* dwarfread.c (process_dies): Skip nested TAG_compile_unit DIEs.
[binutils-gdb.git] / gdb / dwarfread.c
1 /* DWARF debugging format support for GDB.
2 Copyright (C) 1991, 1992, 1993, 1994 Free Software Foundation, Inc.
3 Written by Fred Fish at Cygnus Support. Portions based on dbxread.c,
4 mipsread.c, coffread.c, and dwarfread.c from a Data General SVR4 gdb port.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
21
22 /*
23
24 FIXME: Do we need to generate dependencies in partial symtabs?
25 (Perhaps we don't need to).
26
27 FIXME: Resolve minor differences between what information we put in the
28 partial symbol table and what dbxread puts in. For example, we don't yet
29 put enum constants there. And dbxread seems to invent a lot of typedefs
30 we never see. Use the new printpsym command to see the partial symbol table
31 contents.
32
33 FIXME: Figure out a better way to tell gdb about the name of the function
34 contain the user's entry point (I.E. main())
35
36 FIXME: See other FIXME's and "ifdef 0" scattered throughout the code for
37 other things to work on, if you get bored. :-)
38
39 */
40
41 #include "defs.h"
42 #include "bfd.h"
43 #include "symtab.h"
44 #include "gdbtypes.h"
45 #include "symfile.h"
46 #include "objfiles.h"
47 #include <time.h> /* For time_t in libbfd.h. */
48 #include <sys/types.h> /* For time_t, if not in time.h. */
49 #include "libbfd.h" /* FIXME Secret Internal BFD stuff (bfd_read) */
50 #include "elf/dwarf.h"
51 #include "buildsym.h"
52 #include "demangle.h"
53 #include "expression.h" /* Needed for enum exp_opcode in language.h, sigh... */
54 #include "language.h"
55 #include "complaints.h"
56
57 #include <fcntl.h>
58 #include <string.h>
59 #include <sys/types.h>
60
61 #ifndef NO_SYS_FILE
62 #include <sys/file.h>
63 #endif
64
65 /* FIXME -- convert this to SEEK_SET a la POSIX, move to config files. */
66 #ifndef L_SET
67 #define L_SET 0
68 #endif
69
70 /* Some macros to provide DIE info for complaints. */
71
72 #define DIE_ID (curdie!=NULL ? curdie->die_ref : 0)
73 #define DIE_NAME (curdie!=NULL && curdie->at_name!=NULL) ? curdie->at_name : ""
74
75 /* Complaints that can be issued during DWARF debug info reading. */
76
77 struct complaint no_bfd_get_N =
78 {
79 "DIE @ 0x%x \"%s\", no bfd support for %d byte data object", 0, 0
80 };
81
82 struct complaint malformed_die =
83 {
84 "DIE @ 0x%x \"%s\", malformed DIE, bad length (%d bytes)", 0, 0
85 };
86
87 struct complaint bad_die_ref =
88 {
89 "DIE @ 0x%x \"%s\", reference to DIE (0x%x) outside compilation unit", 0, 0
90 };
91
92 struct complaint unknown_attribute_form =
93 {
94 "DIE @ 0x%x \"%s\", unknown attribute form (0x%x)", 0, 0
95 };
96
97 struct complaint unknown_attribute_length =
98 {
99 "DIE @ 0x%x \"%s\", unknown attribute length, skipped remaining attributes", 0, 0
100 };
101
102 struct complaint unexpected_fund_type =
103 {
104 "DIE @ 0x%x \"%s\", unexpected fundamental type 0x%x", 0, 0
105 };
106
107 struct complaint unknown_type_modifier =
108 {
109 "DIE @ 0x%x \"%s\", unknown type modifier %u", 0, 0
110 };
111
112 struct complaint volatile_ignored =
113 {
114 "DIE @ 0x%x \"%s\", type modifier 'volatile' ignored", 0, 0
115 };
116
117 struct complaint const_ignored =
118 {
119 "DIE @ 0x%x \"%s\", type modifier 'const' ignored", 0, 0
120 };
121
122 struct complaint botched_modified_type =
123 {
124 "DIE @ 0x%x \"%s\", botched modified type decoding (mtype 0x%x)", 0, 0
125 };
126
127 struct complaint op_deref2 =
128 {
129 "DIE @ 0x%x \"%s\", OP_DEREF2 address 0x%x not handled", 0, 0
130 };
131
132 struct complaint op_deref4 =
133 {
134 "DIE @ 0x%x \"%s\", OP_DEREF4 address 0x%x not handled", 0, 0
135 };
136
137 struct complaint basereg_not_handled =
138 {
139 "DIE @ 0x%x \"%s\", BASEREG %d not handled", 0, 0
140 };
141
142 struct complaint dup_user_type_allocation =
143 {
144 "DIE @ 0x%x \"%s\", internal error: duplicate user type allocation", 0, 0
145 };
146
147 struct complaint dup_user_type_definition =
148 {
149 "DIE @ 0x%x \"%s\", internal error: duplicate user type definition", 0, 0
150 };
151
152 struct complaint missing_tag =
153 {
154 "DIE @ 0x%x \"%s\", missing class, structure, or union tag", 0, 0
155 };
156
157 struct complaint bad_array_element_type =
158 {
159 "DIE @ 0x%x \"%s\", bad array element type attribute 0x%x", 0, 0
160 };
161
162 struct complaint subscript_data_items =
163 {
164 "DIE @ 0x%x \"%s\", can't decode subscript data items", 0, 0
165 };
166
167 struct complaint unhandled_array_subscript_format =
168 {
169 "DIE @ 0x%x \"%s\", array subscript format 0x%x not handled yet", 0, 0
170 };
171
172 struct complaint unknown_array_subscript_format =
173 {
174 "DIE @ 0x%x \"%s\", unknown array subscript format %x", 0, 0
175 };
176
177 struct complaint not_row_major =
178 {
179 "DIE @ 0x%x \"%s\", array not row major; not handled correctly", 0, 0
180 };
181
182 typedef unsigned int DIE_REF; /* Reference to a DIE */
183
184 #ifndef GCC_PRODUCER
185 #define GCC_PRODUCER "GNU C "
186 #endif
187
188 #ifndef GPLUS_PRODUCER
189 #define GPLUS_PRODUCER "GNU C++ "
190 #endif
191
192 #ifndef LCC_PRODUCER
193 #define LCC_PRODUCER "NCR C/C++"
194 #endif
195
196 #ifndef CHILL_PRODUCER
197 #define CHILL_PRODUCER "GNU Chill "
198 #endif
199
200 /* Flags to target_to_host() that tell whether or not the data object is
201 expected to be signed. Used, for example, when fetching a signed
202 integer in the target environment which is used as a signed integer
203 in the host environment, and the two environments have different sized
204 ints. In this case, *somebody* has to sign extend the smaller sized
205 int. */
206
207 #define GET_UNSIGNED 0 /* No sign extension required */
208 #define GET_SIGNED 1 /* Sign extension required */
209
210 /* Defines for things which are specified in the document "DWARF Debugging
211 Information Format" published by UNIX International, Programming Languages
212 SIG. These defines are based on revision 1.0.0, Jan 20, 1992. */
213
214 #define SIZEOF_DIE_LENGTH 4
215 #define SIZEOF_DIE_TAG 2
216 #define SIZEOF_ATTRIBUTE 2
217 #define SIZEOF_FORMAT_SPECIFIER 1
218 #define SIZEOF_FMT_FT 2
219 #define SIZEOF_LINETBL_LENGTH 4
220 #define SIZEOF_LINETBL_LINENO 4
221 #define SIZEOF_LINETBL_STMT 2
222 #define SIZEOF_LINETBL_DELTA 4
223 #define SIZEOF_LOC_ATOM_CODE 1
224
225 #define FORM_FROM_ATTR(attr) ((attr) & 0xF) /* Implicitly specified */
226
227 /* Macros that return the sizes of various types of data in the target
228 environment.
229
230 FIXME: Currently these are just compile time constants (as they are in
231 other parts of gdb as well). They need to be able to get the right size
232 either from the bfd or possibly from the DWARF info. It would be nice if
233 the DWARF producer inserted DIES that describe the fundamental types in
234 the target environment into the DWARF info, similar to the way dbx stabs
235 producers produce information about their fundamental types. */
236
237 #define TARGET_FT_POINTER_SIZE(objfile) (TARGET_PTR_BIT / TARGET_CHAR_BIT)
238 #define TARGET_FT_LONG_SIZE(objfile) (TARGET_LONG_BIT / TARGET_CHAR_BIT)
239
240 /* The Amiga SVR4 header file <dwarf.h> defines AT_element_list as a
241 FORM_BLOCK2, and this is the value emitted by the AT&T compiler.
242 However, the Issue 2 DWARF specification from AT&T defines it as
243 a FORM_BLOCK4, as does the latest specification from UI/PLSIG.
244 For backwards compatibility with the AT&T compiler produced executables
245 we define AT_short_element_list for this variant. */
246
247 #define AT_short_element_list (0x00f0|FORM_BLOCK2)
248
249 /* External variables referenced. */
250
251 extern int info_verbose; /* From main.c; nonzero => verbose */
252 extern char *warning_pre_print; /* From utils.c */
253
254 /* The DWARF debugging information consists of two major pieces,
255 one is a block of DWARF Information Entries (DIE's) and the other
256 is a line number table. The "struct dieinfo" structure contains
257 the information for a single DIE, the one currently being processed.
258
259 In order to make it easier to randomly access the attribute fields
260 of the current DIE, which are specifically unordered within the DIE,
261 each DIE is scanned and an instance of the "struct dieinfo"
262 structure is initialized.
263
264 Initialization is done in two levels. The first, done by basicdieinfo(),
265 just initializes those fields that are vital to deciding whether or not
266 to use this DIE, how to skip past it, etc. The second, done by the
267 function completedieinfo(), fills in the rest of the information.
268
269 Attributes which have block forms are not interpreted at the time
270 the DIE is scanned, instead we just save pointers to the start
271 of their value fields.
272
273 Some fields have a flag <name>_p that is set when the value of the
274 field is valid (I.E. we found a matching attribute in the DIE). Since
275 we may want to test for the presence of some attributes in the DIE,
276 such as AT_low_pc, without restricting the values of the field,
277 we need someway to note that we found such an attribute.
278
279 */
280
281 typedef char BLOCK;
282
283 struct dieinfo {
284 char * die; /* Pointer to the raw DIE data */
285 unsigned long die_length; /* Length of the raw DIE data */
286 DIE_REF die_ref; /* Offset of this DIE */
287 unsigned short die_tag; /* Tag for this DIE */
288 unsigned long at_padding;
289 unsigned long at_sibling;
290 BLOCK * at_location;
291 char * at_name;
292 unsigned short at_fund_type;
293 BLOCK * at_mod_fund_type;
294 unsigned long at_user_def_type;
295 BLOCK * at_mod_u_d_type;
296 unsigned short at_ordering;
297 BLOCK * at_subscr_data;
298 unsigned long at_byte_size;
299 unsigned short at_bit_offset;
300 unsigned long at_bit_size;
301 BLOCK * at_element_list;
302 unsigned long at_stmt_list;
303 unsigned long at_low_pc;
304 unsigned long at_high_pc;
305 unsigned long at_language;
306 unsigned long at_member;
307 unsigned long at_discr;
308 BLOCK * at_discr_value;
309 BLOCK * at_string_length;
310 char * at_comp_dir;
311 char * at_producer;
312 unsigned long at_start_scope;
313 unsigned long at_stride_size;
314 unsigned long at_src_info;
315 char * at_prototyped;
316 unsigned int has_at_low_pc:1;
317 unsigned int has_at_stmt_list:1;
318 unsigned int has_at_byte_size:1;
319 unsigned int short_element_list:1;
320 };
321
322 static int diecount; /* Approximate count of dies for compilation unit */
323 static struct dieinfo *curdie; /* For warnings and such */
324
325 static char *dbbase; /* Base pointer to dwarf info */
326 static int dbsize; /* Size of dwarf info in bytes */
327 static int dbroff; /* Relative offset from start of .debug section */
328 static char *lnbase; /* Base pointer to line section */
329 static int isreg; /* Kludge to identify register variables */
330 /* Kludge to identify basereg references. Nonzero if we have an offset
331 relative to a basereg. */
332 static int offreg;
333 /* Which base register is it relative to? */
334 static int basereg;
335
336 /* This value is added to each symbol value. FIXME: Generalize to
337 the section_offsets structure used by dbxread (once this is done,
338 pass the appropriate section number to end_symtab). */
339 static CORE_ADDR baseaddr; /* Add to each symbol value */
340
341 /* The section offsets used in the current psymtab or symtab. FIXME,
342 only used to pass one value (baseaddr) at the moment. */
343 static struct section_offsets *base_section_offsets;
344
345 /* Each partial symbol table entry contains a pointer to private data for the
346 read_symtab() function to use when expanding a partial symbol table entry
347 to a full symbol table entry. For DWARF debugging info, this data is
348 contained in the following structure and macros are provided for easy
349 access to the members given a pointer to a partial symbol table entry.
350
351 dbfoff Always the absolute file offset to the start of the ".debug"
352 section for the file containing the DIE's being accessed.
353
354 dbroff Relative offset from the start of the ".debug" access to the
355 first DIE to be accessed. When building the partial symbol
356 table, this value will be zero since we are accessing the
357 entire ".debug" section. When expanding a partial symbol
358 table entry, this value will be the offset to the first
359 DIE for the compilation unit containing the symbol that
360 triggers the expansion.
361
362 dblength The size of the chunk of DIE's being examined, in bytes.
363
364 lnfoff The absolute file offset to the line table fragment. Ignored
365 when building partial symbol tables, but used when expanding
366 them, and contains the absolute file offset to the fragment
367 of the ".line" section containing the line numbers for the
368 current compilation unit.
369 */
370
371 struct dwfinfo {
372 file_ptr dbfoff; /* Absolute file offset to start of .debug section */
373 int dbroff; /* Relative offset from start of .debug section */
374 int dblength; /* Size of the chunk of DIE's being examined */
375 file_ptr lnfoff; /* Absolute file offset to line table fragment */
376 };
377
378 #define DBFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbfoff)
379 #define DBROFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbroff)
380 #define DBLENGTH(p) (((struct dwfinfo *)((p)->read_symtab_private))->dblength)
381 #define LNFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->lnfoff)
382
383 /* The generic symbol table building routines have separate lists for
384 file scope symbols and all all other scopes (local scopes). So
385 we need to select the right one to pass to add_symbol_to_list().
386 We do it by keeping a pointer to the correct list in list_in_scope.
387
388 FIXME: The original dwarf code just treated the file scope as the first
389 local scope, and all other local scopes as nested local scopes, and worked
390 fine. Check to see if we really need to distinguish these in buildsym.c */
391
392 struct pending **list_in_scope = &file_symbols;
393
394 /* DIES which have user defined types or modified user defined types refer to
395 other DIES for the type information. Thus we need to associate the offset
396 of a DIE for a user defined type with a pointer to the type information.
397
398 Originally this was done using a simple but expensive algorithm, with an
399 array of unsorted structures, each containing an offset/type-pointer pair.
400 This array was scanned linearly each time a lookup was done. The result
401 was that gdb was spending over half it's startup time munging through this
402 array of pointers looking for a structure that had the right offset member.
403
404 The second attempt used the same array of structures, but the array was
405 sorted using qsort each time a new offset/type was recorded, and a binary
406 search was used to find the type pointer for a given DIE offset. This was
407 even slower, due to the overhead of sorting the array each time a new
408 offset/type pair was entered.
409
410 The third attempt uses a fixed size array of type pointers, indexed by a
411 value derived from the DIE offset. Since the minimum DIE size is 4 bytes,
412 we can divide any DIE offset by 4 to obtain a unique index into this fixed
413 size array. Since each element is a 4 byte pointer, it takes exactly as
414 much memory to hold this array as to hold the DWARF info for a given
415 compilation unit. But it gets freed as soon as we are done with it.
