures; for other
15630 languages we have to, so that we can get at method physnames
15631 to infer fully qualified class names, for DW_AT_specification,
15632 and for C++ template arguments. For C++, we also look one level
15633 inside functions to find template arguments (if the name of the
15634 function does not already contain the template arguments).
15635
15636 For Ada, we need to scan the children of subprograms and lexical
15637 blocks as well because Ada allows the definition of nested
15638 entities that could be interesting for the debugger, such as
15639 nested subprograms for instance. */
15640 if (last_die->has_children
15641 && (load_all
15642 || last_die->tag == DW_TAG_namespace
15643 || last_die->tag == DW_TAG_module
15644 || last_die->tag == DW_TAG_enumeration_type
15645 || (cu->language == language_cplus
15646 && last_die->tag == DW_TAG_subprogram
15647 && (last_die->name == NULL
15648 || strchr (last_die->name, '<') == NULL))
15649 || (cu->language != language_c
15650 && (last_die->tag == DW_TAG_class_type
15651 || last_die->tag == DW_TAG_interface_type
15652 || last_die->tag == DW_TAG_structure_type
15653 || last_die->tag == DW_TAG_union_type))
15654 || (cu->language == language_ada
15655 && (last_die->tag == DW_TAG_subprogram
15656 || last_die->tag == DW_TAG_lexical_block))))
15657 {
15658 nesting_level++;
15659 parent_die = last_die;
15660 continue;
15661 }
15662
15663 /* Otherwise we skip to the next sibling, if any. */
15664 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
15665
15666 /* Back to the top, do it again. */
15667 }
15668 }
15669
15670 /* Read a minimal amount of information into the minimal die structure. */
15671
15672 static const gdb_byte *
15673 read_partial_die (const struct die_reader_specs *reader,
15674 struct partial_die_info *part_die,
15675 struct abbrev_info *abbrev, unsigned int abbrev_len,
15676 const gdb_byte *info_ptr)
15677 {
15678 struct dwarf2_cu *cu = reader->cu;
15679 struct objfile *objfile = cu->objfile;
15680 const gdb_byte *buffer = reader->buffer;
15681 unsigned int i;
15682 struct attribute attr;
15683 int has_low_pc_attr = 0;
15684 int has_high_pc_attr = 0;
15685 int high_pc_relative = 0;
15686
15687 memset (part_die, 0, sizeof (struct partial_die_info));
15688
15689 part_die->offset.sect_off = info_ptr - buffer;
15690
15691 info_ptr += abbrev_len;
15692
15693 if (abbrev == NULL)
15694 return info_ptr;
15695
15696 part_die->tag = abbrev->tag;
15697 part_die->has_children = abbrev->has_children;
15698
15699 for (i = 0; i < abbrev->num_attrs; ++i)
15700 {
15701 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
15702
15703 /* Store the data if it is of an attribute we want to keep in a
15704 partial symbol table. */
15705 switch (attr.name)
15706 {
15707 case DW_AT_name:
15708 switch (part_die->tag)
15709 {
15710 case DW_TAG_compile_unit:
15711 case DW_TAG_partial_unit:
15712 case DW_TAG_type_unit:
15713 /* Compilation units have a DW_AT_name that is a filename, not
15714 a source language identifier. */
15715 case DW_TAG_enumeration_type:
15716 case DW_TAG_enumerator:
15717 /* These tags always have simple identifiers already; no need
15718 to canonicalize them. */
15719 part_die->name = DW_STRING (&attr);
15720 break;
15721 default:
15722 part_die->name
15723 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
15724 &objfile->per_bfd->storage_obstack);
15725 break;
15726 }
15727 break;
15728 case DW_AT_linkage_name:
15729 case DW_AT_MIPS_linkage_name:
15730 /* Note that both forms of linkage name might appear. We
15731 assume they will be the same, and we only store the last
15732 one we see. */
15733 if (cu->language == language_ada)
15734 part_die->name = DW_STRING (&attr);
15735 part_die->linkage_name = DW_STRING (&attr);
15736 break;
15737 case DW_AT_low_pc:
15738 has_low_pc_attr = 1;
15739 part_die->lowpc = attr_value_as_address (&attr);
15740 break;
15741 case DW_AT_high_pc:
15742 has_high_pc_attr = 1;
15743 part_die->highpc = attr_value_as_address (&attr);
15744 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
15745 high_pc_relative = 1;
15746 break;
15747 case DW_AT_location:
15748 /* Support the .debug_loc offsets. */
15749 if (attr_form_is_block (&attr))
15750 {
15751 part_die->d.locdesc = DW_BLOCK (&attr);
15752 }
15753 else if (attr_form_is_section_offset (&attr))
15754 {
15755 dwarf2_complex_location_expr_complaint ();
15756 }
15757 else
15758 {
15759 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15760 "partial symbol information");
15761 }
15762 break;
15763 case DW_AT_external:
15764 part_die->is_external = DW_UNSND (&attr);
15765 break;
15766 case DW_AT_declaration:
15767 part_die->is_declaration = DW_UNSND (&attr);
15768 break;
15769 case DW_AT_type:
15770 part_die->has_type = 1;
15771 break;
15772 case DW_AT_abstract_origin:
15773 case DW_AT_specification:
15774 case DW_AT_extension:
15775 part_die->has_specification = 1;
15776 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
15777 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15778 || cu->per_cu->is_dwz);
15779 break;
15780 case DW_AT_sibling:
15781 /* Ignore absolute siblings, they might point outside of
15782 the current compile unit. */
15783 if (attr.form == DW_FORM_ref_addr)
15784 complaint (&symfile_complaints,
15785 _("ignoring absolute DW_AT_sibling"));
15786 else
15787 {
15788 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
15789 const gdb_byte *sibling_ptr = buffer + off;
15790
15791 if (sibling_ptr < info_ptr)
15792 complaint (&symfile_complaints,
15793 _("DW_AT_sibling points backwards"));
15794 else if (sibling_ptr > reader->buffer_end)
15795 dwarf2_section_buffer_overflow_complaint (reader->die_section);
15796 else
15797 part_die->sibling = sibling_ptr;
15798 }
15799 break;
15800 case DW_AT_byte_size:
15801 part_die->has_byte_size = 1;
15802 break;
15803 case DW_AT_calling_convention:
15804 /* DWARF doesn't provide a way to identify a program's source-level
15805 entry point. DW_AT_calling_convention attributes are only meant
15806 to describe functions' calling conventions.
15807
15808 However, because it's a necessary piece of information in
15809 Fortran, and because DW_CC_program is the only piece of debugging
15810 information whose definition refers to a 'main program' at all,
15811 several compilers have begun marking Fortran main programs with
15812 DW_CC_program --- even when those functions use the standard
15813 calling conventions.
15814
15815 So until DWARF specifies a way to provide this information and
15816 compilers pick up the new representation, we'll support this
15817 practice. */
15818 if (DW_UNSND (&attr) == DW_CC_program
15819 && cu->language == language_fortran)
15820 set_objfile_main_name (objfile, part_die->name, language_fortran);
15821 break;
15822 case DW_AT_inline:
15823 if (DW_UNSND (&attr) == DW_INL_inlined
15824 || DW_UNSND (&attr) == DW_INL_declared_inlined)
15825 part_die->may_be_inlined = 1;
15826 break;
15827
15828 case DW_AT_import:
15829 if (part_die->tag == DW_TAG_imported_unit)
15830 {
15831 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
15832 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15833 || cu->per_cu->is_dwz);
15834 }
15835 break;
15836
15837 default:
15838 break;
15839 }
15840 }
15841
15842 if (high_pc_relative)
15843 part_die->highpc += part_die->lowpc;
15844
15845 if (has_low_pc_attr && has_high_pc_attr)
15846 {
15847 /* When using the GNU linker, .gnu.linkonce. sections are used to
15848 eliminate duplicate copies of functions and vtables and such.
15849 The linker will arbitrarily choose one and discard the others.
15850 The AT_*_pc values for such functions refer to local labels in
15851 these sections. If the section from that file was discarded, the
15852 labels are not in the output, so the relocs get a value of 0.
15853 If this is a discarded function, mark the pc bounds as invalid,
15854 so that GDB will ignore it. */
15855 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
15856 {
15857 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15858
15859 complaint (&symfile_complaints,
15860 _("DW_AT_low_pc %s is zero "
15861 "for DIE at 0x%x [in module %s]"),
15862 paddress (gdbarch, part_die->lowpc),
15863 part_die->offset.sect_off, objfile_name (objfile));
15864 }
15865 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
15866 else if (part_die->lowpc >= part_die->highpc)
15867 {
15868 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15869
15870 complaint (&symfile_complaints,
15871 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
15872 "for DIE at 0x%x [in module %s]"),
15873 paddress (gdbarch, part_die->lowpc),
15874 paddress (gdbarch, part_die->highpc),
15875 part_die->offset.sect_off, objfile_name (objfile));
15876 }
15877 else
15878 part_die->has_pc_info = 1;
15879 }
15880
15881 return info_ptr;
15882 }
15883
15884 /* Find a cached partial DIE at OFFSET in CU. */
15885
15886 static struct partial_die_info *
15887 find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
15888 {
15889 struct partial_die_info *lookup_die = NULL;
15890 struct partial_die_info part_die;
15891
15892 part_die.offset = offset;
15893 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
15894 offset.sect_off);
15895
15896 return lookup_die;
15897 }
15898
15899 /* Find a partial DIE at OFFSET, which may or may not be in CU,
15900 except in the case of .debug_types DIEs which do not reference
15901 outside their CU (they do however referencing other types via
15902 DW_FORM_ref_sig8). */
15903
15904 static struct partial_die_info *
15905 find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
15906 {
15907 struct objfile *objfile = cu->objfile;
15908 struct dwarf2_per_cu_data *per_cu = NULL;
15909 struct partial_die_info *pd = NULL;
15910
15911 if (offset_in_dwz == cu->per_cu->is_dwz
15912 && offset_in_cu_p (&cu->header, offset))
15913 {
15914 pd = find_partial_die_in_comp_unit (offset, cu);
15915 if (pd != NULL)
15916 return pd;
15917 /* We missed recording what we needed.
15918 Load all dies and try again. */
15919 per_cu = cu->per_cu;
15920 }
15921 else
15922 {
15923 /* TUs don't reference other CUs/TUs (except via type signatures). */
15924 if (cu->per_cu->is_debug_types)
15925 {
15926 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
15927 " external reference to offset 0x%lx [in module %s].\n"),
15928 (long) cu->header.offset.sect_off, (long) offset.sect_off,
15929 bfd_get_filename (objfile->obfd));
15930 }
15931 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
15932 objfile);
15933
15934 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
15935 load_partial_comp_unit (per_cu);
15936
15937 per_cu->cu->last_used = 0;
15938 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
15939 }
15940
15941 /* If we didn't find it, and not all dies have been loaded,
15942 load them all and try again. */
15943
15944 if (pd == NULL && per_cu->load_all_dies == 0)
15945 {
15946 per_cu->load_all_dies = 1;
15947
15948 /* This is nasty. When we reread the DIEs, somewhere up the call chain
15949 THIS_CU->cu may already be in use. So we can't just free it and
15950 replace its DIEs with the ones we read in. Instead, we leave those
15951 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
15952 and clobber THIS_CU->cu->partial_dies with the hash table for the new
15953 set. */
15954 load_partial_comp_unit (per_cu);
15955
15956 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
15957 }
15958
15959 if (pd == NULL)
15960 internal_error (__FILE__, __LINE__,
15961 _("could not find partial DIE 0x%x "
15962 "in cache [from module %s]\n"),
15963 offset.sect_off, bfd_get_filename (objfile->obfd));
15964 return pd;
15965 }
15966
15967 /* See if we can figure out if the class lives in a namespace. We do
15968 this by looking for a member function; its demangled name will
15969 contain namespace info, if there is any. */
15970
15971 static void
15972 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
15973 struct dwarf2_cu *cu)
15974 {
15975 /* NOTE: carlton/2003-10-07: Getting the info this way changes
15976 what template types look like, because the demangler
15977 frequently doesn't give the same name as the debug info. We
15978 could fix this by only using the demangled name to get the
15979 prefix (but see comment in read_structure_type). */
15980
15981 struct partial_die_info *real_pdi;
15982 struct partial_die_info *child_pdi;
15983
15984 /* If this DIE (this DIE's specification, if any) has a parent, then
15985 we should not do this. We'll prepend the parent's fully qualified
15986 name when we create the partial symbol. */
15987
15988 real_pdi = struct_pdi;
15989 while (real_pdi->has_specification)
15990 real_pdi = find_partial_die (real_pdi->spec_offset,
15991 real_pdi->spec_is_dwz, cu);
15992
15993 if (real_pdi->die_parent != NULL)
15994 return;
15995
15996 for (child_pdi = struct_pdi->die_child;
15997 child_pdi != NULL;
15998 child_pdi = child_pdi->die_sibling)
15999 {
16000 if (child_pdi->tag == DW_TAG_subprogram
16001 && child_pdi->linkage_name != NULL)
16002 {
16003 char *actual_class_name
16004 = language_class_name_from_physname (cu->language_defn,
16005 child_pdi->linkage_name);
16006 if (actual_class_name != NULL)
16007 {
16008 struct_pdi->name
16009 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16010 actual_class_name,
16011 strlen (actual_class_name));
16012 xfree (actual_class_name);
16013 }
16014 break;
16015 }
16016 }
16017 }
16018
16019 /* Adjust PART_DIE before generating a symbol for it. This function
16020 may set the is_external flag or change the DIE's name. */
16021
16022 static void
16023 fixup_partial_die (struct partial_die_info *part_die,
16024 struct dwarf2_cu *cu)
16025 {
16026 /* Once we've fixed up a die, there's no point in doing so again.
16027 This also avoids a memory leak if we were to call
16028 guess_partial_die_structure_name multiple times. */
16029 if (part_die->fixup_called)
16030 return;
16031
16032 /* If we found a reference attribute and the DIE has no name, try
16033 to find a name in the referred to DIE. */
16034
16035 if (part_die->name == NULL && part_die->has_specification)
16036 {
16037 struct partial_die_info *spec_die;
16038
16039 spec_die = find_partial_die (part_die->spec_offset,
16040 part_die->spec_is_dwz, cu);
16041
16042 fixup_partial_die (spec_die, cu);
16043
16044 if (spec_die->name)
16045 {
16046 part_die->name = spec_die->name;
16047
16048 /* Copy DW_AT_external attribute if it is set. */
16049 if (spec_die->is_external)
16050 part_die->is_external = spec_die->is_external;
16051 }
16052 }
16053
16054 /* Set default names for some unnamed DIEs. */
16055
16056 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
16057 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
16058
16059 /* If there is no parent die to provide a namespace, and there are
16060 children, see if we can determine the namespace from their linkage
16061 name. */
16062 if (cu->language == language_cplus
16063 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
16064 && part_die->die_parent == NULL
16065 && part_die->has_children
16066 && (part_die->tag == DW_TAG_class_type
16067 || part_die->tag == DW_TAG_structure_type
16068 || part_die->tag == DW_TAG_union_type))
16069 guess_partial_die_structure_name (part_die, cu);
16070
16071 /* GCC might emit a nameless struct or union that has a linkage
16072 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
16073 if (part_die->name == NULL
16074 && (part_die->tag == DW_TAG_class_type
16075 || part_die->tag == DW_TAG_interface_type
16076 || part_die->tag == DW_TAG_structure_type
16077 || part_die->tag == DW_TAG_union_type)
16078 && part_die->linkage_name != NULL)
16079 {
16080 char *demangled;
16081
16082 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
16083 if (demangled)
16084 {
16085 const char *base;
16086
16087 /* Strip any leading namespaces/classes, keep only the base name.
16088 DW_AT_name for named DIEs does not contain the prefixes. */
16089 base = strrchr (demangled, ':');
16090 if (base && base > demangled && base[-1] == ':')
16091 base++;
16092 else
16093 base = demangled;
16094
16095 part_die->name
16096 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16097 base, strlen (base));
16098 xfree (demangled);
16099 }
16100 }
16101
16102 part_die->fixup_called = 1;
16103 }
16104
16105 /* Read an attribute value described by an attribute form. */
16106
16107 static const gdb_byte *
16108 read_attribute_value (const struct die_reader_specs *reader,
16109 struct attribute *attr, unsigned form,
16110 const gdb_byte *info_ptr)
16111 {
16112 struct dwarf2_cu *cu = reader->cu;
16113 struct objfile *objfile = cu->objfile;
16114 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16115 bfd *abfd = reader->abfd;
16116 struct comp_unit_head *cu_header = &cu->header;
16117 unsigned int bytes_read;
16118 struct dwarf_block *blk;
16119
16120 attr->form = form;
16121 switch (form)
16122 {
16123 case DW_FORM_ref_addr:
16124 if (cu->header.version == 2)
16125 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
16126 else
16127 DW_UNSND (attr) = read_offset (abfd, info_ptr,
16128 &cu->header, &bytes_read);
16129 info_ptr += bytes_read;
16130 break;
16131 case DW_FORM_GNU_ref_alt:
16132 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16133 info_ptr += bytes_read;
16134 break;
16135 case DW_FORM_addr:
16136 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
16137 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
16138 info_ptr += bytes_read;
16139 break;
16140 case DW_FORM_block2:
16141 blk = dwarf_alloc_block (cu);
16142 blk->size = read_2_bytes (abfd, info_ptr);
16143 info_ptr += 2;
16144 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16145 info_ptr += blk->size;
16146 DW_BLOCK (attr) = blk;
16147 break;
16148 case DW_FORM_block4:
16149 blk = dwarf_alloc_block (cu);
16150 blk->size = read_4_bytes (abfd, info_ptr);
16151 info_ptr += 4;
16152 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16153 info_ptr += blk->size;
16154 DW_BLOCK (attr) = blk;
16155 break;
16156 case DW_FORM_data2:
16157 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
16158 info_ptr += 2;
16159 break;
16160 case DW_FORM_data4:
16161 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
16162 info_ptr += 4;
16163 break;
16164 case DW_FORM_data8:
16165 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
16166 info_ptr += 8;
16167 break;
16168 case DW_FORM_sec_offset:
16169 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16170 info_ptr += bytes_read;
16171 break;
16172 case DW_FORM_string:
16173 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
16174 DW_STRING_IS_CANONICAL (attr) = 0;
16175 info_ptr += bytes_read;
16176 break;
16177 case DW_FORM_strp:
16178 if (!cu->per_cu->is_dwz)
16179 {
16180 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
16181 &bytes_read);
16182 DW_STRING_IS_CANONICAL (attr) = 0;
16183 info_ptr += bytes_read;
16184 break;
16185 }
16186 /* FALLTHROUGH */
16187 case DW_FORM_GNU_strp_alt:
16188 {
16189 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16190 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
16191 &bytes_read);
16192
16193 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
16194 DW_STRING_IS_CANONICAL (attr) = 0;
16195 info_ptr += bytes_read;
16196 }
16197 break;
16198 case DW_FORM_exprloc:
16199 case DW_FORM_block:
16200 blk = dwarf_alloc_block (cu);
16201 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16202 info_ptr += bytes_read;
16203 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16204 info_ptr += blk->size;
16205 DW_BLOCK (attr) = blk;
16206 break;
16207 case DW_FORM_block1:
16208 blk = dwarf_alloc_block (cu);
16209 blk->size = read_1_byte (abfd, info_ptr);
16210 info_ptr += 1;
16211 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16212 info_ptr += blk->size;
16213 DW_BLOCK (attr) = blk;
16214 break;
16215 case DW_FORM_data1:
16216 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16217 info_ptr += 1;
16218 break;
16219 case DW_FORM_flag:
16220 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16221 info_ptr += 1;
16222 break;
16223 case DW_FORM_flag_present:
16224 DW_UNSND (attr) = 1;
16225 break;
16226 case DW_FORM_sdata:
16227 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16228 info_ptr += bytes_read;
16229 break;
16230 case DW_FORM_udata:
16231 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16232 info_ptr += bytes_read;
16233 break;
16234 case DW_FORM_ref1:
16235 DW_UNSND (attr) = (cu->header.offset.sect_off
16236 + read_1_byte (abfd, info_ptr));
16237 info_ptr += 1;
16238 break;
16239 case DW_FORM_ref2:
16240 DW_UNSND (attr) = (cu->header.offset.sect_off
16241 + read_2_bytes (abfd, info_ptr));
16242 info_ptr += 2;
16243 break;
16244 case DW_FORM_ref4:
16245 DW_UNSND (attr) = (cu->header.offset.sect_off
16246 + read_4_bytes (abfd, info_ptr));
16247 info_ptr += 4;
16248 break;
16249 case DW_FORM_ref8:
16250 DW_UNSND (attr) = (cu->header.offset.sect_off
16251 + read_8_bytes (abfd, info_ptr));
16252 info_ptr += 8;
16253 break;
16254 case DW_FORM_ref_sig8:
16255 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
16256 info_ptr += 8;
16257 break;
16258 case DW_FORM_ref_udata:
16259 DW_UNSND (attr) = (cu->header.offset.sect_off
16260 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
16261 info_ptr += bytes_read;
16262 break;
16263 case DW_FORM_indirect:
16264 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16265 info_ptr += bytes_read;
16266 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
16267 break;
16268 case DW_FORM_GNU_addr_index:
16269 if (reader->dwo_file == NULL)
16270 {
16271 /* For now flag a hard error.
16272 Later we can turn this into a complaint. */
16273 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16274 dwarf_form_name (form),
16275 bfd_get_filename (abfd));
16276 }
16277 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
16278 info_ptr += bytes_read;
16279 break;
16280 case DW_FORM_GNU_str_index:
16281 if (reader->dwo_file == NULL)
16282 {
16283 /* For now flag a hard error.
16284 Later we can turn this into a complaint if warranted. */
16285 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16286 dwarf_form_name (form),
16287 bfd_get_filename (abfd));
16288 }
16289 {
16290 ULONGEST str_index =
16291 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16292
16293 DW_STRING (attr) = read_str_index (reader, str_index);
16294 DW_STRING_IS_CANONICAL (attr) = 0;
16295 info_ptr += bytes_read;
16296 }
16297 break;
16298 default:
16299 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
16300 dwarf_form_name (form),
16301 bfd_get_filename (abfd));
16302 }
16303
16304 /* Super hack. */
16305 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
16306 attr->form = DW_FORM_GNU_ref_alt;
16307
16308 /* We have seen instances where the compiler tried to emit a byte
16309 size attribute of -1 which ended up being encoded as an unsigned
16310 0xffffffff. Although 0xffffffff is technically a valid size value,
16311 an object of this size seems pretty unlikely so we can relatively
16312 safely treat these cases as if the size attribute was invalid and
16313 treat them as zero by default. */
16314 if (attr->name == DW_AT_byte_size
16315 && form == DW_FORM_data4
16316 && DW_UNSND (attr) >= 0xffffffff)
16317 {
16318 complaint
16319 (&symfile_complaints,
16320 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
16321 hex_string (DW_UNSND (attr)));
16322 DW_UNSND (attr) = 0;
16323 }
16324
16325 return info_ptr;
16326 }
16327
16328 /* Read an attribute described by an abbreviated attribute. */
16329
16330 static const gdb_byte *
16331 read_attribute (const struct die_reader_specs *reader,
16332 struct attribute *attr, struct attr_abbrev *abbrev,
16333 const gdb_byte *info_ptr)
16334 {
16335 attr->name = abbrev->name;
16336 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
16337 }
16338
16339 /* Read dwarf information from a buffer. */
16340
16341 static unsigned int
16342 read_1_byte (bfd *abfd, const gdb_byte *buf)
16343 {
16344 return bfd_get_8 (abfd, buf);
16345 }
16346
16347 static int
16348 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
16349 {
16350 return bfd_get_signed_8 (abfd, buf);
16351 }
16352
16353 static unsigned int
16354 read_2_bytes (bfd *abfd, const gdb_byte *buf)
16355 {
16356 return bfd_get_16 (abfd, buf);
16357 }
16358
16359 static int
16360 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
16361 {
16362 return bfd_get_signed_16 (abfd, buf);
16363 }
16364
16365 static unsigned int
16366 read_4_bytes (bfd *abfd, const gdb_byte *buf)
16367 {
16368 return bfd_get_32 (abfd, buf);
16369 }
16370
16371 static int
16372 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
16373 {
16374 return bfd_get_signed_32 (abfd, buf);
16375 }
16376
16377 static ULONGEST
16378 read_8_bytes (bfd *abfd, const gdb_byte *buf)
16379 {
16380 return bfd_get_64 (abfd, buf);
16381 }
16382
16383 static CORE_ADDR
16384 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
16385 unsigned int *bytes_read)
16386 {
16387 struct comp_unit_head *cu_header = &cu->header;
16388 CORE_ADDR retval = 0;
16389
16390 if (cu_header->signed_addr_p)
16391 {
16392 switch (cu_header->addr_size)
16393 {
16394 case 2:
16395 retval = bfd_get_signed_16 (abfd, buf);
16396 break;
16397 case 4:
16398 retval = bfd_get_signed_32 (abfd, buf);
16399 break;
16400 case 8:
16401 retval = bfd_get_signed_64 (abfd, buf);
16402 break;
16403 default:
16404 internal_error (__FILE__, __LINE__,
16405 _("read_address: bad switch, signed [in module %s]"),
16406 bfd_get_filename (abfd));
16407 }
16408 }
16409 else
16410 {
16411 switch (cu_header->addr_size)
16412 {
16413 case 2:
16414 retval = bfd_get_16 (abfd, buf);
16415 break;
16416 case 4:
16417 retval = bfd_get_32 (abfd, buf);
16418 break;
16419 case 8:
16420 retval = bfd_get_64 (abfd, buf);
16421 break;
16422 default:
16423 internal_error (__FILE__, __LINE__,
16424 _("read_address: bad switch, "
16425 "unsigned [in module %s]"),
16426 bfd_get_filename (abfd));
16427 }
16428 }
16429
16430 *bytes_read = cu_header->addr_size;
16431 return retval;
16432 }
16433
16434 /* Read the initial length from a section. The (draft) DWARF 3
16435 specification allows the initial length to take up either 4 bytes
16436 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
16437 bytes describe the length and all offsets will be 8 bytes in length
16438 instead of 4.
16439
16440 An older, non-standard 64-bit format is also handled by this
16441 function. The older format in question stores the initial length
16442 as an 8-byte quantity without an escape value. Lengths greater
16443 than 2^32 aren't very common which means that the initial 4 bytes
16444 is almost always zero. Since a length value of zero doesn't make
16445 sense for the 32-bit format, this initial zero can be considered to
16446 be an escape value which indicates the presence of the older 64-bit
16447 format. As written, the code can't detect (old format) lengths
16448 greater than 4GB. If it becomes necessary to handle lengths
16449 somewhat larger than 4GB, we could allow other small values (such
16450 as the non-sensical values of 1, 2, and 3) to also be used as
16451 escape values indicating the presence of the old format.
16452
16453 The value returned via bytes_read should be used to increment the
16454 relevant pointer after calling read_initial_length().
16455
16456 [ Note: read_initial_length() and read_offset() are based on the
16457 document entitled "DWARF Debugging Information Format", revision
16458 3, draft 8, dated November 19, 2001. This document was obtained
16459 from:
16460
16461 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
16462
16463 This document is only a draft and is subject to change. (So beware.)
16464
16465 Details regarding the older, non-standard 64-bit format were
16466 determined empirically by examining 64-bit ELF files produced by
16467 the SGI toolchain on an IRIX 6.5 machine.
16468
16469 - Kevin, July 16, 2002
16470 ] */
16471
16472 static LONGEST
16473 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
16474 {
16475 LONGEST length = bfd_get_32 (abfd, buf);
16476
16477 if (length == 0xffffffff)
16478 {
16479 length = bfd_get_64 (abfd, buf + 4);
16480 *bytes_read = 12;
16481 }
16482 else if (length == 0)
16483 {
16484 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
16485 length = bfd_get_64 (abfd, buf);
16486 *bytes_read = 8;
16487 }
16488 else
16489 {
16490 *bytes_read = 4;
16491 }
16492
16493 return length;
16494 }
16495
16496 /* Cover function for read_initial_length.
16497 Returns the length of the object at BUF, and stores the size of the
16498 initial length in *BYTES_READ and stores the size that offsets will be in
16499 *OFFSET_SIZE.
