* dwarfread.c (struct dieinfo): Use CORE_ADDR for at_{low,high}_pc.
[binutils-gdb.git] / gdb / dwarfread.c
1 /* DWARF debugging format support for GDB.
2 Copyright (C) 1991, 1992, 1993, 1994 Free Software Foundation, Inc.
3 Written by Fred Fish at Cygnus Support. Portions based on dbxread.c,
4 mipsread.c, coffread.c, and dwarfread.c from a Data General SVR4 gdb port.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
21
22 /*
23
24 FIXME: Do we need to generate dependencies in partial symtabs?
25 (Perhaps we don't need to).
26
27 FIXME: Resolve minor differences between what information we put in the
28 partial symbol table and what dbxread puts in. For example, we don't yet
29 put enum constants there. And dbxread seems to invent a lot of typedefs
30 we never see. Use the new printpsym command to see the partial symbol table
31 contents.
32
33 FIXME: Figure out a better way to tell gdb about the name of the function
34 contain the user's entry point (I.E. main())
35
36 FIXME: See other FIXME's and "ifdef 0" scattered throughout the code for
37 other things to work on, if you get bored. :-)
38
39 */
40
41 #include "defs.h"
42 #include "symtab.h"
43 #include "gdbtypes.h"
44 #include "symfile.h"
45 #include "objfiles.h"
46 #include "elf/dwarf.h"
47 #include "buildsym.h"
48 #include "demangle.h"
49 #include "expression.h" /* Needed for enum exp_opcode in language.h, sigh... */
50 #include "language.h"
51 #include "complaints.h"
52
53 #include <fcntl.h>
54 #include <string.h>
55
56 #ifndef NO_SYS_FILE
57 #include <sys/file.h>
58 #endif
59
60 /* FIXME -- convert this to SEEK_SET a la POSIX, move to config files. */
61 #ifndef L_SET
62 #define L_SET 0
63 #endif
64
65 /* Some macros to provide DIE info for complaints. */
66
67 #define DIE_ID (curdie!=NULL ? curdie->die_ref : 0)
68 #define DIE_NAME (curdie!=NULL && curdie->at_name!=NULL) ? curdie->at_name : ""
69
70 /* Complaints that can be issued during DWARF debug info reading. */
71
72 struct complaint no_bfd_get_N =
73 {
74 "DIE @ 0x%x \"%s\", no bfd support for %d byte data object", 0, 0
75 };
76
77 struct complaint malformed_die =
78 {
79 "DIE @ 0x%x \"%s\", malformed DIE, bad length (%d bytes)", 0, 0
80 };
81
82 struct complaint bad_die_ref =
83 {
84 "DIE @ 0x%x \"%s\", reference to DIE (0x%x) outside compilation unit", 0, 0
85 };
86
87 struct complaint unknown_attribute_form =
88 {
89 "DIE @ 0x%x \"%s\", unknown attribute form (0x%x)", 0, 0
90 };
91
92 struct complaint unknown_attribute_length =
93 {
94 "DIE @ 0x%x \"%s\", unknown attribute length, skipped remaining attributes", 0, 0
95 };
96
97 struct complaint unexpected_fund_type =
98 {
99 "DIE @ 0x%x \"%s\", unexpected fundamental type 0x%x", 0, 0
100 };
101
102 struct complaint unknown_type_modifier =
103 {
104 "DIE @ 0x%x \"%s\", unknown type modifier %u", 0, 0
105 };
106
107 struct complaint volatile_ignored =
108 {
109 "DIE @ 0x%x \"%s\", type modifier 'volatile' ignored", 0, 0
110 };
111
112 struct complaint const_ignored =
113 {
114 "DIE @ 0x%x \"%s\", type modifier 'const' ignored", 0, 0
115 };
116
117 struct complaint botched_modified_type =
118 {
119 "DIE @ 0x%x \"%s\", botched modified type decoding (mtype 0x%x)", 0, 0
120 };
121
122 struct complaint op_deref2 =
123 {
124 "DIE @ 0x%x \"%s\", OP_DEREF2 address 0x%x not handled", 0, 0
125 };
126
127 struct complaint op_deref4 =
128 {
129 "DIE @ 0x%x \"%s\", OP_DEREF4 address 0x%x not handled", 0, 0
130 };
131
132 struct complaint basereg_not_handled =
133 {
134 "DIE @ 0x%x \"%s\", BASEREG %d not handled", 0, 0
135 };
136
137 struct complaint dup_user_type_allocation =
138 {
139 "DIE @ 0x%x \"%s\", internal error: duplicate user type allocation", 0, 0
140 };
141
142 struct complaint dup_user_type_definition =
143 {
144 "DIE @ 0x%x \"%s\", internal error: duplicate user type definition", 0, 0
145 };
146
147 struct complaint missing_tag =
148 {
149 "DIE @ 0x%x \"%s\", missing class, structure, or union tag", 0, 0
150 };
151
152 struct complaint bad_array_element_type =
153 {
154 "DIE @ 0x%x \"%s\", bad array element type attribute 0x%x", 0, 0
155 };
156
157 struct complaint subscript_data_items =
158 {
159 "DIE @ 0x%x \"%s\", can't decode subscript data items", 0, 0
160 };
161
162 struct complaint unhandled_array_subscript_format =
163 {
164 "DIE @ 0x%x \"%s\", array subscript format 0x%x not handled yet", 0, 0
165 };
166
167 struct complaint unknown_array_subscript_format =
168 {
169 "DIE @ 0x%x \"%s\", unknown array subscript format %x", 0, 0
170 };
171
172 struct complaint not_row_major =
173 {
174 "DIE @ 0x%x \"%s\", array not row major; not handled correctly", 0, 0
175 };
176
177 typedef unsigned int DIE_REF; /* Reference to a DIE */
178
179 #ifndef GCC_PRODUCER
180 #define GCC_PRODUCER "GNU C "
181 #endif
182
183 #ifndef GPLUS_PRODUCER
184 #define GPLUS_PRODUCER "GNU C++ "
185 #endif
186
187 #ifndef LCC_PRODUCER
188 #define LCC_PRODUCER "NCR C/C++"
189 #endif
190
191 #ifndef CHILL_PRODUCER
192 #define CHILL_PRODUCER "GNU Chill "
193 #endif
194
195 /* Provide a default mapping from a DWARF register number to a gdb REGNUM. */
196 #ifndef DWARF_REG_TO_REGNUM
197 #define DWARF_REG_TO_REGNUM(num) (num)
198 #endif
199
200 /* Flags to target_to_host() that tell whether or not the data object is
201 expected to be signed. Used, for example, when fetching a signed
202 integer in the target environment which is used as a signed integer
203 in the host environment, and the two environments have different sized
204 ints. In this case, *somebody* has to sign extend the smaller sized
205 int. */
206
207 #define GET_UNSIGNED 0 /* No sign extension required */
208 #define GET_SIGNED 1 /* Sign extension required */
209
210 /* Defines for things which are specified in the document "DWARF Debugging
211 Information Format" published by UNIX International, Programming Languages
212 SIG. These defines are based on revision 1.0.0, Jan 20, 1992. */
213
214 #define SIZEOF_DIE_LENGTH 4
215 #define SIZEOF_DIE_TAG 2
216 #define SIZEOF_ATTRIBUTE 2
217 #define SIZEOF_FORMAT_SPECIFIER 1
218 #define SIZEOF_FMT_FT 2
219 #define SIZEOF_LINETBL_LENGTH 4
220 #define SIZEOF_LINETBL_LINENO 4
221 #define SIZEOF_LINETBL_STMT 2
222 #define SIZEOF_LINETBL_DELTA 4
223 #define SIZEOF_LOC_ATOM_CODE 1
224
225 #define FORM_FROM_ATTR(attr) ((attr) & 0xF) /* Implicitly specified */
226
227 /* Macros that return the sizes of various types of data in the target
228 environment.
229
230 FIXME: Currently these are just compile time constants (as they are in
231 other parts of gdb as well). They need to be able to get the right size
232 either from the bfd or possibly from the DWARF info. It would be nice if
233 the DWARF producer inserted DIES that describe the fundamental types in
234 the target environment into the DWARF info, similar to the way dbx stabs
235 producers produce information about their fundamental types. */
236
237 #define TARGET_FT_POINTER_SIZE(objfile) (TARGET_PTR_BIT / TARGET_CHAR_BIT)
238 #define TARGET_FT_LONG_SIZE(objfile) (TARGET_LONG_BIT / TARGET_CHAR_BIT)
239
240 /* The Amiga SVR4 header file <dwarf.h> defines AT_element_list as a
241 FORM_BLOCK2, and this is the value emitted by the AT&T compiler.
242 However, the Issue 2 DWARF specification from AT&T defines it as
243 a FORM_BLOCK4, as does the latest specification from UI/PLSIG.
244 For backwards compatibility with the AT&T compiler produced executables
245 we define AT_short_element_list for this variant. */
246
247 #define AT_short_element_list (0x00f0|FORM_BLOCK2)
248
249 /* External variables referenced. */
250
251 extern int info_verbose; /* From main.c; nonzero => verbose */
252 extern char *warning_pre_print; /* From utils.c */
253
254 /* The DWARF debugging information consists of two major pieces,
255 one is a block of DWARF Information Entries (DIE's) and the other
256 is a line number table. The "struct dieinfo" structure contains
257 the information for a single DIE, the one currently being processed.
258
259 In order to make it easier to randomly access the attribute fields
260 of the current DIE, which are specifically unordered within the DIE,
261 each DIE is scanned and an instance of the "struct dieinfo"
262 structure is initialized.
263
264 Initialization is done in two levels. The first, done by basicdieinfo(),
265 just initializes those fields that are vital to deciding whether or not
266 to use this DIE, how to skip past it, etc. The second, done by the
267 function completedieinfo(), fills in the rest of the information.
268
269 Attributes which have block forms are not interpreted at the time
270 the DIE is scanned, instead we just save pointers to the start
271 of their value fields.
272
273 Some fields have a flag <name>_p that is set when the value of the
274 field is valid (I.E. we found a matching attribute in the DIE). Since
275 we may want to test for the presence of some attributes in the DIE,
276 such as AT_low_pc, without restricting the values of the field,
277 we need someway to note that we found such an attribute.
278
279 */
280
281 typedef char BLOCK;
282
283 struct dieinfo {
284 char * die; /* Pointer to the raw DIE data */
285 unsigned long die_length; /* Length of the raw DIE data */
286 DIE_REF die_ref; /* Offset of this DIE */
287 unsigned short die_tag; /* Tag for this DIE */
288 unsigned long at_padding;
289 unsigned long at_sibling;
290 BLOCK * at_location;
291 char * at_name;
292 unsigned short at_fund_type;
293 BLOCK * at_mod_fund_type;
294 unsigned long at_user_def_type;
295 BLOCK * at_mod_u_d_type;
296 unsigned short at_ordering;
297 BLOCK * at_subscr_data;
298 unsigned long at_byte_size;
299 unsigned short at_bit_offset;
300 unsigned long at_bit_size;
301 BLOCK * at_element_list;
302 unsigned long at_stmt_list;
303 CORE_ADDR at_low_pc;
304 CORE_ADDR at_high_pc;
305 unsigned long at_language;
306 unsigned long at_member;
307 unsigned long at_discr;
308 BLOCK * at_discr_value;
309 BLOCK * at_string_length;
310 char * at_comp_dir;
311 char * at_producer;
312 unsigned long at_start_scope;
313 unsigned long at_stride_size;
314 unsigned long at_src_info;
315 char * at_prototyped;
316 unsigned int has_at_low_pc:1;
317 unsigned int has_at_stmt_list:1;
318 unsigned int has_at_byte_size:1;
319 unsigned int short_element_list:1;
320 };
321
322 static int diecount; /* Approximate count of dies for compilation unit */
323 static struct dieinfo *curdie; /* For warnings and such */
324
325 static char *dbbase; /* Base pointer to dwarf info */
326 static int dbsize; /* Size of dwarf info in bytes */
327 static int dbroff; /* Relative offset from start of .debug section */
328 static char *lnbase; /* Base pointer to line section */
329 static int isreg; /* Kludge to identify register variables */
330 /* Kludge to identify basereg references. Nonzero if we have an offset
331 relative to a basereg. */
332 static int offreg;
333 /* Which base register is it relative to? */
334 static int basereg;
335
336 /* This value is added to each symbol value. FIXME: Generalize to
337 the section_offsets structure used by dbxread (once this is done,
338 pass the appropriate section number to end_symtab). */
339 static CORE_ADDR baseaddr; /* Add to each symbol value */
340
341 /* The section offsets used in the current psymtab or symtab. FIXME,
342 only used to pass one value (baseaddr) at the moment. */
343 static struct section_offsets *base_section_offsets;
344
345 /* Each partial symbol table entry contains a pointer to private data for the
346 read_symtab() function to use when expanding a partial symbol table entry
347 to a full symbol table entry. For DWARF debugging info, this data is
348 contained in the following structure and macros are provided for easy
349 access to the members given a pointer to a partial symbol table entry.
350
351 dbfoff Always the absolute file offset to the start of the ".debug"
352 section for the file containing the DIE's being accessed.
353
354 dbroff Relative offset from the start of the ".debug" access to the
355 first DIE to be accessed. When building the partial symbol
356 table, this value will be zero since we are accessing the
357 entire ".debug" section. When expanding a partial symbol
358 table entry, this value will be the offset to the first
359 DIE for the compilation unit containing the symbol that
360 triggers the expansion.
361
362 dblength The size of the chunk of DIE's being examined, in bytes.
363
364 lnfoff The absolute file offset to the line table fragment. Ignored
365 when building partial symbol tables, but used when expanding
366 them, and contains the absolute file offset to the fragment
367 of the ".line" section containing the line numbers for the
368 current compilation unit.
369 */
370
371 struct dwfinfo {
372 file_ptr dbfoff; /* Absolute file offset to start of .debug section */
373 int dbroff; /* Relative offset from start of .debug section */
374 int dblength; /* Size of the chunk of DIE's being examined */
375 file_ptr lnfoff; /* Absolute file offset to line table fragment */
376 };
377
378 #define DBFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbfoff)
379 #define DBROFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbroff)
380 #define DBLENGTH(p) (((struct dwfinfo *)((p)->read_symtab_private))->dblength)
381 #define LNFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->lnfoff)
382
383 /* The generic symbol table building routines have separate lists for
384 file scope symbols and all all other scopes (local scopes). So
385 we need to select the right one to pass to add_symbol_to_list().
386 We do it by keeping a pointer to the correct list in list_in_scope.
387
388 FIXME: The original dwarf code just treated the file scope as the first
389 local scope, and all other local scopes as nested local scopes, and worked
390 fine. Check to see if we really need to distinguish these in buildsym.c */
391
392 struct pending **list_in_scope = &file_symbols;
393
394 /* DIES which have user defined types or modified user defined types refer to
395 other DIES for the type information. Thus we need to associate the offset
396 of a DIE for a user defined type with a pointer to the type information.
397
398 Originally this was done using a simple but expensive algorithm, with an
399 array of unsorted structures, each containing an offset/type-pointer pair.
400 This array was scanned linearly each time a lookup was done. The result
401 was that gdb was spending over half it's startup time munging through this
402 array of pointers looking for a structure that had the right offset member.
403
404 The second attempt used the same array of structures, but the array was
405 sorted using qsort each time a new offset/type was recorded, and a binary
406 search was used to find the type pointer for a given DIE offset. This was
407 even slower, due to the overhead of sorting the array each time a new
408 offset/type pair was entered.
409
410 The third attempt uses a fixed size array of type pointers, indexed by a
411 value derived from the DIE offset. Since the minimum DIE size is 4 bytes,
412 we can divide any DIE offset by 4 to obtain a unique index into this fixed
413 size array. Since each element is a 4 byte pointer, it takes exactly as
414 much memory to hold this array as to hold the DWARF info for a given
415 compilation unit. But it gets freed as soon as we are done with it.
