* paread.c, coffread.c, elfread.c, dwarfread.c:
[binutils-gdb.git] / gdb / dwarfread.c
1 /* DWARF debugging format support for GDB.
2 Copyright (C) 1991, 1992 Free Software Foundation, Inc.
3 Written by Fred Fish at Cygnus Support. Portions based on dbxread.c,
4 mipsread.c, coffread.c, and dwarfread.c from a Data General SVR4 gdb port.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
21
22 /*
23
24 FIXME: Do we need to generate dependencies in partial symtabs?
25 (Perhaps we don't need to).
26
27 FIXME: Resolve minor differences between what information we put in the
28 partial symbol table and what dbxread puts in. For example, we don't yet
29 put enum constants there. And dbxread seems to invent a lot of typedefs
30 we never see. Use the new printpsym command to see the partial symbol table
31 contents.
32
33 FIXME: Figure out a better way to tell gdb about the name of the function
34 contain the user's entry point (I.E. main())
35
36 FIXME: See other FIXME's and "ifdef 0" scattered throughout the code for
37 other things to work on, if you get bored. :-)
38
39 */
40
41 #include "defs.h"
42 #include "bfd.h"
43 #include "symtab.h"
44 #include "gdbtypes.h"
45 #include "symfile.h"
46 #include "objfiles.h"
47 #include <time.h> /* For time_t in libbfd.h. */
48 #include "libbfd.h" /* FIXME Secret Internal BFD stuff (bfd_read) */
49 #include "elf/dwarf.h"
50 #include "buildsym.h"
51 #include "demangle.h"
52 #include "expression.h" /* Needed for enum exp_opcode in language.h, sigh... */
53 #include "language.h"
54 #include "complaints.h"
55
56 #include <fcntl.h>
57 #include <string.h>
58 #include <sys/types.h>
59
60 #ifndef NO_SYS_FILE
61 #include <sys/file.h>
62 #endif
63
64 /* FIXME -- convert this to SEEK_SET a la POSIX, move to config files. */
65 #ifndef L_SET
66 #define L_SET 0
67 #endif
68
69 /* Some macros to provide DIE info for complaints. */
70
71 #define DIE_ID (curdie!=NULL ? curdie->die_ref : 0)
72 #define DIE_NAME (curdie!=NULL && curdie->at_name!=NULL) ? curdie->at_name : ""
73
74 /* Complaints that can be issued during DWARF debug info reading. */
75
76 struct complaint no_bfd_get_N =
77 {
78 "DIE @ 0x%x \"%s\", no bfd support for %d byte data object", 0, 0
79 };
80
81 struct complaint malformed_die =
82 {
83 "DIE @ 0x%x \"%s\", malformed DIE, bad length (%d bytes)", 0, 0
84 };
85
86 struct complaint bad_die_ref =
87 {
88 "DIE @ 0x%x \"%s\", reference to DIE (0x%x) outside compilation unit", 0, 0
89 };
90
91 struct complaint unknown_attribute_form =
92 {
93 "DIE @ 0x%x \"%s\", unknown attribute form (0x%x)", 0, 0
94 };
95
96 struct complaint unknown_attribute_length =
97 {
98 "DIE @ 0x%x \"%s\", unknown attribute length, skipped remaining attributes", 0, 0
99 };
100
101 struct complaint unexpected_fund_type =
102 {
103 "DIE @ 0x%x \"%s\", unexpected fundamental type 0x%x", 0, 0
104 };
105
106 struct complaint unknown_type_modifier =
107 {
108 "DIE @ 0x%x \"%s\", unknown type modifier %u", 0, 0
109 };
110
111 struct complaint volatile_ignored =
112 {
113 "DIE @ 0x%x \"%s\", type modifier 'volatile' ignored", 0, 0
114 };
115
116 struct complaint const_ignored =
117 {
118 "DIE @ 0x%x \"%s\", type modifier 'const' ignored", 0, 0
119 };
120
121 struct complaint botched_modified_type =
122 {
123 "DIE @ 0x%x \"%s\", botched modified type decoding (mtype 0x%x)", 0, 0
124 };
125
126 struct complaint op_deref2 =
127 {
128 "DIE @ 0x%x \"%s\", OP_DEREF2 address 0x%x not handled", 0, 0
129 };
130
131 struct complaint op_deref4 =
132 {
133 "DIE @ 0x%x \"%s\", OP_DEREF4 address 0x%x not handled", 0, 0
134 };
135
136 struct complaint basereg_not_handled =
137 {
138 "DIE @ 0x%x \"%s\", BASEREG %d not handled", 0, 0
139 };
140
141 struct complaint dup_user_type_allocation =
142 {
143 "DIE @ 0x%x \"%s\", internal error: duplicate user type allocation", 0, 0
144 };
145
146 struct complaint dup_user_type_definition =
147 {
148 "DIE @ 0x%x \"%s\", internal error: duplicate user type definition", 0, 0
149 };
150
151 struct complaint missing_tag =
152 {
153 "DIE @ 0x%x \"%s\", missing class, structure, or union tag", 0, 0
154 };
155
156 struct complaint bad_array_element_type =
157 {
158 "DIE @ 0x%x \"%s\", bad array element type attribute 0x%x", 0, 0
159 };
160
161 struct complaint subscript_data_items =
162 {
163 "DIE @ 0x%x \"%s\", can't decode subscript data items", 0, 0
164 };
165
166 struct complaint unhandled_array_subscript_format =
167 {
168 "DIE @ 0x%x \"%s\", array subscript format 0x%x not handled yet", 0, 0
169 };
170
171 struct complaint unknown_array_subscript_format =
172 {
173 "DIE @ 0x%x \"%s\", unknown array subscript format %x", 0, 0
174 };
175
176 struct complaint not_row_major =
177 {
178 "DIE @ 0x%x \"%s\", array not row major; not handled correctly", 0, 0
179 };
180
181 typedef unsigned int DIE_REF; /* Reference to a DIE */
182
183 #ifndef GCC_PRODUCER
184 #define GCC_PRODUCER "GNU C "
185 #endif
186
187 #ifndef GPLUS_PRODUCER
188 #define GPLUS_PRODUCER "GNU C++ "
189 #endif
190
191 #ifndef LCC_PRODUCER
192 #define LCC_PRODUCER "NCR C/C++"
193 #endif
194
195 #ifndef CHILL_PRODUCER
196 #define CHILL_PRODUCER "GNU Chill "
197 #endif
198
199 /* Flags to target_to_host() that tell whether or not the data object is
200 expected to be signed. Used, for example, when fetching a signed
201 integer in the target environment which is used as a signed integer
202 in the host environment, and the two environments have different sized
203 ints. In this case, *somebody* has to sign extend the smaller sized
204 int. */
205
206 #define GET_UNSIGNED 0 /* No sign extension required */
207 #define GET_SIGNED 1 /* Sign extension required */
208
209 /* Defines for things which are specified in the document "DWARF Debugging
210 Information Format" published by UNIX International, Programming Languages
211 SIG. These defines are based on revision 1.0.0, Jan 20, 1992. */
212
213 #define SIZEOF_DIE_LENGTH 4
214 #define SIZEOF_DIE_TAG 2
215 #define SIZEOF_ATTRIBUTE 2
216 #define SIZEOF_FORMAT_SPECIFIER 1
217 #define SIZEOF_FMT_FT 2
218 #define SIZEOF_LINETBL_LENGTH 4
219 #define SIZEOF_LINETBL_LINENO 4
220 #define SIZEOF_LINETBL_STMT 2
221 #define SIZEOF_LINETBL_DELTA 4
222 #define SIZEOF_LOC_ATOM_CODE 1
223
224 #define FORM_FROM_ATTR(attr) ((attr) & 0xF) /* Implicitly specified */
225
226 /* Macros that return the sizes of various types of data in the target
227 environment.
228
229 FIXME: Currently these are just compile time constants (as they are in
230 other parts of gdb as well). They need to be able to get the right size
231 either from the bfd or possibly from the DWARF info. It would be nice if
232 the DWARF producer inserted DIES that describe the fundamental types in
233 the target environment into the DWARF info, similar to the way dbx stabs
234 producers produce information about their fundamental types. */
235
236 #define TARGET_FT_POINTER_SIZE(objfile) (TARGET_PTR_BIT / TARGET_CHAR_BIT)
237 #define TARGET_FT_LONG_SIZE(objfile) (TARGET_LONG_BIT / TARGET_CHAR_BIT)
238
239 /* The Amiga SVR4 header file <dwarf.h> defines AT_element_list as a
240 FORM_BLOCK2, and this is the value emitted by the AT&T compiler.
241 However, the Issue 2 DWARF specification from AT&T defines it as
242 a FORM_BLOCK4, as does the latest specification from UI/PLSIG.
243 For backwards compatibility with the AT&T compiler produced executables
244 we define AT_short_element_list for this variant. */
245
246 #define AT_short_element_list (0x00f0|FORM_BLOCK2)
247
248 /* External variables referenced. */
249
250 extern int info_verbose; /* From main.c; nonzero => verbose */
251 extern char *warning_pre_print; /* From utils.c */
252
253 /* The DWARF debugging information consists of two major pieces,
254 one is a block of DWARF Information Entries (DIE's) and the other
255 is a line number table. The "struct dieinfo" structure contains
256 the information for a single DIE, the one currently being processed.
257
258 In order to make it easier to randomly access the attribute fields
259 of the current DIE, which are specifically unordered within the DIE,
260 each DIE is scanned and an instance of the "struct dieinfo"
261 structure is initialized.
262
263 Initialization is done in two levels. The first, done by basicdieinfo(),
264 just initializes those fields that are vital to deciding whether or not
265 to use this DIE, how to skip past it, etc. The second, done by the
266 function completedieinfo(), fills in the rest of the information.
267
268 Attributes which have block forms are not interpreted at the time
269 the DIE is scanned, instead we just save pointers to the start
270 of their value fields.
271
272 Some fields have a flag <name>_p that is set when the value of the
273 field is valid (I.E. we found a matching attribute in the DIE). Since
274 we may want to test for the presence of some attributes in the DIE,
275 such as AT_low_pc, without restricting the values of the field,
276 we need someway to note that we found such an attribute.
277
278 */
279
280 typedef char BLOCK;
281
282 struct dieinfo {
283 char * die; /* Pointer to the raw DIE data */
284 unsigned long die_length; /* Length of the raw DIE data */
285 DIE_REF die_ref; /* Offset of this DIE */
286 unsigned short die_tag; /* Tag for this DIE */
287 unsigned long at_padding;
288 unsigned long at_sibling;
289 BLOCK * at_location;
290 char * at_name;
291 unsigned short at_fund_type;
292 BLOCK * at_mod_fund_type;
293 unsigned long at_user_def_type;
294 BLOCK * at_mod_u_d_type;
295 unsigned short at_ordering;
296 BLOCK * at_subscr_data;
297 unsigned long at_byte_size;
298 unsigned short at_bit_offset;
299 unsigned long at_bit_size;
300 BLOCK * at_element_list;
301 unsigned long at_stmt_list;
302 unsigned long at_low_pc;
303 unsigned long at_high_pc;
304 unsigned long at_language;
305 unsigned long at_member;
306 unsigned long at_discr;
307 BLOCK * at_discr_value;
308 BLOCK * at_string_length;
309 char * at_comp_dir;
310 char * at_producer;
311 unsigned long at_start_scope;
312 unsigned long at_stride_size;
313 unsigned long at_src_info;
314 char * at_prototyped;
315 unsigned int has_at_low_pc:1;
316 unsigned int has_at_stmt_list:1;
317 unsigned int has_at_byte_size:1;
318 unsigned int short_element_list:1;
319 };
320
321 static int diecount; /* Approximate count of dies for compilation unit */
322 static struct dieinfo *curdie; /* For warnings and such */
323
324 static char *dbbase; /* Base pointer to dwarf info */
325 static int dbsize; /* Size of dwarf info in bytes */
326 static int dbroff; /* Relative offset from start of .debug section */
327 static char *lnbase; /* Base pointer to line section */
328 static int isreg; /* Kludge to identify register variables */
329 /* Kludge to identify basereg references. Nonzero if we have an offset
330 relative to a basereg. */
331 static int offreg;
332 /* Which base register is it relative to? */
333 static int basereg;
334
335 /* This value is added to each symbol value. FIXME: Generalize to
336 the section_offsets structure used by dbxread (once this is done,
337 pass the appropriate section number to end_symtab). */
338 static CORE_ADDR baseaddr; /* Add to each symbol value */
339
340 /* The section offsets used in the current psymtab or symtab. FIXME,
341 only used to pass one value (baseaddr) at the moment. */
342 static struct section_offsets *base_section_offsets;
343
344 /* Each partial symbol table entry contains a pointer to private data for the
345 read_symtab() function to use when expanding a partial symbol table entry
346 to a full symbol table entry. For DWARF debugging info, this data is
347 contained in the following structure and macros are provided for easy
348 access to the members given a pointer to a partial symbol table entry.
349
350 dbfoff Always the absolute file offset to the start of the ".debug"
351 section for the file containing the DIE's being accessed.
352
353 dbroff Relative offset from the start of the ".debug" access to the
354 first DIE to be accessed. When building the partial symbol
355 table, this value will be zero since we are accessing the
356 entire ".debug" section. When expanding a partial symbol
357 table entry, this value will be the offset to the first
358 DIE for the compilation unit containing the symbol that
359 triggers the expansion.
360
361 dblength The size of the chunk of DIE's being examined, in bytes.
362
363 lnfoff The absolute file offset to the line table fragment. Ignored
364 when building partial symbol tables, but used when expanding
365 them, and contains the absolute file offset to the fragment
366 of the ".line" section containing the line numbers for the
367 current compilation unit.
368 */
369
370 struct dwfinfo {
371 file_ptr dbfoff; /* Absolute file offset to start of .debug section */
372 int dbroff; /* Relative offset from start of .debug section */
373 int dblength; /* Size of the chunk of DIE's being examined */
374 file_ptr lnfoff; /* Absolute file offset to line table fragment */
375 };
376
377 #define DBFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbfoff)
378 #define DBROFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbroff)
379 #define DBLENGTH(p) (((struct dwfinfo *)((p)->read_symtab_private))->dblength)
380 #define LNFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->lnfoff)
381
382 /* The generic symbol table building routines have separate lists for
383 file scope symbols and all all other scopes (local scopes). So
384 we need to select the right one to pass to add_symbol_to_list().
385 We do it by keeping a pointer to the correct list in list_in_scope.
386
387 FIXME: The original dwarf code just treated the file scope as the first
388 local scope, and all other local scopes as nested local scopes, and worked
389 fine. Check to see if we really need to distinguish these in buildsym.c */
390
391 struct pending **list_in_scope = &file_symbols;
392
393 /* DIES which have user defined types or modified user defined types refer to
394 other DIES for the type information. Thus we need to associate the offset
395 of a DIE for a user defined type with a pointer to the type information.
396
397 Originally this was done using a simple but expensive algorithm, with an
398 array of unsorted structures, each containing an offset/type-pointer pair.
399 This array was scanned linearly each time a lookup was done. The result
400 was that gdb was spending over half it's startup time munging through this
401 array of pointers looking for a structure that had the right offset member.
402
403 The second attempt used the same array of structures, but the array was
404 sorted using qsort each time a new offset/type was recorded, and a binary
405 search was used to find the type pointer for a given DIE offset. This was
406 even slower, due to the overhead of sorting the array each time a new
407 offset/type pair was entered.
408
409 The third attempt uses a fixed size array of type pointers, indexed by a
410 value derived from the DIE offset. Since the minimum DIE size is 4 bytes,
411 we can divide any DIE offset by 4 to obtain a unique index into this fixed
412 size array. Since each element is a 4 byte pointer, it takes exactly as
413 much memory to hold this array as to hold the DWARF info for a given
414 compilation unit. But it gets freed as soon as we are done with it.