16500 If the initial length size is not equivalent to that specified in
16501 CU_HEADER then issue a complaint.
16502 This is useful when reading non-comp-unit headers. */
16503
16504 static LONGEST
16505 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
16506 const struct comp_unit_head *cu_header,
16507 unsigned int *bytes_read,
16508 unsigned int *offset_size)
16509 {
16510 LONGEST length = read_initial_length (abfd, buf, bytes_read);
16511
16512 gdb_assert (cu_header->initial_length_size == 4
16513 || cu_header->initial_length_size == 8
16514 || cu_header->initial_length_size == 12);
16515
16516 if (cu_header->initial_length_size != *bytes_read)
16517 complaint (&symfile_complaints,
16518 _("intermixed 32-bit and 64-bit DWARF sections"));
16519
16520 *offset_size = (*bytes_read == 4) ? 4 : 8;
16521 return length;
16522 }
16523
16524 /* Read an offset from the data stream. The size of the offset is
16525 given by cu_header->offset_size. */
16526
16527 static LONGEST
16528 read_offset (bfd *abfd, const gdb_byte *buf,
16529 const struct comp_unit_head *cu_header,
16530 unsigned int *bytes_read)
16531 {
16532 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
16533
16534 *bytes_read = cu_header->offset_size;
16535 return offset;
16536 }
16537
16538 /* Read an offset from the data stream. */
16539
16540 static LONGEST
16541 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
16542 {
16543 LONGEST retval = 0;
16544
16545 switch (offset_size)
16546 {
16547 case 4:
16548 retval = bfd_get_32 (abfd, buf);
16549 break;
16550 case 8:
16551 retval = bfd_get_64 (abfd, buf);
16552 break;
16553 default:
16554 internal_error (__FILE__, __LINE__,
16555 _("read_offset_1: bad switch [in module %s]"),
16556 bfd_get_filename (abfd));
16557 }
16558
16559 return retval;
16560 }
16561
16562 static const gdb_byte *
16563 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
16564 {
16565 /* If the size of a host char is 8 bits, we can return a pointer
16566 to the buffer, otherwise we have to copy the data to a buffer
16567 allocated on the temporary obstack. */
16568 gdb_assert (HOST_CHAR_BIT == 8);
16569 return buf;
16570 }
16571
16572 static const char *
16573 read_direct_string (bfd *abfd, const gdb_byte *buf,
16574 unsigned int *bytes_read_ptr)
16575 {
16576 /* If the size of a host char is 8 bits, we can return a pointer
16577 to the string, otherwise we have to copy the string to a buffer
16578 allocated on the temporary obstack. */
16579 gdb_assert (HOST_CHAR_BIT == 8);
16580 if (*buf == '\0')
16581 {
16582 *bytes_read_ptr = 1;
16583 return NULL;
16584 }
16585 *bytes_read_ptr = strlen ((const char *) buf) + 1;
16586 return (const char *) buf;
16587 }
16588
16589 static const char *
16590 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
16591 {
16592 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
16593 if (dwarf2_per_objfile->str.buffer == NULL)
16594 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
16595 bfd_get_filename (abfd));
16596 if (str_offset >= dwarf2_per_objfile->str.size)
16597 error (_("DW_FORM_strp pointing outside of "
16598 ".debug_str section [in module %s]"),
16599 bfd_get_filename (abfd));
16600 gdb_assert (HOST_CHAR_BIT == 8);
16601 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
16602 return NULL;
16603 return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
16604 }
16605
16606 /* Read a string at offset STR_OFFSET in the .debug_str section from
16607 the .dwz file DWZ. Throw an error if the offset is too large. If
16608 the string consists of a single NUL byte, return NULL; otherwise
16609 return a pointer to the string. */
16610
16611 static const char *
16612 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
16613 {
16614 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
16615
16616 if (dwz->str.buffer == NULL)
16617 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
16618 "section [in module %s]"),
16619 bfd_get_filename (dwz->dwz_bfd));
16620 if (str_offset >= dwz->str.size)
16621 error (_("DW_FORM_GNU_strp_alt pointing outside of "
16622 ".debug_str section [in module %s]"),
16623 bfd_get_filename (dwz->dwz_bfd));
16624 gdb_assert (HOST_CHAR_BIT == 8);
16625 if (dwz->str.buffer[str_offset] == '\0')
16626 return NULL;
16627 return (const char *) (dwz->str.buffer + str_offset);
16628 }
16629
16630 static const char *
16631 read_indirect_string (bfd *abfd, const gdb_byte *buf,
16632 const struct comp_unit_head *cu_header,
16633 unsigned int *bytes_read_ptr)
16634 {
16635 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
16636
16637 return read_indirect_string_at_offset (abfd, str_offset);
16638 }
16639
16640 static ULONGEST
16641 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
16642 unsigned int *bytes_read_ptr)
16643 {
16644 ULONGEST result;
16645 unsigned int num_read;
16646 int i, shift;
16647 unsigned char byte;
16648
16649 result = 0;
16650 shift = 0;
16651 num_read = 0;
16652 i = 0;
16653 while (1)
16654 {
16655 byte = bfd_get_8 (abfd, buf);
16656 buf++;
16657 num_read++;
16658 result |= ((ULONGEST) (byte & 127) << shift);
16659 if ((byte & 128) == 0)
16660 {
16661 break;
16662 }
16663 shift += 7;
16664 }
16665 *bytes_read_ptr = num_read;
16666 return result;
16667 }
16668
16669 static LONGEST
16670 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
16671 unsigned int *bytes_read_ptr)
16672 {
16673 LONGEST result;
16674 int i, shift, num_read;
16675 unsigned char byte;
16676
16677 result = 0;
16678 shift = 0;
16679 num_read = 0;
16680 i = 0;
16681 while (1)
16682 {
16683 byte = bfd_get_8 (abfd, buf);
16684 buf++;
16685 num_read++;
16686 result |= ((LONGEST) (byte & 127) << shift);
16687 shift += 7;
16688 if ((byte & 128) == 0)
16689 {
16690 break;
16691 }
16692 }
16693 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
16694 result |= -(((LONGEST) 1) << shift);
16695 *bytes_read_ptr = num_read;
16696 return result;
16697 }
16698
16699 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
16700 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
16701 ADDR_SIZE is the size of addresses from the CU header. */
16702
16703 static CORE_ADDR
16704 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
16705 {
16706 struct objfile *objfile = dwarf2_per_objfile->objfile;
16707 bfd *abfd = objfile->obfd;
16708 const gdb_byte *info_ptr;
16709
16710 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
16711 if (dwarf2_per_objfile->addr.buffer == NULL)
16712 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
16713 objfile_name (objfile));
16714 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
16715 error (_("DW_FORM_addr_index pointing outside of "
16716 ".debug_addr section [in module %s]"),
16717 objfile_name (objfile));
16718 info_ptr = (dwarf2_per_objfile->addr.buffer
16719 + addr_base + addr_index * addr_size);
16720 if (addr_size == 4)
16721 return bfd_get_32 (abfd, info_ptr);
16722 else
16723 return bfd_get_64 (abfd, info_ptr);
16724 }
16725
16726 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
16727
16728 static CORE_ADDR
16729 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
16730 {
16731 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
16732 }
16733
16734 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
16735
16736 static CORE_ADDR
16737 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
16738 unsigned int *bytes_read)
16739 {
16740 bfd *abfd = cu->objfile->obfd;
16741 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
16742
16743 return read_addr_index (cu, addr_index);
16744 }
16745
16746 /* Data structure to pass results from dwarf2_read_addr_index_reader
16747 back to dwarf2_read_addr_index. */
16748
16749 struct dwarf2_read_addr_index_data
16750 {
16751 ULONGEST addr_base;
16752 int addr_size;
16753 };
16754
16755 /* die_reader_func for dwarf2_read_addr_index. */
16756
16757 static void
16758 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
16759 const gdb_byte *info_ptr,
16760 struct die_info *comp_unit_die,
16761 int has_children,
16762 void *data)
16763 {
16764 struct dwarf2_cu *cu = reader->cu;
16765 struct dwarf2_read_addr_index_data *aidata =
16766 (struct dwarf2_read_addr_index_data *) data;
16767
16768 aidata->addr_base = cu->addr_base;
16769 aidata->addr_size = cu->header.addr_size;
16770 }
16771
16772 /* Given an index in .debug_addr, fetch the value.
16773 NOTE: This can be called during dwarf expression evaluation,
16774 long after the debug information has been read, and thus per_cu->cu
16775 may no longer exist. */
16776
16777 CORE_ADDR
16778 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
16779 unsigned int addr_index)
16780 {
16781 struct objfile *objfile = per_cu->objfile;
16782 struct dwarf2_cu *cu = per_cu->cu;
16783 ULONGEST addr_base;
16784 int addr_size;
16785
16786 /* This is intended to be called from outside this file. */
16787 dw2_setup (objfile);
16788
16789 /* We need addr_base and addr_size.
16790 If we don't have PER_CU->cu, we have to get it.
16791 Nasty, but the alternative is storing the needed info in PER_CU,
16792 which at this point doesn't seem justified: it's not clear how frequently
16793 it would get used and it would increase the size of every PER_CU.
16794 Entry points like dwarf2_per_cu_addr_size do a similar thing
16795 so we're not in uncharted territory here.
16796 Alas we need to be a bit more complicated as addr_base is contained
16797 in the DIE.
16798
16799 We don't need to read the entire CU(/TU).
16800 We just need the header and top level die.
16801
16802 IWBN to use the aging mechanism to let us lazily later discard the CU.
16803 For now we skip this optimization. */
16804
16805 if (cu != NULL)
16806 {
16807 addr_base = cu->addr_base;
16808 addr_size = cu->header.addr_size;
16809 }
16810 else
16811 {
16812 struct dwarf2_read_addr_index_data aidata;
16813
16814 /* Note: We can't use init_cutu_and_read_dies_simple here,
16815 we need addr_base. */
16816 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
16817 dwarf2_read_addr_index_reader, &aidata);
16818 addr_base = aidata.addr_base;
16819 addr_size = aidata.addr_size;
16820 }
16821
16822 return read_addr_index_1 (addr_index, addr_base, addr_size);
16823 }
16824
16825 /* Given a DW_FORM_GNU_str_index, fetch the string.
16826 This is only used by the Fission support. */
16827
16828 static const char *
16829 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
16830 {
16831 struct objfile *objfile = dwarf2_per_objfile->objfile;
16832 const char *objf_name = objfile_name (objfile);
16833 bfd *abfd = objfile->obfd;
16834 struct dwarf2_cu *cu = reader->cu;
16835 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
16836 struct dwarf2_section_info *str_offsets_section =
16837 &reader->dwo_file->sections.str_offsets;
16838 const gdb_byte *info_ptr;
16839 ULONGEST str_offset;
16840 static const char form_name[] = "DW_FORM_GNU_str_index";
16841
16842 dwarf2_read_section (objfile, str_section);
16843 dwarf2_read_section (objfile, str_offsets_section);
16844 if (str_section->buffer == NULL)
16845 error (_("%s used without .debug_str.dwo section"
16846 " in CU at offset 0x%lx [in module %s]"),
16847 form_name, (long) cu->header.offset.sect_off, objf_name);
16848 if (str_offsets_section->buffer == NULL)
16849 error (_("%s used without .debug_str_offsets.dwo section"
16850 " in CU at offset 0x%lx [in module %s]"),
16851 form_name, (long) cu->header.offset.sect_off, objf_name);
16852 if (str_index * cu->header.offset_size >= str_offsets_section->size)
16853 error (_("%s pointing outside of .debug_str_offsets.dwo"
16854 " section in CU at offset 0x%lx [in module %s]"),
16855 form_name, (long) cu->header.offset.sect_off, objf_name);
16856 info_ptr = (str_offsets_section->buffer
16857 + str_index * cu->header.offset_size);
16858 if (cu->header.offset_size == 4)
16859 str_offset = bfd_get_32 (abfd, info_ptr);
16860 else
16861 str_offset = bfd_get_64 (abfd, info_ptr);
16862 if (str_offset >= str_section->size)
16863 error (_("Offset from %s pointing outside of"
16864 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
16865 form_name, (long) cu->header.offset.sect_off, objf_name);
16866 return (const char *) (str_section->buffer + str_offset);
16867 }
16868
16869 /* Return the length of an LEB128 number in BUF. */
16870
16871 static int
16872 leb128_size (const gdb_byte *buf)
16873 {
16874 const gdb_byte *begin = buf;
16875 gdb_byte byte;
16876
16877 while (1)
16878 {
16879 byte = *buf++;
16880 if ((byte & 128) == 0)
16881 return buf - begin;
16882 }
16883 }
16884
16885 static void
16886 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
16887 {
16888 switch (lang)
16889 {
16890 case DW_LANG_C89:
16891 case DW_LANG_C99:
16892 case DW_LANG_C11:
16893 case DW_LANG_C:
16894 case DW_LANG_UPC:
16895 cu->language = language_c;
16896 break;
16897 case DW_LANG_C_plus_plus:
16898 case DW_LANG_C_plus_plus_11:
16899 case DW_LANG_C_plus_plus_14:
16900 cu->language = language_cplus;
16901 break;
16902 case DW_LANG_D:
16903 cu->language = language_d;
16904 break;
16905 case DW_LANG_Fortran77:
16906 case DW_LANG_Fortran90:
16907 case DW_LANG_Fortran95:
16908 cu->language = language_fortran;
16909 break;
16910 case DW_LANG_Go:
16911 cu->language = language_go;
16912 break;
16913 case DW_LANG_Mips_Assembler:
16914 cu->language = language_asm;
16915 break;
16916 case DW_LANG_Java:
16917 cu->language = language_java;
16918 break;
16919 case DW_LANG_Ada83:
16920 case DW_LANG_Ada95:
16921 cu->language = language_ada;
16922 break;
16923 case DW_LANG_Modula2:
16924 cu->language = language_m2;
16925 break;
16926 case DW_LANG_Pascal83:
16927 cu->language = language_pascal;
16928 break;
16929 case DW_LANG_ObjC:
16930 cu->language = language_objc;
16931 break;
16932 case DW_LANG_Cobol74:
16933 case DW_LANG_Cobol85:
16934 default:
16935 cu->language = language_minimal;
16936 break;
16937 }
16938 cu->language_defn = language_def (cu->language);
16939 }
16940
16941 /* Return the named attribute or NULL if not there. */
16942
16943 static struct attribute *
16944 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
16945 {
16946 for (;;)
16947 {
16948 unsigned int i;
16949 struct attribute *spec = NULL;
16950
16951 for (i = 0; i < die->num_attrs; ++i)
16952 {
16953 if (die->attrs[i].name == name)
16954 return &die->attrs[i];
16955 if (die->attrs[i].name == DW_AT_specification
16956 || die->attrs[i].name == DW_AT_abstract_origin)
16957 spec = &die->attrs[i];
16958 }
16959
16960 if (!spec)
16961 break;
16962
16963 die = follow_die_ref (die, spec, &cu);
16964 }
16965
16966 return NULL;
16967 }
16968
16969 /* Return the named attribute or NULL if not there,
16970 but do not follow DW_AT_specification, etc.
16971 This is for use in contexts where we're reading .debug_types dies.
16972 Following DW_AT_specification, DW_AT_abstract_origin will take us
16973 back up the chain, and we want to go down. */
16974
16975 static struct attribute *
16976 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
16977 {
16978 unsigned int i;
16979
16980 for (i = 0; i < die->num_attrs; ++i)
16981 if (die->attrs[i].name == name)
16982 return &die->attrs[i];
16983
16984 return NULL;
16985 }
16986
16987 /* Return non-zero iff the attribute NAME is defined for the given DIE,
16988 and holds a non-zero value. This function should only be used for
16989 DW_FORM_flag or DW_FORM_flag_present attributes. */
16990
16991 static int
16992 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
16993 {
16994 struct attribute *attr = dwarf2_attr (die, name, cu);
16995
16996 return (attr && DW_UNSND (attr));
16997 }
16998
16999 static int
17000 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
17001 {
17002 /* A DIE is a declaration if it has a DW_AT_declaration attribute
17003 which value is non-zero. However, we have to be careful with
17004 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
17005 (via dwarf2_flag_true_p) follows this attribute. So we may
17006 end up accidently finding a declaration attribute that belongs
17007 to a different DIE referenced by the specification attribute,
17008 even though the given DIE does not have a declaration attribute. */
17009 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
17010 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
17011 }
17012
17013 /* Return the die giving the specification for DIE, if there is
17014 one. *SPEC_CU is the CU containing DIE on input, and the CU
17015 containing the return value on output. If there is no
17016 specification, but there is an abstract origin, that is
17017 returned. */
17018
17019 static struct die_info *
17020 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
17021 {
17022 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
17023 *spec_cu);
17024
17025 if (spec_attr == NULL)
17026 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
17027
17028 if (spec_attr == NULL)
17029 return NULL;
17030 else
17031 return follow_die_ref (die, spec_attr, spec_cu);
17032 }
17033
17034 /* Free the line_header structure *LH, and any arrays and strings it
17035 refers to.
17036 NOTE: This is also used as a "cleanup" function. */
17037
17038 static void
17039 free_line_header (struct line_header *lh)
17040 {
17041 if (lh->standard_opcode_lengths)
17042 xfree (lh->standard_opcode_lengths);
17043
17044 /* Remember that all the lh->file_names[i].name pointers are
17045 pointers into debug_line_buffer, and don't need to be freed. */
17046 if (lh->file_names)
17047 xfree (lh->file_names);
17048
17049 /* Similarly for the include directory names. */
17050 if (lh->include_dirs)
17051 xfree (lh->include_dirs);
17052
17053 xfree (lh);
17054 }
17055
17056 /* Stub for free_line_header to match void * callback types. */
17057
17058 static void
17059 free_line_header_voidp (void *arg)
17060 {
17061 struct line_header *lh = arg;
17062
17063 free_line_header (lh);
17064 }
17065
17066 /* Add an entry to LH's include directory table. */
17067
17068 static void
17069 add_include_dir (struct line_header *lh, const char *include_dir)
17070 {
17071 /* Grow the array if necessary. */
17072 if (lh->include_dirs_size == 0)
17073 {
17074 lh->include_dirs_size = 1; /* for testing */
17075 lh->include_dirs = xmalloc (lh->include_dirs_size
17076 * sizeof (*lh->include_dirs));
17077 }
17078 else if (lh->num_include_dirs >= lh->include_dirs_size)
17079 {
17080 lh->include_dirs_size *= 2;
17081 lh->include_dirs = xrealloc (lh->include_dirs,
17082 (lh->include_dirs_size
17083 * sizeof (*lh->include_dirs)));
17084 }
17085
17086 lh->include_dirs[lh->num_include_dirs++] = include_dir;
17087 }
17088
17089 /* Add an entry to LH's file name table. */
17090
17091 static void
17092 add_file_name (struct line_header *lh,
17093 const char *name,
17094 unsigned int dir_index,
17095 unsigned int mod_time,
17096 unsigned int length)
17097 {
17098 struct file_entry *fe;
17099
17100 /* Grow the array if necessary. */
17101 if (lh->file_names_size == 0)
17102 {
17103 lh->file_names_size = 1; /* for testing */
17104 lh->file_names = xmalloc (lh->file_names_size
17105 * sizeof (*lh->file_names));
17106 }
17107 else if (lh->num_file_names >= lh->file_names_size)
17108 {
17109 lh->file_names_size *= 2;
17110 lh->file_names = xrealloc (lh->file_names,
17111 (lh->file_names_size
17112 * sizeof (*lh->file_names)));
17113 }
17114
17115 fe = &lh->file_names[lh->num_file_names++];
17116 fe->name = name;
17117 fe->dir_index = dir_index;
17118 fe->mod_time = mod_time;
17119 fe->length = length;
17120 fe->included_p = 0;
17121 fe->symtab = NULL;
17122 }
17123
17124 /* A convenience function to find the proper .debug_line section for a
17125 CU. */
17126
17127 static struct dwarf2_section_info *
17128 get_debug_line_section (struct dwarf2_cu *cu)
17129 {
17130 struct dwarf2_section_info *section;
17131
17132 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
17133 DWO file. */
17134 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17135 section = &cu->dwo_unit->dwo_file->sections.line;
17136 else if (cu->per_cu->is_dwz)
17137 {
17138 struct dwz_file *dwz = dwarf2_get_dwz_file ();
17139
17140 section = &dwz->line;
17141 }
17142 else
17143 section = &dwarf2_per_objfile->line;
17144
17145 return section;
17146 }
17147
17148 /* Read the statement program header starting at OFFSET in
17149 .debug_line, or .debug_line.dwo. Return a pointer
17150 to a struct line_header, allocated using xmalloc.
17151
17152 NOTE: the strings in the include directory and file name tables of
17153 the returned object point into the dwarf line section buffer,
17154 and must not be freed. */
17155
17156 static struct line_header *
17157 dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
17158 {
17159 struct cleanup *back_to;
17160 struct line_header *lh;
17161 const gdb_byte *line_ptr;
17162 unsigned int bytes_read, offset_size;
17163 int i;
17164 const char *cur_dir, *cur_file;
17165 struct dwarf2_section_info *section;
17166 bfd *abfd;
17167
17168 section = get_debug_line_section (cu);
17169 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
17170 if (section->buffer == NULL)
17171 {
17172 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17173 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
17174 else
17175 complaint (&symfile_complaints, _("missing .debug_line section"));
17176 return 0;
17177 }
17178
17179 /* We can't do this until we know the section is non-empty.
17180 Only then do we know we have such a section. */
17181 abfd = get_section_bfd_owner (section);
17182
17183 /* Make sure that at least there's room for the total_length field.
17184 That could be 12 bytes long, but we're just going to fudge that. */
17185 if (offset + 4 >= section->size)
17186 {
17187 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17188 return 0;
17189 }
17190
17191 lh = xmalloc (sizeof (*lh));
17192 memset (lh, 0, sizeof (*lh));
17193 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
17194 (void *) lh);
17195
17196 lh->offset.sect_off = offset;
17197 lh->offset_in_dwz = cu->per_cu->is_dwz;
17198
17199 line_ptr = section->buffer + offset;
17200
17201 /* Read in the header. */
17202 lh->total_length =
17203 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
17204 &bytes_read, &offset_size);
17205 line_ptr += bytes_read;
17206 if (line_ptr + lh->total_length > (section->buffer + section->size))
17207 {
17208 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17209 do_cleanups (back_to);
17210 return 0;
17211 }
17212 lh->statement_program_end = line_ptr + lh->total_length;
17213 lh->version = read_2_bytes (abfd, line_ptr);
17214 line_ptr += 2;
17215 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
17216 line_ptr += offset_size;
17217 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
17218 line_ptr += 1;
17219 if (lh->version >= 4)
17220 {
17221 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
17222 line_ptr += 1;
17223 }
17224 else
17225 lh->maximum_ops_per_instruction = 1;
17226
17227 if (lh->maximum_ops_per_instruction == 0)
17228 {
17229 lh->maximum_ops_per_instruction = 1;
17230 complaint (&symfile_complaints,
17231 _("invalid maximum_ops_per_instruction "
17232 "in `.debug_line' section"));
17233 }
17234
17235 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
17236 line_ptr += 1;
17237 lh->line_base = read_1_signed_byte (abfd, line_ptr);
17238 line_ptr += 1;
17239 lh->line_range = read_1_byte (abfd, line_ptr);
17240 line_ptr += 1;
17241 lh->opcode_base = read_1_byte (abfd, line_ptr);
17242 line_ptr += 1;
17243 lh->standard_opcode_lengths
17244 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
17245
17246 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
17247 for (i = 1; i < lh->opcode_base; ++i)
17248 {
17249 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
17250 line_ptr += 1;
17251 }
17252
17253 /* Read directory table. */
17254 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17255 {
17256 line_ptr += bytes_read;
17257 add_include_dir (lh, cur_dir);
17258 }
17259 line_ptr += bytes_read;
17260
17261 /* Read file name table. */
17262 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17263 {
17264 unsigned int dir_index, mod_time, length;
17265
17266 line_ptr += bytes_read;
17267 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17268 line_ptr += bytes_read;
17269 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17270 line_ptr += bytes_read;
17271 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17272 line_ptr += bytes_read;
17273
17274 add_file_name (lh, cur_file, dir_index, mod_time, length);
17275 }
17276 line_ptr += bytes_read;
17277 lh->statement_program_start = line_ptr;
17278
17279 if (line_ptr > (section->buffer + section->size))
17280 complaint (&symfile_complaints,
17281 _("line number info header doesn't "
17282 "fit in `.debug_line' section"));
17283
17284 discard_cleanups (back_to);
17285 return lh;
17286 }
17287
17288 /* Subroutine of dwarf_decode_lines to simplify it.
17289 Return the file name of the psymtab for included file FILE_INDEX
17290 in line header LH of PST.
17291 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17292 If space for the result is malloc'd, it will be freed by a cleanup.
17293 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
17294
17295 The function creates dangling cleanup registration. */
17296
17297 static const char *
17298 psymtab_include_file_name (const struct line_header *lh, int file_index,
17299 const struct partial_symtab *pst,
17300 const char *comp_dir)
17301 {
17302 const struct file_entry fe = lh->file_names [file_index];
17303 const char *include_name = fe.name;
17304 const char *include_name_to_compare = include_name;
17305 const char *dir_name = NULL;
17306 const char *pst_filename;
17307 char *copied_name = NULL;
17308 int file_is_pst;
17309
17310 if (fe.dir_index)
17311 dir_name = lh->include_dirs[fe.dir_index - 1];
17312
17313 if (!IS_ABSOLUTE_PATH (include_name)
17314 && (dir_name != NULL || comp_dir != NULL))
17315 {
17316 /* Avoid creating a duplicate psymtab for PST.
17317 We do this by comparing INCLUDE_NAME and PST_FILENAME.
17318 Before we do the comparison, however, we need to account
17319 for DIR_NAME and COMP_DIR.
17320 First prepend dir_name (if non-NULL). If we still don't
17321 have an absolute path prepend comp_dir (if non-NULL).
17322 However, the directory we record in the include-file's
17323 psymtab does not contain COMP_DIR (to match the
17324 corresponding symtab(s)).
17325
17326 Example:
17327
17328 bash$ cd /tmp
17329 bash$ gcc -g ./hello.c
17330 include_name = "hello.c"
17331 dir_name = "."
17332 DW_AT_comp_dir = comp_dir = "/tmp"
17333 DW_AT_name = "./hello.c"
17334
17335 */
17336
17337 if (dir_name != NULL)
17338 {
17339 char *tem = concat (dir_name, SLASH_STRING,
17340 include_name, (char *)NULL);
17341
17342 make_cleanup (xfree, tem);
17343 include_name = tem;
17344 include_name_to_compare = include_name;
17345 }
17346 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
17347 {
17348 char *tem = concat (comp_dir, SLASH_STRING,
17349 include_name, (char *)NULL);
17350
17351 make_cleanup (xfree, tem);
17352 include_name_to_compare = tem;
17353 }
17354 }
17355
17356 pst_filename = pst->filename;
17357 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
17358 {
17359 copied_name = concat (pst->dirname, SLASH_STRING,
17360 pst_filename, (char *)NULL);
17361 pst_filename = copied_name;
17362 }
17363
17364 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
17365
17366 if (copied_name != NULL)
17367 xfree (copied_name);
17368
17369 if (file_is_pst)
17370 return NULL;
17371 return include_name;
17372 }
17373
17374 /* Ignore this record_line request. */
17375
17376 static void
17377 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
17378 {
17379 return;
17380 }
17381
17382 /* Return non-zero if we should add LINE to the line number table.
17383 LINE is the line to add, LAST_LINE is the last line that was added,
17384 LAST_SUBFILE is the subfile for LAST_LINE.
17385 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
17386 had a non-zero discriminator.
17387
17388 We have to be careful in the presence of discriminators.
17389 E.g., for this line:
17390
17391 for (i = 0; i < 100000; i++);
17392
17393 clang can emit four line number entries for that one line,
17394 each with a different discriminator.
17395 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
17396
17397 However, we want gdb to coalesce all four entries into one.
17398 Otherwise the user could stepi into the middle of the line and
17399 gdb would get confused about whether the pc really was in the
17400 middle of the line.
17401
17402 Things are further complicated by the fact that two consecutive
17403 line number entries for the same line is a heuristic used by gcc
17404 to denote the end of the prologue. So we can't just discard duplicate
17405 entries, we have to be selective about it. The heuristic we use is
17406 that we only collapse consecutive entries for the same line if at least
17407 one of those entries has a non-zero discriminator. PR 17276.
17408
17409 Note: Addresses in the line number state machine can never go backwards
17410 within one sequence, thus this coalescing is ok. */
17411
17412 static int
17413 dwarf_record_line_p (unsigned int line, unsigned int last_line,
17414 int line_has_non_zero_discriminator,
17415 struct subfile *last_subfile)
17416 {
17417 if (current_subfile != last_subfile)
17418 return 1;
17419 if (line != last_line)
17420 return 1;
17421 /* Same line for the same file that we've seen already.
17422 As a last check, for pr 17276, only record the line if the line
17423 has never had a non-zero discriminator. */
17424 if (!line_has_non_zero_discriminator)
17425 return 1;
17426 return 0;
17427 }
17428
17429 /* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
17430 in the line table of subfile SUBFILE. */
17431
17432 static void
17433 dwarf_record_line (struct gdbarch *gdbarch, struct subfile *subfile,
17434 unsigned int line, CORE_ADDR address,
17435 record_line_ftype p_record_line)
17436 {
17437 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
17438
17439 (*p_record_line) (subfile, line, addr);
17440 }
17441
17442 /* Subroutine of dwarf_decode_lines_1 to simplify it.
17443 Mark the end of a set of line number records.
17444 The arguments are the same as for dwarf_record_line.
17445 If SUBFILE is NULL the request is ignored. */
17446
17447 static void
17448 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
17449 CORE_ADDR address, record_line_ftype p_record_line)
17450 {
17451 if (subfile != NULL)
17452 dwarf_record_line (gdbarch, subfile, 0, address, p_record_line);
17453 }
17454
17455 /* Subroutine of dwarf_decode_lines to simplify it.
