* c-exp.y (c_create_fundamental_type): New function to create
[binutils-gdb.git] / gdb / dwarfread.c
1 /* DWARF debugging format support for GDB.
2 Copyright (C) 1991, 1992 Free Software Foundation, Inc.
3 Written by Fred Fish at Cygnus Support. Portions based on dbxread.c,
4 mipsread.c, coffread.c, and dwarfread.c from a Data General SVR4 gdb port.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
21
22 /*
23
24 FIXME: Figure out how to get the frame pointer register number in the
25 execution environment of the target. Remove R_FP kludge
26
27 FIXME: Add generation of dependencies list to partial symtab code.
28
29 FIXME: Resolve minor differences between what information we put in the
30 partial symbol table and what dbxread puts in. For example, we don't yet
31 put enum constants there. And dbxread seems to invent a lot of typedefs
32 we never see. Use the new printpsym command to see the partial symbol table
33 contents.
34
35 FIXME: Figure out a better way to tell gdb about the name of the function
36 contain the user's entry point (I.E. main())
37
38 FIXME: See other FIXME's and "ifdef 0" scattered throughout the code for
39 other things to work on, if you get bored. :-)
40
41 */
42
43 #include "defs.h"
44 #include "bfd.h"
45 #include "symtab.h"
46 #include "gdbtypes.h"
47 #include "symfile.h"
48 #include "objfiles.h"
49 #include "libbfd.h" /* FIXME Secret Internal BFD stuff (bfd_read) */
50 #include "elf/dwarf.h"
51 #include "buildsym.h"
52 #include "demangle.h"
53 #include "expression.h" /* Needed for enum exp_opcode in language.h, sigh... */
54 #include "language.h"
55
56 #include <varargs.h>
57 #include <fcntl.h>
58 #include <string.h>
59 #include <sys/types.h>
60 #ifndef NO_SYS_FILE
61 #include <sys/file.h>
62 #endif
63
64 /* FIXME -- convert this to SEEK_SET a la POSIX, move to config files. */
65 #ifndef L_SET
66 #define L_SET 0
67 #endif
68
69 #ifdef MAINTENANCE /* Define to 1 to compile in some maintenance stuff */
70 #define SQUAWK(stuff) dwarfwarn stuff
71 #else
72 #define SQUAWK(stuff)
73 #endif
74
75 #ifndef R_FP /* FIXME */
76 #define R_FP 14 /* Kludge to get frame pointer register number */
77 #endif
78
79 typedef unsigned int DIE_REF; /* Reference to a DIE */
80
81 #ifndef GCC_PRODUCER
82 #define GCC_PRODUCER "GNU C "
83 #endif
84
85 #ifndef GPLUS_PRODUCER
86 #define GPLUS_PRODUCER "GNU C++ "
87 #endif
88
89 #ifndef LCC_PRODUCER
90 #define LCC_PRODUCER "NCR C/C++"
91 #endif
92
93 #ifndef CFRONT_PRODUCER
94 #define CFRONT_PRODUCER "CFRONT " /* A wild a** guess... */
95 #endif
96
97 /* start-sanitize-chill */
98 #ifndef CHILL_PRODUCER
99 #define CHILL_PRODUCER "GNU Chill "
100 #endif
101 /* end-sanitize-chill */
102
103 #define STREQ(a,b) (strcmp(a,b)==0)
104 #define STREQN(a,b,n) (strncmp(a,b,n)==0)
105
106 /* Flags to target_to_host() that tell whether or not the data object is
107 expected to be signed. Used, for example, when fetching a signed
108 integer in the target environment which is used as a signed integer
109 in the host environment, and the two environments have different sized
110 ints. In this case, *somebody* has to sign extend the smaller sized
111 int. */
112
113 #define GET_UNSIGNED 0 /* No sign extension required */
114 #define GET_SIGNED 1 /* Sign extension required */
115
116 /* Defines for things which are specified in the document "DWARF Debugging
117 Information Format" published by UNIX International, Programming Languages
118 SIG. These defines are based on revision 1.0.0, Jan 20, 1992. */
119
120 #define SIZEOF_DIE_LENGTH 4
121 #define SIZEOF_DIE_TAG 2
122 #define SIZEOF_ATTRIBUTE 2
123 #define SIZEOF_FORMAT_SPECIFIER 1
124 #define SIZEOF_FMT_FT 2
125 #define SIZEOF_LINETBL_LENGTH 4
126 #define SIZEOF_LINETBL_LINENO 4
127 #define SIZEOF_LINETBL_STMT 2
128 #define SIZEOF_LINETBL_DELTA 4
129 #define SIZEOF_LOC_ATOM_CODE 1
130
131 #define FORM_FROM_ATTR(attr) ((attr) & 0xF) /* Implicitly specified */
132
133 /* Macros that return the sizes of various types of data in the target
134 environment.