415 This has worked well in practice, as a reasonable tradeoff between memory
416 consumption and speed, without having to resort to much more complicated
417 algorithms. */
418
419 static struct type **utypes; /* Pointer to array of user type pointers */
420 static int numutypes; /* Max number of user type pointers */
421
422 /* Maintain an array of referenced fundamental types for the current
423 compilation unit being read. For DWARF version 1, we have to construct
424 the fundamental types on the fly, since no information about the
425 fundamental types is supplied. Each such fundamental type is created by
426 calling a language dependent routine to create the type, and then a
427 pointer to that type is then placed in the array at the index specified
428 by it's FT_<TYPENAME> value. The array has a fixed size set by the
429 FT_NUM_MEMBERS compile time constant, which is the number of predefined
430 fundamental types gdb knows how to construct. */
431
432 static struct type *ftypes[FT_NUM_MEMBERS]; /* Fundamental types */
433
434 /* Record the language for the compilation unit which is currently being
435 processed. We know it once we have seen the TAG_compile_unit DIE,
436 and we need it while processing the DIE's for that compilation unit.
437 It is eventually saved in the symtab structure, but we don't finalize
438 the symtab struct until we have processed all the DIE's for the
439 compilation unit. We also need to get and save a pointer to the
440 language struct for this language, so we can call the language
441 dependent routines for doing things such as creating fundamental
442 types. */
443
444 static enum language cu_language;
445 static const struct language_defn *cu_language_defn;
446
447 /* Forward declarations of static functions so we don't have to worry
448 about ordering within this file. */
449
450 static int
451 attribute_size PARAMS ((unsigned int));
452
453 static unsigned long
454 target_to_host PARAMS ((char *, int, int, struct objfile *));
455
456 static void
457 add_enum_psymbol PARAMS ((struct dieinfo *, struct objfile *));
458
459 static void
460 handle_producer PARAMS ((char *));
461
462 static void
463 read_file_scope PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
464
465 static void
466 read_func_scope PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
467
468 static void
469 read_lexical_block_scope PARAMS ((struct dieinfo *, char *, char *,
470 struct objfile *));
471
472 static void
473 scan_partial_symbols PARAMS ((char *, char *, struct objfile *));
474
475 static void
476 scan_compilation_units PARAMS ((char *, char *, file_ptr,
477 file_ptr, struct objfile *));
478
479 static void
480 add_partial_symbol PARAMS ((struct dieinfo *, struct objfile *));
481
482 static void
483 init_psymbol_list PARAMS ((struct objfile *, int));
484
485 static void
486 basicdieinfo PARAMS ((struct dieinfo *, char *, struct objfile *));
487
488 static void
489 completedieinfo PARAMS ((struct dieinfo *, struct objfile *));
490
491 static void
492 dwarf_psymtab_to_symtab PARAMS ((struct partial_symtab *));
493
494 static void
495 psymtab_to_symtab_1 PARAMS ((struct partial_symtab *));
496
497 static void
498 read_ofile_symtab PARAMS ((struct partial_symtab *));
499
500 static void
501 process_dies PARAMS ((char *, char *, struct objfile *));
502
503 static void
504 read_structure_scope PARAMS ((struct dieinfo *, char *, char *,
505 struct objfile *));
506
507 static struct type *
508 decode_array_element_type PARAMS ((char *));
509
510 static struct type *
511 decode_subscript_data_item PARAMS ((char *, char *));
512
513 static void
514 dwarf_read_array_type PARAMS ((struct dieinfo *));
515
516 static void
517 read_tag_pointer_type PARAMS ((struct dieinfo *dip));
518
519 static void
520 read_tag_string_type PARAMS ((struct dieinfo *dip));
521
522 static void
523 read_subroutine_type PARAMS ((struct dieinfo *, char *, char *));
524
525 static void
526 read_enumeration PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
527
528 static struct type *
529 struct_type PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
530
531 static struct type *
532 enum_type PARAMS ((struct dieinfo *, struct objfile *));
533
534 static void
535 decode_line_numbers PARAMS ((char *));
536
537 static struct type *
538 decode_die_type PARAMS ((struct dieinfo *));
539
540 static struct type *
541 decode_mod_fund_type PARAMS ((char *));
542
543 static struct type *
544 decode_mod_u_d_type PARAMS ((char *));
545
546 static struct type *
547 decode_modified_type PARAMS ((char *, unsigned int, int));
548
549 static struct type *
550 decode_fund_type PARAMS ((unsigned int));
551
552 static char *
553 create_name PARAMS ((char *, struct obstack *));
554
555 static struct type *
556 lookup_utype PARAMS ((DIE_REF));
557
558 static struct type *
559 alloc_utype PARAMS ((DIE_REF, struct type *));
560
561 static struct symbol *
562 new_symbol PARAMS ((struct dieinfo *, struct objfile *));
563
564 static void
565 synthesize_typedef PARAMS ((struct dieinfo *, struct objfile *,
566 struct type *));
567
568 static int
569 locval PARAMS ((char *));
570
571 static void
572 set_cu_language PARAMS ((struct dieinfo *));
573
574 static struct type *
575 dwarf_fundamental_type PARAMS ((struct objfile *, int));
576
577
578 /*
579
580 LOCAL FUNCTION
581
582 dwarf_fundamental_type -- lookup or create a fundamental type
583
584 SYNOPSIS
585
586 struct type *
587 dwarf_fundamental_type (struct objfile *objfile, int typeid)
588
589 DESCRIPTION
590
591 DWARF version 1 doesn't supply any fundamental type information,
592 so gdb has to construct such types. It has a fixed number of
593 fundamental types that it knows how to construct, which is the
594 union of all types that it knows how to construct for all languages
595 that it knows about. These are enumerated in gdbtypes.h.
596
597 As an example, assume we find a DIE that references a DWARF
598 fundamental type of FT_integer. We first look in the ftypes
599 array to see if we already have such a type, indexed by the
600 gdb internal value of FT_INTEGER. If so, we simply return a
601 pointer to that type. If not, then we ask an appropriate
602 language dependent routine to create a type FT_INTEGER, using
603 defaults reasonable for the current target machine, and install
604 that type in ftypes for future reference.
605
606 RETURNS
607
608 Pointer to a fundamental type.
609
610 */
611
612 static struct type *
613 dwarf_fundamental_type (objfile, typeid)
614 struct objfile *objfile;
615 int typeid;
616 {
617 if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
618 {
619 error ("internal error - invalid fundamental type id %d", typeid);
620 }
621
622 /* Look for this particular type in the fundamental type vector. If one is
623 not found, create and install one appropriate for the current language
624 and the current target machine. */
625
626 if (ftypes[typeid] == NULL)
627 {
628 ftypes[typeid] = cu_language_defn -> la_fund_type(objfile, typeid);
629 }
630
631 return (ftypes[typeid]);
632 }
633
634 /*
635
636 LOCAL FUNCTION
637
638 set_cu_language -- set local copy of language for compilation unit
639
640 SYNOPSIS
641
642 void
643 set_cu_language (struct dieinfo *dip)
644
645 DESCRIPTION
646
647 Decode the language attribute for a compilation unit DIE and
648 remember what the language was. We use this at various times
649 when processing DIE's for a given compilation unit.
650
651 RETURNS
652
653 No return value.
654
655 */
656
657 static void
658 set_cu_language (dip)
659 struct dieinfo *dip;
660 {
661 switch (dip -> at_language)
662 {
663 case LANG_C89:
664 case LANG_C:
665 cu_language = language_c;
666 break;
667 case LANG_C_PLUS_PLUS:
668 cu_language = language_cplus;
669 break;
670 case LANG_CHILL:
671 cu_language = language_chill;
672 break;
673 case LANG_MODULA2:
674 cu_language = language_m2;
675 break;
676 case LANG_ADA83:
677 case LANG_COBOL74:
678 case LANG_COBOL85:
679 case LANG_FORTRAN77:
680 case LANG_FORTRAN90:
681 case LANG_PASCAL83:
682 /* We don't know anything special about these yet. */
683 cu_language = language_unknown;
684 break;
685 default:
686 /* If no at_language, try to deduce one from the filename */
687 cu_language = deduce_language_from_filename (dip -> at_name);
688 break;
689 }
690 cu_language_defn = language_def (cu_language);
691 }
692
693 /*
694
695 GLOBAL FUNCTION
696
697 dwarf_build_psymtabs -- build partial symtabs from DWARF debug info
698
699 SYNOPSIS
700
701 void dwarf_build_psymtabs (struct objfile *objfile,
702 struct section_offsets *section_offsets,
703 int mainline, file_ptr dbfoff, unsigned int dbfsize,
704 file_ptr lnoffset, unsigned int lnsize)
705
706 DESCRIPTION
707
708 This function is called upon to build partial symtabs from files
709 containing DIE's (Dwarf Information Entries) and DWARF line numbers.
710
711 It is passed a bfd* containing the DIES
712 and line number information, the corresponding filename for that
713 file, a base address for relocating the symbols, a flag indicating
714 whether or not this debugging information is from a "main symbol
715 table" rather than a shared library or dynamically linked file,
716 and file offset/size pairs for the DIE information and line number
717 information.
718
719 RETURNS
720
721 No return value.
722
723 */
724
725 void
726 dwarf_build_psymtabs (objfile, section_offsets, mainline, dbfoff, dbfsize,
727 lnoffset, lnsize)
728 struct objfile *objfile;
729 struct section_offsets *section_offsets;
730 int mainline;
731 file_ptr dbfoff;
732 unsigned int dbfsize;
733 file_ptr lnoffset;
734 unsigned int lnsize;
735 {
736 bfd *abfd = objfile->obfd;
737 struct cleanup *back_to;
738
739 current_objfile = objfile;
740 dbsize = dbfsize;
741 dbbase = xmalloc (dbsize);
742 dbroff = 0;
743 if ((bfd_seek (abfd, dbfoff, L_SET) != 0) ||
744 (bfd_read (dbbase, dbsize, 1, abfd) != dbsize))
745 {
746 free (dbbase);
747 error ("can't read DWARF data from '%s'", bfd_get_filename (abfd));
748 }
749 back_to = make_cleanup (free, dbbase);
750
751 /* If we are reinitializing, or if we have never loaded syms yet, init.
752 Since we have no idea how many DIES we are looking at, we just guess
753 some arbitrary value. */
754
755 if (mainline || objfile -> global_psymbols.size == 0 ||
756 objfile -> static_psymbols.size == 0)
757 {
758 init_psymbol_list (objfile, 1024);
759 }
760
761 /* Save the relocation factor where everybody can see it. */
762
763 base_section_offsets = section_offsets;
764 baseaddr = ANOFFSET (section_offsets, 0);
765
766 /* Follow the compilation unit sibling chain, building a partial symbol
767 table entry for each one. Save enough information about each compilation
768 unit to locate the full DWARF information later. */
769
770 scan_compilation_units (dbbase, dbbase + dbsize, dbfoff, lnoffset, objfile);
771
772 do_cleanups (back_to);
773 current_objfile = NULL;
774 }
775
776 /*
777
778 LOCAL FUNCTION
779
780 read_lexical_block_scope -- process all dies in a lexical block
781
782 SYNOPSIS
783
784 static void read_lexical_block_scope (struct dieinfo *dip,
785 char *thisdie, char *enddie)
786
787 DESCRIPTION
788
789 Process all the DIES contained within a lexical block scope.
790 Start a new scope, process the dies, and then close the scope.
791
792 */
793
794 static void
795 read_lexical_block_scope (dip, thisdie, enddie, objfile)
796 struct dieinfo *dip;
797 char *thisdie;
798 char *enddie;
799 struct objfile *objfile;
800 {
801 register struct context_stack *new;
802
803 push_context (0, dip -> at_low_pc);
804 process_dies (thisdie + dip -> die_length, enddie, objfile);
805 new = pop_context ();
806 if (local_symbols != NULL)
807 {
808 finish_block (0, &local_symbols, new -> old_blocks, new -> start_addr,
809 dip -> at_high_pc, objfile);
810 }
811 local_symbols = new -> locals;
812 }
813
814 /*
815
816 LOCAL FUNCTION
817
818 lookup_utype -- look up a user defined type from die reference
819
820 SYNOPSIS
821
822 static type *lookup_utype (DIE_REF die_ref)
823
824 DESCRIPTION
825
826 Given a DIE reference, lookup the user defined type associated with
827 that DIE, if it has been registered already. If not registered, then
828 return NULL. Alloc_utype() can be called to register an empty
829 type for this reference, which will be filled in later when the
830 actual referenced DIE is processed.
831 */
832
833 static struct type *
834 lookup_utype (die_ref)
835 DIE_REF die_ref;
836 {
837 struct type *type = NULL;
838 int utypeidx;
839
840 utypeidx = (die_ref - dbroff) / 4;
841 if ((utypeidx < 0) || (utypeidx >= numutypes))
842 {
843 complain (&bad_die_ref, DIE_ID, DIE_NAME);
844 }
845 else
846 {
847 type = *(utypes + utypeidx);
848 }
849 return (type);
850 }
851
852
853 /*
854
855 LOCAL FUNCTION
856
857 alloc_utype -- add a user defined type for die reference
858
859 SYNOPSIS
860
861 static type *alloc_utype (DIE_REF die_ref, struct type *utypep)
862
863 DESCRIPTION
864
865 Given a die reference DIE_REF, and a possible pointer to a user
866 defined type UTYPEP, register that this reference has a user
867 defined type and either use the specified type in UTYPEP or
868 make a new empty type that will be filled in later.
869
870 We should only be called after calling lookup_utype() to verify that
871 there is not currently a type registered for DIE_REF.
872 */
873
874 static struct type *
875 alloc_utype (die_ref, utypep)
876 DIE_REF die_ref;
877 struct type *utypep;
878 {
879 struct type **typep;
880 int utypeidx;
881
882 utypeidx = (die_ref - dbroff) / 4;
883 typep = utypes + utypeidx;
884 if ((utypeidx < 0) || (utypeidx >= numutypes))
885 {
886 utypep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
887 complain (&bad_die_ref, DIE_ID, DIE_NAME);
888 }
889 else if (*typep != NULL)
890 {
891 utypep = *typep;
892 complain (&dup_user_type_allocation, DIE_ID, DIE_NAME);
893 }
894 else
895 {
896 if (utypep == NULL)
897 {
898 utypep = alloc_type (current_objfile);
899 }
900 *typep = utypep;
901 }
902 return (utypep);
903 }
904
905 /*
906
907 LOCAL FUNCTION
908
909 decode_die_type -- return a type for a specified die
910
911 SYNOPSIS
912
913 static struct type *decode_die_type (struct dieinfo *dip)
914
915 DESCRIPTION
916
917 Given a pointer to a die information structure DIP, decode the
918 type of the die and return a pointer to the decoded type. All
919 dies without specific types default to type int.
920 */
921
922 static struct type *
923 decode_die_type (dip)
924 struct dieinfo *dip;
925 {
926 struct type *type = NULL;
927
928 if (dip -> at_fund_type != 0)
929 {
930 type = decode_fund_type (dip -> at_fund_type);
931 }
932 else if (dip -> at_mod_fund_type != NULL)
933 {
934 type = decode_mod_fund_type (dip -> at_mod_fund_type);
935 }
936 else if (dip -> at_user_def_type)
937 {
938 if ((type = lookup_utype (dip -> at_user_def_type)) == NULL)
939 {
940 type = alloc_utype (dip -> at_user_def_type, NULL);
941 }
942 }
943 else if (dip -> at_mod_u_d_type)
944 {
945 type = decode_mod_u_d_type (dip -> at_mod_u_d_type);
946 }
947 else
948 {
949 type = dwarf_fundamental_type (current_objfile, FT_INTEGER);
950 }
951 return (type);
952 }
953
954 /*
955
956 LOCAL FUNCTION
957
958 struct_type -- compute and return the type for a struct or union
959
960 SYNOPSIS
961
962 static struct type *struct_type (struct dieinfo *dip, char *thisdie,
963 char *enddie, struct objfile *objfile)
964
965 DESCRIPTION
966
967 Given pointer to a die information structure for a die which
968 defines a union or structure (and MUST define one or the other),
969 and pointers to the raw die data that define the range of dies which
970 define the members, compute and return the user defined type for the
971 structure or union.