416 This has worked well in practice, as a reasonable tradeoff between memory
417 consumption and speed, without having to resort to much more complicated
418 algorithms. */
419
420 static struct type **utypes; /* Pointer to array of user type pointers */
421 static int numutypes; /* Max number of user type pointers */
422
423 /* Maintain an array of referenced fundamental types for the current
424 compilation unit being read. For DWARF version 1, we have to construct
425 the fundamental types on the fly, since no information about the
426 fundamental types is supplied. Each such fundamental type is created by
427 calling a language dependent routine to create the type, and then a
428 pointer to that type is then placed in the array at the index specified
429 by it's FT_<TYPENAME> value. The array has a fixed size set by the
430 FT_NUM_MEMBERS compile time constant, which is the number of predefined
431 fundamental types gdb knows how to construct. */
432
433 static struct type *ftypes[FT_NUM_MEMBERS]; /* Fundamental types */
434
435 /* Record the language for the compilation unit which is currently being
436 processed. We know it once we have seen the TAG_compile_unit DIE,
437 and we need it while processing the DIE's for that compilation unit.
438 It is eventually saved in the symtab structure, but we don't finalize
439 the symtab struct until we have processed all the DIE's for the
440 compilation unit. We also need to get and save a pointer to the
441 language struct for this language, so we can call the language
442 dependent routines for doing things such as creating fundamental
443 types. */
444
445 static enum language cu_language;
446 static const struct language_defn *cu_language_defn;
447
448 /* Forward declarations of static functions so we don't have to worry
449 about ordering within this file. */
450
451 static int
452 attribute_size PARAMS ((unsigned int));
453
454 static CORE_ADDR
455 target_to_host PARAMS ((char *, int, int, struct objfile *));
456
457 static void
458 add_enum_psymbol PARAMS ((struct dieinfo *, struct objfile *));
459
460 static void
461 handle_producer PARAMS ((char *));
462
463 static void
464 read_file_scope PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
465
466 static void
467 read_func_scope PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
468
469 static void
470 read_lexical_block_scope PARAMS ((struct dieinfo *, char *, char *,
471 struct objfile *));
472
473 static void
474 scan_partial_symbols PARAMS ((char *, char *, struct objfile *));
475
476 static void
477 scan_compilation_units PARAMS ((char *, char *, file_ptr,
478 file_ptr, struct objfile *));
479
480 static void
481 add_partial_symbol PARAMS ((struct dieinfo *, struct objfile *));
482
483 static void
484 init_psymbol_list PARAMS ((struct objfile *, int));
485
486 static void
487 basicdieinfo PARAMS ((struct dieinfo *, char *, struct objfile *));
488
489 static void
490 completedieinfo PARAMS ((struct dieinfo *, struct objfile *));
491
492 static void
493 dwarf_psymtab_to_symtab PARAMS ((struct partial_symtab *));
494
495 static void
496 psymtab_to_symtab_1 PARAMS ((struct partial_symtab *));
497
498 static void
499 read_ofile_symtab PARAMS ((struct partial_symtab *));
500
501 static void
502 process_dies PARAMS ((char *, char *, struct objfile *));
503
504 static void
505 read_structure_scope PARAMS ((struct dieinfo *, char *, char *,
506 struct objfile *));
507
508 static struct type *
509 decode_array_element_type PARAMS ((char *));
510
511 static struct type *
512 decode_subscript_data_item PARAMS ((char *, char *));
513
514 static void
515 dwarf_read_array_type PARAMS ((struct dieinfo *));
516
517 static void
518 read_tag_pointer_type PARAMS ((struct dieinfo *dip));
519
520 static void
521 read_tag_string_type PARAMS ((struct dieinfo *dip));
522
523 static void
524 read_subroutine_type PARAMS ((struct dieinfo *, char *, char *));
525
526 static void
527 read_enumeration PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
528
529 static struct type *
530 struct_type PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
531
532 static struct type *
533 enum_type PARAMS ((struct dieinfo *, struct objfile *));
534
535 static void
536 decode_line_numbers PARAMS ((char *));
537
538 static struct type *
539 decode_die_type PARAMS ((struct dieinfo *));
540
541 static struct type *
542 decode_mod_fund_type PARAMS ((char *));
543
544 static struct type *
545 decode_mod_u_d_type PARAMS ((char *));
546
547 static struct type *
548 decode_modified_type PARAMS ((char *, unsigned int, int));
549
550 static struct type *
551 decode_fund_type PARAMS ((unsigned int));
552
553 static char *
554 create_name PARAMS ((char *, struct obstack *));
555
556 static struct type *
557 lookup_utype PARAMS ((DIE_REF));
558
559 static struct type *
560 alloc_utype PARAMS ((DIE_REF, struct type *));
561
562 static struct symbol *
563 new_symbol PARAMS ((struct dieinfo *, struct objfile *));
564
565 static void
566 synthesize_typedef PARAMS ((struct dieinfo *, struct objfile *,
567 struct type *));
568
569 static int
570 locval PARAMS ((char *));
571
572 static void
573 set_cu_language PARAMS ((struct dieinfo *));
574
575 static struct type *
576 dwarf_fundamental_type PARAMS ((struct objfile *, int));
577
578
579 /*
580
581 LOCAL FUNCTION
582
583 dwarf_fundamental_type -- lookup or create a fundamental type
584
585 SYNOPSIS
586
587 struct type *
588 dwarf_fundamental_type (struct objfile *objfile, int typeid)
589
590 DESCRIPTION
591
592 DWARF version 1 doesn't supply any fundamental type information,
593 so gdb has to construct such types. It has a fixed number of
594 fundamental types that it knows how to construct, which is the
595 union of all types that it knows how to construct for all languages
596 that it knows about. These are enumerated in gdbtypes.h.
597
598 As an example, assume we find a DIE that references a DWARF
599 fundamental type of FT_integer. We first look in the ftypes
600 array to see if we already have such a type, indexed by the
601 gdb internal value of FT_INTEGER. If so, we simply return a
602 pointer to that type. If not, then we ask an appropriate
603 language dependent routine to create a type FT_INTEGER, using
604 defaults reasonable for the current target machine, and install
605 that type in ftypes for future reference.
606
607 RETURNS
608
609 Pointer to a fundamental type.
610
611 */
612
613 static struct type *
614 dwarf_fundamental_type (objfile, typeid)
615 struct objfile *objfile;
616 int typeid;
617 {
618 if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
619 {
620 error ("internal error - invalid fundamental type id %d", typeid);
621 }
622
623 /* Look for this particular type in the fundamental type vector. If one is
624 not found, create and install one appropriate for the current language
625 and the current target machine. */
626
627 if (ftypes[typeid] == NULL)
628 {
629 ftypes[typeid] = cu_language_defn -> la_fund_type(objfile, typeid);
630 }
631
632 return (ftypes[typeid]);
633 }
634
635 /*
636
637 LOCAL FUNCTION
638
639 set_cu_language -- set local copy of language for compilation unit
640
641 SYNOPSIS
642
643 void
644 set_cu_language (struct dieinfo *dip)
645
646 DESCRIPTION
647
648 Decode the language attribute for a compilation unit DIE and
649 remember what the language was. We use this at various times
650 when processing DIE's for a given compilation unit.
651
652 RETURNS
653
654 No return value.
655
656 */
657
658 static void
659 set_cu_language (dip)
660 struct dieinfo *dip;
661 {
662 switch (dip -> at_language)
663 {
664 case LANG_C89:
665 case LANG_C:
666 cu_language = language_c;
667 break;
668 case LANG_C_PLUS_PLUS:
669 cu_language = language_cplus;
670 break;
671 case LANG_CHILL:
672 cu_language = language_chill;
673 break;
674 case LANG_MODULA2:
675 cu_language = language_m2;
676 break;
677 case LANG_ADA83:
678 case LANG_COBOL74:
679 case LANG_COBOL85:
680 case LANG_FORTRAN77:
681 case LANG_FORTRAN90:
682 case LANG_PASCAL83:
683 /* We don't know anything special about these yet. */
684 cu_language = language_unknown;
685 break;
686 default:
687 /* If no at_language, try to deduce one from the filename */
688 cu_language = deduce_language_from_filename (dip -> at_name);
689 break;
690 }
691 cu_language_defn = language_def (cu_language);
692 }
693
694 /*
695
696 GLOBAL FUNCTION
697
698 dwarf_build_psymtabs -- build partial symtabs from DWARF debug info
699
700 SYNOPSIS
701
702 void dwarf_build_psymtabs (struct objfile *objfile,
703 struct section_offsets *section_offsets,
704 int mainline, file_ptr dbfoff, unsigned int dbfsize,
705 file_ptr lnoffset, unsigned int lnsize)
706
707 DESCRIPTION
708
709 This function is called upon to build partial symtabs from files
710 containing DIE's (Dwarf Information Entries) and DWARF line numbers.
711
712 It is passed a bfd* containing the DIES
713 and line number information, the corresponding filename for that
714 file, a base address for relocating the symbols, a flag indicating
715 whether or not this debugging information is from a "main symbol
716 table" rather than a shared library or dynamically linked file,
717 and file offset/size pairs for the DIE information and line number
718 information.
719
720 RETURNS
721
722 No return value.
723
724 */
725
726 void
727 dwarf_build_psymtabs (objfile, section_offsets, mainline, dbfoff, dbfsize,
728 lnoffset, lnsize)
729 struct objfile *objfile;
730 struct section_offsets *section_offsets;
731 int mainline;
732 file_ptr dbfoff;
733 unsigned int dbfsize;
734 file_ptr lnoffset;
735 unsigned int lnsize;
736 {
737 bfd *abfd = objfile->obfd;
738 struct cleanup *back_to;
739
740 current_objfile = objfile;
741 dbsize = dbfsize;
742 dbbase = xmalloc (dbsize);
743 dbroff = 0;
744 if ((bfd_seek (abfd, dbfoff, L_SET) != 0) ||
745 (bfd_read (dbbase, dbsize, 1, abfd) != dbsize))
746 {
747 free (dbbase);
748 error ("can't read DWARF data from '%s'", bfd_get_filename (abfd));
749 }
750 back_to = make_cleanup (free, dbbase);
751
752 /* If we are reinitializing, or if we have never loaded syms yet, init.
753 Since we have no idea how many DIES we are looking at, we just guess
754 some arbitrary value. */
755
756 if (mainline || objfile -> global_psymbols.size == 0 ||
757 objfile -> static_psymbols.size == 0)
758 {
759 init_psymbol_list (objfile, 1024);
760 }
761
762 /* Save the relocation factor where everybody can see it. */
763
764 base_section_offsets = section_offsets;
765 baseaddr = ANOFFSET (section_offsets, 0);
766
767 /* Follow the compilation unit sibling chain, building a partial symbol
768 table entry for each one. Save enough information about each compilation
769 unit to locate the full DWARF information later. */
770
771 scan_compilation_units (dbbase, dbbase + dbsize, dbfoff, lnoffset, objfile);
772
773 do_cleanups (back_to);
774 current_objfile = NULL;
775 }
776
777 /*
778
779 LOCAL FUNCTION
780
781 read_lexical_block_scope -- process all dies in a lexical block
782
783 SYNOPSIS
784
785 static void read_lexical_block_scope (struct dieinfo *dip,
786 char *thisdie, char *enddie)
787
788 DESCRIPTION
789
790 Process all the DIES contained within a lexical block scope.
791 Start a new scope, process the dies, and then close the scope.
792
793 */
794
795 static void
796 read_lexical_block_scope (dip, thisdie, enddie, objfile)
797 struct dieinfo *dip;
798 char *thisdie;
799 char *enddie;
800 struct objfile *objfile;
801 {
802 register struct context_stack *new;
803
804 push_context (0, dip -> at_low_pc);
805 process_dies (thisdie + dip -> die_length, enddie, objfile);
806 new = pop_context ();
807 if (local_symbols != NULL)
808 {
809 finish_block (0, &local_symbols, new -> old_blocks, new -> start_addr,
810 dip -> at_high_pc, objfile);
811 }
812 local_symbols = new -> locals;
813 }
814
815 /*
816
817 LOCAL FUNCTION
818
819 lookup_utype -- look up a user defined type from die reference
820
821 SYNOPSIS
822
823 static type *lookup_utype (DIE_REF die_ref)
824
825 DESCRIPTION
826
827 Given a DIE reference, lookup the user defined type associated with
828 that DIE, if it has been registered already. If not registered, then
829 return NULL. Alloc_utype() can be called to register an empty
830 type for this reference, which will be filled in later when the
831 actual referenced DIE is processed.
832 */
833
834 static struct type *
835 lookup_utype (die_ref)
836 DIE_REF die_ref;
837 {
838 struct type *type = NULL;
839 int utypeidx;
840
841 utypeidx = (die_ref - dbroff) / 4;
842 if ((utypeidx < 0) || (utypeidx >= numutypes))
843 {
844 complain (&bad_die_ref, DIE_ID, DIE_NAME);
845 }
846 else
847 {
848 type = *(utypes + utypeidx);
849 }
850 return (type);
851 }
852
853
854 /*
855
856 LOCAL FUNCTION
857
858 alloc_utype -- add a user defined type for die reference
859
860 SYNOPSIS
861
862 static type *alloc_utype (DIE_REF die_ref, struct type *utypep)
863
864 DESCRIPTION
865
866 Given a die reference DIE_REF, and a possible pointer to a user
867 defined type UTYPEP, register that this reference has a user
868 defined type and either use the specified type in UTYPEP or
869 make a new empty type that will be filled in later.
870
871 We should only be called after calling lookup_utype() to verify that
872 there is not currently a type registered for DIE_REF.
873 */
874
875 static struct type *
876 alloc_utype (die_ref, utypep)
877 DIE_REF die_ref;
878 struct type *utypep;
879 {
880 struct type **typep;
881 int utypeidx;
882
883 utypeidx = (die_ref - dbroff) / 4;
884 typep = utypes + utypeidx;
885 if ((utypeidx < 0) || (utypeidx >= numutypes))
886 {
887 utypep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
888 complain (&bad_die_ref, DIE_ID, DIE_NAME);
889 }
890 else if (*typep != NULL)
891 {
892 utypep = *typep;
893 complain (&dup_user_type_allocation, DIE_ID, DIE_NAME);
894 }
895 else
896 {
897 if (utypep == NULL)
898 {
899 utypep = alloc_type (current_objfile);
900 }
901 *typep = utypep;
902 }
903 return (utypep);
904 }
905
906 /*
907
908 LOCAL FUNCTION
909
910 decode_die_type -- return a type for a specified die
911
912 SYNOPSIS
913
914 static struct type *decode_die_type (struct dieinfo *dip)
915
916 DESCRIPTION
917
918 Given a pointer to a die information structure DIP, decode the
919 type of the die and return a pointer to the decoded type. All
920 dies without specific types default to type int.
921 */
922
923 static struct type *
924 decode_die_type (dip)
925 struct dieinfo *dip;
926 {
927 struct type *type = NULL;
928
929 if (dip -> at_fund_type != 0)
930 {
931 type = decode_fund_type (dip -> at_fund_type);
932 }
933 else if (dip -> at_mod_fund_type != NULL)
934 {
935 type = decode_mod_fund_type (dip -> at_mod_fund_type);
936 }
937 else if (dip -> at_user_def_type)
938 {
939 if ((type = lookup_utype (dip -> at_user_def_type)) == NULL)
940 {
941 type = alloc_utype (dip -> at_user_def_type, NULL);
942 }
943 }
944 else if (dip -> at_mod_u_d_type)
945 {
946 type = decode_mod_u_d_type (dip -> at_mod_u_d_type);
947 }
948 else
949 {
950 type = dwarf_fundamental_type (current_objfile, FT_INTEGER);
951 }
952 return (type);
953 }
954
955 /*
956
957 LOCAL FUNCTION
958
959 struct_type -- compute and return the type for a struct or union
960
961 SYNOPSIS
962
963 static struct type *struct_type (struct dieinfo *dip, char *thisdie,
964 char *enddie, struct objfile *objfile)
965
966 DESCRIPTION
967
968 Given pointer to a die information structure for a die which
969 defines a union or structure (and MUST define one or the other),
970 and pointers to the raw die data that define the range of dies which
971 define the members, compute and return the user defined type for the
972 structure or union.
