* Makefile.in (VERSION): Bump to 4.7.4.
[binutils-gdb.git] / gdb / dwarfread.c
1 /* DWARF debugging format support for GDB.
2 Copyright (C) 1991, 1992 Free Software Foundation, Inc.
3 Written by Fred Fish at Cygnus Support. Portions based on dbxread.c,
4 mipsread.c, coffread.c, and dwarfread.c from a Data General SVR4 gdb port.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
21
22 /*
23
24 FIXME: Figure out how to get the frame pointer register number in the
25 execution environment of the target. Remove R_FP kludge
26
27 FIXME: Add generation of dependencies list to partial symtab code.
28
29 FIXME: Resolve minor differences between what information we put in the
30 partial symbol table and what dbxread puts in. For example, we don't yet
31 put enum constants there. And dbxread seems to invent a lot of typedefs
32 we never see. Use the new printpsym command to see the partial symbol table
33 contents.
34
35 FIXME: Figure out a better way to tell gdb about the name of the function
36 contain the user's entry point (I.E. main())
37
38 FIXME: See other FIXME's and "ifdef 0" scattered throughout the code for
39 other things to work on, if you get bored. :-)
40
41 */
42
43 #include "defs.h"
44 #include "bfd.h"
45 #include "symtab.h"
46 #include "gdbtypes.h"
47 #include "symfile.h"
48 #include "objfiles.h"
49 #include "libbfd.h" /* FIXME Secret Internal BFD stuff (bfd_read) */
50 #include "elf/dwarf.h"
51 #include "buildsym.h"
52 #include "demangle.h"
53 #include "expression.h" /* Needed for enum exp_opcode in language.h, sigh... */
54 #include "language.h"
55 #include "complaints.h"
56
57 #include <fcntl.h>
58 #include <string.h>
59 #include <sys/types.h>
60
61 #ifndef NO_SYS_FILE
62 #include <sys/file.h>
63 #endif
64
65 /* FIXME -- convert this to SEEK_SET a la POSIX, move to config files. */
66 #ifndef L_SET
67 #define L_SET 0
68 #endif
69
70 /* Some macros to provide DIE info for complaints. */
71
72 #define DIE_ID (curdie!=NULL ? curdie->die_ref : 0)
73 #define DIE_NAME (curdie!=NULL && curdie->at_name!=NULL) ? curdie->at_name : ""
74
75 /* Complaints that can be issued during DWARF debug info reading. */
76
77 struct complaint no_bfd_get_N =
78 {
79 "DIE @ 0x%x \"%s\", no bfd support for %d byte data object", 0, 0
80 };
81
82 struct complaint malformed_die =
83 {
84 "DIE @ 0x%x \"%s\", malformed DIE, bad length (%d bytes)", 0, 0
85 };
86
87 struct complaint bad_die_ref =
88 {
89 "DIE @ 0x%x \"%s\", reference to DIE (0x%x) outside compilation unit", 0, 0
90 };
91
92 struct complaint unknown_attribute_form =
93 {
94 "DIE @ 0x%x \"%s\", unknown attribute form (0x%x)", 0, 0
95 };
96
97 struct complaint unknown_attribute_length =
98 {
99 "DIE @ 0x%x \"%s\", unknown attribute length, skipped remaining attributes", 0, 0
100 };
101
102 struct complaint unexpected_fund_type =
103 {
104 "DIE @ 0x%x \"%s\", unexpected fundamental type 0x%x", 0, 0
105 };
106
107 struct complaint unknown_type_modifier =
108 {
109 "DIE @ 0x%x \"%s\", unknown type modifier %u", 0, 0
110 };
111
112 struct complaint volatile_ignored =
113 {
114 "DIE @ 0x%x \"%s\", type modifier 'volatile' ignored", 0, 0
115 };
116
117 struct complaint const_ignored =
118 {
119 "DIE @ 0x%x \"%s\", type modifier 'const' ignored", 0, 0
120 };
121
122 struct complaint botched_modified_type =
123 {
124 "DIE @ 0x%x \"%s\", botched modified type decoding (mtype 0x%x)", 0, 0
125 };
126
127 struct complaint op_deref2 =
128 {
129 "DIE @ 0x%x \"%s\", OP_DEREF2 address 0x%x not handled", 0, 0
130 };
131
132 struct complaint op_deref4 =
133 {
134 "DIE @ 0x%x \"%s\", OP_DEREF4 address 0x%x not handled", 0, 0
135 };
136
137 struct complaint basereg_not_handled =
138 {
139 "DIE @ 0x%x \"%s\", BASEREG %d not handled", 0, 0
140 };
141
142 struct complaint dup_user_type_allocation =
143 {
144 "DIE @ 0x%x \"%s\", internal error: duplicate user type allocation", 0, 0
145 };
146
147 struct complaint dup_user_type_definition =
148 {
149 "DIE @ 0x%x \"%s\", internal error: duplicate user type definition", 0, 0
150 };
151
152 struct complaint missing_tag =
153 {
154 "DIE @ 0x%x \"%s\", missing class, structure, or union tag", 0, 0
155 };
156
157 struct complaint bad_array_element_type =
158 {
159 "DIE @ 0x%x \"%s\", bad array element type attribute 0x%x", 0, 0
160 };
161
162 struct complaint subscript_data_items =
163 {
164 "DIE @ 0x%x \"%s\", can't decode subscript data items", 0, 0
165 };
166
167 struct complaint unhandled_array_subscript_format =
168 {
169 "DIE @ 0x%x \"%s\", array subscript format 0x%x not handled yet", 0, 0
170 };
171
172 struct complaint unknown_array_subscript_format =
173 {
174 "DIE @ 0x%x \"%s\", unknown array subscript format %x", 0, 0
175 };
176
177 struct complaint not_row_major =
178 {
179 "DIE @ 0x%x \"%s\", array not row major; not handled correctly", 0, 0
180 };
181
182 #ifndef R_FP /* FIXME */
183 #define R_FP 14 /* Kludge to get frame pointer register number */
184 #endif
185
186 typedef unsigned int DIE_REF; /* Reference to a DIE */
187
188 #ifndef GCC_PRODUCER
189 #define GCC_PRODUCER "GNU C "
190 #endif
191
192 #ifndef GPLUS_PRODUCER
193 #define GPLUS_PRODUCER "GNU C++ "
194 #endif
195
196 #ifndef LCC_PRODUCER
197 #define LCC_PRODUCER "NCR C/C++"
198 #endif
199
200 #ifndef CFRONT_PRODUCER
201 #define CFRONT_PRODUCER "CFRONT " /* A wild a** guess... */
202 #endif
203
204 /* start-sanitize-chill */
205 #ifndef CHILL_PRODUCER
206 #define CHILL_PRODUCER "GNU Chill "
207 #endif
208 /* end-sanitize-chill */
209
210 #define STREQ(a,b) (strcmp(a,b)==0)
211 #define STREQN(a,b,n) (strncmp(a,b,n)==0)
212
213 /* Flags to target_to_host() that tell whether or not the data object is
214 expected to be signed. Used, for example, when fetching a signed
215 integer in the target environment which is used as a signed integer
216 in the host environment, and the two environments have different sized
217 ints. In this case, *somebody* has to sign extend the smaller sized
218 int. */
219
220 #define GET_UNSIGNED 0 /* No sign extension required */
221 #define GET_SIGNED 1 /* Sign extension required */
222
223 /* Defines for things which are specified in the document "DWARF Debugging
224 Information Format" published by UNIX International, Programming Languages
225 SIG. These defines are based on revision 1.0.0, Jan 20, 1992. */
226
227 #define SIZEOF_DIE_LENGTH 4
228 #define SIZEOF_DIE_TAG 2
229 #define SIZEOF_ATTRIBUTE 2
230 #define SIZEOF_FORMAT_SPECIFIER 1
231 #define SIZEOF_FMT_FT 2
232 #define SIZEOF_LINETBL_LENGTH 4
233 #define SIZEOF_LINETBL_LINENO 4
234 #define SIZEOF_LINETBL_STMT 2
235 #define SIZEOF_LINETBL_DELTA 4
236 #define SIZEOF_LOC_ATOM_CODE 1
237
238 #define FORM_FROM_ATTR(attr) ((attr) & 0xF) /* Implicitly specified */
239
240 /* Macros that return the sizes of various types of data in the target
241 environment.
242
243 FIXME: Currently these are just compile time constants (as they are in
244 other parts of gdb as well). They need to be able to get the right size
245 either from the bfd or possibly from the DWARF info. It would be nice if
246 the DWARF producer inserted DIES that describe the fundamental types in
247 the target environment into the DWARF info, similar to the way dbx stabs
248 producers produce information about their fundamental types. */
249
250 #define TARGET_FT_POINTER_SIZE(objfile) (TARGET_PTR_BIT / TARGET_CHAR_BIT)
251 #define TARGET_FT_LONG_SIZE(objfile) (TARGET_LONG_BIT / TARGET_CHAR_BIT)
252
253 /* The Amiga SVR4 header file <dwarf.h> defines AT_element_list as a
254 FORM_BLOCK2, and this is the value emitted by the AT&T compiler.
255 However, the Issue 2 DWARF specification from AT&T defines it as
256 a FORM_BLOCK4, as does the latest specification from UI/PLSIG.
257 For backwards compatibility with the AT&T compiler produced executables
258 we define AT_short_element_list for this variant. */
259
260 #define AT_short_element_list (0x00f0|FORM_BLOCK2)
261
262 /* External variables referenced. */
263
264 extern int info_verbose; /* From main.c; nonzero => verbose */
265 extern char *warning_pre_print; /* From utils.c */
266
267 /* The DWARF debugging information consists of two major pieces,
268 one is a block of DWARF Information Entries (DIE's) and the other
269 is a line number table. The "struct dieinfo" structure contains
270 the information for a single DIE, the one currently being processed.
271
272 In order to make it easier to randomly access the attribute fields
273 of the current DIE, which are specifically unordered within the DIE,
274 each DIE is scanned and an instance of the "struct dieinfo"
275 structure is initialized.
276
277 Initialization is done in two levels. The first, done by basicdieinfo(),
278 just initializes those fields that are vital to deciding whether or not
279 to use this DIE, how to skip past it, etc. The second, done by the
280 function completedieinfo(), fills in the rest of the information.
281
282 Attributes which have block forms are not interpreted at the time
283 the DIE is scanned, instead we just save pointers to the start
284 of their value fields.
285
286 Some fields have a flag <name>_p that is set when the value of the
287 field is valid (I.E. we found a matching attribute in the DIE). Since
288 we may want to test for the presence of some attributes in the DIE,
289 such as AT_low_pc, without restricting the values of the field,
290 we need someway to note that we found such an attribute.
291
292 */
293
294 typedef char BLOCK;
295
296 struct dieinfo {
297 char * die; /* Pointer to the raw DIE data */
298 unsigned long die_length; /* Length of the raw DIE data */
299 DIE_REF die_ref; /* Offset of this DIE */
300 unsigned short die_tag; /* Tag for this DIE */
301 unsigned long at_padding;
302 unsigned long at_sibling;
303 BLOCK * at_location;
304 char * at_name;
305 unsigned short at_fund_type;
306 BLOCK * at_mod_fund_type;
307 unsigned long at_user_def_type;
308 BLOCK * at_mod_u_d_type;
309 unsigned short at_ordering;
310 BLOCK * at_subscr_data;
311 unsigned long at_byte_size;
312 unsigned short at_bit_offset;
313 unsigned long at_bit_size;
314 BLOCK * at_element_list;
315 unsigned long at_stmt_list;
316 unsigned long at_low_pc;
317 unsigned long at_high_pc;
318 unsigned long at_language;
319 unsigned long at_member;
320 unsigned long at_discr;
321 BLOCK * at_discr_value;
322 BLOCK * at_string_length;
323 char * at_comp_dir;
324 char * at_producer;
325 unsigned long at_start_scope;
326 unsigned long at_stride_size;
327 unsigned long at_src_info;
328 char * at_prototyped;
329 unsigned int has_at_low_pc:1;
330 unsigned int has_at_stmt_list:1;
331 unsigned int has_at_byte_size:1;
332 unsigned int short_element_list:1;
333 };
334
335 static int diecount; /* Approximate count of dies for compilation unit */
336 static struct dieinfo *curdie; /* For warnings and such */
337
338 static char *dbbase; /* Base pointer to dwarf info */
339 static int dbsize; /* Size of dwarf info in bytes */
340 static int dbroff; /* Relative offset from start of .debug section */
341 static char *lnbase; /* Base pointer to line section */
342 static int isreg; /* Kludge to identify register variables */
343 static int offreg; /* Kludge to identify basereg references */
344
345 /* This value is added to each symbol value. FIXME: Generalize to
346 the section_offsets structure used by dbxread. */
347 static CORE_ADDR baseaddr; /* Add to each symbol value */
348
349 /* The section offsets used in the current psymtab or symtab. FIXME,
350 only used to pass one value (baseaddr) at the moment. */
351 static struct section_offsets *base_section_offsets;
352
353 /* Each partial symbol table entry contains a pointer to private data for the
354 read_symtab() function to use when expanding a partial symbol table entry
355 to a full symbol table entry. For DWARF debugging info, this data is
356 contained in the following structure and macros are provided for easy
357 access to the members given a pointer to a partial symbol table entry.
358
359 dbfoff Always the absolute file offset to the start of the ".debug"
360 section for the file containing the DIE's being accessed.
361
362 dbroff Relative offset from the start of the ".debug" access to the
363 first DIE to be accessed. When building the partial symbol
364 table, this value will be zero since we are accessing the
365 entire ".debug" section. When expanding a partial symbol
366 table entry, this value will be the offset to the first
367 DIE for the compilation unit containing the symbol that
368 triggers the expansion.
369
370 dblength The size of the chunk of DIE's being examined, in bytes.
371
372 lnfoff The absolute file offset to the line table fragment. Ignored
373 when building partial symbol tables, but used when expanding
374 them, and contains the absolute file offset to the fragment
375 of the ".line" section containing the line numbers for the
376 current compilation unit.
377 */
378
379 struct dwfinfo {
380 file_ptr dbfoff; /* Absolute file offset to start of .debug section */
381 int dbroff; /* Relative offset from start of .debug section */
382 int dblength; /* Size of the chunk of DIE's being examined */
383 file_ptr lnfoff; /* Absolute file offset to line table fragment */
384 };
385
386 #define DBFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbfoff)
387 #define DBROFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbroff)
388 #define DBLENGTH(p) (((struct dwfinfo *)((p)->read_symtab_private))->dblength)
389 #define LNFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->lnfoff)
390
391 /* The generic symbol table building routines have separate lists for
392 file scope symbols and all all other scopes (local scopes). So
393 we need to select the right one to pass to add_symbol_to_list().
394 We do it by keeping a pointer to the correct list in list_in_scope.
395
396 FIXME: The original dwarf code just treated the file scope as the first
397 local scope, and all other local scopes as nested local scopes, and worked
398 fine. Check to see if we really need to distinguish these in buildsym.c */
399
400 struct pending **list_in_scope = &file_symbols;
401
402 /* DIES which have user defined types or modified user defined types refer to
403 other DIES for the type information. Thus we need to associate the offset
404 of a DIE for a user defined type with a pointer to the type information.
405
406 Originally this was done using a simple but expensive algorithm, with an
407 array of unsorted structures, each containing an offset/type-pointer pair.
408 This array was scanned linearly each time a lookup was done. The result
409 was that gdb was spending over half it's startup time munging through this
410 array of pointers looking for a structure that had the right offset member.
411
412 The second attempt used the same array of structures, but the array was
413 sorted using qsort each time a new offset/type was recorded, and a binary
414 search was used to find the type pointer for a given DIE offset. This was
415 even slower, due to the overhead of sorting the array each time a new
416 offset/type pair was entered.