972 */
973
974 static struct type *
975 struct_type (dip, thisdie, enddie, objfile)
976 struct dieinfo *dip;
977 char *thisdie;
978 char *enddie;
979 struct objfile *objfile;
980 {
981 struct type *type;
982 struct nextfield {
983 struct nextfield *next;
984 struct field field;
985 };
986 struct nextfield *list = NULL;
987 struct nextfield *new;
988 int nfields = 0;
989 int n;
990 struct dieinfo mbr;
991 char *nextdie;
992 #if !BITS_BIG_ENDIAN
993 int anonymous_size;
994 #endif
995
996 if ((type = lookup_utype (dip -> die_ref)) == NULL)
997 {
998 /* No forward references created an empty type, so install one now */
999 type = alloc_utype (dip -> die_ref, NULL);
1000 }
1001 INIT_CPLUS_SPECIFIC(type);
1002 switch (dip -> die_tag)
1003 {
1004 case TAG_class_type:
1005 TYPE_CODE (type) = TYPE_CODE_CLASS;
1006 break;
1007 case TAG_structure_type:
1008 TYPE_CODE (type) = TYPE_CODE_STRUCT;
1009 break;
1010 case TAG_union_type:
1011 TYPE_CODE (type) = TYPE_CODE_UNION;
1012 break;
1013 default:
1014 /* Should never happen */
1015 TYPE_CODE (type) = TYPE_CODE_UNDEF;
1016 complain (&missing_tag, DIE_ID, DIE_NAME);
1017 break;
1018 }
1019 /* Some compilers try to be helpful by inventing "fake" names for
1020 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1021 Thanks, but no thanks... */
1022 if (dip -> at_name != NULL
1023 && *dip -> at_name != '~'
1024 && *dip -> at_name != '.')
1025 {
1026 TYPE_TAG_NAME (type) = obconcat (&objfile -> type_obstack,
1027 "", "", dip -> at_name);
1028 }
1029 /* Use whatever size is known. Zero is a valid size. We might however
1030 wish to check has_at_byte_size to make sure that some byte size was
1031 given explicitly, but DWARF doesn't specify that explicit sizes of
1032 zero have to present, so complaining about missing sizes should
1033 probably not be the default. */
1034 TYPE_LENGTH (type) = dip -> at_byte_size;
1035 thisdie += dip -> die_length;
1036 while (thisdie < enddie)
1037 {
1038 basicdieinfo (&mbr, thisdie, objfile);
1039 completedieinfo (&mbr, objfile);
1040 if (mbr.die_length <= SIZEOF_DIE_LENGTH)
1041 {
1042 break;
1043 }
1044 else if (mbr.at_sibling != 0)
1045 {
1046 nextdie = dbbase + mbr.at_sibling - dbroff;
1047 }
1048 else
1049 {
1050 nextdie = thisdie + mbr.die_length;
1051 }
1052 switch (mbr.die_tag)
1053 {
1054 case TAG_member:
1055 /* Get space to record the next field's data. */
1056 new = (struct nextfield *) alloca (sizeof (struct nextfield));
1057 new -> next = list;
1058 list = new;
1059 /* Save the data. */
1060 list -> field.name =
1061 obsavestring (mbr.at_name, strlen (mbr.at_name),
1062 &objfile -> type_obstack);
1063 list -> field.type = decode_die_type (&mbr);
1064 list -> field.bitpos = 8 * locval (mbr.at_location);
1065 /* Handle bit fields. */
1066 list -> field.bitsize = mbr.at_bit_size;
1067 #if BITS_BIG_ENDIAN
1068 /* For big endian bits, the at_bit_offset gives the additional
1069 bit offset from the MSB of the containing anonymous object to
1070 the MSB of the field. We don't have to do anything special
1071 since we don't need to know the size of the anonymous object. */
1072 list -> field.bitpos += mbr.at_bit_offset;
1073 #else
1074 /* For little endian bits, we need to have a non-zero at_bit_size,
1075 so that we know we are in fact dealing with a bitfield. Compute
1076 the bit offset to the MSB of the anonymous object, subtract off
1077 the number of bits from the MSB of the field to the MSB of the
1078 object, and then subtract off the number of bits of the field
1079 itself. The result is the bit offset of the LSB of the field. */
1080 if (mbr.at_bit_size > 0)
1081 {
1082 if (mbr.has_at_byte_size)
1083 {
1084 /* The size of the anonymous object containing the bit field
1085 is explicit, so use the indicated size (in bytes). */
1086 anonymous_size = mbr.at_byte_size;
1087 }
1088 else
1089 {
1090 /* The size of the anonymous object containing the bit field
1091 matches the size of an object of the bit field's type.
1092 DWARF allows at_byte_size to be left out in such cases,
1093 as a debug information size optimization. */
1094 anonymous_size = TYPE_LENGTH (list -> field.type);
1095 }
1096 list -> field.bitpos +=
1097 anonymous_size * 8 - mbr.at_bit_offset - mbr.at_bit_size;
1098 }
1099 #endif
1100 nfields++;
1101 break;
1102 default:
1103 process_dies (thisdie, nextdie, objfile);
1104 break;
1105 }
1106 thisdie = nextdie;
1107 }
1108 /* Now create the vector of fields, and record how big it is. We may
1109 not even have any fields, if this DIE was generated due to a reference
1110 to an anonymous structure or union. In this case, TYPE_FLAG_STUB is
1111 set, which clues gdb in to the fact that it needs to search elsewhere
1112 for the full structure definition. */
1113 if (nfields == 0)
1114 {
1115 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1116 }
1117 else
1118 {
1119 TYPE_NFIELDS (type) = nfields;
1120 TYPE_FIELDS (type) = (struct field *)
1121 TYPE_ALLOC (type, sizeof (struct field) * nfields);
1122 /* Copy the saved-up fields into the field vector. */
1123 for (n = nfields; list; list = list -> next)
1124 {
1125 TYPE_FIELD (type, --n) = list -> field;
1126 }
1127 }
1128 return (type);
1129 }
1130
1131 /*
1132
1133 LOCAL FUNCTION
1134
1135 read_structure_scope -- process all dies within struct or union
1136
1137 SYNOPSIS
1138
1139 static void read_structure_scope (struct dieinfo *dip,
1140 char *thisdie, char *enddie, struct objfile *objfile)
1141
1142 DESCRIPTION
1143
1144 Called when we find the DIE that starts a structure or union
1145 scope (definition) to process all dies that define the members
1146 of the structure or union. DIP is a pointer to the die info
1147 struct for the DIE that names the structure or union.
1148
1149 NOTES
1150
1151 Note that we need to call struct_type regardless of whether or not
1152 the DIE has an at_name attribute, since it might be an anonymous
1153 structure or union. This gets the type entered into our set of
1154 user defined types.
1155
1156 However, if the structure is incomplete (an opaque struct/union)
1157 then suppress creating a symbol table entry for it since gdb only
1158 wants to find the one with the complete definition. Note that if
1159 it is complete, we just call new_symbol, which does it's own
1160 checking about whether the struct/union is anonymous or not (and
1161 suppresses creating a symbol table entry itself).
1162
1163 */
1164
1165 static void
1166 read_structure_scope (dip, thisdie, enddie, objfile)
1167 struct dieinfo *dip;
1168 char *thisdie;
1169 char *enddie;
1170 struct objfile *objfile;
1171 {
1172 struct type *type;
1173 struct symbol *sym;
1174
1175 type = struct_type (dip, thisdie, enddie, objfile);
1176 if (!(TYPE_FLAGS (type) & TYPE_FLAG_STUB))
1177 {
1178 sym = new_symbol (dip, objfile);
1179 if (sym != NULL)
1180 {
1181 SYMBOL_TYPE (sym) = type;
1182 if (cu_language == language_cplus)
1183 {
1184 synthesize_typedef (dip, objfile, type);
1185 }
1186 }
1187 }
1188 }
1189
1190 /*
1191
1192 LOCAL FUNCTION
1193
1194 decode_array_element_type -- decode type of the array elements
1195
1196 SYNOPSIS
1197
1198 static struct type *decode_array_element_type (char *scan, char *end)
1199
1200 DESCRIPTION
1201
1202 As the last step in decoding the array subscript information for an
1203 array DIE, we need to decode the type of the array elements. We are
1204 passed a pointer to this last part of the subscript information and
1205 must return the appropriate type. If the type attribute is not
1206 recognized, just warn about the problem and return type int.
1207 */
1208
1209 static struct type *
1210 decode_array_element_type (scan)
1211 char *scan;
1212 {
1213 struct type *typep;
1214 DIE_REF die_ref;
1215 unsigned short attribute;
1216 unsigned short fundtype;
1217 int nbytes;
1218
1219 attribute = target_to_host (scan, SIZEOF_ATTRIBUTE, GET_UNSIGNED,
1220 current_objfile);
1221 scan += SIZEOF_ATTRIBUTE;
1222 if ((nbytes = attribute_size (attribute)) == -1)
1223 {
1224 complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute);
1225 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1226 }
1227 else
1228 {
1229 switch (attribute)
1230 {
1231 case AT_fund_type:
1232 fundtype = target_to_host (scan, nbytes, GET_UNSIGNED,
1233 current_objfile);
1234 typep = decode_fund_type (fundtype);
1235 break;
1236 case AT_mod_fund_type:
1237 typep = decode_mod_fund_type (scan);
1238 break;
1239 case AT_user_def_type:
1240 die_ref = target_to_host (scan, nbytes, GET_UNSIGNED,
1241 current_objfile);
1242 if ((typep = lookup_utype (die_ref)) == NULL)
1243 {
1244 typep = alloc_utype (die_ref, NULL);
1245 }
1246 break;
1247 case AT_mod_u_d_type:
1248 typep = decode_mod_u_d_type (scan);
1249 break;
1250 default:
1251 complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute);
1252 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1253 break;
1254 }
1255 }
1256 return (typep);
1257 }
1258
1259 /*
1260
1261 LOCAL FUNCTION
1262
1263 decode_subscript_data_item -- decode array subscript item
1264
1265 SYNOPSIS
1266
1267 static struct type *
1268 decode_subscript_data_item (char *scan, char *end)
1269
1270 DESCRIPTION
1271
1272 The array subscripts and the data type of the elements of an
1273 array are described by a list of data items, stored as a block
1274 of contiguous bytes. There is a data item describing each array
1275 dimension, and a final data item describing the element type.
1276 The data items are ordered the same as their appearance in the
1277 source (I.E. leftmost dimension first, next to leftmost second,
1278 etc).
1279
1280 The data items describing each array dimension consist of four
1281 parts: (1) a format specifier, (2) type type of the subscript
1282 index, (3) a description of the low bound of the array dimension,
1283 and (4) a description of the high bound of the array dimension.
1284
1285 The last data item is the description of the type of each of
1286 the array elements.
1287
1288 We are passed a pointer to the start of the block of bytes
1289 containing the remaining data items, and a pointer to the first
1290 byte past the data. This function recursively decodes the
1291 remaining data items and returns a type.
1292
1293 If we somehow fail to decode some data, we complain about it
1294 and return a type "array of int".
1295
1296 BUGS
1297 FIXME: This code only implements the forms currently used
1298 by the AT&T and GNU C compilers.
1299
1300 The end pointer is supplied for error checking, maybe we should
1301 use it for that...
1302 */
1303
1304 static struct type *
1305 decode_subscript_data_item (scan, end)
1306 char *scan;
1307 char *end;
1308 {
1309 struct type *typep = NULL; /* Array type we are building */
1310 struct type *nexttype; /* Type of each element (may be array) */
1311 struct type *indextype; /* Type of this index */
1312 struct type *rangetype;
1313 unsigned int format;
1314 unsigned short fundtype;
1315 unsigned long lowbound;
1316 unsigned long highbound;
1317 int nbytes;
1318
1319 format = target_to_host (scan, SIZEOF_FORMAT_SPECIFIER, GET_UNSIGNED,
1320 current_objfile);
1321 scan += SIZEOF_FORMAT_SPECIFIER;
1322 switch (format)
1323 {
1324 case FMT_ET:
1325 typep = decode_array_element_type (scan);
1326 break;
1327 case FMT_FT_C_C:
1328 fundtype = target_to_host (scan, SIZEOF_FMT_FT, GET_UNSIGNED,
1329 current_objfile);
1330 indextype = decode_fund_type (fundtype);
1331 scan += SIZEOF_FMT_FT;
1332 nbytes = TARGET_FT_LONG_SIZE (current_objfile);
1333 lowbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1334 scan += nbytes;
1335 highbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1336 scan += nbytes;
1337 nexttype = decode_subscript_data_item (scan, end);
1338 if (nexttype == NULL)
1339 {
1340 /* Munged subscript data or other problem, fake it. */
1341 complain (&subscript_data_items, DIE_ID, DIE_NAME);
1342 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1343 }
1344 rangetype = create_range_type ((struct type *) NULL, indextype,
1345 lowbound, highbound);
1346 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1347 break;
1348 case FMT_FT_C_X:
1349 case FMT_FT_X_C:
1350 case FMT_FT_X_X:
1351 case FMT_UT_C_C:
1352 case FMT_UT_C_X:
1353 case FMT_UT_X_C:
1354 case FMT_UT_X_X:
1355 complain (&unhandled_array_subscript_format, DIE_ID, DIE_NAME, format);
1356 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1357 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1358 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1359 break;
1360 default:
1361 complain (&unknown_array_subscript_format, DIE_ID, DIE_NAME, format);
1362 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1363 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1364 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1365 break;
1366 }
1367 return (typep);
1368 }
1369
1370 /*
1371
1372 LOCAL FUNCTION
1373
1374 dwarf_read_array_type -- read TAG_array_type DIE
1375
1376 SYNOPSIS
1377
1378 static void dwarf_read_array_type (struct dieinfo *dip)
1379
1380 DESCRIPTION
1381
1382 Extract all information from a TAG_array_type DIE and add to
1383 the user defined type vector.
1384 */
1385
1386 static void
1387 dwarf_read_array_type (dip)
1388 struct dieinfo *dip;
1389 {
1390 struct type *type;
1391 struct type *utype;
1392 char *sub;
1393 char *subend;
1394 unsigned short blocksz;
1395 int nbytes;
1396
1397 if (dip -> at_ordering != ORD_row_major)
1398 {
1399 /* FIXME: Can gdb even handle column major arrays? */
1400 complain (&not_row_major, DIE_ID, DIE_NAME);
1401 }
1402 if ((sub = dip -> at_subscr_data) != NULL)
1403 {
1404 nbytes = attribute_size (AT_subscr_data);
1405 blocksz = target_to_host (sub, nbytes, GET_UNSIGNED, current_objfile);
1406 subend = sub + nbytes + blocksz;
1407 sub += nbytes;
1408 type = decode_subscript_data_item (sub, subend);
1409 if ((utype = lookup_utype (dip -> die_ref)) == NULL)
1410 {
1411 /* Install user defined type that has not been referenced yet. */
1412 alloc_utype (dip -> die_ref, type);
1413 }
1414 else if (TYPE_CODE (utype) == TYPE_CODE_UNDEF)
1415 {
1416 /* Ick! A forward ref has already generated a blank type in our
1417 slot, and this type probably already has things pointing to it
1418 (which is what caused it to be created in the first place).