973 */
974
975 static struct type *
976 struct_type (dip, thisdie, enddie, objfile)
977 struct dieinfo *dip;
978 char *thisdie;
979 char *enddie;
980 struct objfile *objfile;
981 {
982 struct type *type;
983 struct nextfield {
984 struct nextfield *next;
985 struct field field;
986 };
987 struct nextfield *list = NULL;
988 struct nextfield *new;
989 int nfields = 0;
990 int n;
991 struct dieinfo mbr;
992 char *nextdie;
993 int anonymous_size;
994
995 if ((type = lookup_utype (dip -> die_ref)) == NULL)
996 {
997 /* No forward references created an empty type, so install one now */
998 type = alloc_utype (dip -> die_ref, NULL);
999 }
1000 INIT_CPLUS_SPECIFIC(type);
1001 switch (dip -> die_tag)
1002 {
1003 case TAG_class_type:
1004 TYPE_CODE (type) = TYPE_CODE_CLASS;
1005 break;
1006 case TAG_structure_type:
1007 TYPE_CODE (type) = TYPE_CODE_STRUCT;
1008 break;
1009 case TAG_union_type:
1010 TYPE_CODE (type) = TYPE_CODE_UNION;
1011 break;
1012 default:
1013 /* Should never happen */
1014 TYPE_CODE (type) = TYPE_CODE_UNDEF;
1015 complain (&missing_tag, DIE_ID, DIE_NAME);
1016 break;
1017 }
1018 /* Some compilers try to be helpful by inventing "fake" names for
1019 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1020 Thanks, but no thanks... */
1021 if (dip -> at_name != NULL
1022 && *dip -> at_name != '~'
1023 && *dip -> at_name != '.')
1024 {
1025 TYPE_TAG_NAME (type) = obconcat (&objfile -> type_obstack,
1026 "", "", dip -> at_name);
1027 }
1028 /* Use whatever size is known. Zero is a valid size. We might however
1029 wish to check has_at_byte_size to make sure that some byte size was
1030 given explicitly, but DWARF doesn't specify that explicit sizes of
1031 zero have to present, so complaining about missing sizes should
1032 probably not be the default. */
1033 TYPE_LENGTH (type) = dip -> at_byte_size;
1034 thisdie += dip -> die_length;
1035 while (thisdie < enddie)
1036 {
1037 basicdieinfo (&mbr, thisdie, objfile);
1038 completedieinfo (&mbr, objfile);
1039 if (mbr.die_length <= SIZEOF_DIE_LENGTH)
1040 {
1041 break;
1042 }
1043 else if (mbr.at_sibling != 0)
1044 {
1045 nextdie = dbbase + mbr.at_sibling - dbroff;
1046 }
1047 else
1048 {
1049 nextdie = thisdie + mbr.die_length;
1050 }
1051 switch (mbr.die_tag)
1052 {
1053 case TAG_member:
1054 /* Get space to record the next field's data. */
1055 new = (struct nextfield *) alloca (sizeof (struct nextfield));
1056 new -> next = list;
1057 list = new;
1058 /* Save the data. */
1059 list -> field.name =
1060 obsavestring (mbr.at_name, strlen (mbr.at_name),
1061 &objfile -> type_obstack);
1062 list -> field.type = decode_die_type (&mbr);
1063 list -> field.bitpos = 8 * locval (mbr.at_location);
1064 /* Handle bit fields. */
1065 list -> field.bitsize = mbr.at_bit_size;
1066 if (BITS_BIG_ENDIAN)
1067 {
1068 /* For big endian bits, the at_bit_offset gives the
1069 additional bit offset from the MSB of the containing
1070 anonymous object to the MSB of the field. We don't
1071 have to do anything special since we don't need to
1072 know the size of the anonymous object. */
1073 list -> field.bitpos += mbr.at_bit_offset;
1074 }
1075 else
1076 {
1077 /* For little endian bits, we need to have a non-zero
1078 at_bit_size, so that we know we are in fact dealing
1079 with a bitfield. Compute the bit offset to the MSB
1080 of the anonymous object, subtract off the number of
1081 bits from the MSB of the field to the MSB of the
1082 object, and then subtract off the number of bits of
1083 the field itself. The result is the bit offset of
1084 the LSB of the field. */
1085 if (mbr.at_bit_size > 0)
1086 {
1087 if (mbr.has_at_byte_size)
1088 {
1089 /* The size of the anonymous object containing
1090 the bit field is explicit, so use the
1091 indicated size (in bytes). */
1092 anonymous_size = mbr.at_byte_size;
1093 }
1094 else
1095 {
1096 /* The size of the anonymous object containing
1097 the bit field matches the size of an object
1098 of the bit field's type. DWARF allows
1099 at_byte_size to be left out in such cases, as
1100 a debug information size optimization. */
1101 anonymous_size = TYPE_LENGTH (list -> field.type);
1102 }
1103 list -> field.bitpos +=
1104 anonymous_size * 8 - mbr.at_bit_offset - mbr.at_bit_size;
1105 }
1106 }
1107 nfields++;
1108 break;
1109 default:
1110 process_dies (thisdie, nextdie, objfile);
1111 break;
1112 }
1113 thisdie = nextdie;
1114 }
1115 /* Now create the vector of fields, and record how big it is. We may
1116 not even have any fields, if this DIE was generated due to a reference
1117 to an anonymous structure or union. In this case, TYPE_FLAG_STUB is
1118 set, which clues gdb in to the fact that it needs to search elsewhere
1119 for the full structure definition. */
1120 if (nfields == 0)
1121 {
1122 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1123 }
1124 else
1125 {
1126 TYPE_NFIELDS (type) = nfields;
1127 TYPE_FIELDS (type) = (struct field *)
1128 TYPE_ALLOC (type, sizeof (struct field) * nfields);
1129 /* Copy the saved-up fields into the field vector. */
1130 for (n = nfields; list; list = list -> next)
1131 {
1132 TYPE_FIELD (type, --n) = list -> field;
1133 }
1134 }
1135 return (type);
1136 }
1137
1138 /*
1139
1140 LOCAL FUNCTION
1141
1142 read_structure_scope -- process all dies within struct or union
1143
1144 SYNOPSIS
1145
1146 static void read_structure_scope (struct dieinfo *dip,
1147 char *thisdie, char *enddie, struct objfile *objfile)
1148
1149 DESCRIPTION
1150
1151 Called when we find the DIE that starts a structure or union
1152 scope (definition) to process all dies that define the members
1153 of the structure or union. DIP is a pointer to the die info
1154 struct for the DIE that names the structure or union.
1155
1156 NOTES
1157
1158 Note that we need to call struct_type regardless of whether or not
1159 the DIE has an at_name attribute, since it might be an anonymous
1160 structure or union. This gets the type entered into our set of
1161 user defined types.
1162
1163 However, if the structure is incomplete (an opaque struct/union)
1164 then suppress creating a symbol table entry for it since gdb only
1165 wants to find the one with the complete definition. Note that if
1166 it is complete, we just call new_symbol, which does it's own
1167 checking about whether the struct/union is anonymous or not (and
1168 suppresses creating a symbol table entry itself).
1169
1170 */
1171
1172 static void
1173 read_structure_scope (dip, thisdie, enddie, objfile)
1174 struct dieinfo *dip;
1175 char *thisdie;
1176 char *enddie;
1177 struct objfile *objfile;
1178 {
1179 struct type *type;
1180 struct symbol *sym;
1181
1182 type = struct_type (dip, thisdie, enddie, objfile);
1183 if (!(TYPE_FLAGS (type) & TYPE_FLAG_STUB))
1184 {
1185 sym = new_symbol (dip, objfile);
1186 if (sym != NULL)
1187 {
1188 SYMBOL_TYPE (sym) = type;
1189 if (cu_language == language_cplus)
1190 {
1191 synthesize_typedef (dip, objfile, type);
1192 }
1193 }
1194 }
1195 }
1196
1197 /*
1198
1199 LOCAL FUNCTION
1200
1201 decode_array_element_type -- decode type of the array elements
1202
1203 SYNOPSIS
1204
1205 static struct type *decode_array_element_type (char *scan, char *end)
1206
1207 DESCRIPTION
1208
1209 As the last step in decoding the array subscript information for an
1210 array DIE, we need to decode the type of the array elements. We are
1211 passed a pointer to this last part of the subscript information and
1212 must return the appropriate type. If the type attribute is not
1213 recognized, just warn about the problem and return type int.
1214 */
1215
1216 static struct type *
1217 decode_array_element_type (scan)
1218 char *scan;
1219 {
1220 struct type *typep;
1221 DIE_REF die_ref;
1222 unsigned short attribute;
1223 unsigned short fundtype;
1224 int nbytes;
1225
1226 attribute = target_to_host (scan, SIZEOF_ATTRIBUTE, GET_UNSIGNED,
1227 current_objfile);
1228 scan += SIZEOF_ATTRIBUTE;
1229 if ((nbytes = attribute_size (attribute)) == -1)
1230 {
1231 complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute);
1232 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1233 }
1234 else
1235 {
1236 switch (attribute)
1237 {
1238 case AT_fund_type:
1239 fundtype = target_to_host (scan, nbytes, GET_UNSIGNED,
1240 current_objfile);
1241 typep = decode_fund_type (fundtype);
1242 break;
1243 case AT_mod_fund_type:
1244 typep = decode_mod_fund_type (scan);
1245 break;
1246 case AT_user_def_type:
1247 die_ref = target_to_host (scan, nbytes, GET_UNSIGNED,
1248 current_objfile);
1249 if ((typep = lookup_utype (die_ref)) == NULL)
1250 {
1251 typep = alloc_utype (die_ref, NULL);
1252 }
1253 break;
1254 case AT_mod_u_d_type:
1255 typep = decode_mod_u_d_type (scan);
1256 break;
1257 default:
1258 complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute);
1259 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1260 break;
1261 }
1262 }
1263 return (typep);
1264 }
1265
1266 /*
1267
1268 LOCAL FUNCTION
1269
1270 decode_subscript_data_item -- decode array subscript item
1271
1272 SYNOPSIS
1273
1274 static struct type *
1275 decode_subscript_data_item (char *scan, char *end)
1276
1277 DESCRIPTION
1278
1279 The array subscripts and the data type of the elements of an
1280 array are described by a list of data items, stored as a block
1281 of contiguous bytes. There is a data item describing each array
1282 dimension, and a final data item describing the element type.
1283 The data items are ordered the same as their appearance in the
1284 source (I.E. leftmost dimension first, next to leftmost second,
1285 etc).
1286
1287 The data items describing each array dimension consist of four
1288 parts: (1) a format specifier, (2) type type of the subscript
1289 index, (3) a description of the low bound of the array dimension,
1290 and (4) a description of the high bound of the array dimension.
1291
1292 The last data item is the description of the type of each of
1293 the array elements.
1294
1295 We are passed a pointer to the start of the block of bytes
1296 containing the remaining data items, and a pointer to the first
1297 byte past the data. This function recursively decodes the
1298 remaining data items and returns a type.
1299
1300 If we somehow fail to decode some data, we complain about it
1301 and return a type "array of int".
1302
1303 BUGS
1304 FIXME: This code only implements the forms currently used
1305 by the AT&T and GNU C compilers.
1306
1307 The end pointer is supplied for error checking, maybe we should
1308 use it for that...
1309 */
1310
1311 static struct type *
1312 decode_subscript_data_item (scan, end)
1313 char *scan;
1314 char *end;
1315 {
1316 struct type *typep = NULL; /* Array type we are building */
1317 struct type *nexttype; /* Type of each element (may be array) */
1318 struct type *indextype; /* Type of this index */
1319 struct type *rangetype;
1320 unsigned int format;
1321 unsigned short fundtype;
1322 unsigned long lowbound;
1323 unsigned long highbound;
1324 int nbytes;
1325
1326 format = target_to_host (scan, SIZEOF_FORMAT_SPECIFIER, GET_UNSIGNED,
1327 current_objfile);
1328 scan += SIZEOF_FORMAT_SPECIFIER;
1329 switch (format)
1330 {
1331 case FMT_ET:
1332 typep = decode_array_element_type (scan);
1333 break;
1334 case FMT_FT_C_C:
1335 fundtype = target_to_host (scan, SIZEOF_FMT_FT, GET_UNSIGNED,
1336 current_objfile);
1337 indextype = decode_fund_type (fundtype);
1338 scan += SIZEOF_FMT_FT;
1339 nbytes = TARGET_FT_LONG_SIZE (current_objfile);
1340 lowbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1341 scan += nbytes;
1342 highbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1343 scan += nbytes;
1344 nexttype = decode_subscript_data_item (scan, end);
1345 if (nexttype == NULL)
1346 {
1347 /* Munged subscript data or other problem, fake it. */
1348 complain (&subscript_data_items, DIE_ID, DIE_NAME);
1349 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1350 }
1351 rangetype = create_range_type ((struct type *) NULL, indextype,
1352 lowbound, highbound);
1353 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1354 break;
1355 case FMT_FT_C_X:
1356 case FMT_FT_X_C:
1357 case FMT_FT_X_X:
1358 case FMT_UT_C_C:
1359 case FMT_UT_C_X:
1360 case FMT_UT_X_C:
1361 case FMT_UT_X_X:
1362 complain (&unhandled_array_subscript_format, DIE_ID, DIE_NAME, format);
1363 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1364 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1365 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1366 break;
1367 default:
1368 complain (&unknown_array_subscript_format, DIE_ID, DIE_NAME, format);
1369 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1370 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1371 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1372 break;
1373 }
1374 return (typep);
1375 }
1376
1377 /*
1378
1379 LOCAL FUNCTION
1380
1381 dwarf_read_array_type -- read TAG_array_type DIE
1382
1383 SYNOPSIS
1384
1385 static void dwarf_read_array_type (struct dieinfo *dip)
1386
1387 DESCRIPTION
1388
1389 Extract all information from a TAG_array_type DIE and add to
1390 the user defined type vector.
1391 */
1392
1393 static void
1394 dwarf_read_array_type (dip)
1395 struct dieinfo *dip;
1396 {
1397 struct type *type;
1398 struct type *utype;
1399 char *sub;
1400 char *subend;
1401 unsigned short blocksz;
1402 int nbytes;
1403
1404 if (dip -> at_ordering != ORD_row_major)
1405 {
1406 /* FIXME: Can gdb even handle column major arrays? */
1407 complain (&not_row_major, DIE_ID, DIE_NAME);
1408 }
1409 if ((sub = dip -> at_subscr_data) != NULL)
1410 {
1411 nbytes = attribute_size (AT_subscr_data);
1412 blocksz = target_to_host (sub, nbytes, GET_UNSIGNED, current_objfile);
1413 subend = sub + nbytes + blocksz;
1414 sub += nbytes;
1415 type = decode_subscript_data_item (sub, subend);
1416 if ((utype = lookup_utype (dip -> die_ref)) == NULL)
1417 {
1418 /* Install user defined type that has not been referenced yet. */
1419 alloc_utype (dip -> die_ref, type);
1420 }
1421 else if (TYPE_CODE (utype) == TYPE_CODE_UNDEF)
1422 {
1423 /* Ick! A forward ref has already generated a blank type in our
1424 slot, and this type probably already has things pointing to it
1425 (which is what caused it to be created in the first place).
1426 If it's just a place holder we can plop our fully defined type
1427 on top of it. We can't recover the space allocated for our
1428 new type since it might be on an obstack, but we could reuse
1429 it if we kept a list of them, but it might not be worth it
1430 (FIXME). */
1431 *utype = *type;
1432 }
1433 else
1434 {
1435 /* Double ick! Not only is a type already in our slot, but
1436 someone has decorated it. Complain and leave it alone. */
1437 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1438 }
1439 }
1440 }
1441
1442 /*
1443
1444 LOCAL FUNCTION
1445
1446 read_tag_pointer_type -- read TAG_pointer_type DIE
1447
1448 SYNOPSIS
1449
1450 static void read_tag_pointer_type (struct dieinfo *dip)
1451
1452 DESCRIPTION
1453
1454 Extract all information from a TAG_pointer_type DIE and add to
1455 the user defined type vector.