417
418 The third attempt uses a fixed size array of type pointers, indexed by a
419 value derived from the DIE offset. Since the minimum DIE size is 4 bytes,
420 we can divide any DIE offset by 4 to obtain a unique index into this fixed
421 size array. Since each element is a 4 byte pointer, it takes exactly as
422 much memory to hold this array as to hold the DWARF info for a given
423 compilation unit. But it gets freed as soon as we are done with it.
424 This has worked well in practice, as a reasonable tradeoff between memory
425 consumption and speed, without having to resort to much more complicated
426 algorithms. */
427
428 static struct type **utypes; /* Pointer to array of user type pointers */
429 static int numutypes; /* Max number of user type pointers */
430
431 /* Maintain an array of referenced fundamental types for the current
432 compilation unit being read. For DWARF version 1, we have to construct
433 the fundamental types on the fly, since no information about the
434 fundamental types is supplied. Each such fundamental type is created by
435 calling a language dependent routine to create the type, and then a
436 pointer to that type is then placed in the array at the index specified
437 by it's FT_<TYPENAME> value. The array has a fixed size set by the
438 FT_NUM_MEMBERS compile time constant, which is the number of predefined
439 fundamental types gdb knows how to construct. */
440
441 static struct type *ftypes[FT_NUM_MEMBERS]; /* Fundamental types */
442
443 /* Record the language for the compilation unit which is currently being
444 processed. We know it once we have seen the TAG_compile_unit DIE,
445 and we need it while processing the DIE's for that compilation unit.
446 It is eventually saved in the symtab structure, but we don't finalize
447 the symtab struct until we have processed all the DIE's for the
448 compilation unit. We also need to get and save a pointer to the
449 language struct for this language, so we can call the language
450 dependent routines for doing things such as creating fundamental
451 types. */
452
453 static enum language cu_language;
454 static const struct language_defn *cu_language_defn;
455
456 /* Forward declarations of static functions so we don't have to worry
457 about ordering within this file. */
458
459 static int
460 attribute_size PARAMS ((unsigned int));
461
462 static unsigned long
463 target_to_host PARAMS ((char *, int, int, struct objfile *));
464
465 static void
466 add_enum_psymbol PARAMS ((struct dieinfo *, struct objfile *));
467
468 static void
469 handle_producer PARAMS ((char *));
470
471 static void
472 read_file_scope PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
473
474 static void
475 read_func_scope PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
476
477 static void
478 read_lexical_block_scope PARAMS ((struct dieinfo *, char *, char *,
479 struct objfile *));
480
481 static void
482 scan_partial_symbols PARAMS ((char *, char *, struct objfile *));
483
484 static void
485 scan_compilation_units PARAMS ((char *, char *, file_ptr,
486 file_ptr, struct objfile *));
487
488 static void
489 add_partial_symbol PARAMS ((struct dieinfo *, struct objfile *));
490
491 static void
492 init_psymbol_list PARAMS ((struct objfile *, int));
493
494 static void
495 basicdieinfo PARAMS ((struct dieinfo *, char *, struct objfile *));
496
497 static void
498 completedieinfo PARAMS ((struct dieinfo *, struct objfile *));
499
500 static void
501 dwarf_psymtab_to_symtab PARAMS ((struct partial_symtab *));
502
503 static void
504 psymtab_to_symtab_1 PARAMS ((struct partial_symtab *));
505
506 static struct symtab *
507 read_ofile_symtab PARAMS ((struct partial_symtab *));
508
509 static void
510 process_dies PARAMS ((char *, char *, struct objfile *));
511
512 static void
513 read_structure_scope PARAMS ((struct dieinfo *, char *, char *,
514 struct objfile *));
515
516 static struct type *
517 decode_array_element_type PARAMS ((char *));
518
519 static struct type *
520 decode_subscript_data_item PARAMS ((char *, char *));
521
522 static void
523 dwarf_read_array_type PARAMS ((struct dieinfo *));
524
525 static void
526 read_tag_pointer_type PARAMS ((struct dieinfo *dip));
527
528 static void
529 read_subroutine_type PARAMS ((struct dieinfo *, char *, char *));
530
531 static void
532 read_enumeration PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
533
534 static struct type *
535 struct_type PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
536
537 static struct type *
538 enum_type PARAMS ((struct dieinfo *, struct objfile *));
539
540 static void
541 decode_line_numbers PARAMS ((char *));
542
543 static struct type *
544 decode_die_type PARAMS ((struct dieinfo *));
545
546 static struct type *
547 decode_mod_fund_type PARAMS ((char *));
548
549 static struct type *
550 decode_mod_u_d_type PARAMS ((char *));
551
552 static struct type *
553 decode_modified_type PARAMS ((char *, unsigned int, int));
554
555 static struct type *
556 decode_fund_type PARAMS ((unsigned int));
557
558 static char *
559 create_name PARAMS ((char *, struct obstack *));
560
561 static struct type *
562 lookup_utype PARAMS ((DIE_REF));
563
564 static struct type *
565 alloc_utype PARAMS ((DIE_REF, struct type *));
566
567 static struct symbol *
568 new_symbol PARAMS ((struct dieinfo *, struct objfile *));
569
570 static void
571 synthesize_typedef PARAMS ((struct dieinfo *, struct objfile *,
572 struct type *));
573
574 static int
575 locval PARAMS ((char *));
576
577 static void
578 record_minimal_symbol PARAMS ((char *, CORE_ADDR, enum minimal_symbol_type,
579 struct objfile *));
580
581 static void
582 set_cu_language PARAMS ((struct dieinfo *));
583
584 static struct type *
585 dwarf_fundamental_type PARAMS ((struct objfile *, int));
586
587
588 /*
589
590 LOCAL FUNCTION
591
592 dwarf_fundamental_type -- lookup or create a fundamental type
593
594 SYNOPSIS
595
596 struct type *
597 dwarf_fundamental_type (struct objfile *objfile, int typeid)
598
599 DESCRIPTION
600
601 DWARF version 1 doesn't supply any fundamental type information,
602 so gdb has to construct such types. It has a fixed number of
603 fundamental types that it knows how to construct, which is the
604 union of all types that it knows how to construct for all languages
605 that it knows about. These are enumerated in gdbtypes.h.
606
607 As an example, assume we find a DIE that references a DWARF
608 fundamental type of FT_integer. We first look in the ftypes
609 array to see if we already have such a type, indexed by the
610 gdb internal value of FT_INTEGER. If so, we simply return a
611 pointer to that type. If not, then we ask an appropriate
612 language dependent routine to create a type FT_INTEGER, using
613 defaults reasonable for the current target machine, and install
614 that type in ftypes for future reference.
615
616 RETURNS
617
618 Pointer to a fundamental type.
619
620 */
621
622 static struct type *
623 dwarf_fundamental_type (objfile, typeid)
624 struct objfile *objfile;
625 int typeid;
626 {
627 if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
628 {
629 error ("internal error - invalid fundamental type id %d", typeid);
630 }
631
632 /* Look for this particular type in the fundamental type vector. If one is
633 not found, create and install one appropriate for the current language
634 and the current target machine. */
635
636 if (ftypes[typeid] == NULL)
637 {
638 ftypes[typeid] = cu_language_defn -> la_fund_type(objfile, typeid);
639 }
640
641 return (ftypes[typeid]);
642 }
643
644 /*
645
646 LOCAL FUNCTION
647
648 set_cu_language -- set local copy of language for compilation unit
649
650 SYNOPSIS
651
652 void
653 set_cu_language (struct dieinfo *dip)
654
655 DESCRIPTION
656
657 Decode the language attribute for a compilation unit DIE and
658 remember what the language was. We use this at various times
659 when processing DIE's for a given compilation unit.
660
661 RETURNS
662
663 No return value.
664
665 */
666
667 static void
668 set_cu_language (dip)
669 struct dieinfo *dip;
670 {
671 switch (dip -> at_language)
672 {
673 case LANG_C89:
674 case LANG_C:
675 cu_language = language_c;
676 break;
677 case LANG_C_PLUS_PLUS:
678 cu_language = language_cplus;
679 break;
680 /* start-sanitize-chill */
681 case LANG_CHILL:
682 cu_language = language_chill;
683 break;
684 /* end-sanitize-chill */
685 case LANG_MODULA2:
686 cu_language = language_m2;
687 break;
688 case LANG_ADA83:
689 case LANG_COBOL74:
690 case LANG_COBOL85:
691 case LANG_FORTRAN77:
692 case LANG_FORTRAN90:
693 case LANG_PASCAL83:
694 default:
695 cu_language = language_unknown;
696 break;
697 }
698 cu_language_defn = language_def (cu_language);
699 }
700
701 /*
702
703 GLOBAL FUNCTION
704
705 dwarf_build_psymtabs -- build partial symtabs from DWARF debug info
706
707 SYNOPSIS
708
709 void dwarf_build_psymtabs (struct objfile *objfile,
710 struct section_offsets *section_offsets,
711 int mainline, file_ptr dbfoff, unsigned int dbfsize,
712 file_ptr lnoffset, unsigned int lnsize)
713
714 DESCRIPTION
715
716 This function is called upon to build partial symtabs from files
717 containing DIE's (Dwarf Information Entries) and DWARF line numbers.
718
719 It is passed a bfd* containing the DIES
720 and line number information, the corresponding filename for that
721 file, a base address for relocating the symbols, a flag indicating
722 whether or not this debugging information is from a "main symbol
723 table" rather than a shared library or dynamically linked file,
724 and file offset/size pairs for the DIE information and line number
725 information.
726
727 RETURNS
728
729 No return value.
730
731 */
732
733 void
734 dwarf_build_psymtabs (objfile, section_offsets, mainline, dbfoff, dbfsize,
735 lnoffset, lnsize)
736 struct objfile *objfile;
737 struct section_offsets *section_offsets;
738 int mainline;
739 file_ptr dbfoff;
740 unsigned int dbfsize;
741 file_ptr lnoffset;
742 unsigned int lnsize;
743 {
744 bfd *abfd = objfile->obfd;
745 struct cleanup *back_to;
746
747 current_objfile = objfile;
748 dbsize = dbfsize;
749 dbbase = xmalloc (dbsize);
750 dbroff = 0;
751 if ((bfd_seek (abfd, dbfoff, L_SET) != 0) ||
752 (bfd_read (dbbase, dbsize, 1, abfd) != dbsize))
753 {
754 free (dbbase);
755 error ("can't read DWARF data from '%s'", bfd_get_filename (abfd));
756 }
757 back_to = make_cleanup (free, dbbase);
758
759 /* If we are reinitializing, or if we have never loaded syms yet, init.
760 Since we have no idea how many DIES we are looking at, we just guess
761 some arbitrary value. */
762
763 if (mainline || objfile -> global_psymbols.size == 0 ||
764 objfile -> static_psymbols.size == 0)
765 {
766 init_psymbol_list (objfile, 1024);
767 }
768
769 /* Save the relocation factor where everybody can see it. */
770
771 base_section_offsets = section_offsets;
772 baseaddr = ANOFFSET (section_offsets, 0);
773
774 /* Follow the compilation unit sibling chain, building a partial symbol
775 table entry for each one. Save enough information about each compilation
776 unit to locate the full DWARF information later. */
777
778 scan_compilation_units (dbbase, dbbase + dbsize, dbfoff, lnoffset, objfile);
779
780 do_cleanups (back_to);
781 current_objfile = NULL;
782 }
783
784
785 /*
786
787 LOCAL FUNCTION
788
789 record_minimal_symbol -- add entry to gdb's minimal symbol table
790
791 SYNOPSIS
792
793 static void record_minimal_symbol (char *name, CORE_ADDR address,
794 enum minimal_symbol_type ms_type,
795 struct objfile *objfile)
796
797 DESCRIPTION
798
799 Given a pointer to the name of a symbol that should be added to the
800 minimal symbol table, and the address associated with that
801 symbol, records this information for later use in building the
802 minimal symbol table.
803
804 */
805
806 static void
807 record_minimal_symbol (name, address, ms_type, objfile)
808 char *name;
809 CORE_ADDR address;
810 enum minimal_symbol_type ms_type;
811 struct objfile *objfile;
812 {
813 name = obsavestring (name, strlen (name), &objfile -> symbol_obstack);
814 prim_record_minimal_symbol (name, address, ms_type);
815 }
816
817 /*
818
819 LOCAL FUNCTION
820
821 read_lexical_block_scope -- process all dies in a lexical block
822
823 SYNOPSIS
824
825 static void read_lexical_block_scope (struct dieinfo *dip,
826 char *thisdie, char *enddie)
827
828 DESCRIPTION
829
830 Process all the DIES contained within a lexical block scope.
831 Start a new scope, process the dies, and then close the scope.
832
833 */
834
835 static void
836 read_lexical_block_scope (dip, thisdie, enddie, objfile)
837 struct dieinfo *dip;
838 char *thisdie;
839 char *enddie;
840 struct objfile *objfile;
841 {
842 register struct context_stack *new;
843
844 push_context (0, dip -> at_low_pc);
845 process_dies (thisdie + dip -> die_length, enddie, objfile);
846 new = pop_context ();
847 if (local_symbols != NULL)
848 {
849 finish_block (0, &local_symbols, new -> old_blocks, new -> start_addr,
850 dip -> at_high_pc, objfile);
851 }
852 local_symbols = new -> locals;
853 }
854
855 /*
856
857 LOCAL FUNCTION
858
859 lookup_utype -- look up a user defined type from die reference
860
861 SYNOPSIS
862
863 static type *lookup_utype (DIE_REF die_ref)
864
865 DESCRIPTION
866
867 Given a DIE reference, lookup the user defined type associated with
868 that DIE, if it has been registered already. If not registered, then
869 return NULL. Alloc_utype() can be called to register an empty
870 type for this reference, which will be filled in later when the
871 actual referenced DIE is processed.
872 */
873
874 static struct type *
875 lookup_utype (die_ref)
876 DIE_REF die_ref;
877 {
878 struct type *type = NULL;
879 int utypeidx;
880
881 utypeidx = (die_ref - dbroff) / 4;
882 if ((utypeidx < 0) || (utypeidx >= numutypes))
883 {
884 complain (&bad_die_ref, DIE_ID, DIE_NAME);
885 }
886 else
887 {
888 type = *(utypes + utypeidx);
889 }
890 return (type);
891 }
892
893
894 /*
895
896 LOCAL FUNCTION
897
898 alloc_utype -- add a user defined type for die reference
899
900 SYNOPSIS
901
902 static type *alloc_utype (DIE_REF die_ref, struct type *utypep)
903
904 DESCRIPTION
905
906 Given a die reference DIE_REF, and a possible pointer to a user
907 defined type UTYPEP, register that this reference has a user
908 defined type and either use the specified type in UTYPEP or
909 make a new empty type that will be filled in later.
910
911 We should only be called after calling lookup_utype() to verify that
912 there is not currently a type registered for DIE_REF.
913 */
914
915 static struct type *
916 alloc_utype (die_ref, utypep)
917 DIE_REF die_ref;
918 struct type *utypep;
919 {
920 struct type **typep;
921 int utypeidx;
922
923 utypeidx = (die_ref - dbroff) / 4;
924 typep = utypes + utypeidx;
925 if ((utypeidx < 0) || (utypeidx >= numutypes))
926 {
927 utypep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
928 complain (&bad_die_ref, DIE_ID, DIE_NAME);
929 }
930 else if (*typep != NULL)
931 {
932 utypep = *typep;
933 complain (&dup_user_type_allocation, DIE_ID, DIE_NAME);
934 }
935 else
936 {
937 if (utypep == NULL)
938 {
939 utypep = alloc_type (current_objfile);
940 }
941 *typep = utypep;
942 }
943 return (utypep);
944 }
945
946 /*
947
948 LOCAL FUNCTION
949
950 decode_die_type -- return a type for a specified die
951
952 SYNOPSIS
953
954 static struct type *decode_die_type (struct dieinfo *dip)
955
956 DESCRIPTION
957
958 Given a pointer to a die information structure DIP, decode the
959 type of the die and return a pointer to the decoded type. All
960 dies without specific types default to type int.