416 This has worked well in practice, as a reasonable tradeoff between memory
417 consumption and speed, without having to resort to much more complicated
418 algorithms. */
419
420 static struct type **utypes; /* Pointer to array of user type pointers */
421 static int numutypes; /* Max number of user type pointers */
422
423 /* Maintain an array of referenced fundamental types for the current
424 compilation unit being read. For DWARF version 1, we have to construct
425 the fundamental types on the fly, since no information about the
426 fundamental types is supplied. Each such fundamental type is created by
427 calling a language dependent routine to create the type, and then a
428 pointer to that type is then placed in the array at the index specified
429 by it's FT_<TYPENAME> value. The array has a fixed size set by the
430 FT_NUM_MEMBERS compile time constant, which is the number of predefined
431 fundamental types gdb knows how to construct. */
432
433 static struct type *ftypes[FT_NUM_MEMBERS]; /* Fundamental types */
434
435 /* Record the language for the compilation unit which is currently being
436 processed. We know it once we have seen the TAG_compile_unit DIE,
437 and we need it while processing the DIE's for that compilation unit.
438 It is eventually saved in the symtab structure, but we don't finalize
439 the symtab struct until we have processed all the DIE's for the
440 compilation unit. We also need to get and save a pointer to the
441 language struct for this language, so we can call the language
442 dependent routines for doing things such as creating fundamental
443 types. */
444
445 static enum language cu_language;
446 static const struct language_defn *cu_language_defn;
447
448 /* Forward declarations of static functions so we don't have to worry
449 about ordering within this file. */
450
451 static int
452 attribute_size PARAMS ((unsigned int));
453
454 static unsigned long
455 target_to_host PARAMS ((char *, int, int, struct objfile *));
456
457 static void
458 add_enum_psymbol PARAMS ((struct dieinfo *, struct objfile *));
459
460 static void
461 handle_producer PARAMS ((char *));
462
463 static void
464 read_file_scope PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
465
466 static void
467 read_func_scope PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
468
469 static void
470 read_lexical_block_scope PARAMS ((struct dieinfo *, char *, char *,
471 struct objfile *));
472
473 static void
474 scan_partial_symbols PARAMS ((char *, char *, struct objfile *));
475
476 static void
477 scan_compilation_units PARAMS ((char *, char *, file_ptr,
478 file_ptr, struct objfile *));
479
480 static void
481 add_partial_symbol PARAMS ((struct dieinfo *, struct objfile *));
482
483 static void
484 init_psymbol_list PARAMS ((struct objfile *, int));
485
486 static void
487 basicdieinfo PARAMS ((struct dieinfo *, char *, struct objfile *));
488
489 static void
490 completedieinfo PARAMS ((struct dieinfo *, struct objfile *));
491
492 static void
493 dwarf_psymtab_to_symtab PARAMS ((struct partial_symtab *));
494
495 static void
496 psymtab_to_symtab_1 PARAMS ((struct partial_symtab *));
497
498 static void
499 read_ofile_symtab PARAMS ((struct partial_symtab *));
500
501 static void
502 process_dies PARAMS ((char *, char *, struct objfile *));
503
504 static void
505 read_structure_scope PARAMS ((struct dieinfo *, char *, char *,
506 struct objfile *));
507
508 static struct type *
509 decode_array_element_type PARAMS ((char *));
510
511 static struct type *
512 decode_subscript_data_item PARAMS ((char *, char *));
513
514 static void
515 dwarf_read_array_type PARAMS ((struct dieinfo *));
516
517 static void
518 read_tag_pointer_type PARAMS ((struct dieinfo *dip));
519
520 static void
521 read_tag_string_type PARAMS ((struct dieinfo *dip));
522
523 static void
524 read_subroutine_type PARAMS ((struct dieinfo *, char *, char *));
525
526 static void
527 read_enumeration PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
528
529 static struct type *
530 struct_type PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
531
532 static struct type *
533 enum_type PARAMS ((struct dieinfo *, struct objfile *));
534
535 static void
536 decode_line_numbers PARAMS ((char *));
537
538 static struct type *
539 decode_die_type PARAMS ((struct dieinfo *));
540
541 static struct type *
542 decode_mod_fund_type PARAMS ((char *));
543
544 static struct type *
545 decode_mod_u_d_type PARAMS ((char *));
546
547 static struct type *
548 decode_modified_type PARAMS ((char *, unsigned int, int));
549
550 static struct type *
551 decode_fund_type PARAMS ((unsigned int));
552
553 static char *
554 create_name PARAMS ((char *, struct obstack *));
555
556 static struct type *
557 lookup_utype PARAMS ((DIE_REF));
558
559 static struct type *
560 alloc_utype PARAMS ((DIE_REF, struct type *));
561
562 static struct symbol *
563 new_symbol PARAMS ((struct dieinfo *, struct objfile *));
564
565 static void
566 synthesize_typedef PARAMS ((struct dieinfo *, struct objfile *,
567 struct type *));
568
569 static int
570 locval PARAMS ((char *));
571
572 static void
573 set_cu_language PARAMS ((struct dieinfo *));
574
575 static struct type *
576 dwarf_fundamental_type PARAMS ((struct objfile *, int));
577
578
579 /*
580
581 LOCAL FUNCTION
582
583 dwarf_fundamental_type -- lookup or create a fundamental type
584
585 SYNOPSIS
586
587 struct type *
588 dwarf_fundamental_type (struct objfile *objfile, int typeid)
589
590 DESCRIPTION
591
592 DWARF version 1 doesn't supply any fundamental type information,
593 so gdb has to construct such types. It has a fixed number of
594 fundamental types that it knows how to construct, which is the
595 union of all types that it knows how to construct for all languages
596 that it knows about. These are enumerated in gdbtypes.h.
597
598 As an example, assume we find a DIE that references a DWARF
599 fundamental type of FT_integer. We first look in the ftypes
600 array to see if we already have such a type, indexed by the
601 gdb internal value of FT_INTEGER. If so, we simply return a
602 pointer to that type. If not, then we ask an appropriate
603 language dependent routine to create a type FT_INTEGER, using
604 defaults reasonable for the current target machine, and install
605 that type in ftypes for future reference.
606
607 RETURNS
608
609 Pointer to a fundamental type.
610
611 */
612
613 static struct type *
614 dwarf_fundamental_type (objfile, typeid)
615 struct objfile *objfile;
616 int typeid;
617 {
618 if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
619 {
620 error ("internal error - invalid fundamental type id %d", typeid);
621 }
622
623 /* Look for this particular type in the fundamental type vector. If one is
624 not found, create and install one appropriate for the current language
625 and the current target machine. */
626
627 if (ftypes[typeid] == NULL)
628 {
629 ftypes[typeid] = cu_language_defn -> la_fund_type(objfile, typeid);
630 }
631
632 return (ftypes[typeid]);
633 }
634
635 /*
636
637 LOCAL FUNCTION
638
639 set_cu_language -- set local copy of language for compilation unit
640
641 SYNOPSIS
642
643 void
644 set_cu_language (struct dieinfo *dip)
645
646 DESCRIPTION
647
648 Decode the language attribute for a compilation unit DIE and
649 remember what the language was. We use this at various times
650 when processing DIE's for a given compilation unit.
651
652 RETURNS
653
654 No return value.
655
656 */
657
658 static void
659 set_cu_language (dip)
660 struct dieinfo *dip;
661 {
662 switch (dip -> at_language)
663 {
664 case LANG_C89:
665 case LANG_C:
666 cu_language = language_c;
667 break;
668 case LANG_C_PLUS_PLUS:
669 cu_language = language_cplus;
670 break;
671 case LANG_CHILL:
672 cu_language = language_chill;
673 break;
674 case LANG_MODULA2:
675 cu_language = language_m2;
676 break;
677 case LANG_ADA83:
678 case LANG_COBOL74:
679 case LANG_COBOL85:
680 case LANG_FORTRAN77:
681 case LANG_FORTRAN90:
682 case LANG_PASCAL83:
683 /* We don't know anything special about these yet. */
684 cu_language = language_unknown;
685 break;
686 default:
687 /* If no at_language, try to deduce one from the filename */
688 cu_language = deduce_language_from_filename (dip -> at_name);
689 break;
690 }
691 cu_language_defn = language_def (cu_language);
692 }
693
694 /*
695
696 GLOBAL FUNCTION
697
698 dwarf_build_psymtabs -- build partial symtabs from DWARF debug info
699
700 SYNOPSIS
701
702 void dwarf_build_psymtabs (struct objfile *objfile,
703 struct section_offsets *section_offsets,
704 int mainline, file_ptr dbfoff, unsigned int dbfsize,
705 file_ptr lnoffset, unsigned int lnsize)
706
707 DESCRIPTION
708
709 This function is called upon to build partial symtabs from files
710 containing DIE's (Dwarf Information Entries) and DWARF line numbers.
711
712 It is passed a bfd* containing the DIES
713 and line number information, the corresponding filename for that
714 file, a base address for relocating the symbols, a flag indicating
715 whether or not this debugging information is from a "main symbol
716 table" rather than a shared library or dynamically linked file,
717 and file offset/size pairs for the DIE information and line number
718 information.
719
720 RETURNS
721
722 No return value.
723
724 */
725
726 void
727 dwarf_build_psymtabs (objfile, section_offsets, mainline, dbfoff, dbfsize,
728 lnoffset, lnsize)
729 struct objfile *objfile;
730 struct section_offsets *section_offsets;
731 int mainline;
732 file_ptr dbfoff;
733 unsigned int dbfsize;
734 file_ptr lnoffset;
735 unsigned int lnsize;
736 {
737 bfd *abfd = objfile->obfd;
738 struct cleanup *back_to;
739
740 current_objfile = objfile;
741 dbsize = dbfsize;
742 dbbase = xmalloc (dbsize);
743 dbroff = 0;
744 if ((bfd_seek (abfd, dbfoff, L_SET) != 0) ||
745 (bfd_read (dbbase, dbsize, 1, abfd) != dbsize))
746 {
747 free (dbbase);
748 error ("can't read DWARF data from '%s'", bfd_get_filename (abfd));
749 }
750 back_to = make_cleanup (free, dbbase);
751
752 /* If we are reinitializing, or if we have never loaded syms yet, init.
753 Since we have no idea how many DIES we are looking at, we just guess
754 some arbitrary value. */
755
756 if (mainline || objfile -> global_psymbols.size == 0 ||
757 objfile -> static_psymbols.size == 0)
758 {
759 init_psymbol_list (objfile, 1024);
760 }
761
762 /* Save the relocation factor where everybody can see it. */
763
764 base_section_offsets = section_offsets;
765 baseaddr = ANOFFSET (section_offsets, 0);
766
767 /* Follow the compilation unit sibling chain, building a partial symbol
768 table entry for each one. Save enough information about each compilation
769 unit to locate the full DWARF information later. */
770
771 scan_compilation_units (dbbase, dbbase + dbsize, dbfoff, lnoffset, objfile);
772
773 do_cleanups (back_to);
774 current_objfile = NULL;
775 }
776
777 /*
778
779 LOCAL FUNCTION
780
781 read_lexical_block_scope -- process all dies in a lexical block
782
783 SYNOPSIS
784
785 static void read_lexical_block_scope (struct dieinfo *dip,
786 char *thisdie, char *enddie)
787
788 DESCRIPTION
789
790 Process all the DIES contained within a lexical block scope.
791 Start a new scope, process the dies, and then close the scope.
792
793 */
794
795 static void
796 read_lexical_block_scope (dip, thisdie, enddie, objfile)
797 struct dieinfo *dip;
798 char *thisdie;
799 char *enddie;
800 struct objfile *objfile;
801 {
802 register struct context_stack *new;
803
804 push_context (0, dip -> at_low_pc);
805 process_dies (thisdie + dip -> die_length, enddie, objfile);
806 new = pop_context ();
807 if (local_symbols != NULL)
808 {
809 finish_block (0, &local_symbols, new -> old_blocks, new -> start_addr,
810 dip -> at_high_pc, objfile);
811 }
812 local_symbols = new -> locals;
813 }
814
815 /*
816
817 LOCAL FUNCTION
818
819 lookup_utype -- look up a user defined type from die reference
820
821 SYNOPSIS
822
823 static type *lookup_utype (DIE_REF die_ref)
824
825 DESCRIPTION
826
827 Given a DIE reference, lookup the user defined type associated with
828 that DIE, if it has been registered already. If not registered, then
829 return NULL. Alloc_utype() can be called to register an empty
830 type for this reference, which will be filled in later when the
831 actual referenced DIE is processed.
832 */
833
834 static struct type *
835 lookup_utype (die_ref)
836 DIE_REF die_ref;
837 {
838 struct type *type = NULL;
839 int utypeidx;
840
841 utypeidx = (die_ref - dbroff) / 4;
842 if ((utypeidx < 0) || (utypeidx >= numutypes))
843 {
844 complain (&bad_die_ref, DIE_ID, DIE_NAME);
845 }
846 else
847 {
848 type = *(utypes + utypeidx);
849 }
850 return (type);
851 }
852
853
854 /*
855
856 LOCAL FUNCTION
857
858 alloc_utype -- add a user defined type for die reference
859
860 SYNOPSIS
861
862 static type *alloc_utype (DIE_REF die_ref, struct type *utypep)
863
864 DESCRIPTION
865
866 Given a die reference DIE_REF, and a possible pointer to a user
867 defined type UTYPEP, register that this reference has a user
868 defined type and either use the specified type in UTYPEP or
869 make a new empty type that will be filled in later.
870
871 We should only be called after calling lookup_utype() to verify that
872 there is not currently a type registered for DIE_REF.
873 */
874
875 static struct type *
876 alloc_utype (die_ref, utypep)
877 DIE_REF die_ref;
878 struct type *utypep;
879 {
880 struct type **typep;
881 int utypeidx;
882
883 utypeidx = (die_ref - dbroff) / 4;
884 typep = utypes + utypeidx;
885 if ((utypeidx < 0) || (utypeidx >= numutypes))
886 {
887 utypep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
888 complain (&bad_die_ref, DIE_ID, DIE_NAME);
889 }
890 else if (*typep != NULL)
891 {
892 utypep = *typep;
893 complain (&dup_user_type_allocation, DIE_ID, DIE_NAME);
894 }
895 else
896 {
897 if (utypep == NULL)
898 {
899 utypep = alloc_type (current_objfile);
900 }
901 *typep = utypep;
902 }
903 return (utypep);
904 }
905
906 /*
907
908 LOCAL FUNCTION
909
910 decode_die_type -- return a type for a specified die
911
912 SYNOPSIS
913
914 static struct type *decode_die_type (struct dieinfo *dip)
915
916 DESCRIPTION
917
918 Given a pointer to a die information structure DIP, decode the
919 type of the die and return a pointer to the decoded type. All
920 dies without specific types default to type int.
921 */
922
923 static struct type *
924 decode_die_type (dip)
925 struct dieinfo *dip;
926 {
927 struct type *type = NULL;
928
929 if (dip -> at_fund_type != 0)
930 {
931 type = decode_fund_type (dip -> at_fund_type);
932 }
933 else if (dip -> at_mod_fund_type != NULL)
934 {
935 type = decode_mod_fund_type (dip -> at_mod_fund_type);
936 }
937 else if (dip -> at_user_def_type)
938 {
939 if ((type = lookup_utype (dip -> at_user_def_type)) == NULL)
940 {
941 type = alloc_utype (dip -> at_user_def_type, NULL);
942 }
943 }
944 else if (dip -> at_mod_u_d_type)
945 {
946 type = decode_mod_u_d_type (dip -> at_mod_u_d_type);
947 }
948 else
949 {
950 type = dwarf_fundamental_type (current_objfile, FT_INTEGER);
951 }
952 return (type);
953 }
954
955 /*
956
957 LOCAL FUNCTION
958
959 struct_type -- compute and return the type for a struct or union
960
961 SYNOPSIS
962
963 static struct type *struct_type (struct dieinfo *dip, char *thisdie,
964 char *enddie, struct objfile *objfile)
965
966 DESCRIPTION
967
968 Given pointer to a die information structure for a die which
969 defines a union or structure (and MUST define one or the other),
970 and pointers to the raw die data that define the range of dies which
971 define the members, compute and return the user defined type for the
972 structure or union.