135
136 FIXME: Currently these are just compile time constants (as they are in
137 other parts of gdb as well). They need to be able to get the right size
138 either from the bfd or possibly from the DWARF info. It would be nice if
139 the DWARF producer inserted DIES that describe the fundamental types in
140 the target environment into the DWARF info, similar to the way dbx stabs
141 producers produce information about their fundamental types. */
142
143 #define TARGET_FT_POINTER_SIZE(objfile) (TARGET_PTR_BIT / TARGET_CHAR_BIT)
144 #define TARGET_FT_LONG_SIZE(objfile) (TARGET_LONG_BIT / TARGET_CHAR_BIT)
145
146 /* The Amiga SVR4 header file <dwarf.h> defines AT_element_list as a
147 FORM_BLOCK2, and this is the value emitted by the AT&T compiler.
148 However, the Issue 2 DWARF specification from AT&T defines it as
149 a FORM_BLOCK4, as does the latest specification from UI/PLSIG.
150 For backwards compatibility with the AT&T compiler produced executables
151 we define AT_short_element_list for this variant. */
152
153 #define AT_short_element_list (0x00f0|FORM_BLOCK2)
154
155 /* External variables referenced. */
156
157 extern int info_verbose; /* From main.c; nonzero => verbose */
158 extern char *warning_pre_print; /* From utils.c */
159
160 /* The DWARF debugging information consists of two major pieces,
161 one is a block of DWARF Information Entries (DIE's) and the other
162 is a line number table. The "struct dieinfo" structure contains
163 the information for a single DIE, the one currently being processed.
164
165 In order to make it easier to randomly access the attribute fields
166 of the current DIE, which are specifically unordered within the DIE,
167 each DIE is scanned and an instance of the "struct dieinfo"
168 structure is initialized.
169
170 Initialization is done in two levels. The first, done by basicdieinfo(),
171 just initializes those fields that are vital to deciding whether or not
172 to use this DIE, how to skip past it, etc. The second, done by the
173 function completedieinfo(), fills in the rest of the information.
174
175 Attributes which have block forms are not interpreted at the time
176 the DIE is scanned, instead we just save pointers to the start
177 of their value fields.
178
179 Some fields have a flag <name>_p that is set when the value of the
180 field is valid (I.E. we found a matching attribute in the DIE). Since
181 we may want to test for the presence of some attributes in the DIE,
182 such as AT_low_pc, without restricting the values of the field,
183 we need someway to note that we found such an attribute.
184
185 */
186
187 typedef char BLOCK;
188
189 struct dieinfo {
190 char * die; /* Pointer to the raw DIE data */
191 unsigned long die_length; /* Length of the raw DIE data */
192 DIE_REF die_ref; /* Offset of this DIE */
193 unsigned short die_tag; /* Tag for this DIE */
194 unsigned long at_padding;
195 unsigned long at_sibling;
196 BLOCK * at_location;
197 char * at_name;
198 unsigned short at_fund_type;
199 BLOCK * at_mod_fund_type;
200 unsigned long at_user_def_type;
201 BLOCK * at_mod_u_d_type;
202 unsigned short at_ordering;
203 BLOCK * at_subscr_data;
204 unsigned long at_byte_size;
205 unsigned short at_bit_offset;
206 unsigned long at_bit_size;
207 BLOCK * at_element_list;
208 unsigned long at_stmt_list;
209 unsigned long at_low_pc;
210 unsigned long at_high_pc;
211 unsigned long at_language;
212 unsigned long at_member;
213 unsigned long at_discr;
214 BLOCK * at_discr_value;
215 BLOCK * at_string_length;
216 char * at_comp_dir;
217 char * at_producer;
218 unsigned long at_start_scope;
219 unsigned long at_stride_size;
220 unsigned long at_src_info;
221 char * at_prototyped;
222 unsigned int has_at_low_pc:1;
223 unsigned int has_at_stmt_list:1;
224 unsigned int has_at_byte_size:1;
225 unsigned int short_element_list:1;
226 };
227
228 static int diecount; /* Approximate count of dies for compilation unit */
229 static struct dieinfo *curdie; /* For warnings and such */
230
231 static char *dbbase; /* Base pointer to dwarf info */
232 static int dbsize; /* Size of dwarf info in bytes */
233 static int dbroff; /* Relative offset from start of .debug section */
234 static char *lnbase; /* Base pointer to line section */
235 static int isreg; /* Kludge to identify register variables */
236 static int offreg; /* Kludge to identify basereg references */
237
238 /* This value is added to each symbol value. FIXME: Generalize to
239 the section_offsets structure used by dbxread. */
240 static CORE_ADDR baseaddr; /* Add to each symbol value */
241
242 /* The section offsets used in the current psymtab or symtab. FIXME,
243 only used to pass one value (baseaddr) at the moment. */
244 static struct section_offsets *base_section_offsets;
245
246 /* Each partial symbol table entry contains a pointer to private data for the
247 read_symtab() function to use when expanding a partial symbol table entry
248 to a full symbol table entry. For DWARF debugging info, this data is
249 contained in the following structure and macros are provided for easy
250 access to the members given a pointer to a partial symbol table entry.
251
252 dbfoff Always the absolute file offset to the start of the ".debug"
253 section for the file containing the DIE's being accessed.