1419 If it's just a place holder we can plop our fully defined type
1420 on top of it. We can't recover the space allocated for our
1421 new type since it might be on an obstack, but we could reuse
1422 it if we kept a list of them, but it might not be worth it
1423 (FIXME). */
1424 *utype = *type;
1425 }
1426 else
1427 {
1428 /* Double ick! Not only is a type already in our slot, but
1429 someone has decorated it. Complain and leave it alone. */
1430 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1431 }
1432 }
1433 }
1434
1435 /*
1436
1437 LOCAL FUNCTION
1438
1439 read_tag_pointer_type -- read TAG_pointer_type DIE
1440
1441 SYNOPSIS
1442
1443 static void read_tag_pointer_type (struct dieinfo *dip)
1444
1445 DESCRIPTION
1446
1447 Extract all information from a TAG_pointer_type DIE and add to
1448 the user defined type vector.
1449 */
1450
1451 static void
1452 read_tag_pointer_type (dip)
1453 struct dieinfo *dip;
1454 {
1455 struct type *type;
1456 struct type *utype;
1457
1458 type = decode_die_type (dip);
1459 if ((utype = lookup_utype (dip -> die_ref)) == NULL)
1460 {
1461 utype = lookup_pointer_type (type);
1462 alloc_utype (dip -> die_ref, utype);
1463 }
1464 else
1465 {
1466 TYPE_TARGET_TYPE (utype) = type;
1467 TYPE_POINTER_TYPE (type) = utype;
1468
1469 /* We assume the machine has only one representation for pointers! */
1470 /* FIXME: This confuses host<->target data representations, and is a
1471 poor assumption besides. */
1472
1473 TYPE_LENGTH (utype) = sizeof (char *);
1474 TYPE_CODE (utype) = TYPE_CODE_PTR;
1475 }
1476 }
1477
1478 /*
1479
1480 LOCAL FUNCTION
1481
1482 read_tag_string_type -- read TAG_string_type DIE
1483
1484 SYNOPSIS
1485
1486 static void read_tag_string_type (struct dieinfo *dip)
1487
1488 DESCRIPTION
1489
1490 Extract all information from a TAG_string_type DIE and add to
1491 the user defined type vector. It isn't really a user defined
1492 type, but it behaves like one, with other DIE's using an
1493 AT_user_def_type attribute to reference it.
1494 */
1495
1496 static void
1497 read_tag_string_type (dip)
1498 struct dieinfo *dip;
1499 {
1500 struct type *utype;
1501 struct type *indextype;
1502 struct type *rangetype;
1503 unsigned long lowbound = 0;
1504 unsigned long highbound;
1505
1506 if (dip -> has_at_byte_size)
1507 {
1508 /* A fixed bounds string */
1509 highbound = dip -> at_byte_size - 1;
1510 }
1511 else
1512 {
1513 /* A varying length string. Stub for now. (FIXME) */
1514 highbound = 1;
1515 }
1516 indextype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1517 rangetype = create_range_type ((struct type *) NULL, indextype, lowbound,
1518 highbound);
1519
1520 utype = lookup_utype (dip -> die_ref);
1521 if (utype == NULL)
1522 {
1523 /* No type defined, go ahead and create a blank one to use. */
1524 utype = alloc_utype (dip -> die_ref, (struct type *) NULL);
1525 }
1526 else
1527 {
1528 /* Already a type in our slot due to a forward reference. Make sure it
1529 is a blank one. If not, complain and leave it alone. */
1530 if (TYPE_CODE (utype) != TYPE_CODE_UNDEF)
1531 {
1532 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1533 return;
1534 }
1535 }
1536
1537 /* Create the string type using the blank type we either found or created. */
1538 utype = create_string_type (utype, rangetype);
1539 }
1540
1541 /*
1542
1543 LOCAL FUNCTION
1544
1545 read_subroutine_type -- process TAG_subroutine_type dies
1546
1547 SYNOPSIS
1548
1549 static void read_subroutine_type (struct dieinfo *dip, char thisdie,
1550 char *enddie)
1551
1552 DESCRIPTION
1553
1554 Handle DIES due to C code like:
1555
1556 struct foo {
1557 int (*funcp)(int a, long l); (Generates TAG_subroutine_type DIE)
1558 int b;
1559 };
1560
1561 NOTES
1562
1563 The parameter DIES are currently ignored. See if gdb has a way to
1564 include this info in it's type system, and decode them if so. Is
1565 this what the type structure's "arg_types" field is for? (FIXME)
1566 */
1567
1568 static void
1569 read_subroutine_type (dip, thisdie, enddie)
1570 struct dieinfo *dip;
1571 char *thisdie;
1572 char *enddie;
1573 {
1574 struct type *type; /* Type that this function returns */
1575 struct type *ftype; /* Function that returns above type */
1576
1577 /* Decode the type that this subroutine returns */
1578
1579 type = decode_die_type (dip);
1580
1581 /* Check to see if we already have a partially constructed user
1582 defined type for this DIE, from a forward reference. */
1583
1584 if ((ftype = lookup_utype (dip -> die_ref)) == NULL)
1585 {
1586 /* This is the first reference to one of these types. Make
1587 a new one and place it in the user defined types. */
1588 ftype = lookup_function_type (type);
1589 alloc_utype (dip -> die_ref, ftype);
1590 }
1591 else if (TYPE_CODE (ftype) == TYPE_CODE_UNDEF)
1592 {
1593 /* We have an existing partially constructed type, so bash it
1594 into the correct type. */
1595 TYPE_TARGET_TYPE (ftype) = type;
1596 TYPE_FUNCTION_TYPE (type) = ftype;
1597 TYPE_LENGTH (ftype) = 1;
1598 TYPE_CODE (ftype) = TYPE_CODE_FUNC;
1599 }
1600 else
1601 {
1602 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1603 }
1604 }
1605
1606 /*
1607
1608 LOCAL FUNCTION
1609
1610 read_enumeration -- process dies which define an enumeration
1611
1612 SYNOPSIS
1613
1614 static void read_enumeration (struct dieinfo *dip, char *thisdie,
1615 char *enddie, struct objfile *objfile)
1616
1617 DESCRIPTION
1618
1619 Given a pointer to a die which begins an enumeration, process all
1620 the dies that define the members of the enumeration.
1621
1622 NOTES
1623
1624 Note that we need to call enum_type regardless of whether or not we
1625 have a symbol, since we might have an enum without a tag name (thus
1626 no symbol for the tagname).
1627 */
1628
1629 static void
1630 read_enumeration (dip, thisdie, enddie, objfile)
1631 struct dieinfo *dip;
1632 char *thisdie;
1633 char *enddie;
1634 struct objfile *objfile;
1635 {
1636 struct type *type;
1637 struct symbol *sym;
1638
1639 type = enum_type (dip, objfile);
1640 sym = new_symbol (dip, objfile);
1641 if (sym != NULL)
1642 {
1643 SYMBOL_TYPE (sym) = type;
1644 if (cu_language == language_cplus)
1645 {
1646 synthesize_typedef (dip, objfile, type);
1647 }
1648 }
1649 }
1650
1651 /*
1652
1653 LOCAL FUNCTION
1654
1655 enum_type -- decode and return a type for an enumeration
1656
1657 SYNOPSIS
1658
1659 static type *enum_type (struct dieinfo *dip, struct objfile *objfile)
1660
1661 DESCRIPTION
1662
1663 Given a pointer to a die information structure for the die which
1664 starts an enumeration, process all the dies that define the members
1665 of the enumeration and return a type pointer for the enumeration.
1666
1667 At the same time, for each member of the enumeration, create a
1668 symbol for it with namespace VAR_NAMESPACE and class LOC_CONST,
1669 and give it the type of the enumeration itself.
1670
1671 NOTES
1672
1673 Note that the DWARF specification explicitly mandates that enum
1674 constants occur in reverse order from the source program order,
1675 for "consistency" and because this ordering is easier for many
1676 compilers to generate. (Draft 6, sec 3.8.5, Enumeration type
1677 Entries). Because gdb wants to see the enum members in program
1678 source order, we have to ensure that the order gets reversed while
1679 we are processing them.
1680 */
1681
1682 static struct type *
1683 enum_type (dip, objfile)
1684 struct dieinfo *dip;
1685 struct objfile *objfile;
1686 {
1687 struct type *type;
1688 struct nextfield {
1689 struct nextfield *next;
1690 struct field field;
1691 };
1692 struct nextfield *list = NULL;
1693 struct nextfield *new;
1694 int nfields = 0;
1695 int n;
1696 char *scan;
1697 char *listend;
1698 unsigned short blocksz;
1699 struct symbol *sym;
1700 int nbytes;
1701
1702 if ((type = lookup_utype (dip -> die_ref)) == NULL)
1703 {
1704 /* No forward references created an empty type, so install one now */
1705 type = alloc_utype (dip -> die_ref, NULL);
1706 }
1707 TYPE_CODE (type) = TYPE_CODE_ENUM;
1708 /* Some compilers try to be helpful by inventing "fake" names for
1709 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1710 Thanks, but no thanks... */
1711 if (dip -> at_name != NULL
1712 && *dip -> at_name != '~'
1713 && *dip -> at_name != '.')
1714 {
1715 TYPE_TAG_NAME (type) = obconcat (&objfile -> type_obstack,
1716 "", "", dip -> at_name);
1717 }
1718 if (dip -> at_byte_size != 0)
1719 {
1720 TYPE_LENGTH (type) = dip -> at_byte_size;
1721 }
1722 if ((scan = dip -> at_element_list) != NULL)
1723 {
1724 if (dip -> short_element_list)
1725 {
1726 nbytes = attribute_size (AT_short_element_list);
1727 }
1728 else
1729 {
1730 nbytes = attribute_size (AT_element_list);
1731 }
1732 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
1733 listend = scan + nbytes + blocksz;
1734 scan += nbytes;
1735 while (scan < listend)
1736 {
1737 new = (struct nextfield *) alloca (sizeof (struct nextfield));
1738 new -> next = list;
1739 list = new;
1740 list -> field.type = NULL;
1741 list -> field.bitsize = 0;
1742 list -> field.bitpos =
1743 target_to_host (scan, TARGET_FT_LONG_SIZE (objfile), GET_SIGNED,
1744 objfile);
1745 scan += TARGET_FT_LONG_SIZE (objfile);
1746 list -> field.name = obsavestring (scan, strlen (scan),
1747 &objfile -> type_obstack);
1748 scan += strlen (scan) + 1;
1749 nfields++;
1750 /* Handcraft a new symbol for this enum member. */
1751 sym = (struct symbol *) obstack_alloc (&objfile->symbol_obstack,
1752 sizeof (struct symbol));
1753 memset (sym, 0, sizeof (struct symbol));
1754 SYMBOL_NAME (sym) = create_name (list -> field.name,
1755 &objfile->symbol_obstack);
1756 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
1757 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1758 SYMBOL_CLASS (sym) = LOC_CONST;
1759 SYMBOL_TYPE (sym) = type;
1760 SYMBOL_VALUE (sym) = list -> field.bitpos;
1761 add_symbol_to_list (sym, list_in_scope);
1762 }
1763 /* Now create the vector of fields, and record how big it is. This is
1764 where we reverse the order, by pulling the members off the list in
1765 reverse order from how they were inserted. If we have no fields
1766 (this is apparently possible in C++) then skip building a field
1767 vector. */
1768 if (nfields > 0)
1769 {
1770 TYPE_NFIELDS (type) = nfields;
1771 TYPE_FIELDS (type) = (struct field *)
1772 obstack_alloc (&objfile->symbol_obstack, sizeof (struct field) * nfields);
1773 /* Copy the saved-up fields into the field vector. */
1774 for (n = 0; (n < nfields) && (list != NULL); list = list -> next)
1775 {
1776 TYPE_FIELD (type, n++) = list -> field;
1777 }
1778 }
1779 }
1780 return (type);
1781 }
1782
1783 /*
1784
1785 LOCAL FUNCTION
1786
1787 read_func_scope -- process all dies within a function scope
1788
1789 DESCRIPTION
1790
1791 Process all dies within a given function scope. We are passed
1792 a die information structure pointer DIP for the die which
1793 starts the function scope, and pointers into the raw die data
1794 that define the dies within the function scope.
1795
1796 For now, we ignore lexical block scopes within the function.
1797 The problem is that AT&T cc does not define a DWARF lexical
1798 block scope for the function itself, while gcc defines a
1799 lexical block scope for the function. We need to think about
1800 how to handle this difference, or if it is even a problem.
1801 (FIXME)
1802 */
1803
1804 static void
1805 read_func_scope (dip, thisdie, enddie, objfile)
1806 struct dieinfo *dip;
1807 char *thisdie;
1808 char *enddie;
1809 struct objfile *objfile;
1810 {
1811 register struct context_stack *new;
1812
1813 if (objfile -> ei.entry_point >= dip -> at_low_pc &&
1814 objfile -> ei.entry_point < dip -> at_high_pc)
1815 {
1816 objfile -> ei.entry_func_lowpc = dip -> at_low_pc;
1817 objfile -> ei.entry_func_highpc = dip -> at_high_pc;
1818 }
1819 if (STREQ (dip -> at_name, "main")) /* FIXME: hardwired name */
1820 {
1821 objfile -> ei.main_func_lowpc = dip -> at_low_pc;
1822 objfile -> ei.main_func_highpc = dip -> at_high_pc;
1823 }
1824 new = push_context (0, dip -> at_low_pc);
1825 new -> name = new_symbol (dip, objfile);
1826 list_in_scope = &local_symbols;
1827 process_dies (thisdie + dip -> die_length, enddie, objfile);
1828 new = pop_context ();
1829 /* Make a block for the local symbols within. */
1830 finish_block (new -> name, &local_symbols, new -> old_blocks,
1831 new -> start_addr, dip -> at_high_pc, objfile);
1832 list_in_scope = &file_symbols;
1833 }
1834
1835
1836 /*
1837
1838 LOCAL FUNCTION
1839
1840 handle_producer -- process the AT_producer attribute
1841
1842 DESCRIPTION
1843
1844 Perform any operations that depend on finding a particular
1845 AT_producer attribute.
1846
1847 */
1848
1849 static void
1850 handle_producer (producer)
1851 char *producer;
1852 {
1853
1854 /* If this compilation unit was compiled with g++ or gcc, then set the
1855 processing_gcc_compilation flag. */
1856
1857 processing_gcc_compilation =
1858 STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER))
1859 || STREQN (producer, CHILL_PRODUCER, strlen (CHILL_PRODUCER))
1860 || STREQN (producer, GCC_PRODUCER, strlen (GCC_PRODUCER));
1861
1862 /* Select a demangling style if we can identify the producer and if
1863 the current style is auto. We leave the current style alone if it
1864 is not auto. We also leave the demangling style alone if we find a
1865 gcc (cc1) producer, as opposed to a g++ (cc1plus) producer. */
1866
1867 if (AUTO_DEMANGLING)
1868 {
1869 if (STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER)))
1870 {
1871 set_demangling_style (GNU_DEMANGLING_STYLE_STRING);
1872 }
1873 else if (STREQN (producer, LCC_PRODUCER, strlen (LCC_PRODUCER)))
1874 {
1875 set_demangling_style (LUCID_DEMANGLING_STYLE_STRING);
1876 }
1877 }
1878 }
1879
1880
1881 /*
1882
1883 LOCAL FUNCTION
1884
1885 read_file_scope -- process all dies within a file scope
1886
1887 DESCRIPTION
1888
1889 Process all dies within a given file scope. We are passed a
1890 pointer to the die information structure for the die which
1891 starts the file scope, and pointers into the raw die data which
1892 mark the range of dies within the file scope.
1893
1894 When the partial symbol table is built, the file offset for the line
1895 number table for each compilation unit is saved in the partial symbol
1896 table entry for that compilation unit. As the symbols for each
1897 compilation unit are read, the line number table is read into memory
1898 and the variable lnbase is set to point to it. Thus all we have to
1899 do is use lnbase to access the line number table for the current
1900 compilation unit.