1456 */
1457
1458 static void
1459 read_tag_pointer_type (dip)
1460 struct dieinfo *dip;
1461 {
1462 struct type *type;
1463 struct type *utype;
1464
1465 type = decode_die_type (dip);
1466 if ((utype = lookup_utype (dip -> die_ref)) == NULL)
1467 {
1468 utype = lookup_pointer_type (type);
1469 alloc_utype (dip -> die_ref, utype);
1470 }
1471 else
1472 {
1473 TYPE_TARGET_TYPE (utype) = type;
1474 TYPE_POINTER_TYPE (type) = utype;
1475
1476 /* We assume the machine has only one representation for pointers! */
1477 /* FIXME: This confuses host<->target data representations, and is a
1478 poor assumption besides. */
1479
1480 TYPE_LENGTH (utype) = sizeof (char *);
1481 TYPE_CODE (utype) = TYPE_CODE_PTR;
1482 }
1483 }
1484
1485 /*
1486
1487 LOCAL FUNCTION
1488
1489 read_tag_string_type -- read TAG_string_type DIE
1490
1491 SYNOPSIS
1492
1493 static void read_tag_string_type (struct dieinfo *dip)
1494
1495 DESCRIPTION
1496
1497 Extract all information from a TAG_string_type DIE and add to
1498 the user defined type vector. It isn't really a user defined
1499 type, but it behaves like one, with other DIE's using an
1500 AT_user_def_type attribute to reference it.
1501 */
1502
1503 static void
1504 read_tag_string_type (dip)
1505 struct dieinfo *dip;
1506 {
1507 struct type *utype;
1508 struct type *indextype;
1509 struct type *rangetype;
1510 unsigned long lowbound = 0;
1511 unsigned long highbound;
1512
1513 if (dip -> has_at_byte_size)
1514 {
1515 /* A fixed bounds string */
1516 highbound = dip -> at_byte_size - 1;
1517 }
1518 else
1519 {
1520 /* A varying length string. Stub for now. (FIXME) */
1521 highbound = 1;
1522 }
1523 indextype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1524 rangetype = create_range_type ((struct type *) NULL, indextype, lowbound,
1525 highbound);
1526
1527 utype = lookup_utype (dip -> die_ref);
1528 if (utype == NULL)
1529 {
1530 /* No type defined, go ahead and create a blank one to use. */
1531 utype = alloc_utype (dip -> die_ref, (struct type *) NULL);
1532 }
1533 else
1534 {
1535 /* Already a type in our slot due to a forward reference. Make sure it
1536 is a blank one. If not, complain and leave it alone. */
1537 if (TYPE_CODE (utype) != TYPE_CODE_UNDEF)
1538 {
1539 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1540 return;
1541 }
1542 }
1543
1544 /* Create the string type using the blank type we either found or created. */
1545 utype = create_string_type (utype, rangetype);
1546 }
1547
1548 /*
1549
1550 LOCAL FUNCTION
1551
1552 read_subroutine_type -- process TAG_subroutine_type dies
1553
1554 SYNOPSIS
1555
1556 static void read_subroutine_type (struct dieinfo *dip, char thisdie,
1557 char *enddie)
1558
1559 DESCRIPTION
1560
1561 Handle DIES due to C code like:
1562
1563 struct foo {
1564 int (*funcp)(int a, long l); (Generates TAG_subroutine_type DIE)
1565 int b;
1566 };
1567
1568 NOTES
1569
1570 The parameter DIES are currently ignored. See if gdb has a way to
1571 include this info in it's type system, and decode them if so. Is
1572 this what the type structure's "arg_types" field is for? (FIXME)
1573 */
1574
1575 static void
1576 read_subroutine_type (dip, thisdie, enddie)
1577 struct dieinfo *dip;
1578 char *thisdie;
1579 char *enddie;
1580 {
1581 struct type *type; /* Type that this function returns */
1582 struct type *ftype; /* Function that returns above type */
1583
1584 /* Decode the type that this subroutine returns */
1585
1586 type = decode_die_type (dip);
1587
1588 /* Check to see if we already have a partially constructed user
1589 defined type for this DIE, from a forward reference. */
1590
1591 if ((ftype = lookup_utype (dip -> die_ref)) == NULL)
1592 {
1593 /* This is the first reference to one of these types. Make
1594 a new one and place it in the user defined types. */
1595 ftype = lookup_function_type (type);
1596 alloc_utype (dip -> die_ref, ftype);
1597 }
1598 else if (TYPE_CODE (ftype) == TYPE_CODE_UNDEF)
1599 {
1600 /* We have an existing partially constructed type, so bash it
1601 into the correct type. */
1602 TYPE_TARGET_TYPE (ftype) = type;
1603 TYPE_LENGTH (ftype) = 1;
1604 TYPE_CODE (ftype) = TYPE_CODE_FUNC;
1605 }
1606 else
1607 {
1608 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1609 }
1610 }
1611
1612 /*
1613
1614 LOCAL FUNCTION
1615
1616 read_enumeration -- process dies which define an enumeration
1617
1618 SYNOPSIS
1619
1620 static void read_enumeration (struct dieinfo *dip, char *thisdie,
1621 char *enddie, struct objfile *objfile)
1622
1623 DESCRIPTION
1624
1625 Given a pointer to a die which begins an enumeration, process all
1626 the dies that define the members of the enumeration.
1627
1628 NOTES
1629
1630 Note that we need to call enum_type regardless of whether or not we
1631 have a symbol, since we might have an enum without a tag name (thus
1632 no symbol for the tagname).
1633 */
1634
1635 static void
1636 read_enumeration (dip, thisdie, enddie, objfile)
1637 struct dieinfo *dip;
1638 char *thisdie;
1639 char *enddie;
1640 struct objfile *objfile;
1641 {
1642 struct type *type;
1643 struct symbol *sym;
1644
1645 type = enum_type (dip, objfile);
1646 sym = new_symbol (dip, objfile);
1647 if (sym != NULL)
1648 {
1649 SYMBOL_TYPE (sym) = type;
1650 if (cu_language == language_cplus)
1651 {
1652 synthesize_typedef (dip, objfile, type);
1653 }
1654 }
1655 }
1656
1657 /*
1658
1659 LOCAL FUNCTION
1660
1661 enum_type -- decode and return a type for an enumeration
1662
1663 SYNOPSIS
1664
1665 static type *enum_type (struct dieinfo *dip, struct objfile *objfile)
1666
1667 DESCRIPTION
1668
1669 Given a pointer to a die information structure for the die which
1670 starts an enumeration, process all the dies that define the members
1671 of the enumeration and return a type pointer for the enumeration.
1672
1673 At the same time, for each member of the enumeration, create a
1674 symbol for it with namespace VAR_NAMESPACE and class LOC_CONST,
1675 and give it the type of the enumeration itself.
1676
1677 NOTES
1678
1679 Note that the DWARF specification explicitly mandates that enum
1680 constants occur in reverse order from the source program order,
1681 for "consistency" and because this ordering is easier for many
1682 compilers to generate. (Draft 6, sec 3.8.5, Enumeration type
1683 Entries). Because gdb wants to see the enum members in program
1684 source order, we have to ensure that the order gets reversed while
1685 we are processing them.
1686 */
1687
1688 static struct type *
1689 enum_type (dip, objfile)
1690 struct dieinfo *dip;
1691 struct objfile *objfile;
1692 {
1693 struct type *type;
1694 struct nextfield {
1695 struct nextfield *next;
1696 struct field field;
1697 };
1698 struct nextfield *list = NULL;
1699 struct nextfield *new;
1700 int nfields = 0;
1701 int n;
1702 char *scan;
1703 char *listend;
1704 unsigned short blocksz;
1705 struct symbol *sym;
1706 int nbytes;
1707
1708 if ((type = lookup_utype (dip -> die_ref)) == NULL)
1709 {
1710 /* No forward references created an empty type, so install one now */
1711 type = alloc_utype (dip -> die_ref, NULL);
1712 }
1713 TYPE_CODE (type) = TYPE_CODE_ENUM;
1714 /* Some compilers try to be helpful by inventing "fake" names for
1715 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1716 Thanks, but no thanks... */
1717 if (dip -> at_name != NULL
1718 && *dip -> at_name != '~'
1719 && *dip -> at_name != '.')
1720 {
1721 TYPE_TAG_NAME (type) = obconcat (&objfile -> type_obstack,
1722 "", "", dip -> at_name);
1723 }
1724 if (dip -> at_byte_size != 0)
1725 {
1726 TYPE_LENGTH (type) = dip -> at_byte_size;
1727 }
1728 if ((scan = dip -> at_element_list) != NULL)
1729 {
1730 if (dip -> short_element_list)
1731 {
1732 nbytes = attribute_size (AT_short_element_list);
1733 }
1734 else
1735 {
1736 nbytes = attribute_size (AT_element_list);
1737 }
1738 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
1739 listend = scan + nbytes + blocksz;
1740 scan += nbytes;
1741 while (scan < listend)
1742 {
1743 new = (struct nextfield *) alloca (sizeof (struct nextfield));
1744 new -> next = list;
1745 list = new;
1746 list -> field.type = NULL;
1747 list -> field.bitsize = 0;
1748 list -> field.bitpos =
1749 target_to_host (scan, TARGET_FT_LONG_SIZE (objfile), GET_SIGNED,
1750 objfile);
1751 scan += TARGET_FT_LONG_SIZE (objfile);
1752 list -> field.name = obsavestring (scan, strlen (scan),
1753 &objfile -> type_obstack);
1754 scan += strlen (scan) + 1;
1755 nfields++;
1756 /* Handcraft a new symbol for this enum member. */
1757 sym = (struct symbol *) obstack_alloc (&objfile->symbol_obstack,
1758 sizeof (struct symbol));
1759 memset (sym, 0, sizeof (struct symbol));
1760 SYMBOL_NAME (sym) = create_name (list -> field.name,
1761 &objfile->symbol_obstack);
1762 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
1763 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1764 SYMBOL_CLASS (sym) = LOC_CONST;
1765 SYMBOL_TYPE (sym) = type;
1766 SYMBOL_VALUE (sym) = list -> field.bitpos;
1767 add_symbol_to_list (sym, list_in_scope);
1768 }
1769 /* Now create the vector of fields, and record how big it is. This is
1770 where we reverse the order, by pulling the members off the list in
1771 reverse order from how they were inserted. If we have no fields
1772 (this is apparently possible in C++) then skip building a field
1773 vector. */
1774 if (nfields > 0)
1775 {
1776 TYPE_NFIELDS (type) = nfields;
1777 TYPE_FIELDS (type) = (struct field *)
1778 obstack_alloc (&objfile->symbol_obstack, sizeof (struct field) * nfields);
1779 /* Copy the saved-up fields into the field vector. */
1780 for (n = 0; (n < nfields) && (list != NULL); list = list -> next)
1781 {
1782 TYPE_FIELD (type, n++) = list -> field;
1783 }
1784 }
1785 }
1786 return (type);
1787 }
1788
1789 /*
1790
1791 LOCAL FUNCTION
1792
1793 read_func_scope -- process all dies within a function scope
1794
1795 DESCRIPTION
1796
1797 Process all dies within a given function scope. We are passed
1798 a die information structure pointer DIP for the die which
1799 starts the function scope, and pointers into the raw die data
1800 that define the dies within the function scope.
1801
1802 For now, we ignore lexical block scopes within the function.
1803 The problem is that AT&T cc does not define a DWARF lexical
1804 block scope for the function itself, while gcc defines a
1805 lexical block scope for the function. We need to think about
1806 how to handle this difference, or if it is even a problem.
1807 (FIXME)
1808 */
1809
1810 static void
1811 read_func_scope (dip, thisdie, enddie, objfile)
1812 struct dieinfo *dip;
1813 char *thisdie;
1814 char *enddie;
1815 struct objfile *objfile;
1816 {
1817 register struct context_stack *new;
1818
1819 if (objfile -> ei.entry_point >= dip -> at_low_pc &&
1820 objfile -> ei.entry_point < dip -> at_high_pc)
1821 {
1822 objfile -> ei.entry_func_lowpc = dip -> at_low_pc;
1823 objfile -> ei.entry_func_highpc = dip -> at_high_pc;
1824 }
1825 if (STREQ (dip -> at_name, "main")) /* FIXME: hardwired name */
1826 {
1827 objfile -> ei.main_func_lowpc = dip -> at_low_pc;
1828 objfile -> ei.main_func_highpc = dip -> at_high_pc;
1829 }
1830 new = push_context (0, dip -> at_low_pc);
1831 new -> name = new_symbol (dip, objfile);
1832 list_in_scope = &local_symbols;
1833 process_dies (thisdie + dip -> die_length, enddie, objfile);
1834 new = pop_context ();
1835 /* Make a block for the local symbols within. */
1836 finish_block (new -> name, &local_symbols, new -> old_blocks,
1837 new -> start_addr, dip -> at_high_pc, objfile);
1838 list_in_scope = &file_symbols;
1839 }
1840
1841
1842 /*
1843
1844 LOCAL FUNCTION
1845
1846 handle_producer -- process the AT_producer attribute
1847
1848 DESCRIPTION
1849
1850 Perform any operations that depend on finding a particular
1851 AT_producer attribute.
1852
1853 */
1854
1855 static void
1856 handle_producer (producer)
1857 char *producer;
1858 {
1859
1860 /* If this compilation unit was compiled with g++ or gcc, then set the
1861 processing_gcc_compilation flag. */
1862
1863 processing_gcc_compilation =
1864 STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER))
1865 || STREQN (producer, CHILL_PRODUCER, strlen (CHILL_PRODUCER))
1866 || STREQN (producer, GCC_PRODUCER, strlen (GCC_PRODUCER));
1867
1868 /* Select a demangling style if we can identify the producer and if
1869 the current style is auto. We leave the current style alone if it
1870 is not auto. We also leave the demangling style alone if we find a
1871 gcc (cc1) producer, as opposed to a g++ (cc1plus) producer. */
1872
1873 if (AUTO_DEMANGLING)
1874 {
1875 if (STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER)))
1876 {
1877 set_demangling_style (GNU_DEMANGLING_STYLE_STRING);
1878 }
1879 else if (STREQN (producer, LCC_PRODUCER, strlen (LCC_PRODUCER)))
1880 {
1881 set_demangling_style (LUCID_DEMANGLING_STYLE_STRING);
1882 }
1883 }
1884 }
1885
1886
1887 /*
1888
1889 LOCAL FUNCTION
1890
1891 read_file_scope -- process all dies within a file scope
1892
1893 DESCRIPTION
1894
1895 Process all dies within a given file scope. We are passed a
1896 pointer to the die information structure for the die which
1897 starts the file scope, and pointers into the raw die data which
1898 mark the range of dies within the file scope.
1899
1900 When the partial symbol table is built, the file offset for the line
1901 number table for each compilation unit is saved in the partial symbol
1902 table entry for that compilation unit. As the symbols for each
1903 compilation unit are read, the line number table is read into memory
1904 and the variable lnbase is set to point to it. Thus all we have to
1905 do is use lnbase to access the line number table for the current
1906 compilation unit.