17456 Process the line number information in LH. */
17457
17458 static void
17459 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
17460 const int decode_for_pst_p, CORE_ADDR lowpc)
17461 {
17462 const gdb_byte *line_ptr, *extended_end;
17463 const gdb_byte *line_end;
17464 unsigned int bytes_read, extended_len;
17465 unsigned char op_code, extended_op;
17466 CORE_ADDR baseaddr;
17467 struct objfile *objfile = cu->objfile;
17468 bfd *abfd = objfile->obfd;
17469 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17470 struct subfile *last_subfile = NULL;
17471 void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
17472 = record_line;
17473
17474 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
17475
17476 line_ptr = lh->statement_program_start;
17477 line_end = lh->statement_program_end;
17478
17479 /* Read the statement sequences until there's nothing left. */
17480 while (line_ptr < line_end)
17481 {
17482 /* State machine registers. Call `gdbarch_adjust_dwarf2_line'
17483 on the initial 0 address as if there was a line entry for it
17484 so that the backend has a chance to adjust it and also record
17485 it in case it needs it. This is currently used by MIPS code,
17486 cf. `mips_adjust_dwarf2_line'. */
17487 CORE_ADDR address = gdbarch_adjust_dwarf2_line (gdbarch, 0, 0);
17488 unsigned int file = 1;
17489 unsigned int line = 1;
17490 int is_stmt = lh->default_is_stmt;
17491 int end_sequence = 0;
17492 unsigned char op_index = 0;
17493 unsigned int discriminator = 0;
17494 /* The last line number that was recorded, used to coalesce
17495 consecutive entries for the same line. This can happen, for
17496 example, when discriminators are present. PR 17276. */
17497 unsigned int last_line = 0;
17498 int line_has_non_zero_discriminator = 0;
17499
17500 if (!decode_for_pst_p && lh->num_file_names >= file)
17501 {
17502 /* Start a subfile for the current file of the state machine. */
17503 /* lh->include_dirs and lh->file_names are 0-based, but the
17504 directory and file name numbers in the statement program
17505 are 1-based. */
17506 struct file_entry *fe = &lh->file_names[file - 1];
17507 const char *dir = NULL;
17508
17509 if (fe->dir_index)
17510 dir = lh->include_dirs[fe->dir_index - 1];
17511
17512 dwarf2_start_subfile (fe->name, dir);
17513 }
17514
17515 /* Decode the table. */
17516 while (!end_sequence)
17517 {
17518 op_code = read_1_byte (abfd, line_ptr);
17519 line_ptr += 1;
17520 if (line_ptr > line_end)
17521 {
17522 dwarf2_debug_line_missing_end_sequence_complaint ();
17523 break;
17524 }
17525
17526 if (op_code >= lh->opcode_base)
17527 {
17528 /* Special opcode. */
17529 unsigned char adj_opcode;
17530 CORE_ADDR addr_adj;
17531 int line_delta;
17532
17533 adj_opcode = op_code - lh->opcode_base;
17534 addr_adj = (((op_index + (adj_opcode / lh->line_range))
17535 / lh->maximum_ops_per_instruction)
17536 * lh->minimum_instruction_length);
17537 address += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17538 op_index = ((op_index + (adj_opcode / lh->line_range))
17539 % lh->maximum_ops_per_instruction);
17540 line_delta = lh->line_base + (adj_opcode % lh->line_range);
17541 line += line_delta;
17542 if (line_delta != 0)
17543 line_has_non_zero_discriminator = discriminator != 0;
17544 if (lh->num_file_names < file || file == 0)
17545 dwarf2_debug_line_missing_file_complaint ();
17546 /* For now we ignore lines not starting on an
17547 instruction boundary. */
17548 else if (op_index == 0)
17549 {
17550 lh->file_names[file - 1].included_p = 1;
17551 if (!decode_for_pst_p && is_stmt)
17552 {
17553 if (last_subfile != current_subfile)
17554 {
17555 dwarf_finish_line (gdbarch, last_subfile,
17556 address, p_record_line);
17557 }
17558 if (dwarf_record_line_p (line, last_line,
17559 line_has_non_zero_discriminator,
17560 last_subfile))
17561 {
17562 dwarf_record_line (gdbarch, current_subfile,
17563 line, address, p_record_line);
17564 }
17565 last_subfile = current_subfile;
17566 last_line = line;
17567 }
17568 }
17569 discriminator = 0;
17570 }
17571 else switch (op_code)
17572 {
17573 case DW_LNS_extended_op:
17574 extended_len = read_unsigned_leb128 (abfd, line_ptr,
17575 &bytes_read);
17576 line_ptr += bytes_read;
17577 extended_end = line_ptr + extended_len;
17578 extended_op = read_1_byte (abfd, line_ptr);
17579 line_ptr += 1;
17580 switch (extended_op)
17581 {
17582 case DW_LNE_end_sequence:
17583 p_record_line = record_line;
17584 end_sequence = 1;
17585 break;
17586 case DW_LNE_set_address:
17587 address = read_address (abfd, line_ptr, cu, &bytes_read);
17588
17589 /* If address < lowpc then it's not a usable value, it's
17590 outside the pc range of the CU. However, we restrict
17591 the test to only address values of zero to preserve
17592 GDB's previous behaviour which is to handle the specific
17593 case of a function being GC'd by the linker. */
17594 if (address == 0 && address < lowpc)
17595 {
17596 /* This line table is for a function which has been
17597 GCd by the linker. Ignore it. PR gdb/12528 */
17598
17599 long line_offset
17600 = line_ptr - get_debug_line_section (cu)->buffer;
17601
17602 complaint (&symfile_complaints,
17603 _(".debug_line address at offset 0x%lx is 0 "
17604 "[in module %s]"),
17605 line_offset, objfile_name (objfile));
17606 p_record_line = noop_record_line;
17607 /* Note: p_record_line is left as noop_record_line
17608 until we see DW_LNE_end_sequence. */
17609 }
17610
17611 op_index = 0;
17612 line_ptr += bytes_read;
17613 address += baseaddr;
17614 address = gdbarch_adjust_dwarf2_line (gdbarch, address, 0);
17615 break;
17616 case DW_LNE_define_file:
17617 {
17618 const char *cur_file;
17619 unsigned int dir_index, mod_time, length;
17620
17621 cur_file = read_direct_string (abfd, line_ptr,
17622 &bytes_read);
17623 line_ptr += bytes_read;
17624 dir_index =
17625 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17626 line_ptr += bytes_read;
17627 mod_time =
17628 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17629 line_ptr += bytes_read;
17630 length =
17631 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17632 line_ptr += bytes_read;
17633 add_file_name (lh, cur_file, dir_index, mod_time, length);
17634 }
17635 break;
17636 case DW_LNE_set_discriminator:
17637 /* The discriminator is not interesting to the debugger;
17638 just ignore it. We still need to check its value though:
17639 if there are consecutive entries for the same
17640 (non-prologue) line we want to coalesce them.
17641 PR 17276. */
17642 discriminator = read_unsigned_leb128 (abfd, line_ptr,
17643 &bytes_read);
17644 line_has_non_zero_discriminator |= discriminator != 0;
17645 line_ptr += bytes_read;
17646 break;
17647 default:
17648 complaint (&symfile_complaints,
17649 _("mangled .debug_line section"));
17650 return;
17651 }
17652 /* Make sure that we parsed the extended op correctly. If e.g.
17653 we expected a different address size than the producer used,
17654 we may have read the wrong number of bytes. */
17655 if (line_ptr != extended_end)
17656 {
17657 complaint (&symfile_complaints,
17658 _("mangled .debug_line section"));
17659 return;
17660 }
17661 break;
17662 case DW_LNS_copy:
17663 if (lh->num_file_names < file || file == 0)
17664 dwarf2_debug_line_missing_file_complaint ();
17665 else
17666 {
17667 lh->file_names[file - 1].included_p = 1;
17668 if (!decode_for_pst_p && is_stmt)
17669 {
17670 if (last_subfile != current_subfile)
17671 {
17672 dwarf_finish_line (gdbarch, last_subfile,
17673 address, p_record_line);
17674 }
17675 if (dwarf_record_line_p (line, last_line,
17676 line_has_non_zero_discriminator,
17677 last_subfile))
17678 {
17679 dwarf_record_line (gdbarch, current_subfile,
17680 line, address, p_record_line);
17681 }
17682 last_subfile = current_subfile;
17683 last_line = line;
17684 }
17685 }
17686 discriminator = 0;
17687 break;
17688 case DW_LNS_advance_pc:
17689 {
17690 CORE_ADDR adjust
17691 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17692 CORE_ADDR addr_adj;
17693
17694 addr_adj = (((op_index + adjust)
17695 / lh->maximum_ops_per_instruction)
17696 * lh->minimum_instruction_length);
17697 address += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17698 op_index = ((op_index + adjust)
17699 % lh->maximum_ops_per_instruction);
17700 line_ptr += bytes_read;
17701 }
17702 break;
17703 case DW_LNS_advance_line:
17704 {
17705 int line_delta
17706 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
17707
17708 line += line_delta;
17709 if (line_delta != 0)
17710 line_has_non_zero_discriminator = discriminator != 0;
17711 line_ptr += bytes_read;
17712 }
17713 break;
17714 case DW_LNS_set_file:
17715 {
17716 /* The arrays lh->include_dirs and lh->file_names are
17717 0-based, but the directory and file name numbers in
17718 the statement program are 1-based. */
17719 struct file_entry *fe;
17720 const char *dir = NULL;
17721
17722 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17723 line_ptr += bytes_read;
17724 if (lh->num_file_names < file || file == 0)
17725 dwarf2_debug_line_missing_file_complaint ();
17726 else
17727 {
17728 fe = &lh->file_names[file - 1];
17729 if (fe->dir_index)
17730 dir = lh->include_dirs[fe->dir_index - 1];
17731 if (!decode_for_pst_p)
17732 {
17733 last_subfile = current_subfile;
17734 line_has_non_zero_discriminator = discriminator != 0;
17735 dwarf2_start_subfile (fe->name, dir);
17736 }
17737 }
17738 }
17739 break;
17740 case DW_LNS_set_column:
17741 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17742 line_ptr += bytes_read;
17743 break;
17744 case DW_LNS_negate_stmt:
17745 is_stmt = (!is_stmt);
17746 break;
17747 case DW_LNS_set_basic_block:
17748 break;
17749 /* Add to the address register of the state machine the
17750 address increment value corresponding to special opcode
17751 255. I.e., this value is scaled by the minimum
17752 instruction length since special opcode 255 would have
17753 scaled the increment. */
17754 case DW_LNS_const_add_pc:
17755 {
17756 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
17757 CORE_ADDR addr_adj;
17758
17759 addr_adj = (((op_index + adjust)
17760 / lh->maximum_ops_per_instruction)
17761 * lh->minimum_instruction_length);
17762 address += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17763 op_index = ((op_index + adjust)
17764 % lh->maximum_ops_per_instruction);
17765 }
17766 break;
17767 case DW_LNS_fixed_advance_pc:
17768 {
17769 CORE_ADDR addr_adj;
17770
17771 addr_adj = read_2_bytes (abfd, line_ptr);
17772 address += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17773 op_index = 0;
17774 line_ptr += 2;
17775 }
17776 break;
17777 default:
17778 {
17779 /* Unknown standard opcode, ignore it. */
17780 int i;
17781
17782 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
17783 {
17784 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17785 line_ptr += bytes_read;
17786 }
17787 }
17788 }
17789 }
17790 if (lh->num_file_names < file || file == 0)
17791 dwarf2_debug_line_missing_file_complaint ();
17792 else
17793 {
17794 lh->file_names[file - 1].included_p = 1;
17795 if (!decode_for_pst_p)
17796 {
17797 dwarf_finish_line (gdbarch, current_subfile, address,
17798 p_record_line);
17799 }
17800 }
17801 }
17802 }
17803
17804 /* Decode the Line Number Program (LNP) for the given line_header
17805 structure and CU. The actual information extracted and the type
17806 of structures created from the LNP depends on the value of PST.
17807
17808 1. If PST is NULL, then this procedure uses the data from the program
17809 to create all necessary symbol tables, and their linetables.
17810
17811 2. If PST is not NULL, this procedure reads the program to determine
17812 the list of files included by the unit represented by PST, and
17813 builds all the associated partial symbol tables.
17814
17815 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17816 It is used for relative paths in the line table.
17817 NOTE: When processing partial symtabs (pst != NULL),
17818 comp_dir == pst->dirname.
17819
17820 NOTE: It is important that psymtabs have the same file name (via strcmp)
17821 as the corresponding symtab. Since COMP_DIR is not used in the name of the
17822 symtab we don't use it in the name of the psymtabs we create.
17823 E.g. expand_line_sal requires this when finding psymtabs to expand.
17824 A good testcase for this is mb-inline.exp.
17825
17826 LOWPC is the lowest address in CU (or 0 if not known).
17827
17828 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
17829 for its PC<->lines mapping information. Otherwise only the filename
17830 table is read in. */
17831
17832 static void
17833 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
17834 struct dwarf2_cu *cu, struct partial_symtab *pst,
17835 CORE_ADDR lowpc, int decode_mapping)
17836 {
17837 struct objfile *objfile = cu->objfile;
17838 const int decode_for_pst_p = (pst != NULL);
17839
17840 if (decode_mapping)
17841 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
17842
17843 if (decode_for_pst_p)
17844 {
17845 int file_index;
17846
17847 /* Now that we're done scanning the Line Header Program, we can
17848 create the psymtab of each included file. */
17849 for (file_index = 0; file_index < lh->num_file_names; file_index++)
17850 if (lh->file_names[file_index].included_p == 1)
17851 {
17852 const char *include_name =
17853 psymtab_include_file_name (lh, file_index, pst, comp_dir);
17854 if (include_name != NULL)
17855 dwarf2_create_include_psymtab (include_name, pst, objfile);
17856 }
17857 }
17858 else
17859 {
17860 /* Make sure a symtab is created for every file, even files
17861 which contain only variables (i.e. no code with associated
17862 line numbers). */
17863 struct compunit_symtab *cust = buildsym_compunit_symtab ();
17864 int i;
17865
17866 for (i = 0; i < lh->num_file_names; i++)
17867 {
17868 const char *dir = NULL;
17869 struct file_entry *fe;
17870
17871 fe = &lh->file_names[i];
17872 if (fe->dir_index)
17873 dir = lh->include_dirs[fe->dir_index - 1];
17874 dwarf2_start_subfile (fe->name, dir);
17875
17876 if (current_subfile->symtab == NULL)
17877 {
17878 current_subfile->symtab
17879 = allocate_symtab (cust, current_subfile->name);
17880 }
17881 fe->symtab = current_subfile->symtab;
17882 }
17883 }
17884 }
17885
17886 /* Start a subfile for DWARF. FILENAME is the name of the file and
17887 DIRNAME the name of the source directory which contains FILENAME
17888 or NULL if not known.
17889 This routine tries to keep line numbers from identical absolute and
17890 relative file names in a common subfile.
17891
17892 Using the `list' example from the GDB testsuite, which resides in
17893 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
17894 of /srcdir/list0.c yields the following debugging information for list0.c:
17895
17896 DW_AT_name: /srcdir/list0.c
17897 DW_AT_comp_dir: /compdir
17898 files.files[0].name: list0.h
17899 files.files[0].dir: /srcdir
17900 files.files[1].name: list0.c
17901 files.files[1].dir: /srcdir
17902
17903 The line number information for list0.c has to end up in a single
17904 subfile, so that `break /srcdir/list0.c:1' works as expected.
17905 start_subfile will ensure that this happens provided that we pass the
17906 concatenation of files.files[1].dir and files.files[1].name as the
17907 subfile's name. */
17908
17909 static void
17910 dwarf2_start_subfile (const char *filename, const char *dirname)
17911 {
17912 char *copy = NULL;
17913
17914 /* In order not to lose the line information directory,
17915 we concatenate it to the filename when it makes sense.
17916 Note that the Dwarf3 standard says (speaking of filenames in line
17917 information): ``The directory index is ignored for file names
17918 that represent full path names''. Thus ignoring dirname in the
17919 `else' branch below isn't an issue. */
17920
17921 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
17922 {
17923 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
17924 filename = copy;
17925 }
17926
17927 start_subfile (filename);
17928
17929 if (copy != NULL)
17930 xfree (copy);
17931 }
17932
17933 /* Start a symtab for DWARF.
17934 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
17935
17936 static struct compunit_symtab *
17937 dwarf2_start_symtab (struct dwarf2_cu *cu,
17938 const char *name, const char *comp_dir, CORE_ADDR low_pc)
17939 {
17940 struct compunit_symtab *cust
17941 = start_symtab (cu->objfile, name, comp_dir, low_pc);
17942
17943 record_debugformat ("DWARF 2");
17944 record_producer (cu->producer);
17945
17946 /* We assume that we're processing GCC output. */
17947 processing_gcc_compilation = 2;
17948
17949 cu->processing_has_namespace_info = 0;
17950
17951 return cust;
17952 }
17953
17954 static void
17955 var_decode_location (struct attribute *attr, struct symbol *sym,
17956 struct dwarf2_cu *cu)
17957 {
17958 struct objfile *objfile = cu->objfile;
17959 struct comp_unit_head *cu_header = &cu->header;
17960
17961 /* NOTE drow/2003-01-30: There used to be a comment and some special
17962 code here to turn a symbol with DW_AT_external and a
17963 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
17964 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
17965 with some versions of binutils) where shared libraries could have
17966 relocations against symbols in their debug information - the
17967 minimal symbol would have the right address, but the debug info
17968 would not. It's no longer necessary, because we will explicitly
17969 apply relocations when we read in the debug information now. */
17970
17971 /* A DW_AT_location attribute with no contents indicates that a
17972 variable has been optimized away. */
17973 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
17974 {
17975 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
17976 return;
17977 }
17978
17979 /* Handle one degenerate form of location expression specially, to
17980 preserve GDB's previous behavior when section offsets are
17981 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
17982 then mark this symbol as LOC_STATIC. */
17983
17984 if (attr_form_is_block (attr)
17985 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
17986 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
17987 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
17988 && (DW_BLOCK (attr)->size
17989 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
17990 {
17991 unsigned int dummy;
17992
17993 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
17994 SYMBOL_VALUE_ADDRESS (sym) =
17995 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
17996 else
17997 SYMBOL_VALUE_ADDRESS (sym) =
17998 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
17999 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
18000 fixup_symbol_section (sym, objfile);
18001 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
18002 SYMBOL_SECTION (sym));
18003 return;
18004 }
18005
18006 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
18007 expression evaluator, and use LOC_COMPUTED only when necessary
18008 (i.e. when the value of a register or memory location is
18009 referenced, or a thread-local block, etc.). Then again, it might
18010 not be worthwhile. I'm assuming that it isn't unless performance
18011 or memory numbers show me otherwise. */
18012
18013 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
18014
18015 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
18016 cu->has_loclist = 1;
18017 }
18018
18019 /* Given a pointer to a DWARF information entry, figure out if we need
18020 to make a symbol table entry for it, and if so, create a new entry
18021 and return a pointer to it.
18022 If TYPE is NULL, determine symbol type from the die, otherwise
18023 used the passed type.
18024 If SPACE is not NULL, use it to hold the new symbol. If it is
18025 NULL, allocate a new symbol on the objfile's obstack. */
18026
18027 static struct symbol *
18028 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
18029 struct symbol *space)
18030 {
18031 struct objfile *objfile = cu->objfile;
18032 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18033 struct symbol *sym = NULL;
18034 const char *name;
18035 struct attribute *attr = NULL;
18036 struct attribute *attr2 = NULL;
18037 CORE_ADDR baseaddr;
18038 struct pending **list_to_add = NULL;
18039
18040 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
18041
18042 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
18043
18044 name = dwarf2_name (die, cu);
18045 if (name)
18046 {
18047 const char *linkagename;
18048 int suppress_add = 0;
18049
18050 if (space)
18051 sym = space;
18052 else
18053 sym = allocate_symbol (objfile);
18054 OBJSTAT (objfile, n_syms++);
18055
18056 /* Cache this symbol's name and the name's demangled form (if any). */
18057 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
18058 linkagename = dwarf2_physname (name, die, cu);
18059 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
18060
18061 /* Fortran does not have mangling standard and the mangling does differ
18062 between gfortran, iFort etc. */
18063 if (cu->language == language_fortran
18064 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
18065 symbol_set_demangled_name (&(sym->ginfo),
18066 dwarf2_full_name (name, die, cu),
18067 NULL);
18068
18069 /* Default assumptions.
18070 Use the passed type or decode it from the die. */
18071 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18072 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
18073 if (type != NULL)
18074 SYMBOL_TYPE (sym) = type;
18075 else
18076 SYMBOL_TYPE (sym) = die_type (die, cu);
18077 attr = dwarf2_attr (die,
18078 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
18079 cu);
18080 if (attr)
18081 {
18082 SYMBOL_LINE (sym) = DW_UNSND (attr);
18083 }
18084
18085 attr = dwarf2_attr (die,
18086 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
18087 cu);
18088 if (attr)
18089 {
18090 int file_index = DW_UNSND (attr);
18091
18092 if (cu->line_header == NULL
18093 || file_index > cu->line_header->num_file_names)
18094 complaint (&symfile_complaints,
18095 _("file index out of range"));
18096 else if (file_index > 0)
18097 {
18098 struct file_entry *fe;
18099
18100 fe = &cu->line_header->file_names[file_index - 1];
18101 symbol_set_symtab (sym, fe->symtab);
18102 }
18103 }
18104
18105 switch (die->tag)
18106 {
18107 case DW_TAG_label:
18108 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
18109 if (attr)
18110 {
18111 CORE_ADDR addr;
18112
18113 addr = attr_value_as_address (attr);
18114 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
18115 SYMBOL_VALUE_ADDRESS (sym) = addr;
18116 }
18117 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
18118 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
18119 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
18120 add_symbol_to_list (sym, cu->list_in_scope);
18121 break;
18122 case DW_TAG_subprogram:
18123 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18124 finish_block. */
18125 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
18126 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18127 if ((attr2 && (DW_UNSND (attr2) != 0))
18128 || cu->language == language_ada)
18129 {
18130 /* Subprograms marked external are stored as a global symbol.
18131 Ada subprograms, whether marked external or not, are always
18132 stored as a global symbol, because we want to be able to
18133 access them globally. For instance, we want to be able
18134 to break on a nested subprogram without having to
18135 specify the context. */
18136 list_to_add = &global_symbols;
18137 }
18138 else
18139 {
18140 list_to_add = cu->list_in_scope;
18141 }
18142 break;
18143 case DW_TAG_inlined_subroutine:
18144 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18145 finish_block. */
18146 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
18147 SYMBOL_INLINED (sym) = 1;
18148 list_to_add = cu->list_in_scope;
18149 break;
18150 case DW_TAG_template_value_param:
18151 suppress_add = 1;
18152 /* Fall through. */
18153 case DW_TAG_constant:
18154 case DW_TAG_variable:
18155 case DW_TAG_member:
18156 /* Compilation with minimal debug info may result in
18157 variables with missing type entries. Change the
18158 misleading `void' type to something sensible. */
18159 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
18160 SYMBOL_TYPE (sym)
18161 = objfile_type (objfile)->nodebug_data_symbol;
18162
18163 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18164 /* In the case of DW_TAG_member, we should only be called for
18165 static const members. */
18166 if (die->tag == DW_TAG_member)
18167 {
18168 /* dwarf2_add_field uses die_is_declaration,
18169 so we do the same. */
18170 gdb_assert (die_is_declaration (die, cu));
18171 gdb_assert (attr);
18172 }
18173 if (attr)
18174 {
18175 dwarf2_const_value (attr, sym, cu);
18176 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18177 if (!suppress_add)
18178 {
18179 if (attr2 && (DW_UNSND (attr2) != 0))
18180 list_to_add = &global_symbols;
18181 else
18182 list_to_add = cu->list_in_scope;
18183 }
18184 break;
18185 }
18186 attr = dwarf2_attr (die, DW_AT_location, cu);
18187 if (attr)
18188 {
18189 var_decode_location (attr, sym, cu);
18190 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18191
18192 /* Fortran explicitly imports any global symbols to the local
18193 scope by DW_TAG_common_block. */
18194 if (cu->language == language_fortran && die->parent
18195 && die->parent->tag == DW_TAG_common_block)
18196 attr2 = NULL;
18197
18198 if (SYMBOL_CLASS (sym) == LOC_STATIC
18199 && SYMBOL_VALUE_ADDRESS (sym) == 0
18200 && !dwarf2_per_objfile->has_section_at_zero)
18201 {
18202 /* When a static variable is eliminated by the linker,
18203 the corresponding debug information is not stripped
18204 out, but the variable address is set to null;
18205 do not add such variables into symbol table. */
18206 }
18207 else if (attr2 && (DW_UNSND (attr2) != 0))
18208 {
18209 /* Workaround gfortran PR debug/40040 - it uses
18210 DW_AT_location for variables in -fPIC libraries which may
18211 get overriden by other libraries/executable and get
18212 a different address. Resolve it by the minimal symbol
18213 which may come from inferior's executable using copy
18214 relocation. Make this workaround only for gfortran as for
18215 other compilers GDB cannot guess the minimal symbol
18216 Fortran mangling kind. */
18217 if (cu->language == language_fortran && die->parent
18218 && die->parent->tag == DW_TAG_module
18219 && cu->producer
18220 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
18221 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
18222
18223 /* A variable with DW_AT_external is never static,
18224 but it may be block-scoped. */
18225 list_to_add = (cu->list_in_scope == &file_symbols
18226 ? &global_symbols : cu->list_in_scope);
18227 }
18228 else
18229 list_to_add = cu->list_in_scope;
18230 }
18231 else
18232 {
18233 /* We do not know the address of this symbol.
18234 If it is an external symbol and we have type information
18235 for it, enter the symbol as a LOC_UNRESOLVED symbol.
18236 The address of the variable will then be determined from
18237 the minimal symbol table whenever the variable is
18238 referenced. */
18239 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18240
18241 /* Fortran explicitly imports any global symbols to the local
18242 scope by DW_TAG_common_block. */
18243 if (cu->language == language_fortran && die->parent
18244 && die->parent->tag == DW_TAG_common_block)
18245 {
18246 /* SYMBOL_CLASS doesn't matter here because
18247 read_common_block is going to reset it. */
18248 if (!suppress_add)
18249 list_to_add = cu->list_in_scope;
18250 }
18251 else if (attr2 && (DW_UNSND (attr2) != 0)
18252 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
18253 {
18254 /* A variable with DW_AT_external is never static, but it
18255 may be block-scoped. */
18256 list_to_add = (cu->list_in_scope == &file_symbols
18257 ? &global_symbols : cu->list_in_scope);
18258
18259 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
18260 }
18261 else if (!die_is_declaration (die, cu))
18262 {
18263 /* Use the default LOC_OPTIMIZED_OUT class. */
18264 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
18265 if (!suppress_add)
18266 list_to_add = cu->list_in_scope;
18267 }
18268 }
18269 break;
18270 case DW_TAG_formal_parameter:
18271 /* If we are inside a function, mark this as an argument. If
18272 not, we might be looking at an argument to an inlined function
18273 when we do not have enough information to show inlined frames;
18274 pretend it's a local variable in that case so that the user can
18275 still see it. */
18276 if (context_stack_depth > 0
18277 && context_stack[context_stack_depth - 1].name != NULL)
18278 SYMBOL_IS_ARGUMENT (sym) = 1;
18279 attr = dwarf2_attr (die, DW_AT_location, cu);
18280 if (attr)
18281 {
18282 var_decode_location (attr, sym, cu);
18283 }
18284 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18285 if (attr)
18286 {
18287 dwarf2_const_value (attr, sym, cu);
18288 }
18289
18290 list_to_add = cu->list_in_scope;
18291 break;
18292 case DW_TAG_unspecified_parameters:
18293 /* From varargs functions; gdb doesn't seem to have any
18294 interest in this information, so just ignore it for now.