973 */
974
975 static struct type *
976 struct_type (dip, thisdie, enddie, objfile)
977 struct dieinfo *dip;
978 char *thisdie;
979 char *enddie;
980 struct objfile *objfile;
981 {
982 struct type *type;
983 struct nextfield {
984 struct nextfield *next;
985 struct field field;
986 };
987 struct nextfield *list = NULL;
988 struct nextfield *new;
989 int nfields = 0;
990 int n;
991 struct dieinfo mbr;
992 char *nextdie;
993 #if !BITS_BIG_ENDIAN
994 int anonymous_size;
995 #endif
996
997 if ((type = lookup_utype (dip -> die_ref)) == NULL)
998 {
999 /* No forward references created an empty type, so install one now */
1000 type = alloc_utype (dip -> die_ref, NULL);
1001 }
1002 INIT_CPLUS_SPECIFIC(type);
1003 switch (dip -> die_tag)
1004 {
1005 case TAG_class_type:
1006 TYPE_CODE (type) = TYPE_CODE_CLASS;
1007 break;
1008 case TAG_structure_type:
1009 TYPE_CODE (type) = TYPE_CODE_STRUCT;
1010 break;
1011 case TAG_union_type:
1012 TYPE_CODE (type) = TYPE_CODE_UNION;
1013 break;
1014 default:
1015 /* Should never happen */
1016 TYPE_CODE (type) = TYPE_CODE_UNDEF;
1017 complain (&missing_tag, DIE_ID, DIE_NAME);
1018 break;
1019 }
1020 /* Some compilers try to be helpful by inventing "fake" names for
1021 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1022 Thanks, but no thanks... */
1023 if (dip -> at_name != NULL
1024 && *dip -> at_name != '~'
1025 && *dip -> at_name != '.')
1026 {
1027 TYPE_TAG_NAME (type) = obconcat (&objfile -> type_obstack,
1028 "", "", dip -> at_name);
1029 }
1030 /* Use whatever size is known. Zero is a valid size. We might however
1031 wish to check has_at_byte_size to make sure that some byte size was
1032 given explicitly, but DWARF doesn't specify that explicit sizes of
1033 zero have to present, so complaining about missing sizes should
1034 probably not be the default. */
1035 TYPE_LENGTH (type) = dip -> at_byte_size;
1036 thisdie += dip -> die_length;
1037 while (thisdie < enddie)
1038 {
1039 basicdieinfo (&mbr, thisdie, objfile);
1040 completedieinfo (&mbr, objfile);
1041 if (mbr.die_length <= SIZEOF_DIE_LENGTH)
1042 {
1043 break;
1044 }
1045 else if (mbr.at_sibling != 0)
1046 {
1047 nextdie = dbbase + mbr.at_sibling - dbroff;
1048 }
1049 else
1050 {
1051 nextdie = thisdie + mbr.die_length;
1052 }
1053 switch (mbr.die_tag)
1054 {
1055 case TAG_member:
1056 /* Get space to record the next field's data. */
1057 new = (struct nextfield *) alloca (sizeof (struct nextfield));
1058 new -> next = list;
1059 list = new;
1060 /* Save the data. */
1061 list -> field.name =
1062 obsavestring (mbr.at_name, strlen (mbr.at_name),
1063 &objfile -> type_obstack);
1064 list -> field.type = decode_die_type (&mbr);
1065 list -> field.bitpos = 8 * locval (mbr.at_location);
1066 /* Handle bit fields. */
1067 list -> field.bitsize = mbr.at_bit_size;
1068 #if BITS_BIG_ENDIAN
1069 /* For big endian bits, the at_bit_offset gives the additional
1070 bit offset from the MSB of the containing anonymous object to
1071 the MSB of the field. We don't have to do anything special
1072 since we don't need to know the size of the anonymous object. */
1073 list -> field.bitpos += mbr.at_bit_offset;
1074 #else
1075 /* For little endian bits, we need to have a non-zero at_bit_size,
1076 so that we know we are in fact dealing with a bitfield. Compute
1077 the bit offset to the MSB of the anonymous object, subtract off
1078 the number of bits from the MSB of the field to the MSB of the
1079 object, and then subtract off the number of bits of the field
1080 itself. The result is the bit offset of the LSB of the field. */
1081 if (mbr.at_bit_size > 0)
1082 {
1083 if (mbr.has_at_byte_size)
1084 {
1085 /* The size of the anonymous object containing the bit field
1086 is explicit, so use the indicated size (in bytes). */
1087 anonymous_size = mbr.at_byte_size;
1088 }
1089 else
1090 {
1091 /* The size of the anonymous object containing the bit field
1092 matches the size of an object of the bit field's type.
1093 DWARF allows at_byte_size to be left out in such cases,
1094 as a debug information size optimization. */
1095 anonymous_size = TYPE_LENGTH (list -> field.type);
1096 }
1097 list -> field.bitpos +=
1098 anonymous_size * 8 - mbr.at_bit_offset - mbr.at_bit_size;
1099 }
1100 #endif
1101 nfields++;
1102 break;
1103 default:
1104 process_dies (thisdie, nextdie, objfile);
1105 break;
1106 }
1107 thisdie = nextdie;
1108 }
1109 /* Now create the vector of fields, and record how big it is. We may
1110 not even have any fields, if this DIE was generated due to a reference
1111 to an anonymous structure or union. In this case, TYPE_FLAG_STUB is
1112 set, which clues gdb in to the fact that it needs to search elsewhere
1113 for the full structure definition. */
1114 if (nfields == 0)
1115 {
1116 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1117 }
1118 else
1119 {
1120 TYPE_NFIELDS (type) = nfields;
1121 TYPE_FIELDS (type) = (struct field *)
1122 TYPE_ALLOC (type, sizeof (struct field) * nfields);
1123 /* Copy the saved-up fields into the field vector. */
1124 for (n = nfields; list; list = list -> next)
1125 {
1126 TYPE_FIELD (type, --n) = list -> field;
1127 }
1128 }
1129 return (type);
1130 }
1131
1132 /*
1133
1134 LOCAL FUNCTION
1135
1136 read_structure_scope -- process all dies within struct or union
1137
1138 SYNOPSIS
1139
1140 static void read_structure_scope (struct dieinfo *dip,
1141 char *thisdie, char *enddie, struct objfile *objfile)
1142
1143 DESCRIPTION
1144
1145 Called when we find the DIE that starts a structure or union
1146 scope (definition) to process all dies that define the members
1147 of the structure or union. DIP is a pointer to the die info
1148 struct for the DIE that names the structure or union.
1149
1150 NOTES
1151
1152 Note that we need to call struct_type regardless of whether or not
1153 the DIE has an at_name attribute, since it might be an anonymous
1154 structure or union. This gets the type entered into our set of
1155 user defined types.
1156
1157 However, if the structure is incomplete (an opaque struct/union)
1158 then suppress creating a symbol table entry for it since gdb only
1159 wants to find the one with the complete definition. Note that if
1160 it is complete, we just call new_symbol, which does it's own
1161 checking about whether the struct/union is anonymous or not (and
1162 suppresses creating a symbol table entry itself).
1163
1164 */
1165
1166 static void
1167 read_structure_scope (dip, thisdie, enddie, objfile)
1168 struct dieinfo *dip;
1169 char *thisdie;
1170 char *enddie;
1171 struct objfile *objfile;
1172 {
1173 struct type *type;
1174 struct symbol *sym;
1175
1176 type = struct_type (dip, thisdie, enddie, objfile);
1177 if (!(TYPE_FLAGS (type) & TYPE_FLAG_STUB))
1178 {
1179 sym = new_symbol (dip, objfile);
1180 if (sym != NULL)
1181 {
1182 SYMBOL_TYPE (sym) = type;
1183 if (cu_language == language_cplus)
1184 {
1185 synthesize_typedef (dip, objfile, type);
1186 }
1187 }
1188 }
1189 }
1190
1191 /*
1192
1193 LOCAL FUNCTION
1194
1195 decode_array_element_type -- decode type of the array elements
1196
1197 SYNOPSIS
1198
1199 static struct type *decode_array_element_type (char *scan, char *end)
1200
1201 DESCRIPTION
1202
1203 As the last step in decoding the array subscript information for an
1204 array DIE, we need to decode the type of the array elements. We are
1205 passed a pointer to this last part of the subscript information and
1206 must return the appropriate type. If the type attribute is not
1207 recognized, just warn about the problem and return type int.
1208 */
1209
1210 static struct type *
1211 decode_array_element_type (scan)
1212 char *scan;
1213 {
1214 struct type *typep;
1215 DIE_REF die_ref;
1216 unsigned short attribute;
1217 unsigned short fundtype;
1218 int nbytes;
1219
1220 attribute = target_to_host (scan, SIZEOF_ATTRIBUTE, GET_UNSIGNED,
1221 current_objfile);
1222 scan += SIZEOF_ATTRIBUTE;
1223 if ((nbytes = attribute_size (attribute)) == -1)
1224 {
1225 complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute);
1226 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1227 }
1228 else
1229 {
1230 switch (attribute)
1231 {
1232 case AT_fund_type:
1233 fundtype = target_to_host (scan, nbytes, GET_UNSIGNED,
1234 current_objfile);
1235 typep = decode_fund_type (fundtype);
1236 break;
1237 case AT_mod_fund_type:
1238 typep = decode_mod_fund_type (scan);
1239 break;
1240 case AT_user_def_type:
1241 die_ref = target_to_host (scan, nbytes, GET_UNSIGNED,
1242 current_objfile);
1243 if ((typep = lookup_utype (die_ref)) == NULL)
1244 {
1245 typep = alloc_utype (die_ref, NULL);
1246 }
1247 break;
1248 case AT_mod_u_d_type:
1249 typep = decode_mod_u_d_type (scan);
1250 break;
1251 default:
1252 complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute);
1253 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1254 break;
1255 }
1256 }
1257 return (typep);
1258 }
1259
1260 /*
1261
1262 LOCAL FUNCTION
1263
1264 decode_subscript_data_item -- decode array subscript item
1265
1266 SYNOPSIS
1267
1268 static struct type *
1269 decode_subscript_data_item (char *scan, char *end)
1270
1271 DESCRIPTION
1272
1273 The array subscripts and the data type of the elements of an
1274 array are described by a list of data items, stored as a block
1275 of contiguous bytes. There is a data item describing each array
1276 dimension, and a final data item describing the element type.
1277 The data items are ordered the same as their appearance in the
1278 source (I.E. leftmost dimension first, next to leftmost second,
1279 etc).
1280
1281 The data items describing each array dimension consist of four
1282 parts: (1) a format specifier, (2) type type of the subscript
1283 index, (3) a description of the low bound of the array dimension,
1284 and (4) a description of the high bound of the array dimension.
1285
1286 The last data item is the description of the type of each of
1287 the array elements.
1288
1289 We are passed a pointer to the start of the block of bytes
1290 containing the remaining data items, and a pointer to the first
1291 byte past the data. This function recursively decodes the
1292 remaining data items and returns a type.
1293
1294 If we somehow fail to decode some data, we complain about it
1295 and return a type "array of int".
1296
1297 BUGS
1298 FIXME: This code only implements the forms currently used
1299 by the AT&T and GNU C compilers.
1300
1301 The end pointer is supplied for error checking, maybe we should
1302 use it for that...
1303 */
1304
1305 static struct type *
1306 decode_subscript_data_item (scan, end)
1307 char *scan;
1308 char *end;
1309 {
1310 struct type *typep = NULL; /* Array type we are building */
1311 struct type *nexttype; /* Type of each element (may be array) */
1312 struct type *indextype; /* Type of this index */
1313 struct type *rangetype;
1314 unsigned int format;
1315 unsigned short fundtype;
1316 unsigned long lowbound;
1317 unsigned long highbound;
1318 int nbytes;
1319
1320 format = target_to_host (scan, SIZEOF_FORMAT_SPECIFIER, GET_UNSIGNED,
1321 current_objfile);
1322 scan += SIZEOF_FORMAT_SPECIFIER;
1323 switch (format)
1324 {
1325 case FMT_ET:
1326 typep = decode_array_element_type (scan);
1327 break;
1328 case FMT_FT_C_C:
1329 fundtype = target_to_host (scan, SIZEOF_FMT_FT, GET_UNSIGNED,
1330 current_objfile);
1331 indextype = decode_fund_type (fundtype);
1332 scan += SIZEOF_FMT_FT;
1333 nbytes = TARGET_FT_LONG_SIZE (current_objfile);
1334 lowbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1335 scan += nbytes;
1336 highbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1337 scan += nbytes;
1338 nexttype = decode_subscript_data_item (scan, end);
1339 if (nexttype == NULL)
1340 {
1341 /* Munged subscript data or other problem, fake it. */
1342 complain (&subscript_data_items, DIE_ID, DIE_NAME);
1343 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1344 }
1345 rangetype = create_range_type ((struct type *) NULL, indextype,
1346 lowbound, highbound);
1347 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1348 break;
1349 case FMT_FT_C_X:
1350 case FMT_FT_X_C:
1351 case FMT_FT_X_X:
1352 case FMT_UT_C_C:
1353 case FMT_UT_C_X:
1354 case FMT_UT_X_C:
1355 case FMT_UT_X_X:
1356 complain (&unhandled_array_subscript_format, DIE_ID, DIE_NAME, format);
1357 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1358 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1359 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1360 break;
1361 default:
1362 complain (&unknown_array_subscript_format, DIE_ID, DIE_NAME, format);
1363 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1364 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1365 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1366 break;
1367 }
1368 return (typep);
1369 }
1370
1371 /*
1372
1373 LOCAL FUNCTION
1374
1375 dwarf_read_array_type -- read TAG_array_type DIE
1376
1377 SYNOPSIS
1378
1379 static void dwarf_read_array_type (struct dieinfo *dip)
1380
1381 DESCRIPTION
1382
1383 Extract all information from a TAG_array_type DIE and add to
1384 the user defined type vector.
1385 */
1386
1387 static void
1388 dwarf_read_array_type (dip)
1389 struct dieinfo *dip;
1390 {
1391 struct type *type;
1392 struct type *utype;
1393 char *sub;
1394 char *subend;
1395 unsigned short blocksz;
1396 int nbytes;
1397
1398 if (dip -> at_ordering != ORD_row_major)
1399 {
1400 /* FIXME: Can gdb even handle column major arrays? */
1401 complain (&not_row_major, DIE_ID, DIE_NAME);
1402 }
1403 if ((sub = dip -> at_subscr_data) != NULL)
1404 {
1405 nbytes = attribute_size (AT_subscr_data);
1406 blocksz = target_to_host (sub, nbytes, GET_UNSIGNED, current_objfile);
1407 subend = sub + nbytes + blocksz;
1408 sub += nbytes;
1409 type = decode_subscript_data_item (sub, subend);
1410 if ((utype = lookup_utype (dip -> die_ref)) == NULL)
1411 {
1412 /* Install user defined type that has not been referenced yet. */
1413 alloc_utype (dip -> die_ref, type);
1414 }
1415 else if (TYPE_CODE (utype) == TYPE_CODE_UNDEF)
1416 {
1417 /* Ick! A forward ref has already generated a blank type in our
1418 slot, and this type probably already has things pointing to it
1419 (which is what caused it to be created in the first place).
1420 If it's just a place holder we can plop our fully defined type
1421 on top of it. We can't recover the space allocated for our
1422 new type since it might be on an obstack, but we could reuse
1423 it if we kept a list of them, but it might not be worth it
1424 (FIXME). */
1425 *utype = *type;
1426 }
1427 else
1428 {
1429 /* Double ick! Not only is a type already in our slot, but
1430 someone has decorated it. Complain and leave it alone. */
1431 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1432 }
1433 }
1434 }
1435
1436 /*
1437
1438 LOCAL FUNCTION
1439
1440 read_tag_pointer_type -- read TAG_pointer_type DIE
1441
1442 SYNOPSIS
1443
1444 static void read_tag_pointer_type (struct dieinfo *dip)
1445
1446 DESCRIPTION
1447
1448 Extract all information from a TAG_pointer_type DIE and add to
1449 the user defined type vector.