1907 */
1908
1909 static void
1910 read_file_scope (dip, thisdie, enddie, objfile)
1911 struct dieinfo *dip;
1912 char *thisdie;
1913 char *enddie;
1914 struct objfile *objfile;
1915 {
1916 struct cleanup *back_to;
1917 struct symtab *symtab;
1918
1919 if (objfile -> ei.entry_point >= dip -> at_low_pc &&
1920 objfile -> ei.entry_point < dip -> at_high_pc)
1921 {
1922 objfile -> ei.entry_file_lowpc = dip -> at_low_pc;
1923 objfile -> ei.entry_file_highpc = dip -> at_high_pc;
1924 }
1925 set_cu_language (dip);
1926 if (dip -> at_producer != NULL)
1927 {
1928 handle_producer (dip -> at_producer);
1929 }
1930 numutypes = (enddie - thisdie) / 4;
1931 utypes = (struct type **) xmalloc (numutypes * sizeof (struct type *));
1932 back_to = make_cleanup (free, utypes);
1933 memset (utypes, 0, numutypes * sizeof (struct type *));
1934 memset (ftypes, 0, FT_NUM_MEMBERS * sizeof (struct type *));
1935 start_symtab (dip -> at_name, dip -> at_comp_dir, dip -> at_low_pc);
1936 decode_line_numbers (lnbase);
1937 process_dies (thisdie + dip -> die_length, enddie, objfile);
1938
1939 symtab = end_symtab (dip -> at_high_pc, 0, 0, objfile, 0);
1940 if (symtab != NULL)
1941 {
1942 symtab -> language = cu_language;
1943 }
1944 do_cleanups (back_to);
1945 utypes = NULL;
1946 numutypes = 0;
1947 }
1948
1949 /*
1950
1951 LOCAL FUNCTION
1952
1953 process_dies -- process a range of DWARF Information Entries
1954
1955 SYNOPSIS
1956
1957 static void process_dies (char *thisdie, char *enddie,
1958 struct objfile *objfile)
1959
1960 DESCRIPTION
1961
1962 Process all DIE's in a specified range. May be (and almost
1963 certainly will be) called recursively.
1964 */
1965
1966 static void
1967 process_dies (thisdie, enddie, objfile)
1968 char *thisdie;
1969 char *enddie;
1970 struct objfile *objfile;
1971 {
1972 char *nextdie;
1973 struct dieinfo di;
1974
1975 while (thisdie < enddie)
1976 {
1977 basicdieinfo (&di, thisdie, objfile);
1978 if (di.die_length < SIZEOF_DIE_LENGTH)
1979 {
1980 break;
1981 }
1982 else if (di.die_tag == TAG_padding)
1983 {
1984 nextdie = thisdie + di.die_length;
1985 }
1986 else
1987 {
1988 completedieinfo (&di, objfile);
1989 if (di.at_sibling != 0)
1990 {
1991 nextdie = dbbase + di.at_sibling - dbroff;
1992 }
1993 else
1994 {
1995 nextdie = thisdie + di.die_length;
1996 }
1997 #ifdef SMASH_TEXT_ADDRESS
1998 /* I think that these are always text, not data, addresses. */
1999 SMASH_TEXT_ADDRESS (di.at_low_pc);
2000 SMASH_TEXT_ADDRESS (di.at_high_pc);
2001 #endif
2002 switch (di.die_tag)
2003 {
2004 case TAG_compile_unit:
2005 /* Skip Tag_compile_unit if we are already inside a compilation
2006 unit, we are unable to handle nested compilation units
2007 properly (FIXME). */
2008 if (current_subfile == NULL)
2009 read_file_scope (&di, thisdie, nextdie, objfile);
2010 else
2011 nextdie = thisdie + di.die_length;
2012 break;
2013 case TAG_global_subroutine:
2014 case TAG_subroutine:
2015 if (di.has_at_low_pc)
2016 {
2017 read_func_scope (&di, thisdie, nextdie, objfile);
2018 }
2019 break;
2020 case TAG_lexical_block:
2021 read_lexical_block_scope (&di, thisdie, nextdie, objfile);
2022 break;
2023 case TAG_class_type:
2024 case TAG_structure_type:
2025 case TAG_union_type:
2026 read_structure_scope (&di, thisdie, nextdie, objfile);
2027 break;
2028 case TAG_enumeration_type:
2029 read_enumeration (&di, thisdie, nextdie, objfile);
2030 break;
2031 case TAG_subroutine_type:
2032 read_subroutine_type (&di, thisdie, nextdie);
2033 break;
2034 case TAG_array_type:
2035 dwarf_read_array_type (&di);
2036 break;
2037 case TAG_pointer_type:
2038 read_tag_pointer_type (&di);
2039 break;
2040 case TAG_string_type:
2041 read_tag_string_type (&di);
2042 break;
2043 default:
2044 new_symbol (&di, objfile);
2045 break;
2046 }
2047 }
2048 thisdie = nextdie;
2049 }
2050 }
2051
2052 /*
2053
2054 LOCAL FUNCTION
2055
2056 decode_line_numbers -- decode a line number table fragment
2057
2058 SYNOPSIS
2059
2060 static void decode_line_numbers (char *tblscan, char *tblend,
2061 long length, long base, long line, long pc)
2062
2063 DESCRIPTION
2064
2065 Translate the DWARF line number information to gdb form.
2066
2067 The ".line" section contains one or more line number tables, one for
2068 each ".line" section from the objects that were linked.
2069
2070 The AT_stmt_list attribute for each TAG_source_file entry in the
2071 ".debug" section contains the offset into the ".line" section for the
2072 start of the table for that file.
2073
2074 The table itself has the following structure:
2075
2076 <table length><base address><source statement entry>
2077 4 bytes 4 bytes 10 bytes
2078
2079 The table length is the total size of the table, including the 4 bytes
2080 for the length information.
2081
2082 The base address is the address of the first instruction generated
2083 for the source file.
2084
2085 Each source statement entry has the following structure:
2086
2087 <line number><statement position><address delta>
2088 4 bytes 2 bytes 4 bytes
2089
2090 The line number is relative to the start of the file, starting with
2091 line 1.
2092
2093 The statement position either -1 (0xFFFF) or the number of characters
2094 from the beginning of the line to the beginning of the statement.
2095
2096 The address delta is the difference between the base address and
2097 the address of the first instruction for the statement.
2098
2099 Note that we must copy the bytes from the packed table to our local
2100 variables before attempting to use them, to avoid alignment problems
2101 on some machines, particularly RISC processors.
2102
2103 BUGS
2104
2105 Does gdb expect the line numbers to be sorted? They are now by
2106 chance/luck, but are not required to be. (FIXME)
2107
2108 The line with number 0 is unused, gdb apparently can discover the
2109 span of the last line some other way. How? (FIXME)
2110 */
2111
2112 static void
2113 decode_line_numbers (linetable)
2114 char *linetable;
2115 {
2116 char *tblscan;
2117 char *tblend;
2118 unsigned long length;
2119 unsigned long base;
2120 unsigned long line;
2121 unsigned long pc;
2122
2123 if (linetable != NULL)
2124 {
2125 tblscan = tblend = linetable;
2126 length = target_to_host (tblscan, SIZEOF_LINETBL_LENGTH, GET_UNSIGNED,
2127 current_objfile);
2128 tblscan += SIZEOF_LINETBL_LENGTH;
2129 tblend += length;
2130 base = target_to_host (tblscan, TARGET_FT_POINTER_SIZE (objfile),
2131 GET_UNSIGNED, current_objfile);
2132 tblscan += TARGET_FT_POINTER_SIZE (objfile);
2133 base += baseaddr;
2134 while (tblscan < tblend)
2135 {
2136 line = target_to_host (tblscan, SIZEOF_LINETBL_LINENO, GET_UNSIGNED,
2137 current_objfile);
2138 tblscan += SIZEOF_LINETBL_LINENO + SIZEOF_LINETBL_STMT;
2139 pc = target_to_host (tblscan, SIZEOF_LINETBL_DELTA, GET_UNSIGNED,
2140 current_objfile);
2141 tblscan += SIZEOF_LINETBL_DELTA;
2142 pc += base;
2143 if (line != 0)
2144 {
2145 record_line (current_subfile, line, pc);
2146 }
2147 }
2148 }
2149 }
2150
2151 /*
2152
2153 LOCAL FUNCTION
2154
2155 locval -- compute the value of a location attribute
2156
2157 SYNOPSIS
2158
2159 static int locval (char *loc)
2160
2161 DESCRIPTION
2162
2163 Given pointer to a string of bytes that define a location, compute
2164 the location and return the value.
2165
2166 When computing values involving the current value of the frame pointer,
2167 the value zero is used, which results in a value relative to the frame
2168 pointer, rather than the absolute value. This is what GDB wants
2169 anyway.
2170
2171 When the result is a register number, the global isreg flag is set,
2172 otherwise it is cleared. This is a kludge until we figure out a better
2173 way to handle the problem. Gdb's design does not mesh well with the
2174 DWARF notion of a location computing interpreter, which is a shame
2175 because the flexibility goes unused.
2176
2177 NOTES
2178
2179 Note that stack[0] is unused except as a default error return.
2180 Note that stack overflow is not yet handled.
2181 */
2182
2183 static int
2184 locval (loc)
2185 char *loc;
2186 {
2187 unsigned short nbytes;
2188 unsigned short locsize;
2189 auto long stack[64];
2190 int stacki;
2191 char *end;
2192 int loc_atom_code;
2193 int loc_value_size;
2194
2195 nbytes = attribute_size (AT_location);
2196 locsize = target_to_host (loc, nbytes, GET_UNSIGNED, current_objfile);
2197 loc += nbytes;
2198 end = loc + locsize;
2199 stacki = 0;
2200 stack[stacki] = 0;
2201 isreg = 0;
2202 offreg = 0;
2203 loc_value_size = TARGET_FT_LONG_SIZE (current_objfile);
2204 while (loc < end)
2205 {
2206 loc_atom_code = target_to_host (loc, SIZEOF_LOC_ATOM_CODE, GET_UNSIGNED,
2207 current_objfile);
2208 loc += SIZEOF_LOC_ATOM_CODE;
2209 switch (loc_atom_code)
2210 {
2211 case 0:
2212 /* error */
2213 loc = end;
2214 break;
2215 case OP_REG:
2216 /* push register (number) */
2217 stack[++stacki]
2218 = DWARF_REG_TO_REGNUM (target_to_host (loc, loc_value_size,
2219 GET_UNSIGNED,
2220 current_objfile));
2221 loc += loc_value_size;
2222 isreg = 1;
2223 break;
2224 case OP_BASEREG:
2225 /* push value of register (number) */
2226 /* Actually, we compute the value as if register has 0, so the
2227 value ends up being the offset from that register. */
2228 offreg = 1;
2229 basereg = target_to_host (loc, loc_value_size, GET_UNSIGNED,
2230 current_objfile);
2231 loc += loc_value_size;
2232 stack[++stacki] = 0;
2233 break;
2234 case OP_ADDR:
2235 /* push address (relocated address) */
2236 stack[++stacki] = target_to_host (loc, loc_value_size,
2237 GET_UNSIGNED, current_objfile);
2238 loc += loc_value_size;
2239 break;
2240 case OP_CONST:
2241 /* push constant (number) FIXME: signed or unsigned! */
2242 stack[++stacki] = target_to_host (loc, loc_value_size,
2243 GET_SIGNED, current_objfile);
2244 loc += loc_value_size;
2245 break;
2246 case OP_DEREF2:
2247 /* pop, deref and push 2 bytes (as a long) */
2248 complain (&op_deref2, DIE_ID, DIE_NAME, stack[stacki]);
2249 break;
2250 case OP_DEREF4: /* pop, deref and push 4 bytes (as a long) */
2251 complain (&op_deref4, DIE_ID, DIE_NAME, stack[stacki]);
2252 break;
2253 case OP_ADD: /* pop top 2 items, add, push result */
2254 stack[stacki - 1] += stack[stacki];
2255 stacki--;
2256 break;
2257 }
2258 }
2259 return (stack[stacki]);
2260 }
2261
2262 /*
2263
2264 LOCAL FUNCTION
2265
2266 read_ofile_symtab -- build a full symtab entry from chunk of DIE's
2267
2268 SYNOPSIS
2269
2270 static void read_ofile_symtab (struct partial_symtab *pst)
2271
2272 DESCRIPTION
2273
2274 When expanding a partial symbol table entry to a full symbol table
2275 entry, this is the function that gets called to read in the symbols
2276 for the compilation unit. A pointer to the newly constructed symtab,
2277 which is now the new first one on the objfile's symtab list, is
2278 stashed in the partial symbol table entry.
2279 */
2280
2281 static void
2282 read_ofile_symtab (pst)
2283 struct partial_symtab *pst;
2284 {
2285 struct cleanup *back_to;
2286 unsigned long lnsize;
2287 file_ptr foffset;
2288 bfd *abfd;
2289 char lnsizedata[SIZEOF_LINETBL_LENGTH];
2290
2291 abfd = pst -> objfile -> obfd;
2292 current_objfile = pst -> objfile;
2293
2294 /* Allocate a buffer for the entire chunk of DIE's for this compilation
2295 unit, seek to the location in the file, and read in all the DIE's. */
2296
2297 diecount = 0;
2298 dbsize = DBLENGTH (pst);
2299 dbbase = xmalloc (dbsize);
2300 dbroff = DBROFF(pst);
2301 foffset = DBFOFF(pst) + dbroff;
2302 base_section_offsets = pst->section_offsets;
2303 baseaddr = ANOFFSET (pst->section_offsets, 0);
2304 if (bfd_seek (abfd, foffset, L_SET) ||
2305 (bfd_read (dbbase, dbsize, 1, abfd) != dbsize))
2306 {
2307 free (dbbase);
2308 error ("can't read DWARF data");
2309 }
2310 back_to = make_cleanup (free, dbbase);
2311
2312 /* If there is a line number table associated with this compilation unit
2313 then read the size of this fragment in bytes, from the fragment itself.
2314 Allocate a buffer for the fragment and read it in for future
2315 processing. */
2316
2317 lnbase = NULL;
2318 if (LNFOFF (pst))
2319 {
2320 if (bfd_seek (abfd, LNFOFF (pst), L_SET) ||
2321 (bfd_read ((PTR) lnsizedata, sizeof (lnsizedata), 1, abfd) !=
2322 sizeof (lnsizedata)))
2323 {
2324 error ("can't read DWARF line number table size");
2325 }
2326 lnsize = target_to_host (lnsizedata, SIZEOF_LINETBL_LENGTH,
2327 GET_UNSIGNED, pst -> objfile);
2328 lnbase = xmalloc (lnsize);
2329 if (bfd_seek (abfd, LNFOFF (pst), L_SET) ||
2330 (bfd_read (lnbase, lnsize, 1, abfd) != lnsize))
2331 {
2332 free (lnbase);
2333 error ("can't read DWARF line numbers");
2334 }
2335 make_cleanup (free, lnbase);
2336 }
2337
2338 process_dies (dbbase, dbbase + dbsize, pst -> objfile);
2339 do_cleanups (back_to);
2340 current_objfile = NULL;
2341 pst -> symtab = pst -> objfile -> symtabs;
2342 }
2343
2344 /*
2345
2346 LOCAL FUNCTION
2347
2348 psymtab_to_symtab_1 -- do grunt work for building a full symtab entry
2349
2350 SYNOPSIS
2351
2352 static void psymtab_to_symtab_1 (struct partial_symtab *pst)
2353
2354 DESCRIPTION
2355
2356 Called once for each partial symbol table entry that needs to be
2357 expanded into a full symbol table entry.