254
255 dbroff Relative offset from the start of the ".debug" access to the
256 first DIE to be accessed. When building the partial symbol
257 table, this value will be zero since we are accessing the
258 entire ".debug" section. When expanding a partial symbol
259 table entry, this value will be the offset to the first
260 DIE for the compilation unit containing the symbol that
261 triggers the expansion.
262
263 dblength The size of the chunk of DIE's being examined, in bytes.
264
265 lnfoff The absolute file offset to the line table fragment. Ignored
266 when building partial symbol tables, but used when expanding
267 them, and contains the absolute file offset to the fragment
268 of the ".line" section containing the line numbers for the
269 current compilation unit.
270 */
271
272 struct dwfinfo {
273 file_ptr dbfoff; /* Absolute file offset to start of .debug section */
274 int dbroff; /* Relative offset from start of .debug section */
275 int dblength; /* Size of the chunk of DIE's being examined */
276 file_ptr lnfoff; /* Absolute file offset to line table fragment */
277 };
278
279 #define DBFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbfoff)
280 #define DBROFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbroff)
281 #define DBLENGTH(p) (((struct dwfinfo *)((p)->read_symtab_private))->dblength)
282 #define LNFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->lnfoff)
283
284 /* The generic symbol table building routines have separate lists for
285 file scope symbols and all all other scopes (local scopes). So
286 we need to select the right one to pass to add_symbol_to_list().
287 We do it by keeping a pointer to the correct list in list_in_scope.
288
289 FIXME: The original dwarf code just treated the file scope as the first
290 local scope, and all other local scopes as nested local scopes, and worked
291 fine. Check to see if we really need to distinguish these in buildsym.c */
292
293 struct pending **list_in_scope = &file_symbols;
294
295 /* DIES which have user defined types or modified user defined types refer to
296 other DIES for the type information. Thus we need to associate the offset
297 of a DIE for a user defined type with a pointer to the type information.
298
299 Originally this was done using a simple but expensive algorithm, with an
300 array of unsorted structures, each containing an offset/type-pointer pair.
301 This array was scanned linearly each time a lookup was done. The result
302 was that gdb was spending over half it's startup time munging through this
303 array of pointers looking for a structure that had the right offset member.
304
305 The second attempt used the same array of structures, but the array was
306 sorted using qsort each time a new offset/type was recorded, and a binary
307 search was used to find the type pointer for a given DIE offset. This was
308 even slower, due to the overhead of sorting the array each time a new
309 offset/type pair was entered.
310
311 The third attempt uses a fixed size array of type pointers, indexed by a
312 value derived from the DIE offset. Since the minimum DIE size is 4 bytes,
313 we can divide any DIE offset by 4 to obtain a unique index into this fixed
314 size array. Since each element is a 4 byte pointer, it takes exactly as
315 much memory to hold this array as to hold the DWARF info for a given
316 compilation unit. But it gets freed as soon as we are done with it.
317 This has worked well in practice, as a reasonable tradeoff between memory
318 consumption and speed, without having to resort to much more complicated
319 algorithms. */
320
321 static struct type **utypes; /* Pointer to array of user type pointers */
322 static int numutypes; /* Max number of user type pointers */
323
324 /* Maintain an array of referenced fundamental types for the current
325 compilation unit being read. For DWARF version 1, we have to construct
326 the fundamental types on the fly, since no information about the
327 fundamental types is supplied. Each such fundamental type is created by
328 calling a language dependent routine to create the type, and then a
329 pointer to that type is then placed in the array at the index specified
330 by it's FT_<TYPENAME> value. The array has a fixed size set by the
331 FT_NUM_MEMBERS compile time constant, which is the number of predefined
332 fundamental types gdb knows how to construct. */
333
334 static struct type *ftypes[FT_NUM_MEMBERS]; /* Fundamental types */
335
336 /* Record the language for the compilation unit which is currently being
337 processed. We know it once we have seen the TAG_compile_unit DIE,
338 and we need it while processing the DIE's for that compilation unit.