18295 (FIXME?) */
18296 break;
18297 case DW_TAG_template_type_param:
18298 suppress_add = 1;
18299 /* Fall through. */
18300 case DW_TAG_class_type:
18301 case DW_TAG_interface_type:
18302 case DW_TAG_structure_type:
18303 case DW_TAG_union_type:
18304 case DW_TAG_set_type:
18305 case DW_TAG_enumeration_type:
18306 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18307 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
18308
18309 {
18310 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
18311 really ever be static objects: otherwise, if you try
18312 to, say, break of a class's method and you're in a file
18313 which doesn't mention that class, it won't work unless
18314 the check for all static symbols in lookup_symbol_aux
18315 saves you. See the OtherFileClass tests in
18316 gdb.c++/namespace.exp. */
18317
18318 if (!suppress_add)
18319 {
18320 list_to_add = (cu->list_in_scope == &file_symbols
18321 && (cu->language == language_cplus
18322 || cu->language == language_java)
18323 ? &global_symbols : cu->list_in_scope);
18324
18325 /* The semantics of C++ state that "struct foo {
18326 ... }" also defines a typedef for "foo". A Java
18327 class declaration also defines a typedef for the
18328 class. */
18329 if (cu->language == language_cplus
18330 || cu->language == language_java
18331 || cu->language == language_ada)
18332 {
18333 /* The symbol's name is already allocated along
18334 with this objfile, so we don't need to
18335 duplicate it for the type. */
18336 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
18337 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
18338 }
18339 }
18340 }
18341 break;
18342 case DW_TAG_typedef:
18343 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18344 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18345 list_to_add = cu->list_in_scope;
18346 break;
18347 case DW_TAG_base_type:
18348 case DW_TAG_subrange_type:
18349 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18350 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18351 list_to_add = cu->list_in_scope;
18352 break;
18353 case DW_TAG_enumerator:
18354 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18355 if (attr)
18356 {
18357 dwarf2_const_value (attr, sym, cu);
18358 }
18359 {
18360 /* NOTE: carlton/2003-11-10: See comment above in the
18361 DW_TAG_class_type, etc. block. */
18362
18363 list_to_add = (cu->list_in_scope == &file_symbols
18364 && (cu->language == language_cplus
18365 || cu->language == language_java)
18366 ? &global_symbols : cu->list_in_scope);
18367 }
18368 break;
18369 case DW_TAG_imported_declaration:
18370 case DW_TAG_namespace:
18371 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18372 list_to_add = &global_symbols;
18373 break;
18374 case DW_TAG_module:
18375 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18376 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
18377 list_to_add = &global_symbols;
18378 break;
18379 case DW_TAG_common_block:
18380 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
18381 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
18382 add_symbol_to_list (sym, cu->list_in_scope);
18383 break;
18384 default:
18385 /* Not a tag we recognize. Hopefully we aren't processing
18386 trash data, but since we must specifically ignore things
18387 we don't recognize, there is nothing else we should do at
18388 this point. */
18389 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
18390 dwarf_tag_name (die->tag));
18391 break;
18392 }
18393
18394 if (suppress_add)
18395 {
18396 sym->hash_next = objfile->template_symbols;
18397 objfile->template_symbols = sym;
18398 list_to_add = NULL;
18399 }
18400
18401 if (list_to_add != NULL)
18402 add_symbol_to_list (sym, list_to_add);
18403
18404 /* For the benefit of old versions of GCC, check for anonymous
18405 namespaces based on the demangled name. */
18406 if (!cu->processing_has_namespace_info
18407 && cu->language == language_cplus)
18408 cp_scan_for_anonymous_namespaces (sym, objfile);
18409 }
18410 return (sym);
18411 }
18412
18413 /* A wrapper for new_symbol_full that always allocates a new symbol. */
18414
18415 static struct symbol *
18416 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
18417 {
18418 return new_symbol_full (die, type, cu, NULL);
18419 }
18420
18421 /* Given an attr with a DW_FORM_dataN value in host byte order,
18422 zero-extend it as appropriate for the symbol's type. The DWARF
18423 standard (v4) is not entirely clear about the meaning of using
18424 DW_FORM_dataN for a constant with a signed type, where the type is
18425 wider than the data. The conclusion of a discussion on the DWARF
18426 list was that this is unspecified. We choose to always zero-extend
18427 because that is the interpretation long in use by GCC. */
18428
18429 static gdb_byte *
18430 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
18431 struct dwarf2_cu *cu, LONGEST *value, int bits)
18432 {
18433 struct objfile *objfile = cu->objfile;
18434 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
18435 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
18436 LONGEST l = DW_UNSND (attr);
18437
18438 if (bits < sizeof (*value) * 8)
18439 {
18440 l &= ((LONGEST) 1 << bits) - 1;
18441 *value = l;
18442 }
18443 else if (bits == sizeof (*value) * 8)
18444 *value = l;
18445 else
18446 {
18447 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
18448 store_unsigned_integer (bytes, bits / 8, byte_order, l);
18449 return bytes;
18450 }
18451
18452 return NULL;
18453 }
18454
18455 /* Read a constant value from an attribute. Either set *VALUE, or if
18456 the value does not fit in *VALUE, set *BYTES - either already
18457 allocated on the objfile obstack, or newly allocated on OBSTACK,
18458 or, set *BATON, if we translated the constant to a location
18459 expression. */
18460
18461 static void
18462 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
18463 const char *name, struct obstack *obstack,
18464 struct dwarf2_cu *cu,
18465 LONGEST *value, const gdb_byte **bytes,
18466 struct dwarf2_locexpr_baton **baton)
18467 {
18468 struct objfile *objfile = cu->objfile;
18469 struct comp_unit_head *cu_header = &cu->header;
18470 struct dwarf_block *blk;
18471 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
18472 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
18473
18474 *value = 0;
18475 *bytes = NULL;
18476 *baton = NULL;
18477
18478 switch (attr->form)
18479 {
18480 case DW_FORM_addr:
18481 case DW_FORM_GNU_addr_index:
18482 {
18483 gdb_byte *data;
18484
18485 if (TYPE_LENGTH (type) != cu_header->addr_size)
18486 dwarf2_const_value_length_mismatch_complaint (name,
18487 cu_header->addr_size,
18488 TYPE_LENGTH (type));
18489 /* Symbols of this form are reasonably rare, so we just
18490 piggyback on the existing location code rather than writing
18491 a new implementation of symbol_computed_ops. */
18492 *baton = obstack_alloc (obstack, sizeof (struct dwarf2_locexpr_baton));
18493 (*baton)->per_cu = cu->per_cu;
18494 gdb_assert ((*baton)->per_cu);
18495
18496 (*baton)->size = 2 + cu_header->addr_size;
18497 data = obstack_alloc (obstack, (*baton)->size);
18498 (*baton)->data = data;
18499
18500 data[0] = DW_OP_addr;
18501 store_unsigned_integer (&data[1], cu_header->addr_size,
18502 byte_order, DW_ADDR (attr));
18503 data[cu_header->addr_size + 1] = DW_OP_stack_value;
18504 }
18505 break;
18506 case DW_FORM_string:
18507 case DW_FORM_strp:
18508 case DW_FORM_GNU_str_index:
18509 case DW_FORM_GNU_strp_alt:
18510 /* DW_STRING is already allocated on the objfile obstack, point
18511 directly to it. */
18512 *bytes = (const gdb_byte *) DW_STRING (attr);
18513 break;
18514 case DW_FORM_block1:
18515 case DW_FORM_block2:
18516 case DW_FORM_block4:
18517 case DW_FORM_block:
18518 case DW_FORM_exprloc:
18519 blk = DW_BLOCK (attr);
18520 if (TYPE_LENGTH (type) != blk->size)
18521 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
18522 TYPE_LENGTH (type));
18523 *bytes = blk->data;
18524 break;
18525
18526 /* The DW_AT_const_value attributes are supposed to carry the
18527 symbol's value "represented as it would be on the target
18528 architecture." By the time we get here, it's already been
18529 converted to host endianness, so we just need to sign- or
18530 zero-extend it as appropriate. */
18531 case DW_FORM_data1:
18532 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
18533 break;
18534 case DW_FORM_data2:
18535 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
18536 break;
18537 case DW_FORM_data4:
18538 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
18539 break;
18540 case DW_FORM_data8:
18541 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
18542 break;
18543
18544 case DW_FORM_sdata:
18545 *value = DW_SND (attr);
18546 break;
18547
18548 case DW_FORM_udata:
18549 *value = DW_UNSND (attr);
18550 break;
18551
18552 default:
18553 complaint (&symfile_complaints,
18554 _("unsupported const value attribute form: '%s'"),
18555 dwarf_form_name (attr->form));
18556 *value = 0;
18557 break;
18558 }
18559 }
18560
18561
18562 /* Copy constant value from an attribute to a symbol. */
18563
18564 static void
18565 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
18566 struct dwarf2_cu *cu)
18567 {
18568 struct objfile *objfile = cu->objfile;
18569 struct comp_unit_head *cu_header = &cu->header;
18570 LONGEST value;
18571 const gdb_byte *bytes;
18572 struct dwarf2_locexpr_baton *baton;
18573
18574 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
18575 SYMBOL_PRINT_NAME (sym),
18576 &objfile->objfile_obstack, cu,
18577 &value, &bytes, &baton);
18578
18579 if (baton != NULL)
18580 {
18581 SYMBOL_LOCATION_BATON (sym) = baton;
18582 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
18583 }
18584 else if (bytes != NULL)
18585 {
18586 SYMBOL_VALUE_BYTES (sym) = bytes;
18587 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
18588 }
18589 else
18590 {
18591 SYMBOL_VALUE (sym) = value;
18592 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
18593 }
18594 }
18595
18596 /* Return the type of the die in question using its DW_AT_type attribute. */
18597
18598 static struct type *
18599 die_type (struct die_info *die, struct dwarf2_cu *cu)
18600 {
18601 struct attribute *type_attr;
18602
18603 type_attr = dwarf2_attr (die, DW_AT_type, cu);
18604 if (!type_attr)
18605 {
18606 /* A missing DW_AT_type represents a void type. */
18607 return objfile_type (cu->objfile)->builtin_void;
18608 }
18609
18610 return lookup_die_type (die, type_attr, cu);
18611 }
18612
18613 /* True iff CU's producer generates GNAT Ada auxiliary information
18614 that allows to find parallel types through that information instead
18615 of having to do expensive parallel lookups by type name. */
18616
18617 static int
18618 need_gnat_info (struct dwarf2_cu *cu)
18619 {
18620 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
18621 of GNAT produces this auxiliary information, without any indication
18622 that it is produced. Part of enhancing the FSF version of GNAT
18623 to produce that information will be to put in place an indicator
18624 that we can use in order to determine whether the descriptive type
18625 info is available or not. One suggestion that has been made is
18626 to use a new attribute, attached to the CU die. For now, assume
18627 that the descriptive type info is not available. */
18628 return 0;
18629 }
18630
18631 /* Return the auxiliary type of the die in question using its
18632 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
18633 attribute is not present. */
18634
18635 static struct type *
18636 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
18637 {
18638 struct attribute *type_attr;
18639
18640 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
18641 if (!type_attr)
18642 return NULL;
18643
18644 return lookup_die_type (die, type_attr, cu);
18645 }
18646
18647 /* If DIE has a descriptive_type attribute, then set the TYPE's
18648 descriptive type accordingly. */
18649
18650 static void
18651 set_descriptive_type (struct type *type, struct die_info *die,
18652 struct dwarf2_cu *cu)
18653 {
18654 struct type *descriptive_type = die_descriptive_type (die, cu);
18655
18656 if (descriptive_type)
18657 {
18658 ALLOCATE_GNAT_AUX_TYPE (type);
18659 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
18660 }
18661 }
18662
18663 /* Return the containing type of the die in question using its
18664 DW_AT_containing_type attribute. */
18665
18666 static struct type *
18667 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
18668 {
18669 struct attribute *type_attr;
18670
18671 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
18672 if (!type_attr)
18673 error (_("Dwarf Error: Problem turning containing type into gdb type "
18674 "[in module %s]"), objfile_name (cu->objfile));
18675
18676 return lookup_die_type (die, type_attr, cu);
18677 }
18678
18679 /* Return an error marker type to use for the ill formed type in DIE/CU. */
18680
18681 static struct type *
18682 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
18683 {
18684 struct objfile *objfile = dwarf2_per_objfile->objfile;
18685 char *message, *saved;
18686
18687 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
18688 objfile_name (objfile),
18689 cu->header.offset.sect_off,
18690 die->offset.sect_off);
18691 saved = obstack_copy0 (&objfile->objfile_obstack,
18692 message, strlen (message));
18693 xfree (message);
18694
18695 return init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
18696 }
18697
18698 /* Look up the type of DIE in CU using its type attribute ATTR.
18699 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
18700 DW_AT_containing_type.
18701 If there is no type substitute an error marker. */
18702
18703 static struct type *
18704 lookup_die_type (struct die_info *die, const struct attribute *attr,
18705 struct dwarf2_cu *cu)
18706 {
18707 struct objfile *objfile = cu->objfile;
18708 struct type *this_type;
18709
18710 gdb_assert (attr->name == DW_AT_type
18711 || attr->name == DW_AT_GNAT_descriptive_type
18712 || attr->name == DW_AT_containing_type);
18713
18714 /* First see if we have it cached. */
18715
18716 if (attr->form == DW_FORM_GNU_ref_alt)
18717 {
18718 struct dwarf2_per_cu_data *per_cu;
18719 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18720
18721 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
18722 this_type = get_die_type_at_offset (offset, per_cu);
18723 }
18724 else if (attr_form_is_ref (attr))
18725 {
18726 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18727
18728 this_type = get_die_type_at_offset (offset, cu->per_cu);
18729 }
18730 else if (attr->form == DW_FORM_ref_sig8)
18731 {
18732 ULONGEST signature = DW_SIGNATURE (attr);
18733
18734 return get_signatured_type (die, signature, cu);
18735 }
18736 else
18737 {
18738 complaint (&symfile_complaints,
18739 _("Dwarf Error: Bad type attribute %s in DIE"
18740 " at 0x%x [in module %s]"),
18741 dwarf_attr_name (attr->name), die->offset.sect_off,
18742 objfile_name (objfile));
18743 return build_error_marker_type (cu, die);
18744 }
18745
18746 /* If not cached we need to read it in. */
18747
18748 if (this_type == NULL)
18749 {
18750 struct die_info *type_die = NULL;
18751 struct dwarf2_cu *type_cu = cu;
18752
18753 if (attr_form_is_ref (attr))
18754 type_die = follow_die_ref (die, attr, &type_cu);
18755 if (type_die == NULL)
18756 return build_error_marker_type (cu, die);
18757 /* If we find the type now, it's probably because the type came
18758 from an inter-CU reference and the type's CU got expanded before
18759 ours. */
18760 this_type = read_type_die (type_die, type_cu);
18761 }
18762
18763 /* If we still don't have a type use an error marker. */
18764
18765 if (this_type == NULL)
18766 return build_error_marker_type (cu, die);
18767
18768 return this_type;
18769 }
18770
18771 /* Return the type in DIE, CU.
18772 Returns NULL for invalid types.
18773
18774 This first does a lookup in die_type_hash,
18775 and only reads the die in if necessary.
18776
18777 NOTE: This can be called when reading in partial or full symbols. */
18778
18779 static struct type *
18780 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
18781 {
18782 struct type *this_type;
18783
18784 this_type = get_die_type (die, cu);
18785 if (this_type)
18786 return this_type;
18787
18788 return read_type_die_1 (die, cu);
18789 }
18790
18791 /* Read the type in DIE, CU.
18792 Returns NULL for invalid types. */
18793
18794 static struct type *
18795 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
18796 {
18797 struct type *this_type = NULL;
18798
18799 switch (die->tag)
18800 {
18801 case DW_TAG_class_type:
18802 case DW_TAG_interface_type:
18803 case DW_TAG_structure_type:
18804 case DW_TAG_union_type:
18805 this_type = read_structure_type (die, cu);
18806 break;
18807 case DW_TAG_enumeration_type:
18808 this_type = read_enumeration_type (die, cu);
18809 break;
18810 case DW_TAG_subprogram:
18811 case DW_TAG_subroutine_type:
18812 case DW_TAG_inlined_subroutine:
18813 this_type = read_subroutine_type (die, cu);
18814 break;
18815 case DW_TAG_array_type:
18816 this_type = read_array_type (die, cu);
18817 break;
18818 case DW_TAG_set_type:
18819 this_type = read_set_type (die, cu);
18820 break;
18821 case DW_TAG_pointer_type:
18822 this_type = read_tag_pointer_type (die, cu);
18823 break;
18824 case DW_TAG_ptr_to_member_type:
18825 this_type = read_tag_ptr_to_member_type (die, cu);
18826 break;
18827 case DW_TAG_reference_type:
18828 this_type = read_tag_reference_type (die, cu);
18829 break;
18830 case DW_TAG_const_type:
18831 this_type = read_tag_const_type (die, cu);
18832 break;
18833 case DW_TAG_volatile_type:
18834 this_type = read_tag_volatile_type (die, cu);
18835 break;
18836 case DW_TAG_restrict_type:
18837 this_type = read_tag_restrict_type (die, cu);
18838 break;
18839 case DW_TAG_string_type:
18840 this_type = read_tag_string_type (die, cu);
18841 break;
18842 case DW_TAG_typedef:
18843 this_type = read_typedef (die, cu);
18844 break;
18845 case DW_TAG_subrange_type:
18846 this_type = read_subrange_type (die, cu);
18847 break;
18848 case DW_TAG_base_type:
18849 this_type = read_base_type (die, cu);
18850 break;
18851 case DW_TAG_unspecified_type:
18852 this_type = read_unspecified_type (die, cu);
18853 break;
18854 case DW_TAG_namespace:
18855 this_type = read_namespace_type (die, cu);
18856 break;
18857 case DW_TAG_module:
18858 this_type = read_module_type (die, cu);
18859 break;
18860 default:
18861 complaint (&symfile_complaints,
18862 _("unexpected tag in read_type_die: '%s'"),
18863 dwarf_tag_name (die->tag));
18864 break;
18865 }
18866
18867 return this_type;
18868 }
18869
18870 /* See if we can figure out if the class lives in a namespace. We do
18871 this by looking for a member function; its demangled name will
18872 contain namespace info, if there is any.
18873 Return the computed name or NULL.
18874 Space for the result is allocated on the objfile's obstack.
18875 This is the full-die version of guess_partial_die_structure_name.
18876 In this case we know DIE has no useful parent. */
18877
18878 static char *
18879 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
18880 {
18881 struct die_info *spec_die;
18882 struct dwarf2_cu *spec_cu;
18883 struct die_info *child;
18884
18885 spec_cu = cu;
18886 spec_die = die_specification (die, &spec_cu);
18887 if (spec_die != NULL)
18888 {
18889 die = spec_die;
18890 cu = spec_cu;
18891 }
18892
18893 for (child = die->child;
18894 child != NULL;
18895 child = child->sibling)
18896 {
18897 if (child->tag == DW_TAG_subprogram)
18898 {
18899 struct attribute *attr;
18900
18901 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
18902 if (attr == NULL)
18903 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
18904 if (attr != NULL)
18905 {
18906 char *actual_name
18907 = language_class_name_from_physname (cu->language_defn,
18908 DW_STRING (attr));
18909 char *name = NULL;
18910
18911 if (actual_name != NULL)
18912 {
18913 const char *die_name = dwarf2_name (die, cu);
18914
18915 if (die_name != NULL
18916 && strcmp (die_name, actual_name) != 0)
18917 {
18918 /* Strip off the class name from the full name.
18919 We want the prefix. */
18920 int die_name_len = strlen (die_name);
18921 int actual_name_len = strlen (actual_name);
18922
18923 /* Test for '::' as a sanity check. */
18924 if (actual_name_len > die_name_len + 2
18925 && actual_name[actual_name_len
18926 - die_name_len - 1] == ':')
18927 name =
18928 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
18929 actual_name,
18930 actual_name_len - die_name_len - 2);
18931 }
18932 }
18933 xfree (actual_name);
18934 return name;
18935 }
18936 }
18937 }
18938
18939 return NULL;
18940 }
18941
18942 /* GCC might emit a nameless typedef that has a linkage name. Determine the
18943 prefix part in such case. See
18944 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18945
18946 static char *
18947 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
18948 {
18949 struct attribute *attr;
18950 char *base;
18951
18952 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
18953 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
18954 return NULL;
18955
18956 attr = dwarf2_attr (die, DW_AT_name, cu);
18957 if (attr != NULL && DW_STRING (attr) != NULL)
18958 return NULL;
18959
18960 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
18961 if (attr == NULL)
18962 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
18963 if (attr == NULL || DW_STRING (attr) == NULL)
18964 return NULL;
18965
18966 /* dwarf2_name had to be already called. */
18967 gdb_assert (DW_STRING_IS_CANONICAL (attr));
18968
18969 /* Strip the base name, keep any leading namespaces/classes. */
18970 base = strrchr (DW_STRING (attr), ':');
18971 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
18972 return "";
18973
18974 return obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
18975 DW_STRING (attr), &base[-1] - DW_STRING (attr));
18976 }
18977
18978 /* Return the name of the namespace/class that DIE is defined within,
18979 or "" if we can't tell. The caller should not xfree the result.
18980
18981 For example, if we're within the method foo() in the following
18982 code:
18983
18984 namespace N {
18985 class C {
18986 void foo () {
18987 }
18988 };
18989 }
18990
18991 then determine_prefix on foo's die will return "N::C". */
18992
18993 static const char *
18994 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
18995 {
18996 struct die_info *parent, *spec_die;
18997 struct dwarf2_cu *spec_cu;
18998 struct type *parent_type;
18999 char *retval;
19000
19001 if (cu->language != language_cplus && cu->language != language_java
19002 && cu->language != language_fortran)
19003 return "";
19004
19005 retval = anonymous_struct_prefix (die, cu);
19006 if (retval)
19007 return retval;
19008
19009 /* We have to be careful in the presence of DW_AT_specification.
19010 For example, with GCC 3.4, given the code
19011
19012 namespace N {
19013 void foo() {
19014 // Definition of N::foo.
19015 }
19016 }
19017
19018 then we'll have a tree of DIEs like this:
19019
19020 1: DW_TAG_compile_unit
19021 2: DW_TAG_namespace // N
19022 3: DW_TAG_subprogram // declaration of N::foo
19023 4: DW_TAG_subprogram // definition of N::foo
19024 DW_AT_specification // refers to die #3
19025
19026 Thus, when processing die #4, we have to pretend that we're in
19027 the context of its DW_AT_specification, namely the contex of die
19028 #3. */
19029 spec_cu = cu;
19030 spec_die = die_specification (die, &spec_cu);
19031 if (spec_die == NULL)
19032 parent = die->parent;
19033 else
19034 {
19035 parent = spec_die->parent;
19036 cu = spec_cu;
19037 }
19038
19039 if (parent == NULL)
19040 return "";
19041 else if (parent->building_fullname)
19042 {
19043 const char *name;
19044 const char *parent_name;
19045
19046 /* It has been seen on RealView 2.2 built binaries,
19047 DW_TAG_template_type_param types actually _defined_ as
19048 children of the parent class:
19049
19050 enum E {};
19051 template class <class Enum> Class{};
19052 Class<enum E> class_e;
19053
19054 1: DW_TAG_class_type (Class)
19055 2: DW_TAG_enumeration_type (E)
19056 3: DW_TAG_enumerator (enum1:0)
19057 3: DW_TAG_enumerator (enum2:1)
19058 ...
19059 2: DW_TAG_template_type_param
19060 DW_AT_type DW_FORM_ref_udata (E)
19061
19062 Besides being broken debug info, it can put GDB into an
19063 infinite loop. Consider:
19064
19065 When we're building the full name for Class<E>, we'll start
19066 at Class, and go look over its template type parameters,
19067 finding E. We'll then try to build the full name of E, and
19068 reach here. We're now trying to build the full name of E,
19069 and look over the parent DIE for containing scope. In the
19070 broken case, if we followed the parent DIE of E, we'd again
19071 find Class, and once again go look at its template type
19072 arguments, etc., etc. Simply don't consider such parent die
19073 as source-level parent of this die (it can't be, the language
19074 doesn't allow it), and break the loop here. */
19075 name = dwarf2_name (die, cu);
19076 parent_name = dwarf2_name (parent, cu);
19077 complaint (&symfile_complaints,
19078 _("template param type '%s' defined within parent '%s'"),
19079 name ? name : "<unknown>",
19080 parent_name ? parent_name : "<unknown>");
19081 return "";
19082 }
19083 else
19084 switch (parent->tag)
19085 {
19086 case DW_TAG_namespace:
19087 parent_type = read_type_die (parent, cu);
19088 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
19089 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
19090 Work around this problem here. */
19091 if (cu->language == language_cplus
19092 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
19093 return "";
19094 /* We give a name to even anonymous namespaces. */
19095 return TYPE_TAG_NAME (parent_type);
19096 case DW_TAG_class_type:
19097 case DW_TAG_interface_type:
19098 case DW_TAG_structure_type:
19099 case DW_TAG_union_type:
19100 case DW_TAG_module:
19101 parent_type = read_type_die (parent, cu);
19102 if (TYPE_TAG_NAME (parent_type) != NULL)
19103 return TYPE_TAG_NAME (parent_type);
19104 else
19105 /* An anonymous structure is only allowed non-static data
19106 members; no typedefs, no member functions, et cetera.
19107 So it does not need a prefix. */
19108 return "";
19109 case DW_TAG_compile_unit:
19110 case DW_TAG_partial_unit:
19111 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
19112 if (cu->language == language_cplus
19113 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
19114 && die->child != NULL
19115 && (die->tag == DW_TAG_class_type
19116 || die->tag == DW_TAG_structure_type
19117 || die->tag == DW_TAG_union_type))
19118 {
19119 char *name = guess_full_die_structure_name (die, cu);
19120 if (name != NULL)
19121 return name;
19122 }
19123 return "";
19124 case DW_TAG_enumeration_type:
19125 parent_type = read_type_die (parent, cu);
19126 if (TYPE_DECLARED_CLASS (parent_type))
19127 {
19128 if (TYPE_TAG_NAME (parent_type) != NULL)
19129 return TYPE_TAG_NAME (parent_type);
19130 return "";
19131 }
19132 /* Fall through. */
19133 default:
19134 return determine_prefix (parent, cu);
19135 }
19136 }
19137
19138 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
19139 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
19140 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
19141 an obconcat, otherwise allocate storage for the result. The CU argument is
19142 used to determine the language and hence, the appropriate separator. */
19143
19144 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
19145
19146 static char *
19147 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
19148 int physname, struct dwarf2_cu *cu)
19149 {
19150 const char *lead = "";
19151 const char *sep;
19152
19153 if (suffix == NULL || suffix[0] == '\0'
19154 || prefix == NULL || prefix[0] == '\0')
19155 sep = "";
19156 else if (cu->language == language_java)
19157 sep = ".";
19158 else if (cu->language == language_fortran && physname)
19159 {
19160 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
19161 DW_AT_MIPS_linkage_name is preferred and used instead. */
19162
19163 lead = "__";
19164 sep = "_MOD_";
19165 }
19166 else
19167 sep = "::";
19168
19169 if (prefix == NULL)
19170 prefix = "";
19171 if (suffix == NULL)
19172 suffix = "";
19173
19174 if (obs == NULL)
19175 {
19176 char *retval
19177 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
19178
19179 strcpy (retval, lead);
19180 strcat (retval, prefix);
19181 strcat (retval, sep);
19182 strcat (retval, suffix);
19183 return retval;
19184 }
19185 else
19186 {
19187 /* We have an obstack. */
19188 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
19189 }
19190 }
19191
19192 /* Return sibling of die, NULL if no sibling. */
19193
19194 static struct die_info *
19195 sibling_die (struct die_info *die)
19196 {
19197 return die->sibling;
19198 }
19199
19200 /* Get name of a die, return NULL if not found. */
19201
19202 static const char *
19203 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
19204 struct obstack *obstack)
19205 {
19206 if (name && cu->language == language_cplus)
19207 {
19208 char *canon_name = cp_canonicalize_string (name);
19209
19210 if (canon_name != NULL)
19211 {
19212 if (strcmp (canon_name, name) != 0)
19213 name = obstack_copy0 (obstack, canon_name, strlen (canon_name));
19214 xfree (canon_name);
19215 }
19216 }
19217
19218 return name;
19219 }
19220
19221 /* Get name of a die, return NULL if not found. */
19222
19223 static const char *
19224 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
19225 {
19226 struct attribute *attr;
19227
19228 attr = dwarf2_attr (die, DW_AT_name, cu);
19229 if ((!attr || !DW_STRING (attr))
19230 && die->tag != DW_TAG_class_type
19231 && die->tag != DW_TAG_interface_type
19232 && die->tag != DW_TAG_structure_type
19233 && die->tag != DW_TAG_union_type)
19234 return NULL;
19235
19236 switch (die->tag)
19237 {
19238 case DW_TAG_compile_unit:
19239 case DW_TAG_partial_unit:
19240 /* Compilation units have a DW_AT_name that is a filename, not
19241 a source language identifier. */
19242 case DW_TAG_enumeration_type:
19243 case DW_TAG_enumerator:
19244 /* These tags always have simple identifiers already; no need
19245 to canonicalize them. */
19246 return DW_STRING (attr);
19247
19248 case DW_TAG_subprogram:
19249 /* Java constructors will all be named "<init>", so return
19250 the class name when we see this special case. */
19251 if (cu->language == language_java
19252 && DW_STRING (attr) != NULL
19253 && strcmp (DW_STRING (attr), "<init>") == 0)
19254 {
19255 struct dwarf2_cu *spec_cu = cu;
19256 struct die_info *spec_die;
19257
19258 /* GCJ will output '<init>' for Java constructor names.
19259 For this special case, return the name of the parent class. */
19260
19261 /* GCJ may output subprogram DIEs with AT_specification set.
19262 If so, use the name of the specified DIE. */
19263 spec_die = die_specification (die, &spec_cu);
19264 if (spec_die != NULL)
19265 return dwarf2_name (spec_die, spec_cu);
19266
19267 do
19268 {
19269 die = die->parent;
19270 if (die->tag == DW_TAG_class_type)
19271 return dwarf2_name (die, cu);
19272 }
19273 while (die->tag != DW_TAG_compile_unit
19274 && die->tag != DW_TAG_partial_unit);
19275 }
19276 break;
19277
19278 case DW_TAG_class_type:
19279 case DW_TAG_interface_type:
19280 case DW_TAG_structure_type:
19281 case DW_TAG_union_type:
19282 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
19283 structures or unions. These were of the form "._%d" in GCC 4.1,
19284 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
19285 and GCC 4.4. We work around this problem by ignoring these. */
19286 if (attr && DW_STRING (attr)
19287 && (strncmp (DW_STRING (attr), "._", 2) == 0
19288 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0))
19289 return NULL;
19290
19291 /* GCC might emit a nameless typedef that has a linkage name. See
19292 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19293 if (!attr || DW_STRING (attr) == NULL)
19294 {
19295 char *demangled = NULL;
19296
19297 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19298 if (attr == NULL)
19299 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19300
19301 if (attr == NULL || DW_STRING (attr) == NULL)
19302 return NULL;
19303
19304 /* Avoid demangling DW_STRING (attr) the second time on a second
19305 call for the same DIE. */
19306 if (!DW_STRING_IS_CANONICAL (attr))
19307 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
19308
19309 if (demangled)
19310 {
19311 char *base;
19312
19313 /* FIXME: we already did this for the partial symbol... */
19314 DW_STRING (attr)
19315 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19316 demangled, strlen (demangled));
19317 DW_STRING_IS_CANONICAL (attr) = 1;
19318 xfree (demangled);
19319
19320 /* Strip any leading namespaces/classes, keep only the base name.