961 */
962
963 static struct type *
964 decode_die_type (dip)
965 struct dieinfo *dip;
966 {
967 struct type *type = NULL;
968
969 if (dip -> at_fund_type != 0)
970 {
971 type = decode_fund_type (dip -> at_fund_type);
972 }
973 else if (dip -> at_mod_fund_type != NULL)
974 {
975 type = decode_mod_fund_type (dip -> at_mod_fund_type);
976 }
977 else if (dip -> at_user_def_type)
978 {
979 if ((type = lookup_utype (dip -> at_user_def_type)) == NULL)
980 {
981 type = alloc_utype (dip -> at_user_def_type, NULL);
982 }
983 }
984 else if (dip -> at_mod_u_d_type)
985 {
986 type = decode_mod_u_d_type (dip -> at_mod_u_d_type);
987 }
988 else
989 {
990 type = dwarf_fundamental_type (current_objfile, FT_INTEGER);
991 }
992 return (type);
993 }
994
995 /*
996
997 LOCAL FUNCTION
998
999 struct_type -- compute and return the type for a struct or union
1000
1001 SYNOPSIS
1002
1003 static struct type *struct_type (struct dieinfo *dip, char *thisdie,
1004 char *enddie, struct objfile *objfile)
1005
1006 DESCRIPTION
1007
1008 Given pointer to a die information structure for a die which
1009 defines a union or structure (and MUST define one or the other),
1010 and pointers to the raw die data that define the range of dies which
1011 define the members, compute and return the user defined type for the
1012 structure or union.
1013 */
1014
1015 static struct type *
1016 struct_type (dip, thisdie, enddie, objfile)
1017 struct dieinfo *dip;
1018 char *thisdie;
1019 char *enddie;
1020 struct objfile *objfile;
1021 {
1022 struct type *type;
1023 struct nextfield {
1024 struct nextfield *next;
1025 struct field field;
1026 };
1027 struct nextfield *list = NULL;
1028 struct nextfield *new;
1029 int nfields = 0;
1030 int n;
1031 char *tpart1;
1032 struct dieinfo mbr;
1033 char *nextdie;
1034 #if !BITS_BIG_ENDIAN
1035 int anonymous_size;
1036 #endif
1037
1038 if ((type = lookup_utype (dip -> die_ref)) == NULL)
1039 {
1040 /* No forward references created an empty type, so install one now */
1041 type = alloc_utype (dip -> die_ref, NULL);
1042 }
1043 INIT_CPLUS_SPECIFIC(type);
1044 switch (dip -> die_tag)
1045 {
1046 case TAG_class_type:
1047 TYPE_CODE (type) = TYPE_CODE_CLASS;
1048 tpart1 = "class";
1049 break;
1050 case TAG_structure_type:
1051 TYPE_CODE (type) = TYPE_CODE_STRUCT;
1052 tpart1 = "struct";
1053 break;
1054 case TAG_union_type:
1055 TYPE_CODE (type) = TYPE_CODE_UNION;
1056 tpart1 = "union";
1057 break;
1058 default:
1059 /* Should never happen */
1060 TYPE_CODE (type) = TYPE_CODE_UNDEF;
1061 tpart1 = "???";
1062 complain (&missing_tag, DIE_ID, DIE_NAME);
1063 break;
1064 }
1065 /* Some compilers try to be helpful by inventing "fake" names for
1066 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1067 Thanks, but no thanks... */
1068 if (dip -> at_name != NULL
1069 && *dip -> at_name != '~'
1070 && *dip -> at_name != '.')
1071 {
1072 TYPE_NAME (type) = obconcat (&objfile -> type_obstack,
1073 tpart1, " ", dip -> at_name);
1074 }
1075 /* Use whatever size is known. Zero is a valid size. We might however
1076 wish to check has_at_byte_size to make sure that some byte size was
1077 given explicitly, but DWARF doesn't specify that explicit sizes of
1078 zero have to present, so complaining about missing sizes should
1079 probably not be the default. */
1080 TYPE_LENGTH (type) = dip -> at_byte_size;
1081 thisdie += dip -> die_length;
1082 while (thisdie < enddie)
1083 {
1084 basicdieinfo (&mbr, thisdie, objfile);
1085 completedieinfo (&mbr, objfile);
1086 if (mbr.die_length <= SIZEOF_DIE_LENGTH)
1087 {
1088 break;
1089 }
1090 else if (mbr.at_sibling != 0)
1091 {
1092 nextdie = dbbase + mbr.at_sibling - dbroff;
1093 }
1094 else
1095 {
1096 nextdie = thisdie + mbr.die_length;
1097 }
1098 switch (mbr.die_tag)
1099 {
1100 case TAG_member:
1101 /* Get space to record the next field's data. */
1102 new = (struct nextfield *) alloca (sizeof (struct nextfield));
1103 new -> next = list;
1104 list = new;
1105 /* Save the data. */
1106 list -> field.name =
1107 obsavestring (mbr.at_name, strlen (mbr.at_name),
1108 &objfile -> type_obstack);
1109 list -> field.type = decode_die_type (&mbr);
1110 list -> field.bitpos = 8 * locval (mbr.at_location);
1111 /* Handle bit fields. */
1112 list -> field.bitsize = mbr.at_bit_size;
1113 #if BITS_BIG_ENDIAN
1114 /* For big endian bits, the at_bit_offset gives the additional
1115 bit offset from the MSB of the containing anonymous object to
1116 the MSB of the field. We don't have to do anything special
1117 since we don't need to know the size of the anonymous object. */
1118 list -> field.bitpos += mbr.at_bit_offset;
1119 #else
1120 /* For little endian bits, we need to have a non-zero at_bit_size,
1121 so that we know we are in fact dealing with a bitfield. Compute
1122 the bit offset to the MSB of the anonymous object, subtract off
1123 the number of bits from the MSB of the field to the MSB of the
1124 object, and then subtract off the number of bits of the field
1125 itself. The result is the bit offset of the LSB of the field. */
1126 if (mbr.at_bit_size > 0)
1127 {
1128 if (mbr.has_at_byte_size)
1129 {
1130 /* The size of the anonymous object containing the bit field
1131 is explicit, so use the indicated size (in bytes). */
1132 anonymous_size = mbr.at_byte_size;
1133 }
1134 else
1135 {
1136 /* The size of the anonymous object containing the bit field
1137 matches the size of an object of the bit field's type.
1138 DWARF allows at_byte_size to be left out in such cases,
1139 as a debug information size optimization. */
1140 anonymous_size = TYPE_LENGTH (list -> field.type);
1141 }
1142 list -> field.bitpos +=
1143 anonymous_size * 8 - mbr.at_bit_offset - mbr.at_bit_size;
1144 }
1145 #endif
1146 nfields++;
1147 break;
1148 default:
1149 process_dies (thisdie, nextdie, objfile);
1150 break;
1151 }
1152 thisdie = nextdie;
1153 }
1154 /* Now create the vector of fields, and record how big it is. We may
1155 not even have any fields, if this DIE was generated due to a reference
1156 to an anonymous structure or union. In this case, TYPE_FLAG_STUB is
1157 set, which clues gdb in to the fact that it needs to search elsewhere
1158 for the full structure definition. */
1159 if (nfields == 0)
1160 {
1161 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1162 }
1163 else
1164 {
1165 TYPE_NFIELDS (type) = nfields;
1166 TYPE_FIELDS (type) = (struct field *)
1167 TYPE_ALLOC (type, sizeof (struct field) * nfields);
1168 /* Copy the saved-up fields into the field vector. */
1169 for (n = nfields; list; list = list -> next)
1170 {
1171 TYPE_FIELD (type, --n) = list -> field;
1172 }
1173 }
1174 return (type);
1175 }
1176
1177 /*
1178
1179 LOCAL FUNCTION
1180
1181 read_structure_scope -- process all dies within struct or union
1182
1183 SYNOPSIS
1184
1185 static void read_structure_scope (struct dieinfo *dip,
1186 char *thisdie, char *enddie, struct objfile *objfile)
1187
1188 DESCRIPTION
1189
1190 Called when we find the DIE that starts a structure or union
1191 scope (definition) to process all dies that define the members
1192 of the structure or union. DIP is a pointer to the die info
1193 struct for the DIE that names the structure or union.
1194
1195 NOTES
1196
1197 Note that we need to call struct_type regardless of whether or not
1198 the DIE has an at_name attribute, since it might be an anonymous
1199 structure or union. This gets the type entered into our set of
1200 user defined types.
1201
1202 However, if the structure is incomplete (an opaque struct/union)
1203 then suppress creating a symbol table entry for it since gdb only
1204 wants to find the one with the complete definition. Note that if
1205 it is complete, we just call new_symbol, which does it's own
1206 checking about whether the struct/union is anonymous or not (and
1207 suppresses creating a symbol table entry itself).
1208
1209 */
1210
1211 static void
1212 read_structure_scope (dip, thisdie, enddie, objfile)
1213 struct dieinfo *dip;
1214 char *thisdie;
1215 char *enddie;
1216 struct objfile *objfile;
1217 {
1218 struct type *type;
1219 struct symbol *sym;
1220
1221 type = struct_type (dip, thisdie, enddie, objfile);
1222 if (!(TYPE_FLAGS (type) & TYPE_FLAG_STUB))
1223 {
1224 sym = new_symbol (dip, objfile);
1225 if (sym != NULL)
1226 {
1227 SYMBOL_TYPE (sym) = type;
1228 if (cu_language == language_cplus)
1229 {
1230 synthesize_typedef (dip, objfile, type);
1231 }
1232 }
1233 }
1234 }
1235
1236 /*
1237
1238 LOCAL FUNCTION
1239
1240 decode_array_element_type -- decode type of the array elements
1241
1242 SYNOPSIS
1243
1244 static struct type *decode_array_element_type (char *scan, char *end)
1245
1246 DESCRIPTION
1247
1248 As the last step in decoding the array subscript information for an
1249 array DIE, we need to decode the type of the array elements. We are
1250 passed a pointer to this last part of the subscript information and
1251 must return the appropriate type. If the type attribute is not
1252 recognized, just warn about the problem and return type int.
1253 */
1254
1255 static struct type *
1256 decode_array_element_type (scan)
1257 char *scan;
1258 {
1259 struct type *typep;
1260 DIE_REF die_ref;
1261 unsigned short attribute;
1262 unsigned short fundtype;
1263 int nbytes;
1264
1265 attribute = target_to_host (scan, SIZEOF_ATTRIBUTE, GET_UNSIGNED,
1266 current_objfile);
1267 scan += SIZEOF_ATTRIBUTE;
1268 if ((nbytes = attribute_size (attribute)) == -1)
1269 {
1270 complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute);
1271 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1272 }
1273 else
1274 {
1275 switch (attribute)
1276 {
1277 case AT_fund_type:
1278 fundtype = target_to_host (scan, nbytes, GET_UNSIGNED,
1279 current_objfile);
1280 typep = decode_fund_type (fundtype);
1281 break;
1282 case AT_mod_fund_type:
1283 typep = decode_mod_fund_type (scan);
1284 break;
1285 case AT_user_def_type:
1286 die_ref = target_to_host (scan, nbytes, GET_UNSIGNED,
1287 current_objfile);
1288 if ((typep = lookup_utype (die_ref)) == NULL)
1289 {
1290 typep = alloc_utype (die_ref, NULL);
1291 }
1292 break;
1293 case AT_mod_u_d_type:
1294 typep = decode_mod_u_d_type (scan);
1295 break;
1296 default:
1297 complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute);
1298 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1299 break;
1300 }
1301 }
1302 return (typep);
1303 }
1304
1305 /*
1306
1307 LOCAL FUNCTION
1308
1309 decode_subscript_data_item -- decode array subscript item
1310
1311 SYNOPSIS
1312
1313 static struct type *
1314 decode_subscript_data_item (char *scan, char *end)
1315
1316 DESCRIPTION
1317
1318 The array subscripts and the data type of the elements of an
1319 array are described by a list of data items, stored as a block
1320 of contiguous bytes. There is a data item describing each array
1321 dimension, and a final data item describing the element type.
1322 The data items are ordered the same as their appearance in the
1323 source (I.E. leftmost dimension first, next to leftmost second,
1324 etc).
1325
1326 The data items describing each array dimension consist of four
1327 parts: (1) a format specifier, (2) type type of the subscript
1328 index, (3) a description of the low bound of the array dimension,
1329 and (4) a description of the high bound of the array dimension.
1330
1331 The last data item is the description of the type of each of
1332 the array elements.
1333
1334 We are passed a pointer to the start of the block of bytes
1335 containing the remaining data items, and a pointer to the first
1336 byte past the data. This function recursively decodes the
1337 remaining data items and returns a type.
1338
1339 If we somehow fail to decode some data, we complain about it
1340 and return a type "array of int".
1341
1342 BUGS
1343 FIXME: This code only implements the forms currently used
1344 by the AT&T and GNU C compilers.
1345
1346 The end pointer is supplied for error checking, maybe we should
1347 use it for that...
1348 */
1349
1350 static struct type *
1351 decode_subscript_data_item (scan, end)
1352 char *scan;
1353 char *end;
1354 {
1355 struct type *typep = NULL; /* Array type we are building */
1356 struct type *nexttype; /* Type of each element (may be array) */
1357 struct type *indextype; /* Type of this index */
1358 struct type *rangetype;
1359 unsigned int format;
1360 unsigned short fundtype;
1361 unsigned long lowbound;
1362 unsigned long highbound;
1363 int nbytes;
1364
1365 format = target_to_host (scan, SIZEOF_FORMAT_SPECIFIER, GET_UNSIGNED,
1366 current_objfile);
1367 scan += SIZEOF_FORMAT_SPECIFIER;
1368 switch (format)
1369 {
1370 case FMT_ET:
1371 typep = decode_array_element_type (scan);
1372 break;
1373 case FMT_FT_C_C:
1374 fundtype = target_to_host (scan, SIZEOF_FMT_FT, GET_UNSIGNED,
1375 current_objfile);
1376 indextype = decode_fund_type (fundtype);
1377 scan += SIZEOF_FMT_FT;
1378 nbytes = TARGET_FT_LONG_SIZE (current_objfile);
1379 lowbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1380 scan += nbytes;
1381 highbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1382 scan += nbytes;
1383 nexttype = decode_subscript_data_item (scan, end);
1384 if (nexttype == NULL)
1385 {
1386 /* Munged subscript data or other problem, fake it. */
1387 complain (&subscript_data_items, DIE_ID, DIE_NAME);
1388 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1389 }
1390 rangetype = create_range_type ((struct type *) NULL, indextype,
1391 lowbound, highbound);
1392 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1393 break;
1394 case FMT_FT_C_X:
1395 case FMT_FT_X_C:
1396 case FMT_FT_X_X:
1397 case FMT_UT_C_C:
1398 case FMT_UT_C_X:
1399 case FMT_UT_X_C:
1400 case FMT_UT_X_X:
1401 complain (&unhandled_array_subscript_format, DIE_ID, DIE_NAME, format);
1402 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1403 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1404 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1405 break;
1406 default:
1407 complain (&unknown_array_subscript_format, DIE_ID, DIE_NAME, format);
1408 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1409 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1410 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1411 break;
1412 }
1413 return (typep);
1414 }
1415
1416 /*
1417
1418 LOCAL FUNCTION
1419
1420 dwarf_read_array_type -- read TAG_array_type DIE
1421
1422 SYNOPSIS
1423
1424 static void dwarf_read_array_type (struct dieinfo *dip)
1425
1426 DESCRIPTION
1427
1428 Extract all information from a TAG_array_type DIE and add to
1429 the user defined type vector.