1450 */
1451
1452 static void
1453 read_tag_pointer_type (dip)
1454 struct dieinfo *dip;
1455 {
1456 struct type *type;
1457 struct type *utype;
1458
1459 type = decode_die_type (dip);
1460 if ((utype = lookup_utype (dip -> die_ref)) == NULL)
1461 {
1462 utype = lookup_pointer_type (type);
1463 alloc_utype (dip -> die_ref, utype);
1464 }
1465 else
1466 {
1467 TYPE_TARGET_TYPE (utype) = type;
1468 TYPE_POINTER_TYPE (type) = utype;
1469
1470 /* We assume the machine has only one representation for pointers! */
1471 /* FIXME: This confuses host<->target data representations, and is a
1472 poor assumption besides. */
1473
1474 TYPE_LENGTH (utype) = sizeof (char *);
1475 TYPE_CODE (utype) = TYPE_CODE_PTR;
1476 }
1477 }
1478
1479 /*
1480
1481 LOCAL FUNCTION
1482
1483 read_tag_string_type -- read TAG_string_type DIE
1484
1485 SYNOPSIS
1486
1487 static void read_tag_string_type (struct dieinfo *dip)
1488
1489 DESCRIPTION
1490
1491 Extract all information from a TAG_string_type DIE and add to
1492 the user defined type vector. It isn't really a user defined
1493 type, but it behaves like one, with other DIE's using an
1494 AT_user_def_type attribute to reference it.
1495 */
1496
1497 static void
1498 read_tag_string_type (dip)
1499 struct dieinfo *dip;
1500 {
1501 struct type *utype;
1502 struct type *indextype;
1503 struct type *rangetype;
1504 unsigned long lowbound = 0;
1505 unsigned long highbound;
1506
1507 if (dip -> has_at_byte_size)
1508 {
1509 /* A fixed bounds string */
1510 highbound = dip -> at_byte_size - 1;
1511 }
1512 else
1513 {
1514 /* A varying length string. Stub for now. (FIXME) */
1515 highbound = 1;
1516 }
1517 indextype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1518 rangetype = create_range_type ((struct type *) NULL, indextype, lowbound,
1519 highbound);
1520
1521 utype = lookup_utype (dip -> die_ref);
1522 if (utype == NULL)
1523 {
1524 /* No type defined, go ahead and create a blank one to use. */
1525 utype = alloc_utype (dip -> die_ref, (struct type *) NULL);
1526 }
1527 else
1528 {
1529 /* Already a type in our slot due to a forward reference. Make sure it
1530 is a blank one. If not, complain and leave it alone. */
1531 if (TYPE_CODE (utype) != TYPE_CODE_UNDEF)
1532 {
1533 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1534 return;
1535 }
1536 }
1537
1538 /* Create the string type using the blank type we either found or created. */
1539 utype = create_string_type (utype, rangetype);
1540 }
1541
1542 /*
1543
1544 LOCAL FUNCTION
1545
1546 read_subroutine_type -- process TAG_subroutine_type dies
1547
1548 SYNOPSIS
1549
1550 static void read_subroutine_type (struct dieinfo *dip, char thisdie,
1551 char *enddie)
1552
1553 DESCRIPTION
1554
1555 Handle DIES due to C code like:
1556
1557 struct foo {
1558 int (*funcp)(int a, long l); (Generates TAG_subroutine_type DIE)
1559 int b;
1560 };
1561
1562 NOTES
1563
1564 The parameter DIES are currently ignored. See if gdb has a way to
1565 include this info in it's type system, and decode them if so. Is
1566 this what the type structure's "arg_types" field is for? (FIXME)
1567 */
1568
1569 static void
1570 read_subroutine_type (dip, thisdie, enddie)
1571 struct dieinfo *dip;
1572 char *thisdie;
1573 char *enddie;
1574 {
1575 struct type *type; /* Type that this function returns */
1576 struct type *ftype; /* Function that returns above type */
1577
1578 /* Decode the type that this subroutine returns */
1579
1580 type = decode_die_type (dip);
1581
1582 /* Check to see if we already have a partially constructed user
1583 defined type for this DIE, from a forward reference. */
1584
1585 if ((ftype = lookup_utype (dip -> die_ref)) == NULL)
1586 {
1587 /* This is the first reference to one of these types. Make
1588 a new one and place it in the user defined types. */
1589 ftype = lookup_function_type (type);
1590 alloc_utype (dip -> die_ref, ftype);
1591 }
1592 else if (TYPE_CODE (ftype) == TYPE_CODE_UNDEF)
1593 {
1594 /* We have an existing partially constructed type, so bash it
1595 into the correct type. */
1596 TYPE_TARGET_TYPE (ftype) = type;
1597 TYPE_FUNCTION_TYPE (type) = ftype;
1598 TYPE_LENGTH (ftype) = 1;
1599 TYPE_CODE (ftype) = TYPE_CODE_FUNC;
1600 }
1601 else
1602 {
1603 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1604 }
1605 }
1606
1607 /*
1608
1609 LOCAL FUNCTION
1610
1611 read_enumeration -- process dies which define an enumeration
1612
1613 SYNOPSIS
1614
1615 static void read_enumeration (struct dieinfo *dip, char *thisdie,
1616 char *enddie, struct objfile *objfile)
1617
1618 DESCRIPTION
1619
1620 Given a pointer to a die which begins an enumeration, process all
1621 the dies that define the members of the enumeration.
1622
1623 NOTES
1624
1625 Note that we need to call enum_type regardless of whether or not we
1626 have a symbol, since we might have an enum without a tag name (thus
1627 no symbol for the tagname).
1628 */
1629
1630 static void
1631 read_enumeration (dip, thisdie, enddie, objfile)
1632 struct dieinfo *dip;
1633 char *thisdie;
1634 char *enddie;
1635 struct objfile *objfile;
1636 {
1637 struct type *type;
1638 struct symbol *sym;
1639
1640 type = enum_type (dip, objfile);
1641 sym = new_symbol (dip, objfile);
1642 if (sym != NULL)
1643 {
1644 SYMBOL_TYPE (sym) = type;
1645 if (cu_language == language_cplus)
1646 {
1647 synthesize_typedef (dip, objfile, type);
1648 }
1649 }
1650 }
1651
1652 /*
1653
1654 LOCAL FUNCTION
1655
1656 enum_type -- decode and return a type for an enumeration
1657
1658 SYNOPSIS
1659
1660 static type *enum_type (struct dieinfo *dip, struct objfile *objfile)
1661
1662 DESCRIPTION
1663
1664 Given a pointer to a die information structure for the die which
1665 starts an enumeration, process all the dies that define the members
1666 of the enumeration and return a type pointer for the enumeration.
1667
1668 At the same time, for each member of the enumeration, create a
1669 symbol for it with namespace VAR_NAMESPACE and class LOC_CONST,
1670 and give it the type of the enumeration itself.
1671
1672 NOTES
1673
1674 Note that the DWARF specification explicitly mandates that enum
1675 constants occur in reverse order from the source program order,
1676 for "consistency" and because this ordering is easier for many
1677 compilers to generate. (Draft 6, sec 3.8.5, Enumeration type
1678 Entries). Because gdb wants to see the enum members in program
1679 source order, we have to ensure that the order gets reversed while
1680 we are processing them.
1681 */
1682
1683 static struct type *
1684 enum_type (dip, objfile)
1685 struct dieinfo *dip;
1686 struct objfile *objfile;
1687 {
1688 struct type *type;
1689 struct nextfield {
1690 struct nextfield *next;
1691 struct field field;
1692 };
1693 struct nextfield *list = NULL;
1694 struct nextfield *new;
1695 int nfields = 0;
1696 int n;
1697 char *scan;
1698 char *listend;
1699 unsigned short blocksz;
1700 struct symbol *sym;
1701 int nbytes;
1702
1703 if ((type = lookup_utype (dip -> die_ref)) == NULL)
1704 {
1705 /* No forward references created an empty type, so install one now */
1706 type = alloc_utype (dip -> die_ref, NULL);
1707 }
1708 TYPE_CODE (type) = TYPE_CODE_ENUM;
1709 /* Some compilers try to be helpful by inventing "fake" names for
1710 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1711 Thanks, but no thanks... */
1712 if (dip -> at_name != NULL
1713 && *dip -> at_name != '~'
1714 && *dip -> at_name != '.')
1715 {
1716 TYPE_TAG_NAME (type) = obconcat (&objfile -> type_obstack,
1717 "", "", dip -> at_name);
1718 }
1719 if (dip -> at_byte_size != 0)
1720 {
1721 TYPE_LENGTH (type) = dip -> at_byte_size;
1722 }
1723 if ((scan = dip -> at_element_list) != NULL)
1724 {
1725 if (dip -> short_element_list)
1726 {
1727 nbytes = attribute_size (AT_short_element_list);
1728 }
1729 else
1730 {
1731 nbytes = attribute_size (AT_element_list);
1732 }
1733 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
1734 listend = scan + nbytes + blocksz;
1735 scan += nbytes;
1736 while (scan < listend)
1737 {
1738 new = (struct nextfield *) alloca (sizeof (struct nextfield));
1739 new -> next = list;
1740 list = new;
1741 list -> field.type = NULL;
1742 list -> field.bitsize = 0;
1743 list -> field.bitpos =
1744 target_to_host (scan, TARGET_FT_LONG_SIZE (objfile), GET_SIGNED,
1745 objfile);
1746 scan += TARGET_FT_LONG_SIZE (objfile);
1747 list -> field.name = obsavestring (scan, strlen (scan),
1748 &objfile -> type_obstack);
1749 scan += strlen (scan) + 1;
1750 nfields++;
1751 /* Handcraft a new symbol for this enum member. */
1752 sym = (struct symbol *) obstack_alloc (&objfile->symbol_obstack,
1753 sizeof (struct symbol));
1754 memset (sym, 0, sizeof (struct symbol));
1755 SYMBOL_NAME (sym) = create_name (list -> field.name,
1756 &objfile->symbol_obstack);
1757 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
1758 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1759 SYMBOL_CLASS (sym) = LOC_CONST;
1760 SYMBOL_TYPE (sym) = type;
1761 SYMBOL_VALUE (sym) = list -> field.bitpos;
1762 add_symbol_to_list (sym, list_in_scope);
1763 }
1764 /* Now create the vector of fields, and record how big it is. This is
1765 where we reverse the order, by pulling the members off the list in
1766 reverse order from how they were inserted. If we have no fields
1767 (this is apparently possible in C++) then skip building a field
1768 vector. */
1769 if (nfields > 0)
1770 {
1771 TYPE_NFIELDS (type) = nfields;
1772 TYPE_FIELDS (type) = (struct field *)
1773 obstack_alloc (&objfile->symbol_obstack, sizeof (struct field) * nfields);
1774 /* Copy the saved-up fields into the field vector. */
1775 for (n = 0; (n < nfields) && (list != NULL); list = list -> next)
1776 {
1777 TYPE_FIELD (type, n++) = list -> field;
1778 }
1779 }
1780 }
1781 return (type);
1782 }
1783
1784 /*
1785
1786 LOCAL FUNCTION
1787
1788 read_func_scope -- process all dies within a function scope
1789
1790 DESCRIPTION
1791
1792 Process all dies within a given function scope. We are passed
1793 a die information structure pointer DIP for the die which
1794 starts the function scope, and pointers into the raw die data
1795 that define the dies within the function scope.
1796
1797 For now, we ignore lexical block scopes within the function.
1798 The problem is that AT&T cc does not define a DWARF lexical
1799 block scope for the function itself, while gcc defines a
1800 lexical block scope for the function. We need to think about
1801 how to handle this difference, or if it is even a problem.
1802 (FIXME)
1803 */
1804
1805 static void
1806 read_func_scope (dip, thisdie, enddie, objfile)
1807 struct dieinfo *dip;
1808 char *thisdie;
1809 char *enddie;
1810 struct objfile *objfile;
1811 {
1812 register struct context_stack *new;
1813
1814 if (objfile -> ei.entry_point >= dip -> at_low_pc &&
1815 objfile -> ei.entry_point < dip -> at_high_pc)
1816 {
1817 objfile -> ei.entry_func_lowpc = dip -> at_low_pc;
1818 objfile -> ei.entry_func_highpc = dip -> at_high_pc;
1819 }
1820 if (STREQ (dip -> at_name, "main")) /* FIXME: hardwired name */
1821 {
1822 objfile -> ei.main_func_lowpc = dip -> at_low_pc;
1823 objfile -> ei.main_func_highpc = dip -> at_high_pc;
1824 }
1825 new = push_context (0, dip -> at_low_pc);
1826 new -> name = new_symbol (dip, objfile);
1827 list_in_scope = &local_symbols;
1828 process_dies (thisdie + dip -> die_length, enddie, objfile);
1829 new = pop_context ();
1830 /* Make a block for the local symbols within. */
1831 finish_block (new -> name, &local_symbols, new -> old_blocks,
1832 new -> start_addr, dip -> at_high_pc, objfile);
1833 list_in_scope = &file_symbols;
1834 }
1835
1836
1837 /*
1838
1839 LOCAL FUNCTION
1840
1841 handle_producer -- process the AT_producer attribute
1842
1843 DESCRIPTION
1844
1845 Perform any operations that depend on finding a particular
1846 AT_producer attribute.
1847
1848 */
1849
1850 static void
1851 handle_producer (producer)
1852 char *producer;
1853 {
1854
1855 /* If this compilation unit was compiled with g++ or gcc, then set the
1856 processing_gcc_compilation flag. */
1857
1858 processing_gcc_compilation =
1859 STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER))
1860 || STREQN (producer, CHILL_PRODUCER, strlen (CHILL_PRODUCER))
1861 || STREQN (producer, GCC_PRODUCER, strlen (GCC_PRODUCER));
1862
1863 /* Select a demangling style if we can identify the producer and if
1864 the current style is auto. We leave the current style alone if it
1865 is not auto. We also leave the demangling style alone if we find a
1866 gcc (cc1) producer, as opposed to a g++ (cc1plus) producer. */
1867
1868 if (AUTO_DEMANGLING)
1869 {
1870 if (STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER)))
1871 {
1872 set_demangling_style (GNU_DEMANGLING_STYLE_STRING);
1873 }
1874 else if (STREQN (producer, LCC_PRODUCER, strlen (LCC_PRODUCER)))
1875 {
1876 set_demangling_style (LUCID_DEMANGLING_STYLE_STRING);
1877 }
1878 }
1879 }
1880
1881
1882 /*
1883
1884 LOCAL FUNCTION
1885
1886 read_file_scope -- process all dies within a file scope
1887
1888 DESCRIPTION
1889
1890 Process all dies within a given file scope. We are passed a
1891 pointer to the die information structure for the die which
1892 starts the file scope, and pointers into the raw die data which
1893 mark the range of dies within the file scope.
1894
1895 When the partial symbol table is built, the file offset for the line
1896 number table for each compilation unit is saved in the partial symbol
1897 table entry for that compilation unit. As the symbols for each
1898 compilation unit are read, the line number table is read into memory
1899 and the variable lnbase is set to point to it. Thus all we have to
1900 do is use lnbase to access the line number table for the current
1901 compilation unit.