19321 DW_AT_name for named DIEs does not contain the prefixes. */
19322 base = strrchr (DW_STRING (attr), ':');
19323 if (base && base > DW_STRING (attr) && base[-1] == ':')
19324 return &base[1];
19325 else
19326 return DW_STRING (attr);
19327 }
19328 }
19329 break;
19330
19331 default:
19332 break;
19333 }
19334
19335 if (!DW_STRING_IS_CANONICAL (attr))
19336 {
19337 DW_STRING (attr)
19338 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
19339 &cu->objfile->per_bfd->storage_obstack);
19340 DW_STRING_IS_CANONICAL (attr) = 1;
19341 }
19342 return DW_STRING (attr);
19343 }
19344
19345 /* Return the die that this die in an extension of, or NULL if there
19346 is none. *EXT_CU is the CU containing DIE on input, and the CU
19347 containing the return value on output. */
19348
19349 static struct die_info *
19350 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
19351 {
19352 struct attribute *attr;
19353
19354 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
19355 if (attr == NULL)
19356 return NULL;
19357
19358 return follow_die_ref (die, attr, ext_cu);
19359 }
19360
19361 /* Convert a DIE tag into its string name. */
19362
19363 static const char *
19364 dwarf_tag_name (unsigned tag)
19365 {
19366 const char *name = get_DW_TAG_name (tag);
19367
19368 if (name == NULL)
19369 return "DW_TAG_<unknown>";
19370
19371 return name;
19372 }
19373
19374 /* Convert a DWARF attribute code into its string name. */
19375
19376 static const char *
19377 dwarf_attr_name (unsigned attr)
19378 {
19379 const char *name;
19380
19381 #ifdef MIPS /* collides with DW_AT_HP_block_index */
19382 if (attr == DW_AT_MIPS_fde)
19383 return "DW_AT_MIPS_fde";
19384 #else
19385 if (attr == DW_AT_HP_block_index)
19386 return "DW_AT_HP_block_index";
19387 #endif
19388
19389 name = get_DW_AT_name (attr);
19390
19391 if (name == NULL)
19392 return "DW_AT_<unknown>";
19393
19394 return name;
19395 }
19396
19397 /* Convert a DWARF value form code into its string name. */
19398
19399 static const char *
19400 dwarf_form_name (unsigned form)
19401 {
19402 const char *name = get_DW_FORM_name (form);
19403
19404 if (name == NULL)
19405 return "DW_FORM_<unknown>";
19406
19407 return name;
19408 }
19409
19410 static char *
19411 dwarf_bool_name (unsigned mybool)
19412 {
19413 if (mybool)
19414 return "TRUE";
19415 else
19416 return "FALSE";
19417 }
19418
19419 /* Convert a DWARF type code into its string name. */
19420
19421 static const char *
19422 dwarf_type_encoding_name (unsigned enc)
19423 {
19424 const char *name = get_DW_ATE_name (enc);
19425
19426 if (name == NULL)
19427 return "DW_ATE_<unknown>";
19428
19429 return name;
19430 }
19431
19432 static void
19433 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
19434 {
19435 unsigned int i;
19436
19437 print_spaces (indent, f);
19438 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
19439 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
19440
19441 if (die->parent != NULL)
19442 {
19443 print_spaces (indent, f);
19444 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
19445 die->parent->offset.sect_off);
19446 }
19447
19448 print_spaces (indent, f);
19449 fprintf_unfiltered (f, " has children: %s\n",
19450 dwarf_bool_name (die->child != NULL));
19451
19452 print_spaces (indent, f);
19453 fprintf_unfiltered (f, " attributes:\n");
19454
19455 for (i = 0; i < die->num_attrs; ++i)
19456 {
19457 print_spaces (indent, f);
19458 fprintf_unfiltered (f, " %s (%s) ",
19459 dwarf_attr_name (die->attrs[i].name),
19460 dwarf_form_name (die->attrs[i].form));
19461
19462 switch (die->attrs[i].form)
19463 {
19464 case DW_FORM_addr:
19465 case DW_FORM_GNU_addr_index:
19466 fprintf_unfiltered (f, "address: ");
19467 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
19468 break;
19469 case DW_FORM_block2:
19470 case DW_FORM_block4:
19471 case DW_FORM_block:
19472 case DW_FORM_block1:
19473 fprintf_unfiltered (f, "block: size %s",
19474 pulongest (DW_BLOCK (&die->attrs[i])->size));
19475 break;
19476 case DW_FORM_exprloc:
19477 fprintf_unfiltered (f, "expression: size %s",
19478 pulongest (DW_BLOCK (&die->attrs[i])->size));
19479 break;
19480 case DW_FORM_ref_addr:
19481 fprintf_unfiltered (f, "ref address: ");
19482 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19483 break;
19484 case DW_FORM_GNU_ref_alt:
19485 fprintf_unfiltered (f, "alt ref address: ");
19486 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19487 break;
19488 case DW_FORM_ref1:
19489 case DW_FORM_ref2:
19490 case DW_FORM_ref4:
19491 case DW_FORM_ref8:
19492 case DW_FORM_ref_udata:
19493 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
19494 (long) (DW_UNSND (&die->attrs[i])));
19495 break;
19496 case DW_FORM_data1:
19497 case DW_FORM_data2:
19498 case DW_FORM_data4:
19499 case DW_FORM_data8:
19500 case DW_FORM_udata:
19501 case DW_FORM_sdata:
19502 fprintf_unfiltered (f, "constant: %s",
19503 pulongest (DW_UNSND (&die->attrs[i])));
19504 break;
19505 case DW_FORM_sec_offset:
19506 fprintf_unfiltered (f, "section offset: %s",
19507 pulongest (DW_UNSND (&die->attrs[i])));
19508 break;
19509 case DW_FORM_ref_sig8:
19510 fprintf_unfiltered (f, "signature: %s",
19511 hex_string (DW_SIGNATURE (&die->attrs[i])));
19512 break;
19513 case DW_FORM_string:
19514 case DW_FORM_strp:
19515 case DW_FORM_GNU_str_index:
19516 case DW_FORM_GNU_strp_alt:
19517 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
19518 DW_STRING (&die->attrs[i])
19519 ? DW_STRING (&die->attrs[i]) : "",
19520 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
19521 break;
19522 case DW_FORM_flag:
19523 if (DW_UNSND (&die->attrs[i]))
19524 fprintf_unfiltered (f, "flag: TRUE");
19525 else
19526 fprintf_unfiltered (f, "flag: FALSE");
19527 break;
19528 case DW_FORM_flag_present:
19529 fprintf_unfiltered (f, "flag: TRUE");
19530 break;
19531 case DW_FORM_indirect:
19532 /* The reader will have reduced the indirect form to
19533 the "base form" so this form should not occur. */
19534 fprintf_unfiltered (f,
19535 "unexpected attribute form: DW_FORM_indirect");
19536 break;
19537 default:
19538 fprintf_unfiltered (f, "unsupported attribute form: %d.",
19539 die->attrs[i].form);
19540 break;
19541 }
19542 fprintf_unfiltered (f, "\n");
19543 }
19544 }
19545
19546 static void
19547 dump_die_for_error (struct die_info *die)
19548 {
19549 dump_die_shallow (gdb_stderr, 0, die);
19550 }
19551
19552 static void
19553 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
19554 {
19555 int indent = level * 4;
19556
19557 gdb_assert (die != NULL);
19558
19559 if (level >= max_level)
19560 return;
19561
19562 dump_die_shallow (f, indent, die);
19563
19564 if (die->child != NULL)
19565 {
19566 print_spaces (indent, f);
19567 fprintf_unfiltered (f, " Children:");
19568 if (level + 1 < max_level)
19569 {
19570 fprintf_unfiltered (f, "\n");
19571 dump_die_1 (f, level + 1, max_level, die->child);
19572 }
19573 else
19574 {
19575 fprintf_unfiltered (f,
19576 " [not printed, max nesting level reached]\n");
19577 }
19578 }
19579
19580 if (die->sibling != NULL && level > 0)
19581 {
19582 dump_die_1 (f, level, max_level, die->sibling);
19583 }
19584 }
19585
19586 /* This is called from the pdie macro in gdbinit.in.
19587 It's not static so gcc will keep a copy callable from gdb. */
19588
19589 void
19590 dump_die (struct die_info *die, int max_level)
19591 {
19592 dump_die_1 (gdb_stdlog, 0, max_level, die);
19593 }
19594
19595 static void
19596 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
19597 {
19598 void **slot;
19599
19600 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
19601 INSERT);
19602
19603 *slot = die;
19604 }
19605
19606 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
19607 required kind. */
19608
19609 static sect_offset
19610 dwarf2_get_ref_die_offset (const struct attribute *attr)
19611 {
19612 sect_offset retval = { DW_UNSND (attr) };
19613
19614 if (attr_form_is_ref (attr))
19615 return retval;
19616
19617 retval.sect_off = 0;
19618 complaint (&symfile_complaints,
19619 _("unsupported die ref attribute form: '%s'"),
19620 dwarf_form_name (attr->form));
19621 return retval;
19622 }
19623
19624 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
19625 * the value held by the attribute is not constant. */
19626
19627 static LONGEST
19628 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
19629 {
19630 if (attr->form == DW_FORM_sdata)
19631 return DW_SND (attr);
19632 else if (attr->form == DW_FORM_udata
19633 || attr->form == DW_FORM_data1
19634 || attr->form == DW_FORM_data2
19635 || attr->form == DW_FORM_data4
19636 || attr->form == DW_FORM_data8)
19637 return DW_UNSND (attr);
19638 else
19639 {
19640 complaint (&symfile_complaints,
19641 _("Attribute value is not a constant (%s)"),
19642 dwarf_form_name (attr->form));
19643 return default_value;
19644 }
19645 }
19646
19647 /* Follow reference or signature attribute ATTR of SRC_DIE.
19648 On entry *REF_CU is the CU of SRC_DIE.
19649 On exit *REF_CU is the CU of the result. */
19650
19651 static struct die_info *
19652 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
19653 struct dwarf2_cu **ref_cu)
19654 {
19655 struct die_info *die;
19656
19657 if (attr_form_is_ref (attr))
19658 die = follow_die_ref (src_die, attr, ref_cu);
19659 else if (attr->form == DW_FORM_ref_sig8)
19660 die = follow_die_sig (src_die, attr, ref_cu);
19661 else
19662 {
19663 dump_die_for_error (src_die);
19664 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
19665 objfile_name ((*ref_cu)->objfile));
19666 }
19667
19668 return die;
19669 }
19670
19671 /* Follow reference OFFSET.
19672 On entry *REF_CU is the CU of the source die referencing OFFSET.
19673 On exit *REF_CU is the CU of the result.
19674 Returns NULL if OFFSET is invalid. */
19675
19676 static struct die_info *
19677 follow_die_offset (sect_offset offset, int offset_in_dwz,
19678 struct dwarf2_cu **ref_cu)
19679 {
19680 struct die_info temp_die;
19681 struct dwarf2_cu *target_cu, *cu = *ref_cu;
19682
19683 gdb_assert (cu->per_cu != NULL);
19684
19685 target_cu = cu;
19686
19687 if (cu->per_cu->is_debug_types)
19688 {
19689 /* .debug_types CUs cannot reference anything outside their CU.
19690 If they need to, they have to reference a signatured type via
19691 DW_FORM_ref_sig8. */
19692 if (! offset_in_cu_p (&cu->header, offset))
19693 return NULL;
19694 }
19695 else if (offset_in_dwz != cu->per_cu->is_dwz
19696 || ! offset_in_cu_p (&cu->header, offset))
19697 {
19698 struct dwarf2_per_cu_data *per_cu;
19699
19700 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
19701 cu->objfile);
19702
19703 /* If necessary, add it to the queue and load its DIEs. */
19704 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
19705 load_full_comp_unit (per_cu, cu->language);
19706
19707 target_cu = per_cu->cu;
19708 }
19709 else if (cu->dies == NULL)
19710 {
19711 /* We're loading full DIEs during partial symbol reading. */
19712 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
19713 load_full_comp_unit (cu->per_cu, language_minimal);
19714 }
19715
19716 *ref_cu = target_cu;
19717 temp_die.offset = offset;
19718 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
19719 }
19720
19721 /* Follow reference attribute ATTR of SRC_DIE.
19722 On entry *REF_CU is the CU of SRC_DIE.
19723 On exit *REF_CU is the CU of the result. */
19724
19725 static struct die_info *
19726 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
19727 struct dwarf2_cu **ref_cu)
19728 {
19729 sect_offset offset = dwarf2_get_ref_die_offset (attr);
19730 struct dwarf2_cu *cu = *ref_cu;
19731 struct die_info *die;
19732
19733 die = follow_die_offset (offset,
19734 (attr->form == DW_FORM_GNU_ref_alt
19735 || cu->per_cu->is_dwz),
19736 ref_cu);
19737 if (!die)
19738 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
19739 "at 0x%x [in module %s]"),
19740 offset.sect_off, src_die->offset.sect_off,
19741 objfile_name (cu->objfile));
19742
19743 return die;
19744 }
19745
19746 /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
19747 Returned value is intended for DW_OP_call*. Returned
19748 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
19749
19750 struct dwarf2_locexpr_baton
19751 dwarf2_fetch_die_loc_sect_off (sect_offset offset,
19752 struct dwarf2_per_cu_data *per_cu,
19753 CORE_ADDR (*get_frame_pc) (void *baton),
19754 void *baton)
19755 {
19756 struct dwarf2_cu *cu;
19757 struct die_info *die;
19758 struct attribute *attr;
19759 struct dwarf2_locexpr_baton retval;
19760
19761 dw2_setup (per_cu->objfile);
19762
19763 if (per_cu->cu == NULL)
19764 load_cu (per_cu);
19765 cu = per_cu->cu;
19766
19767 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
19768 if (!die)
19769 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
19770 offset.sect_off, objfile_name (per_cu->objfile));
19771
19772 attr = dwarf2_attr (die, DW_AT_location, cu);
19773 if (!attr)
19774 {
19775 /* DWARF: "If there is no such attribute, then there is no effect.".
19776 DATA is ignored if SIZE is 0. */
19777
19778 retval.data = NULL;
19779 retval.size = 0;
19780 }
19781 else if (attr_form_is_section_offset (attr))
19782 {
19783 struct dwarf2_loclist_baton loclist_baton;
19784 CORE_ADDR pc = (*get_frame_pc) (baton);
19785 size_t size;
19786
19787 fill_in_loclist_baton (cu, &loclist_baton, attr);
19788
19789 retval.data = dwarf2_find_location_expression (&loclist_baton,
19790 &size, pc);
19791 retval.size = size;
19792 }
19793 else
19794 {
19795 if (!attr_form_is_block (attr))
19796 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
19797 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
19798 offset.sect_off, objfile_name (per_cu->objfile));
19799
19800 retval.data = DW_BLOCK (attr)->data;
19801 retval.size = DW_BLOCK (attr)->size;
19802 }
19803 retval.per_cu = cu->per_cu;
19804
19805 age_cached_comp_units ();
19806
19807 return retval;
19808 }
19809
19810 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
19811 offset. */
19812
19813 struct dwarf2_locexpr_baton
19814 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
19815 struct dwarf2_per_cu_data *per_cu,
19816 CORE_ADDR (*get_frame_pc) (void *baton),
19817 void *baton)
19818 {
19819 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
19820
19821 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
19822 }
19823
19824 /* Write a constant of a given type as target-ordered bytes into
19825 OBSTACK. */
19826
19827 static const gdb_byte *
19828 write_constant_as_bytes (struct obstack *obstack,
19829 enum bfd_endian byte_order,
19830 struct type *type,
19831 ULONGEST value,
19832 LONGEST *len)
19833 {
19834 gdb_byte *result;
19835
19836 *len = TYPE_LENGTH (type);
19837 result = obstack_alloc (obstack, *len);
19838 store_unsigned_integer (result, *len, byte_order, value);
19839
19840 return result;
19841 }
19842
19843 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
19844 pointer to the constant bytes and set LEN to the length of the
19845 data. If memory is needed, allocate it on OBSTACK. If the DIE
19846 does not have a DW_AT_const_value, return NULL. */
19847
19848 const gdb_byte *
19849 dwarf2_fetch_constant_bytes (sect_offset offset,
19850 struct dwarf2_per_cu_data *per_cu,
19851 struct obstack *obstack,
19852 LONGEST *len)
19853 {
19854 struct dwarf2_cu *cu;
19855 struct die_info *die;
19856 struct attribute *attr;
19857 const gdb_byte *result = NULL;
19858 struct type *type;
19859 LONGEST value;
19860 enum bfd_endian byte_order;
19861
19862 dw2_setup (per_cu->objfile);
19863
19864 if (per_cu->cu == NULL)
19865 load_cu (per_cu);
19866 cu = per_cu->cu;
19867
19868 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
19869 if (!die)
19870 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
19871 offset.sect_off, objfile_name (per_cu->objfile));
19872
19873
19874 attr = dwarf2_attr (die, DW_AT_const_value, cu);
19875 if (attr == NULL)
19876 return NULL;
19877
19878 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
19879 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
19880
19881 switch (attr->form)
19882 {
19883 case DW_FORM_addr:
19884 case DW_FORM_GNU_addr_index:
19885 {
19886 gdb_byte *tem;
19887
19888 *len = cu->header.addr_size;
19889 tem = obstack_alloc (obstack, *len);
19890 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
19891 result = tem;
19892 }
19893 break;
19894 case DW_FORM_string:
19895 case DW_FORM_strp:
19896 case DW_FORM_GNU_str_index:
19897 case DW_FORM_GNU_strp_alt:
19898 /* DW_STRING is already allocated on the objfile obstack, point
19899 directly to it. */
19900 result = (const gdb_byte *) DW_STRING (attr);
19901 *len = strlen (DW_STRING (attr));
19902 break;
19903 case DW_FORM_block1:
19904 case DW_FORM_block2:
19905 case DW_FORM_block4:
19906 case DW_FORM_block:
19907 case DW_FORM_exprloc:
19908 result = DW_BLOCK (attr)->data;
19909 *len = DW_BLOCK (attr)->size;
19910 break;
19911
19912 /* The DW_AT_const_value attributes are supposed to carry the
19913 symbol's value "represented as it would be on the target
19914 architecture." By the time we get here, it's already been
19915 converted to host endianness, so we just need to sign- or
19916 zero-extend it as appropriate. */
19917 case DW_FORM_data1:
19918 type = die_type (die, cu);
19919 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
19920 if (result == NULL)
19921 result = write_constant_as_bytes (obstack, byte_order,
19922 type, value, len);
19923 break;
19924 case DW_FORM_data2:
19925 type = die_type (die, cu);
19926 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
19927 if (result == NULL)
19928 result = write_constant_as_bytes (obstack, byte_order,
19929 type, value, len);
19930 break;
19931 case DW_FORM_data4:
19932 type = die_type (die, cu);
19933 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
19934 if (result == NULL)
19935 result = write_constant_as_bytes (obstack, byte_order,
19936 type, value, len);
19937 break;
19938 case DW_FORM_data8:
19939 type = die_type (die, cu);
19940 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
19941 if (result == NULL)
19942 result = write_constant_as_bytes (obstack, byte_order,
19943 type, value, len);
19944 break;
19945
19946 case DW_FORM_sdata:
19947 type = die_type (die, cu);
19948 result = write_constant_as_bytes (obstack, byte_order,
19949 type, DW_SND (attr), len);
19950 break;
19951
19952 case DW_FORM_udata:
19953 type = die_type (die, cu);
19954 result = write_constant_as_bytes (obstack, byte_order,
19955 type, DW_UNSND (attr), len);
19956 break;
19957
19958 default:
19959 complaint (&symfile_complaints,
19960 _("unsupported const value attribute form: '%s'"),
19961 dwarf_form_name (attr->form));
19962 break;
19963 }
19964
19965 return result;
19966 }
19967
19968 /* Return the type of the DIE at DIE_OFFSET in the CU named by
19969 PER_CU. */
19970
19971 struct type *
19972 dwarf2_get_die_type (cu_offset die_offset,
19973 struct dwarf2_per_cu_data *per_cu)
19974 {
19975 sect_offset die_offset_sect;
19976
19977 dw2_setup (per_cu->objfile);
19978
19979 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
19980 return get_die_type_at_offset (die_offset_sect, per_cu);
19981 }
19982
19983 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
19984 On entry *REF_CU is the CU of SRC_DIE.
19985 On exit *REF_CU is the CU of the result.
19986 Returns NULL if the referenced DIE isn't found. */
19987
19988 static struct die_info *
19989 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
19990 struct dwarf2_cu **ref_cu)
19991 {
19992 struct objfile *objfile = (*ref_cu)->objfile;
19993 struct die_info temp_die;
19994 struct dwarf2_cu *sig_cu;
19995 struct die_info *die;
19996
19997 /* While it might be nice to assert sig_type->type == NULL here,
19998 we can get here for DW_AT_imported_declaration where we need
19999 the DIE not the type. */
20000
20001 /* If necessary, add it to the queue and load its DIEs. */
20002
20003 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
20004 read_signatured_type (sig_type);
20005
20006 sig_cu = sig_type->per_cu.cu;
20007 gdb_assert (sig_cu != NULL);
20008 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
20009 temp_die.offset = sig_type->type_offset_in_section;
20010 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
20011 temp_die.offset.sect_off);
20012 if (die)
20013 {
20014 /* For .gdb_index version 7 keep track of included TUs.
20015 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
20016 if (dwarf2_per_objfile->index_table != NULL
20017 && dwarf2_per_objfile->index_table->version <= 7)
20018 {
20019 VEC_safe_push (dwarf2_per_cu_ptr,
20020 (*ref_cu)->per_cu->imported_symtabs,
20021 sig_cu->per_cu);
20022 }
20023
20024 *ref_cu = sig_cu;
20025 return die;
20026 }
20027
20028 return NULL;
20029 }
20030
20031 /* Follow signatured type referenced by ATTR in SRC_DIE.
20032 On entry *REF_CU is the CU of SRC_DIE.
20033 On exit *REF_CU is the CU of the result.
20034 The result is the DIE of the type.
20035 If the referenced type cannot be found an error is thrown. */
20036
20037 static struct die_info *
20038 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
20039 struct dwarf2_cu **ref_cu)
20040 {
20041 ULONGEST signature = DW_SIGNATURE (attr);
20042 struct signatured_type *sig_type;
20043 struct die_info *die;
20044
20045 gdb_assert (attr->form == DW_FORM_ref_sig8);
20046
20047 sig_type = lookup_signatured_type (*ref_cu, signature);
20048 /* sig_type will be NULL if the signatured type is missing from
20049 the debug info. */
20050 if (sig_type == NULL)
20051 {
20052 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
20053 " from DIE at 0x%x [in module %s]"),
20054 hex_string (signature), src_die->offset.sect_off,
20055 objfile_name ((*ref_cu)->objfile));
20056 }
20057
20058 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
20059 if (die == NULL)
20060 {
20061 dump_die_for_error (src_die);
20062 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
20063 " from DIE at 0x%x [in module %s]"),
20064 hex_string (signature), src_die->offset.sect_off,
20065 objfile_name ((*ref_cu)->objfile));
20066 }
20067
20068 return die;
20069 }
20070
20071 /* Get the type specified by SIGNATURE referenced in DIE/CU,
20072 reading in and processing the type unit if necessary. */
20073
20074 static struct type *
20075 get_signatured_type (struct die_info *die, ULONGEST signature,
20076 struct dwarf2_cu *cu)
20077 {
20078 struct signatured_type *sig_type;
20079 struct dwarf2_cu *type_cu;
20080 struct die_info *type_die;
20081 struct type *type;
20082
20083 sig_type = lookup_signatured_type (cu, signature);
20084 /* sig_type will be NULL if the signatured type is missing from
20085 the debug info. */
20086 if (sig_type == NULL)
20087 {
20088 complaint (&symfile_complaints,
20089 _("Dwarf Error: Cannot find signatured DIE %s referenced"
20090 " from DIE at 0x%x [in module %s]"),
20091 hex_string (signature), die->offset.sect_off,
20092 objfile_name (dwarf2_per_objfile->objfile));
20093 return build_error_marker_type (cu, die);
20094 }
20095
20096 /* If we already know the type we're done. */
20097 if (sig_type->type != NULL)
20098 return sig_type->type;
20099
20100 type_cu = cu;
20101 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
20102 if (type_die != NULL)
20103 {
20104 /* N.B. We need to call get_die_type to ensure only one type for this DIE
20105 is created. This is important, for example, because for c++ classes
20106 we need TYPE_NAME set which is only done by new_symbol. Blech. */
20107 type = read_type_die (type_die, type_cu);
20108 if (type == NULL)
20109 {
20110 complaint (&symfile_complaints,
20111 _("Dwarf Error: Cannot build signatured type %s"
20112 " referenced from DIE at 0x%x [in module %s]"),
20113 hex_string (signature), die->offset.sect_off,
20114 objfile_name (dwarf2_per_objfile->objfile));
20115 type = build_error_marker_type (cu, die);
20116 }
20117 }
20118 else
20119 {
20120 complaint (&symfile_complaints,
20121 _("Dwarf Error: Problem reading signatured DIE %s referenced"
20122 " from DIE at 0x%x [in module %s]"),
20123 hex_string (signature), die->offset.sect_off,
20124 objfile_name (dwarf2_per_objfile->objfile));
20125 type = build_error_marker_type (cu, die);
20126 }
20127 sig_type->type = type;
20128
20129 return type;
20130 }
20131
20132 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
20133 reading in and processing the type unit if necessary. */
20134
20135 static struct type *
20136 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
20137 struct dwarf2_cu *cu) /* ARI: editCase function */
20138 {
20139 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
20140 if (attr_form_is_ref (attr))
20141 {
20142 struct dwarf2_cu *type_cu = cu;
20143 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
20144
20145 return read_type_die (type_die, type_cu);
20146 }
20147 else if (attr->form == DW_FORM_ref_sig8)
20148 {
20149 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
20150 }
20151 else
20152 {
20153 complaint (&symfile_complaints,
20154 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
20155 " at 0x%x [in module %s]"),
20156 dwarf_form_name (attr->form), die->offset.sect_off,
20157 objfile_name (dwarf2_per_objfile->objfile));
20158 return build_error_marker_type (cu, die);
20159 }
20160 }
20161
20162 /* Load the DIEs associated with type unit PER_CU into memory. */
20163
20164 static void
20165 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
20166 {
20167 struct signatured_type *sig_type;
20168
20169 /* Caller is responsible for ensuring type_unit_groups don't get here. */
20170 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
20171
20172 /* We have the per_cu, but we need the signatured_type.
20173 Fortunately this is an easy translation. */
20174 gdb_assert (per_cu->is_debug_types);
20175 sig_type = (struct signatured_type *) per_cu;
20176
20177 gdb_assert (per_cu->cu == NULL);
20178
20179 read_signatured_type (sig_type);
20180
20181 gdb_assert (per_cu->cu != NULL);
20182 }
20183
20184 /* die_reader_func for read_signatured_type.
20185 This is identical to load_full_comp_unit_reader,
20186 but is kept separate for now. */
20187
20188 static void
20189 read_signatured_type_reader (const struct die_reader_specs *reader,
20190 const gdb_byte *info_ptr,
20191 struct die_info *comp_unit_die,
20192 int has_children,
20193 void *data)
20194 {
20195 struct dwarf2_cu *cu = reader->cu;
20196
20197 gdb_assert (cu->die_hash == NULL);
20198 cu->die_hash =
20199 htab_create_alloc_ex (cu->header.length / 12,
20200 die_hash,
20201 die_eq,
20202 NULL,
20203 &cu->comp_unit_obstack,
20204 hashtab_obstack_allocate,
20205 dummy_obstack_deallocate);
20206
20207 if (has_children)
20208 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
20209 &info_ptr, comp_unit_die);
20210 cu->dies = comp_unit_die;
20211 /* comp_unit_die is not stored in die_hash, no need. */
20212
20213 /* We try not to read any attributes in this function, because not
20214 all CUs needed for references have been loaded yet, and symbol
20215 table processing isn't initialized. But we have to set the CU language,
20216 or we won't be able to build types correctly.
20217 Similarly, if we do not read the producer, we can not apply
20218 producer-specific interpretation. */
20219 prepare_one_comp_unit (cu, cu->dies, language_minimal);
20220 }
20221
20222 /* Read in a signatured type and build its CU and DIEs.
20223 If the type is a stub for the real type in a DWO file,
20224 read in the real type from the DWO file as well. */
20225
20226 static void
20227 read_signatured_type (struct signatured_type *sig_type)
20228 {
20229 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
20230
20231 gdb_assert (per_cu->is_debug_types);
20232 gdb_assert (per_cu->cu == NULL);
20233
20234 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
20235 read_signatured_type_reader, NULL);
20236 sig_type->per_cu.tu_read = 1;
20237 }
20238
20239 /* Decode simple location descriptions.
20240 Given a pointer to a dwarf block that defines a location, compute
20241 the location and return the value.
20242
20243 NOTE drow/2003-11-18: This function is called in two situations
20244 now: for the address of static or global variables (partial symbols
20245 only) and for offsets into structures which are expected to be
20246 (more or less) constant. The partial symbol case should go away,
20247 and only the constant case should remain. That will let this
20248 function complain more accurately. A few special modes are allowed
20249 without complaint for global variables (for instance, global
20250 register values and thread-local values).
20251
20252 A location description containing no operations indicates that the
20253 object is optimized out. The return value is 0 for that case.
20254 FIXME drow/2003-11-16: No callers check for this case any more; soon all
20255 callers will only want a very basic result and this can become a
20256 complaint.