339 It is eventually saved in the symtab structure, but we don't finalize
340 the symtab struct until we have processed all the DIE's for the
341 compilation unit. We also need to get and save a pointer to the
342 language struct for this language, so we can call the language
343 dependent routines for doing things such as creating fundamental
344 types. */
345
346 static enum language cu_language;
347 static const struct language_defn *cu_language_defn;
348
349 /* Forward declarations of static functions so we don't have to worry
350 about ordering within this file. */
351
352 static int
353 attribute_size PARAMS ((unsigned int));
354
355 static unsigned long
356 target_to_host PARAMS ((char *, int, int, struct objfile *));
357
358 static void
359 add_enum_psymbol PARAMS ((struct dieinfo *, struct objfile *));
360
361 static void
362 handle_producer PARAMS ((char *));
363
364 static void
365 read_file_scope PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
366
367 static void
368 read_func_scope PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
369
370 static void
371 read_lexical_block_scope PARAMS ((struct dieinfo *, char *, char *,
372 struct objfile *));
373
374 static void
375 dwarfwarn ();
376
377 static void
378 scan_partial_symbols PARAMS ((char *, char *, struct objfile *));
379
380 static void
381 scan_compilation_units PARAMS ((char *, char *, file_ptr,
382 file_ptr, struct objfile *));
383
384 static void
385 add_partial_symbol PARAMS ((struct dieinfo *, struct objfile *));
386
387 static void
388 init_psymbol_list PARAMS ((struct objfile *, int));
389
390 static void
391 basicdieinfo PARAMS ((struct dieinfo *, char *, struct objfile *));
392
393 static void
394 completedieinfo PARAMS ((struct dieinfo *, struct objfile *));
395
396 static void
397 dwarf_psymtab_to_symtab PARAMS ((struct partial_symtab *));
398
399 static void
400 psymtab_to_symtab_1 PARAMS ((struct partial_symtab *));
401
402 static struct symtab *
403 read_ofile_symtab PARAMS ((struct partial_symtab *));
404
405 static void
406 process_dies PARAMS ((char *, char *, struct objfile *));
407
408 static void
409 read_structure_scope PARAMS ((struct dieinfo *, char *, char *,
410 struct objfile *));
411
412 static struct type *
413 decode_array_element_type PARAMS ((char *));
414
415 static struct type *
416 decode_subscr_data PARAMS ((char *, char *));
417
418 static void
419 dwarf_read_array_type PARAMS ((struct dieinfo *));
420
421 static void
422 read_tag_pointer_type PARAMS ((struct dieinfo *dip));
423
424 static void
425 read_subroutine_type PARAMS ((struct dieinfo *, char *, char *));
426
427 static void
428 read_enumeration PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
429
430 static struct type *
431 struct_type PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
432
433 static struct type *
434 enum_type PARAMS ((struct dieinfo *, struct objfile *));
435
436 static void
437 decode_line_numbers PARAMS ((char *));
438
439 static struct type *
440 decode_die_type PARAMS ((struct dieinfo *));
441
442 static struct type *
443 decode_mod_fund_type PARAMS ((char *));
444
445 static struct type *
446 decode_mod_u_d_type PARAMS ((char *));
447
448 static struct type *
449 decode_modified_type PARAMS ((char *, unsigned int, int));
450
451 static struct type *
452 decode_fund_type PARAMS ((unsigned int));
453
454 static char *
455 create_name PARAMS ((char *, struct obstack *));
456
457 static struct type *
458 lookup_utype PARAMS ((DIE_REF));
459
460 static struct type *
461 alloc_utype PARAMS ((DIE_REF, struct type *));
462
463 static struct symbol *
464 new_symbol PARAMS ((struct dieinfo *, struct objfile *));
465
466 static void
467 synthesize_typedef PARAMS ((struct dieinfo *, struct objfile *,
468 struct type *));
469
470 static int
471 locval PARAMS ((char *));
472
473 static void
474 record_minimal_symbol PARAMS ((char *, CORE_ADDR, enum minimal_symbol_type,
475 struct objfile *));
476
477 static void
478 set_cu_language PARAMS ((struct dieinfo *));
479
480 static struct type *
481 dwarf_fundamental_type PARAMS ((struct objfile *, int));
482
483
484 /*
485
486 LOCAL FUNCTION
487
488 dwarf_fundamental_type -- lookup or create a fundamental type
489
490 SYNOPSIS
491
492 struct type *
493 dwarf_fundamental_type (struct objfile *objfile, int typeid)
494
495 DESCRIPTION
496
497 DWARF version 1 doesn't supply any fundamental type information,
498 so gdb has to construct such types. It has a fixed number of
499 fundamental types that it knows how to construct, which is the
500 union of all types that it knows how to construct for all languages
501 that it knows about. These are enumerated in gdbtypes.h.
502
503 As an example, assume we find a DIE that references a DWARF
504 fundamental type of FT_integer. We first look in the ftypes
505 array to see if we already have such a type, indexed by the
506 gdb internal value of FT_INTEGER. If so, we simply return a
507 pointer to that type. If not, then we ask an appropriate
508 language dependent routine to create a type FT_INTEGER, using
509 defaults reasonable for the current target machine, and install
510 that type in ftypes for future reference.
511
512 RETURNS
513
514 Pointer to a fundamental type.
515
516 */
517
518 static struct type *
519 dwarf_fundamental_type (objfile, typeid)
520 struct objfile *objfile;
521 int typeid;
522 {
523 if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
524 {
525 error ("internal error - invalid fundamental type id %d", typeid);
526 }
527
528 /* Look for this particular type in the fundamental type vector. If one is
529 not found, create and install one appropriate for the current language
530 and the current target machine. */
531
532 if (ftypes[typeid] == NULL)
533 {
534 ftypes[typeid] = cu_language_defn -> la_fund_type(objfile, typeid);
535 }
536
537 return (ftypes[typeid]);
538 }
539
540 /*
541
542 LOCAL FUNCTION
543
544 set_cu_language -- set local copy of language for compilation unit
545
546 SYNOPSIS
547
548 void
549 set_cu_language (struct dieinfo *dip)
550
551 DESCRIPTION
552
553 Decode the language attribute for a compilation unit DIE and
554 remember what the language was. We use this at various times
555 when processing DIE's for a given compilation unit.