2358
2359 */
2360
2361 static void
2362 psymtab_to_symtab_1 (pst)
2363 struct partial_symtab *pst;
2364 {
2365 int i;
2366 struct cleanup *old_chain;
2367
2368 if (pst != NULL)
2369 {
2370 if (pst->readin)
2371 {
2372 warning ("psymtab for %s already read in. Shouldn't happen.",
2373 pst -> filename);
2374 }
2375 else
2376 {
2377 /* Read in all partial symtabs on which this one is dependent */
2378 for (i = 0; i < pst -> number_of_dependencies; i++)
2379 {
2380 if (!pst -> dependencies[i] -> readin)
2381 {
2382 /* Inform about additional files that need to be read in. */
2383 if (info_verbose)
2384 {
2385 fputs_filtered (" ", gdb_stdout);
2386 wrap_here ("");
2387 fputs_filtered ("and ", gdb_stdout);
2388 wrap_here ("");
2389 printf_filtered ("%s...",
2390 pst -> dependencies[i] -> filename);
2391 wrap_here ("");
2392 gdb_flush (gdb_stdout); /* Flush output */
2393 }
2394 psymtab_to_symtab_1 (pst -> dependencies[i]);
2395 }
2396 }
2397 if (DBLENGTH (pst)) /* Otherwise it's a dummy */
2398 {
2399 buildsym_init ();
2400 old_chain = make_cleanup (really_free_pendings, 0);
2401 read_ofile_symtab (pst);
2402 if (info_verbose)
2403 {
2404 printf_filtered ("%d DIE's, sorting...", diecount);
2405 wrap_here ("");
2406 gdb_flush (gdb_stdout);
2407 }
2408 sort_symtab_syms (pst -> symtab);
2409 do_cleanups (old_chain);
2410 }
2411 pst -> readin = 1;
2412 }
2413 }
2414 }
2415
2416 /*
2417
2418 LOCAL FUNCTION
2419
2420 dwarf_psymtab_to_symtab -- build a full symtab entry from partial one
2421
2422 SYNOPSIS
2423
2424 static void dwarf_psymtab_to_symtab (struct partial_symtab *pst)
2425
2426 DESCRIPTION
2427
2428 This is the DWARF support entry point for building a full symbol
2429 table entry from a partial symbol table entry. We are passed a
2430 pointer to the partial symbol table entry that needs to be expanded.
2431
2432 */
2433
2434 static void
2435 dwarf_psymtab_to_symtab (pst)
2436 struct partial_symtab *pst;
2437 {
2438
2439 if (pst != NULL)
2440 {
2441 if (pst -> readin)
2442 {
2443 warning ("psymtab for %s already read in. Shouldn't happen.",
2444 pst -> filename);
2445 }
2446 else
2447 {
2448 if (DBLENGTH (pst) || pst -> number_of_dependencies)
2449 {
2450 /* Print the message now, before starting serious work, to avoid
2451 disconcerting pauses. */
2452 if (info_verbose)
2453 {
2454 printf_filtered ("Reading in symbols for %s...",
2455 pst -> filename);
2456 gdb_flush (gdb_stdout);
2457 }
2458
2459 psymtab_to_symtab_1 (pst);
2460
2461 #if 0 /* FIXME: Check to see what dbxread is doing here and see if
2462 we need to do an equivalent or is this something peculiar to
2463 stabs/a.out format.
2464 Match with global symbols. This only needs to be done once,
2465 after all of the symtabs and dependencies have been read in.
2466 */
2467 scan_file_globals (pst -> objfile);
2468 #endif
2469
2470 /* Finish up the verbose info message. */
2471 if (info_verbose)
2472 {
2473 printf_filtered ("done.\n");
2474 gdb_flush (gdb_stdout);
2475 }
2476 }
2477 }
2478 }
2479 }
2480
2481 /*
2482
2483 LOCAL FUNCTION
2484
2485 init_psymbol_list -- initialize storage for partial symbols
2486
2487 SYNOPSIS
2488
2489 static void init_psymbol_list (struct objfile *objfile, int total_symbols)
2490
2491 DESCRIPTION
2492
2493 Initializes storage for all of the partial symbols that will be
2494 created by dwarf_build_psymtabs and subsidiaries.
2495 */
2496
2497 static void
2498 init_psymbol_list (objfile, total_symbols)
2499 struct objfile *objfile;
2500 int total_symbols;
2501 {
2502 /* Free any previously allocated psymbol lists. */
2503
2504 if (objfile -> global_psymbols.list)
2505 {
2506 mfree (objfile -> md, (PTR)objfile -> global_psymbols.list);
2507 }
2508 if (objfile -> static_psymbols.list)
2509 {
2510 mfree (objfile -> md, (PTR)objfile -> static_psymbols.list);
2511 }
2512
2513 /* Current best guess is that there are approximately a twentieth
2514 of the total symbols (in a debugging file) are global or static
2515 oriented symbols */
2516
2517 objfile -> global_psymbols.size = total_symbols / 10;
2518 objfile -> static_psymbols.size = total_symbols / 10;
2519 objfile -> global_psymbols.next =
2520 objfile -> global_psymbols.list = (struct partial_symbol *)
2521 xmmalloc (objfile -> md, objfile -> global_psymbols.size
2522 * sizeof (struct partial_symbol));
2523 objfile -> static_psymbols.next =
2524 objfile -> static_psymbols.list = (struct partial_symbol *)
2525 xmmalloc (objfile -> md, objfile -> static_psymbols.size
2526 * sizeof (struct partial_symbol));
2527 }
2528
2529 /*
2530
2531 LOCAL FUNCTION
2532
2533 add_enum_psymbol -- add enumeration members to partial symbol table
2534
2535 DESCRIPTION
2536
2537 Given pointer to a DIE that is known to be for an enumeration,
2538 extract the symbolic names of the enumeration members and add
2539 partial symbols for them.
2540 */
2541
2542 static void
2543 add_enum_psymbol (dip, objfile)
2544 struct dieinfo *dip;
2545 struct objfile *objfile;
2546 {
2547 char *scan;
2548 char *listend;
2549 unsigned short blocksz;
2550 int nbytes;
2551
2552 if ((scan = dip -> at_element_list) != NULL)
2553 {
2554 if (dip -> short_element_list)
2555 {
2556 nbytes = attribute_size (AT_short_element_list);
2557 }
2558 else
2559 {
2560 nbytes = attribute_size (AT_element_list);
2561 }
2562 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
2563 scan += nbytes;
2564 listend = scan + blocksz;
2565 while (scan < listend)
2566 {
2567 scan += TARGET_FT_LONG_SIZE (objfile);
2568 ADD_PSYMBOL_TO_LIST (scan, strlen (scan), VAR_NAMESPACE, LOC_CONST,
2569 objfile -> static_psymbols, 0, cu_language,
2570 objfile);
2571 scan += strlen (scan) + 1;
2572 }
2573 }
2574 }
2575
2576 /*
2577
2578 LOCAL FUNCTION
2579
2580 add_partial_symbol -- add symbol to partial symbol table
2581
2582 DESCRIPTION
2583
2584 Given a DIE, if it is one of the types that we want to
2585 add to a partial symbol table, finish filling in the die info
2586 and then add a partial symbol table entry for it.
2587
2588 NOTES
2589
2590 The caller must ensure that the DIE has a valid name attribute.
2591 */
2592
2593 static void
2594 add_partial_symbol (dip, objfile)
2595 struct dieinfo *dip;
2596 struct objfile *objfile;
2597 {
2598 switch (dip -> die_tag)
2599 {
2600 case TAG_global_subroutine:
2601 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2602 VAR_NAMESPACE, LOC_BLOCK,
2603 objfile -> global_psymbols,
2604 dip -> at_low_pc, cu_language, objfile);
2605 break;
2606 case TAG_global_variable:
2607 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2608 VAR_NAMESPACE, LOC_STATIC,
2609 objfile -> global_psymbols,
2610 0, cu_language, objfile);
2611 break;
2612 case TAG_subroutine:
2613 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2614 VAR_NAMESPACE, LOC_BLOCK,
2615 objfile -> static_psymbols,
2616 dip -> at_low_pc, cu_language, objfile);
2617 break;
2618 case TAG_local_variable:
2619 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2620 VAR_NAMESPACE, LOC_STATIC,
2621 objfile -> static_psymbols,
2622 0, cu_language, objfile);
2623 break;
2624 case TAG_typedef:
2625 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2626 VAR_NAMESPACE, LOC_TYPEDEF,
2627 objfile -> static_psymbols,
2628 0, cu_language, objfile);
2629 break;
2630 case TAG_class_type:
2631 case TAG_structure_type:
2632 case TAG_union_type:
2633 case TAG_enumeration_type:
2634 /* Do not add opaque aggregate definitions to the psymtab. */
2635 if (!dip -> has_at_byte_size)
2636 break;
2637 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2638 STRUCT_NAMESPACE, LOC_TYPEDEF,
2639 objfile -> static_psymbols,
2640 0, cu_language, objfile);
2641 if (cu_language == language_cplus)
2642 {
2643 /* For C++, these implicitly act as typedefs as well. */
2644 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2645 VAR_NAMESPACE, LOC_TYPEDEF,
2646 objfile -> static_psymbols,
2647 0, cu_language, objfile);
2648 }
2649 break;
2650 }
2651 }
2652
2653 /*
2654
2655 LOCAL FUNCTION
2656
2657 scan_partial_symbols -- scan DIE's within a single compilation unit
2658
2659 DESCRIPTION
2660
2661 Process the DIE's within a single compilation unit, looking for
2662 interesting DIE's that contribute to the partial symbol table entry
2663 for this compilation unit.
2664
2665 NOTES
2666
2667 There are some DIE's that may appear both at file scope and within
2668 the scope of a function. We are only interested in the ones at file
2669 scope, and the only way to tell them apart is to keep track of the
2670 scope. For example, consider the test case:
2671
2672 static int i;
2673 main () { int j; }
2674
2675 for which the relevant DWARF segment has the structure:
2676
2677 0x51:
2678 0x23 global subrtn sibling 0x9b
2679 name main
2680 fund_type FT_integer
2681 low_pc 0x800004cc
2682 high_pc 0x800004d4
2683
2684 0x74:
2685 0x23 local var sibling 0x97
2686 name j
2687 fund_type FT_integer
2688 location OP_BASEREG 0xe
2689 OP_CONST 0xfffffffc
2690 OP_ADD
2691 0x97:
2692 0x4
2693
2694 0x9b:
2695 0x1d local var sibling 0xb8
2696 name i
2697 fund_type FT_integer
2698 location OP_ADDR 0x800025dc
2699
2700 0xb8:
2701 0x4
2702
2703 We want to include the symbol 'i' in the partial symbol table, but
2704 not the symbol 'j'. In essence, we want to skip all the dies within
2705 the scope of a TAG_global_subroutine DIE.
2706
2707 Don't attempt to add anonymous structures or unions since they have
2708 no name. Anonymous enumerations however are processed, because we
2709 want to extract their member names (the check for a tag name is
2710 done later).
2711
2712 Also, for variables and subroutines, check that this is the place
2713 where the actual definition occurs, rather than just a reference
2714 to an external.
2715 */
2716
2717 static void
2718 scan_partial_symbols (thisdie, enddie, objfile)
2719 char *thisdie;
2720 char *enddie;
2721 struct objfile *objfile;
2722 {
2723 char *nextdie;
2724 char *temp;
2725 struct dieinfo di;
2726
2727 while (thisdie < enddie)
2728 {
2729 basicdieinfo (&di, thisdie, objfile);
2730 if (di.die_length < SIZEOF_DIE_LENGTH)
2731 {
2732 break;
2733 }
2734 else
2735 {
2736 nextdie = thisdie + di.die_length;
2737 /* To avoid getting complete die information for every die, we
2738 only do it (below) for the cases we are interested in. */
2739 switch (di.die_tag)
2740 {
2741 case TAG_global_subroutine:
2742 case TAG_subroutine:
2743 completedieinfo (&di, objfile);
2744 if (di.at_name && (di.has_at_low_pc || di.at_location))
2745 {
2746 add_partial_symbol (&di, objfile);
2747 /* If there is a sibling attribute, adjust the nextdie
2748 pointer to skip the entire scope of the subroutine.
2749 Apply some sanity checking to make sure we don't
2750 overrun or underrun the range of remaining DIE's */
2751 if (di.at_sibling != 0)
2752 {
2753 temp = dbbase + di.at_sibling - dbroff;
2754 if ((temp < thisdie) || (temp >= enddie))
2755 {
2756 complain (&bad_die_ref, DIE_ID, DIE_NAME,
2757 di.at_sibling);
2758 }
2759 else
2760 {
2761 nextdie = temp;
2762 }
2763 }
2764 }
2765 break;
2766 case TAG_global_variable:
2767 case TAG_local_variable:
2768 completedieinfo (&di, objfile);
2769 if (di.at_name && (di.has_at_low_pc || di.at_location))
2770 {
2771 add_partial_symbol (&di, objfile);
2772 }
2773 break;
2774 case TAG_typedef:
2775 case TAG_class_type:
2776 case TAG_structure_type:
2777 case TAG_union_type:
2778 completedieinfo (&di, objfile);
2779 if (di.at_name)
2780 {
2781 add_partial_symbol (&di, objfile);
2782 }
2783 break;
2784 case TAG_enumeration_type:
2785 completedieinfo (&di, objfile);
2786 if (di.at_name)
2787 {
2788 add_partial_symbol (&di, objfile);
2789 }
2790 add_enum_psymbol (&di, objfile);
2791 break;
2792 }
2793 }
2794 thisdie = nextdie;
2795 }
2796 }
2797
2798 /*
2799
2800 LOCAL FUNCTION
2801
2802 scan_compilation_units -- build a psymtab entry for each compilation
2803
2804 DESCRIPTION
2805
2806 This is the top level dwarf parsing routine for building partial
2807 symbol tables.
2808
2809 It scans from the beginning of the DWARF table looking for the first
2810 TAG_compile_unit DIE, and then follows the sibling chain to locate
2811 each additional TAG_compile_unit DIE.
2812
2813 For each TAG_compile_unit DIE it creates a partial symtab structure,
2814 calls a subordinate routine to collect all the compilation unit's
2815 global DIE's, file scope DIEs, typedef DIEs, etc, and then links the
2816 new partial symtab structure into the partial symbol table. It also
2817 records the appropriate information in the partial symbol table entry
2818 to allow the chunk of DIE's and line number table for this compilation
2819 unit to be located and re-read later, to generate a complete symbol
2820 table entry for the compilation unit.
2821
2822 Thus it effectively partitions up a chunk of DIE's for multiple
2823 compilation units into smaller DIE chunks and line number tables,
2824 and associates them with a partial symbol table entry.
2825
2826 NOTES
2827
2828 If any compilation unit has no line number table associated with
2829 it for some reason (a missing at_stmt_list attribute, rather than
2830 just one with a value of zero, which is valid) then we ensure that
2831 the recorded file offset is zero so that the routine which later
2832 reads line number table fragments knows that there is no fragment
2833 to read.
2834
2835 RETURNS
2836
2837 Returns no value.
2838
2839 */
2840
2841 static void
2842 scan_compilation_units (thisdie, enddie, dbfoff, lnoffset, objfile)
2843 char *thisdie;
2844 char *enddie;
2845 file_ptr dbfoff;
2846 file_ptr lnoffset;
2847 struct objfile *objfile;
2848 {
2849 char *nextdie;
2850 struct dieinfo di;
2851 struct partial_symtab *pst;
2852 int culength;
2853 int curoff;
2854 file_ptr curlnoffset;
2855
2856 while (thisdie < enddie)
2857 {
2858 basicdieinfo (&di, thisdie, objfile);
2859 if (di.die_length < SIZEOF_DIE_LENGTH)
2860 {
2861 break;
2862 }
2863 else if (di.die_tag != TAG_compile_unit)
2864 {
2865 nextdie = thisdie + di.die_length;
2866 }
2867 else
2868 {
2869 completedieinfo (&di, objfile);
2870 set_cu_language (&di);
2871 if (di.at_sibling != 0)
2872 {
2873 nextdie = dbbase + di.at_sibling - dbroff;
2874 }
2875 else
2876 {
2877 nextdie = thisdie + di.die_length;
2878 }
2879 curoff = thisdie - dbbase;
2880 culength = nextdie - thisdie;
2881 curlnoffset = di.has_at_stmt_list ? lnoffset + di.at_stmt_list : 0;
2882
2883 /* First allocate a new partial symbol table structure */
2884
2885 pst = start_psymtab_common (objfile, base_section_offsets,
2886 di.at_name, di.at_low_pc,
2887 objfile -> global_psymbols.next,
2888 objfile -> static_psymbols.next);
2889
2890 pst -> texthigh = di.at_high_pc;
2891 pst -> read_symtab_private = (char *)
2892 obstack_alloc (&objfile -> psymbol_obstack,
2893 sizeof (struct dwfinfo));
2894 DBFOFF (pst) = dbfoff;
2895 DBROFF (pst) = curoff;
2896 DBLENGTH (pst) = culength;
2897 LNFOFF (pst) = curlnoffset;
2898 pst -> read_symtab = dwarf_psymtab_to_symtab;
2899
2900 /* Now look for partial symbols */
2901
2902 scan_partial_symbols (thisdie + di.die_length, nextdie, objfile);
2903
2904 pst -> n_global_syms = objfile -> global_psymbols.next -
2905 (objfile -> global_psymbols.list + pst -> globals_offset);
2906 pst -> n_static_syms = objfile -> static_psymbols.next -
2907 (objfile -> static_psymbols.list + pst -> statics_offset);
2908 sort_pst_symbols (pst);
2909 /* If there is already a psymtab or symtab for a file of this name,
2910 remove it. (If there is a symtab, more drastic things also
2911 happen.) This happens in VxWorks. */
2912 free_named_symtabs (pst -> filename);
2913 }
2914 thisdie = nextdie;
2915 }
2916 }
2917
2918 /*
2919
2920 LOCAL FUNCTION
2921
2922 new_symbol -- make a symbol table entry for a new symbol
2923
2924 SYNOPSIS
2925
2926 static struct symbol *new_symbol (struct dieinfo *dip,
2927 struct objfile *objfile)
2928
2929 DESCRIPTION
2930
2931 Given a pointer to a DWARF information entry, figure out if we need
2932 to make a symbol table entry for it, and if so, create a new entry
2933 and return a pointer to it.