1902 */
1903
1904 static void
1905 read_file_scope (dip, thisdie, enddie, objfile)
1906 struct dieinfo *dip;
1907 char *thisdie;
1908 char *enddie;
1909 struct objfile *objfile;
1910 {
1911 struct cleanup *back_to;
1912 struct symtab *symtab;
1913
1914 if (objfile -> ei.entry_point >= dip -> at_low_pc &&
1915 objfile -> ei.entry_point < dip -> at_high_pc)
1916 {
1917 objfile -> ei.entry_file_lowpc = dip -> at_low_pc;
1918 objfile -> ei.entry_file_highpc = dip -> at_high_pc;
1919 }
1920 set_cu_language (dip);
1921 if (dip -> at_producer != NULL)
1922 {
1923 handle_producer (dip -> at_producer);
1924 }
1925 numutypes = (enddie - thisdie) / 4;
1926 utypes = (struct type **) xmalloc (numutypes * sizeof (struct type *));
1927 back_to = make_cleanup (free, utypes);
1928 memset (utypes, 0, numutypes * sizeof (struct type *));
1929 memset (ftypes, 0, FT_NUM_MEMBERS * sizeof (struct type *));
1930 start_symtab (dip -> at_name, dip -> at_comp_dir, dip -> at_low_pc);
1931 decode_line_numbers (lnbase);
1932 process_dies (thisdie + dip -> die_length, enddie, objfile);
1933
1934 symtab = end_symtab (dip -> at_high_pc, 0, 0, objfile, 0);
1935 if (symtab != NULL)
1936 {
1937 symtab -> language = cu_language;
1938 }
1939 do_cleanups (back_to);
1940 utypes = NULL;
1941 numutypes = 0;
1942 }
1943
1944 /*
1945
1946 LOCAL FUNCTION
1947
1948 process_dies -- process a range of DWARF Information Entries
1949
1950 SYNOPSIS
1951
1952 static void process_dies (char *thisdie, char *enddie,
1953 struct objfile *objfile)
1954
1955 DESCRIPTION
1956
1957 Process all DIE's in a specified range. May be (and almost
1958 certainly will be) called recursively.
1959 */
1960
1961 static void
1962 process_dies (thisdie, enddie, objfile)
1963 char *thisdie;
1964 char *enddie;
1965 struct objfile *objfile;
1966 {
1967 char *nextdie;
1968 struct dieinfo di;
1969
1970 while (thisdie < enddie)
1971 {
1972 basicdieinfo (&di, thisdie, objfile);
1973 if (di.die_length < SIZEOF_DIE_LENGTH)
1974 {
1975 break;
1976 }
1977 else if (di.die_tag == TAG_padding)
1978 {
1979 nextdie = thisdie + di.die_length;
1980 }
1981 else
1982 {
1983 completedieinfo (&di, objfile);
1984 if (di.at_sibling != 0)
1985 {
1986 nextdie = dbbase + di.at_sibling - dbroff;
1987 }
1988 else
1989 {
1990 nextdie = thisdie + di.die_length;
1991 }
1992 #ifdef SMASH_TEXT_ADDRESS
1993 /* I think that these are always text, not data, addresses. */
1994 SMASH_TEXT_ADDRESS (di.at_low_pc);
1995 SMASH_TEXT_ADDRESS (di.at_high_pc);
1996 #endif
1997 switch (di.die_tag)
1998 {
1999 case TAG_compile_unit:
2000 /* Skip Tag_compile_unit if we are already inside a compilation
2001 unit, we are unable to handle nested compilation units
2002 properly (FIXME). */
2003 if (current_subfile == NULL)
2004 read_file_scope (&di, thisdie, nextdie, objfile);
2005 else
2006 nextdie = thisdie + di.die_length;
2007 break;
2008 case TAG_global_subroutine:
2009 case TAG_subroutine:
2010 if (di.has_at_low_pc)
2011 {
2012 read_func_scope (&di, thisdie, nextdie, objfile);
2013 }
2014 break;
2015 case TAG_lexical_block:
2016 read_lexical_block_scope (&di, thisdie, nextdie, objfile);
2017 break;
2018 case TAG_class_type:
2019 case TAG_structure_type:
2020 case TAG_union_type:
2021 read_structure_scope (&di, thisdie, nextdie, objfile);
2022 break;
2023 case TAG_enumeration_type:
2024 read_enumeration (&di, thisdie, nextdie, objfile);
2025 break;
2026 case TAG_subroutine_type:
2027 read_subroutine_type (&di, thisdie, nextdie);
2028 break;
2029 case TAG_array_type:
2030 dwarf_read_array_type (&di);
2031 break;
2032 case TAG_pointer_type:
2033 read_tag_pointer_type (&di);
2034 break;
2035 case TAG_string_type:
2036 read_tag_string_type (&di);
2037 break;
2038 default:
2039 new_symbol (&di, objfile);
2040 break;
2041 }
2042 }
2043 thisdie = nextdie;
2044 }
2045 }
2046
2047 /*
2048
2049 LOCAL FUNCTION
2050
2051 decode_line_numbers -- decode a line number table fragment
2052
2053 SYNOPSIS
2054
2055 static void decode_line_numbers (char *tblscan, char *tblend,
2056 long length, long base, long line, long pc)
2057
2058 DESCRIPTION
2059
2060 Translate the DWARF line number information to gdb form.
2061
2062 The ".line" section contains one or more line number tables, one for
2063 each ".line" section from the objects that were linked.
2064
2065 The AT_stmt_list attribute for each TAG_source_file entry in the
2066 ".debug" section contains the offset into the ".line" section for the
2067 start of the table for that file.
2068
2069 The table itself has the following structure:
2070
2071 <table length><base address><source statement entry>
2072 4 bytes 4 bytes 10 bytes
2073
2074 The table length is the total size of the table, including the 4 bytes
2075 for the length information.
2076
2077 The base address is the address of the first instruction generated
2078 for the source file.
2079
2080 Each source statement entry has the following structure:
2081
2082 <line number><statement position><address delta>
2083 4 bytes 2 bytes 4 bytes
2084
2085 The line number is relative to the start of the file, starting with
2086 line 1.
2087
2088 The statement position either -1 (0xFFFF) or the number of characters
2089 from the beginning of the line to the beginning of the statement.
2090
2091 The address delta is the difference between the base address and
2092 the address of the first instruction for the statement.
2093
2094 Note that we must copy the bytes from the packed table to our local
2095 variables before attempting to use them, to avoid alignment problems
2096 on some machines, particularly RISC processors.
2097
2098 BUGS
2099
2100 Does gdb expect the line numbers to be sorted? They are now by
2101 chance/luck, but are not required to be. (FIXME)
2102
2103 The line with number 0 is unused, gdb apparently can discover the
2104 span of the last line some other way. How? (FIXME)
2105 */
2106
2107 static void
2108 decode_line_numbers (linetable)
2109 char *linetable;
2110 {
2111 char *tblscan;
2112 char *tblend;
2113 unsigned long length;
2114 unsigned long base;
2115 unsigned long line;
2116 unsigned long pc;
2117
2118 if (linetable != NULL)
2119 {
2120 tblscan = tblend = linetable;
2121 length = target_to_host (tblscan, SIZEOF_LINETBL_LENGTH, GET_UNSIGNED,
2122 current_objfile);
2123 tblscan += SIZEOF_LINETBL_LENGTH;
2124 tblend += length;
2125 base = target_to_host (tblscan, TARGET_FT_POINTER_SIZE (objfile),
2126 GET_UNSIGNED, current_objfile);
2127 tblscan += TARGET_FT_POINTER_SIZE (objfile);
2128 base += baseaddr;
2129 while (tblscan < tblend)
2130 {
2131 line = target_to_host (tblscan, SIZEOF_LINETBL_LINENO, GET_UNSIGNED,
2132 current_objfile);
2133 tblscan += SIZEOF_LINETBL_LINENO + SIZEOF_LINETBL_STMT;
2134 pc = target_to_host (tblscan, SIZEOF_LINETBL_DELTA, GET_UNSIGNED,
2135 current_objfile);
2136 tblscan += SIZEOF_LINETBL_DELTA;
2137 pc += base;
2138 if (line != 0)
2139 {
2140 record_line (current_subfile, line, pc);
2141 }
2142 }
2143 }
2144 }
2145
2146 /*
2147
2148 LOCAL FUNCTION
2149
2150 locval -- compute the value of a location attribute
2151
2152 SYNOPSIS
2153
2154 static int locval (char *loc)
2155
2156 DESCRIPTION
2157
2158 Given pointer to a string of bytes that define a location, compute
2159 the location and return the value.
2160
2161 When computing values involving the current value of the frame pointer,
2162 the value zero is used, which results in a value relative to the frame
2163 pointer, rather than the absolute value. This is what GDB wants
2164 anyway.
2165
2166 When the result is a register number, the global isreg flag is set,
2167 otherwise it is cleared. This is a kludge until we figure out a better
2168 way to handle the problem. Gdb's design does not mesh well with the
2169 DWARF notion of a location computing interpreter, which is a shame
2170 because the flexibility goes unused.
2171
2172 NOTES
2173
2174 Note that stack[0] is unused except as a default error return.
2175 Note that stack overflow is not yet handled.
2176 */
2177
2178 static int
2179 locval (loc)
2180 char *loc;
2181 {
2182 unsigned short nbytes;
2183 unsigned short locsize;
2184 auto long stack[64];
2185 int stacki;
2186 char *end;
2187 int loc_atom_code;
2188 int loc_value_size;
2189
2190 nbytes = attribute_size (AT_location);
2191 locsize = target_to_host (loc, nbytes, GET_UNSIGNED, current_objfile);
2192 loc += nbytes;
2193 end = loc + locsize;
2194 stacki = 0;
2195 stack[stacki] = 0;
2196 isreg = 0;
2197 offreg = 0;
2198 loc_value_size = TARGET_FT_LONG_SIZE (current_objfile);
2199 while (loc < end)
2200 {
2201 loc_atom_code = target_to_host (loc, SIZEOF_LOC_ATOM_CODE, GET_UNSIGNED,
2202 current_objfile);
2203 loc += SIZEOF_LOC_ATOM_CODE;
2204 switch (loc_atom_code)
2205 {
2206 case 0:
2207 /* error */
2208 loc = end;
2209 break;
2210 case OP_REG:
2211 /* push register (number) */
2212 stack[++stacki] = target_to_host (loc, loc_value_size,
2213 GET_UNSIGNED, current_objfile);
2214 loc += loc_value_size;
2215 isreg = 1;
2216 break;
2217 case OP_BASEREG:
2218 /* push value of register (number) */
2219 /* Actually, we compute the value as if register has 0, so the
2220 value ends up being the offset from that register. */
2221 offreg = 1;
2222 basereg = target_to_host (loc, loc_value_size, GET_UNSIGNED,
2223 current_objfile);
2224 loc += loc_value_size;
2225 stack[++stacki] = 0;
2226 break;
2227 case OP_ADDR:
2228 /* push address (relocated address) */
2229 stack[++stacki] = target_to_host (loc, loc_value_size,
2230 GET_UNSIGNED, current_objfile);
2231 loc += loc_value_size;
2232 break;
2233 case OP_CONST:
2234 /* push constant (number) FIXME: signed or unsigned! */
2235 stack[++stacki] = target_to_host (loc, loc_value_size,
2236 GET_SIGNED, current_objfile);
2237 loc += loc_value_size;
2238 break;
2239 case OP_DEREF2:
2240 /* pop, deref and push 2 bytes (as a long) */
2241 complain (&op_deref2, DIE_ID, DIE_NAME, stack[stacki]);
2242 break;
2243 case OP_DEREF4: /* pop, deref and push 4 bytes (as a long) */
2244 complain (&op_deref4, DIE_ID, DIE_NAME, stack[stacki]);
2245 break;
2246 case OP_ADD: /* pop top 2 items, add, push result */
2247 stack[stacki - 1] += stack[stacki];
2248 stacki--;
2249 break;
2250 }
2251 }
2252 return (stack[stacki]);
2253 }
2254
2255 /*
2256
2257 LOCAL FUNCTION
2258
2259 read_ofile_symtab -- build a full symtab entry from chunk of DIE's
2260
2261 SYNOPSIS
2262
2263 static void read_ofile_symtab (struct partial_symtab *pst)
2264
2265 DESCRIPTION
2266
2267 When expanding a partial symbol table entry to a full symbol table
2268 entry, this is the function that gets called to read in the symbols
2269 for the compilation unit. A pointer to the newly constructed symtab,
2270 which is now the new first one on the objfile's symtab list, is
2271 stashed in the partial symbol table entry.
2272 */
2273
2274 static void
2275 read_ofile_symtab (pst)
2276 struct partial_symtab *pst;
2277 {
2278 struct cleanup *back_to;
2279 unsigned long lnsize;
2280 file_ptr foffset;
2281 bfd *abfd;
2282 char lnsizedata[SIZEOF_LINETBL_LENGTH];
2283
2284 abfd = pst -> objfile -> obfd;
2285 current_objfile = pst -> objfile;
2286
2287 /* Allocate a buffer for the entire chunk of DIE's for this compilation
2288 unit, seek to the location in the file, and read in all the DIE's. */
2289
2290 diecount = 0;
2291 dbsize = DBLENGTH (pst);
2292 dbbase = xmalloc (dbsize);
2293 dbroff = DBROFF(pst);
2294 foffset = DBFOFF(pst) + dbroff;
2295 base_section_offsets = pst->section_offsets;
2296 baseaddr = ANOFFSET (pst->section_offsets, 0);
2297 if (bfd_seek (abfd, foffset, L_SET) ||
2298 (bfd_read (dbbase, dbsize, 1, abfd) != dbsize))
2299 {
2300 free (dbbase);
2301 error ("can't read DWARF data");
2302 }
2303 back_to = make_cleanup (free, dbbase);
2304
2305 /* If there is a line number table associated with this compilation unit
2306 then read the size of this fragment in bytes, from the fragment itself.
2307 Allocate a buffer for the fragment and read it in for future
2308 processing. */
2309
2310 lnbase = NULL;
2311 if (LNFOFF (pst))
2312 {
2313 if (bfd_seek (abfd, LNFOFF (pst), L_SET) ||
2314 (bfd_read ((PTR) lnsizedata, sizeof (lnsizedata), 1, abfd) !=
2315 sizeof (lnsizedata)))
2316 {
2317 error ("can't read DWARF line number table size");
2318 }
2319 lnsize = target_to_host (lnsizedata, SIZEOF_LINETBL_LENGTH,
2320 GET_UNSIGNED, pst -> objfile);
2321 lnbase = xmalloc (lnsize);
2322 if (bfd_seek (abfd, LNFOFF (pst), L_SET) ||
2323 (bfd_read (lnbase, lnsize, 1, abfd) != lnsize))
2324 {
2325 free (lnbase);
2326 error ("can't read DWARF line numbers");
2327 }
2328 make_cleanup (free, lnbase);
2329 }
2330
2331 process_dies (dbbase, dbbase + dbsize, pst -> objfile);
2332 do_cleanups (back_to);
2333 current_objfile = NULL;
2334 pst -> symtab = pst -> objfile -> symtabs;
2335 }
2336
2337 /*
2338
2339 LOCAL FUNCTION
2340
2341 psymtab_to_symtab_1 -- do grunt work for building a full symtab entry
2342
2343 SYNOPSIS
2344
2345 static void psymtab_to_symtab_1 (struct partial_symtab *pst)
2346
2347 DESCRIPTION
2348
2349 Called once for each partial symbol table entry that needs to be
2350 expanded into a full symbol table entry.