1901 */
1902
1903 static void
1904 read_file_scope (dip, thisdie, enddie, objfile)
1905 struct dieinfo *dip;
1906 char *thisdie;
1907 char *enddie;
1908 struct objfile *objfile;
1909 {
1910 struct cleanup *back_to;
1911 struct symtab *symtab;
1912
1913 if (objfile -> ei.entry_point >= dip -> at_low_pc &&
1914 objfile -> ei.entry_point < dip -> at_high_pc)
1915 {
1916 objfile -> ei.entry_file_lowpc = dip -> at_low_pc;
1917 objfile -> ei.entry_file_highpc = dip -> at_high_pc;
1918 }
1919 set_cu_language (dip);
1920 if (dip -> at_producer != NULL)
1921 {
1922 handle_producer (dip -> at_producer);
1923 }
1924 numutypes = (enddie - thisdie) / 4;
1925 utypes = (struct type **) xmalloc (numutypes * sizeof (struct type *));
1926 back_to = make_cleanup (free, utypes);
1927 memset (utypes, 0, numutypes * sizeof (struct type *));
1928 memset (ftypes, 0, FT_NUM_MEMBERS * sizeof (struct type *));
1929 start_symtab (dip -> at_name, dip -> at_comp_dir, dip -> at_low_pc);
1930 decode_line_numbers (lnbase);
1931 process_dies (thisdie + dip -> die_length, enddie, objfile);
1932
1933 symtab = end_symtab (dip -> at_high_pc, 0, 0, objfile, 0);
1934 if (symtab != NULL)
1935 {
1936 symtab -> language = cu_language;
1937 }
1938 do_cleanups (back_to);
1939 utypes = NULL;
1940 numutypes = 0;
1941 }
1942
1943 /*
1944
1945 LOCAL FUNCTION
1946
1947 process_dies -- process a range of DWARF Information Entries
1948
1949 SYNOPSIS
1950
1951 static void process_dies (char *thisdie, char *enddie,
1952 struct objfile *objfile)
1953
1954 DESCRIPTION
1955
1956 Process all DIE's in a specified range. May be (and almost
1957 certainly will be) called recursively.
1958 */
1959
1960 static void
1961 process_dies (thisdie, enddie, objfile)
1962 char *thisdie;
1963 char *enddie;
1964 struct objfile *objfile;
1965 {
1966 char *nextdie;
1967 struct dieinfo di;
1968
1969 while (thisdie < enddie)
1970 {
1971 basicdieinfo (&di, thisdie, objfile);
1972 if (di.die_length < SIZEOF_DIE_LENGTH)
1973 {
1974 break;
1975 }
1976 else if (di.die_tag == TAG_padding)
1977 {
1978 nextdie = thisdie + di.die_length;
1979 }
1980 else
1981 {
1982 completedieinfo (&di, objfile);
1983 if (di.at_sibling != 0)
1984 {
1985 nextdie = dbbase + di.at_sibling - dbroff;
1986 }
1987 else
1988 {
1989 nextdie = thisdie + di.die_length;
1990 }
1991 switch (di.die_tag)
1992 {
1993 case TAG_compile_unit:
1994 read_file_scope (&di, thisdie, nextdie, objfile);
1995 break;
1996 case TAG_global_subroutine:
1997 case TAG_subroutine:
1998 if (di.has_at_low_pc)
1999 {
2000 read_func_scope (&di, thisdie, nextdie, objfile);
2001 }
2002 break;
2003 case TAG_lexical_block:
2004 read_lexical_block_scope (&di, thisdie, nextdie, objfile);
2005 break;
2006 case TAG_class_type:
2007 case TAG_structure_type:
2008 case TAG_union_type:
2009 read_structure_scope (&di, thisdie, nextdie, objfile);
2010 break;
2011 case TAG_enumeration_type:
2012 read_enumeration (&di, thisdie, nextdie, objfile);
2013 break;
2014 case TAG_subroutine_type:
2015 read_subroutine_type (&di, thisdie, nextdie);
2016 break;
2017 case TAG_array_type:
2018 dwarf_read_array_type (&di);
2019 break;
2020 case TAG_pointer_type:
2021 read_tag_pointer_type (&di);
2022 break;
2023 case TAG_string_type:
2024 read_tag_string_type (&di);
2025 break;
2026 default:
2027 new_symbol (&di, objfile);
2028 break;
2029 }
2030 }
2031 thisdie = nextdie;
2032 }
2033 }
2034
2035 /*
2036
2037 LOCAL FUNCTION
2038
2039 decode_line_numbers -- decode a line number table fragment
2040
2041 SYNOPSIS
2042
2043 static void decode_line_numbers (char *tblscan, char *tblend,
2044 long length, long base, long line, long pc)
2045
2046 DESCRIPTION
2047
2048 Translate the DWARF line number information to gdb form.
2049
2050 The ".line" section contains one or more line number tables, one for
2051 each ".line" section from the objects that were linked.
2052
2053 The AT_stmt_list attribute for each TAG_source_file entry in the
2054 ".debug" section contains the offset into the ".line" section for the
2055 start of the table for that file.
2056
2057 The table itself has the following structure:
2058
2059 <table length><base address><source statement entry>
2060 4 bytes 4 bytes 10 bytes
2061
2062 The table length is the total size of the table, including the 4 bytes
2063 for the length information.
2064
2065 The base address is the address of the first instruction generated
2066 for the source file.
2067
2068 Each source statement entry has the following structure:
2069
2070 <line number><statement position><address delta>
2071 4 bytes 2 bytes 4 bytes
2072
2073 The line number is relative to the start of the file, starting with
2074 line 1.
2075
2076 The statement position either -1 (0xFFFF) or the number of characters
2077 from the beginning of the line to the beginning of the statement.
2078
2079 The address delta is the difference between the base address and
2080 the address of the first instruction for the statement.
2081
2082 Note that we must copy the bytes from the packed table to our local
2083 variables before attempting to use them, to avoid alignment problems
2084 on some machines, particularly RISC processors.
2085
2086 BUGS
2087
2088 Does gdb expect the line numbers to be sorted? They are now by
2089 chance/luck, but are not required to be. (FIXME)
2090
2091 The line with number 0 is unused, gdb apparently can discover the
2092 span of the last line some other way. How? (FIXME)
2093 */
2094
2095 static void
2096 decode_line_numbers (linetable)
2097 char *linetable;
2098 {
2099 char *tblscan;
2100 char *tblend;
2101 unsigned long length;
2102 unsigned long base;
2103 unsigned long line;
2104 unsigned long pc;
2105
2106 if (linetable != NULL)
2107 {
2108 tblscan = tblend = linetable;
2109 length = target_to_host (tblscan, SIZEOF_LINETBL_LENGTH, GET_UNSIGNED,
2110 current_objfile);
2111 tblscan += SIZEOF_LINETBL_LENGTH;
2112 tblend += length;
2113 base = target_to_host (tblscan, TARGET_FT_POINTER_SIZE (objfile),
2114 GET_UNSIGNED, current_objfile);
2115 tblscan += TARGET_FT_POINTER_SIZE (objfile);
2116 base += baseaddr;
2117 while (tblscan < tblend)
2118 {
2119 line = target_to_host (tblscan, SIZEOF_LINETBL_LINENO, GET_UNSIGNED,
2120 current_objfile);
2121 tblscan += SIZEOF_LINETBL_LINENO + SIZEOF_LINETBL_STMT;
2122 pc = target_to_host (tblscan, SIZEOF_LINETBL_DELTA, GET_UNSIGNED,
2123 current_objfile);
2124 tblscan += SIZEOF_LINETBL_DELTA;
2125 pc += base;
2126 if (line != 0)
2127 {
2128 record_line (current_subfile, line, pc);
2129 }
2130 }
2131 }
2132 }
2133
2134 /*
2135
2136 LOCAL FUNCTION
2137
2138 locval -- compute the value of a location attribute
2139
2140 SYNOPSIS
2141
2142 static int locval (char *loc)
2143
2144 DESCRIPTION
2145
2146 Given pointer to a string of bytes that define a location, compute
2147 the location and return the value.
2148
2149 When computing values involving the current value of the frame pointer,
2150 the value zero is used, which results in a value relative to the frame
2151 pointer, rather than the absolute value. This is what GDB wants
2152 anyway.
2153
2154 When the result is a register number, the global isreg flag is set,
2155 otherwise it is cleared. This is a kludge until we figure out a better
2156 way to handle the problem. Gdb's design does not mesh well with the
2157 DWARF notion of a location computing interpreter, which is a shame
2158 because the flexibility goes unused.
2159
2160 NOTES
2161
2162 Note that stack[0] is unused except as a default error return.
2163 Note that stack overflow is not yet handled.
2164 */
2165
2166 static int
2167 locval (loc)
2168 char *loc;
2169 {
2170 unsigned short nbytes;
2171 unsigned short locsize;
2172 auto long stack[64];
2173 int stacki;
2174 char *end;
2175 int loc_atom_code;
2176 int loc_value_size;
2177
2178 nbytes = attribute_size (AT_location);
2179 locsize = target_to_host (loc, nbytes, GET_UNSIGNED, current_objfile);
2180 loc += nbytes;
2181 end = loc + locsize;
2182 stacki = 0;
2183 stack[stacki] = 0;
2184 isreg = 0;
2185 offreg = 0;
2186 loc_value_size = TARGET_FT_LONG_SIZE (current_objfile);
2187 while (loc < end)
2188 {
2189 loc_atom_code = target_to_host (loc, SIZEOF_LOC_ATOM_CODE, GET_UNSIGNED,
2190 current_objfile);
2191 loc += SIZEOF_LOC_ATOM_CODE;
2192 switch (loc_atom_code)
2193 {
2194 case 0:
2195 /* error */
2196 loc = end;
2197 break;
2198 case OP_REG:
2199 /* push register (number) */
2200 stack[++stacki] = target_to_host (loc, loc_value_size,
2201 GET_UNSIGNED, current_objfile);
2202 loc += loc_value_size;
2203 isreg = 1;
2204 break;
2205 case OP_BASEREG:
2206 /* push value of register (number) */
2207 /* Actually, we compute the value as if register has 0, so the
2208 value ends up being the offset from that register. */
2209 offreg = 1;
2210 basereg = target_to_host (loc, loc_value_size, GET_UNSIGNED,
2211 current_objfile);
2212 loc += loc_value_size;
2213 stack[++stacki] = 0;
2214 break;
2215 case OP_ADDR:
2216 /* push address (relocated address) */
2217 stack[++stacki] = target_to_host (loc, loc_value_size,
2218 GET_UNSIGNED, current_objfile);
2219 loc += loc_value_size;
2220 break;
2221 case OP_CONST:
2222 /* push constant (number) FIXME: signed or unsigned! */
2223 stack[++stacki] = target_to_host (loc, loc_value_size,
2224 GET_SIGNED, current_objfile);
2225 loc += loc_value_size;
2226 break;
2227 case OP_DEREF2:
2228 /* pop, deref and push 2 bytes (as a long) */
2229 complain (&op_deref2, DIE_ID, DIE_NAME, stack[stacki]);
2230 break;
2231 case OP_DEREF4: /* pop, deref and push 4 bytes (as a long) */
2232 complain (&op_deref4, DIE_ID, DIE_NAME, stack[stacki]);
2233 break;
2234 case OP_ADD: /* pop top 2 items, add, push result */
2235 stack[stacki - 1] += stack[stacki];
2236 stacki--;
2237 break;
2238 }
2239 }
2240 return (stack[stacki]);
2241 }
2242
2243 /*
2244
2245 LOCAL FUNCTION
2246
2247 read_ofile_symtab -- build a full symtab entry from chunk of DIE's
2248
2249 SYNOPSIS
2250
2251 static void read_ofile_symtab (struct partial_symtab *pst)
2252
2253 DESCRIPTION
2254
2255 When expanding a partial symbol table entry to a full symbol table
2256 entry, this is the function that gets called to read in the symbols
2257 for the compilation unit. A pointer to the newly constructed symtab,
2258 which is now the new first one on the objfile's symtab list, is
2259 stashed in the partial symbol table entry.
2260 */
2261
2262 static void
2263 read_ofile_symtab (pst)
2264 struct partial_symtab *pst;
2265 {
2266 struct cleanup *back_to;
2267 unsigned long lnsize;
2268 file_ptr foffset;
2269 bfd *abfd;
2270 char lnsizedata[SIZEOF_LINETBL_LENGTH];
2271
2272 abfd = pst -> objfile -> obfd;
2273 current_objfile = pst -> objfile;
2274
2275 /* Allocate a buffer for the entire chunk of DIE's for this compilation
2276 unit, seek to the location in the file, and read in all the DIE's. */
2277
2278 diecount = 0;
2279 dbsize = DBLENGTH (pst);
2280 dbbase = xmalloc (dbsize);
2281 dbroff = DBROFF(pst);
2282 foffset = DBFOFF(pst) + dbroff;
2283 base_section_offsets = pst->section_offsets;
2284 baseaddr = ANOFFSET (pst->section_offsets, 0);
2285 if (bfd_seek (abfd, foffset, L_SET) ||
2286 (bfd_read (dbbase, dbsize, 1, abfd) != dbsize))
2287 {
2288 free (dbbase);
2289 error ("can't read DWARF data");
2290 }
2291 back_to = make_cleanup (free, dbbase);
2292
2293 /* If there is a line number table associated with this compilation unit
2294 then read the size of this fragment in bytes, from the fragment itself.
2295 Allocate a buffer for the fragment and read it in for future
2296 processing. */
2297
2298 lnbase = NULL;
2299 if (LNFOFF (pst))
2300 {
2301 if (bfd_seek (abfd, LNFOFF (pst), L_SET) ||
2302 (bfd_read ((PTR) lnsizedata, sizeof (lnsizedata), 1, abfd) !=
2303 sizeof (lnsizedata)))
2304 {
2305 error ("can't read DWARF line number table size");
2306 }
2307 lnsize = target_to_host (lnsizedata, SIZEOF_LINETBL_LENGTH,
2308 GET_UNSIGNED, pst -> objfile);
2309 lnbase = xmalloc (lnsize);
2310 if (bfd_seek (abfd, LNFOFF (pst), L_SET) ||
2311 (bfd_read (lnbase, lnsize, 1, abfd) != lnsize))
2312 {
2313 free (lnbase);
2314 error ("can't read DWARF line numbers");
2315 }
2316 make_cleanup (free, lnbase);
2317 }
2318
2319 process_dies (dbbase, dbbase + dbsize, pst -> objfile);
2320 do_cleanups (back_to);
2321 current_objfile = NULL;
2322 pst -> symtab = pst -> objfile -> symtabs;
2323 }
2324
2325 /*
2326
2327 LOCAL FUNCTION
2328
2329 psymtab_to_symtab_1 -- do grunt work for building a full symtab entry
2330
2331 SYNOPSIS
2332
2333 static void psymtab_to_symtab_1 (struct partial_symtab *pst)
2334
2335 DESCRIPTION
2336
2337 Called once for each partial symbol table entry that needs to be
2338 expanded into a full symbol table entry.