556
557 RETURNS
558
559 No return value.
560
561 */
562
563 static void
564 set_cu_language (dip)
565 struct dieinfo *dip;
566 {
567 switch (dip -> at_language)
568 {
569 case LANG_C89:
570 case LANG_C:
571 cu_language = language_c;
572 break;
573 case LANG_C_PLUS_PLUS:
574 cu_language = language_cplus;
575 break;
576 /* start-sanitize-chill */
577 case LANG_CHILL:
578 cu_language = language_chill;
579 break;
580 /* end-sanitize-chill */
581 case LANG_MODULA2:
582 cu_language = language_m2;
583 break;
584 case LANG_ADA83:
585 case LANG_COBOL74:
586 case LANG_COBOL85:
587 case LANG_FORTRAN77:
588 case LANG_FORTRAN90:
589 case LANG_PASCAL83:
590 default:
591 cu_language = language_unknown;
592 break;
593 }
594 cu_language_defn = language_def (cu_language);
595 }
596
597 /*
598
599 GLOBAL FUNCTION
600
601 dwarf_build_psymtabs -- build partial symtabs from DWARF debug info
602
603 SYNOPSIS
604
605 void dwarf_build_psymtabs (struct objfile *objfile,
606 struct section_offsets *section_offsets,
607 int mainline, file_ptr dbfoff, unsigned int dbfsize,
608 file_ptr lnoffset, unsigned int lnsize)
609
610 DESCRIPTION
611
612 This function is called upon to build partial symtabs from files
613 containing DIE's (Dwarf Information Entries) and DWARF line numbers.
614
615 It is passed a bfd* containing the DIES
616 and line number information, the corresponding filename for that
617 file, a base address for relocating the symbols, a flag indicating
618 whether or not this debugging information is from a "main symbol
619 table" rather than a shared library or dynamically linked file,
620 and file offset/size pairs for the DIE information and line number
621 information.
622
623 RETURNS
624
625 No return value.
626
627 */
628
629 void
630 dwarf_build_psymtabs (objfile, section_offsets, mainline, dbfoff, dbfsize,
631 lnoffset, lnsize)
632 struct objfile *objfile;
633 struct section_offsets *section_offsets;
634 int mainline;
635 file_ptr dbfoff;
636 unsigned int dbfsize;
637 file_ptr lnoffset;
638 unsigned int lnsize;
639 {
640 bfd *abfd = objfile->obfd;
641 struct cleanup *back_to;
642
643 current_objfile = objfile;
644 dbsize = dbfsize;
645 dbbase = xmalloc (dbsize);
646 dbroff = 0;
647 if ((bfd_seek (abfd, dbfoff, L_SET) != 0) ||
648 (bfd_read (dbbase, dbsize, 1, abfd) != dbsize))
649 {
650 free (dbbase);
651 error ("can't read DWARF data from '%s'", bfd_get_filename (abfd));
652 }
653 back_to = make_cleanup (free, dbbase);
654
655 /* If we are reinitializing, or if we have never loaded syms yet, init.
656 Since we have no idea how many DIES we are looking at, we just guess
657 some arbitrary value. */
658
659 if (mainline || objfile -> global_psymbols.size == 0 ||
660 objfile -> static_psymbols.size == 0)
661 {
662 init_psymbol_list (objfile, 1024);
663 }
664
665 /* Save the relocation factor where everybody can see it. */
666
667 base_section_offsets = section_offsets;
668 baseaddr = ANOFFSET (section_offsets, 0);
669
670 /* Follow the compilation unit sibling chain, building a partial symbol
671 table entry for each one. Save enough information about each compilation
672 unit to locate the full DWARF information later. */
673
674 scan_compilation_units (dbbase, dbbase + dbsize, dbfoff, lnoffset, objfile);
675
676 do_cleanups (back_to);
677 current_objfile = NULL;
678 }
679
680
681 /*
682
683 LOCAL FUNCTION
684
685 record_minimal_symbol -- add entry to gdb's minimal symbol table
686
687 SYNOPSIS
688
689 static void record_minimal_symbol (char *name, CORE_ADDR address,
690 enum minimal_symbol_type ms_type,
691 struct objfile *objfile)
692
693 DESCRIPTION
694
695 Given a pointer to the name of a symbol that should be added to the
696 minimal symbol table, and the address associated with that
697 symbol, records this information for later use in building the
698 minimal symbol table.
699
700 */
701
702 static void
703 record_minimal_symbol (name, address, ms_type, objfile)
704 char *name;
705 CORE_ADDR address;
706 enum minimal_symbol_type ms_type;
707 struct objfile *objfile;
708 {
709 name = obsavestring (name, strlen (name), &objfile -> symbol_obstack);
710 prim_record_minimal_symbol (name, address, ms_type);
711 }
712
713 /*
714
715 LOCAL FUNCTION
716
717 dwarfwarn -- issue a DWARF related warning
718
719 DESCRIPTION
720
721 Issue warnings about DWARF related things that aren't serious enough
722 to warrant aborting with an error, but should not be ignored either.
723 This includes things like detectable corruption in DIE's, missing
724 DIE's, unimplemented features, etc.
725
726 In general, running across tags or attributes that we don't recognize
727 is not considered to be a problem and we should not issue warnings
728 about such.