2351
2352 */
2353
2354 static void
2355 psymtab_to_symtab_1 (pst)
2356 struct partial_symtab *pst;
2357 {
2358 int i;
2359 struct cleanup *old_chain;
2360
2361 if (pst != NULL)
2362 {
2363 if (pst->readin)
2364 {
2365 warning ("psymtab for %s already read in. Shouldn't happen.",
2366 pst -> filename);
2367 }
2368 else
2369 {
2370 /* Read in all partial symtabs on which this one is dependent */
2371 for (i = 0; i < pst -> number_of_dependencies; i++)
2372 {
2373 if (!pst -> dependencies[i] -> readin)
2374 {
2375 /* Inform about additional files that need to be read in. */
2376 if (info_verbose)
2377 {
2378 fputs_filtered (" ", gdb_stdout);
2379 wrap_here ("");
2380 fputs_filtered ("and ", gdb_stdout);
2381 wrap_here ("");
2382 printf_filtered ("%s...",
2383 pst -> dependencies[i] -> filename);
2384 wrap_here ("");
2385 gdb_flush (gdb_stdout); /* Flush output */
2386 }
2387 psymtab_to_symtab_1 (pst -> dependencies[i]);
2388 }
2389 }
2390 if (DBLENGTH (pst)) /* Otherwise it's a dummy */
2391 {
2392 buildsym_init ();
2393 old_chain = make_cleanup (really_free_pendings, 0);
2394 read_ofile_symtab (pst);
2395 if (info_verbose)
2396 {
2397 printf_filtered ("%d DIE's, sorting...", diecount);
2398 wrap_here ("");
2399 gdb_flush (gdb_stdout);
2400 }
2401 sort_symtab_syms (pst -> symtab);
2402 do_cleanups (old_chain);
2403 }
2404 pst -> readin = 1;
2405 }
2406 }
2407 }
2408
2409 /*
2410
2411 LOCAL FUNCTION
2412
2413 dwarf_psymtab_to_symtab -- build a full symtab entry from partial one
2414
2415 SYNOPSIS
2416
2417 static void dwarf_psymtab_to_symtab (struct partial_symtab *pst)
2418
2419 DESCRIPTION
2420
2421 This is the DWARF support entry point for building a full symbol
2422 table entry from a partial symbol table entry. We are passed a
2423 pointer to the partial symbol table entry that needs to be expanded.
2424
2425 */
2426
2427 static void
2428 dwarf_psymtab_to_symtab (pst)
2429 struct partial_symtab *pst;
2430 {
2431
2432 if (pst != NULL)
2433 {
2434 if (pst -> readin)
2435 {
2436 warning ("psymtab for %s already read in. Shouldn't happen.",
2437 pst -> filename);
2438 }
2439 else
2440 {
2441 if (DBLENGTH (pst) || pst -> number_of_dependencies)
2442 {
2443 /* Print the message now, before starting serious work, to avoid
2444 disconcerting pauses. */
2445 if (info_verbose)
2446 {
2447 printf_filtered ("Reading in symbols for %s...",
2448 pst -> filename);
2449 gdb_flush (gdb_stdout);
2450 }
2451
2452 psymtab_to_symtab_1 (pst);
2453
2454 #if 0 /* FIXME: Check to see what dbxread is doing here and see if
2455 we need to do an equivalent or is this something peculiar to
2456 stabs/a.out format.
2457 Match with global symbols. This only needs to be done once,
2458 after all of the symtabs and dependencies have been read in.
2459 */
2460 scan_file_globals (pst -> objfile);
2461 #endif
2462
2463 /* Finish up the verbose info message. */
2464 if (info_verbose)
2465 {
2466 printf_filtered ("done.\n");
2467 gdb_flush (gdb_stdout);
2468 }
2469 }
2470 }
2471 }
2472 }
2473
2474 /*
2475
2476 LOCAL FUNCTION
2477
2478 init_psymbol_list -- initialize storage for partial symbols
2479
2480 SYNOPSIS
2481
2482 static void init_psymbol_list (struct objfile *objfile, int total_symbols)
2483
2484 DESCRIPTION
2485
2486 Initializes storage for all of the partial symbols that will be
2487 created by dwarf_build_psymtabs and subsidiaries.
2488 */
2489
2490 static void
2491 init_psymbol_list (objfile, total_symbols)
2492 struct objfile *objfile;
2493 int total_symbols;
2494 {
2495 /* Free any previously allocated psymbol lists. */
2496
2497 if (objfile -> global_psymbols.list)
2498 {
2499 mfree (objfile -> md, (PTR)objfile -> global_psymbols.list);
2500 }
2501 if (objfile -> static_psymbols.list)
2502 {
2503 mfree (objfile -> md, (PTR)objfile -> static_psymbols.list);
2504 }
2505
2506 /* Current best guess is that there are approximately a twentieth
2507 of the total symbols (in a debugging file) are global or static
2508 oriented symbols */
2509
2510 objfile -> global_psymbols.size = total_symbols / 10;
2511 objfile -> static_psymbols.size = total_symbols / 10;
2512 objfile -> global_psymbols.next =
2513 objfile -> global_psymbols.list = (struct partial_symbol *)
2514 xmmalloc (objfile -> md, objfile -> global_psymbols.size
2515 * sizeof (struct partial_symbol));
2516 objfile -> static_psymbols.next =
2517 objfile -> static_psymbols.list = (struct partial_symbol *)
2518 xmmalloc (objfile -> md, objfile -> static_psymbols.size
2519 * sizeof (struct partial_symbol));
2520 }
2521
2522 /*
2523
2524 LOCAL FUNCTION
2525
2526 add_enum_psymbol -- add enumeration members to partial symbol table
2527
2528 DESCRIPTION
2529
2530 Given pointer to a DIE that is known to be for an enumeration,
2531 extract the symbolic names of the enumeration members and add
2532 partial symbols for them.
2533 */
2534
2535 static void
2536 add_enum_psymbol (dip, objfile)
2537 struct dieinfo *dip;
2538 struct objfile *objfile;
2539 {
2540 char *scan;
2541 char *listend;
2542 unsigned short blocksz;
2543 int nbytes;
2544
2545 if ((scan = dip -> at_element_list) != NULL)
2546 {
2547 if (dip -> short_element_list)
2548 {
2549 nbytes = attribute_size (AT_short_element_list);
2550 }
2551 else
2552 {
2553 nbytes = attribute_size (AT_element_list);
2554 }
2555 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
2556 scan += nbytes;
2557 listend = scan + blocksz;
2558 while (scan < listend)
2559 {
2560 scan += TARGET_FT_LONG_SIZE (objfile);
2561 ADD_PSYMBOL_TO_LIST (scan, strlen (scan), VAR_NAMESPACE, LOC_CONST,
2562 objfile -> static_psymbols, 0, cu_language,
2563 objfile);
2564 scan += strlen (scan) + 1;
2565 }
2566 }
2567 }
2568
2569 /*
2570
2571 LOCAL FUNCTION
2572
2573 add_partial_symbol -- add symbol to partial symbol table
2574
2575 DESCRIPTION
2576
2577 Given a DIE, if it is one of the types that we want to
2578 add to a partial symbol table, finish filling in the die info
2579 and then add a partial symbol table entry for it.
2580
2581 NOTES
2582
2583 The caller must ensure that the DIE has a valid name attribute.
2584 */
2585
2586 static void
2587 add_partial_symbol (dip, objfile)
2588 struct dieinfo *dip;
2589 struct objfile *objfile;
2590 {
2591 switch (dip -> die_tag)
2592 {
2593 case TAG_global_subroutine:
2594 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2595 VAR_NAMESPACE, LOC_BLOCK,
2596 objfile -> global_psymbols,
2597 dip -> at_low_pc, cu_language, objfile);
2598 break;
2599 case TAG_global_variable:
2600 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2601 VAR_NAMESPACE, LOC_STATIC,
2602 objfile -> global_psymbols,
2603 0, cu_language, objfile);
2604 break;
2605 case TAG_subroutine:
2606 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2607 VAR_NAMESPACE, LOC_BLOCK,
2608 objfile -> static_psymbols,
2609 dip -> at_low_pc, cu_language, objfile);
2610 break;
2611 case TAG_local_variable:
2612 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2613 VAR_NAMESPACE, LOC_STATIC,
2614 objfile -> static_psymbols,
2615 0, cu_language, objfile);
2616 break;
2617 case TAG_typedef:
2618 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2619 VAR_NAMESPACE, LOC_TYPEDEF,
2620 objfile -> static_psymbols,
2621 0, cu_language, objfile);
2622 break;
2623 case TAG_class_type:
2624 case TAG_structure_type:
2625 case TAG_union_type:
2626 case TAG_enumeration_type:
2627 /* Do not add opaque aggregate definitions to the psymtab. */
2628 if (!dip -> has_at_byte_size)
2629 break;
2630 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2631 STRUCT_NAMESPACE, LOC_TYPEDEF,
2632 objfile -> static_psymbols,
2633 0, cu_language, objfile);
2634 if (cu_language == language_cplus)
2635 {
2636 /* For C++, these implicitly act as typedefs as well. */
2637 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2638 VAR_NAMESPACE, LOC_TYPEDEF,
2639 objfile -> static_psymbols,
2640 0, cu_language, objfile);
2641 }
2642 break;
2643 }
2644 }
2645
2646 /*
2647
2648 LOCAL FUNCTION
2649
2650 scan_partial_symbols -- scan DIE's within a single compilation unit
2651
2652 DESCRIPTION
2653
2654 Process the DIE's within a single compilation unit, looking for
2655 interesting DIE's that contribute to the partial symbol table entry
2656 for this compilation unit.
2657
2658 NOTES
2659
2660 There are some DIE's that may appear both at file scope and within
2661 the scope of a function. We are only interested in the ones at file
2662 scope, and the only way to tell them apart is to keep track of the
2663 scope. For example, consider the test case:
2664
2665 static int i;
2666 main () { int j; }
2667
2668 for which the relevant DWARF segment has the structure:
2669
2670 0x51:
2671 0x23 global subrtn sibling 0x9b
2672 name main
2673 fund_type FT_integer
2674 low_pc 0x800004cc
2675 high_pc 0x800004d4
2676
2677 0x74:
2678 0x23 local var sibling 0x97
2679 name j
2680 fund_type FT_integer
2681 location OP_BASEREG 0xe
2682 OP_CONST 0xfffffffc
2683 OP_ADD
2684 0x97:
2685 0x4
2686
2687 0x9b:
2688 0x1d local var sibling 0xb8
2689 name i
2690 fund_type FT_integer
2691 location OP_ADDR 0x800025dc
2692
2693 0xb8:
2694 0x4
2695
2696 We want to include the symbol 'i' in the partial symbol table, but
2697 not the symbol 'j'. In essence, we want to skip all the dies within
2698 the scope of a TAG_global_subroutine DIE.
2699
2700 Don't attempt to add anonymous structures or unions since they have
2701 no name. Anonymous enumerations however are processed, because we
2702 want to extract their member names (the check for a tag name is
2703 done later).
2704
2705 Also, for variables and subroutines, check that this is the place
2706 where the actual definition occurs, rather than just a reference
2707 to an external.
2708 */
2709
2710 static void
2711 scan_partial_symbols (thisdie, enddie, objfile)
2712 char *thisdie;
2713 char *enddie;
2714 struct objfile *objfile;
2715 {
2716 char *nextdie;
2717 char *temp;
2718 struct dieinfo di;
2719
2720 while (thisdie < enddie)
2721 {
2722 basicdieinfo (&di, thisdie, objfile);
2723 if (di.die_length < SIZEOF_DIE_LENGTH)
2724 {
2725 break;
2726 }
2727 else
2728 {
2729 nextdie = thisdie + di.die_length;
2730 /* To avoid getting complete die information for every die, we
2731 only do it (below) for the cases we are interested in. */
2732 switch (di.die_tag)
2733 {
2734 case TAG_global_subroutine:
2735 case TAG_subroutine:
2736 completedieinfo (&di, objfile);
2737 if (di.at_name && (di.has_at_low_pc || di.at_location))
2738 {
2739 add_partial_symbol (&di, objfile);
2740 /* If there is a sibling attribute, adjust the nextdie
2741 pointer to skip the entire scope of the subroutine.
2742 Apply some sanity checking to make sure we don't
2743 overrun or underrun the range of remaining DIE's */
2744 if (di.at_sibling != 0)
2745 {
2746 temp = dbbase + di.at_sibling - dbroff;
2747 if ((temp < thisdie) || (temp >= enddie))
2748 {
2749 complain (&bad_die_ref, DIE_ID, DIE_NAME,
2750 di.at_sibling);
2751 }
2752 else
2753 {
2754 nextdie = temp;
2755 }
2756 }
2757 }
2758 break;
2759 case TAG_global_variable:
2760 case TAG_local_variable:
2761 completedieinfo (&di, objfile);
2762 if (di.at_name && (di.has_at_low_pc || di.at_location))
2763 {
2764 add_partial_symbol (&di, objfile);
2765 }
2766 break;
2767 case TAG_typedef:
2768 case TAG_class_type:
2769 case TAG_structure_type:
2770 case TAG_union_type:
2771 completedieinfo (&di, objfile);
2772 if (di.at_name)
2773 {
2774 add_partial_symbol (&di, objfile);
2775 }
2776 break;
2777 case TAG_enumeration_type:
2778 completedieinfo (&di, objfile);
2779 if (di.at_name)
2780 {
2781 add_partial_symbol (&di, objfile);
2782 }
2783 add_enum_psymbol (&di, objfile);
2784 break;
2785 }
2786 }
2787 thisdie = nextdie;
2788 }
2789 }
2790
2791 /*
2792
2793 LOCAL FUNCTION
2794
2795 scan_compilation_units -- build a psymtab entry for each compilation
2796
2797 DESCRIPTION
2798
2799 This is the top level dwarf parsing routine for building partial
2800 symbol tables.
2801
2802 It scans from the beginning of the DWARF table looking for the first
2803 TAG_compile_unit DIE, and then follows the sibling chain to locate
2804 each additional TAG_compile_unit DIE.
2805
2806 For each TAG_compile_unit DIE it creates a partial symtab structure,
2807 calls a subordinate routine to collect all the compilation unit's
2808 global DIE's, file scope DIEs, typedef DIEs, etc, and then links the
2809 new partial symtab structure into the partial symbol table. It also
2810 records the appropriate information in the partial symbol table entry
2811 to allow the chunk of DIE's and line number table for this compilation
2812 unit to be located and re-read later, to generate a complete symbol
2813 table entry for the compilation unit.
2814
2815 Thus it effectively partitions up a chunk of DIE's for multiple
2816 compilation units into smaller DIE chunks and line number tables,
2817 and associates them with a partial symbol table entry.
2818
2819 NOTES
2820
2821 If any compilation unit has no line number table associated with
2822 it for some reason (a missing at_stmt_list attribute, rather than
2823 just one with a value of zero, which is valid) then we ensure that
2824 the recorded file offset is zero so that the routine which later
2825 reads line number table fragments knows that there is no fragment
2826 to read.
2827
2828 RETURNS
2829
2830 Returns no value.
2831
2832 */
2833
2834 static void
2835 scan_compilation_units (thisdie, enddie, dbfoff, lnoffset, objfile)
2836 char *thisdie;
2837 char *enddie;
2838 file_ptr dbfoff;
2839 file_ptr lnoffset;
2840 struct objfile *objfile;
2841 {
2842 char *nextdie;
2843 struct dieinfo di;
2844 struct partial_symtab *pst;
2845 int culength;
2846 int curoff;
2847 file_ptr curlnoffset;
2848
2849 while (thisdie < enddie)
2850 {
2851 basicdieinfo (&di, thisdie, objfile);
2852 if (di.die_length < SIZEOF_DIE_LENGTH)
2853 {
2854 break;
2855 }
2856 else if (di.die_tag != TAG_compile_unit)
2857 {
2858 nextdie = thisdie + di.die_length;
2859 }
2860 else
2861 {
2862 completedieinfo (&di, objfile);
2863 set_cu_language (&di);
2864 if (di.at_sibling != 0)
2865 {
2866 nextdie = dbbase + di.at_sibling - dbroff;
2867 }
2868 else
2869 {
2870 nextdie = thisdie + di.die_length;
2871 }
2872 curoff = thisdie - dbbase;
2873 culength = nextdie - thisdie;
2874 curlnoffset = di.has_at_stmt_list ? lnoffset + di.at_stmt_list : 0;
2875
2876 /* First allocate a new partial symbol table structure */
2877
2878 pst = start_psymtab_common (objfile, base_section_offsets,
2879 di.at_name, di.at_low_pc,
2880 objfile -> global_psymbols.next,
2881 objfile -> static_psymbols.next);
2882
2883 pst -> texthigh = di.at_high_pc;
2884 pst -> read_symtab_private = (char *)
2885 obstack_alloc (&objfile -> psymbol_obstack,
2886 sizeof (struct dwfinfo));
2887 DBFOFF (pst) = dbfoff;
2888 DBROFF (pst) = curoff;
2889 DBLENGTH (pst) = culength;
2890 LNFOFF (pst) = curlnoffset;
2891 pst -> read_symtab = dwarf_psymtab_to_symtab;
2892
2893 /* Now look for partial symbols */
2894
2895 scan_partial_symbols (thisdie + di.die_length, nextdie, objfile);
2896
2897 pst -> n_global_syms = objfile -> global_psymbols.next -
2898 (objfile -> global_psymbols.list + pst -> globals_offset);
2899 pst -> n_static_syms = objfile -> static_psymbols.next -
2900 (objfile -> static_psymbols.list + pst -> statics_offset);
2901 sort_pst_symbols (pst);
2902 /* If there is already a psymtab or symtab for a file of this name,
2903 remove it. (If there is a symtab, more drastic things also
2904 happen.) This happens in VxWorks. */
2905 free_named_symtabs (pst -> filename);
2906 }
2907 thisdie = nextdie;
2908 }
2909 }
2910
2911 /*
2912
2913 LOCAL FUNCTION
2914
2915 new_symbol -- make a symbol table entry for a new symbol
2916
2917 SYNOPSIS
2918
2919 static struct symbol *new_symbol (struct dieinfo *dip,
2920 struct objfile *objfile)
2921
2922 DESCRIPTION
2923
2924 Given a pointer to a DWARF information entry, figure out if we need
2925 to make a symbol table entry for it, and if so, create a new entry
2926 and return a pointer to it.