1430 */
1431
1432 static void
1433 dwarf_read_array_type (dip)
1434 struct dieinfo *dip;
1435 {
1436 struct type *type;
1437 struct type *utype;
1438 char *sub;
1439 char *subend;
1440 unsigned short blocksz;
1441 int nbytes;
1442
1443 if (dip -> at_ordering != ORD_row_major)
1444 {
1445 /* FIXME: Can gdb even handle column major arrays? */
1446 complain (&not_row_major, DIE_ID, DIE_NAME);
1447 }
1448 if ((sub = dip -> at_subscr_data) != NULL)
1449 {
1450 nbytes = attribute_size (AT_subscr_data);
1451 blocksz = target_to_host (sub, nbytes, GET_UNSIGNED, current_objfile);
1452 subend = sub + nbytes + blocksz;
1453 sub += nbytes;
1454 type = decode_subscript_data_item (sub, subend);
1455 if ((utype = lookup_utype (dip -> die_ref)) == NULL)
1456 {
1457 /* Install user defined type that has not been referenced yet. */
1458 alloc_utype (dip -> die_ref, type);
1459 }
1460 else if (TYPE_CODE (utype) == TYPE_CODE_UNDEF)
1461 {
1462 /* Ick! A forward ref has already generated a blank type in our
1463 slot, and this type probably already has things pointing to it
1464 (which is what caused it to be created in the first place).
1465 If it's just a place holder we can plop our fully defined type
1466 on top of it. We can't recover the space allocated for our
1467 new type since it might be on an obstack, but we could reuse
1468 it if we kept a list of them, but it might not be worth it
1469 (FIXME). */
1470 *utype = *type;
1471 }
1472 else
1473 {
1474 /* Double ick! Not only is a type already in our slot, but
1475 someone has decorated it. Complain and leave it alone. */
1476 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1477 }
1478 }
1479 }
1480
1481 /*
1482
1483 LOCAL FUNCTION
1484
1485 read_tag_pointer_type -- read TAG_pointer_type DIE
1486
1487 SYNOPSIS
1488
1489 static void read_tag_pointer_type (struct dieinfo *dip)
1490
1491 DESCRIPTION
1492
1493 Extract all information from a TAG_pointer_type DIE and add to
1494 the user defined type vector.
1495 */
1496
1497 static void
1498 read_tag_pointer_type (dip)
1499 struct dieinfo *dip;
1500 {
1501 struct type *type;
1502 struct type *utype;
1503
1504 type = decode_die_type (dip);
1505 if ((utype = lookup_utype (dip -> die_ref)) == NULL)
1506 {
1507 utype = lookup_pointer_type (type);
1508 alloc_utype (dip -> die_ref, utype);
1509 }
1510 else
1511 {
1512 TYPE_TARGET_TYPE (utype) = type;
1513 TYPE_POINTER_TYPE (type) = utype;
1514
1515 /* We assume the machine has only one representation for pointers! */
1516 /* FIXME: This confuses host<->target data representations, and is a
1517 poor assumption besides. */
1518
1519 TYPE_LENGTH (utype) = sizeof (char *);
1520 TYPE_CODE (utype) = TYPE_CODE_PTR;
1521 }
1522 }
1523
1524 /*
1525
1526 LOCAL FUNCTION
1527
1528 read_subroutine_type -- process TAG_subroutine_type dies
1529
1530 SYNOPSIS
1531
1532 static void read_subroutine_type (struct dieinfo *dip, char thisdie,
1533 char *enddie)
1534
1535 DESCRIPTION
1536
1537 Handle DIES due to C code like:
1538
1539 struct foo {
1540 int (*funcp)(int a, long l); (Generates TAG_subroutine_type DIE)
1541 int b;
1542 };
1543
1544 NOTES
1545
1546 The parameter DIES are currently ignored. See if gdb has a way to
1547 include this info in it's type system, and decode them if so. Is
1548 this what the type structure's "arg_types" field is for? (FIXME)
1549 */
1550
1551 static void
1552 read_subroutine_type (dip, thisdie, enddie)
1553 struct dieinfo *dip;
1554 char *thisdie;
1555 char *enddie;
1556 {
1557 struct type *type; /* Type that this function returns */
1558 struct type *ftype; /* Function that returns above type */
1559
1560 /* Decode the type that this subroutine returns */
1561
1562 type = decode_die_type (dip);
1563
1564 /* Check to see if we already have a partially constructed user
1565 defined type for this DIE, from a forward reference. */
1566
1567 if ((ftype = lookup_utype (dip -> die_ref)) == NULL)
1568 {
1569 /* This is the first reference to one of these types. Make
1570 a new one and place it in the user defined types. */
1571 ftype = lookup_function_type (type);
1572 alloc_utype (dip -> die_ref, ftype);
1573 }
1574 else if (TYPE_CODE (ftype) == TYPE_CODE_UNDEF)
1575 {
1576 /* We have an existing partially constructed type, so bash it
1577 into the correct type. */
1578 TYPE_TARGET_TYPE (ftype) = type;
1579 TYPE_FUNCTION_TYPE (type) = ftype;
1580 TYPE_LENGTH (ftype) = 1;
1581 TYPE_CODE (ftype) = TYPE_CODE_FUNC;
1582 }
1583 else
1584 {
1585 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1586 }
1587 }
1588
1589 /*
1590
1591 LOCAL FUNCTION
1592
1593 read_enumeration -- process dies which define an enumeration
1594
1595 SYNOPSIS
1596
1597 static void read_enumeration (struct dieinfo *dip, char *thisdie,
1598 char *enddie, struct objfile *objfile)
1599
1600 DESCRIPTION
1601
1602 Given a pointer to a die which begins an enumeration, process all
1603 the dies that define the members of the enumeration.
1604
1605 NOTES
1606
1607 Note that we need to call enum_type regardless of whether or not we
1608 have a symbol, since we might have an enum without a tag name (thus
1609 no symbol for the tagname).
1610 */
1611
1612 static void
1613 read_enumeration (dip, thisdie, enddie, objfile)
1614 struct dieinfo *dip;
1615 char *thisdie;
1616 char *enddie;
1617 struct objfile *objfile;
1618 {
1619 struct type *type;
1620 struct symbol *sym;
1621
1622 type = enum_type (dip, objfile);
1623 sym = new_symbol (dip, objfile);
1624 if (sym != NULL)
1625 {
1626 SYMBOL_TYPE (sym) = type;
1627 if (cu_language == language_cplus)
1628 {
1629 synthesize_typedef (dip, objfile, type);
1630 }
1631 }
1632 }
1633
1634 /*
1635
1636 LOCAL FUNCTION
1637
1638 enum_type -- decode and return a type for an enumeration
1639
1640 SYNOPSIS
1641
1642 static type *enum_type (struct dieinfo *dip, struct objfile *objfile)
1643
1644 DESCRIPTION
1645
1646 Given a pointer to a die information structure for the die which
1647 starts an enumeration, process all the dies that define the members
1648 of the enumeration and return a type pointer for the enumeration.
1649
1650 At the same time, for each member of the enumeration, create a
1651 symbol for it with namespace VAR_NAMESPACE and class LOC_CONST,
1652 and give it the type of the enumeration itself.
1653
1654 NOTES
1655
1656 Note that the DWARF specification explicitly mandates that enum
1657 constants occur in reverse order from the source program order,
1658 for "consistency" and because this ordering is easier for many
1659 compilers to generate. (Draft 6, sec 3.8.5, Enumeration type
1660 Entries). Because gdb wants to see the enum members in program
1661 source order, we have to ensure that the order gets reversed while
1662 we are processing them.
1663 */
1664
1665 static struct type *
1666 enum_type (dip, objfile)
1667 struct dieinfo *dip;
1668 struct objfile *objfile;
1669 {
1670 struct type *type;
1671 struct nextfield {
1672 struct nextfield *next;
1673 struct field field;
1674 };
1675 struct nextfield *list = NULL;
1676 struct nextfield *new;
1677 int nfields = 0;
1678 int n;
1679 char *scan;
1680 char *listend;
1681 unsigned short blocksz;
1682 struct symbol *sym;
1683 int nbytes;
1684
1685 if ((type = lookup_utype (dip -> die_ref)) == NULL)
1686 {
1687 /* No forward references created an empty type, so install one now */
1688 type = alloc_utype (dip -> die_ref, NULL);
1689 }
1690 TYPE_CODE (type) = TYPE_CODE_ENUM;
1691 /* Some compilers try to be helpful by inventing "fake" names for
1692 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1693 Thanks, but no thanks... */
1694 if (dip -> at_name != NULL
1695 && *dip -> at_name != '~'
1696 && *dip -> at_name != '.')
1697 {
1698 TYPE_NAME (type) = obconcat (&objfile -> type_obstack, "enum",
1699 " ", dip -> at_name);
1700 }
1701 if (dip -> at_byte_size != 0)
1702 {
1703 TYPE_LENGTH (type) = dip -> at_byte_size;
1704 }
1705 if ((scan = dip -> at_element_list) != NULL)
1706 {
1707 if (dip -> short_element_list)
1708 {
1709 nbytes = attribute_size (AT_short_element_list);
1710 }
1711 else
1712 {
1713 nbytes = attribute_size (AT_element_list);
1714 }
1715 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
1716 listend = scan + nbytes + blocksz;
1717 scan += nbytes;
1718 while (scan < listend)
1719 {
1720 new = (struct nextfield *) alloca (sizeof (struct nextfield));
1721 new -> next = list;
1722 list = new;
1723 list -> field.type = NULL;
1724 list -> field.bitsize = 0;
1725 list -> field.bitpos =
1726 target_to_host (scan, TARGET_FT_LONG_SIZE (objfile), GET_SIGNED,
1727 objfile);
1728 scan += TARGET_FT_LONG_SIZE (objfile);
1729 list -> field.name = obsavestring (scan, strlen (scan),
1730 &objfile -> type_obstack);
1731 scan += strlen (scan) + 1;
1732 nfields++;
1733 /* Handcraft a new symbol for this enum member. */
1734 sym = (struct symbol *) obstack_alloc (&objfile->symbol_obstack,
1735 sizeof (struct symbol));
1736 memset (sym, 0, sizeof (struct symbol));
1737 SYMBOL_NAME (sym) = create_name (list -> field.name,
1738 &objfile->symbol_obstack);
1739 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1740 SYMBOL_CLASS (sym) = LOC_CONST;
1741 SYMBOL_TYPE (sym) = type;
1742 SYMBOL_VALUE (sym) = list -> field.bitpos;
1743 add_symbol_to_list (sym, list_in_scope);
1744 }
1745 /* Now create the vector of fields, and record how big it is. This is
1746 where we reverse the order, by pulling the members off the list in
1747 reverse order from how they were inserted. If we have no fields
1748 (this is apparently possible in C++) then skip building a field
1749 vector. */
1750 if (nfields > 0)
1751 {
1752 TYPE_NFIELDS (type) = nfields;
1753 TYPE_FIELDS (type) = (struct field *)
1754 obstack_alloc (&objfile->symbol_obstack, sizeof (struct field) * nfields);
1755 /* Copy the saved-up fields into the field vector. */
1756 for (n = 0; (n < nfields) && (list != NULL); list = list -> next)
1757 {
1758 TYPE_FIELD (type, n++) = list -> field;
1759 }
1760 }
1761 }
1762 return (type);
1763 }
1764
1765 /*
1766
1767 LOCAL FUNCTION
1768
1769 read_func_scope -- process all dies within a function scope
1770
1771 DESCRIPTION
1772
1773 Process all dies within a given function scope. We are passed
1774 a die information structure pointer DIP for the die which
1775 starts the function scope, and pointers into the raw die data
1776 that define the dies within the function scope.
1777
1778 For now, we ignore lexical block scopes within the function.
1779 The problem is that AT&T cc does not define a DWARF lexical
1780 block scope for the function itself, while gcc defines a
1781 lexical block scope for the function. We need to think about
1782 how to handle this difference, or if it is even a problem.
1783 (FIXME)
1784 */
1785
1786 static void
1787 read_func_scope (dip, thisdie, enddie, objfile)
1788 struct dieinfo *dip;
1789 char *thisdie;
1790 char *enddie;
1791 struct objfile *objfile;
1792 {
1793 register struct context_stack *new;
1794
1795 if (objfile -> ei.entry_point >= dip -> at_low_pc &&
1796 objfile -> ei.entry_point < dip -> at_high_pc)
1797 {
1798 objfile -> ei.entry_func_lowpc = dip -> at_low_pc;
1799 objfile -> ei.entry_func_highpc = dip -> at_high_pc;
1800 }
1801 if (STREQ (dip -> at_name, "main")) /* FIXME: hardwired name */
1802 {
1803 objfile -> ei.main_func_lowpc = dip -> at_low_pc;
1804 objfile -> ei.main_func_highpc = dip -> at_high_pc;
1805 }
1806 new = push_context (0, dip -> at_low_pc);
1807 new -> name = new_symbol (dip, objfile);
1808 list_in_scope = &local_symbols;
1809 process_dies (thisdie + dip -> die_length, enddie, objfile);
1810 new = pop_context ();
1811 /* Make a block for the local symbols within. */
1812 finish_block (new -> name, &local_symbols, new -> old_blocks,
1813 new -> start_addr, dip -> at_high_pc, objfile);
1814 list_in_scope = &file_symbols;
1815 }
1816
1817
1818 /*
1819
1820 LOCAL FUNCTION
1821
1822 handle_producer -- process the AT_producer attribute
1823
1824 DESCRIPTION
1825
1826 Perform any operations that depend on finding a particular
1827 AT_producer attribute.
1828
1829 */
1830
1831 static void
1832 handle_producer (producer)
1833 char *producer;
1834 {
1835
1836 /* If this compilation unit was compiled with g++ or gcc, then set the
1837 processing_gcc_compilation flag. */
1838
1839 processing_gcc_compilation =
1840 STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER))
1841 /* start-sanitize-chill */
1842 || STREQN (producer, CHILL_PRODUCER, strlen (CHILL_PRODUCER))
1843 /* end-sanitize-chill */
1844 || STREQN (producer, GCC_PRODUCER, strlen (GCC_PRODUCER));
1845
1846 /* Select a demangling style if we can identify the producer and if
1847 the current style is auto. We leave the current style alone if it
1848 is not auto. We also leave the demangling style alone if we find a
1849 gcc (cc1) producer, as opposed to a g++ (cc1plus) producer. */
1850
1851 #if 1 /* Works, but is experimental. -fnf */
1852 if (AUTO_DEMANGLING)
1853 {
1854 if (STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER)))
1855 {
1856 set_demangling_style (GNU_DEMANGLING_STYLE_STRING);
1857 }
1858 else if (STREQN (producer, LCC_PRODUCER, strlen (LCC_PRODUCER)))
1859 {
1860 set_demangling_style (LUCID_DEMANGLING_STYLE_STRING);
1861 }
1862 else if (STREQN (producer, CFRONT_PRODUCER, strlen (CFRONT_PRODUCER)))
1863 {
1864 set_demangling_style (CFRONT_DEMANGLING_STYLE_STRING);
1865 }
1866 }
1867 #endif
1868 }
1869
1870
1871 /*
1872
1873 LOCAL FUNCTION
1874
1875 read_file_scope -- process all dies within a file scope
1876
1877 DESCRIPTION
1878
1879 Process all dies within a given file scope. We are passed a
1880 pointer to the die information structure for the die which
1881 starts the file scope, and pointers into the raw die data which
1882 mark the range of dies within the file scope.
1883
1884 When the partial symbol table is built, the file offset for the line
1885 number table for each compilation unit is saved in the partial symbol
1886 table entry for that compilation unit. As the symbols for each
1887 compilation unit are read, the line number table is read into memory
1888 and the variable lnbase is set to point to it. Thus all we have to
1889 do is use lnbase to access the line number table for the current
1890 compilation unit.