20257
20258 Note that stack[0] is unused except as a default error return. */
20259
20260 static CORE_ADDR
20261 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
20262 {
20263 struct objfile *objfile = cu->objfile;
20264 size_t i;
20265 size_t size = blk->size;
20266 const gdb_byte *data = blk->data;
20267 CORE_ADDR stack[64];
20268 int stacki;
20269 unsigned int bytes_read, unsnd;
20270 gdb_byte op;
20271
20272 i = 0;
20273 stacki = 0;
20274 stack[stacki] = 0;
20275 stack[++stacki] = 0;
20276
20277 while (i < size)
20278 {
20279 op = data[i++];
20280 switch (op)
20281 {
20282 case DW_OP_lit0:
20283 case DW_OP_lit1:
20284 case DW_OP_lit2:
20285 case DW_OP_lit3:
20286 case DW_OP_lit4:
20287 case DW_OP_lit5:
20288 case DW_OP_lit6:
20289 case DW_OP_lit7:
20290 case DW_OP_lit8:
20291 case DW_OP_lit9:
20292 case DW_OP_lit10:
20293 case DW_OP_lit11:
20294 case DW_OP_lit12:
20295 case DW_OP_lit13:
20296 case DW_OP_lit14:
20297 case DW_OP_lit15:
20298 case DW_OP_lit16:
20299 case DW_OP_lit17:
20300 case DW_OP_lit18:
20301 case DW_OP_lit19:
20302 case DW_OP_lit20:
20303 case DW_OP_lit21:
20304 case DW_OP_lit22:
20305 case DW_OP_lit23:
20306 case DW_OP_lit24:
20307 case DW_OP_lit25:
20308 case DW_OP_lit26:
20309 case DW_OP_lit27:
20310 case DW_OP_lit28:
20311 case DW_OP_lit29:
20312 case DW_OP_lit30:
20313 case DW_OP_lit31:
20314 stack[++stacki] = op - DW_OP_lit0;
20315 break;
20316
20317 case DW_OP_reg0:
20318 case DW_OP_reg1:
20319 case DW_OP_reg2:
20320 case DW_OP_reg3:
20321 case DW_OP_reg4:
20322 case DW_OP_reg5:
20323 case DW_OP_reg6:
20324 case DW_OP_reg7:
20325 case DW_OP_reg8:
20326 case DW_OP_reg9:
20327 case DW_OP_reg10:
20328 case DW_OP_reg11:
20329 case DW_OP_reg12:
20330 case DW_OP_reg13:
20331 case DW_OP_reg14:
20332 case DW_OP_reg15:
20333 case DW_OP_reg16:
20334 case DW_OP_reg17:
20335 case DW_OP_reg18:
20336 case DW_OP_reg19:
20337 case DW_OP_reg20:
20338 case DW_OP_reg21:
20339 case DW_OP_reg22:
20340 case DW_OP_reg23:
20341 case DW_OP_reg24:
20342 case DW_OP_reg25:
20343 case DW_OP_reg26:
20344 case DW_OP_reg27:
20345 case DW_OP_reg28:
20346 case DW_OP_reg29:
20347 case DW_OP_reg30:
20348 case DW_OP_reg31:
20349 stack[++stacki] = op - DW_OP_reg0;
20350 if (i < size)
20351 dwarf2_complex_location_expr_complaint ();
20352 break;
20353
20354 case DW_OP_regx:
20355 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
20356 i += bytes_read;
20357 stack[++stacki] = unsnd;
20358 if (i < size)
20359 dwarf2_complex_location_expr_complaint ();
20360 break;
20361
20362 case DW_OP_addr:
20363 stack[++stacki] = read_address (objfile->obfd, &data[i],
20364 cu, &bytes_read);
20365 i += bytes_read;
20366 break;
20367
20368 case DW_OP_const1u:
20369 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
20370 i += 1;
20371 break;
20372
20373 case DW_OP_const1s:
20374 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
20375 i += 1;
20376 break;
20377
20378 case DW_OP_const2u:
20379 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
20380 i += 2;
20381 break;
20382
20383 case DW_OP_const2s:
20384 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
20385 i += 2;
20386 break;
20387
20388 case DW_OP_const4u:
20389 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
20390 i += 4;
20391 break;
20392
20393 case DW_OP_const4s:
20394 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
20395 i += 4;
20396 break;
20397
20398 case DW_OP_const8u:
20399 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
20400 i += 8;
20401 break;
20402
20403 case DW_OP_constu:
20404 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
20405 &bytes_read);
20406 i += bytes_read;
20407 break;
20408
20409 case DW_OP_consts:
20410 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
20411 i += bytes_read;
20412 break;
20413
20414 case DW_OP_dup:
20415 stack[stacki + 1] = stack[stacki];
20416 stacki++;
20417 break;
20418
20419 case DW_OP_plus:
20420 stack[stacki - 1] += stack[stacki];
20421 stacki--;
20422 break;
20423
20424 case DW_OP_plus_uconst:
20425 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
20426 &bytes_read);
20427 i += bytes_read;
20428 break;
20429
20430 case DW_OP_minus:
20431 stack[stacki - 1] -= stack[stacki];
20432 stacki--;
20433 break;
20434
20435 case DW_OP_deref:
20436 /* If we're not the last op, then we definitely can't encode
20437 this using GDB's address_class enum. This is valid for partial
20438 global symbols, although the variable's address will be bogus
20439 in the psymtab. */
20440 if (i < size)
20441 dwarf2_complex_location_expr_complaint ();
20442 break;
20443
20444 case DW_OP_GNU_push_tls_address:
20445 /* The top of the stack has the offset from the beginning
20446 of the thread control block at which the variable is located. */
20447 /* Nothing should follow this operator, so the top of stack would
20448 be returned. */
20449 /* This is valid for partial global symbols, but the variable's
20450 address will be bogus in the psymtab. Make it always at least
20451 non-zero to not look as a variable garbage collected by linker
20452 which have DW_OP_addr 0. */
20453 if (i < size)
20454 dwarf2_complex_location_expr_complaint ();
20455 stack[stacki]++;
20456 break;
20457
20458 case DW_OP_GNU_uninit:
20459 break;
20460
20461 case DW_OP_GNU_addr_index:
20462 case DW_OP_GNU_const_index:
20463 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
20464 &bytes_read);
20465 i += bytes_read;
20466 break;
20467
20468 default:
20469 {
20470 const char *name = get_DW_OP_name (op);
20471
20472 if (name)
20473 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
20474 name);
20475 else
20476 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
20477 op);
20478 }
20479
20480 return (stack[stacki]);
20481 }
20482
20483 /* Enforce maximum stack depth of SIZE-1 to avoid writing
20484 outside of the allocated space. Also enforce minimum>0. */
20485 if (stacki >= ARRAY_SIZE (stack) - 1)
20486 {
20487 complaint (&symfile_complaints,
20488 _("location description stack overflow"));
20489 return 0;
20490 }
20491
20492 if (stacki <= 0)
20493 {
20494 complaint (&symfile_complaints,
20495 _("location description stack underflow"));
20496 return 0;
20497 }
20498 }
20499 return (stack[stacki]);
20500 }
20501
20502 /* memory allocation interface */
20503
20504 static struct dwarf_block *
20505 dwarf_alloc_block (struct dwarf2_cu *cu)
20506 {
20507 struct dwarf_block *blk;
20508
20509 blk = (struct dwarf_block *)
20510 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
20511 return (blk);
20512 }
20513
20514 static struct die_info *
20515 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
20516 {
20517 struct die_info *die;
20518 size_t size = sizeof (struct die_info);
20519
20520 if (num_attrs > 1)
20521 size += (num_attrs - 1) * sizeof (struct attribute);
20522
20523 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
20524 memset (die, 0, sizeof (struct die_info));
20525 return (die);
20526 }
20527
20528 \f
20529 /* Macro support. */
20530
20531 /* Return file name relative to the compilation directory of file number I in
20532 *LH's file name table. The result is allocated using xmalloc; the caller is
20533 responsible for freeing it. */
20534
20535 static char *
20536 file_file_name (int file, struct line_header *lh)
20537 {
20538 /* Is the file number a valid index into the line header's file name
20539 table? Remember that file numbers start with one, not zero. */
20540 if (1 <= file && file <= lh->num_file_names)
20541 {
20542 struct file_entry *fe = &lh->file_names[file - 1];
20543
20544 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0)
20545 return xstrdup (fe->name);
20546 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
20547 fe->name, NULL);
20548 }
20549 else
20550 {
20551 /* The compiler produced a bogus file number. We can at least
20552 record the macro definitions made in the file, even if we
20553 won't be able to find the file by name. */
20554 char fake_name[80];
20555
20556 xsnprintf (fake_name, sizeof (fake_name),
20557 "<bad macro file number %d>", file);
20558
20559 complaint (&symfile_complaints,
20560 _("bad file number in macro information (%d)"),
20561 file);
20562
20563 return xstrdup (fake_name);
20564 }
20565 }
20566
20567 /* Return the full name of file number I in *LH's file name table.
20568 Use COMP_DIR as the name of the current directory of the
20569 compilation. The result is allocated using xmalloc; the caller is
20570 responsible for freeing it. */
20571 static char *
20572 file_full_name (int file, struct line_header *lh, const char *comp_dir)
20573 {
20574 /* Is the file number a valid index into the line header's file name
20575 table? Remember that file numbers start with one, not zero. */
20576 if (1 <= file && file <= lh->num_file_names)
20577 {
20578 char *relative = file_file_name (file, lh);
20579
20580 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
20581 return relative;
20582 return reconcat (relative, comp_dir, SLASH_STRING, relative, NULL);
20583 }
20584 else
20585 return file_file_name (file, lh);
20586 }
20587
20588
20589 static struct macro_source_file *
20590 macro_start_file (int file, int line,
20591 struct macro_source_file *current_file,
20592 struct line_header *lh)
20593 {
20594 /* File name relative to the compilation directory of this source file. */
20595 char *file_name = file_file_name (file, lh);
20596
20597 if (! current_file)
20598 {
20599 /* Note: We don't create a macro table for this compilation unit
20600 at all until we actually get a filename. */
20601 struct macro_table *macro_table = get_macro_table ();
20602
20603 /* If we have no current file, then this must be the start_file
20604 directive for the compilation unit's main source file. */
20605 current_file = macro_set_main (macro_table, file_name);
20606 macro_define_special (macro_table);
20607 }
20608 else
20609 current_file = macro_include (current_file, line, file_name);
20610
20611 xfree (file_name);
20612
20613 return current_file;
20614 }
20615
20616
20617 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
20618 followed by a null byte. */
20619 static char *
20620 copy_string (const char *buf, int len)
20621 {
20622 char *s = xmalloc (len + 1);
20623
20624 memcpy (s, buf, len);
20625 s[len] = '\0';
20626 return s;
20627 }
20628
20629
20630 static const char *
20631 consume_improper_spaces (const char *p, const char *body)
20632 {
20633 if (*p == ' ')
20634 {
20635 complaint (&symfile_complaints,
20636 _("macro definition contains spaces "
20637 "in formal argument list:\n`%s'"),
20638 body);
20639
20640 while (*p == ' ')
20641 p++;
20642 }
20643
20644 return p;
20645 }
20646
20647
20648 static void
20649 parse_macro_definition (struct macro_source_file *file, int line,
20650 const char *body)
20651 {
20652 const char *p;
20653
20654 /* The body string takes one of two forms. For object-like macro
20655 definitions, it should be:
20656
20657 <macro name> " " <definition>
20658
20659 For function-like macro definitions, it should be:
20660
20661 <macro name> "() " <definition>
20662 or
20663 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
20664
20665 Spaces may appear only where explicitly indicated, and in the
20666 <definition>.
20667
20668 The Dwarf 2 spec says that an object-like macro's name is always
20669 followed by a space, but versions of GCC around March 2002 omit
20670 the space when the macro's definition is the empty string.
20671
20672 The Dwarf 2 spec says that there should be no spaces between the
20673 formal arguments in a function-like macro's formal argument list,
20674 but versions of GCC around March 2002 include spaces after the
20675 commas. */
20676
20677
20678 /* Find the extent of the macro name. The macro name is terminated
20679 by either a space or null character (for an object-like macro) or
20680 an opening paren (for a function-like macro). */
20681 for (p = body; *p; p++)
20682 if (*p == ' ' || *p == '(')
20683 break;
20684
20685 if (*p == ' ' || *p == '\0')
20686 {
20687 /* It's an object-like macro. */
20688 int name_len = p - body;
20689 char *name = copy_string (body, name_len);
20690 const char *replacement;
20691
20692 if (*p == ' ')
20693 replacement = body + name_len + 1;
20694 else
20695 {
20696 dwarf2_macro_malformed_definition_complaint (body);
20697 replacement = body + name_len;
20698 }
20699
20700 macro_define_object (file, line, name, replacement);
20701
20702 xfree (name);
20703 }
20704 else if (*p == '(')
20705 {
20706 /* It's a function-like macro. */
20707 char *name = copy_string (body, p - body);
20708 int argc = 0;
20709 int argv_size = 1;
20710 char **argv = xmalloc (argv_size * sizeof (*argv));
20711
20712 p++;
20713
20714 p = consume_improper_spaces (p, body);
20715
20716 /* Parse the formal argument list. */
20717 while (*p && *p != ')')
20718 {
20719 /* Find the extent of the current argument name. */
20720 const char *arg_start = p;
20721
20722 while (*p && *p != ',' && *p != ')' && *p != ' ')
20723 p++;
20724
20725 if (! *p || p == arg_start)
20726 dwarf2_macro_malformed_definition_complaint (body);
20727 else
20728 {
20729 /* Make sure argv has room for the new argument. */
20730 if (argc >= argv_size)
20731 {
20732 argv_size *= 2;
20733 argv = xrealloc (argv, argv_size * sizeof (*argv));
20734 }
20735
20736 argv[argc++] = copy_string (arg_start, p - arg_start);
20737 }
20738
20739 p = consume_improper_spaces (p, body);
20740
20741 /* Consume the comma, if present. */
20742 if (*p == ',')
20743 {
20744 p++;
20745
20746 p = consume_improper_spaces (p, body);
20747 }
20748 }
20749
20750 if (*p == ')')
20751 {
20752 p++;
20753
20754 if (*p == ' ')
20755 /* Perfectly formed definition, no complaints. */
20756 macro_define_function (file, line, name,
20757 argc, (const char **) argv,
20758 p + 1);
20759 else if (*p == '\0')
20760 {
20761 /* Complain, but do define it. */
20762 dwarf2_macro_malformed_definition_complaint (body);
20763 macro_define_function (file, line, name,
20764 argc, (const char **) argv,
20765 p);
20766 }
20767 else
20768 /* Just complain. */
20769 dwarf2_macro_malformed_definition_complaint (body);
20770 }
20771 else
20772 /* Just complain. */
20773 dwarf2_macro_malformed_definition_complaint (body);
20774
20775 xfree (name);
20776 {
20777 int i;
20778
20779 for (i = 0; i < argc; i++)
20780 xfree (argv[i]);
20781 }
20782 xfree (argv);
20783 }
20784 else
20785 dwarf2_macro_malformed_definition_complaint (body);
20786 }
20787
20788 /* Skip some bytes from BYTES according to the form given in FORM.
20789 Returns the new pointer. */
20790
20791 static const gdb_byte *
20792 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
20793 enum dwarf_form form,
20794 unsigned int offset_size,
20795 struct dwarf2_section_info *section)
20796 {
20797 unsigned int bytes_read;
20798
20799 switch (form)
20800 {
20801 case DW_FORM_data1:
20802 case DW_FORM_flag:
20803 ++bytes;
20804 break;
20805
20806 case DW_FORM_data2:
20807 bytes += 2;
20808 break;
20809
20810 case DW_FORM_data4:
20811 bytes += 4;
20812 break;
20813
20814 case DW_FORM_data8:
20815 bytes += 8;
20816 break;
20817
20818 case DW_FORM_string:
20819 read_direct_string (abfd, bytes, &bytes_read);
20820 bytes += bytes_read;
20821 break;
20822
20823 case DW_FORM_sec_offset:
20824 case DW_FORM_strp:
20825 case DW_FORM_GNU_strp_alt:
20826 bytes += offset_size;
20827 break;
20828
20829 case DW_FORM_block:
20830 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
20831 bytes += bytes_read;
20832 break;
20833
20834 case DW_FORM_block1:
20835 bytes += 1 + read_1_byte (abfd, bytes);
20836 break;
20837 case DW_FORM_block2:
20838 bytes += 2 + read_2_bytes (abfd, bytes);
20839 break;
20840 case DW_FORM_block4:
20841 bytes += 4 + read_4_bytes (abfd, bytes);
20842 break;
20843
20844 case DW_FORM_sdata:
20845 case DW_FORM_udata:
20846 case DW_FORM_GNU_addr_index:
20847 case DW_FORM_GNU_str_index:
20848 bytes = gdb_skip_leb128 (bytes, buffer_end);
20849 if (bytes == NULL)
20850 {
20851 dwarf2_section_buffer_overflow_complaint (section);
20852 return NULL;
20853 }
20854 break;
20855
20856 default:
20857 {
20858 complain:
20859 complaint (&symfile_complaints,
20860 _("invalid form 0x%x in `%s'"),
20861 form, get_section_name (section));
20862 return NULL;
20863 }
20864 }
20865
20866 return bytes;
20867 }
20868
20869 /* A helper for dwarf_decode_macros that handles skipping an unknown
20870 opcode. Returns an updated pointer to the macro data buffer; or,
20871 on error, issues a complaint and returns NULL. */
20872
20873 static const gdb_byte *
20874 skip_unknown_opcode (unsigned int opcode,
20875 const gdb_byte **opcode_definitions,
20876 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
20877 bfd *abfd,
20878 unsigned int offset_size,
20879 struct dwarf2_section_info *section)
20880 {
20881 unsigned int bytes_read, i;
20882 unsigned long arg;
20883 const gdb_byte *defn;
20884
20885 if (opcode_definitions[opcode] == NULL)
20886 {
20887 complaint (&symfile_complaints,
20888 _("unrecognized DW_MACFINO opcode 0x%x"),
20889 opcode);
20890 return NULL;
20891 }
20892
20893 defn = opcode_definitions[opcode];
20894 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
20895 defn += bytes_read;
20896
20897 for (i = 0; i < arg; ++i)
20898 {
20899 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end, defn[i], offset_size,
20900 section);
20901 if (mac_ptr == NULL)
20902 {
20903 /* skip_form_bytes already issued the complaint. */
20904 return NULL;
20905 }
20906 }
20907
20908 return mac_ptr;
20909 }
20910
20911 /* A helper function which parses the header of a macro section.
20912 If the macro section is the extended (for now called "GNU") type,
20913 then this updates *OFFSET_SIZE. Returns a pointer to just after
20914 the header, or issues a complaint and returns NULL on error. */
20915
20916 static const gdb_byte *
20917 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
20918 bfd *abfd,
20919 const gdb_byte *mac_ptr,
20920 unsigned int *offset_size,
20921 int section_is_gnu)
20922 {
20923 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
20924
20925 if (section_is_gnu)
20926 {
20927 unsigned int version, flags;
20928
20929 version = read_2_bytes (abfd, mac_ptr);
20930 if (version != 4)
20931 {
20932 complaint (&symfile_complaints,
20933 _("unrecognized version `%d' in .debug_macro section"),
20934 version);
20935 return NULL;
20936 }
20937 mac_ptr += 2;
20938
20939 flags = read_1_byte (abfd, mac_ptr);
20940 ++mac_ptr;
20941 *offset_size = (flags & 1) ? 8 : 4;
20942
20943 if ((flags & 2) != 0)
20944 /* We don't need the line table offset. */
20945 mac_ptr += *offset_size;
20946
20947 /* Vendor opcode descriptions. */
20948 if ((flags & 4) != 0)
20949 {
20950 unsigned int i, count;
20951
20952 count = read_1_byte (abfd, mac_ptr);
20953 ++mac_ptr;
20954 for (i = 0; i < count; ++i)
20955 {
20956 unsigned int opcode, bytes_read;
20957 unsigned long arg;
20958
20959 opcode = read_1_byte (abfd, mac_ptr);
20960 ++mac_ptr;
20961 opcode_definitions[opcode] = mac_ptr;
20962 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20963 mac_ptr += bytes_read;
20964 mac_ptr += arg;
20965 }
20966 }
20967 }
20968
20969 return mac_ptr;
20970 }
20971
20972 /* A helper for dwarf_decode_macros that handles the GNU extensions,
20973 including DW_MACRO_GNU_transparent_include. */
20974
20975 static void
20976 dwarf_decode_macro_bytes (bfd *abfd,
20977 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
20978 struct macro_source_file *current_file,
20979 struct line_header *lh,
20980 struct dwarf2_section_info *section,
20981 int section_is_gnu, int section_is_dwz,
20982 unsigned int offset_size,
20983 htab_t include_hash)
20984 {
20985 struct objfile *objfile = dwarf2_per_objfile->objfile;
20986 enum dwarf_macro_record_type macinfo_type;
20987 int at_commandline;
20988 const gdb_byte *opcode_definitions[256];
20989
20990 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
20991 &offset_size, section_is_gnu);
20992 if (mac_ptr == NULL)
20993 {
20994 /* We already issued a complaint. */
20995 return;
20996 }
20997
20998 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
20999 GDB is still reading the definitions from command line. First
21000 DW_MACINFO_start_file will need to be ignored as it was already executed
21001 to create CURRENT_FILE for the main source holding also the command line
21002 definitions. On first met DW_MACINFO_start_file this flag is reset to
21003 normally execute all the remaining DW_MACINFO_start_file macinfos. */
21004
21005 at_commandline = 1;
21006
21007 do
21008 {
21009 /* Do we at least have room for a macinfo type byte? */
21010 if (mac_ptr >= mac_end)
21011 {
21012 dwarf2_section_buffer_overflow_complaint (section);
21013 break;
21014 }
21015
21016 macinfo_type = read_1_byte (abfd, mac_ptr);
21017 mac_ptr++;
21018
21019 /* Note that we rely on the fact that the corresponding GNU and
21020 DWARF constants are the same. */
21021 switch (macinfo_type)
21022 {
21023 /* A zero macinfo type indicates the end of the macro
21024 information. */
21025 case 0:
21026 break;
21027
21028 case DW_MACRO_GNU_define:
21029 case DW_MACRO_GNU_undef:
21030 case DW_MACRO_GNU_define_indirect:
21031 case DW_MACRO_GNU_undef_indirect:
21032 case DW_MACRO_GNU_define_indirect_alt:
21033 case DW_MACRO_GNU_undef_indirect_alt:
21034 {
21035 unsigned int bytes_read;
21036 int line;
21037 const char *body;
21038 int is_define;
21039
21040 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21041 mac_ptr += bytes_read;
21042
21043 if (macinfo_type == DW_MACRO_GNU_define
21044 || macinfo_type == DW_MACRO_GNU_undef)
21045 {
21046 body = read_direct_string (abfd, mac_ptr, &bytes_read);
21047 mac_ptr += bytes_read;
21048 }
21049 else
21050 {
21051 LONGEST str_offset;
21052
21053 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
21054 mac_ptr += offset_size;
21055
21056 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
21057 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
21058 || section_is_dwz)
21059 {
21060 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21061
21062 body = read_indirect_string_from_dwz (dwz, str_offset);
21063 }
21064 else
21065 body = read_indirect_string_at_offset (abfd, str_offset);
21066 }
21067
21068 is_define = (macinfo_type == DW_MACRO_GNU_define
21069 || macinfo_type == DW_MACRO_GNU_define_indirect
21070 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
21071 if (! current_file)
21072 {
21073 /* DWARF violation as no main source is present. */
21074 complaint (&symfile_complaints,
21075 _("debug info with no main source gives macro %s "
21076 "on line %d: %s"),
21077 is_define ? _("definition") : _("undefinition"),
21078 line, body);
21079 break;
21080 }
21081 if ((line == 0 && !at_commandline)
21082 || (line != 0 && at_commandline))
21083 complaint (&symfile_complaints,
21084 _("debug info gives %s macro %s with %s line %d: %s"),
21085 at_commandline ? _("command-line") : _("in-file"),
21086 is_define ? _("definition") : _("undefinition"),
21087 line == 0 ? _("zero") : _("non-zero"), line, body);
21088
21089 if (is_define)
21090 parse_macro_definition (current_file, line, body);
21091 else
21092 {
21093 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
21094 || macinfo_type == DW_MACRO_GNU_undef_indirect
21095 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
21096 macro_undef (current_file, line, body);
21097 }
21098 }
21099 break;
21100
21101 case DW_MACRO_GNU_start_file:
21102 {
21103 unsigned int bytes_read;
21104 int line, file;
21105
21106 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21107 mac_ptr += bytes_read;
21108 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21109 mac_ptr += bytes_read;
21110
21111 if ((line == 0 && !at_commandline)
21112 || (line != 0 && at_commandline))
21113 complaint (&symfile_complaints,
21114 _("debug info gives source %d included "
21115 "from %s at %s line %d"),
21116 file, at_commandline ? _("command-line") : _("file"),
21117 line == 0 ? _("zero") : _("non-zero"), line);
21118
21119 if (at_commandline)
21120 {
21121 /* This DW_MACRO_GNU_start_file was executed in the
21122 pass one. */
21123 at_commandline = 0;
21124 }
21125 else
21126 current_file = macro_start_file (file, line, current_file, lh);
21127 }
21128 break;
21129
21130 case DW_MACRO_GNU_end_file:
21131 if (! current_file)
21132 complaint (&symfile_complaints,
21133 _("macro debug info has an unmatched "
21134 "`close_file' directive"));
21135 else
21136 {
21137 current_file = current_file->included_by;
21138 if (! current_file)
21139 {
21140 enum dwarf_macro_record_type next_type;
21141
21142 /* GCC circa March 2002 doesn't produce the zero
21143 type byte marking the end of the compilation
21144 unit. Complain if it's not there, but exit no
21145 matter what. */
21146
21147 /* Do we at least have room for a macinfo type byte? */
21148 if (mac_ptr >= mac_end)
21149 {
21150 dwarf2_section_buffer_overflow_complaint (section);
21151 return;
21152 }
21153
21154 /* We don't increment mac_ptr here, so this is just
21155 a look-ahead. */
21156 next_type = read_1_byte (abfd, mac_ptr);
21157 if (next_type != 0)
21158 complaint (&symfile_complaints,
21159 _("no terminating 0-type entry for "
21160 "macros in `.debug_macinfo' section"));
21161
21162 return;
21163 }
21164 }
21165 break;
21166
21167 case DW_MACRO_GNU_transparent_include:
21168 case DW_MACRO_GNU_transparent_include_alt:
21169 {
21170 LONGEST offset;
21171 void **slot;
21172 bfd *include_bfd = abfd;
21173 struct dwarf2_section_info *include_section = section;
21174 struct dwarf2_section_info alt_section;
21175 const gdb_byte *include_mac_end = mac_end;
21176 int is_dwz = section_is_dwz;
21177 const gdb_byte *new_mac_ptr;
21178
21179 offset = read_offset_1 (abfd, mac_ptr, offset_size);
21180 mac_ptr += offset_size;
21181
21182 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
21183 {
21184 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21185
21186 dwarf2_read_section (objfile, &dwz->macro);
21187
21188 include_section = &dwz->macro;
21189 include_bfd = get_section_bfd_owner (include_section);
21190 include_mac_end = dwz->macro.buffer + dwz->macro.size;
21191 is_dwz = 1;
21192 }
21193
21194 new_mac_ptr = include_section->buffer + offset;
21195 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
21196
21197 if (*slot != NULL)
21198 {
21199 /* This has actually happened; see
21200 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
21201 complaint (&symfile_complaints,
21202 _("recursive DW_MACRO_GNU_transparent_include in "
21203 ".debug_macro section"));
21204 }
21205 else
21206 {
21207 *slot = (void *) new_mac_ptr;
21208
21209 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
21210 include_mac_end, current_file, lh,
21211 section, section_is_gnu, is_dwz,
21212 offset_size, include_hash);
21213
21214 htab_remove_elt (include_hash, (void *) new_mac_ptr);
21215 }
21216 }
21217 break;
21218
21219 case DW_MACINFO_vendor_ext:
21220 if (!section_is_gnu)
21221 {
21222 unsigned int bytes_read;
21223 int constant;
21224
21225 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21226 mac_ptr += bytes_read;
21227 read_direct_string (abfd, mac_ptr, &bytes_read);
21228 mac_ptr += bytes_read;
21229
21230 /* We don't recognize any vendor extensions. */
21231 break;
21232 }
21233 /* FALLTHROUGH */
21234
21235 default:
21236 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
21237 mac_ptr, mac_end, abfd, offset_size,
21238 section);
21239 if (mac_ptr == NULL)
21240 return;
21241 break;
21242 }
21243 } while (macinfo_type != 0);
21244 }
21245
21246 static void
21247 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
21248 int section_is_gnu)
21249 {
21250 struct objfile *objfile = dwarf2_per_objfile->objfile;
21251 struct line_header *lh = cu->line_header;
21252 bfd *abfd;
21253 const gdb_byte *mac_ptr, *mac_end;
21254 struct macro_source_file *current_file = 0;
21255 enum dwarf_macro_record_type macinfo_type;
21256 unsigned int offset_size = cu->header.offset_size;
21257 const gdb_byte *opcode_definitions[256];
21258 struct cleanup *cleanup;
21259 htab_t include_hash;
21260 void **slot;
21261 struct dwarf2_section_info *section;
21262 const char *section_name;
21263
21264 if (cu->dwo_unit != NULL)
21265 {
21266 if (section_is_gnu)
21267 {
21268 section = &cu->dwo_unit->dwo_file->sections.macro;
21269 section_name = ".debug_macro.dwo";
21270 }
21271 else
21272 {
21273 section = &cu->dwo_unit->dwo_file->sections.macinfo;
21274 section_name = ".debug_macinfo.dwo";
21275 }
21276 }
21277 else
21278 {
21279 if (section_is_gnu)
21280 {
21281 section = &dwarf2_per_objfile->macro;
21282 section_name = ".debug_macro";
21283 }
21284 else
21285 {
21286 section = &dwarf2_per_objfile->macinfo;
21287 section_name = ".debug_macinfo";
21288 }
21289 }
21290
21291 dwarf2_read_section (objfile, section);
21292 if (section->buffer == NULL)
21293 {
21294 complaint (&symfile_complaints, _("missing %s section"), section_name);
21295 return;
21296 }
21297 abfd = get_section_bfd_owner (section);
21298
21299 /* First pass: Find the name of the base filename.
21300 This filename is needed in order to process all macros whose definition
21301 (or undefinition) comes from the command line. These macros are defined
21302 before the first DW_MACINFO_start_file entry, and yet still need to be
21303 associated to the base file.
21304
21305 To determine the base file name, we scan the macro definitions until we
21306 reach the first DW_MACINFO_start_file entry. We then initialize
21307 CURRENT_FILE accordingly so that any macro definition found before the
21308 first DW_MACINFO_start_file can still be associated to the base file. */
21309
21310 mac_ptr = section->buffer + offset;
21311 mac_end = section->buffer + section->size;
21312
21313 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21314 &offset_size, section_is_gnu);
21315 if (mac_ptr == NULL)
21316 {
21317 /* We already issued a complaint. */
21318 return;
21319 }
21320
21321 do
21322 {
21323 /* Do we at least have room for a macinfo type byte? */
21324 if (mac_ptr >= mac_end)
21325 {
21326 /* Complaint is printed during the second pass as GDB will probably
21327 stop the first pass earlier upon finding
21328 DW_MACINFO_start_file. */
21329 break;
21330 }
21331
21332 macinfo_type = read_1_byte (abfd, mac_ptr);
21333 mac_ptr++;
21334
21335 /* Note that we rely on the fact that the corresponding GNU and
21336 DWARF constants are the same. */
21337 switch (macinfo_type)
21338 {
21339 /* A zero macinfo type indicates the end of the macro
21340 information. */
21341 case 0:
21342 break;
21343
21344 case DW_MACRO_GNU_define:
21345 case DW_MACRO_GNU_undef:
21346 /* Only skip the data by MAC_PTR. */
21347 {
21348 unsigned int bytes_read;
21349
21350 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21351 mac_ptr += bytes_read;
21352 read_direct_string (abfd, mac_ptr, &bytes_read);
21353 mac_ptr += bytes_read;
21354 }
21355 break;
21356
21357 case DW_MACRO_GNU_start_file:
21358 {
21359 unsigned int bytes_read;
21360 int line, file;
21361
21362 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21363 mac_ptr += bytes_read;
21364 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21365 mac_ptr += bytes_read;
21366
21367 current_file = macro_start_file (file, line, current_file, lh);
21368 }
21369 break;
21370
21371 case DW_MACRO_GNU_end_file:
21372 /* No data to skip by MAC_PTR. */
21373 break;
21374
21375 case DW_MACRO_GNU_define_indirect:
21376 case DW_MACRO_GNU_undef_indirect:
21377 case DW_MACRO_GNU_define_indirect_alt:
21378 case DW_MACRO_GNU_undef_indirect_alt:
21379 {
21380 unsigned int bytes_read;
21381
21382 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21383 mac_ptr += bytes_read;
21384 mac_ptr += offset_size;
21385 }
21386 break;
21387
21388 case DW_MACRO_GNU_transparent_include:
21389 case DW_MACRO_GNU_transparent_include_alt:
21390 /* Note that, according to the spec, a transparent include
21391 chain cannot call DW_MACRO_GNU_start_file. So, we can just
21392 skip this opcode. */
21393 mac_ptr += offset_size;
21394 break;
21395
21396 case DW_MACINFO_vendor_ext:
21397 /* Only skip the data by MAC_PTR. */
21398 if (!section_is_gnu)
21399 {
21400 unsigned int bytes_read;
21401
21402 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21403 mac_ptr += bytes_read;
21404 read_direct_string (abfd, mac_ptr, &bytes_read);
21405 mac_ptr += bytes_read;
21406 }
21407 /* FALLTHROUGH */
21408
21409 default:
21410 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
21411 mac_ptr, mac_end, abfd, offset_size,
21412 section);
21413 if (mac_ptr == NULL)
21414 return;
21415 break;
21416 }
21417 } while (macinfo_type != 0 && current_file == NULL);
21418
21419 /* Second pass: Process all entries.