2927 */
2928
2929 static struct symbol *
2930 new_symbol (dip, objfile)
2931 struct dieinfo *dip;
2932 struct objfile *objfile;
2933 {
2934 struct symbol *sym = NULL;
2935
2936 if (dip -> at_name != NULL)
2937 {
2938 sym = (struct symbol *) obstack_alloc (&objfile -> symbol_obstack,
2939 sizeof (struct symbol));
2940 memset (sym, 0, sizeof (struct symbol));
2941 SYMBOL_NAME (sym) = create_name (dip -> at_name,
2942 &objfile->symbol_obstack);
2943 /* default assumptions */
2944 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2945 SYMBOL_CLASS (sym) = LOC_STATIC;
2946 SYMBOL_TYPE (sym) = decode_die_type (dip);
2947
2948 /* If this symbol is from a C++ compilation, then attempt to cache the
2949 demangled form for future reference. This is a typical time versus
2950 space tradeoff, that was decided in favor of time because it sped up
2951 C++ symbol lookups by a factor of about 20. */
2952
2953 SYMBOL_LANGUAGE (sym) = cu_language;
2954 SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile -> symbol_obstack);
2955 switch (dip -> die_tag)
2956 {
2957 case TAG_label:
2958 SYMBOL_VALUE (sym) = dip -> at_low_pc;
2959 SYMBOL_CLASS (sym) = LOC_LABEL;
2960 break;
2961 case TAG_global_subroutine:
2962 case TAG_subroutine:
2963 SYMBOL_VALUE (sym) = dip -> at_low_pc;
2964 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
2965 SYMBOL_CLASS (sym) = LOC_BLOCK;
2966 if (dip -> die_tag == TAG_global_subroutine)
2967 {
2968 add_symbol_to_list (sym, &global_symbols);
2969 }
2970 else
2971 {
2972 add_symbol_to_list (sym, list_in_scope);
2973 }
2974 break;
2975 case TAG_global_variable:
2976 if (dip -> at_location != NULL)
2977 {
2978 SYMBOL_VALUE (sym) = locval (dip -> at_location);
2979 add_symbol_to_list (sym, &global_symbols);
2980 SYMBOL_CLASS (sym) = LOC_STATIC;
2981 SYMBOL_VALUE (sym) += baseaddr;
2982 }
2983 break;
2984 case TAG_local_variable:
2985 if (dip -> at_location != NULL)
2986 {
2987 SYMBOL_VALUE (sym) = locval (dip -> at_location);
2988 add_symbol_to_list (sym, list_in_scope);
2989 if (isreg)
2990 {
2991 SYMBOL_CLASS (sym) = LOC_REGISTER;
2992 }
2993 else if (offreg)
2994 {
2995 SYMBOL_CLASS (sym) = LOC_BASEREG;
2996 SYMBOL_BASEREG (sym) = basereg;
2997 }
2998 else
2999 {
3000 SYMBOL_CLASS (sym) = LOC_STATIC;
3001 SYMBOL_VALUE (sym) += baseaddr;
3002 }
3003 }
3004 break;
3005 case TAG_formal_parameter:
3006 if (dip -> at_location != NULL)
3007 {
3008 SYMBOL_VALUE (sym) = locval (dip -> at_location);
3009 }
3010 add_symbol_to_list (sym, list_in_scope);
3011 if (isreg)
3012 {
3013 SYMBOL_CLASS (sym) = LOC_REGPARM;
3014 }
3015 else if (offreg)
3016 {
3017 SYMBOL_CLASS (sym) = LOC_BASEREG_ARG;
3018 SYMBOL_BASEREG (sym) = basereg;
3019 }
3020 else
3021 {
3022 SYMBOL_CLASS (sym) = LOC_ARG;
3023 }
3024 break;
3025 case TAG_unspecified_parameters:
3026 /* From varargs functions; gdb doesn't seem to have any interest in
3027 this information, so just ignore it for now. (FIXME?) */
3028 break;
3029 case TAG_class_type:
3030 case TAG_structure_type:
3031 case TAG_union_type:
3032 case TAG_enumeration_type:
3033 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3034 SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE;
3035 add_symbol_to_list (sym, list_in_scope);
3036 break;
3037 case TAG_typedef:
3038 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3039 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3040 add_symbol_to_list (sym, list_in_scope);
3041 break;
3042 default:
3043 /* Not a tag we recognize. Hopefully we aren't processing trash
3044 data, but since we must specifically ignore things we don't
3045 recognize, there is nothing else we should do at this point. */
3046 break;
3047 }
3048 }
3049 return (sym);
3050 }
3051
3052 /*
3053
3054 LOCAL FUNCTION
3055
3056 synthesize_typedef -- make a symbol table entry for a "fake" typedef
3057
3058 SYNOPSIS
3059
3060 static void synthesize_typedef (struct dieinfo *dip,
3061 struct objfile *objfile,
3062 struct type *type);
3063
3064 DESCRIPTION
3065
3066 Given a pointer to a DWARF information entry, synthesize a typedef
3067 for the name in the DIE, using the specified type.
3068
3069 This is used for C++ class, structs, unions, and enumerations to
3070 set up the tag name as a type.
3071
3072 */
3073
3074 static void
3075 synthesize_typedef (dip, objfile, type)
3076 struct dieinfo *dip;
3077 struct objfile *objfile;
3078 struct type *type;
3079 {
3080 struct symbol *sym = NULL;
3081
3082 if (dip -> at_name != NULL)
3083 {
3084 sym = (struct symbol *)
3085 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
3086 memset (sym, 0, sizeof (struct symbol));
3087 SYMBOL_NAME (sym) = create_name (dip -> at_name,
3088 &objfile->symbol_obstack);
3089 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
3090 SYMBOL_TYPE (sym) = type;
3091 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3092 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3093 add_symbol_to_list (sym, list_in_scope);
3094 }
3095 }
3096
3097 /*
3098
3099 LOCAL FUNCTION
3100
3101 decode_mod_fund_type -- decode a modified fundamental type
3102
3103 SYNOPSIS
3104
3105 static struct type *decode_mod_fund_type (char *typedata)
3106
3107 DESCRIPTION
3108
3109 Decode a block of data containing a modified fundamental
3110 type specification. TYPEDATA is a pointer to the block,
3111 which starts with a length containing the size of the rest
3112 of the block. At the end of the block is a fundmental type
3113 code value that gives the fundamental type. Everything
3114 in between are type modifiers.
3115
3116 We simply compute the number of modifiers and call the general
3117 function decode_modified_type to do the actual work.
3118 */
3119
3120 static struct type *
3121 decode_mod_fund_type (typedata)
3122 char *typedata;
3123 {
3124 struct type *typep = NULL;
3125 unsigned short modcount;
3126 int nbytes;
3127
3128 /* Get the total size of the block, exclusive of the size itself */
3129
3130 nbytes = attribute_size (AT_mod_fund_type);
3131 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3132 typedata += nbytes;
3133
3134 /* Deduct the size of the fundamental type bytes at the end of the block. */
3135
3136 modcount -= attribute_size (AT_fund_type);
3137
3138 /* Now do the actual decoding */
3139
3140 typep = decode_modified_type (typedata, modcount, AT_mod_fund_type);
3141 return (typep);
3142 }
3143
3144 /*
3145
3146 LOCAL FUNCTION
3147
3148 decode_mod_u_d_type -- decode a modified user defined type
3149
3150 SYNOPSIS
3151
3152 static struct type *decode_mod_u_d_type (char *typedata)
3153
3154 DESCRIPTION
3155
3156 Decode a block of data containing a modified user defined
3157 type specification. TYPEDATA is a pointer to the block,
3158 which consists of a two byte length, containing the size
3159 of the rest of the block. At the end of the block is a
3160 four byte value that gives a reference to a user defined type.
3161 Everything in between are type modifiers.
3162
3163 We simply compute the number of modifiers and call the general
3164 function decode_modified_type to do the actual work.
3165 */
3166
3167 static struct type *
3168 decode_mod_u_d_type (typedata)
3169 char *typedata;
3170 {
3171 struct type *typep = NULL;
3172 unsigned short modcount;
3173 int nbytes;
3174
3175 /* Get the total size of the block, exclusive of the size itself */
3176
3177 nbytes = attribute_size (AT_mod_u_d_type);
3178 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3179 typedata += nbytes;
3180
3181 /* Deduct the size of the reference type bytes at the end of the block. */
3182
3183 modcount -= attribute_size (AT_user_def_type);
3184
3185 /* Now do the actual decoding */
3186
3187 typep = decode_modified_type (typedata, modcount, AT_mod_u_d_type);
3188 return (typep);
3189 }
3190
3191 /*
3192
3193 LOCAL FUNCTION
3194
3195 decode_modified_type -- decode modified user or fundamental type
3196
3197 SYNOPSIS
3198
3199 static struct type *decode_modified_type (char *modifiers,
3200 unsigned short modcount, int mtype)
3201
3202 DESCRIPTION
3203
3204 Decode a modified type, either a modified fundamental type or
3205 a modified user defined type. MODIFIERS is a pointer to the
3206 block of bytes that define MODCOUNT modifiers. Immediately
3207 following the last modifier is a short containing the fundamental
3208 type or a long containing the reference to the user defined
3209 type. Which one is determined by MTYPE, which is either
3210 AT_mod_fund_type or AT_mod_u_d_type to indicate what modified
3211 type we are generating.
3212
3213 We call ourself recursively to generate each modified type,`
3214 until MODCOUNT reaches zero, at which point we have consumed
3215 all the modifiers and generate either the fundamental type or
3216 user defined type. When the recursion unwinds, each modifier
3217 is applied in turn to generate the full modified type.
3218
3219 NOTES
3220
3221 If we find a modifier that we don't recognize, and it is not one
3222 of those reserved for application specific use, then we issue a
3223 warning and simply ignore the modifier.
3224
3225 BUGS
3226
3227 We currently ignore MOD_const and MOD_volatile. (FIXME)
3228
3229 */
3230
3231 static struct type *
3232 decode_modified_type (modifiers, modcount, mtype)
3233 char *modifiers;
3234 unsigned int modcount;
3235 int mtype;
3236 {
3237 struct type *typep = NULL;
3238 unsigned short fundtype;
3239 DIE_REF die_ref;
3240 char modifier;
3241 int nbytes;
3242
3243 if (modcount == 0)
3244 {
3245 switch (mtype)
3246 {
3247 case AT_mod_fund_type:
3248 nbytes = attribute_size (AT_fund_type);
3249 fundtype = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3250 current_objfile);
3251 typep = decode_fund_type (fundtype);
3252 break;
3253 case AT_mod_u_d_type:
3254 nbytes = attribute_size (AT_user_def_type);
3255 die_ref = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3256 current_objfile);
3257 if ((typep = lookup_utype (die_ref)) == NULL)
3258 {
3259 typep = alloc_utype (die_ref, NULL);
3260 }
3261 break;
3262 default:
3263 complain (&botched_modified_type, DIE_ID, DIE_NAME, mtype);
3264 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3265 break;
3266 }
3267 }
3268 else
3269 {
3270 modifier = *modifiers++;
3271 typep = decode_modified_type (modifiers, --modcount, mtype);
3272 switch (modifier)
3273 {
3274 case MOD_pointer_to:
3275 typep = lookup_pointer_type (typep);
3276 break;
3277 case MOD_reference_to:
3278 typep = lookup_reference_type (typep);
3279 break;
3280 case MOD_const:
3281 complain (&const_ignored, DIE_ID, DIE_NAME); /* FIXME */
3282 break;
3283 case MOD_volatile:
3284 complain (&volatile_ignored, DIE_ID, DIE_NAME); /* FIXME */
3285 break;
3286 default:
3287 if (!(MOD_lo_user <= (unsigned char) modifier
3288 && (unsigned char) modifier <= MOD_hi_user))
3289 {
3290 complain (&unknown_type_modifier, DIE_ID, DIE_NAME, modifier);
3291 }
3292 break;
3293 }
3294 }
3295 return (typep);
3296 }
3297
3298 /*
3299
3300 LOCAL FUNCTION
3301
3302 decode_fund_type -- translate basic DWARF type to gdb base type
3303
3304 DESCRIPTION
3305
3306 Given an integer that is one of the fundamental DWARF types,
3307 translate it to one of the basic internal gdb types and return
3308 a pointer to the appropriate gdb type (a "struct type *").
3309
3310 NOTES
3311
3312 For robustness, if we are asked to translate a fundamental
3313 type that we are unprepared to deal with, we return int so
3314 callers can always depend upon a valid type being returned,
3315 and so gdb may at least do something reasonable by default.
3316 If the type is not in the range of those types defined as
3317 application specific types, we also issue a warning.
3318 */
3319
3320 static struct type *
3321 decode_fund_type (fundtype)
3322 unsigned int fundtype;
3323 {
3324 struct type *typep = NULL;
3325
3326 switch (fundtype)
3327 {
3328
3329 case FT_void:
3330 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3331 break;
3332
3333 case FT_boolean: /* Was FT_set in AT&T version */
3334 typep = dwarf_fundamental_type (current_objfile, FT_BOOLEAN);
3335 break;
3336
3337 case FT_pointer: /* (void *) */
3338 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3339 typep = lookup_pointer_type (typep);
3340 break;
3341
3342 case FT_char:
3343 typep = dwarf_fundamental_type (current_objfile, FT_CHAR);
3344 break;
3345
3346 case FT_signed_char:
3347 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_CHAR);
3348 break;
3349
3350 case FT_unsigned_char:
3351 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_CHAR);
3352 break;
3353
3354 case FT_short:
3355 typep = dwarf_fundamental_type (current_objfile, FT_SHORT);
3356 break;
3357
3358 case FT_signed_short:
3359 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_SHORT);
3360 break;
3361
3362 case FT_unsigned_short:
3363 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_SHORT);
3364 break;
3365
3366 case FT_integer:
3367 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3368 break;
3369
3370 case FT_signed_integer:
3371 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_INTEGER);
3372 break;
3373
3374 case FT_unsigned_integer:
3375 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_INTEGER);
3376 break;
3377
3378 case FT_long:
3379 typep = dwarf_fundamental_type (current_objfile, FT_LONG);
3380 break;
3381
3382 case FT_signed_long:
3383 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG);
3384 break;
3385
3386 case FT_unsigned_long:
3387 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG);
3388 break;
3389
3390 case FT_long_long:
3391 typep = dwarf_fundamental_type (current_objfile, FT_LONG_LONG);
3392 break;
3393
3394 case FT_signed_long_long:
3395 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG_LONG);
3396 break;
3397
3398 case FT_unsigned_long_long:
3399 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG_LONG);
3400 break;
3401
3402 case FT_float:
3403 typep = dwarf_fundamental_type (current_objfile, FT_FLOAT);
3404 break;
3405
3406 case FT_dbl_prec_float:
3407 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_FLOAT);
3408 break;
3409
3410 case FT_ext_prec_float:
3411 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_FLOAT);
3412 break;
3413
3414 case FT_complex:
3415 typep = dwarf_fundamental_type (current_objfile, FT_COMPLEX);
3416 break;
3417
3418 case FT_dbl_prec_complex:
3419 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_COMPLEX);
3420 break;
3421
3422 case FT_ext_prec_complex:
3423 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_COMPLEX);
3424 break;
3425
3426 }
3427
3428 if (typep == NULL)
3429 {
3430 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3431 if (!(FT_lo_user <= fundtype && fundtype <= FT_hi_user))
3432 {
3433 complain (&unexpected_fund_type, DIE_ID, DIE_NAME, fundtype);
3434 }
3435 }
3436
3437 return (typep);
3438 }
3439
3440 /*
3441
3442 LOCAL FUNCTION
3443
3444 create_name -- allocate a fresh copy of a string on an obstack
3445
3446 DESCRIPTION
3447
3448 Given a pointer to a string and a pointer to an obstack, allocates
3449 a fresh copy of the string on the specified obstack.