2339
2340 */
2341
2342 static void
2343 psymtab_to_symtab_1 (pst)
2344 struct partial_symtab *pst;
2345 {
2346 int i;
2347 struct cleanup *old_chain;
2348
2349 if (pst != NULL)
2350 {
2351 if (pst->readin)
2352 {
2353 warning ("psymtab for %s already read in. Shouldn't happen.",
2354 pst -> filename);
2355 }
2356 else
2357 {
2358 /* Read in all partial symtabs on which this one is dependent */
2359 for (i = 0; i < pst -> number_of_dependencies; i++)
2360 {
2361 if (!pst -> dependencies[i] -> readin)
2362 {
2363 /* Inform about additional files that need to be read in. */
2364 if (info_verbose)
2365 {
2366 fputs_filtered (" ", stdout);
2367 wrap_here ("");
2368 fputs_filtered ("and ", stdout);
2369 wrap_here ("");
2370 printf_filtered ("%s...",
2371 pst -> dependencies[i] -> filename);
2372 wrap_here ("");
2373 fflush (stdout); /* Flush output */
2374 }
2375 psymtab_to_symtab_1 (pst -> dependencies[i]);
2376 }
2377 }
2378 if (DBLENGTH (pst)) /* Otherwise it's a dummy */
2379 {
2380 buildsym_init ();
2381 old_chain = make_cleanup (really_free_pendings, 0);
2382 read_ofile_symtab (pst);
2383 if (info_verbose)
2384 {
2385 printf_filtered ("%d DIE's, sorting...", diecount);
2386 wrap_here ("");
2387 fflush (stdout);
2388 }
2389 sort_symtab_syms (pst -> symtab);
2390 do_cleanups (old_chain);
2391 }
2392 pst -> readin = 1;
2393 }
2394 }
2395 }
2396
2397 /*
2398
2399 LOCAL FUNCTION
2400
2401 dwarf_psymtab_to_symtab -- build a full symtab entry from partial one
2402
2403 SYNOPSIS
2404
2405 static void dwarf_psymtab_to_symtab (struct partial_symtab *pst)
2406
2407 DESCRIPTION
2408
2409 This is the DWARF support entry point for building a full symbol
2410 table entry from a partial symbol table entry. We are passed a
2411 pointer to the partial symbol table entry that needs to be expanded.
2412
2413 */
2414
2415 static void
2416 dwarf_psymtab_to_symtab (pst)
2417 struct partial_symtab *pst;
2418 {
2419
2420 if (pst != NULL)
2421 {
2422 if (pst -> readin)
2423 {
2424 warning ("psymtab for %s already read in. Shouldn't happen.",
2425 pst -> filename);
2426 }
2427 else
2428 {
2429 if (DBLENGTH (pst) || pst -> number_of_dependencies)
2430 {
2431 /* Print the message now, before starting serious work, to avoid
2432 disconcerting pauses. */
2433 if (info_verbose)
2434 {
2435 printf_filtered ("Reading in symbols for %s...",
2436 pst -> filename);
2437 fflush (stdout);
2438 }
2439
2440 psymtab_to_symtab_1 (pst);
2441
2442 #if 0 /* FIXME: Check to see what dbxread is doing here and see if
2443 we need to do an equivalent or is this something peculiar to
2444 stabs/a.out format.
2445 Match with global symbols. This only needs to be done once,
2446 after all of the symtabs and dependencies have been read in.
2447 */
2448 scan_file_globals (pst -> objfile);
2449 #endif
2450
2451 /* Finish up the verbose info message. */
2452 if (info_verbose)
2453 {
2454 printf_filtered ("done.\n");
2455 fflush (stdout);
2456 }
2457 }
2458 }
2459 }
2460 }
2461
2462 /*
2463
2464 LOCAL FUNCTION
2465
2466 init_psymbol_list -- initialize storage for partial symbols
2467
2468 SYNOPSIS
2469
2470 static void init_psymbol_list (struct objfile *objfile, int total_symbols)
2471
2472 DESCRIPTION
2473
2474 Initializes storage for all of the partial symbols that will be
2475 created by dwarf_build_psymtabs and subsidiaries.
2476 */
2477
2478 static void
2479 init_psymbol_list (objfile, total_symbols)
2480 struct objfile *objfile;
2481 int total_symbols;
2482 {
2483 /* Free any previously allocated psymbol lists. */
2484
2485 if (objfile -> global_psymbols.list)
2486 {
2487 mfree (objfile -> md, (PTR)objfile -> global_psymbols.list);
2488 }
2489 if (objfile -> static_psymbols.list)
2490 {
2491 mfree (objfile -> md, (PTR)objfile -> static_psymbols.list);
2492 }
2493
2494 /* Current best guess is that there are approximately a twentieth
2495 of the total symbols (in a debugging file) are global or static
2496 oriented symbols */
2497
2498 objfile -> global_psymbols.size = total_symbols / 10;
2499 objfile -> static_psymbols.size = total_symbols / 10;
2500 objfile -> global_psymbols.next =
2501 objfile -> global_psymbols.list = (struct partial_symbol *)
2502 xmmalloc (objfile -> md, objfile -> global_psymbols.size
2503 * sizeof (struct partial_symbol));
2504 objfile -> static_psymbols.next =
2505 objfile -> static_psymbols.list = (struct partial_symbol *)
2506 xmmalloc (objfile -> md, objfile -> static_psymbols.size
2507 * sizeof (struct partial_symbol));
2508 }
2509
2510 /*
2511
2512 LOCAL FUNCTION
2513
2514 add_enum_psymbol -- add enumeration members to partial symbol table
2515
2516 DESCRIPTION
2517
2518 Given pointer to a DIE that is known to be for an enumeration,
2519 extract the symbolic names of the enumeration members and add
2520 partial symbols for them.
2521 */
2522
2523 static void
2524 add_enum_psymbol (dip, objfile)
2525 struct dieinfo *dip;
2526 struct objfile *objfile;
2527 {
2528 char *scan;
2529 char *listend;
2530 unsigned short blocksz;
2531 int nbytes;
2532
2533 if ((scan = dip -> at_element_list) != NULL)
2534 {
2535 if (dip -> short_element_list)
2536 {
2537 nbytes = attribute_size (AT_short_element_list);
2538 }
2539 else
2540 {
2541 nbytes = attribute_size (AT_element_list);
2542 }
2543 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
2544 scan += nbytes;
2545 listend = scan + blocksz;
2546 while (scan < listend)
2547 {
2548 scan += TARGET_FT_LONG_SIZE (objfile);
2549 ADD_PSYMBOL_TO_LIST (scan, strlen (scan), VAR_NAMESPACE, LOC_CONST,
2550 objfile -> static_psymbols, 0, cu_language,
2551 objfile);
2552 scan += strlen (scan) + 1;
2553 }
2554 }
2555 }
2556
2557 /*
2558
2559 LOCAL FUNCTION
2560
2561 add_partial_symbol -- add symbol to partial symbol table
2562
2563 DESCRIPTION
2564
2565 Given a DIE, if it is one of the types that we want to
2566 add to a partial symbol table, finish filling in the die info
2567 and then add a partial symbol table entry for it.
2568
2569 NOTES
2570
2571 The caller must ensure that the DIE has a valid name attribute.
2572 */
2573
2574 static void
2575 add_partial_symbol (dip, objfile)
2576 struct dieinfo *dip;
2577 struct objfile *objfile;
2578 {
2579 switch (dip -> die_tag)
2580 {
2581 case TAG_global_subroutine:
2582 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2583 VAR_NAMESPACE, LOC_BLOCK,
2584 objfile -> global_psymbols,
2585 dip -> at_low_pc, cu_language, objfile);
2586 break;
2587 case TAG_global_variable:
2588 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2589 VAR_NAMESPACE, LOC_STATIC,
2590 objfile -> global_psymbols,
2591 0, cu_language, objfile);
2592 break;
2593 case TAG_subroutine:
2594 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2595 VAR_NAMESPACE, LOC_BLOCK,
2596 objfile -> static_psymbols,
2597 dip -> at_low_pc, cu_language, objfile);
2598 break;
2599 case TAG_local_variable:
2600 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2601 VAR_NAMESPACE, LOC_STATIC,
2602 objfile -> static_psymbols,
2603 0, cu_language, objfile);
2604 break;
2605 case TAG_typedef:
2606 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2607 VAR_NAMESPACE, LOC_TYPEDEF,
2608 objfile -> static_psymbols,
2609 0, cu_language, objfile);
2610 break;
2611 case TAG_class_type:
2612 case TAG_structure_type:
2613 case TAG_union_type:
2614 case TAG_enumeration_type:
2615 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2616 STRUCT_NAMESPACE, LOC_TYPEDEF,
2617 objfile -> static_psymbols,
2618 0, cu_language, objfile);
2619 if (cu_language == language_cplus)
2620 {
2621 /* For C++, these implicitly act as typedefs as well. */
2622 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2623 VAR_NAMESPACE, LOC_TYPEDEF,
2624 objfile -> static_psymbols,
2625 0, cu_language, objfile);
2626 }
2627 break;
2628 }
2629 }
2630
2631 /*
2632
2633 LOCAL FUNCTION
2634
2635 scan_partial_symbols -- scan DIE's within a single compilation unit
2636
2637 DESCRIPTION
2638
2639 Process the DIE's within a single compilation unit, looking for
2640 interesting DIE's that contribute to the partial symbol table entry
2641 for this compilation unit.
2642
2643 NOTES
2644
2645 There are some DIE's that may appear both at file scope and within
2646 the scope of a function. We are only interested in the ones at file
2647 scope, and the only way to tell them apart is to keep track of the
2648 scope. For example, consider the test case:
2649
2650 static int i;
2651 main () { int j; }
2652
2653 for which the relevant DWARF segment has the structure:
2654
2655 0x51:
2656 0x23 global subrtn sibling 0x9b
2657 name main
2658 fund_type FT_integer
2659 low_pc 0x800004cc
2660 high_pc 0x800004d4
2661
2662 0x74:
2663 0x23 local var sibling 0x97
2664 name j
2665 fund_type FT_integer
2666 location OP_BASEREG 0xe
2667 OP_CONST 0xfffffffc
2668 OP_ADD
2669 0x97:
2670 0x4
2671
2672 0x9b:
2673 0x1d local var sibling 0xb8
2674 name i
2675 fund_type FT_integer
2676 location OP_ADDR 0x800025dc
2677
2678 0xb8:
2679 0x4
2680
2681 We want to include the symbol 'i' in the partial symbol table, but
2682 not the symbol 'j'. In essence, we want to skip all the dies within
2683 the scope of a TAG_global_subroutine DIE.
2684
2685 Don't attempt to add anonymous structures or unions since they have
2686 no name. Anonymous enumerations however are processed, because we
2687 want to extract their member names (the check for a tag name is
2688 done later).
2689
2690 Also, for variables and subroutines, check that this is the place
2691 where the actual definition occurs, rather than just a reference
2692 to an external.
2693 */
2694
2695 static void
2696 scan_partial_symbols (thisdie, enddie, objfile)
2697 char *thisdie;
2698 char *enddie;
2699 struct objfile *objfile;
2700 {
2701 char *nextdie;
2702 char *temp;
2703 struct dieinfo di;
2704
2705 while (thisdie < enddie)
2706 {
2707 basicdieinfo (&di, thisdie, objfile);
2708 if (di.die_length < SIZEOF_DIE_LENGTH)
2709 {
2710 break;
2711 }
2712 else
2713 {
2714 nextdie = thisdie + di.die_length;
2715 /* To avoid getting complete die information for every die, we
2716 only do it (below) for the cases we are interested in. */
2717 switch (di.die_tag)
2718 {
2719 case TAG_global_subroutine:
2720 case TAG_subroutine:
2721 completedieinfo (&di, objfile);
2722 if (di.at_name && (di.has_at_low_pc || di.at_location))
2723 {
2724 add_partial_symbol (&di, objfile);
2725 /* If there is a sibling attribute, adjust the nextdie
2726 pointer to skip the entire scope of the subroutine.
2727 Apply some sanity checking to make sure we don't
2728 overrun or underrun the range of remaining DIE's */
2729 if (di.at_sibling != 0)
2730 {
2731 temp = dbbase + di.at_sibling - dbroff;
2732 if ((temp < thisdie) || (temp >= enddie))
2733 {
2734 complain (&bad_die_ref, DIE_ID, DIE_NAME,
2735 di.at_sibling);
2736 }
2737 else
2738 {
2739 nextdie = temp;
2740 }
2741 }
2742 }
2743 break;
2744 case TAG_global_variable:
2745 case TAG_local_variable:
2746 completedieinfo (&di, objfile);
2747 if (di.at_name && (di.has_at_low_pc || di.at_location))
2748 {
2749 add_partial_symbol (&di, objfile);
2750 }
2751 break;
2752 case TAG_typedef:
2753 case TAG_class_type:
2754 case TAG_structure_type:
2755 case TAG_union_type:
2756 completedieinfo (&di, objfile);
2757 if (di.at_name)
2758 {
2759 add_partial_symbol (&di, objfile);
2760 }
2761 break;
2762 case TAG_enumeration_type:
2763 completedieinfo (&di, objfile);
2764 if (di.at_name)
2765 {
2766 add_partial_symbol (&di, objfile);
2767 }
2768 add_enum_psymbol (&di, objfile);
2769 break;
2770 }
2771 }
2772 thisdie = nextdie;
2773 }
2774 }
2775
2776 /*
2777
2778 LOCAL FUNCTION
2779
2780 scan_compilation_units -- build a psymtab entry for each compilation
2781
2782 DESCRIPTION
2783
2784 This is the top level dwarf parsing routine for building partial
2785 symbol tables.
2786
2787 It scans from the beginning of the DWARF table looking for the first
2788 TAG_compile_unit DIE, and then follows the sibling chain to locate
2789 each additional TAG_compile_unit DIE.
2790
2791 For each TAG_compile_unit DIE it creates a partial symtab structure,
2792 calls a subordinate routine to collect all the compilation unit's
2793 global DIE's, file scope DIEs, typedef DIEs, etc, and then links the
2794 new partial symtab structure into the partial symbol table. It also
2795 records the appropriate information in the partial symbol table entry
2796 to allow the chunk of DIE's and line number table for this compilation
2797 unit to be located and re-read later, to generate a complete symbol
2798 table entry for the compilation unit.
2799
2800 Thus it effectively partitions up a chunk of DIE's for multiple
2801 compilation units into smaller DIE chunks and line number tables,
2802 and associates them with a partial symbol table entry.
2803
2804 NOTES
2805
2806 If any compilation unit has no line number table associated with
2807 it for some reason (a missing at_stmt_list attribute, rather than
2808 just one with a value of zero, which is valid) then we ensure that
2809 the recorded file offset is zero so that the routine which later
2810 reads line number table fragments knows that there is no fragment
2811 to read.
2812
2813 RETURNS
2814
2815 Returns no value.
2816
2817 */
2818
2819 static void
2820 scan_compilation_units (thisdie, enddie, dbfoff, lnoffset, objfile)
2821 char *thisdie;
2822 char *enddie;
2823 file_ptr dbfoff;
2824 file_ptr lnoffset;
2825 struct objfile *objfile;
2826 {
2827 char *nextdie;
2828 struct dieinfo di;
2829 struct partial_symtab *pst;
2830 int culength;
2831 int curoff;
2832 file_ptr curlnoffset;
2833
2834 while (thisdie < enddie)
2835 {
2836 basicdieinfo (&di, thisdie, objfile);
2837 if (di.die_length < SIZEOF_DIE_LENGTH)
2838 {
2839 break;
2840 }
2841 else if (di.die_tag != TAG_compile_unit)
2842 {
2843 nextdie = thisdie + di.die_length;
2844 }
2845 else
2846 {
2847 completedieinfo (&di, objfile);
2848 set_cu_language (&di);
2849 if (di.at_sibling != 0)
2850 {
2851 nextdie = dbbase + di.at_sibling - dbroff;
2852 }
2853 else
2854 {
2855 nextdie = thisdie + di.die_length;
2856 }
2857 curoff = thisdie - dbbase;
2858 culength = nextdie - thisdie;
2859 curlnoffset = di.has_at_stmt_list ? lnoffset + di.at_stmt_list : 0;
2860
2861 /* First allocate a new partial symbol table structure */
2862
2863 pst = start_psymtab_common (objfile, base_section_offsets,
2864 di.at_name, di.at_low_pc,
2865 objfile -> global_psymbols.next,
2866 objfile -> static_psymbols.next);
2867
2868 pst -> texthigh = di.at_high_pc;
2869 pst -> read_symtab_private = (char *)
2870 obstack_alloc (&objfile -> psymbol_obstack,
2871 sizeof (struct dwfinfo));
2872 DBFOFF (pst) = dbfoff;
2873 DBROFF (pst) = curoff;
2874 DBLENGTH (pst) = culength;
2875 LNFOFF (pst) = curlnoffset;
2876 pst -> read_symtab = dwarf_psymtab_to_symtab;
2877
2878 /* Now look for partial symbols */
2879
2880 scan_partial_symbols (thisdie + di.die_length, nextdie, objfile);
2881
2882 pst -> n_global_syms = objfile -> global_psymbols.next -
2883 (objfile -> global_psymbols.list + pst -> globals_offset);
2884 pst -> n_static_syms = objfile -> static_psymbols.next -
2885 (objfile -> static_psymbols.list + pst -> statics_offset);
2886 sort_pst_symbols (pst);
2887 /* If there is already a psymtab or symtab for a file of this name,
2888 remove it. (If there is a symtab, more drastic things also
2889 happen.) This happens in VxWorks. */
2890 free_named_symtabs (pst -> filename);
2891 }
2892 thisdie = nextdie;
2893 }
2894 }
2895
2896 /*
2897
2898 LOCAL FUNCTION
2899
2900 new_symbol -- make a symbol table entry for a new symbol
2901
2902 SYNOPSIS
2903
2904 static struct symbol *new_symbol (struct dieinfo *dip,
2905 struct objfile *objfile)
2906
2907 DESCRIPTION
2908
2909 Given a pointer to a DWARF information entry, figure out if we need
2910 to make a symbol table entry for it, and if so, create a new entry
2911 and return a pointer to it.