729
730 NOTES
731
732 We mostly follow the example of the error() routine, but without
733 returning to command level. It is arguable about whether warnings
734 should be issued at all, and if so, where they should go (stdout or
735 stderr).
736
737 We assume that curdie is valid and contains at least the basic
738 information for the DIE where the problem was noticed.
739 */
740
741 static void
742 dwarfwarn (va_alist)
743 va_dcl
744 {
745 va_list ap;
746 char *fmt;
747
748 va_start (ap);
749 fmt = va_arg (ap, char *);
750 warning_setup ();
751 fprintf (stderr, "warning: DWARF ref 0x%x: ", curdie -> die_ref);
752 if (curdie -> at_name)
753 {
754 fprintf (stderr, "'%s': ", curdie -> at_name);
755 }
756 vfprintf (stderr, fmt, ap);
757 fprintf (stderr, "\n");
758 fflush (stderr);
759 va_end (ap);
760 }
761
762 /*
763
764 LOCAL FUNCTION
765
766 read_lexical_block_scope -- process all dies in a lexical block
767
768 SYNOPSIS
769
770 static void read_lexical_block_scope (struct dieinfo *dip,
771 char *thisdie, char *enddie)
772
773 DESCRIPTION
774
775 Process all the DIES contained within a lexical block scope.
776 Start a new scope, process the dies, and then close the scope.
777
778 */
779
780 static void
781 read_lexical_block_scope (dip, thisdie, enddie, objfile)
782 struct dieinfo *dip;
783 char *thisdie;
784 char *enddie;
785 struct objfile *objfile;
786 {
787 register struct context_stack *new;
788
789 push_context (0, dip -> at_low_pc);
790 process_dies (thisdie + dip -> die_length, enddie, objfile);
791 new = pop_context ();
792 if (local_symbols != NULL)
793 {
794 finish_block (0, &local_symbols, new -> old_blocks, new -> start_addr,
795 dip -> at_high_pc, objfile);
796 }
797 local_symbols = new -> locals;
798 }
799
800 /*
801
802 LOCAL FUNCTION
803
804 lookup_utype -- look up a user defined type from die reference
805
806 SYNOPSIS
807
808 static type *lookup_utype (DIE_REF die_ref)
809
810 DESCRIPTION
811
812 Given a DIE reference, lookup the user defined type associated with
813 that DIE, if it has been registered already. If not registered, then
814 return NULL. Alloc_utype() can be called to register an empty
815 type for this reference, which will be filled in later when the
816 actual referenced DIE is processed.
817 */
818
819 static struct type *
820 lookup_utype (die_ref)
821 DIE_REF die_ref;
822 {
823 struct type *type = NULL;
824 int utypeidx;
825
826 utypeidx = (die_ref - dbroff) / 4;
827 if ((utypeidx < 0) || (utypeidx >= numutypes))
828 {
829 dwarfwarn ("reference to DIE (0x%x) outside compilation unit", die_ref);
830 }
831 else
832 {
833 type = *(utypes + utypeidx);
834 }
835 return (type);
836 }
837
838
839 /*
840
841 LOCAL FUNCTION
842
843 alloc_utype -- add a user defined type for die reference
844
845 SYNOPSIS
846
847 static type *alloc_utype (DIE_REF die_ref, struct type *utypep)
848
849 DESCRIPTION
850
851 Given a die reference DIE_REF, and a possible pointer to a user
852 defined type UTYPEP, register that this reference has a user
853 defined type and either use the specified type in UTYPEP or
854 make a new empty type that will be filled in later.
855
856 We should only be called after calling lookup_utype() to verify that
857 there is not currently a type registered for DIE_REF.
858 */
859
860 static struct type *
861 alloc_utype (die_ref, utypep)
862 DIE_REF die_ref;
863 struct type *utypep;
864 {
865 struct type **typep;
866 int utypeidx;
867
868 utypeidx = (die_ref - dbroff) / 4;
869 typep = utypes + utypeidx;
870 if ((utypeidx < 0) || (utypeidx >= numutypes))
871 {
872 utypep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
873 dwarfwarn ("reference to DIE (0x%x) outside compilation unit", die_ref);
874 }
875 else if (*typep != NULL)
876 {
877 utypep = *typep;
878 SQUAWK (("internal error: dup user type allocation"));
879 }
880 else
881 {
882 if (utypep == NULL)
883 {
884 utypep = alloc_type (current_objfile);
885 }
886 *typep = utypep;
887 }
888 return (utypep);
889 }
890
891 /*
892
893 LOCAL FUNCTION
894
895 decode_die_type -- return a type for a specified die
896
897 SYNOPSIS
898
899 static struct type *decode_die_type (struct dieinfo *dip)
900
901 DESCRIPTION
902
903 Given a pointer to a die information structure DIP, decode the
904 type of the die and return a pointer to the decoded type. All
905 dies without specific types default to type int.