2934 */
2935
2936 static struct symbol *
2937 new_symbol (dip, objfile)
2938 struct dieinfo *dip;
2939 struct objfile *objfile;
2940 {
2941 struct symbol *sym = NULL;
2942
2943 if (dip -> at_name != NULL)
2944 {
2945 sym = (struct symbol *) obstack_alloc (&objfile -> symbol_obstack,
2946 sizeof (struct symbol));
2947 memset (sym, 0, sizeof (struct symbol));
2948 SYMBOL_NAME (sym) = create_name (dip -> at_name,
2949 &objfile->symbol_obstack);
2950 /* default assumptions */
2951 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2952 SYMBOL_CLASS (sym) = LOC_STATIC;
2953 SYMBOL_TYPE (sym) = decode_die_type (dip);
2954
2955 /* If this symbol is from a C++ compilation, then attempt to cache the
2956 demangled form for future reference. This is a typical time versus
2957 space tradeoff, that was decided in favor of time because it sped up
2958 C++ symbol lookups by a factor of about 20. */
2959
2960 SYMBOL_LANGUAGE (sym) = cu_language;
2961 SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile -> symbol_obstack);
2962 switch (dip -> die_tag)
2963 {
2964 case TAG_label:
2965 SYMBOL_VALUE (sym) = dip -> at_low_pc;
2966 SYMBOL_CLASS (sym) = LOC_LABEL;
2967 break;
2968 case TAG_global_subroutine:
2969 case TAG_subroutine:
2970 SYMBOL_VALUE (sym) = dip -> at_low_pc;
2971 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
2972 SYMBOL_CLASS (sym) = LOC_BLOCK;
2973 if (dip -> die_tag == TAG_global_subroutine)
2974 {
2975 add_symbol_to_list (sym, &global_symbols);
2976 }
2977 else
2978 {
2979 add_symbol_to_list (sym, list_in_scope);
2980 }
2981 break;
2982 case TAG_global_variable:
2983 if (dip -> at_location != NULL)
2984 {
2985 SYMBOL_VALUE (sym) = locval (dip -> at_location);
2986 add_symbol_to_list (sym, &global_symbols);
2987 SYMBOL_CLASS (sym) = LOC_STATIC;
2988 SYMBOL_VALUE (sym) += baseaddr;
2989 }
2990 break;
2991 case TAG_local_variable:
2992 if (dip -> at_location != NULL)
2993 {
2994 SYMBOL_VALUE (sym) = locval (dip -> at_location);
2995 add_symbol_to_list (sym, list_in_scope);
2996 if (isreg)
2997 {
2998 SYMBOL_CLASS (sym) = LOC_REGISTER;
2999 }
3000 else if (offreg)
3001 {
3002 SYMBOL_CLASS (sym) = LOC_BASEREG;
3003 SYMBOL_BASEREG (sym) = basereg;
3004 }
3005 else
3006 {
3007 SYMBOL_CLASS (sym) = LOC_STATIC;
3008 SYMBOL_VALUE (sym) += baseaddr;
3009 }
3010 }
3011 break;
3012 case TAG_formal_parameter:
3013 if (dip -> at_location != NULL)
3014 {
3015 SYMBOL_VALUE (sym) = locval (dip -> at_location);
3016 }
3017 add_symbol_to_list (sym, list_in_scope);
3018 if (isreg)
3019 {
3020 SYMBOL_CLASS (sym) = LOC_REGPARM;
3021 }
3022 else if (offreg)
3023 {
3024 SYMBOL_CLASS (sym) = LOC_BASEREG_ARG;
3025 SYMBOL_BASEREG (sym) = basereg;
3026 }
3027 else
3028 {
3029 SYMBOL_CLASS (sym) = LOC_ARG;
3030 }
3031 break;
3032 case TAG_unspecified_parameters:
3033 /* From varargs functions; gdb doesn't seem to have any interest in
3034 this information, so just ignore it for now. (FIXME?) */
3035 break;
3036 case TAG_class_type:
3037 case TAG_structure_type:
3038 case TAG_union_type:
3039 case TAG_enumeration_type:
3040 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3041 SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE;
3042 add_symbol_to_list (sym, list_in_scope);
3043 break;
3044 case TAG_typedef:
3045 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3046 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3047 add_symbol_to_list (sym, list_in_scope);
3048 break;
3049 default:
3050 /* Not a tag we recognize. Hopefully we aren't processing trash
3051 data, but since we must specifically ignore things we don't
3052 recognize, there is nothing else we should do at this point. */
3053 break;
3054 }
3055 }
3056 return (sym);
3057 }
3058
3059 /*
3060
3061 LOCAL FUNCTION
3062
3063 synthesize_typedef -- make a symbol table entry for a "fake" typedef
3064
3065 SYNOPSIS
3066
3067 static void synthesize_typedef (struct dieinfo *dip,
3068 struct objfile *objfile,
3069 struct type *type);
3070
3071 DESCRIPTION
3072
3073 Given a pointer to a DWARF information entry, synthesize a typedef
3074 for the name in the DIE, using the specified type.
3075
3076 This is used for C++ class, structs, unions, and enumerations to
3077 set up the tag name as a type.
3078
3079 */
3080
3081 static void
3082 synthesize_typedef (dip, objfile, type)
3083 struct dieinfo *dip;
3084 struct objfile *objfile;
3085 struct type *type;
3086 {
3087 struct symbol *sym = NULL;
3088
3089 if (dip -> at_name != NULL)
3090 {
3091 sym = (struct symbol *)
3092 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
3093 memset (sym, 0, sizeof (struct symbol));
3094 SYMBOL_NAME (sym) = create_name (dip -> at_name,
3095 &objfile->symbol_obstack);
3096 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
3097 SYMBOL_TYPE (sym) = type;
3098 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3099 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3100 add_symbol_to_list (sym, list_in_scope);
3101 }
3102 }
3103
3104 /*
3105
3106 LOCAL FUNCTION
3107
3108 decode_mod_fund_type -- decode a modified fundamental type
3109
3110 SYNOPSIS
3111
3112 static struct type *decode_mod_fund_type (char *typedata)
3113
3114 DESCRIPTION
3115
3116 Decode a block of data containing a modified fundamental
3117 type specification. TYPEDATA is a pointer to the block,
3118 which starts with a length containing the size of the rest
3119 of the block. At the end of the block is a fundmental type
3120 code value that gives the fundamental type. Everything
3121 in between are type modifiers.
3122
3123 We simply compute the number of modifiers and call the general
3124 function decode_modified_type to do the actual work.
3125 */
3126
3127 static struct type *
3128 decode_mod_fund_type (typedata)
3129 char *typedata;
3130 {
3131 struct type *typep = NULL;
3132 unsigned short modcount;
3133 int nbytes;
3134
3135 /* Get the total size of the block, exclusive of the size itself */
3136
3137 nbytes = attribute_size (AT_mod_fund_type);
3138 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3139 typedata += nbytes;
3140
3141 /* Deduct the size of the fundamental type bytes at the end of the block. */
3142
3143 modcount -= attribute_size (AT_fund_type);
3144
3145 /* Now do the actual decoding */
3146
3147 typep = decode_modified_type (typedata, modcount, AT_mod_fund_type);
3148 return (typep);
3149 }
3150
3151 /*
3152
3153 LOCAL FUNCTION
3154
3155 decode_mod_u_d_type -- decode a modified user defined type
3156
3157 SYNOPSIS
3158
3159 static struct type *decode_mod_u_d_type (char *typedata)
3160
3161 DESCRIPTION
3162
3163 Decode a block of data containing a modified user defined
3164 type specification. TYPEDATA is a pointer to the block,
3165 which consists of a two byte length, containing the size
3166 of the rest of the block. At the end of the block is a
3167 four byte value that gives a reference to a user defined type.
3168 Everything in between are type modifiers.
3169
3170 We simply compute the number of modifiers and call the general
3171 function decode_modified_type to do the actual work.
3172 */
3173
3174 static struct type *
3175 decode_mod_u_d_type (typedata)
3176 char *typedata;
3177 {
3178 struct type *typep = NULL;
3179 unsigned short modcount;
3180 int nbytes;
3181
3182 /* Get the total size of the block, exclusive of the size itself */
3183
3184 nbytes = attribute_size (AT_mod_u_d_type);
3185 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3186 typedata += nbytes;
3187
3188 /* Deduct the size of the reference type bytes at the end of the block. */
3189
3190 modcount -= attribute_size (AT_user_def_type);
3191
3192 /* Now do the actual decoding */
3193
3194 typep = decode_modified_type (typedata, modcount, AT_mod_u_d_type);
3195 return (typep);
3196 }
3197
3198 /*
3199
3200 LOCAL FUNCTION
3201
3202 decode_modified_type -- decode modified user or fundamental type
3203
3204 SYNOPSIS
3205
3206 static struct type *decode_modified_type (char *modifiers,
3207 unsigned short modcount, int mtype)
3208
3209 DESCRIPTION
3210
3211 Decode a modified type, either a modified fundamental type or
3212 a modified user defined type. MODIFIERS is a pointer to the
3213 block of bytes that define MODCOUNT modifiers. Immediately
3214 following the last modifier is a short containing the fundamental
3215 type or a long containing the reference to the user defined
3216 type. Which one is determined by MTYPE, which is either
3217 AT_mod_fund_type or AT_mod_u_d_type to indicate what modified
3218 type we are generating.
3219
3220 We call ourself recursively to generate each modified type,`
3221 until MODCOUNT reaches zero, at which point we have consumed
3222 all the modifiers and generate either the fundamental type or
3223 user defined type. When the recursion unwinds, each modifier
3224 is applied in turn to generate the full modified type.
3225
3226 NOTES
3227
3228 If we find a modifier that we don't recognize, and it is not one
3229 of those reserved for application specific use, then we issue a
3230 warning and simply ignore the modifier.
3231
3232 BUGS
3233
3234 We currently ignore MOD_const and MOD_volatile. (FIXME)
3235
3236 */
3237
3238 static struct type *
3239 decode_modified_type (modifiers, modcount, mtype)
3240 char *modifiers;
3241 unsigned int modcount;
3242 int mtype;
3243 {
3244 struct type *typep = NULL;
3245 unsigned short fundtype;
3246 DIE_REF die_ref;
3247 char modifier;
3248 int nbytes;
3249
3250 if (modcount == 0)
3251 {
3252 switch (mtype)
3253 {
3254 case AT_mod_fund_type:
3255 nbytes = attribute_size (AT_fund_type);
3256 fundtype = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3257 current_objfile);
3258 typep = decode_fund_type (fundtype);
3259 break;
3260 case AT_mod_u_d_type:
3261 nbytes = attribute_size (AT_user_def_type);
3262 die_ref = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3263 current_objfile);
3264 if ((typep = lookup_utype (die_ref)) == NULL)
3265 {
3266 typep = alloc_utype (die_ref, NULL);
3267 }
3268 break;
3269 default:
3270 complain (&botched_modified_type, DIE_ID, DIE_NAME, mtype);
3271 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3272 break;
3273 }
3274 }
3275 else
3276 {
3277 modifier = *modifiers++;
3278 typep = decode_modified_type (modifiers, --modcount, mtype);
3279 switch (modifier)
3280 {
3281 case MOD_pointer_to:
3282 typep = lookup_pointer_type (typep);
3283 break;
3284 case MOD_reference_to:
3285 typep = lookup_reference_type (typep);
3286 break;
3287 case MOD_const:
3288 complain (&const_ignored, DIE_ID, DIE_NAME); /* FIXME */
3289 break;
3290 case MOD_volatile:
3291 complain (&volatile_ignored, DIE_ID, DIE_NAME); /* FIXME */
3292 break;
3293 default:
3294 if (!(MOD_lo_user <= (unsigned char) modifier
3295 && (unsigned char) modifier <= MOD_hi_user))
3296 {
3297 complain (&unknown_type_modifier, DIE_ID, DIE_NAME, modifier);
3298 }
3299 break;
3300 }
3301 }
3302 return (typep);
3303 }
3304
3305 /*
3306
3307 LOCAL FUNCTION
3308
3309 decode_fund_type -- translate basic DWARF type to gdb base type
3310
3311 DESCRIPTION
3312
3313 Given an integer that is one of the fundamental DWARF types,
3314 translate it to one of the basic internal gdb types and return
3315 a pointer to the appropriate gdb type (a "struct type *").
3316
3317 NOTES
3318
3319 For robustness, if we are asked to translate a fundamental
3320 type that we are unprepared to deal with, we return int so
3321 callers can always depend upon a valid type being returned,
3322 and so gdb may at least do something reasonable by default.
3323 If the type is not in the range of those types defined as
3324 application specific types, we also issue a warning.
3325 */
3326
3327 static struct type *
3328 decode_fund_type (fundtype)
3329 unsigned int fundtype;
3330 {
3331 struct type *typep = NULL;
3332
3333 switch (fundtype)
3334 {
3335
3336 case FT_void:
3337 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3338 break;
3339
3340 case FT_boolean: /* Was FT_set in AT&T version */
3341 typep = dwarf_fundamental_type (current_objfile, FT_BOOLEAN);
3342 break;
3343
3344 case FT_pointer: /* (void *) */
3345 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3346 typep = lookup_pointer_type (typep);
3347 break;
3348
3349 case FT_char:
3350 typep = dwarf_fundamental_type (current_objfile, FT_CHAR);
3351 break;
3352
3353 case FT_signed_char:
3354 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_CHAR);
3355 break;
3356
3357 case FT_unsigned_char:
3358 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_CHAR);
3359 break;
3360
3361 case FT_short:
3362 typep = dwarf_fundamental_type (current_objfile, FT_SHORT);
3363 break;
3364
3365 case FT_signed_short:
3366 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_SHORT);
3367 break;
3368
3369 case FT_unsigned_short:
3370 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_SHORT);
3371 break;
3372
3373 case FT_integer:
3374 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3375 break;
3376
3377 case FT_signed_integer:
3378 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_INTEGER);
3379 break;
3380
3381 case FT_unsigned_integer:
3382 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_INTEGER);
3383 break;
3384
3385 case FT_long:
3386 typep = dwarf_fundamental_type (current_objfile, FT_LONG);
3387 break;
3388
3389 case FT_signed_long:
3390 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG);
3391 break;
3392
3393 case FT_unsigned_long:
3394 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG);
3395 break;
3396
3397 case FT_long_long:
3398 typep = dwarf_fundamental_type (current_objfile, FT_LONG_LONG);
3399 break;
3400
3401 case FT_signed_long_long:
3402 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG_LONG);
3403 break;
3404
3405 case FT_unsigned_long_long:
3406 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG_LONG);
3407 break;
3408
3409 case FT_float:
3410 typep = dwarf_fundamental_type (current_objfile, FT_FLOAT);
3411 break;
3412
3413 case FT_dbl_prec_float:
3414 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_FLOAT);
3415 break;
3416
3417 case FT_ext_prec_float:
3418 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_FLOAT);
3419 break;
3420
3421 case FT_complex:
3422 typep = dwarf_fundamental_type (current_objfile, FT_COMPLEX);
3423 break;
3424
3425 case FT_dbl_prec_complex:
3426 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_COMPLEX);
3427 break;
3428
3429 case FT_ext_prec_complex:
3430 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_COMPLEX);
3431 break;
3432
3433 }
3434
3435 if (typep == NULL)
3436 {
3437 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3438 if (!(FT_lo_user <= fundtype && fundtype <= FT_hi_user))
3439 {
3440 complain (&unexpected_fund_type, DIE_ID, DIE_NAME, fundtype);
3441 }
3442 }
3443
3444 return (typep);
3445 }
3446
3447 /*
3448
3449 LOCAL FUNCTION
3450
3451 create_name -- allocate a fresh copy of a string on an obstack
3452
3453 DESCRIPTION
3454
3455 Given a pointer to a string and a pointer to an obstack, allocates
3456 a fresh copy of the string on the specified obstack.