2912 */
2913
2914 static struct symbol *
2915 new_symbol (dip, objfile)
2916 struct dieinfo *dip;
2917 struct objfile *objfile;
2918 {
2919 struct symbol *sym = NULL;
2920
2921 if (dip -> at_name != NULL)
2922 {
2923 sym = (struct symbol *) obstack_alloc (&objfile -> symbol_obstack,
2924 sizeof (struct symbol));
2925 memset (sym, 0, sizeof (struct symbol));
2926 SYMBOL_NAME (sym) = create_name (dip -> at_name,
2927 &objfile->symbol_obstack);
2928 /* default assumptions */
2929 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2930 SYMBOL_CLASS (sym) = LOC_STATIC;
2931 SYMBOL_TYPE (sym) = decode_die_type (dip);
2932
2933 /* If this symbol is from a C++ compilation, then attempt to cache the
2934 demangled form for future reference. This is a typical time versus
2935 space tradeoff, that was decided in favor of time because it sped up
2936 C++ symbol lookups by a factor of about 20. */
2937
2938 SYMBOL_LANGUAGE (sym) = cu_language;
2939 SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile -> symbol_obstack);
2940 switch (dip -> die_tag)
2941 {
2942 case TAG_label:
2943 SYMBOL_VALUE (sym) = dip -> at_low_pc;
2944 SYMBOL_CLASS (sym) = LOC_LABEL;
2945 break;
2946 case TAG_global_subroutine:
2947 case TAG_subroutine:
2948 SYMBOL_VALUE (sym) = dip -> at_low_pc;
2949 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
2950 SYMBOL_CLASS (sym) = LOC_BLOCK;
2951 if (dip -> die_tag == TAG_global_subroutine)
2952 {
2953 add_symbol_to_list (sym, &global_symbols);
2954 }
2955 else
2956 {
2957 add_symbol_to_list (sym, list_in_scope);
2958 }
2959 break;
2960 case TAG_global_variable:
2961 if (dip -> at_location != NULL)
2962 {
2963 SYMBOL_VALUE (sym) = locval (dip -> at_location);
2964 add_symbol_to_list (sym, &global_symbols);
2965 SYMBOL_CLASS (sym) = LOC_STATIC;
2966 SYMBOL_VALUE (sym) += baseaddr;
2967 }
2968 break;
2969 case TAG_local_variable:
2970 if (dip -> at_location != NULL)
2971 {
2972 SYMBOL_VALUE (sym) = locval (dip -> at_location);
2973 add_symbol_to_list (sym, list_in_scope);
2974 if (isreg)
2975 {
2976 SYMBOL_CLASS (sym) = LOC_REGISTER;
2977 }
2978 else if (offreg)
2979 {
2980 SYMBOL_CLASS (sym) = LOC_BASEREG;
2981 SYMBOL_BASEREG (sym) = basereg;
2982 }
2983 else
2984 {
2985 SYMBOL_CLASS (sym) = LOC_STATIC;
2986 SYMBOL_VALUE (sym) += baseaddr;
2987 }
2988 }
2989 break;
2990 case TAG_formal_parameter:
2991 if (dip -> at_location != NULL)
2992 {
2993 SYMBOL_VALUE (sym) = locval (dip -> at_location);
2994 }
2995 add_symbol_to_list (sym, list_in_scope);
2996 if (isreg)
2997 {
2998 SYMBOL_CLASS (sym) = LOC_REGPARM;
2999 }
3000 else if (offreg)
3001 {
3002 SYMBOL_CLASS (sym) = LOC_BASEREG_ARG;
3003 SYMBOL_BASEREG (sym) = basereg;
3004 }
3005 else
3006 {
3007 SYMBOL_CLASS (sym) = LOC_ARG;
3008 }
3009 break;
3010 case TAG_unspecified_parameters:
3011 /* From varargs functions; gdb doesn't seem to have any interest in
3012 this information, so just ignore it for now. (FIXME?) */
3013 break;
3014 case TAG_class_type:
3015 case TAG_structure_type:
3016 case TAG_union_type:
3017 case TAG_enumeration_type:
3018 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3019 SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE;
3020 add_symbol_to_list (sym, list_in_scope);
3021 break;
3022 case TAG_typedef:
3023 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3024 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3025 add_symbol_to_list (sym, list_in_scope);
3026 break;
3027 default:
3028 /* Not a tag we recognize. Hopefully we aren't processing trash
3029 data, but since we must specifically ignore things we don't
3030 recognize, there is nothing else we should do at this point. */
3031 break;
3032 }
3033 }
3034 return (sym);
3035 }
3036
3037 /*
3038
3039 LOCAL FUNCTION
3040
3041 synthesize_typedef -- make a symbol table entry for a "fake" typedef
3042
3043 SYNOPSIS
3044
3045 static void synthesize_typedef (struct dieinfo *dip,
3046 struct objfile *objfile,
3047 struct type *type);
3048
3049 DESCRIPTION
3050
3051 Given a pointer to a DWARF information entry, synthesize a typedef
3052 for the name in the DIE, using the specified type.
3053
3054 This is used for C++ class, structs, unions, and enumerations to
3055 set up the tag name as a type.
3056
3057 */
3058
3059 static void
3060 synthesize_typedef (dip, objfile, type)
3061 struct dieinfo *dip;
3062 struct objfile *objfile;
3063 struct type *type;
3064 {
3065 struct symbol *sym = NULL;
3066
3067 if (dip -> at_name != NULL)
3068 {
3069 sym = (struct symbol *)
3070 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
3071 memset (sym, 0, sizeof (struct symbol));
3072 SYMBOL_NAME (sym) = create_name (dip -> at_name,
3073 &objfile->symbol_obstack);
3074 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
3075 SYMBOL_TYPE (sym) = type;
3076 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3077 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3078 add_symbol_to_list (sym, list_in_scope);
3079 }
3080 }
3081
3082 /*
3083
3084 LOCAL FUNCTION
3085
3086 decode_mod_fund_type -- decode a modified fundamental type
3087
3088 SYNOPSIS
3089
3090 static struct type *decode_mod_fund_type (char *typedata)
3091
3092 DESCRIPTION
3093
3094 Decode a block of data containing a modified fundamental
3095 type specification. TYPEDATA is a pointer to the block,
3096 which starts with a length containing the size of the rest
3097 of the block. At the end of the block is a fundmental type
3098 code value that gives the fundamental type. Everything
3099 in between are type modifiers.
3100
3101 We simply compute the number of modifiers and call the general
3102 function decode_modified_type to do the actual work.
3103 */
3104
3105 static struct type *
3106 decode_mod_fund_type (typedata)
3107 char *typedata;
3108 {
3109 struct type *typep = NULL;
3110 unsigned short modcount;
3111 int nbytes;
3112
3113 /* Get the total size of the block, exclusive of the size itself */
3114
3115 nbytes = attribute_size (AT_mod_fund_type);
3116 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3117 typedata += nbytes;
3118
3119 /* Deduct the size of the fundamental type bytes at the end of the block. */
3120
3121 modcount -= attribute_size (AT_fund_type);
3122
3123 /* Now do the actual decoding */
3124
3125 typep = decode_modified_type (typedata, modcount, AT_mod_fund_type);
3126 return (typep);
3127 }
3128
3129 /*
3130
3131 LOCAL FUNCTION
3132
3133 decode_mod_u_d_type -- decode a modified user defined type
3134
3135 SYNOPSIS
3136
3137 static struct type *decode_mod_u_d_type (char *typedata)
3138
3139 DESCRIPTION
3140
3141 Decode a block of data containing a modified user defined
3142 type specification. TYPEDATA is a pointer to the block,
3143 which consists of a two byte length, containing the size
3144 of the rest of the block. At the end of the block is a
3145 four byte value that gives a reference to a user defined type.
3146 Everything in between are type modifiers.
3147
3148 We simply compute the number of modifiers and call the general
3149 function decode_modified_type to do the actual work.
3150 */
3151
3152 static struct type *
3153 decode_mod_u_d_type (typedata)
3154 char *typedata;
3155 {
3156 struct type *typep = NULL;
3157 unsigned short modcount;
3158 int nbytes;
3159
3160 /* Get the total size of the block, exclusive of the size itself */
3161
3162 nbytes = attribute_size (AT_mod_u_d_type);
3163 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3164 typedata += nbytes;
3165
3166 /* Deduct the size of the reference type bytes at the end of the block. */
3167
3168 modcount -= attribute_size (AT_user_def_type);
3169
3170 /* Now do the actual decoding */
3171
3172 typep = decode_modified_type (typedata, modcount, AT_mod_u_d_type);
3173 return (typep);
3174 }
3175
3176 /*
3177
3178 LOCAL FUNCTION
3179
3180 decode_modified_type -- decode modified user or fundamental type
3181
3182 SYNOPSIS
3183
3184 static struct type *decode_modified_type (char *modifiers,
3185 unsigned short modcount, int mtype)
3186
3187 DESCRIPTION
3188
3189 Decode a modified type, either a modified fundamental type or
3190 a modified user defined type. MODIFIERS is a pointer to the
3191 block of bytes that define MODCOUNT modifiers. Immediately
3192 following the last modifier is a short containing the fundamental
3193 type or a long containing the reference to the user defined
3194 type. Which one is determined by MTYPE, which is either
3195 AT_mod_fund_type or AT_mod_u_d_type to indicate what modified
3196 type we are generating.
3197
3198 We call ourself recursively to generate each modified type,`
3199 until MODCOUNT reaches zero, at which point we have consumed
3200 all the modifiers and generate either the fundamental type or
3201 user defined type. When the recursion unwinds, each modifier
3202 is applied in turn to generate the full modified type.
3203
3204 NOTES
3205
3206 If we find a modifier that we don't recognize, and it is not one
3207 of those reserved for application specific use, then we issue a
3208 warning and simply ignore the modifier.
3209
3210 BUGS
3211
3212 We currently ignore MOD_const and MOD_volatile. (FIXME)
3213
3214 */
3215
3216 static struct type *
3217 decode_modified_type (modifiers, modcount, mtype)
3218 char *modifiers;
3219 unsigned int modcount;
3220 int mtype;
3221 {
3222 struct type *typep = NULL;
3223 unsigned short fundtype;
3224 DIE_REF die_ref;
3225 char modifier;
3226 int nbytes;
3227
3228 if (modcount == 0)
3229 {
3230 switch (mtype)
3231 {
3232 case AT_mod_fund_type:
3233 nbytes = attribute_size (AT_fund_type);
3234 fundtype = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3235 current_objfile);
3236 typep = decode_fund_type (fundtype);
3237 break;
3238 case AT_mod_u_d_type:
3239 nbytes = attribute_size (AT_user_def_type);
3240 die_ref = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3241 current_objfile);
3242 if ((typep = lookup_utype (die_ref)) == NULL)
3243 {
3244 typep = alloc_utype (die_ref, NULL);
3245 }
3246 break;
3247 default:
3248 complain (&botched_modified_type, DIE_ID, DIE_NAME, mtype);
3249 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3250 break;
3251 }
3252 }
3253 else
3254 {
3255 modifier = *modifiers++;
3256 typep = decode_modified_type (modifiers, --modcount, mtype);
3257 switch (modifier)
3258 {
3259 case MOD_pointer_to:
3260 typep = lookup_pointer_type (typep);
3261 break;
3262 case MOD_reference_to:
3263 typep = lookup_reference_type (typep);
3264 break;
3265 case MOD_const:
3266 complain (&const_ignored, DIE_ID, DIE_NAME); /* FIXME */
3267 break;
3268 case MOD_volatile:
3269 complain (&volatile_ignored, DIE_ID, DIE_NAME); /* FIXME */
3270 break;
3271 default:
3272 if (!(MOD_lo_user <= (unsigned char) modifier
3273 && (unsigned char) modifier <= MOD_hi_user))
3274 {
3275 complain (&unknown_type_modifier, DIE_ID, DIE_NAME, modifier);
3276 }
3277 break;
3278 }
3279 }
3280 return (typep);
3281 }
3282
3283 /*
3284
3285 LOCAL FUNCTION
3286
3287 decode_fund_type -- translate basic DWARF type to gdb base type
3288
3289 DESCRIPTION
3290
3291 Given an integer that is one of the fundamental DWARF types,
3292 translate it to one of the basic internal gdb types and return
3293 a pointer to the appropriate gdb type (a "struct type *").
3294
3295 NOTES
3296
3297 For robustness, if we are asked to translate a fundamental
3298 type that we are unprepared to deal with, we return int so
3299 callers can always depend upon a valid type being returned,
3300 and so gdb may at least do something reasonable by default.
3301 If the type is not in the range of those types defined as
3302 application specific types, we also issue a warning.
3303 */
3304
3305 static struct type *
3306 decode_fund_type (fundtype)
3307 unsigned int fundtype;
3308 {
3309 struct type *typep = NULL;
3310
3311 switch (fundtype)
3312 {
3313
3314 case FT_void:
3315 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3316 break;
3317
3318 case FT_boolean: /* Was FT_set in AT&T version */
3319 typep = dwarf_fundamental_type (current_objfile, FT_BOOLEAN);
3320 break;
3321
3322 case FT_pointer: /* (void *) */
3323 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3324 typep = lookup_pointer_type (typep);
3325 break;
3326
3327 case FT_char:
3328 typep = dwarf_fundamental_type (current_objfile, FT_CHAR);
3329 break;
3330
3331 case FT_signed_char:
3332 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_CHAR);
3333 break;
3334
3335 case FT_unsigned_char:
3336 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_CHAR);
3337 break;
3338
3339 case FT_short:
3340 typep = dwarf_fundamental_type (current_objfile, FT_SHORT);
3341 break;
3342
3343 case FT_signed_short:
3344 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_SHORT);
3345 break;
3346
3347 case FT_unsigned_short:
3348 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_SHORT);
3349 break;
3350
3351 case FT_integer:
3352 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3353 break;
3354
3355 case FT_signed_integer:
3356 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_INTEGER);
3357 break;
3358
3359 case FT_unsigned_integer:
3360 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_INTEGER);
3361 break;
3362
3363 case FT_long:
3364 typep = dwarf_fundamental_type (current_objfile, FT_LONG);
3365 break;
3366
3367 case FT_signed_long:
3368 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG);
3369 break;
3370
3371 case FT_unsigned_long:
3372 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG);
3373 break;
3374
3375 case FT_long_long:
3376 typep = dwarf_fundamental_type (current_objfile, FT_LONG_LONG);
3377 break;
3378
3379 case FT_signed_long_long:
3380 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG_LONG);
3381 break;
3382
3383 case FT_unsigned_long_long:
3384 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG_LONG);
3385 break;
3386
3387 case FT_float:
3388 typep = dwarf_fundamental_type (current_objfile, FT_FLOAT);
3389 break;
3390
3391 case FT_dbl_prec_float:
3392 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_FLOAT);
3393 break;
3394
3395 case FT_ext_prec_float:
3396 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_FLOAT);
3397 break;
3398
3399 case FT_complex:
3400 typep = dwarf_fundamental_type (current_objfile, FT_COMPLEX);
3401 break;
3402
3403 case FT_dbl_prec_complex:
3404 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_COMPLEX);
3405 break;
3406
3407 case FT_ext_prec_complex:
3408 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_COMPLEX);
3409 break;
3410
3411 }
3412
3413 if (typep == NULL)
3414 {
3415 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3416 if (!(FT_lo_user <= fundtype && fundtype <= FT_hi_user))
3417 {
3418 complain (&unexpected_fund_type, DIE_ID, DIE_NAME, fundtype);
3419 }
3420 }
3421
3422 return (typep);
3423 }
3424
3425 /*
3426
3427 LOCAL FUNCTION
3428
3429 create_name -- allocate a fresh copy of a string on an obstack
3430
3431 DESCRIPTION
3432
3433 Given a pointer to a string and a pointer to an obstack, allocates
3434 a fresh copy of the string on the specified obstack.