1891 */
1892
1893 static void
1894 read_file_scope (dip, thisdie, enddie, objfile)
1895 struct dieinfo *dip;
1896 char *thisdie;
1897 char *enddie;
1898 struct objfile *objfile;
1899 {
1900 struct cleanup *back_to;
1901 struct symtab *symtab;
1902
1903 if (objfile -> ei.entry_point >= dip -> at_low_pc &&
1904 objfile -> ei.entry_point < dip -> at_high_pc)
1905 {
1906 objfile -> ei.entry_file_lowpc = dip -> at_low_pc;
1907 objfile -> ei.entry_file_highpc = dip -> at_high_pc;
1908 }
1909 set_cu_language (dip);
1910 if (dip -> at_producer != NULL)
1911 {
1912 handle_producer (dip -> at_producer);
1913 }
1914 numutypes = (enddie - thisdie) / 4;
1915 utypes = (struct type **) xmalloc (numutypes * sizeof (struct type *));
1916 back_to = make_cleanup (free, utypes);
1917 memset (utypes, 0, numutypes * sizeof (struct type *));
1918 memset (ftypes, 0, FT_NUM_MEMBERS * sizeof (struct type *));
1919 start_symtab (dip -> at_name, dip -> at_comp_dir, dip -> at_low_pc);
1920 decode_line_numbers (lnbase);
1921 process_dies (thisdie + dip -> die_length, enddie, objfile);
1922 symtab = end_symtab (dip -> at_high_pc, 0, 0, objfile);
1923 if (symtab != NULL)
1924 {
1925 symtab -> language = cu_language;
1926 }
1927 do_cleanups (back_to);
1928 utypes = NULL;
1929 numutypes = 0;
1930 }
1931
1932 /*
1933
1934 LOCAL FUNCTION
1935
1936 process_dies -- process a range of DWARF Information Entries
1937
1938 SYNOPSIS
1939
1940 static void process_dies (char *thisdie, char *enddie,
1941 struct objfile *objfile)
1942
1943 DESCRIPTION
1944
1945 Process all DIE's in a specified range. May be (and almost
1946 certainly will be) called recursively.
1947 */
1948
1949 static void
1950 process_dies (thisdie, enddie, objfile)
1951 char *thisdie;
1952 char *enddie;
1953 struct objfile *objfile;
1954 {
1955 char *nextdie;
1956 struct dieinfo di;
1957
1958 while (thisdie < enddie)
1959 {
1960 basicdieinfo (&di, thisdie, objfile);
1961 if (di.die_length < SIZEOF_DIE_LENGTH)
1962 {
1963 break;
1964 }
1965 else if (di.die_tag == TAG_padding)
1966 {
1967 nextdie = thisdie + di.die_length;
1968 }
1969 else
1970 {
1971 completedieinfo (&di, objfile);
1972 if (di.at_sibling != 0)
1973 {
1974 nextdie = dbbase + di.at_sibling - dbroff;
1975 }
1976 else
1977 {
1978 nextdie = thisdie + di.die_length;
1979 }
1980 switch (di.die_tag)
1981 {
1982 case TAG_compile_unit:
1983 read_file_scope (&di, thisdie, nextdie, objfile);
1984 break;
1985 case TAG_global_subroutine:
1986 case TAG_subroutine:
1987 if (di.has_at_low_pc)
1988 {
1989 read_func_scope (&di, thisdie, nextdie, objfile);
1990 }
1991 break;
1992 case TAG_lexical_block:
1993 read_lexical_block_scope (&di, thisdie, nextdie, objfile);
1994 break;
1995 case TAG_class_type:
1996 case TAG_structure_type:
1997 case TAG_union_type:
1998 read_structure_scope (&di, thisdie, nextdie, objfile);
1999 break;
2000 case TAG_enumeration_type:
2001 read_enumeration (&di, thisdie, nextdie, objfile);
2002 break;
2003 case TAG_subroutine_type:
2004 read_subroutine_type (&di, thisdie, nextdie);
2005 break;
2006 case TAG_array_type:
2007 dwarf_read_array_type (&di);
2008 break;
2009 case TAG_pointer_type:
2010 read_tag_pointer_type (&di);
2011 break;
2012 default:
2013 new_symbol (&di, objfile);
2014 break;
2015 }
2016 }
2017 thisdie = nextdie;
2018 }
2019 }
2020
2021 /*
2022
2023 LOCAL FUNCTION
2024
2025 decode_line_numbers -- decode a line number table fragment
2026
2027 SYNOPSIS
2028
2029 static void decode_line_numbers (char *tblscan, char *tblend,
2030 long length, long base, long line, long pc)
2031
2032 DESCRIPTION
2033
2034 Translate the DWARF line number information to gdb form.
2035
2036 The ".line" section contains one or more line number tables, one for
2037 each ".line" section from the objects that were linked.
2038
2039 The AT_stmt_list attribute for each TAG_source_file entry in the
2040 ".debug" section contains the offset into the ".line" section for the
2041 start of the table for that file.
2042
2043 The table itself has the following structure:
2044
2045 <table length><base address><source statement entry>
2046 4 bytes 4 bytes 10 bytes
2047
2048 The table length is the total size of the table, including the 4 bytes
2049 for the length information.
2050
2051 The base address is the address of the first instruction generated
2052 for the source file.
2053
2054 Each source statement entry has the following structure:
2055
2056 <line number><statement position><address delta>
2057 4 bytes 2 bytes 4 bytes
2058
2059 The line number is relative to the start of the file, starting with
2060 line 1.
2061
2062 The statement position either -1 (0xFFFF) or the number of characters
2063 from the beginning of the line to the beginning of the statement.
2064
2065 The address delta is the difference between the base address and
2066 the address of the first instruction for the statement.
2067
2068 Note that we must copy the bytes from the packed table to our local
2069 variables before attempting to use them, to avoid alignment problems
2070 on some machines, particularly RISC processors.
2071
2072 BUGS
2073
2074 Does gdb expect the line numbers to be sorted? They are now by
2075 chance/luck, but are not required to be. (FIXME)
2076
2077 The line with number 0 is unused, gdb apparently can discover the
2078 span of the last line some other way. How? (FIXME)
2079 */
2080
2081 static void
2082 decode_line_numbers (linetable)
2083 char *linetable;
2084 {
2085 char *tblscan;
2086 char *tblend;
2087 unsigned long length;
2088 unsigned long base;
2089 unsigned long line;
2090 unsigned long pc;
2091
2092 if (linetable != NULL)
2093 {
2094 tblscan = tblend = linetable;
2095 length = target_to_host (tblscan, SIZEOF_LINETBL_LENGTH, GET_UNSIGNED,
2096 current_objfile);
2097 tblscan += SIZEOF_LINETBL_LENGTH;
2098 tblend += length;
2099 base = target_to_host (tblscan, TARGET_FT_POINTER_SIZE (objfile),
2100 GET_UNSIGNED, current_objfile);
2101 tblscan += TARGET_FT_POINTER_SIZE (objfile);
2102 base += baseaddr;
2103 while (tblscan < tblend)
2104 {
2105 line = target_to_host (tblscan, SIZEOF_LINETBL_LINENO, GET_UNSIGNED,
2106 current_objfile);
2107 tblscan += SIZEOF_LINETBL_LINENO + SIZEOF_LINETBL_STMT;
2108 pc = target_to_host (tblscan, SIZEOF_LINETBL_DELTA, GET_UNSIGNED,
2109 current_objfile);
2110 tblscan += SIZEOF_LINETBL_DELTA;
2111 pc += base;
2112 if (line != 0)
2113 {
2114 record_line (current_subfile, line, pc);
2115 }
2116 }
2117 }
2118 }
2119
2120 /*
2121
2122 LOCAL FUNCTION
2123
2124 locval -- compute the value of a location attribute
2125
2126 SYNOPSIS
2127
2128 static int locval (char *loc)
2129
2130 DESCRIPTION
2131
2132 Given pointer to a string of bytes that define a location, compute
2133 the location and return the value.
2134
2135 When computing values involving the current value of the frame pointer,
2136 the value zero is used, which results in a value relative to the frame
2137 pointer, rather than the absolute value. This is what GDB wants
2138 anyway.
2139
2140 When the result is a register number, the global isreg flag is set,
2141 otherwise it is cleared. This is a kludge until we figure out a better
2142 way to handle the problem. Gdb's design does not mesh well with the
2143 DWARF notion of a location computing interpreter, which is a shame
2144 because the flexibility goes unused.
2145
2146 NOTES
2147
2148 Note that stack[0] is unused except as a default error return.
2149 Note that stack overflow is not yet handled.
2150 */
2151
2152 static int
2153 locval (loc)
2154 char *loc;
2155 {
2156 unsigned short nbytes;
2157 unsigned short locsize;
2158 auto long stack[64];
2159 int stacki;
2160 char *end;
2161 long regno;
2162 int loc_atom_code;
2163 int loc_value_size;
2164
2165 nbytes = attribute_size (AT_location);
2166 locsize = target_to_host (loc, nbytes, GET_UNSIGNED, current_objfile);
2167 loc += nbytes;
2168 end = loc + locsize;
2169 stacki = 0;
2170 stack[stacki] = 0;
2171 isreg = 0;
2172 offreg = 0;
2173 loc_value_size = TARGET_FT_LONG_SIZE (current_objfile);
2174 while (loc < end)
2175 {
2176 loc_atom_code = target_to_host (loc, SIZEOF_LOC_ATOM_CODE, GET_UNSIGNED,
2177 current_objfile);
2178 loc += SIZEOF_LOC_ATOM_CODE;
2179 switch (loc_atom_code)
2180 {
2181 case 0:
2182 /* error */
2183 loc = end;
2184 break;
2185 case OP_REG:
2186 /* push register (number) */
2187 stack[++stacki] = target_to_host (loc, loc_value_size,
2188 GET_UNSIGNED, current_objfile);
2189 loc += loc_value_size;
2190 isreg = 1;
2191 break;
2192 case OP_BASEREG:
2193 /* push value of register (number) */
2194 /* Actually, we compute the value as if register has 0 */
2195 offreg = 1;
2196 regno = target_to_host (loc, loc_value_size, GET_UNSIGNED,
2197 current_objfile);
2198 loc += loc_value_size;
2199 if (regno == R_FP)
2200 {
2201 stack[++stacki] = 0;
2202 }
2203 else
2204 {
2205 stack[++stacki] = 0;
2206
2207 complain (&basereg_not_handled, DIE_ID, DIE_NAME, regno);
2208 }
2209 break;
2210 case OP_ADDR:
2211 /* push address (relocated address) */
2212 stack[++stacki] = target_to_host (loc, loc_value_size,
2213 GET_UNSIGNED, current_objfile);
2214 loc += loc_value_size;
2215 break;
2216 case OP_CONST:
2217 /* push constant (number) FIXME: signed or unsigned! */
2218 stack[++stacki] = target_to_host (loc, loc_value_size,
2219 GET_SIGNED, current_objfile);
2220 loc += loc_value_size;
2221 break;
2222 case OP_DEREF2:
2223 /* pop, deref and push 2 bytes (as a long) */
2224 complain (&op_deref2, DIE_ID, DIE_NAME, stack[stacki]);
2225 break;
2226 case OP_DEREF4: /* pop, deref and push 4 bytes (as a long) */
2227 complain (&op_deref4, DIE_ID, DIE_NAME, stack[stacki]);
2228 break;
2229 case OP_ADD: /* pop top 2 items, add, push result */
2230 stack[stacki - 1] += stack[stacki];
2231 stacki--;
2232 break;
2233 }
2234 }
2235 return (stack[stacki]);
2236 }
2237
2238 /*
2239
2240 LOCAL FUNCTION
2241
2242 read_ofile_symtab -- build a full symtab entry from chunk of DIE's
2243
2244 SYNOPSIS
2245
2246 static struct symtab *read_ofile_symtab (struct partial_symtab *pst)
2247
2248 DESCRIPTION
2249
2250 When expanding a partial symbol table entry to a full symbol table
2251 entry, this is the function that gets called to read in the symbols
2252 for the compilation unit.
2253
2254 Returns a pointer to the newly constructed symtab (which is now
2255 the new first one on the objfile's symtab list).
2256 */
2257
2258 static struct symtab *
2259 read_ofile_symtab (pst)
2260 struct partial_symtab *pst;
2261 {
2262 struct cleanup *back_to;
2263 unsigned long lnsize;
2264 file_ptr foffset;
2265 bfd *abfd;
2266 char lnsizedata[SIZEOF_LINETBL_LENGTH];
2267
2268 abfd = pst -> objfile -> obfd;
2269 current_objfile = pst -> objfile;
2270
2271 /* Allocate a buffer for the entire chunk of DIE's for this compilation
2272 unit, seek to the location in the file, and read in all the DIE's. */
2273
2274 diecount = 0;
2275 dbsize = DBLENGTH (pst);
2276 dbbase = xmalloc (dbsize);
2277 dbroff = DBROFF(pst);
2278 foffset = DBFOFF(pst) + dbroff;
2279 base_section_offsets = pst->section_offsets;
2280 baseaddr = ANOFFSET (pst->section_offsets, 0);
2281 if (bfd_seek (abfd, foffset, L_SET) ||
2282 (bfd_read (dbbase, dbsize, 1, abfd) != dbsize))
2283 {
2284 free (dbbase);
2285 error ("can't read DWARF data");
2286 }
2287 back_to = make_cleanup (free, dbbase);
2288
2289 /* If there is a line number table associated with this compilation unit
2290 then read the size of this fragment in bytes, from the fragment itself.
2291 Allocate a buffer for the fragment and read it in for future
2292 processing. */
2293
2294 lnbase = NULL;
2295 if (LNFOFF (pst))
2296 {
2297 if (bfd_seek (abfd, LNFOFF (pst), L_SET) ||
2298 (bfd_read ((PTR) lnsizedata, sizeof (lnsizedata), 1, abfd) !=
2299 sizeof (lnsizedata)))
2300 {
2301 error ("can't read DWARF line number table size");
2302 }
2303 lnsize = target_to_host (lnsizedata, SIZEOF_LINETBL_LENGTH,
2304 GET_UNSIGNED, pst -> objfile);
2305 lnbase = xmalloc (lnsize);
2306 if (bfd_seek (abfd, LNFOFF (pst), L_SET) ||
2307 (bfd_read (lnbase, lnsize, 1, abfd) != lnsize))
2308 {
2309 free (lnbase);
2310 error ("can't read DWARF line numbers");
2311 }
2312 make_cleanup (free, lnbase);
2313 }
2314
2315 process_dies (dbbase, dbbase + dbsize, pst -> objfile);
2316 do_cleanups (back_to);
2317 current_objfile = NULL;
2318 return (pst -> objfile -> symtabs);
2319 }
2320
2321 /*
2322
2323 LOCAL FUNCTION
2324
2325 psymtab_to_symtab_1 -- do grunt work for building a full symtab entry
2326
2327 SYNOPSIS
2328
2329 static void psymtab_to_symtab_1 (struct partial_symtab *pst)
2330
2331 DESCRIPTION
2332
2333 Called once for each partial symbol table entry that needs to be
2334 expanded into a full symbol table entry.