21420
21421 Use the AT_COMMAND_LINE flag to determine whether we are still processing
21422 command-line macro definitions/undefinitions. This flag is unset when we
21423 reach the first DW_MACINFO_start_file entry. */
21424
21425 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
21426 NULL, xcalloc, xfree);
21427 cleanup = make_cleanup_htab_delete (include_hash);
21428 mac_ptr = section->buffer + offset;
21429 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
21430 *slot = (void *) mac_ptr;
21431 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
21432 current_file, lh, section,
21433 section_is_gnu, 0, offset_size, include_hash);
21434 do_cleanups (cleanup);
21435 }
21436
21437 /* Check if the attribute's form is a DW_FORM_block*
21438 if so return true else false. */
21439
21440 static int
21441 attr_form_is_block (const struct attribute *attr)
21442 {
21443 return (attr == NULL ? 0 :
21444 attr->form == DW_FORM_block1
21445 || attr->form == DW_FORM_block2
21446 || attr->form == DW_FORM_block4
21447 || attr->form == DW_FORM_block
21448 || attr->form == DW_FORM_exprloc);
21449 }
21450
21451 /* Return non-zero if ATTR's value is a section offset --- classes
21452 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
21453 You may use DW_UNSND (attr) to retrieve such offsets.
21454
21455 Section 7.5.4, "Attribute Encodings", explains that no attribute
21456 may have a value that belongs to more than one of these classes; it
21457 would be ambiguous if we did, because we use the same forms for all
21458 of them. */
21459
21460 static int
21461 attr_form_is_section_offset (const struct attribute *attr)
21462 {
21463 return (attr->form == DW_FORM_data4
21464 || attr->form == DW_FORM_data8
21465 || attr->form == DW_FORM_sec_offset);
21466 }
21467
21468 /* Return non-zero if ATTR's value falls in the 'constant' class, or
21469 zero otherwise. When this function returns true, you can apply
21470 dwarf2_get_attr_constant_value to it.
21471
21472 However, note that for some attributes you must check
21473 attr_form_is_section_offset before using this test. DW_FORM_data4
21474 and DW_FORM_data8 are members of both the constant class, and of
21475 the classes that contain offsets into other debug sections
21476 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
21477 that, if an attribute's can be either a constant or one of the
21478 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
21479 taken as section offsets, not constants. */
21480
21481 static int
21482 attr_form_is_constant (const struct attribute *attr)
21483 {
21484 switch (attr->form)
21485 {
21486 case DW_FORM_sdata:
21487 case DW_FORM_udata:
21488 case DW_FORM_data1:
21489 case DW_FORM_data2:
21490 case DW_FORM_data4:
21491 case DW_FORM_data8:
21492 return 1;
21493 default:
21494 return 0;
21495 }
21496 }
21497
21498
21499 /* DW_ADDR is always stored already as sect_offset; despite for the forms
21500 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
21501
21502 static int
21503 attr_form_is_ref (const struct attribute *attr)
21504 {
21505 switch (attr->form)
21506 {
21507 case DW_FORM_ref_addr:
21508 case DW_FORM_ref1:
21509 case DW_FORM_ref2:
21510 case DW_FORM_ref4:
21511 case DW_FORM_ref8:
21512 case DW_FORM_ref_udata:
21513 case DW_FORM_GNU_ref_alt:
21514 return 1;
21515 default:
21516 return 0;
21517 }
21518 }
21519
21520 /* Return the .debug_loc section to use for CU.
21521 For DWO files use .debug_loc.dwo. */
21522
21523 static struct dwarf2_section_info *
21524 cu_debug_loc_section (struct dwarf2_cu *cu)
21525 {
21526 if (cu->dwo_unit)
21527 return &cu->dwo_unit->dwo_file->sections.loc;
21528 return &dwarf2_per_objfile->loc;
21529 }
21530
21531 /* A helper function that fills in a dwarf2_loclist_baton. */
21532
21533 static void
21534 fill_in_loclist_baton (struct dwarf2_cu *cu,
21535 struct dwarf2_loclist_baton *baton,
21536 const struct attribute *attr)
21537 {
21538 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21539
21540 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
21541
21542 baton->per_cu = cu->per_cu;
21543 gdb_assert (baton->per_cu);
21544 /* We don't know how long the location list is, but make sure we
21545 don't run off the edge of the section. */
21546 baton->size = section->size - DW_UNSND (attr);
21547 baton->data = section->buffer + DW_UNSND (attr);
21548 baton->base_address = cu->base_address;
21549 baton->from_dwo = cu->dwo_unit != NULL;
21550 }
21551
21552 static void
21553 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
21554 struct dwarf2_cu *cu, int is_block)
21555 {
21556 struct objfile *objfile = dwarf2_per_objfile->objfile;
21557 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21558
21559 if (attr_form_is_section_offset (attr)
21560 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
21561 the section. If so, fall through to the complaint in the
21562 other branch. */
21563 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
21564 {
21565 struct dwarf2_loclist_baton *baton;
21566
21567 baton = obstack_alloc (&objfile->objfile_obstack,
21568 sizeof (struct dwarf2_loclist_baton));
21569
21570 fill_in_loclist_baton (cu, baton, attr);
21571
21572 if (cu->base_known == 0)
21573 complaint (&symfile_complaints,
21574 _("Location list used without "
21575 "specifying the CU base address."));
21576
21577 SYMBOL_ACLASS_INDEX (sym) = (is_block
21578 ? dwarf2_loclist_block_index
21579 : dwarf2_loclist_index);
21580 SYMBOL_LOCATION_BATON (sym) = baton;
21581 }
21582 else
21583 {
21584 struct dwarf2_locexpr_baton *baton;
21585
21586 baton = obstack_alloc (&objfile->objfile_obstack,
21587 sizeof (struct dwarf2_locexpr_baton));
21588 baton->per_cu = cu->per_cu;
21589 gdb_assert (baton->per_cu);
21590
21591 if (attr_form_is_block (attr))
21592 {
21593 /* Note that we're just copying the block's data pointer
21594 here, not the actual data. We're still pointing into the
21595 info_buffer for SYM's objfile; right now we never release
21596 that buffer, but when we do clean up properly this may
21597 need to change. */
21598 baton->size = DW_BLOCK (attr)->size;
21599 baton->data = DW_BLOCK (attr)->data;
21600 }
21601 else
21602 {
21603 dwarf2_invalid_attrib_class_complaint ("location description",
21604 SYMBOL_NATURAL_NAME (sym));
21605 baton->size = 0;
21606 }
21607
21608 SYMBOL_ACLASS_INDEX (sym) = (is_block
21609 ? dwarf2_locexpr_block_index
21610 : dwarf2_locexpr_index);
21611 SYMBOL_LOCATION_BATON (sym) = baton;
21612 }
21613 }
21614
21615 /* Return the OBJFILE associated with the compilation unit CU. If CU
21616 came from a separate debuginfo file, then the master objfile is
21617 returned. */
21618
21619 struct objfile *
21620 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
21621 {
21622 struct objfile *objfile = per_cu->objfile;
21623
21624 /* Return the master objfile, so that we can report and look up the
21625 correct file containing this variable. */
21626 if (objfile->separate_debug_objfile_backlink)
21627 objfile = objfile->separate_debug_objfile_backlink;
21628
21629 return objfile;
21630 }
21631
21632 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
21633 (CU_HEADERP is unused in such case) or prepare a temporary copy at
21634 CU_HEADERP first. */
21635
21636 static const struct comp_unit_head *
21637 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
21638 struct dwarf2_per_cu_data *per_cu)
21639 {
21640 const gdb_byte *info_ptr;
21641
21642 if (per_cu->cu)
21643 return &per_cu->cu->header;
21644
21645 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
21646
21647 memset (cu_headerp, 0, sizeof (*cu_headerp));
21648 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
21649
21650 return cu_headerp;
21651 }
21652
21653 /* Return the address size given in the compilation unit header for CU. */
21654
21655 int
21656 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
21657 {
21658 struct comp_unit_head cu_header_local;
21659 const struct comp_unit_head *cu_headerp;
21660
21661 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21662
21663 return cu_headerp->addr_size;
21664 }
21665
21666 /* Return the offset size given in the compilation unit header for CU. */
21667
21668 int
21669 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
21670 {
21671 struct comp_unit_head cu_header_local;
21672 const struct comp_unit_head *cu_headerp;
21673
21674 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21675
21676 return cu_headerp->offset_size;
21677 }
21678
21679 /* See its dwarf2loc.h declaration. */
21680
21681 int
21682 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
21683 {
21684 struct comp_unit_head cu_header_local;
21685 const struct comp_unit_head *cu_headerp;
21686
21687 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21688
21689 if (cu_headerp->version == 2)
21690 return cu_headerp->addr_size;
21691 else
21692 return cu_headerp->offset_size;
21693 }
21694
21695 /* Return the text offset of the CU. The returned offset comes from
21696 this CU's objfile. If this objfile came from a separate debuginfo
21697 file, then the offset may be different from the corresponding
21698 offset in the parent objfile. */
21699
21700 CORE_ADDR
21701 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
21702 {
21703 struct objfile *objfile = per_cu->objfile;
21704
21705 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21706 }
21707
21708 /* Locate the .debug_info compilation unit from CU's objfile which contains
21709 the DIE at OFFSET. Raises an error on failure. */
21710
21711 static struct dwarf2_per_cu_data *
21712 dwarf2_find_containing_comp_unit (sect_offset offset,
21713 unsigned int offset_in_dwz,
21714 struct objfile *objfile)
21715 {
21716 struct dwarf2_per_cu_data *this_cu;
21717 int low, high;
21718 const sect_offset *cu_off;
21719
21720 low = 0;
21721 high = dwarf2_per_objfile->n_comp_units - 1;
21722 while (high > low)
21723 {
21724 struct dwarf2_per_cu_data *mid_cu;
21725 int mid = low + (high - low) / 2;
21726
21727 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
21728 cu_off = &mid_cu->offset;
21729 if (mid_cu->is_dwz > offset_in_dwz
21730 || (mid_cu->is_dwz == offset_in_dwz
21731 && cu_off->sect_off >= offset.sect_off))
21732 high = mid;
21733 else
21734 low = mid + 1;
21735 }
21736 gdb_assert (low == high);
21737 this_cu = dwarf2_per_objfile->all_comp_units[low];
21738 cu_off = &this_cu->offset;
21739 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
21740 {
21741 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
21742 error (_("Dwarf Error: could not find partial DIE containing "
21743 "offset 0x%lx [in module %s]"),
21744 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
21745
21746 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
21747 <= offset.sect_off);
21748 return dwarf2_per_objfile->all_comp_units[low-1];
21749 }
21750 else
21751 {
21752 this_cu = dwarf2_per_objfile->all_comp_units[low];
21753 if (low == dwarf2_per_objfile->n_comp_units - 1
21754 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
21755 error (_("invalid dwarf2 offset %u"), offset.sect_off);
21756 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
21757 return this_cu;
21758 }
21759 }
21760
21761 /* Initialize dwarf2_cu CU, owned by PER_CU. */
21762
21763 static void
21764 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
21765 {
21766 memset (cu, 0, sizeof (*cu));
21767 per_cu->cu = cu;
21768 cu->per_cu = per_cu;
21769 cu->objfile = per_cu->objfile;
21770 obstack_init (&cu->comp_unit_obstack);
21771 }
21772
21773 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
21774
21775 static void
21776 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
21777 enum language pretend_language)
21778 {
21779 struct attribute *attr;
21780
21781 /* Set the language we're debugging. */
21782 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
21783 if (attr)
21784 set_cu_language (DW_UNSND (attr), cu);
21785 else
21786 {
21787 cu->language = pretend_language;
21788 cu->language_defn = language_def (cu->language);
21789 }
21790
21791 attr = dwarf2_attr (comp_unit_die, DW_AT_producer, cu);
21792 if (attr)
21793 cu->producer = DW_STRING (attr);
21794 }
21795
21796 /* Release one cached compilation unit, CU. We unlink it from the tree
21797 of compilation units, but we don't remove it from the read_in_chain;
21798 the caller is responsible for that.
21799 NOTE: DATA is a void * because this function is also used as a
21800 cleanup routine. */
21801
21802 static void
21803 free_heap_comp_unit (void *data)
21804 {
21805 struct dwarf2_cu *cu = data;
21806
21807 gdb_assert (cu->per_cu != NULL);
21808 cu->per_cu->cu = NULL;
21809 cu->per_cu = NULL;
21810
21811 obstack_free (&cu->comp_unit_obstack, NULL);
21812
21813 xfree (cu);
21814 }
21815
21816 /* This cleanup function is passed the address of a dwarf2_cu on the stack
21817 when we're finished with it. We can't free the pointer itself, but be
21818 sure to unlink it from the cache. Also release any associated storage. */
21819
21820 static void
21821 free_stack_comp_unit (void *data)
21822 {
21823 struct dwarf2_cu *cu = data;
21824
21825 gdb_assert (cu->per_cu != NULL);
21826 cu->per_cu->cu = NULL;
21827 cu->per_cu = NULL;
21828
21829 obstack_free (&cu->comp_unit_obstack, NULL);
21830 cu->partial_dies = NULL;
21831 }
21832
21833 /* Free all cached compilation units. */
21834
21835 static void
21836 free_cached_comp_units (void *data)
21837 {
21838 struct dwarf2_per_cu_data *per_cu, **last_chain;
21839
21840 per_cu = dwarf2_per_objfile->read_in_chain;
21841 last_chain = &dwarf2_per_objfile->read_in_chain;
21842 while (per_cu != NULL)
21843 {
21844 struct dwarf2_per_cu_data *next_cu;
21845
21846 next_cu = per_cu->cu->read_in_chain;
21847
21848 free_heap_comp_unit (per_cu->cu);
21849 *last_chain = next_cu;
21850
21851 per_cu = next_cu;
21852 }
21853 }
21854
21855 /* Increase the age counter on each cached compilation unit, and free
21856 any that are too old. */
21857
21858 static void
21859 age_cached_comp_units (void)
21860 {
21861 struct dwarf2_per_cu_data *per_cu, **last_chain;
21862
21863 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
21864 per_cu = dwarf2_per_objfile->read_in_chain;
21865 while (per_cu != NULL)
21866 {
21867 per_cu->cu->last_used ++;
21868 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
21869 dwarf2_mark (per_cu->cu);
21870 per_cu = per_cu->cu->read_in_chain;
21871 }
21872
21873 per_cu = dwarf2_per_objfile->read_in_chain;
21874 last_chain = &dwarf2_per_objfile->read_in_chain;
21875 while (per_cu != NULL)
21876 {
21877 struct dwarf2_per_cu_data *next_cu;
21878
21879 next_cu = per_cu->cu->read_in_chain;
21880
21881 if (!per_cu->cu->mark)
21882 {
21883 free_heap_comp_unit (per_cu->cu);
21884 *last_chain = next_cu;
21885 }
21886 else
21887 last_chain = &per_cu->cu->read_in_chain;
21888
21889 per_cu = next_cu;
21890 }
21891 }
21892
21893 /* Remove a single compilation unit from the cache. */
21894
21895 static void
21896 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
21897 {
21898 struct dwarf2_per_cu_data *per_cu, **last_chain;
21899
21900 per_cu = dwarf2_per_objfile->read_in_chain;
21901 last_chain = &dwarf2_per_objfile->read_in_chain;
21902 while (per_cu != NULL)
21903 {
21904 struct dwarf2_per_cu_data *next_cu;
21905
21906 next_cu = per_cu->cu->read_in_chain;
21907
21908 if (per_cu == target_per_cu)
21909 {
21910 free_heap_comp_unit (per_cu->cu);
21911 per_cu->cu = NULL;
21912 *last_chain = next_cu;
21913 break;
21914 }
21915 else
21916 last_chain = &per_cu->cu->read_in_chain;
21917
21918 per_cu = next_cu;
21919 }
21920 }
21921
21922 /* Release all extra memory associated with OBJFILE. */
21923
21924 void
21925 dwarf2_free_objfile (struct objfile *objfile)
21926 {
21927 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
21928
21929 if (dwarf2_per_objfile == NULL)
21930 return;
21931
21932 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
21933 free_cached_comp_units (NULL);
21934
21935 if (dwarf2_per_objfile->quick_file_names_table)
21936 htab_delete (dwarf2_per_objfile->quick_file_names_table);
21937
21938 if (dwarf2_per_objfile->line_header_hash)
21939 htab_delete (dwarf2_per_objfile->line_header_hash);
21940
21941 /* Everything else should be on the objfile obstack. */
21942 }
21943
21944 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
21945 We store these in a hash table separate from the DIEs, and preserve them
21946 when the DIEs are flushed out of cache.
21947
21948 The CU "per_cu" pointer is needed because offset alone is not enough to
21949 uniquely identify the type. A file may have multiple .debug_types sections,
21950 or the type may come from a DWO file. Furthermore, while it's more logical
21951 to use per_cu->section+offset, with Fission the section with the data is in
21952 the DWO file but we don't know that section at the point we need it.
21953 We have to use something in dwarf2_per_cu_data (or the pointer to it)
21954 because we can enter the lookup routine, get_die_type_at_offset, from
21955 outside this file, and thus won't necessarily have PER_CU->cu.
21956 Fortunately, PER_CU is stable for the life of the objfile. */
21957
21958 struct dwarf2_per_cu_offset_and_type
21959 {
21960 const struct dwarf2_per_cu_data *per_cu;
21961 sect_offset offset;
21962 struct type *type;
21963 };
21964
21965 /* Hash function for a dwarf2_per_cu_offset_and_type. */
21966
21967 static hashval_t
21968 per_cu_offset_and_type_hash (const void *item)
21969 {
21970 const struct dwarf2_per_cu_offset_and_type *ofs = item;
21971
21972 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
21973 }
21974
21975 /* Equality function for a dwarf2_per_cu_offset_and_type. */
21976
21977 static int
21978 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
21979 {
21980 const struct dwarf2_per_cu_offset_and_type *ofs_lhs = item_lhs;
21981 const struct dwarf2_per_cu_offset_and_type *ofs_rhs = item_rhs;
21982
21983 return (ofs_lhs->per_cu == ofs_rhs->per_cu
21984 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
21985 }
21986
21987 /* Set the type associated with DIE to TYPE. Save it in CU's hash
21988 table if necessary. For convenience, return TYPE.
21989
21990 The DIEs reading must have careful ordering to:
21991 * Not cause infite loops trying to read in DIEs as a prerequisite for
21992 reading current DIE.
21993 * Not trying to dereference contents of still incompletely read in types
21994 while reading in other DIEs.
21995 * Enable referencing still incompletely read in types just by a pointer to
21996 the type without accessing its fields.
21997
21998 Therefore caller should follow these rules:
21999 * Try to fetch any prerequisite types we may need to build this DIE type
22000 before building the type and calling set_die_type.
22001 * After building type call set_die_type for current DIE as soon as
22002 possible before fetching more types to complete the current type.
22003 * Make the type as complete as possible before fetching more types. */
22004
22005 static struct type *
22006 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
22007 {
22008 struct dwarf2_per_cu_offset_and_type **slot, ofs;
22009 struct objfile *objfile = cu->objfile;
22010 struct attribute *attr;
22011 struct dynamic_prop prop;
22012
22013 /* For Ada types, make sure that the gnat-specific data is always
22014 initialized (if not already set). There are a few types where
22015 we should not be doing so, because the type-specific area is
22016 already used to hold some other piece of info (eg: TYPE_CODE_FLT
22017 where the type-specific area is used to store the floatformat).
22018 But this is not a problem, because the gnat-specific information
22019 is actually not needed for these types. */
22020 if (need_gnat_info (cu)
22021 && TYPE_CODE (type) != TYPE_CODE_FUNC
22022 && TYPE_CODE (type) != TYPE_CODE_FLT
22023 && !HAVE_GNAT_AUX_INFO (type))
22024 INIT_GNAT_SPECIFIC (type);
22025
22026 /* Read DW_AT_data_location and set in type. */
22027 attr = dwarf2_attr (die, DW_AT_data_location, cu);
22028 if (attr_to_dynamic_prop (attr, die, cu, &prop))
22029 {
22030 TYPE_DATA_LOCATION (type)
22031 = obstack_alloc (&objfile->objfile_obstack, sizeof (prop));
22032 *TYPE_DATA_LOCATION (type) = prop;
22033 }
22034
22035 if (dwarf2_per_objfile->die_type_hash == NULL)
22036 {
22037 dwarf2_per_objfile->die_type_hash =
22038 htab_create_alloc_ex (127,
22039 per_cu_offset_and_type_hash,
22040 per_cu_offset_and_type_eq,
22041 NULL,
22042 &objfile->objfile_obstack,
22043 hashtab_obstack_allocate,
22044 dummy_obstack_deallocate);
22045 }
22046
22047 ofs.per_cu = cu->per_cu;
22048 ofs.offset = die->offset;
22049 ofs.type = type;
22050 slot = (struct dwarf2_per_cu_offset_and_type **)
22051 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
22052 if (*slot)
22053 complaint (&symfile_complaints,
22054 _("A problem internal to GDB: DIE 0x%x has type already set"),
22055 die->offset.sect_off);
22056 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
22057 **slot = ofs;
22058 return type;
22059 }
22060
22061 /* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
22062 or return NULL if the die does not have a saved type. */
22063
22064 static struct type *
22065 get_die_type_at_offset (sect_offset offset,
22066 struct dwarf2_per_cu_data *per_cu)
22067 {
22068 struct dwarf2_per_cu_offset_and_type *slot, ofs;
22069
22070 if (dwarf2_per_objfile->die_type_hash == NULL)
22071 return NULL;
22072
22073 ofs.per_cu = per_cu;
22074 ofs.offset = offset;
22075 slot = htab_find (dwarf2_per_objfile->die_type_hash, &ofs);
22076 if (slot)
22077 return slot->type;
22078 else
22079 return NULL;
22080 }
22081
22082 /* Look up the type for DIE in CU in die_type_hash,
22083 or return NULL if DIE does not have a saved type. */
22084
22085 static struct type *
22086 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
22087 {
22088 return get_die_type_at_offset (die->offset, cu->per_cu);
22089 }
22090
22091 /* Add a dependence relationship from CU to REF_PER_CU. */
22092
22093 static void
22094 dwarf2_add_dependence (struct dwarf2_cu *cu,
22095 struct dwarf2_per_cu_data *ref_per_cu)
22096 {
22097 void **slot;
22098
22099 if (cu->dependencies == NULL)
22100 cu->dependencies
22101 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
22102 NULL, &cu->comp_unit_obstack,
22103 hashtab_obstack_allocate,
22104 dummy_obstack_deallocate);
22105
22106 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
22107 if (*slot == NULL)
22108 *slot = ref_per_cu;
22109 }
22110
22111 /* Subroutine of dwarf2_mark to pass to htab_traverse.
22112 Set the mark field in every compilation unit in the
22113 cache that we must keep because we are keeping CU. */
22114
22115 static int
22116 dwarf2_mark_helper (void **slot, void *data)
22117 {
22118 struct dwarf2_per_cu_data *per_cu;
22119
22120 per_cu = (struct dwarf2_per_cu_data *) *slot;
22121
22122 /* cu->dependencies references may not yet have been ever read if QUIT aborts
22123 reading of the chain. As such dependencies remain valid it is not much
22124 useful to track and undo them during QUIT cleanups. */
22125 if (per_cu->cu == NULL)
22126 return 1;
22127
22128 if (per_cu->cu->mark)
22129 return 1;
22130 per_cu->cu->mark = 1;
22131
22132 if (per_cu->cu->dependencies != NULL)
22133 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
22134
22135 return 1;
22136 }
22137
22138 /* Set the mark field in CU and in every other compilation unit in the
22139 cache that we must keep because we are keeping CU. */
22140
22141 static void
22142 dwarf2_mark (struct dwarf2_cu *cu)
22143 {
22144 if (cu->mark)
22145 return;
22146 cu->mark = 1;
22147 if (cu->dependencies != NULL)
22148 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
22149 }
22150
22151 static void
22152 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
22153 {
22154 while (per_cu)
22155 {
22156 per_cu->cu->mark = 0;
22157 per_cu = per_cu->cu->read_in_chain;
22158 }
22159 }
22160
22161 /* Trivial hash function for partial_die_info: the hash value of a DIE
22162 is its offset in .debug_info for this objfile. */
22163
22164 static hashval_t
22165 partial_die_hash (const void *item)
22166 {
22167 const struct partial_die_info *part_die = item;
22168
22169 return part_die->offset.sect_off;
22170 }
22171
22172 /* Trivial comparison function for partial_die_info structures: two DIEs
22173 are equal if they have the same offset. */
22174
22175 static int
22176 partial_die_eq (const void *item_lhs, const void *item_rhs)
22177 {
22178 const struct partial_die_info *part_die_lhs = item_lhs;
22179 const struct partial_die_info *part_die_rhs = item_rhs;
22180
22181 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
22182 }
22183
22184 static struct cmd_list_element *set_dwarf2_cmdlist;
22185 static struct cmd_list_element *show_dwarf2_cmdlist;
22186
22187 static void
22188 set_dwarf2_cmd (char *args, int from_tty)
22189 {
22190 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", all_commands,
22191 gdb_stdout);
22192 }
22193
22194 static void
22195 show_dwarf2_cmd (char *args, int from_tty)
22196 {
22197 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
22198 }
22199
22200 /* Free data associated with OBJFILE, if necessary. */
22201
22202 static void
22203 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
22204 {
22205 struct dwarf2_per_objfile *data = d;
22206 int ix;
22207
22208 /* Make sure we don't accidentally use dwarf2_per_objfile while
22209 cleaning up. */
22210 dwarf2_per_objfile = NULL;
22211
22212 for (ix = 0; ix < data->n_comp_units; ++ix)
22213 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
22214
22215 for (ix = 0; ix < data->n_type_units; ++ix)
22216 VEC_free (dwarf2_per_cu_ptr,
22217 data->all_type_units[ix]->per_cu.imported_symtabs);
22218 xfree (data->all_type_units);
22219
22220 VEC_free (dwarf2_section_info_def, data->types);
22221
22222 if (data->dwo_files)
22223 free_dwo_files (data->dwo_files, objfile);
22224 if (data->dwp_file)
22225 gdb_bfd_unref (data->dwp_file->dbfd);
22226
22227 if (data->dwz_file && data->dwz_file->dwz_bfd)
22228 gdb_bfd_unref (data->dwz_file->dwz_bfd);
22229 }
22230
22231 \f
22232 /* The "save gdb-index" command. */
22233
22234 /* The contents of the hash table we create when building the string
22235 table. */
22236 struct strtab_entry
22237 {
22238 offset_type offset;
22239 const char *str;
22240 };
22241
22242 /* Hash function for a strtab_entry.
22243
22244 Function is used only during write_hash_table so no index format backward
22245 compatibility is needed. */
22246
22247 static hashval_t
22248 hash_strtab_entry (const void *e)
22249 {
22250 const struct strtab_entry *entry = e;
22251 return mapped_index_string_hash (INT_MAX, entry->str);
22252 }
22253
22254 /* Equality function for a strtab_entry. */
22255
22256 static int
22257 eq_strtab_entry (const void *a, const void *b)
22258 {
22259 const struct strtab_entry *ea = a;
22260 const struct strtab_entry *eb = b;
22261 return !strcmp (ea->str, eb->str);
22262 }
22263
22264 /* Create a strtab_entry hash table. */
22265
22266 static htab_t
22267 create_strtab (void)
22268 {
22269 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
22270 xfree, xcalloc, xfree);
22271 }
22272
22273 /* Add a string to the constant pool. Return the string's offset in
22274 host order. */
22275
22276 static offset_type
22277 add_string (htab_t table, struct obstack *cpool, const char *str)
22278 {
22279 void **slot;
22280 struct strtab_entry entry;
22281 struct strtab_entry *result;
22282
22283 entry.str = str;
22284 slot = htab_find_slot (table, &entry, INSERT);
22285 if (*slot)
22286 result = *slot;
22287 else
22288 {
22289 result = XNEW (struct strtab_entry);
22290 result->offset = obstack_object_size (cpool);
22291 result->str = str;
22292 obstack_grow_str0 (cpool, str);
22293 *slot = result;
22294 }
22295 return result->offset;
22296 }
22297
22298 /* An entry in the symbol table. */
22299 struct symtab_index_entry
22300 {
22301 /* The name of the symbol. */
22302 const char *name;
22303 /* The offset of the name in the constant pool. */
22304 offset_type index_offset;
22305 /* A sorted vector of the indices of all the CUs that hold an object
22306 of this name. */
22307 VEC (offset_type) *cu_indices;
22308 };
22309
22310 /* The symbol table. This is a power-of-2-sized hash table. */
22311 struct mapped_symtab
22312 {
22313 offset_type n_elements;
22314 offset_type size;
22315 struct symtab_index_entry **data;
22316 };
22317
22318 /* Hash function for a symtab_index_entry. */
22319
22320 static hashval_t
22321 hash_symtab_entry (const void *e)
22322 {
22323 const struct symtab_index_entry *entry = e;
22324 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
22325 sizeof (offset_type) * VEC_length (offset_type,
22326 entry->cu_indices),
22327 0);
22328 }
22329
22330 /* Equality function for a symtab_index_entry. */
22331
22332 static int
22333 eq_symtab_entry (const void *a, const void *b)
22334 {
22335 const struct symtab_index_entry *ea = a;
22336 const struct symtab_index_entry *eb = b;
22337 int len = VEC_length (offset_type, ea->cu_indices);
22338 if (len != VEC_length (offset_type, eb->cu_indices))
22339 return 0;
22340 return !memcmp (VEC_address (offset_type, ea->cu_indices),
22341 VEC_address (offset_type, eb->cu_indices),
22342 sizeof (offset_type) * len);
22343 }
22344
22345 /* Destroy a symtab_index_entry. */
22346
22347 static void
22348 delete_symtab_entry (void *p)
22349 {
22350 struct symtab_index_entry *entry = p;
22351 VEC_free (offset_type, entry->cu_indices);
22352 xfree (entry);
22353 }
22354
22355 /* Create a hash table holding symtab_index_entry objects. */
22356
22357 static htab_t
22358 create_symbol_hash_table (void)
22359 {
22360 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
22361 delete_symtab_entry, xcalloc, xfree);
22362 }
22363
22364 /* Create a new mapped symtab object. */
22365
22366 static struct mapped_symtab *
22367 create_mapped_symtab (void)
22368 {
22369 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
22370 symtab->n_elements = 0;
22371 symtab->size = 1024;
22372 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22373 return symtab;
22374 }
22375
22376 /* Destroy a mapped_symtab. */
22377
22378 static void
22379 cleanup_mapped_symtab (void *p)
22380 {
22381 struct mapped_symtab *symtab = p;
22382 /* The contents of the array are freed when the other hash table is
22383 destroyed. */
22384 xfree (symtab->data);
22385 xfree (symtab);
22386 }
22387
22388 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
22389 the slot.