3435
3436 */
3437
3438 static char *
3439 create_name (name, obstackp)
3440 char *name;
3441 struct obstack *obstackp;
3442 {
3443 int length;
3444 char *newname;
3445
3446 length = strlen (name) + 1;
3447 newname = (char *) obstack_alloc (obstackp, length);
3448 strcpy (newname, name);
3449 return (newname);
3450 }
3451
3452 /*
3453
3454 LOCAL FUNCTION
3455
3456 basicdieinfo -- extract the minimal die info from raw die data
3457
3458 SYNOPSIS
3459
3460 void basicdieinfo (char *diep, struct dieinfo *dip,
3461 struct objfile *objfile)
3462
3463 DESCRIPTION
3464
3465 Given a pointer to raw DIE data, and a pointer to an instance of a
3466 die info structure, this function extracts the basic information
3467 from the DIE data required to continue processing this DIE, along
3468 with some bookkeeping information about the DIE.
3469
3470 The information we absolutely must have includes the DIE tag,
3471 and the DIE length. If we need the sibling reference, then we
3472 will have to call completedieinfo() to process all the remaining
3473 DIE information.
3474
3475 Note that since there is no guarantee that the data is properly
3476 aligned in memory for the type of access required (indirection
3477 through anything other than a char pointer), and there is no
3478 guarantee that it is in the same byte order as the gdb host,
3479 we call a function which deals with both alignment and byte
3480 swapping issues. Possibly inefficient, but quite portable.
3481
3482 We also take care of some other basic things at this point, such
3483 as ensuring that the instance of the die info structure starts
3484 out completely zero'd and that curdie is initialized for use
3485 in error reporting if we have a problem with the current die.
3486
3487 NOTES
3488
3489 All DIE's must have at least a valid length, thus the minimum
3490 DIE size is SIZEOF_DIE_LENGTH. In order to have a valid tag, the
3491 DIE size must be at least SIZEOF_DIE_TAG larger, otherwise they
3492 are forced to be TAG_padding DIES.
3493
3494 Padding DIES must be at least SIZEOF_DIE_LENGTH in length, implying
3495 that if a padding DIE is used for alignment and the amount needed is
3496 less than SIZEOF_DIE_LENGTH, then the padding DIE has to be big
3497 enough to align to the next alignment boundry.
3498
3499 We do some basic sanity checking here, such as verifying that the
3500 length of the die would not cause it to overrun the recorded end of
3501 the buffer holding the DIE info. If we find a DIE that is either
3502 too small or too large, we force it's length to zero which should
3503 cause the caller to take appropriate action.
3504 */
3505
3506 static void
3507 basicdieinfo (dip, diep, objfile)
3508 struct dieinfo *dip;
3509 char *diep;
3510 struct objfile *objfile;
3511 {
3512 curdie = dip;
3513 memset (dip, 0, sizeof (struct dieinfo));
3514 dip -> die = diep;
3515 dip -> die_ref = dbroff + (diep - dbbase);
3516 dip -> die_length = target_to_host (diep, SIZEOF_DIE_LENGTH, GET_UNSIGNED,
3517 objfile);
3518 if ((dip -> die_length < SIZEOF_DIE_LENGTH) ||
3519 ((diep + dip -> die_length) > (dbbase + dbsize)))
3520 {
3521 complain (&malformed_die, DIE_ID, DIE_NAME, dip -> die_length);
3522 dip -> die_length = 0;
3523 }
3524 else if (dip -> die_length < (SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG))
3525 {
3526 dip -> die_tag = TAG_padding;
3527 }
3528 else
3529 {
3530 diep += SIZEOF_DIE_LENGTH;
3531 dip -> die_tag = target_to_host (diep, SIZEOF_DIE_TAG, GET_UNSIGNED,
3532 objfile);
3533 }
3534 }
3535
3536 /*
3537
3538 LOCAL FUNCTION
3539
3540 completedieinfo -- finish reading the information for a given DIE
3541
3542 SYNOPSIS
3543
3544 void completedieinfo (struct dieinfo *dip, struct objfile *objfile)
3545
3546 DESCRIPTION
3547
3548 Given a pointer to an already partially initialized die info structure,
3549 scan the raw DIE data and finish filling in the die info structure
3550 from the various attributes found.
3551
3552 Note that since there is no guarantee that the data is properly
3553 aligned in memory for the type of access required (indirection
3554 through anything other than a char pointer), and there is no
3555 guarantee that it is in the same byte order as the gdb host,
3556 we call a function which deals with both alignment and byte
3557 swapping issues. Possibly inefficient, but quite portable.
3558
3559 NOTES
3560
3561 Each time we are called, we increment the diecount variable, which
3562 keeps an approximate count of the number of dies processed for
3563 each compilation unit. This information is presented to the user
3564 if the info_verbose flag is set.
3565
3566 */
3567
3568 static void
3569 completedieinfo (dip, objfile)
3570 struct dieinfo *dip;
3571 struct objfile *objfile;
3572 {
3573 char *diep; /* Current pointer into raw DIE data */
3574 char *end; /* Terminate DIE scan here */
3575 unsigned short attr; /* Current attribute being scanned */
3576 unsigned short form; /* Form of the attribute */
3577 int nbytes; /* Size of next field to read */
3578
3579 diecount++;
3580 diep = dip -> die;
3581 end = diep + dip -> die_length;
3582 diep += SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG;
3583 while (diep < end)
3584 {
3585 attr = target_to_host (diep, SIZEOF_ATTRIBUTE, GET_UNSIGNED, objfile);
3586 diep += SIZEOF_ATTRIBUTE;
3587 if ((nbytes = attribute_size (attr)) == -1)
3588 {
3589 complain (&unknown_attribute_length, DIE_ID, DIE_NAME);
3590 diep = end;
3591 continue;
3592 }
3593 switch (attr)
3594 {
3595 case AT_fund_type:
3596 dip -> at_fund_type = target_to_host (diep, nbytes, GET_UNSIGNED,
3597 objfile);
3598 break;
3599 case AT_ordering:
3600 dip -> at_ordering = target_to_host (diep, nbytes, GET_UNSIGNED,
3601 objfile);
3602 break;
3603 case AT_bit_offset:
3604 dip -> at_bit_offset = target_to_host (diep, nbytes, GET_UNSIGNED,
3605 objfile);
3606 break;
3607 case AT_sibling:
3608 dip -> at_sibling = target_to_host (diep, nbytes, GET_UNSIGNED,
3609 objfile);
3610 break;
3611 case AT_stmt_list:
3612 dip -> at_stmt_list = target_to_host (diep, nbytes, GET_UNSIGNED,
3613 objfile);
3614 dip -> has_at_stmt_list = 1;
3615 break;
3616 case AT_low_pc:
3617 dip -> at_low_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3618 objfile);
3619 dip -> at_low_pc += baseaddr;
3620 dip -> has_at_low_pc = 1;
3621 break;
3622 case AT_high_pc:
3623 dip -> at_high_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3624 objfile);
3625 dip -> at_high_pc += baseaddr;
3626 break;
3627 case AT_language:
3628 dip -> at_language = target_to_host (diep, nbytes, GET_UNSIGNED,
3629 objfile);
3630 break;
3631 case AT_user_def_type:
3632 dip -> at_user_def_type = target_to_host (diep, nbytes,
3633 GET_UNSIGNED, objfile);
3634 break;
3635 case AT_byte_size:
3636 dip -> at_byte_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3637 objfile);
3638 dip -> has_at_byte_size = 1;
3639 break;
3640 case AT_bit_size:
3641 dip -> at_bit_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3642 objfile);
3643 break;
3644 case AT_member:
3645 dip -> at_member = target_to_host (diep, nbytes, GET_UNSIGNED,
3646 objfile);
3647 break;
3648 case AT_discr:
3649 dip -> at_discr = target_to_host (diep, nbytes, GET_UNSIGNED,
3650 objfile);
3651 break;
3652 case AT_location:
3653 dip -> at_location = diep;
3654 break;
3655 case AT_mod_fund_type:
3656 dip -> at_mod_fund_type = diep;
3657 break;
3658 case AT_subscr_data:
3659 dip -> at_subscr_data = diep;
3660 break;
3661 case AT_mod_u_d_type:
3662 dip -> at_mod_u_d_type = diep;
3663 break;
3664 case AT_element_list:
3665 dip -> at_element_list = diep;
3666 dip -> short_element_list = 0;
3667 break;
3668 case AT_short_element_list:
3669 dip -> at_element_list = diep;
3670 dip -> short_element_list = 1;
3671 break;
3672 case AT_discr_value:
3673 dip -> at_discr_value = diep;
3674 break;
3675 case AT_string_length:
3676 dip -> at_string_length = diep;
3677 break;
3678 case AT_name:
3679 dip -> at_name = diep;
3680 break;
3681 case AT_comp_dir:
3682 /* For now, ignore any "hostname:" portion, since gdb doesn't
3683 know how to deal with it. (FIXME). */
3684 dip -> at_comp_dir = strrchr (diep, ':');
3685 if (dip -> at_comp_dir != NULL)
3686 {
3687 dip -> at_comp_dir++;
3688 }
3689 else
3690 {
3691 dip -> at_comp_dir = diep;
3692 }
3693 break;
3694 case AT_producer:
3695 dip -> at_producer = diep;
3696 break;
3697 case AT_start_scope:
3698 dip -> at_start_scope = target_to_host (diep, nbytes, GET_UNSIGNED,
3699 objfile);
3700 break;
3701 case AT_stride_size:
3702 dip -> at_stride_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3703 objfile);
3704 break;
3705 case AT_src_info:
3706 dip -> at_src_info = target_to_host (diep, nbytes, GET_UNSIGNED,
3707 objfile);
3708 break;
3709 case AT_prototyped:
3710 dip -> at_prototyped = diep;
3711 break;
3712 default:
3713 /* Found an attribute that we are unprepared to handle. However
3714 it is specifically one of the design goals of DWARF that
3715 consumers should ignore unknown attributes. As long as the
3716 form is one that we recognize (so we know how to skip it),
3717 we can just ignore the unknown attribute. */
3718 break;
3719 }
3720 form = FORM_FROM_ATTR (attr);
3721 switch (form)
3722 {
3723 case FORM_DATA2:
3724 diep += 2;
3725 break;
3726 case FORM_DATA4:
3727 case FORM_REF:
3728 diep += 4;
3729 break;
3730 case FORM_DATA8:
3731 diep += 8;
3732 break;
3733 case FORM_ADDR:
3734 diep += TARGET_FT_POINTER_SIZE (objfile);
3735 break;
3736 case FORM_BLOCK2:
3737 diep += 2 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3738 break;
3739 case FORM_BLOCK4:
3740 diep += 4 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3741 break;
3742 case FORM_STRING:
3743 diep += strlen (diep) + 1;
3744 break;
3745 default:
3746 complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form);
3747 diep = end;
3748 break;
3749 }
3750 }
3751 }
3752
3753 /*
3754
3755 LOCAL FUNCTION
3756
3757 target_to_host -- swap in target data to host
3758
3759 SYNOPSIS
3760
3761 target_to_host (char *from, int nbytes, int signextend,
3762 struct objfile *objfile)
3763
3764 DESCRIPTION
3765
3766 Given pointer to data in target format in FROM, a byte count for
3767 the size of the data in NBYTES, a flag indicating whether or not
3768 the data is signed in SIGNEXTEND, and a pointer to the current
3769 objfile in OBJFILE, convert the data to host format and return
3770 the converted value.
3771
3772 NOTES
3773
3774 FIXME: If we read data that is known to be signed, and expect to
3775 use it as signed data, then we need to explicitly sign extend the
3776 result until the bfd library is able to do this for us.
3777
3778 */
3779
3780 static unsigned long
3781 target_to_host (from, nbytes, signextend, objfile)
3782 char *from;
3783 int nbytes;
3784 int signextend; /* FIXME: Unused */
3785 struct objfile *objfile;
3786 {
3787 unsigned long rtnval;
3788
3789 switch (nbytes)
3790 {
3791 case 8:
3792 rtnval = bfd_get_64 (objfile -> obfd, (bfd_byte *) from);
3793 break;
3794 case 4:
3795 rtnval = bfd_get_32 (objfile -> obfd, (bfd_byte *) from);
3796 break;
3797 case 2:
3798 rtnval = bfd_get_16 (objfile -> obfd, (bfd_byte *) from);
3799 break;
3800 case 1:
3801 rtnval = bfd_get_8 (objfile -> obfd, (bfd_byte *) from);
3802 break;
3803 default:
3804 complain (&no_bfd_get_N, DIE_ID, DIE_NAME, nbytes);
3805 rtnval = 0;
3806 break;
3807 }
3808 return (rtnval);
3809 }
3810
3811 /*
3812
3813 LOCAL FUNCTION
3814
3815 attribute_size -- compute size of data for a DWARF attribute
3816
3817 SYNOPSIS
3818
3819 static int attribute_size (unsigned int attr)
3820
3821 DESCRIPTION
3822
3823 Given a DWARF attribute in ATTR, compute the size of the first
3824 piece of data associated with this attribute and return that
3825 size.
3826
3827 Returns -1 for unrecognized attributes.
3828
3829 */
3830
3831 static int
3832 attribute_size (attr)
3833 unsigned int attr;
3834 {
3835 int nbytes; /* Size of next data for this attribute */
3836 unsigned short form; /* Form of the attribute */
3837
3838 form = FORM_FROM_ATTR (attr);
3839 switch (form)
3840 {
3841 case FORM_STRING: /* A variable length field is next */
3842 nbytes = 0;
3843 break;
3844 case FORM_DATA2: /* Next 2 byte field is the data itself */
3845 case FORM_BLOCK2: /* Next 2 byte field is a block length */
3846 nbytes = 2;
3847 break;
3848 case FORM_DATA4: /* Next 4 byte field is the data itself */
3849 case FORM_BLOCK4: /* Next 4 byte field is a block length */
3850 case FORM_REF: /* Next 4 byte field is a DIE offset */
3851 nbytes = 4;
3852 break;
3853 case FORM_DATA8: /* Next 8 byte field is the data itself */
3854 nbytes = 8;
3855 break;
3856 case FORM_ADDR: /* Next field size is target sizeof(void *) */
3857 nbytes = TARGET_FT_POINTER_SIZE (objfile);
3858 break;
3859 default:
3860 complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form);
3861 nbytes = -1;
3862 break;
3863 }
3864 return (nbytes);
3865 }