2335
2336 */
2337
2338 static void
2339 psymtab_to_symtab_1 (pst)
2340 struct partial_symtab *pst;
2341 {
2342 int i;
2343 struct cleanup *old_chain;
2344
2345 if (pst != NULL)
2346 {
2347 if (pst->readin)
2348 {
2349 warning ("psymtab for %s already read in. Shouldn't happen.",
2350 pst -> filename);
2351 }
2352 else
2353 {
2354 /* Read in all partial symtabs on which this one is dependent */
2355 for (i = 0; i < pst -> number_of_dependencies; i++)
2356 {
2357 if (!pst -> dependencies[i] -> readin)
2358 {
2359 /* Inform about additional files that need to be read in. */
2360 if (info_verbose)
2361 {
2362 fputs_filtered (" ", stdout);
2363 wrap_here ("");
2364 fputs_filtered ("and ", stdout);
2365 wrap_here ("");
2366 printf_filtered ("%s...",
2367 pst -> dependencies[i] -> filename);
2368 wrap_here ("");
2369 fflush (stdout); /* Flush output */
2370 }
2371 psymtab_to_symtab_1 (pst -> dependencies[i]);
2372 }
2373 }
2374 if (DBLENGTH (pst)) /* Otherwise it's a dummy */
2375 {
2376 buildsym_init ();
2377 old_chain = make_cleanup (really_free_pendings, 0);
2378 pst -> symtab = read_ofile_symtab (pst);
2379 if (info_verbose)
2380 {
2381 printf_filtered ("%d DIE's, sorting...", diecount);
2382 wrap_here ("");
2383 fflush (stdout);
2384 }
2385 sort_symtab_syms (pst -> symtab);
2386 do_cleanups (old_chain);
2387 }
2388 pst -> readin = 1;
2389 }
2390 }
2391 }
2392
2393 /*
2394
2395 LOCAL FUNCTION
2396
2397 dwarf_psymtab_to_symtab -- build a full symtab entry from partial one
2398
2399 SYNOPSIS
2400
2401 static void dwarf_psymtab_to_symtab (struct partial_symtab *pst)
2402
2403 DESCRIPTION
2404
2405 This is the DWARF support entry point for building a full symbol
2406 table entry from a partial symbol table entry. We are passed a
2407 pointer to the partial symbol table entry that needs to be expanded.
2408
2409 */
2410
2411 static void
2412 dwarf_psymtab_to_symtab (pst)
2413 struct partial_symtab *pst;
2414 {
2415
2416 if (pst != NULL)
2417 {
2418 if (pst -> readin)
2419 {
2420 warning ("psymtab for %s already read in. Shouldn't happen.",
2421 pst -> filename);
2422 }
2423 else
2424 {
2425 if (DBLENGTH (pst) || pst -> number_of_dependencies)
2426 {
2427 /* Print the message now, before starting serious work, to avoid
2428 disconcerting pauses. */
2429 if (info_verbose)
2430 {
2431 printf_filtered ("Reading in symbols for %s...",
2432 pst -> filename);
2433 fflush (stdout);
2434 }
2435
2436 psymtab_to_symtab_1 (pst);
2437
2438 #if 0 /* FIXME: Check to see what dbxread is doing here and see if
2439 we need to do an equivalent or is this something peculiar to
2440 stabs/a.out format.
2441 Match with global symbols. This only needs to be done once,
2442 after all of the symtabs and dependencies have been read in.
2443 */
2444 scan_file_globals (pst -> objfile);
2445 #endif
2446
2447 /* Finish up the verbose info message. */
2448 if (info_verbose)
2449 {
2450 printf_filtered ("done.\n");
2451 fflush (stdout);
2452 }
2453 }
2454 }
2455 }
2456 }
2457
2458 /*
2459
2460 LOCAL FUNCTION
2461
2462 init_psymbol_list -- initialize storage for partial symbols
2463
2464 SYNOPSIS
2465
2466 static void init_psymbol_list (struct objfile *objfile, int total_symbols)
2467
2468 DESCRIPTION
2469
2470 Initializes storage for all of the partial symbols that will be
2471 created by dwarf_build_psymtabs and subsidiaries.
2472 */
2473
2474 static void
2475 init_psymbol_list (objfile, total_symbols)
2476 struct objfile *objfile;
2477 int total_symbols;
2478 {
2479 /* Free any previously allocated psymbol lists. */
2480
2481 if (objfile -> global_psymbols.list)
2482 {
2483 mfree (objfile -> md, (PTR)objfile -> global_psymbols.list);
2484 }
2485 if (objfile -> static_psymbols.list)
2486 {
2487 mfree (objfile -> md, (PTR)objfile -> static_psymbols.list);
2488 }
2489
2490 /* Current best guess is that there are approximately a twentieth
2491 of the total symbols (in a debugging file) are global or static
2492 oriented symbols */
2493
2494 objfile -> global_psymbols.size = total_symbols / 10;
2495 objfile -> static_psymbols.size = total_symbols / 10;
2496 objfile -> global_psymbols.next =
2497 objfile -> global_psymbols.list = (struct partial_symbol *)
2498 xmmalloc (objfile -> md, objfile -> global_psymbols.size
2499 * sizeof (struct partial_symbol));
2500 objfile -> static_psymbols.next =
2501 objfile -> static_psymbols.list = (struct partial_symbol *)
2502 xmmalloc (objfile -> md, objfile -> static_psymbols.size
2503 * sizeof (struct partial_symbol));
2504 }
2505
2506 /*
2507
2508 LOCAL FUNCTION
2509
2510 add_enum_psymbol -- add enumeration members to partial symbol table
2511
2512 DESCRIPTION
2513
2514 Given pointer to a DIE that is known to be for an enumeration,
2515 extract the symbolic names of the enumeration members and add
2516 partial symbols for them.
2517 */
2518
2519 static void
2520 add_enum_psymbol (dip, objfile)
2521 struct dieinfo *dip;
2522 struct objfile *objfile;
2523 {
2524 char *scan;
2525 char *listend;
2526 unsigned short blocksz;
2527 int nbytes;
2528
2529 if ((scan = dip -> at_element_list) != NULL)
2530 {
2531 if (dip -> short_element_list)
2532 {
2533 nbytes = attribute_size (AT_short_element_list);
2534 }
2535 else
2536 {
2537 nbytes = attribute_size (AT_element_list);
2538 }
2539 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
2540 scan += nbytes;
2541 listend = scan + blocksz;
2542 while (scan < listend)
2543 {
2544 scan += TARGET_FT_LONG_SIZE (objfile);
2545 ADD_PSYMBOL_TO_LIST (scan, strlen (scan), VAR_NAMESPACE, LOC_CONST,
2546 objfile -> static_psymbols, 0);
2547 scan += strlen (scan) + 1;
2548 }
2549 }
2550 }
2551
2552 /*
2553
2554 LOCAL FUNCTION
2555
2556 add_partial_symbol -- add symbol to partial symbol table
2557
2558 DESCRIPTION
2559
2560 Given a DIE, if it is one of the types that we want to
2561 add to a partial symbol table, finish filling in the die info
2562 and then add a partial symbol table entry for it.
2563
2564 NOTES
2565
2566 The caller must ensure that the DIE has a valid name attribute.
2567 */
2568
2569 static void
2570 add_partial_symbol (dip, objfile)
2571 struct dieinfo *dip;
2572 struct objfile *objfile;
2573 {
2574 switch (dip -> die_tag)
2575 {
2576 case TAG_global_subroutine:
2577 record_minimal_symbol (dip -> at_name, dip -> at_low_pc, mst_text,
2578 objfile);
2579 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2580 VAR_NAMESPACE, LOC_BLOCK,
2581 objfile -> global_psymbols,
2582 dip -> at_low_pc);
2583 break;
2584 case TAG_global_variable:
2585 record_minimal_symbol (dip -> at_name, locval (dip -> at_location),
2586 mst_data, objfile);
2587 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2588 VAR_NAMESPACE, LOC_STATIC,
2589 objfile -> global_psymbols,
2590 0);
2591 break;
2592 case TAG_subroutine:
2593 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2594 VAR_NAMESPACE, LOC_BLOCK,
2595 objfile -> static_psymbols,
2596 dip -> at_low_pc);
2597 break;
2598 case TAG_local_variable:
2599 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2600 VAR_NAMESPACE, LOC_STATIC,
2601 objfile -> static_psymbols,
2602 0);
2603 break;
2604 case TAG_typedef:
2605 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2606 VAR_NAMESPACE, LOC_TYPEDEF,
2607 objfile -> static_psymbols,
2608 0);
2609 break;
2610 case TAG_class_type:
2611 case TAG_structure_type:
2612 case TAG_union_type:
2613 case TAG_enumeration_type:
2614 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2615 STRUCT_NAMESPACE, LOC_TYPEDEF,
2616 objfile -> static_psymbols,
2617 0);
2618 if (cu_language == language_cplus)
2619 {
2620 /* For C++, these implicitly act as typedefs as well. */
2621 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2622 VAR_NAMESPACE, LOC_TYPEDEF,
2623 objfile -> static_psymbols,
2624 0);
2625 }
2626 break;
2627 }
2628 }
2629
2630 /*
2631
2632 LOCAL FUNCTION
2633
2634 scan_partial_symbols -- scan DIE's within a single compilation unit
2635
2636 DESCRIPTION
2637
2638 Process the DIE's within a single compilation unit, looking for
2639 interesting DIE's that contribute to the partial symbol table entry
2640 for this compilation unit.
2641
2642 NOTES
2643
2644 There are some DIE's that may appear both at file scope and within
2645 the scope of a function. We are only interested in the ones at file
2646 scope, and the only way to tell them apart is to keep track of the
2647 scope. For example, consider the test case:
2648
2649 static int i;
2650 main () { int j; }
2651
2652 for which the relevant DWARF segment has the structure:
2653
2654 0x51:
2655 0x23 global subrtn sibling 0x9b
2656 name main
2657 fund_type FT_integer
2658 low_pc 0x800004cc
2659 high_pc 0x800004d4
2660
2661 0x74:
2662 0x23 local var sibling 0x97
2663 name j
2664 fund_type FT_integer
2665 location OP_BASEREG 0xe
2666 OP_CONST 0xfffffffc
2667 OP_ADD
2668 0x97:
2669 0x4
2670
2671 0x9b:
2672 0x1d local var sibling 0xb8
2673 name i
2674 fund_type FT_integer
2675 location OP_ADDR 0x800025dc
2676
2677 0xb8:
2678 0x4
2679
2680 We want to include the symbol 'i' in the partial symbol table, but
2681 not the symbol 'j'. In essence, we want to skip all the dies within
2682 the scope of a TAG_global_subroutine DIE.
2683
2684 Don't attempt to add anonymous structures or unions since they have
2685 no name. Anonymous enumerations however are processed, because we
2686 want to extract their member names (the check for a tag name is
2687 done later).
2688
2689 Also, for variables and subroutines, check that this is the place
2690 where the actual definition occurs, rather than just a reference
2691 to an external.
2692 */
2693
2694 static void
2695 scan_partial_symbols (thisdie, enddie, objfile)
2696 char *thisdie;
2697 char *enddie;
2698 struct objfile *objfile;
2699 {
2700 char *nextdie;
2701 char *temp;
2702 struct dieinfo di;
2703
2704 while (thisdie < enddie)
2705 {
2706 basicdieinfo (&di, thisdie, objfile);
2707 if (di.die_length < SIZEOF_DIE_LENGTH)
2708 {
2709 break;
2710 }
2711 else
2712 {
2713 nextdie = thisdie + di.die_length;
2714 /* To avoid getting complete die information for every die, we
2715 only do it (below) for the cases we are interested in. */
2716 switch (di.die_tag)
2717 {
2718 case TAG_global_subroutine:
2719 case TAG_subroutine:
2720 completedieinfo (&di, objfile);
2721 if (di.at_name && (di.has_at_low_pc || di.at_location))
2722 {
2723 add_partial_symbol (&di, objfile);
2724 /* If there is a sibling attribute, adjust the nextdie
2725 pointer to skip the entire scope of the subroutine.
2726 Apply some sanity checking to make sure we don't
2727 overrun or underrun the range of remaining DIE's */
2728 if (di.at_sibling != 0)
2729 {
2730 temp = dbbase + di.at_sibling - dbroff;
2731 if ((temp < thisdie) || (temp >= enddie))
2732 {
2733 complain (&bad_die_ref, DIE_ID, DIE_NAME,
2734 di.at_sibling);
2735 }
2736 else
2737 {
2738 nextdie = temp;
2739 }
2740 }
2741 }
2742 break;
2743 case TAG_global_variable:
2744 case TAG_local_variable:
2745 completedieinfo (&di, objfile);
2746 if (di.at_name && (di.has_at_low_pc || di.at_location))
2747 {
2748 add_partial_symbol (&di, objfile);
2749 }
2750 break;
2751 case TAG_typedef:
2752 case TAG_class_type:
2753 case TAG_structure_type:
2754 case TAG_union_type:
2755 completedieinfo (&di, objfile);
2756 if (di.at_name)
2757 {
2758 add_partial_symbol (&di, objfile);
2759 }
2760 break;
2761 case TAG_enumeration_type:
2762 completedieinfo (&di, objfile);
2763 if (di.at_name)
2764 {
2765 add_partial_symbol (&di, objfile);
2766 }
2767 add_enum_psymbol (&di, objfile);
2768 break;
2769 }
2770 }
2771 thisdie = nextdie;
2772 }
2773 }
2774
2775 /*
2776
2777 LOCAL FUNCTION
2778
2779 scan_compilation_units -- build a psymtab entry for each compilation
2780
2781 DESCRIPTION
2782
2783 This is the top level dwarf parsing routine for building partial
2784 symbol tables.
2785
2786 It scans from the beginning of the DWARF table looking for the first
2787 TAG_compile_unit DIE, and then follows the sibling chain to locate
2788 each additional TAG_compile_unit DIE.
2789
2790 For each TAG_compile_unit DIE it creates a partial symtab structure,
2791 calls a subordinate routine to collect all the compilation unit's
2792 global DIE's, file scope DIEs, typedef DIEs, etc, and then links the
2793 new partial symtab structure into the partial symbol table. It also
2794 records the appropriate information in the partial symbol table entry
2795 to allow the chunk of DIE's and line number table for this compilation
2796 unit to be located and re-read later, to generate a complete symbol
2797 table entry for the compilation unit.
2798
2799 Thus it effectively partitions up a chunk of DIE's for multiple
2800 compilation units into smaller DIE chunks and line number tables,
2801 and associates them with a partial symbol table entry.
2802
2803 NOTES
2804
2805 If any compilation unit has no line number table associated with
2806 it for some reason (a missing at_stmt_list attribute, rather than
2807 just one with a value of zero, which is valid) then we ensure that
2808 the recorded file offset is zero so that the routine which later
2809 reads line number table fragments knows that there is no fragment
2810 to read.