906 */
907
908 static struct type *
909 decode_die_type (dip)
910 struct dieinfo *dip;
911 {
912 struct type *type = NULL;
913
914 if (dip -> at_fund_type != 0)
915 {
916 type = decode_fund_type (dip -> at_fund_type);
917 }
918 else if (dip -> at_mod_fund_type != NULL)
919 {
920 type = decode_mod_fund_type (dip -> at_mod_fund_type);
921 }
922 else if (dip -> at_user_def_type)
923 {
924 if ((type = lookup_utype (dip -> at_user_def_type)) == NULL)
925 {
926 type = alloc_utype (dip -> at_user_def_type, NULL);
927 }
928 }
929 else if (dip -> at_mod_u_d_type)
930 {
931 type = decode_mod_u_d_type (dip -> at_mod_u_d_type);
932 }
933 else
934 {
935 type = dwarf_fundamental_type (current_objfile, FT_INTEGER);
936 }
937 return (type);
938 }
939
940 /*
941
942 LOCAL FUNCTION
943
944 struct_type -- compute and return the type for a struct or union
945
946 SYNOPSIS
947
948 static struct type *struct_type (struct dieinfo *dip, char *thisdie,
949 char *enddie, struct objfile *objfile)
950
951 DESCRIPTION
952
953 Given pointer to a die information structure for a die which
954 defines a union or structure (and MUST define one or the other),
955 and pointers to the raw die data that define the range of dies which
956 define the members, compute and return the user defined type for the
957 structure or union.
958 */
959
960 static struct type *
961 struct_type (dip, thisdie, enddie, objfile)
962 struct dieinfo *dip;
963 char *thisdie;
964 char *enddie;
965 struct objfile *objfile;
966 {
967 struct type *type;
968 struct nextfield {
969 struct nextfield *next;
970 struct field field;
971 };
972 struct nextfield *list = NULL;
973 struct nextfield *new;
974 int nfields = 0;
975 int n;
976 char *tpart1;
977 struct dieinfo mbr;
978 char *nextdie;
979 int anonymous_size;
980
981 if ((type = lookup_utype (dip -> die_ref)) == NULL)
982 {
983 /* No forward references created an empty type, so install one now */
984 type = alloc_utype (dip -> die_ref, NULL);
985 }
986 INIT_CPLUS_SPECIFIC(type);
987 switch (dip -> die_tag)
988 {
989 case TAG_class_type:
990 TYPE_CODE (type) = TYPE_CODE_CLASS;
991 tpart1 = "class";
992 break;
993 case TAG_structure_type:
994 TYPE_CODE (type) = TYPE_CODE_STRUCT;
995 tpart1 = "struct";
996 break;
997 case TAG_union_type:
998 TYPE_CODE (type) = TYPE_CODE_UNION;
999 tpart1 = "union";
1000 break;
1001 default:
1002 /* Should never happen */
1003 TYPE_CODE (type) = TYPE_CODE_UNDEF;
1004 tpart1 = "???";
1005 SQUAWK (("missing class, structure, or union tag"));
1006 break;
1007 }
1008 /* Some compilers try to be helpful by inventing "fake" names for
1009 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1010 Thanks, but no thanks... */
1011 if (dip -> at_name != NULL
1012 && *dip -> at_name != '~'
1013 && *dip -> at_name != '.')
1014 {
1015 TYPE_NAME (type) = obconcat (&objfile -> type_obstack,
1016 tpart1, " ", dip -> at_name);
1017 }
1018 /* Use whatever size is known. Zero is a valid size. We might however
1019 wish to check has_at_byte_size to make sure that some byte size was
1020 given explicitly, but DWARF doesn't specify that explicit sizes of
1021 zero have to present, so complaining about missing sizes should
1022 probably not be the default. */
1023 TYPE_LENGTH (type) = dip -> at_byte_size;
1024 thisdie += dip -> die_length;
1025 while (thisdie < enddie)
1026 {
1027 basicdieinfo (&mbr, thisdie, objfile);
1028 completedieinfo (&mbr, objfile);
1029 if (mbr.die_length <= SIZEOF_DIE_LENGTH)
1030 {
1031 break;
1032 }
1033 else if (mbr.at_sibling != 0)
1034 {
1035 nextdie = dbbase + mbr.at_sibling - dbroff;
1036 }
1037 else
1038 {
1039 nextdie = thisdie + mbr.die_length;
1040 }
1041 switch (mbr.die_tag)
1042 {
1043 case TAG_member:
1044 /* Get space to record the next field's data. */
1045 new = (struct nextfield *) alloca (sizeof (struct nextfield));
1046 new -> next = list;
1047 list = new;
1048 /* Save the data. */
1049 list -> field.name =
1050 obsavestring (mbr.at_name, strlen (mbr.at_name),
1051 &objfile -> type_obstack);
1052 list -> field.type = decode_die_type (&mbr);
1053 list -> field.bitpos = 8 * locval (mbr.at_location);
1054 /* Handle bit fields. */
1055 list -> field.bitsize = mbr.at_bit_size;
1056 #if BITS_BIG_ENDIAN
1057 /* For big endian bits, the at_bit_offset gives the additional
1058 bit offset from the MSB of the containing anonymous object to
1059 the MSB of the field. We don't have to do anything special
1060 since we don't need to know the size of the anonymous object. */
1061 list -> field.bitpos += mbr.at_bit_offset;
1062 #else
1063 /* For little endian bits, we need to have a non-zero at_bit_size,
1064 so that we know we are in fact dealing with a bitfield. Compute
1065 the bit offset to the MSB of the anonymous object, subtract off
1066 the number of bits from the MSB of the field to the MSB of the
1067 object, and then subtract off the number of bits of the field
1068 itself. The result is the bit offset of the LSB of the field. */
1069 if (mbr.at_bit_size > 0)
1070 {
1071 if (mbr.has_at_byte_size)
1072 {
1073 /* The size of the anonymous object containing the bit field
1074 is explicit, so use the indicated size (in bytes). */
1075 anonymous_size = mbr.at_byte_size;
1076 }
1077 else
1078 {
1079 /* The size of the anonymous object containing the bit field
1080 matches the size of an object of the bit field's type.