22390
22391 Function is used only during write_hash_table so no index format backward
22392 compatibility is needed. */
22393
22394 static struct symtab_index_entry **
22395 find_slot (struct mapped_symtab *symtab, const char *name)
22396 {
22397 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
22398
22399 index = hash & (symtab->size - 1);
22400 step = ((hash * 17) & (symtab->size - 1)) | 1;
22401
22402 for (;;)
22403 {
22404 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
22405 return &symtab->data[index];
22406 index = (index + step) & (symtab->size - 1);
22407 }
22408 }
22409
22410 /* Expand SYMTAB's hash table. */
22411
22412 static void
22413 hash_expand (struct mapped_symtab *symtab)
22414 {
22415 offset_type old_size = symtab->size;
22416 offset_type i;
22417 struct symtab_index_entry **old_entries = symtab->data;
22418
22419 symtab->size *= 2;
22420 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22421
22422 for (i = 0; i < old_size; ++i)
22423 {
22424 if (old_entries[i])
22425 {
22426 struct symtab_index_entry **slot = find_slot (symtab,
22427 old_entries[i]->name);
22428 *slot = old_entries[i];
22429 }
22430 }
22431
22432 xfree (old_entries);
22433 }
22434
22435 /* Add an entry to SYMTAB. NAME is the name of the symbol.
22436 CU_INDEX is the index of the CU in which the symbol appears.
22437 IS_STATIC is one if the symbol is static, otherwise zero (global). */
22438
22439 static void
22440 add_index_entry (struct mapped_symtab *symtab, const char *name,
22441 int is_static, gdb_index_symbol_kind kind,
22442 offset_type cu_index)
22443 {
22444 struct symtab_index_entry **slot;
22445 offset_type cu_index_and_attrs;
22446
22447 ++symtab->n_elements;
22448 if (4 * symtab->n_elements / 3 >= symtab->size)
22449 hash_expand (symtab);
22450
22451 slot = find_slot (symtab, name);
22452 if (!*slot)
22453 {
22454 *slot = XNEW (struct symtab_index_entry);
22455 (*slot)->name = name;
22456 /* index_offset is set later. */
22457 (*slot)->cu_indices = NULL;
22458 }
22459
22460 cu_index_and_attrs = 0;
22461 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
22462 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
22463 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
22464
22465 /* We don't want to record an index value twice as we want to avoid the
22466 duplication.
22467 We process all global symbols and then all static symbols
22468 (which would allow us to avoid the duplication by only having to check
22469 the last entry pushed), but a symbol could have multiple kinds in one CU.
22470 To keep things simple we don't worry about the duplication here and
22471 sort and uniqufy the list after we've processed all symbols. */
22472 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
22473 }
22474
22475 /* qsort helper routine for uniquify_cu_indices. */
22476
22477 static int
22478 offset_type_compare (const void *ap, const void *bp)
22479 {
22480 offset_type a = *(offset_type *) ap;
22481 offset_type b = *(offset_type *) bp;
22482
22483 return (a > b) - (b > a);
22484 }
22485
22486 /* Sort and remove duplicates of all symbols' cu_indices lists. */
22487
22488 static void
22489 uniquify_cu_indices (struct mapped_symtab *symtab)
22490 {
22491 int i;
22492
22493 for (i = 0; i < symtab->size; ++i)
22494 {
22495 struct symtab_index_entry *entry = symtab->data[i];
22496
22497 if (entry
22498 && entry->cu_indices != NULL)
22499 {
22500 unsigned int next_to_insert, next_to_check;
22501 offset_type last_value;
22502
22503 qsort (VEC_address (offset_type, entry->cu_indices),
22504 VEC_length (offset_type, entry->cu_indices),
22505 sizeof (offset_type), offset_type_compare);
22506
22507 last_value = VEC_index (offset_type, entry->cu_indices, 0);
22508 next_to_insert = 1;
22509 for (next_to_check = 1;
22510 next_to_check < VEC_length (offset_type, entry->cu_indices);
22511 ++next_to_check)
22512 {
22513 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
22514 != last_value)
22515 {
22516 last_value = VEC_index (offset_type, entry->cu_indices,
22517 next_to_check);
22518 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
22519 last_value);
22520 ++next_to_insert;
22521 }
22522 }
22523 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
22524 }
22525 }
22526 }
22527
22528 /* Add a vector of indices to the constant pool. */
22529
22530 static offset_type
22531 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
22532 struct symtab_index_entry *entry)
22533 {
22534 void **slot;
22535
22536 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
22537 if (!*slot)
22538 {
22539 offset_type len = VEC_length (offset_type, entry->cu_indices);
22540 offset_type val = MAYBE_SWAP (len);
22541 offset_type iter;
22542 int i;
22543
22544 *slot = entry;
22545 entry->index_offset = obstack_object_size (cpool);
22546
22547 obstack_grow (cpool, &val, sizeof (val));
22548 for (i = 0;
22549 VEC_iterate (offset_type, entry->cu_indices, i, iter);
22550 ++i)
22551 {
22552 val = MAYBE_SWAP (iter);
22553 obstack_grow (cpool, &val, sizeof (val));
22554 }
22555 }
22556 else
22557 {
22558 struct symtab_index_entry *old_entry = *slot;
22559 entry->index_offset = old_entry->index_offset;
22560 entry = old_entry;
22561 }
22562 return entry->index_offset;
22563 }
22564
22565 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
22566 constant pool entries going into the obstack CPOOL. */
22567
22568 static void
22569 write_hash_table (struct mapped_symtab *symtab,
22570 struct obstack *output, struct obstack *cpool)
22571 {
22572 offset_type i;
22573 htab_t symbol_hash_table;
22574 htab_t str_table;
22575
22576 symbol_hash_table = create_symbol_hash_table ();
22577 str_table = create_strtab ();
22578
22579 /* We add all the index vectors to the constant pool first, to
22580 ensure alignment is ok. */
22581 for (i = 0; i < symtab->size; ++i)
22582 {
22583 if (symtab->data[i])
22584 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
22585 }
22586
22587 /* Now write out the hash table. */
22588 for (i = 0; i < symtab->size; ++i)
22589 {
22590 offset_type str_off, vec_off;
22591
22592 if (symtab->data[i])
22593 {
22594 str_off = add_string (str_table, cpool, symtab->data[i]->name);
22595 vec_off = symtab->data[i]->index_offset;
22596 }
22597 else
22598 {
22599 /* While 0 is a valid constant pool index, it is not valid
22600 to have 0 for both offsets. */
22601 str_off = 0;
22602 vec_off = 0;
22603 }
22604
22605 str_off = MAYBE_SWAP (str_off);
22606 vec_off = MAYBE_SWAP (vec_off);
22607
22608 obstack_grow (output, &str_off, sizeof (str_off));
22609 obstack_grow (output, &vec_off, sizeof (vec_off));
22610 }
22611
22612 htab_delete (str_table);
22613 htab_delete (symbol_hash_table);
22614 }
22615
22616 /* Struct to map psymtab to CU index in the index file. */
22617 struct psymtab_cu_index_map
22618 {
22619 struct partial_symtab *psymtab;
22620 unsigned int cu_index;
22621 };
22622
22623 static hashval_t
22624 hash_psymtab_cu_index (const void *item)
22625 {
22626 const struct psymtab_cu_index_map *map = item;
22627
22628 return htab_hash_pointer (map->psymtab);
22629 }
22630
22631 static int
22632 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
22633 {
22634 const struct psymtab_cu_index_map *lhs = item_lhs;
22635 const struct psymtab_cu_index_map *rhs = item_rhs;
22636
22637 return lhs->psymtab == rhs->psymtab;
22638 }
22639
22640 /* Helper struct for building the address table. */
22641 struct addrmap_index_data
22642 {
22643 struct objfile *objfile;
22644 struct obstack *addr_obstack;
22645 htab_t cu_index_htab;
22646
22647 /* Non-zero if the previous_* fields are valid.
22648 We can't write an entry until we see the next entry (since it is only then
22649 that we know the end of the entry). */
22650 int previous_valid;
22651 /* Index of the CU in the table of all CUs in the index file. */
22652 unsigned int previous_cu_index;
22653 /* Start address of the CU. */
22654 CORE_ADDR previous_cu_start;
22655 };
22656
22657 /* Write an address entry to OBSTACK. */
22658
22659 static void
22660 add_address_entry (struct objfile *objfile, struct obstack *obstack,
22661 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
22662 {
22663 offset_type cu_index_to_write;
22664 gdb_byte addr[8];
22665 CORE_ADDR baseaddr;
22666
22667 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22668
22669 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
22670 obstack_grow (obstack, addr, 8);
22671 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
22672 obstack_grow (obstack, addr, 8);
22673 cu_index_to_write = MAYBE_SWAP (cu_index);
22674 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
22675 }
22676
22677 /* Worker function for traversing an addrmap to build the address table. */
22678
22679 static int
22680 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
22681 {
22682 struct addrmap_index_data *data = datap;
22683 struct partial_symtab *pst = obj;
22684
22685 if (data->previous_valid)
22686 add_address_entry (data->objfile, data->addr_obstack,
22687 data->previous_cu_start, start_addr,
22688 data->previous_cu_index);
22689
22690 data->previous_cu_start = start_addr;
22691 if (pst != NULL)
22692 {
22693 struct psymtab_cu_index_map find_map, *map;
22694 find_map.psymtab = pst;
22695 map = htab_find (data->cu_index_htab, &find_map);
22696 gdb_assert (map != NULL);
22697 data->previous_cu_index = map->cu_index;
22698 data->previous_valid = 1;
22699 }
22700 else
22701 data->previous_valid = 0;
22702
22703 return 0;
22704 }
22705
22706 /* Write OBJFILE's address map to OBSTACK.
22707 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
22708 in the index file. */
22709
22710 static void
22711 write_address_map (struct objfile *objfile, struct obstack *obstack,
22712 htab_t cu_index_htab)
22713 {
22714 struct addrmap_index_data addrmap_index_data;
22715
22716 /* When writing the address table, we have to cope with the fact that
22717 the addrmap iterator only provides the start of a region; we have to
22718 wait until the next invocation to get the start of the next region. */
22719
22720 addrmap_index_data.objfile = objfile;
22721 addrmap_index_data.addr_obstack = obstack;
22722 addrmap_index_data.cu_index_htab = cu_index_htab;
22723 addrmap_index_data.previous_valid = 0;
22724
22725 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
22726 &addrmap_index_data);
22727
22728 /* It's highly unlikely the last entry (end address = 0xff...ff)
22729 is valid, but we should still handle it.
22730 The end address is recorded as the start of the next region, but that
22731 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
22732 anyway. */
22733 if (addrmap_index_data.previous_valid)
22734 add_address_entry (objfile, obstack,
22735 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
22736 addrmap_index_data.previous_cu_index);
22737 }
22738
22739 /* Return the symbol kind of PSYM. */
22740
22741 static gdb_index_symbol_kind
22742 symbol_kind (struct partial_symbol *psym)
22743 {
22744 domain_enum domain = PSYMBOL_DOMAIN (psym);
22745 enum address_class aclass = PSYMBOL_CLASS (psym);
22746
22747 switch (domain)
22748 {
22749 case VAR_DOMAIN:
22750 switch (aclass)
22751 {
22752 case LOC_BLOCK:
22753 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
22754 case LOC_TYPEDEF:
22755 return GDB_INDEX_SYMBOL_KIND_TYPE;
22756 case LOC_COMPUTED:
22757 case LOC_CONST_BYTES:
22758 case LOC_OPTIMIZED_OUT:
22759 case LOC_STATIC:
22760 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
22761 case LOC_CONST:
22762 /* Note: It's currently impossible to recognize psyms as enum values
22763 short of reading the type info. For now punt. */
22764 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
22765 default:
22766 /* There are other LOC_FOO values that one might want to classify
22767 as variables, but dwarf2read.c doesn't currently use them. */
22768 return GDB_INDEX_SYMBOL_KIND_OTHER;
22769 }
22770 case STRUCT_DOMAIN:
22771 return GDB_INDEX_SYMBOL_KIND_TYPE;
22772 default:
22773 return GDB_INDEX_SYMBOL_KIND_OTHER;
22774 }
22775 }
22776
22777 /* Add a list of partial symbols to SYMTAB. */
22778
22779 static void
22780 write_psymbols (struct mapped_symtab *symtab,
22781 htab_t psyms_seen,
22782 struct partial_symbol **psymp,
22783 int count,
22784 offset_type cu_index,
22785 int is_static)
22786 {
22787 for (; count-- > 0; ++psymp)
22788 {
22789 struct partial_symbol *psym = *psymp;
22790 void **slot;
22791
22792 if (SYMBOL_LANGUAGE (psym) == language_ada)
22793 error (_("Ada is not currently supported by the index"));
22794
22795 /* Only add a given psymbol once. */
22796 slot = htab_find_slot (psyms_seen, psym, INSERT);
22797 if (!*slot)
22798 {
22799 gdb_index_symbol_kind kind = symbol_kind (psym);
22800
22801 *slot = psym;
22802 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
22803 is_static, kind, cu_index);
22804 }
22805 }
22806 }
22807
22808 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
22809 exception if there is an error. */
22810
22811 static void
22812 write_obstack (FILE *file, struct obstack *obstack)
22813 {
22814 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
22815 file)
22816 != obstack_object_size (obstack))
22817 error (_("couldn't data write to file"));
22818 }
22819
22820 /* Unlink a file if the argument is not NULL. */
22821
22822 static void
22823 unlink_if_set (void *p)
22824 {
22825 char **filename = p;
22826 if (*filename)
22827 unlink (*filename);
22828 }
22829
22830 /* A helper struct used when iterating over debug_types. */
22831 struct signatured_type_index_data
22832 {
22833 struct objfile *objfile;
22834 struct mapped_symtab *symtab;
22835 struct obstack *types_list;
22836 htab_t psyms_seen;
22837 int cu_index;
22838 };
22839
22840 /* A helper function that writes a single signatured_type to an
22841 obstack. */
22842
22843 static int
22844 write_one_signatured_type (void **slot, void *d)
22845 {
22846 struct signatured_type_index_data *info = d;
22847 struct signatured_type *entry = (struct signatured_type *) *slot;
22848 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
22849 gdb_byte val[8];
22850
22851 write_psymbols (info->symtab,
22852 info->psyms_seen,
22853 info->objfile->global_psymbols.list
22854 + psymtab->globals_offset,
22855 psymtab->n_global_syms, info->cu_index,
22856 0);
22857 write_psymbols (info->symtab,
22858 info->psyms_seen,
22859 info->objfile->static_psymbols.list
22860 + psymtab->statics_offset,
22861 psymtab->n_static_syms, info->cu_index,
22862 1);
22863
22864 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22865 entry->per_cu.offset.sect_off);
22866 obstack_grow (info->types_list, val, 8);
22867 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22868 entry->type_offset_in_tu.cu_off);
22869 obstack_grow (info->types_list, val, 8);
22870 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
22871 obstack_grow (info->types_list, val, 8);
22872
22873 ++info->cu_index;
22874
22875 return 1;
22876 }
22877
22878 /* Recurse into all "included" dependencies and write their symbols as
22879 if they appeared in this psymtab. */
22880
22881 static void
22882 recursively_write_psymbols (struct objfile *objfile,
22883 struct partial_symtab *psymtab,
22884 struct mapped_symtab *symtab,
22885 htab_t psyms_seen,
22886 offset_type cu_index)
22887 {
22888 int i;
22889
22890 for (i = 0; i < psymtab->number_of_dependencies; ++i)
22891 if (psymtab->dependencies[i]->user != NULL)
22892 recursively_write_psymbols (objfile, psymtab->dependencies[i],
22893 symtab, psyms_seen, cu_index);
22894
22895 write_psymbols (symtab,
22896 psyms_seen,
22897 objfile->global_psymbols.list + psymtab->globals_offset,
22898 psymtab->n_global_syms, cu_index,
22899 0);
22900 write_psymbols (symtab,
22901 psyms_seen,
22902 objfile->static_psymbols.list + psymtab->statics_offset,
22903 psymtab->n_static_syms, cu_index,
22904 1);
22905 }
22906
22907 /* Create an index file for OBJFILE in the directory DIR. */
22908
22909 static void
22910 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
22911 {
22912 struct cleanup *cleanup;
22913 char *filename, *cleanup_filename;
22914 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
22915 struct obstack cu_list, types_cu_list;
22916 int i;
22917 FILE *out_file;
22918 struct mapped_symtab *symtab;
22919 offset_type val, size_of_contents, total_len;
22920 struct stat st;
22921 htab_t psyms_seen;
22922 htab_t cu_index_htab;
22923 struct psymtab_cu_index_map *psymtab_cu_index_map;
22924
22925 if (dwarf2_per_objfile->using_index)
22926 error (_("Cannot use an index to create the index"));
22927
22928 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
22929 error (_("Cannot make an index when the file has multiple .debug_types sections"));
22930
22931 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
22932 return;
22933
22934 if (stat (objfile_name (objfile), &st) < 0)
22935 perror_with_name (objfile_name (objfile));
22936
22937 filename = concat (dir, SLASH_STRING, lbasename (objfile_name (objfile)),
22938 INDEX_SUFFIX, (char *) NULL);
22939 cleanup = make_cleanup (xfree, filename);
22940
22941 out_file = gdb_fopen_cloexec (filename, "wb");
22942 if (!out_file)
22943 error (_("Can't open `%s' for writing"), filename);
22944
22945 cleanup_filename = filename;
22946 make_cleanup (unlink_if_set, &cleanup_filename);
22947
22948 symtab = create_mapped_symtab ();
22949 make_cleanup (cleanup_mapped_symtab, symtab);
22950
22951 obstack_init (&addr_obstack);
22952 make_cleanup_obstack_free (&addr_obstack);
22953
22954 obstack_init (&cu_list);
22955 make_cleanup_obstack_free (&cu_list);
22956
22957 obstack_init (&types_cu_list);
22958 make_cleanup_obstack_free (&types_cu_list);
22959
22960 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
22961 NULL, xcalloc, xfree);
22962 make_cleanup_htab_delete (psyms_seen);
22963
22964 /* While we're scanning CU's create a table that maps a psymtab pointer
22965 (which is what addrmap records) to its index (which is what is recorded
22966 in the index file). This will later be needed to write the address
22967 table. */
22968 cu_index_htab = htab_create_alloc (100,
22969 hash_psymtab_cu_index,
22970 eq_psymtab_cu_index,
22971 NULL, xcalloc, xfree);
22972 make_cleanup_htab_delete (cu_index_htab);
22973 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
22974 xmalloc (sizeof (struct psymtab_cu_index_map)
22975 * dwarf2_per_objfile->n_comp_units);
22976 make_cleanup (xfree, psymtab_cu_index_map);
22977
22978 /* The CU list is already sorted, so we don't need to do additional
22979 work here. Also, the debug_types entries do not appear in
22980 all_comp_units, but only in their own hash table. */
22981 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
22982 {
22983 struct dwarf2_per_cu_data *per_cu
22984 = dwarf2_per_objfile->all_comp_units[i];
22985 struct partial_symtab *psymtab = per_cu->v.psymtab;
22986 gdb_byte val[8];
22987 struct psymtab_cu_index_map *map;
22988 void **slot;
22989
22990 /* CU of a shared file from 'dwz -m' may be unused by this main file.
22991 It may be referenced from a local scope but in such case it does not
22992 need to be present in .gdb_index. */
22993 if (psymtab == NULL)
22994 continue;
22995
22996 if (psymtab->user == NULL)
22997 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
22998
22999 map = &psymtab_cu_index_map[i];
23000 map->psymtab = psymtab;
23001 map->cu_index = i;
23002 slot = htab_find_slot (cu_index_htab, map, INSERT);
23003 gdb_assert (slot != NULL);
23004 gdb_assert (*slot == NULL);
23005 *slot = map;
23006
23007 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23008 per_cu->offset.sect_off);
23009 obstack_grow (&cu_list, val, 8);
23010 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
23011 obstack_grow (&cu_list, val, 8);
23012 }
23013
23014 /* Dump the address map. */
23015 write_address_map (objfile, &addr_obstack, cu_index_htab);
23016
23017 /* Write out the .debug_type entries, if any. */
23018 if (dwarf2_per_objfile->signatured_types)
23019 {
23020 struct signatured_type_index_data sig_data;
23021
23022 sig_data.objfile = objfile;
23023 sig_data.symtab = symtab;
23024 sig_data.types_list = &types_cu_list;
23025 sig_data.psyms_seen = psyms_seen;
23026 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
23027 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
23028 write_one_signatured_type, &sig_data);
23029 }
23030
23031 /* Now that we've processed all symbols we can shrink their cu_indices
23032 lists. */
23033 uniquify_cu_indices (symtab);
23034
23035 obstack_init (&constant_pool);
23036 make_cleanup_obstack_free (&constant_pool);
23037 obstack_init (&symtab_obstack);
23038 make_cleanup_obstack_free (&symtab_obstack);
23039 write_hash_table (symtab, &symtab_obstack, &constant_pool);
23040
23041 obstack_init (&contents);
23042 make_cleanup_obstack_free (&contents);
23043 size_of_contents = 6 * sizeof (offset_type);
23044 total_len = size_of_contents;
23045
23046 /* The version number. */
23047 val = MAYBE_SWAP (8);
23048 obstack_grow (&contents, &val, sizeof (val));
23049
23050 /* The offset of the CU list from the start of the file. */
23051 val = MAYBE_SWAP (total_len);
23052 obstack_grow (&contents, &val, sizeof (val));
23053 total_len += obstack_object_size (&cu_list);
23054
23055 /* The offset of the types CU list from the start of the file. */
23056 val = MAYBE_SWAP (total_len);
23057 obstack_grow (&contents, &val, sizeof (val));
23058 total_len += obstack_object_size (&types_cu_list);
23059
23060 /* The offset of the address table from the start of the file. */
23061 val = MAYBE_SWAP (total_len);
23062 obstack_grow (&contents, &val, sizeof (val));
23063 total_len += obstack_object_size (&addr_obstack);
23064
23065 /* The offset of the symbol table from the start of the file. */
23066 val = MAYBE_SWAP (total_len);
23067 obstack_grow (&contents, &val, sizeof (val));
23068 total_len += obstack_object_size (&symtab_obstack);
23069
23070 /* The offset of the constant pool from the start of the file. */
23071 val = MAYBE_SWAP (total_len);
23072 obstack_grow (&contents, &val, sizeof (val));
23073 total_len += obstack_object_size (&constant_pool);
23074
23075 gdb_assert (obstack_object_size (&contents) == size_of_contents);
23076
23077 write_obstack (out_file, &contents);
23078 write_obstack (out_file, &cu_list);
23079 write_obstack (out_file, &types_cu_list);
23080 write_obstack (out_file, &addr_obstack);
23081 write_obstack (out_file, &symtab_obstack);
23082 write_obstack (out_file, &constant_pool);
23083
23084 fclose (out_file);
23085
23086 /* We want to keep the file, so we set cleanup_filename to NULL
23087 here. See unlink_if_set. */
23088 cleanup_filename = NULL;
23089
23090 do_cleanups (cleanup);
23091 }
23092
23093 /* Implementation of the `save gdb-index' command.
23094
23095 Note that the file format used by this command is documented in the
23096 GDB manual. Any changes here must be documented there. */
23097
23098 static void
23099 save_gdb_index_command (char *arg, int from_tty)
23100 {
23101 struct objfile *objfile;
23102
23103 if (!arg || !*arg)
23104 error (_("usage: save gdb-index DIRECTORY"));
23105
23106 ALL_OBJFILES (objfile)
23107 {
23108 struct stat st;
23109
23110 /* If the objfile does not correspond to an actual file, skip it. */
23111 if (stat (objfile_name (objfile), &st) < 0)
23112 continue;
23113
23114 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
23115 if (dwarf2_per_objfile)
23116 {
23117 volatile struct gdb_exception except;
23118
23119 TRY_CATCH (except, RETURN_MASK_ERROR)
23120 {
23121 write_psymtabs_to_index (objfile, arg);
23122 }
23123 if (except.reason < 0)
23124 exception_fprintf (gdb_stderr, except,
23125 _("Error while writing index for `%s': "),
23126 objfile_name (objfile));
23127 }
23128 }
23129 }
23130
23131 \f
23132
23133 int dwarf2_always_disassemble;
23134
23135 static void
23136 show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
23137 struct cmd_list_element *c, const char *value)
23138 {
23139 fprintf_filtered (file,
23140 _("Whether to always disassemble "
23141 "DWARF expressions is %s.\n"),
23142 value);
23143 }
23144
23145 static void
23146 show_check_physname (struct ui_file *file, int from_tty,
23147 struct cmd_list_element *c, const char *value)
23148 {
23149 fprintf_filtered (file,
23150 _("Whether to check \"physname\" is %s.\n"),
23151 value);
23152 }
23153
23154 void _initialize_dwarf2_read (void);
23155
23156 void
23157 _initialize_dwarf2_read (void)
23158 {
23159 struct cmd_list_element *c;
23160
23161 dwarf2_objfile_data_key
23162 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
23163
23164 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
23165 Set DWARF 2 specific variables.\n\
23166 Configure DWARF 2 variables such as the cache size"),
23167 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
23168 0/*allow-unknown*/, &maintenance_set_cmdlist);
23169
23170 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
23171 Show DWARF 2 specific variables\n\
23172 Show DWARF 2 variables such as the cache size"),
23173 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
23174 0/*allow-unknown*/, &maintenance_show_cmdlist);
23175
23176 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
23177 &dwarf2_max_cache_age, _("\
23178 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
23179 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
23180 A higher limit means that cached compilation units will be stored\n\
23181 in memory longer, and more total memory will be used. Zero disables\n\
23182 caching, which can slow down startup."),
23183 NULL,
23184 show_dwarf2_max_cache_age,
23185 &set_dwarf2_cmdlist,
23186 &show_dwarf2_cmdlist);
23187
23188 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
23189 &dwarf2_always_disassemble, _("\
23190 Set whether `info address' always disassembles DWARF expressions."), _("\
23191 Show whether `info address' always disassembles DWARF expressions."), _("\
23192 When enabled, DWARF expressions are always printed in an assembly-like\n\
23193 syntax. When disabled, expressions will be printed in a more\n\
23194 conversational style, when possible."),
23195 NULL,
23196 show_dwarf2_always_disassemble,
23197 &set_dwarf2_cmdlist,
23198 &show_dwarf2_cmdlist);
23199
23200 add_setshow_zuinteger_cmd ("dwarf2-read", no_class, &dwarf2_read_debug, _("\
23201 Set debugging of the dwarf2 reader."), _("\
23202 Show debugging of the dwarf2 reader."), _("\
23203 When enabled (non-zero), debugging messages are printed during dwarf2\n\
23204 reading and symtab expansion. A value of 1 (one) provides basic\n\
23205 information. A value greater than 1 provides more verbose information."),
23206 NULL,
23207 NULL,
23208 &setdebuglist, &showdebuglist);
23209
23210 add_setshow_zuinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
23211 Set debugging of the dwarf2 DIE reader."), _("\
23212 Show debugging of the dwarf2 DIE reader."), _("\
23213 When enabled (non-zero), DIEs are dumped after they are read in.\n\
23214 The value is the maximum depth to print."),
23215 NULL,
23216 NULL,
23217 &setdebuglist, &showdebuglist);
23218
23219 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
23220 Set cross-checking of \"physname\" code against demangler."), _("\
23221 Show cross-checking of \"physname\" code against demangler."), _("\
23222 When enabled, GDB's internal \"physname\" code is checked against\n\
23223 the demangler."),
23224 NULL, show_check_physname,
23225 &setdebuglist, &showdebuglist);
23226
23227 add_setshow_boolean_cmd ("use-deprecated-index-sections",
23228 no_class, &use_deprecated_index_sections, _("\
23229 Set whether to use deprecated gdb_index sections."), _("\
23230 Show whether to use deprecated gdb_index sections."), _("\
23231 When enabled, deprecated .gdb_index sections are used anyway.\n\
23232 Normally they are ignored either because of a missing feature or\n\
23233 performance issue.\n\
23234 Warning: This option must be enabled before gdb reads the file."),
23235 NULL,
23236 NULL,
23237 &setlist, &showlist);
23238
23239 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
23240 _("\
23241 Save a gdb-index file.\n\
23242 Usage: save gdb-index DIRECTORY"),
23243 &save_cmdlist);
23244 set_cmd_completer (c, filename_completer);
23245
23246 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
23247 &dwarf2_locexpr_funcs);
23248 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
23249 &dwarf2_loclist_funcs);
23250
23251 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
23252 &dwarf2_block_frame_base_locexpr_funcs);
23253 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
23254 &dwarf2_block_frame_base_loclist_funcs);
23255 }