2811
2812 RETURNS
2813
2814 Returns no value.
2815
2816 */
2817
2818 static void
2819 scan_compilation_units (thisdie, enddie, dbfoff, lnoffset, objfile)
2820 char *thisdie;
2821 char *enddie;
2822 file_ptr dbfoff;
2823 file_ptr lnoffset;
2824 struct objfile *objfile;
2825 {
2826 char *nextdie;
2827 struct dieinfo di;
2828 struct partial_symtab *pst;
2829 int culength;
2830 int curoff;
2831 file_ptr curlnoffset;
2832
2833 while (thisdie < enddie)
2834 {
2835 basicdieinfo (&di, thisdie, objfile);
2836 if (di.die_length < SIZEOF_DIE_LENGTH)
2837 {
2838 break;
2839 }
2840 else if (di.die_tag != TAG_compile_unit)
2841 {
2842 nextdie = thisdie + di.die_length;
2843 }
2844 else
2845 {
2846 completedieinfo (&di, objfile);
2847 set_cu_language (&di);
2848 if (di.at_sibling != 0)
2849 {
2850 nextdie = dbbase + di.at_sibling - dbroff;
2851 }
2852 else
2853 {
2854 nextdie = thisdie + di.die_length;
2855 }
2856 curoff = thisdie - dbbase;
2857 culength = nextdie - thisdie;
2858 curlnoffset = di.has_at_stmt_list ? lnoffset + di.at_stmt_list : 0;
2859
2860 /* First allocate a new partial symbol table structure */
2861
2862 pst = start_psymtab_common (objfile, base_section_offsets,
2863 di.at_name, di.at_low_pc,
2864 objfile -> global_psymbols.next,
2865 objfile -> static_psymbols.next);
2866
2867 pst -> texthigh = di.at_high_pc;
2868 pst -> read_symtab_private = (char *)
2869 obstack_alloc (&objfile -> psymbol_obstack,
2870 sizeof (struct dwfinfo));
2871 DBFOFF (pst) = dbfoff;
2872 DBROFF (pst) = curoff;
2873 DBLENGTH (pst) = culength;
2874 LNFOFF (pst) = curlnoffset;
2875 pst -> read_symtab = dwarf_psymtab_to_symtab;
2876
2877 /* Now look for partial symbols */
2878
2879 scan_partial_symbols (thisdie + di.die_length, nextdie, objfile);
2880
2881 pst -> n_global_syms = objfile -> global_psymbols.next -
2882 (objfile -> global_psymbols.list + pst -> globals_offset);
2883 pst -> n_static_syms = objfile -> static_psymbols.next -
2884 (objfile -> static_psymbols.list + pst -> statics_offset);
2885 sort_pst_symbols (pst);
2886 /* If there is already a psymtab or symtab for a file of this name,
2887 remove it. (If there is a symtab, more drastic things also
2888 happen.) This happens in VxWorks. */
2889 free_named_symtabs (pst -> filename);
2890 }
2891 thisdie = nextdie;
2892 }
2893 }
2894
2895 /*
2896
2897 LOCAL FUNCTION
2898
2899 new_symbol -- make a symbol table entry for a new symbol
2900
2901 SYNOPSIS
2902
2903 static struct symbol *new_symbol (struct dieinfo *dip,
2904 struct objfile *objfile)
2905
2906 DESCRIPTION
2907
2908 Given a pointer to a DWARF information entry, figure out if we need
2909 to make a symbol table entry for it, and if so, create a new entry
2910 and return a pointer to it.
2911 */
2912
2913 static struct symbol *
2914 new_symbol (dip, objfile)
2915 struct dieinfo *dip;
2916 struct objfile *objfile;
2917 {
2918 struct symbol *sym = NULL;
2919
2920 if (dip -> at_name != NULL)
2921 {
2922 sym = (struct symbol *) obstack_alloc (&objfile -> symbol_obstack,
2923 sizeof (struct symbol));
2924 memset (sym, 0, sizeof (struct symbol));
2925 SYMBOL_NAME (sym) = create_name (dip -> at_name,
2926 &objfile->symbol_obstack);
2927 /* default assumptions */
2928 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2929 SYMBOL_CLASS (sym) = LOC_STATIC;
2930 SYMBOL_TYPE (sym) = decode_die_type (dip);
2931 switch (dip -> die_tag)
2932 {
2933 case TAG_label:
2934 SYMBOL_VALUE (sym) = dip -> at_low_pc;
2935 SYMBOL_CLASS (sym) = LOC_LABEL;
2936 break;
2937 case TAG_global_subroutine:
2938 case TAG_subroutine:
2939 SYMBOL_VALUE (sym) = dip -> at_low_pc;
2940 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
2941 SYMBOL_CLASS (sym) = LOC_BLOCK;
2942 if (dip -> die_tag == TAG_global_subroutine)
2943 {
2944 add_symbol_to_list (sym, &global_symbols);
2945 }
2946 else
2947 {
2948 add_symbol_to_list (sym, list_in_scope);
2949 }
2950 break;
2951 case TAG_global_variable:
2952 if (dip -> at_location != NULL)
2953 {
2954 SYMBOL_VALUE (sym) = locval (dip -> at_location);
2955 add_symbol_to_list (sym, &global_symbols);
2956 SYMBOL_CLASS (sym) = LOC_STATIC;
2957 SYMBOL_VALUE (sym) += baseaddr;
2958 }
2959 break;
2960 case TAG_local_variable:
2961 if (dip -> at_location != NULL)
2962 {
2963 SYMBOL_VALUE (sym) = locval (dip -> at_location);
2964 add_symbol_to_list (sym, list_in_scope);
2965 if (isreg)
2966 {
2967 SYMBOL_CLASS (sym) = LOC_REGISTER;
2968 }
2969 else if (offreg)
2970 {
2971 SYMBOL_CLASS (sym) = LOC_LOCAL;
2972 }
2973 else
2974 {
2975 SYMBOL_CLASS (sym) = LOC_STATIC;
2976 SYMBOL_VALUE (sym) += baseaddr;
2977 }
2978 }
2979 break;
2980 case TAG_formal_parameter:
2981 if (dip -> at_location != NULL)
2982 {
2983 SYMBOL_VALUE (sym) = locval (dip -> at_location);
2984 }
2985 add_symbol_to_list (sym, list_in_scope);
2986 if (isreg)
2987 {
2988 SYMBOL_CLASS (sym) = LOC_REGPARM;
2989 }
2990 else
2991 {
2992 SYMBOL_CLASS (sym) = LOC_ARG;
2993 }
2994 break;
2995 case TAG_unspecified_parameters:
2996 /* From varargs functions; gdb doesn't seem to have any interest in
2997 this information, so just ignore it for now. (FIXME?) */
2998 break;
2999 case TAG_class_type:
3000 case TAG_structure_type:
3001 case TAG_union_type:
3002 case TAG_enumeration_type:
3003 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3004 SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE;
3005 add_symbol_to_list (sym, list_in_scope);
3006 break;
3007 case TAG_typedef:
3008 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3009 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3010 add_symbol_to_list (sym, list_in_scope);
3011 break;
3012 default:
3013 /* Not a tag we recognize. Hopefully we aren't processing trash
3014 data, but since we must specifically ignore things we don't
3015 recognize, there is nothing else we should do at this point. */
3016 break;
3017 }
3018 }
3019 return (sym);
3020 }
3021
3022 /*
3023
3024 LOCAL FUNCTION
3025
3026 synthesize_typedef -- make a symbol table entry for a "fake" typedef
3027
3028 SYNOPSIS
3029
3030 static void synthesize_typedef (struct dieinfo *dip,
3031 struct objfile *objfile,
3032 struct type *type);
3033
3034 DESCRIPTION
3035
3036 Given a pointer to a DWARF information entry, synthesize a typedef
3037 for the name in the DIE, using the specified type.
3038
3039 This is used for C++ class, structs, unions, and enumerations to
3040 set up the tag name as a type.
3041
3042 */
3043
3044 static void
3045 synthesize_typedef (dip, objfile, type)
3046 struct dieinfo *dip;
3047 struct objfile *objfile;
3048 struct type *type;
3049 {
3050 struct symbol *sym = NULL;
3051
3052 if (dip -> at_name != NULL)
3053 {
3054 sym = (struct symbol *)
3055 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
3056 memset (sym, 0, sizeof (struct symbol));
3057 SYMBOL_NAME (sym) = create_name (dip -> at_name,
3058 &objfile->symbol_obstack);
3059 SYMBOL_TYPE (sym) = type;
3060 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3061 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3062 add_symbol_to_list (sym, list_in_scope);
3063 }
3064 }
3065
3066 /*
3067
3068 LOCAL FUNCTION
3069
3070 decode_mod_fund_type -- decode a modified fundamental type
3071
3072 SYNOPSIS
3073
3074 static struct type *decode_mod_fund_type (char *typedata)
3075
3076 DESCRIPTION
3077
3078 Decode a block of data containing a modified fundamental
3079 type specification. TYPEDATA is a pointer to the block,
3080 which starts with a length containing the size of the rest
3081 of the block. At the end of the block is a fundmental type
3082 code value that gives the fundamental type. Everything
3083 in between are type modifiers.
3084
3085 We simply compute the number of modifiers and call the general
3086 function decode_modified_type to do the actual work.
3087 */
3088
3089 static struct type *
3090 decode_mod_fund_type (typedata)
3091 char *typedata;
3092 {
3093 struct type *typep = NULL;
3094 unsigned short modcount;
3095 int nbytes;
3096
3097 /* Get the total size of the block, exclusive of the size itself */
3098
3099 nbytes = attribute_size (AT_mod_fund_type);
3100 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3101 typedata += nbytes;
3102
3103 /* Deduct the size of the fundamental type bytes at the end of the block. */
3104
3105 modcount -= attribute_size (AT_fund_type);
3106
3107 /* Now do the actual decoding */
3108
3109 typep = decode_modified_type (typedata, modcount, AT_mod_fund_type);
3110 return (typep);
3111 }
3112
3113 /*
3114
3115 LOCAL FUNCTION
3116
3117 decode_mod_u_d_type -- decode a modified user defined type
3118
3119 SYNOPSIS
3120
3121 static struct type *decode_mod_u_d_type (char *typedata)
3122
3123 DESCRIPTION
3124
3125 Decode a block of data containing a modified user defined
3126 type specification. TYPEDATA is a pointer to the block,
3127 which consists of a two byte length, containing the size
3128 of the rest of the block. At the end of the block is a
3129 four byte value that gives a reference to a user defined type.
3130 Everything in between are type modifiers.
3131
3132 We simply compute the number of modifiers and call the general
3133 function decode_modified_type to do the actual work.
3134 */
3135
3136 static struct type *
3137 decode_mod_u_d_type (typedata)
3138 char *typedata;
3139 {
3140 struct type *typep = NULL;
3141 unsigned short modcount;
3142 int nbytes;
3143
3144 /* Get the total size of the block, exclusive of the size itself */
3145
3146 nbytes = attribute_size (AT_mod_u_d_type);
3147 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3148 typedata += nbytes;
3149
3150 /* Deduct the size of the reference type bytes at the end of the block. */
3151
3152 modcount -= attribute_size (AT_user_def_type);
3153
3154 /* Now do the actual decoding */
3155
3156 typep = decode_modified_type (typedata, modcount, AT_mod_u_d_type);
3157 return (typep);
3158 }
3159
3160 /*
3161
3162 LOCAL FUNCTION
3163
3164 decode_modified_type -- decode modified user or fundamental type
3165
3166 SYNOPSIS
3167
3168 static struct type *decode_modified_type (char *modifiers,
3169 unsigned short modcount, int mtype)
3170
3171 DESCRIPTION
3172
3173 Decode a modified type, either a modified fundamental type or
3174 a modified user defined type. MODIFIERS is a pointer to the
3175 block of bytes that define MODCOUNT modifiers. Immediately
3176 following the last modifier is a short containing the fundamental
3177 type or a long containing the reference to the user defined
3178 type. Which one is determined by MTYPE, which is either
3179 AT_mod_fund_type or AT_mod_u_d_type to indicate what modified
3180 type we are generating.
3181
3182 We call ourself recursively to generate each modified type,`
3183 until MODCOUNT reaches zero, at which point we have consumed
3184 all the modifiers and generate either the fundamental type or
3185 user defined type. When the recursion unwinds, each modifier
3186 is applied in turn to generate the full modified type.
3187
3188 NOTES
3189
3190 If we find a modifier that we don't recognize, and it is not one
3191 of those reserved for application specific use, then we issue a
3192 warning and simply ignore the modifier.
3193
3194 BUGS
3195
3196 We currently ignore MOD_const and MOD_volatile. (FIXME)
3197
3198 */
3199
3200 static struct type *
3201 decode_modified_type (modifiers, modcount, mtype)
3202 char *modifiers;
3203 unsigned int modcount;
3204 int mtype;
3205 {
3206 struct type *typep = NULL;
3207 unsigned short fundtype;
3208 DIE_REF die_ref;
3209 char modifier;
3210 int nbytes;
3211
3212 if (modcount == 0)
3213 {
3214 switch (mtype)
3215 {
3216 case AT_mod_fund_type:
3217 nbytes = attribute_size (AT_fund_type);
3218 fundtype = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3219 current_objfile);
3220 typep = decode_fund_type (fundtype);
3221 break;
3222 case AT_mod_u_d_type:
3223 nbytes = attribute_size (AT_user_def_type);
3224 die_ref = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3225 current_objfile);
3226 if ((typep = lookup_utype (die_ref)) == NULL)
3227 {
3228 typep = alloc_utype (die_ref, NULL);
3229 }
3230 break;
3231 default:
3232 complain (&botched_modified_type, DIE_ID, DIE_NAME, mtype);
3233 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3234 break;
3235 }
3236 }
3237 else
3238 {
3239 modifier = *modifiers++;
3240 typep = decode_modified_type (modifiers, --modcount, mtype);
3241 switch (modifier)
3242 {
3243 case MOD_pointer_to:
3244 typep = lookup_pointer_type (typep);
3245 break;
3246 case MOD_reference_to:
3247 typep = lookup_reference_type (typep);
3248 break;
3249 case MOD_const:
3250 complain (&const_ignored, DIE_ID, DIE_NAME); /* FIXME */
3251 break;
3252 case MOD_volatile:
3253 complain (&volatile_ignored, DIE_ID, DIE_NAME); /* FIXME */
3254 break;
3255 default:
3256 if (!(MOD_lo_user <= (unsigned char) modifier
3257 && (unsigned char) modifier <= MOD_hi_user))
3258 {
3259 complain (&unknown_type_modifier, DIE_ID, DIE_NAME, modifier);
3260 }
3261 break;
3262 }
3263 }
3264 return (typep);
3265 }
3266
3267 /*
3268
3269 LOCAL FUNCTION
3270
3271 decode_fund_type -- translate basic DWARF type to gdb base type
3272
3273 DESCRIPTION
3274
3275 Given an integer that is one of the fundamental DWARF types,
3276 translate it to one of the basic internal gdb types and return
3277 a pointer to the appropriate gdb type (a "struct type *").
3278
3279 NOTES
3280
3281 For robustness, if we are asked to translate a fundamental
3282 type that we are unprepared to deal with, we return int so
3283 callers can always depend upon a valid type being returned,
3284 and so gdb may at least do something reasonable by default.
3285 If the type is not in the range of those types defined as
3286 application specific types, we also issue a warning.
3287 */
3288
3289 static struct type *
3290 decode_fund_type (fundtype)
3291 unsigned int fundtype;
3292 {
3293 struct type *typep = NULL;
3294
3295 switch (fundtype)
3296 {
3297
3298 case FT_void:
3299 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3300 break;
3301
3302 case FT_boolean: /* Was FT_set in AT&T version */
3303 typep = dwarf_fundamental_type (current_objfile, FT_BOOLEAN);
3304 break;
3305
3306 case FT_pointer: /* (void *) */
3307 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3308 typep = lookup_pointer_type (typep);
3309 break;
3310
3311 case FT_char:
3312 typep = dwarf_fundamental_type (current_objfile, FT_CHAR);
3313 break;
3314
3315 case FT_signed_char:
3316 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_CHAR);
3317 break;
3318
3319 case FT_unsigned_char:
3320 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_CHAR);
3321 break;
3322
3323 case FT_short:
3324 typep = dwarf_fundamental_type (current_objfile, FT_SHORT);
3325 break;
3326
3327 case FT_signed_short:
3328 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_SHORT);
3329 break;
3330
3331 case FT_unsigned_short:
3332 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_SHORT);
3333 break;
3334
3335 case FT_integer:
3336 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3337 break;
3338
3339 case FT_signed_integer:
3340 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_INTEGER);
3341 break;
3342
3343 case FT_unsigned_integer:
3344 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_INTEGER);
3345 break;
3346
3347 case FT_long:
3348 typep = dwarf_fundamental_type (current_objfile, FT_LONG);
3349 break;
3350
3351 case FT_signed_long:
3352 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG);
3353 break;
3354
3355 case FT_unsigned_long:
3356 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG);
3357 break;
3358
3359 case FT_long_long:
3360 typep = dwarf_fundamental_type (current_objfile, FT_LONG_LONG);
3361 break;
3362
3363 case FT_signed_long_long:
3364 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG_LONG);
3365 break;
3366
3367 case FT_unsigned_long_long:
3368 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG_LONG);
3369 break;
3370
3371 case FT_float:
3372 typep = dwarf_fundamental_type (current_objfile, FT_FLOAT);
3373 break;
3374
3375 case FT_dbl_prec_float:
3376 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_FLOAT);
3377 break;
3378
3379 case FT_ext_prec_float:
3380 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_FLOAT);
3381 break;
3382
3383 case FT_complex:
3384 typep = dwarf_fundamental_type (current_objfile, FT_COMPLEX);
3385 break;
3386
3387 case FT_dbl_prec_complex:
3388 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_COMPLEX);
3389 break;
3390
3391 case FT_ext_prec_complex:
3392 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_COMPLEX);
3393 break;
3394
3395 }
3396
3397 if (typep == NULL)
3398 {
3399 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3400 if (!(FT_lo_user <= fundtype && fundtype <= FT_hi_user))
3401 {
3402 complain (&unexpected_fund_type, DIE_ID, DIE_NAME, fundtype);
3403 }
3404 }
3405
3406 return (typep);
3407 }
3408
3409 /*
3410
3411 LOCAL FUNCTION
3412
3413 create_name -- allocate a fresh copy of a string on an obstack
3414
3415 DESCRIPTION
3416
3417 Given a pointer to a string and a pointer to an obstack, allocates
3418 a fresh copy of the string on the specified obstack.