3450
3451 */
3452
3453 static char *
3454 create_name (name, obstackp)
3455 char *name;
3456 struct obstack *obstackp;
3457 {
3458 int length;
3459 char *newname;
3460
3461 length = strlen (name) + 1;
3462 newname = (char *) obstack_alloc (obstackp, length);
3463 strcpy (newname, name);
3464 return (newname);
3465 }
3466
3467 /*
3468
3469 LOCAL FUNCTION
3470
3471 basicdieinfo -- extract the minimal die info from raw die data
3472
3473 SYNOPSIS
3474
3475 void basicdieinfo (char *diep, struct dieinfo *dip,
3476 struct objfile *objfile)
3477
3478 DESCRIPTION
3479
3480 Given a pointer to raw DIE data, and a pointer to an instance of a
3481 die info structure, this function extracts the basic information
3482 from the DIE data required to continue processing this DIE, along
3483 with some bookkeeping information about the DIE.
3484
3485 The information we absolutely must have includes the DIE tag,
3486 and the DIE length. If we need the sibling reference, then we
3487 will have to call completedieinfo() to process all the remaining
3488 DIE information.
3489
3490 Note that since there is no guarantee that the data is properly
3491 aligned in memory for the type of access required (indirection
3492 through anything other than a char pointer), and there is no
3493 guarantee that it is in the same byte order as the gdb host,
3494 we call a function which deals with both alignment and byte
3495 swapping issues. Possibly inefficient, but quite portable.
3496
3497 We also take care of some other basic things at this point, such
3498 as ensuring that the instance of the die info structure starts
3499 out completely zero'd and that curdie is initialized for use
3500 in error reporting if we have a problem with the current die.
3501
3502 NOTES
3503
3504 All DIE's must have at least a valid length, thus the minimum
3505 DIE size is SIZEOF_DIE_LENGTH. In order to have a valid tag, the
3506 DIE size must be at least SIZEOF_DIE_TAG larger, otherwise they
3507 are forced to be TAG_padding DIES.
3508
3509 Padding DIES must be at least SIZEOF_DIE_LENGTH in length, implying
3510 that if a padding DIE is used for alignment and the amount needed is
3511 less than SIZEOF_DIE_LENGTH, then the padding DIE has to be big
3512 enough to align to the next alignment boundry.
3513
3514 We do some basic sanity checking here, such as verifying that the
3515 length of the die would not cause it to overrun the recorded end of
3516 the buffer holding the DIE info. If we find a DIE that is either
3517 too small or too large, we force it's length to zero which should
3518 cause the caller to take appropriate action.
3519 */
3520
3521 static void
3522 basicdieinfo (dip, diep, objfile)
3523 struct dieinfo *dip;
3524 char *diep;
3525 struct objfile *objfile;
3526 {
3527 curdie = dip;
3528 memset (dip, 0, sizeof (struct dieinfo));
3529 dip -> die = diep;
3530 dip -> die_ref = dbroff + (diep - dbbase);
3531 dip -> die_length = target_to_host (diep, SIZEOF_DIE_LENGTH, GET_UNSIGNED,
3532 objfile);
3533 if ((dip -> die_length < SIZEOF_DIE_LENGTH) ||
3534 ((diep + dip -> die_length) > (dbbase + dbsize)))
3535 {
3536 complain (&malformed_die, DIE_ID, DIE_NAME, dip -> die_length);
3537 dip -> die_length = 0;
3538 }
3539 else if (dip -> die_length < (SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG))
3540 {
3541 dip -> die_tag = TAG_padding;
3542 }
3543 else
3544 {
3545 diep += SIZEOF_DIE_LENGTH;
3546 dip -> die_tag = target_to_host (diep, SIZEOF_DIE_TAG, GET_UNSIGNED,
3547 objfile);
3548 }
3549 }
3550
3551 /*
3552
3553 LOCAL FUNCTION
3554
3555 completedieinfo -- finish reading the information for a given DIE
3556
3557 SYNOPSIS
3558
3559 void completedieinfo (struct dieinfo *dip, struct objfile *objfile)
3560
3561 DESCRIPTION
3562
3563 Given a pointer to an already partially initialized die info structure,
3564 scan the raw DIE data and finish filling in the die info structure
3565 from the various attributes found.
3566
3567 Note that since there is no guarantee that the data is properly
3568 aligned in memory for the type of access required (indirection
3569 through anything other than a char pointer), and there is no
3570 guarantee that it is in the same byte order as the gdb host,
3571 we call a function which deals with both alignment and byte
3572 swapping issues. Possibly inefficient, but quite portable.
3573
3574 NOTES
3575
3576 Each time we are called, we increment the diecount variable, which
3577 keeps an approximate count of the number of dies processed for
3578 each compilation unit. This information is presented to the user
3579 if the info_verbose flag is set.
3580
3581 */
3582
3583 static void
3584 completedieinfo (dip, objfile)
3585 struct dieinfo *dip;
3586 struct objfile *objfile;
3587 {
3588 char *diep; /* Current pointer into raw DIE data */
3589 char *end; /* Terminate DIE scan here */
3590 unsigned short attr; /* Current attribute being scanned */
3591 unsigned short form; /* Form of the attribute */
3592 int nbytes; /* Size of next field to read */
3593
3594 diecount++;
3595 diep = dip -> die;
3596 end = diep + dip -> die_length;
3597 diep += SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG;
3598 while (diep < end)
3599 {
3600 attr = target_to_host (diep, SIZEOF_ATTRIBUTE, GET_UNSIGNED, objfile);
3601 diep += SIZEOF_ATTRIBUTE;
3602 if ((nbytes = attribute_size (attr)) == -1)
3603 {
3604 complain (&unknown_attribute_length, DIE_ID, DIE_NAME);
3605 diep = end;
3606 continue;
3607 }
3608 switch (attr)
3609 {
3610 case AT_fund_type:
3611 dip -> at_fund_type = target_to_host (diep, nbytes, GET_UNSIGNED,
3612 objfile);
3613 break;
3614 case AT_ordering:
3615 dip -> at_ordering = target_to_host (diep, nbytes, GET_UNSIGNED,
3616 objfile);
3617 break;
3618 case AT_bit_offset:
3619 dip -> at_bit_offset = target_to_host (diep, nbytes, GET_UNSIGNED,
3620 objfile);
3621 break;
3622 case AT_sibling:
3623 dip -> at_sibling = target_to_host (diep, nbytes, GET_UNSIGNED,
3624 objfile);
3625 break;
3626 case AT_stmt_list:
3627 dip -> at_stmt_list = target_to_host (diep, nbytes, GET_UNSIGNED,
3628 objfile);
3629 dip -> has_at_stmt_list = 1;
3630 break;
3631 case AT_low_pc:
3632 dip -> at_low_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3633 objfile);
3634 dip -> at_low_pc += baseaddr;
3635 dip -> has_at_low_pc = 1;
3636 break;
3637 case AT_high_pc:
3638 dip -> at_high_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3639 objfile);
3640 dip -> at_high_pc += baseaddr;
3641 break;
3642 case AT_language:
3643 dip -> at_language = target_to_host (diep, nbytes, GET_UNSIGNED,
3644 objfile);
3645 break;
3646 case AT_user_def_type:
3647 dip -> at_user_def_type = target_to_host (diep, nbytes,
3648 GET_UNSIGNED, objfile);
3649 break;
3650 case AT_byte_size:
3651 dip -> at_byte_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3652 objfile);
3653 dip -> has_at_byte_size = 1;
3654 break;
3655 case AT_bit_size:
3656 dip -> at_bit_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3657 objfile);
3658 break;
3659 case AT_member:
3660 dip -> at_member = target_to_host (diep, nbytes, GET_UNSIGNED,
3661 objfile);
3662 break;
3663 case AT_discr:
3664 dip -> at_discr = target_to_host (diep, nbytes, GET_UNSIGNED,
3665 objfile);
3666 break;
3667 case AT_location:
3668 dip -> at_location = diep;
3669 break;
3670 case AT_mod_fund_type:
3671 dip -> at_mod_fund_type = diep;
3672 break;
3673 case AT_subscr_data:
3674 dip -> at_subscr_data = diep;
3675 break;
3676 case AT_mod_u_d_type:
3677 dip -> at_mod_u_d_type = diep;
3678 break;
3679 case AT_element_list:
3680 dip -> at_element_list = diep;
3681 dip -> short_element_list = 0;
3682 break;
3683 case AT_short_element_list:
3684 dip -> at_element_list = diep;
3685 dip -> short_element_list = 1;
3686 break;
3687 case AT_discr_value:
3688 dip -> at_discr_value = diep;
3689 break;
3690 case AT_string_length:
3691 dip -> at_string_length = diep;
3692 break;
3693 case AT_name:
3694 dip -> at_name = diep;
3695 break;
3696 case AT_comp_dir:
3697 /* For now, ignore any "hostname:" portion, since gdb doesn't
3698 know how to deal with it. (FIXME). */
3699 dip -> at_comp_dir = strrchr (diep, ':');
3700 if (dip -> at_comp_dir != NULL)
3701 {
3702 dip -> at_comp_dir++;
3703 }
3704 else
3705 {
3706 dip -> at_comp_dir = diep;
3707 }
3708 break;
3709 case AT_producer:
3710 dip -> at_producer = diep;
3711 break;
3712 case AT_start_scope:
3713 dip -> at_start_scope = target_to_host (diep, nbytes, GET_UNSIGNED,
3714 objfile);
3715 break;
3716 case AT_stride_size:
3717 dip -> at_stride_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3718 objfile);
3719 break;
3720 case AT_src_info:
3721 dip -> at_src_info = target_to_host (diep, nbytes, GET_UNSIGNED,
3722 objfile);
3723 break;
3724 case AT_prototyped:
3725 dip -> at_prototyped = diep;
3726 break;
3727 default:
3728 /* Found an attribute that we are unprepared to handle. However
3729 it is specifically one of the design goals of DWARF that
3730 consumers should ignore unknown attributes. As long as the
3731 form is one that we recognize (so we know how to skip it),
3732 we can just ignore the unknown attribute. */
3733 break;
3734 }
3735 form = FORM_FROM_ATTR (attr);
3736 switch (form)
3737 {
3738 case FORM_DATA2:
3739 diep += 2;
3740 break;
3741 case FORM_DATA4:
3742 case FORM_REF:
3743 diep += 4;
3744 break;
3745 case FORM_DATA8:
3746 diep += 8;
3747 break;
3748 case FORM_ADDR:
3749 diep += TARGET_FT_POINTER_SIZE (objfile);
3750 break;
3751 case FORM_BLOCK2:
3752 diep += 2 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3753 break;
3754 case FORM_BLOCK4:
3755 diep += 4 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3756 break;
3757 case FORM_STRING:
3758 diep += strlen (diep) + 1;
3759 break;
3760 default:
3761 complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form);
3762 diep = end;
3763 break;
3764 }
3765 }
3766 }
3767
3768 /*
3769
3770 LOCAL FUNCTION
3771
3772 target_to_host -- swap in target data to host
3773
3774 SYNOPSIS
3775
3776 target_to_host (char *from, int nbytes, int signextend,
3777 struct objfile *objfile)
3778
3779 DESCRIPTION
3780
3781 Given pointer to data in target format in FROM, a byte count for
3782 the size of the data in NBYTES, a flag indicating whether or not
3783 the data is signed in SIGNEXTEND, and a pointer to the current
3784 objfile in OBJFILE, convert the data to host format and return
3785 the converted value.
3786
3787 NOTES
3788
3789 FIXME: If we read data that is known to be signed, and expect to
3790 use it as signed data, then we need to explicitly sign extend the
3791 result until the bfd library is able to do this for us.
3792
3793 */
3794
3795 static unsigned long
3796 target_to_host (from, nbytes, signextend, objfile)
3797 char *from;
3798 int nbytes;
3799 int signextend; /* FIXME: Unused */
3800 struct objfile *objfile;
3801 {
3802 unsigned long rtnval;
3803
3804 switch (nbytes)
3805 {
3806 case 8:
3807 rtnval = bfd_get_64 (objfile -> obfd, (bfd_byte *) from);
3808 break;
3809 case 4:
3810 rtnval = bfd_get_32 (objfile -> obfd, (bfd_byte *) from);
3811 break;
3812 case 2:
3813 rtnval = bfd_get_16 (objfile -> obfd, (bfd_byte *) from);
3814 break;
3815 case 1:
3816 rtnval = bfd_get_8 (objfile -> obfd, (bfd_byte *) from);
3817 break;
3818 default:
3819 complain (&no_bfd_get_N, DIE_ID, DIE_NAME, nbytes);
3820 rtnval = 0;
3821 break;
3822 }
3823 return (rtnval);
3824 }
3825
3826 /*
3827
3828 LOCAL FUNCTION
3829
3830 attribute_size -- compute size of data for a DWARF attribute
3831
3832 SYNOPSIS
3833
3834 static int attribute_size (unsigned int attr)
3835
3836 DESCRIPTION
3837
3838 Given a DWARF attribute in ATTR, compute the size of the first
3839 piece of data associated with this attribute and return that
3840 size.
3841
3842 Returns -1 for unrecognized attributes.
3843
3844 */
3845
3846 static int
3847 attribute_size (attr)
3848 unsigned int attr;
3849 {
3850 int nbytes; /* Size of next data for this attribute */
3851 unsigned short form; /* Form of the attribute */
3852
3853 form = FORM_FROM_ATTR (attr);
3854 switch (form)
3855 {
3856 case FORM_STRING: /* A variable length field is next */
3857 nbytes = 0;
3858 break;
3859 case FORM_DATA2: /* Next 2 byte field is the data itself */
3860 case FORM_BLOCK2: /* Next 2 byte field is a block length */
3861 nbytes = 2;
3862 break;
3863 case FORM_DATA4: /* Next 4 byte field is the data itself */
3864 case FORM_BLOCK4: /* Next 4 byte field is a block length */
3865 case FORM_REF: /* Next 4 byte field is a DIE offset */
3866 nbytes = 4;
3867 break;
3868 case FORM_DATA8: /* Next 8 byte field is the data itself */
3869 nbytes = 8;
3870 break;
3871 case FORM_ADDR: /* Next field size is target sizeof(void *) */
3872 nbytes = TARGET_FT_POINTER_SIZE (objfile);
3873 break;
3874 default:
3875 complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form);
3876 nbytes = -1;
3877 break;
3878 }
3879 return (nbytes);
3880 }