3457
3458 */
3459
3460 static char *
3461 create_name (name, obstackp)
3462 char *name;
3463 struct obstack *obstackp;
3464 {
3465 int length;
3466 char *newname;
3467
3468 length = strlen (name) + 1;
3469 newname = (char *) obstack_alloc (obstackp, length);
3470 strcpy (newname, name);
3471 return (newname);
3472 }
3473
3474 /*
3475
3476 LOCAL FUNCTION
3477
3478 basicdieinfo -- extract the minimal die info from raw die data
3479
3480 SYNOPSIS
3481
3482 void basicdieinfo (char *diep, struct dieinfo *dip,
3483 struct objfile *objfile)
3484
3485 DESCRIPTION
3486
3487 Given a pointer to raw DIE data, and a pointer to an instance of a
3488 die info structure, this function extracts the basic information
3489 from the DIE data required to continue processing this DIE, along
3490 with some bookkeeping information about the DIE.
3491
3492 The information we absolutely must have includes the DIE tag,
3493 and the DIE length. If we need the sibling reference, then we
3494 will have to call completedieinfo() to process all the remaining
3495 DIE information.
3496
3497 Note that since there is no guarantee that the data is properly
3498 aligned in memory for the type of access required (indirection
3499 through anything other than a char pointer), and there is no
3500 guarantee that it is in the same byte order as the gdb host,
3501 we call a function which deals with both alignment and byte
3502 swapping issues. Possibly inefficient, but quite portable.
3503
3504 We also take care of some other basic things at this point, such
3505 as ensuring that the instance of the die info structure starts
3506 out completely zero'd and that curdie is initialized for use
3507 in error reporting if we have a problem with the current die.
3508
3509 NOTES
3510
3511 All DIE's must have at least a valid length, thus the minimum
3512 DIE size is SIZEOF_DIE_LENGTH. In order to have a valid tag, the
3513 DIE size must be at least SIZEOF_DIE_TAG larger, otherwise they
3514 are forced to be TAG_padding DIES.
3515
3516 Padding DIES must be at least SIZEOF_DIE_LENGTH in length, implying
3517 that if a padding DIE is used for alignment and the amount needed is
3518 less than SIZEOF_DIE_LENGTH, then the padding DIE has to be big
3519 enough to align to the next alignment boundry.
3520
3521 We do some basic sanity checking here, such as verifying that the
3522 length of the die would not cause it to overrun the recorded end of
3523 the buffer holding the DIE info. If we find a DIE that is either
3524 too small or too large, we force it's length to zero which should
3525 cause the caller to take appropriate action.
3526 */
3527
3528 static void
3529 basicdieinfo (dip, diep, objfile)
3530 struct dieinfo *dip;
3531 char *diep;
3532 struct objfile *objfile;
3533 {
3534 curdie = dip;
3535 memset (dip, 0, sizeof (struct dieinfo));
3536 dip -> die = diep;
3537 dip -> die_ref = dbroff + (diep - dbbase);
3538 dip -> die_length = target_to_host (diep, SIZEOF_DIE_LENGTH, GET_UNSIGNED,
3539 objfile);
3540 if ((dip -> die_length < SIZEOF_DIE_LENGTH) ||
3541 ((diep + dip -> die_length) > (dbbase + dbsize)))
3542 {
3543 complain (&malformed_die, DIE_ID, DIE_NAME, dip -> die_length);
3544 dip -> die_length = 0;
3545 }
3546 else if (dip -> die_length < (SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG))
3547 {
3548 dip -> die_tag = TAG_padding;
3549 }
3550 else
3551 {
3552 diep += SIZEOF_DIE_LENGTH;
3553 dip -> die_tag = target_to_host (diep, SIZEOF_DIE_TAG, GET_UNSIGNED,
3554 objfile);
3555 }
3556 }
3557
3558 /*
3559
3560 LOCAL FUNCTION
3561
3562 completedieinfo -- finish reading the information for a given DIE
3563
3564 SYNOPSIS
3565
3566 void completedieinfo (struct dieinfo *dip, struct objfile *objfile)
3567
3568 DESCRIPTION
3569
3570 Given a pointer to an already partially initialized die info structure,
3571 scan the raw DIE data and finish filling in the die info structure
3572 from the various attributes found.
3573
3574 Note that since there is no guarantee that the data is properly
3575 aligned in memory for the type of access required (indirection
3576 through anything other than a char pointer), and there is no
3577 guarantee that it is in the same byte order as the gdb host,
3578 we call a function which deals with both alignment and byte
3579 swapping issues. Possibly inefficient, but quite portable.
3580
3581 NOTES
3582
3583 Each time we are called, we increment the diecount variable, which
3584 keeps an approximate count of the number of dies processed for
3585 each compilation unit. This information is presented to the user
3586 if the info_verbose flag is set.
3587
3588 */
3589
3590 static void
3591 completedieinfo (dip, objfile)
3592 struct dieinfo *dip;
3593 struct objfile *objfile;
3594 {
3595 char *diep; /* Current pointer into raw DIE data */
3596 char *end; /* Terminate DIE scan here */
3597 unsigned short attr; /* Current attribute being scanned */
3598 unsigned short form; /* Form of the attribute */
3599 int nbytes; /* Size of next field to read */
3600
3601 diecount++;
3602 diep = dip -> die;
3603 end = diep + dip -> die_length;
3604 diep += SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG;
3605 while (diep < end)
3606 {
3607 attr = target_to_host (diep, SIZEOF_ATTRIBUTE, GET_UNSIGNED, objfile);
3608 diep += SIZEOF_ATTRIBUTE;
3609 if ((nbytes = attribute_size (attr)) == -1)
3610 {
3611 complain (&unknown_attribute_length, DIE_ID, DIE_NAME);
3612 diep = end;
3613 continue;
3614 }
3615 switch (attr)
3616 {
3617 case AT_fund_type:
3618 dip -> at_fund_type = target_to_host (diep, nbytes, GET_UNSIGNED,
3619 objfile);
3620 break;
3621 case AT_ordering:
3622 dip -> at_ordering = target_to_host (diep, nbytes, GET_UNSIGNED,
3623 objfile);
3624 break;
3625 case AT_bit_offset:
3626 dip -> at_bit_offset = target_to_host (diep, nbytes, GET_UNSIGNED,
3627 objfile);
3628 break;
3629 case AT_sibling:
3630 dip -> at_sibling = target_to_host (diep, nbytes, GET_UNSIGNED,
3631 objfile);
3632 break;
3633 case AT_stmt_list:
3634 dip -> at_stmt_list = target_to_host (diep, nbytes, GET_UNSIGNED,
3635 objfile);
3636 dip -> has_at_stmt_list = 1;
3637 break;
3638 case AT_low_pc:
3639 dip -> at_low_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3640 objfile);
3641 dip -> at_low_pc += baseaddr;
3642 dip -> has_at_low_pc = 1;
3643 break;
3644 case AT_high_pc:
3645 dip -> at_high_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3646 objfile);
3647 dip -> at_high_pc += baseaddr;
3648 break;
3649 case AT_language:
3650 dip -> at_language = target_to_host (diep, nbytes, GET_UNSIGNED,
3651 objfile);
3652 break;
3653 case AT_user_def_type:
3654 dip -> at_user_def_type = target_to_host (diep, nbytes,
3655 GET_UNSIGNED, objfile);
3656 break;
3657 case AT_byte_size:
3658 dip -> at_byte_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3659 objfile);
3660 dip -> has_at_byte_size = 1;
3661 break;
3662 case AT_bit_size:
3663 dip -> at_bit_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3664 objfile);
3665 break;
3666 case AT_member:
3667 dip -> at_member = target_to_host (diep, nbytes, GET_UNSIGNED,
3668 objfile);
3669 break;
3670 case AT_discr:
3671 dip -> at_discr = target_to_host (diep, nbytes, GET_UNSIGNED,
3672 objfile);
3673 break;
3674 case AT_location:
3675 dip -> at_location = diep;
3676 break;
3677 case AT_mod_fund_type:
3678 dip -> at_mod_fund_type = diep;
3679 break;
3680 case AT_subscr_data:
3681 dip -> at_subscr_data = diep;
3682 break;
3683 case AT_mod_u_d_type:
3684 dip -> at_mod_u_d_type = diep;
3685 break;
3686 case AT_element_list:
3687 dip -> at_element_list = diep;
3688 dip -> short_element_list = 0;
3689 break;
3690 case AT_short_element_list:
3691 dip -> at_element_list = diep;
3692 dip -> short_element_list = 1;
3693 break;
3694 case AT_discr_value:
3695 dip -> at_discr_value = diep;
3696 break;
3697 case AT_string_length:
3698 dip -> at_string_length = diep;
3699 break;
3700 case AT_name:
3701 dip -> at_name = diep;
3702 break;
3703 case AT_comp_dir:
3704 /* For now, ignore any "hostname:" portion, since gdb doesn't
3705 know how to deal with it. (FIXME). */
3706 dip -> at_comp_dir = strrchr (diep, ':');
3707 if (dip -> at_comp_dir != NULL)
3708 {
3709 dip -> at_comp_dir++;
3710 }
3711 else
3712 {
3713 dip -> at_comp_dir = diep;
3714 }
3715 break;
3716 case AT_producer:
3717 dip -> at_producer = diep;
3718 break;
3719 case AT_start_scope:
3720 dip -> at_start_scope = target_to_host (diep, nbytes, GET_UNSIGNED,
3721 objfile);
3722 break;
3723 case AT_stride_size:
3724 dip -> at_stride_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3725 objfile);
3726 break;
3727 case AT_src_info:
3728 dip -> at_src_info = target_to_host (diep, nbytes, GET_UNSIGNED,
3729 objfile);
3730 break;
3731 case AT_prototyped:
3732 dip -> at_prototyped = diep;
3733 break;
3734 default:
3735 /* Found an attribute that we are unprepared to handle. However
3736 it is specifically one of the design goals of DWARF that
3737 consumers should ignore unknown attributes. As long as the
3738 form is one that we recognize (so we know how to skip it),
3739 we can just ignore the unknown attribute. */
3740 break;
3741 }
3742 form = FORM_FROM_ATTR (attr);
3743 switch (form)
3744 {
3745 case FORM_DATA2:
3746 diep += 2;
3747 break;
3748 case FORM_DATA4:
3749 case FORM_REF:
3750 diep += 4;
3751 break;
3752 case FORM_DATA8:
3753 diep += 8;
3754 break;
3755 case FORM_ADDR:
3756 diep += TARGET_FT_POINTER_SIZE (objfile);
3757 break;
3758 case FORM_BLOCK2:
3759 diep += 2 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3760 break;
3761 case FORM_BLOCK4:
3762 diep += 4 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3763 break;
3764 case FORM_STRING:
3765 diep += strlen (diep) + 1;
3766 break;
3767 default:
3768 complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form);
3769 diep = end;
3770 break;
3771 }
3772 }
3773 }
3774
3775 /*
3776
3777 LOCAL FUNCTION
3778
3779 target_to_host -- swap in target data to host
3780
3781 SYNOPSIS
3782
3783 target_to_host (char *from, int nbytes, int signextend,
3784 struct objfile *objfile)
3785
3786 DESCRIPTION
3787
3788 Given pointer to data in target format in FROM, a byte count for
3789 the size of the data in NBYTES, a flag indicating whether or not
3790 the data is signed in SIGNEXTEND, and a pointer to the current
3791 objfile in OBJFILE, convert the data to host format and return
3792 the converted value.
3793
3794 NOTES
3795
3796 FIXME: If we read data that is known to be signed, and expect to
3797 use it as signed data, then we need to explicitly sign extend the
3798 result until the bfd library is able to do this for us.
3799
3800 FIXME: Would a 32 bit target ever need an 8 byte result?
3801
3802 */
3803
3804 static CORE_ADDR
3805 target_to_host (from, nbytes, signextend, objfile)
3806 char *from;
3807 int nbytes;
3808 int signextend; /* FIXME: Unused */
3809 struct objfile *objfile;
3810 {
3811 CORE_ADDR rtnval;
3812
3813 switch (nbytes)
3814 {
3815 case 8:
3816 rtnval = bfd_get_64 (objfile -> obfd, (bfd_byte *) from);
3817 break;
3818 case 4:
3819 rtnval = bfd_get_32 (objfile -> obfd, (bfd_byte *) from);
3820 break;
3821 case 2:
3822 rtnval = bfd_get_16 (objfile -> obfd, (bfd_byte *) from);
3823 break;
3824 case 1:
3825 rtnval = bfd_get_8 (objfile -> obfd, (bfd_byte *) from);
3826 break;
3827 default:
3828 complain (&no_bfd_get_N, DIE_ID, DIE_NAME, nbytes);
3829 rtnval = 0;
3830 break;
3831 }
3832 return (rtnval);
3833 }
3834
3835 /*
3836
3837 LOCAL FUNCTION
3838
3839 attribute_size -- compute size of data for a DWARF attribute
3840
3841 SYNOPSIS
3842
3843 static int attribute_size (unsigned int attr)
3844
3845 DESCRIPTION
3846
3847 Given a DWARF attribute in ATTR, compute the size of the first
3848 piece of data associated with this attribute and return that
3849 size.
3850
3851 Returns -1 for unrecognized attributes.
3852
3853 */
3854
3855 static int
3856 attribute_size (attr)
3857 unsigned int attr;
3858 {
3859 int nbytes; /* Size of next data for this attribute */
3860 unsigned short form; /* Form of the attribute */
3861
3862 form = FORM_FROM_ATTR (attr);
3863 switch (form)
3864 {
3865 case FORM_STRING: /* A variable length field is next */
3866 nbytes = 0;
3867 break;
3868 case FORM_DATA2: /* Next 2 byte field is the data itself */
3869 case FORM_BLOCK2: /* Next 2 byte field is a block length */
3870 nbytes = 2;
3871 break;
3872 case FORM_DATA4: /* Next 4 byte field is the data itself */
3873 case FORM_BLOCK4: /* Next 4 byte field is a block length */
3874 case FORM_REF: /* Next 4 byte field is a DIE offset */
3875 nbytes = 4;
3876 break;
3877 case FORM_DATA8: /* Next 8 byte field is the data itself */
3878 nbytes = 8;
3879 break;
3880 case FORM_ADDR: /* Next field size is target sizeof(void *) */
3881 nbytes = TARGET_FT_POINTER_SIZE (objfile);
3882 break;
3883 default:
3884 complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form);
3885 nbytes = -1;
3886 break;
3887 }
3888 return (nbytes);
3889 }