3419
3420 */
3421
3422 static char *
3423 create_name (name, obstackp)
3424 char *name;
3425 struct obstack *obstackp;
3426 {
3427 int length;
3428 char *newname;
3429
3430 length = strlen (name) + 1;
3431 newname = (char *) obstack_alloc (obstackp, length);
3432 strcpy (newname, name);
3433 return (newname);
3434 }
3435
3436 /*
3437
3438 LOCAL FUNCTION
3439
3440 basicdieinfo -- extract the minimal die info from raw die data
3441
3442 SYNOPSIS
3443
3444 void basicdieinfo (char *diep, struct dieinfo *dip,
3445 struct objfile *objfile)
3446
3447 DESCRIPTION
3448
3449 Given a pointer to raw DIE data, and a pointer to an instance of a
3450 die info structure, this function extracts the basic information
3451 from the DIE data required to continue processing this DIE, along
3452 with some bookkeeping information about the DIE.
3453
3454 The information we absolutely must have includes the DIE tag,
3455 and the DIE length. If we need the sibling reference, then we
3456 will have to call completedieinfo() to process all the remaining
3457 DIE information.
3458
3459 Note that since there is no guarantee that the data is properly
3460 aligned in memory for the type of access required (indirection
3461 through anything other than a char pointer), and there is no
3462 guarantee that it is in the same byte order as the gdb host,
3463 we call a function which deals with both alignment and byte
3464 swapping issues. Possibly inefficient, but quite portable.
3465
3466 We also take care of some other basic things at this point, such
3467 as ensuring that the instance of the die info structure starts
3468 out completely zero'd and that curdie is initialized for use
3469 in error reporting if we have a problem with the current die.
3470
3471 NOTES
3472
3473 All DIE's must have at least a valid length, thus the minimum
3474 DIE size is SIZEOF_DIE_LENGTH. In order to have a valid tag, the
3475 DIE size must be at least SIZEOF_DIE_TAG larger, otherwise they
3476 are forced to be TAG_padding DIES.
3477
3478 Padding DIES must be at least SIZEOF_DIE_LENGTH in length, implying
3479 that if a padding DIE is used for alignment and the amount needed is
3480 less than SIZEOF_DIE_LENGTH, then the padding DIE has to be big
3481 enough to align to the next alignment boundry.
3482
3483 We do some basic sanity checking here, such as verifying that the
3484 length of the die would not cause it to overrun the recorded end of
3485 the buffer holding the DIE info. If we find a DIE that is either
3486 too small or too large, we force it's length to zero which should
3487 cause the caller to take appropriate action.
3488 */
3489
3490 static void
3491 basicdieinfo (dip, diep, objfile)
3492 struct dieinfo *dip;
3493 char *diep;
3494 struct objfile *objfile;
3495 {
3496 curdie = dip;
3497 memset (dip, 0, sizeof (struct dieinfo));
3498 dip -> die = diep;
3499 dip -> die_ref = dbroff + (diep - dbbase);
3500 dip -> die_length = target_to_host (diep, SIZEOF_DIE_LENGTH, GET_UNSIGNED,
3501 objfile);
3502 if ((dip -> die_length < SIZEOF_DIE_LENGTH) ||
3503 ((diep + dip -> die_length) > (dbbase + dbsize)))
3504 {
3505 complain (&malformed_die, DIE_ID, DIE_NAME, dip -> die_length);
3506 dip -> die_length = 0;
3507 }
3508 else if (dip -> die_length < (SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG))
3509 {
3510 dip -> die_tag = TAG_padding;
3511 }
3512 else
3513 {
3514 diep += SIZEOF_DIE_LENGTH;
3515 dip -> die_tag = target_to_host (diep, SIZEOF_DIE_TAG, GET_UNSIGNED,
3516 objfile);
3517 }
3518 }
3519
3520 /*
3521
3522 LOCAL FUNCTION
3523
3524 completedieinfo -- finish reading the information for a given DIE
3525
3526 SYNOPSIS
3527
3528 void completedieinfo (struct dieinfo *dip, struct objfile *objfile)
3529
3530 DESCRIPTION
3531
3532 Given a pointer to an already partially initialized die info structure,
3533 scan the raw DIE data and finish filling in the die info structure
3534 from the various attributes found.
3535
3536 Note that since there is no guarantee that the data is properly
3537 aligned in memory for the type of access required (indirection
3538 through anything other than a char pointer), and there is no
3539 guarantee that it is in the same byte order as the gdb host,
3540 we call a function which deals with both alignment and byte
3541 swapping issues. Possibly inefficient, but quite portable.
3542
3543 NOTES
3544
3545 Each time we are called, we increment the diecount variable, which
3546 keeps an approximate count of the number of dies processed for
3547 each compilation unit. This information is presented to the user
3548 if the info_verbose flag is set.
3549
3550 */
3551
3552 static void
3553 completedieinfo (dip, objfile)
3554 struct dieinfo *dip;
3555 struct objfile *objfile;
3556 {
3557 char *diep; /* Current pointer into raw DIE data */
3558 char *end; /* Terminate DIE scan here */
3559 unsigned short attr; /* Current attribute being scanned */
3560 unsigned short form; /* Form of the attribute */
3561 int nbytes; /* Size of next field to read */
3562
3563 diecount++;
3564 diep = dip -> die;
3565 end = diep + dip -> die_length;
3566 diep += SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG;
3567 while (diep < end)
3568 {
3569 attr = target_to_host (diep, SIZEOF_ATTRIBUTE, GET_UNSIGNED, objfile);
3570 diep += SIZEOF_ATTRIBUTE;
3571 if ((nbytes = attribute_size (attr)) == -1)
3572 {
3573 complain (&unknown_attribute_length, DIE_ID, DIE_NAME);
3574 diep = end;
3575 continue;
3576 }
3577 switch (attr)
3578 {
3579 case AT_fund_type:
3580 dip -> at_fund_type = target_to_host (diep, nbytes, GET_UNSIGNED,
3581 objfile);
3582 break;
3583 case AT_ordering:
3584 dip -> at_ordering = target_to_host (diep, nbytes, GET_UNSIGNED,
3585 objfile);
3586 break;
3587 case AT_bit_offset:
3588 dip -> at_bit_offset = target_to_host (diep, nbytes, GET_UNSIGNED,
3589 objfile);
3590 break;
3591 case AT_sibling:
3592 dip -> at_sibling = target_to_host (diep, nbytes, GET_UNSIGNED,
3593 objfile);
3594 break;
3595 case AT_stmt_list:
3596 dip -> at_stmt_list = target_to_host (diep, nbytes, GET_UNSIGNED,
3597 objfile);
3598 dip -> has_at_stmt_list = 1;
3599 break;
3600 case AT_low_pc:
3601 dip -> at_low_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3602 objfile);
3603 dip -> at_low_pc += baseaddr;
3604 dip -> has_at_low_pc = 1;
3605 break;
3606 case AT_high_pc:
3607 dip -> at_high_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3608 objfile);
3609 dip -> at_high_pc += baseaddr;
3610 break;
3611 case AT_language:
3612 dip -> at_language = target_to_host (diep, nbytes, GET_UNSIGNED,
3613 objfile);
3614 break;
3615 case AT_user_def_type:
3616 dip -> at_user_def_type = target_to_host (diep, nbytes,
3617 GET_UNSIGNED, objfile);
3618 break;
3619 case AT_byte_size:
3620 dip -> at_byte_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3621 objfile);
3622 dip -> has_at_byte_size = 1;
3623 break;
3624 case AT_bit_size:
3625 dip -> at_bit_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3626 objfile);
3627 break;
3628 case AT_member:
3629 dip -> at_member = target_to_host (diep, nbytes, GET_UNSIGNED,
3630 objfile);
3631 break;
3632 case AT_discr:
3633 dip -> at_discr = target_to_host (diep, nbytes, GET_UNSIGNED,
3634 objfile);
3635 break;
3636 case AT_location:
3637 dip -> at_location = diep;
3638 break;
3639 case AT_mod_fund_type:
3640 dip -> at_mod_fund_type = diep;
3641 break;
3642 case AT_subscr_data:
3643 dip -> at_subscr_data = diep;
3644 break;
3645 case AT_mod_u_d_type:
3646 dip -> at_mod_u_d_type = diep;
3647 break;
3648 case AT_element_list:
3649 dip -> at_element_list = diep;
3650 dip -> short_element_list = 0;
3651 break;
3652 case AT_short_element_list:
3653 dip -> at_element_list = diep;
3654 dip -> short_element_list = 1;
3655 break;
3656 case AT_discr_value:
3657 dip -> at_discr_value = diep;
3658 break;
3659 case AT_string_length:
3660 dip -> at_string_length = diep;
3661 break;
3662 case AT_name:
3663 dip -> at_name = diep;
3664 break;
3665 case AT_comp_dir:
3666 /* For now, ignore any "hostname:" portion, since gdb doesn't
3667 know how to deal with it. (FIXME). */
3668 dip -> at_comp_dir = strrchr (diep, ':');
3669 if (dip -> at_comp_dir != NULL)
3670 {
3671 dip -> at_comp_dir++;
3672 }
3673 else
3674 {
3675 dip -> at_comp_dir = diep;
3676 }
3677 break;
3678 case AT_producer:
3679 dip -> at_producer = diep;
3680 break;
3681 case AT_start_scope:
3682 dip -> at_start_scope = target_to_host (diep, nbytes, GET_UNSIGNED,
3683 objfile);
3684 break;
3685 case AT_stride_size:
3686 dip -> at_stride_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3687 objfile);
3688 break;
3689 case AT_src_info:
3690 dip -> at_src_info = target_to_host (diep, nbytes, GET_UNSIGNED,
3691 objfile);
3692 break;
3693 case AT_prototyped:
3694 dip -> at_prototyped = diep;
3695 break;
3696 default:
3697 /* Found an attribute that we are unprepared to handle. However
3698 it is specifically one of the design goals of DWARF that
3699 consumers should ignore unknown attributes. As long as the
3700 form is one that we recognize (so we know how to skip it),
3701 we can just ignore the unknown attribute. */
3702 break;
3703 }
3704 form = FORM_FROM_ATTR (attr);
3705 switch (form)
3706 {
3707 case FORM_DATA2:
3708 diep += 2;
3709 break;
3710 case FORM_DATA4:
3711 case FORM_REF:
3712 diep += 4;
3713 break;
3714 case FORM_DATA8:
3715 diep += 8;
3716 break;
3717 case FORM_ADDR:
3718 diep += TARGET_FT_POINTER_SIZE (objfile);
3719 break;
3720 case FORM_BLOCK2:
3721 diep += 2 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3722 break;
3723 case FORM_BLOCK4:
3724 diep += 4 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3725 break;
3726 case FORM_STRING:
3727 diep += strlen (diep) + 1;
3728 break;
3729 default:
3730 complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form);
3731 diep = end;
3732 break;
3733 }
3734 }
3735 }
3736
3737 /*
3738
3739 LOCAL FUNCTION
3740
3741 target_to_host -- swap in target data to host
3742
3743 SYNOPSIS
3744
3745 target_to_host (char *from, int nbytes, int signextend,
3746 struct objfile *objfile)
3747
3748 DESCRIPTION
3749
3750 Given pointer to data in target format in FROM, a byte count for
3751 the size of the data in NBYTES, a flag indicating whether or not
3752 the data is signed in SIGNEXTEND, and a pointer to the current
3753 objfile in OBJFILE, convert the data to host format and return
3754 the converted value.
3755
3756 NOTES
3757
3758 FIXME: If we read data that is known to be signed, and expect to
3759 use it as signed data, then we need to explicitly sign extend the
3760 result until the bfd library is able to do this for us.
3761
3762 */
3763
3764 static unsigned long
3765 target_to_host (from, nbytes, signextend, objfile)
3766 char *from;
3767 int nbytes;
3768 int signextend; /* FIXME: Unused */
3769 struct objfile *objfile;
3770 {
3771 unsigned long rtnval;
3772
3773 switch (nbytes)
3774 {
3775 case 8:
3776 rtnval = bfd_get_64 (objfile -> obfd, (bfd_byte *) from);
3777 break;
3778 case 4:
3779 rtnval = bfd_get_32 (objfile -> obfd, (bfd_byte *) from);
3780 break;
3781 case 2:
3782 rtnval = bfd_get_16 (objfile -> obfd, (bfd_byte *) from);
3783 break;
3784 case 1:
3785 rtnval = bfd_get_8 (objfile -> obfd, (bfd_byte *) from);
3786 break;
3787 default:
3788 complain (&no_bfd_get_N, DIE_ID, DIE_NAME, nbytes);
3789 rtnval = 0;
3790 break;
3791 }
3792 return (rtnval);
3793 }
3794
3795 /*
3796
3797 LOCAL FUNCTION
3798
3799 attribute_size -- compute size of data for a DWARF attribute
3800
3801 SYNOPSIS
3802
3803 static int attribute_size (unsigned int attr)
3804
3805 DESCRIPTION
3806
3807 Given a DWARF attribute in ATTR, compute the size of the first
3808 piece of data associated with this attribute and return that
3809 size.
3810
3811 Returns -1 for unrecognized attributes.
3812
3813 */
3814
3815 static int
3816 attribute_size (attr)
3817 unsigned int attr;
3818 {
3819 int nbytes; /* Size of next data for this attribute */
3820 unsigned short form; /* Form of the attribute */
3821
3822 form = FORM_FROM_ATTR (attr);
3823 switch (form)
3824 {
3825 case FORM_STRING: /* A variable length field is next */
3826 nbytes = 0;
3827 break;
3828 case FORM_DATA2: /* Next 2 byte field is the data itself */
3829 case FORM_BLOCK2: /* Next 2 byte field is a block length */
3830 nbytes = 2;
3831 break;
3832 case FORM_DATA4: /* Next 4 byte field is the data itself */
3833 case FORM_BLOCK4: /* Next 4 byte field is a block length */
3834 case FORM_REF: /* Next 4 byte field is a DIE offset */
3835 nbytes = 4;
3836 break;
3837 case FORM_DATA8: /* Next 8 byte field is the data itself */
3838 nbytes = 8;
3839 break;
3840 case FORM_ADDR: /* Next field size is target sizeof(void *) */
3841 nbytes = TARGET_FT_POINTER_SIZE (objfile);
3842 break;
3843 default:
3844 complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form);
3845 nbytes = -1;
3846 break;
3847 }
3848 return (nbytes);
3849 }