1081 DWARF allows at_byte_size to be left out in such cases,
1082 as a debug information size optimization. */
1083 anonymous_size = TYPE_LENGTH (list -> field.type);
1084 }
1085 list -> field.bitpos +=
1086 anonymous_size * 8 - mbr.at_bit_offset - mbr.at_bit_size;
1087 }
1088 #endif
1089 nfields++;
1090 break;
1091 default:
1092 process_dies (thisdie, nextdie, objfile);
1093 break;
1094 }
1095 thisdie = nextdie;
1096 }
1097 /* Now create the vector of fields, and record how big it is. We may
1098 not even have any fields, if this DIE was generated due to a reference
1099 to an anonymous structure or union. In this case, TYPE_FLAG_STUB is
1100 set, which clues gdb in to the fact that it needs to search elsewhere
1101 for the full structure definition. */
1102 if (nfields == 0)
1103 {
1104 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1105 }
1106 else
1107 {
1108 TYPE_NFIELDS (type) = nfields;
1109 TYPE_FIELDS (type) = (struct field *)
1110 TYPE_ALLOC (type, sizeof (struct field) * nfields);
1111 /* Copy the saved-up fields into the field vector. */
1112 for (n = nfields; list; list = list -> next)
1113 {
1114 TYPE_FIELD (type, --n) = list -> field;
1115 }
1116 }
1117 return (type);
1118 }
1119
1120 /*
1121
1122 LOCAL FUNCTION
1123
1124 read_structure_scope -- process all dies within struct or union
1125
1126 SYNOPSIS
1127
1128 static void read_structure_scope (struct dieinfo *dip,
1129 char *thisdie, char *enddie, struct objfile *objfile)
1130
1131 DESCRIPTION
1132
1133 Called when we find the DIE that starts a structure or union
1134 scope (definition) to process all dies that define the members
1135 of the structure or union. DIP is a pointer to the die info
1136 struct for the DIE that names the structure or union.
1137
1138 NOTES
1139
1140 Note that we need to call struct_type regardless of whether or not
1141 the DIE has an at_name attribute, since it might be an anonymous
1142 structure or union. This gets the type entered into our set of
1143 user defined types.
1144
1145 However, if the structure is incomplete (an opaque struct/union)
1146 then suppress creating a symbol table entry for it since gdb only
1147 wants to find the one with the complete definition. Note that if
1148 it is complete, we just call new_symbol, which does it's own
1149 checking about whether the struct/union is anonymous or not (and
1150 suppresses creating a symbol table entry itself).
1151
1152 */
1153
1154 static void
1155 read_structure_scope (dip, thisdie, enddie, objfile)
1156 struct dieinfo *dip;
1157 char *thisdie;
1158 char *enddie;
1159 struct objfile *objfile;
1160 {
1161 struct type *type;
1162 struct symbol *sym;
1163
1164 type = struct_type (dip, thisdie, enddie, objfile);
1165 if (!(TYPE_FLAGS (type) & TYPE_FLAG_STUB))
1166 {
1167 sym = new_symbol (dip, objfile);
1168 if (sym != NULL)
1169 {
1170 SYMBOL_TYPE (sym) = type;
1171 if (cu_language == language_cplus)
1172 {
1173 synthesize_typedef (dip, objfile, type);
1174 }
1175 }
1176 }
1177 }
1178
1179 /*
1180
1181 LOCAL FUNCTION
1182
1183 decode_array_element_type -- decode type of the array elements
1184
1185 SYNOPSIS
1186
1187 static struct type *decode_array_element_type (char *scan, char *end)
1188
1189 DESCRIPTION
1190
1191 As the last step in decoding the array subscript information for an
1192 array DIE, we need to decode the type of the array elements. We are
1193 passed a pointer to this last part of the subscript information and
1194 must return the appropriate type. If the type attribute is not
1195 recognized, just warn about the problem and return type int.
1196 */
1197
1198 static struct type *
1199 decode_array_element_type (scan)
1200 char *scan;
1201 {
1202 struct type *typep;
1203 DIE_REF die_ref;
1204 unsigned short attribute;
1205 unsigned short fundtype;
1206 int nbytes;
1207
1208 attribute = target_to_host (scan, SIZEOF_ATTRIBUTE, GET_UNSIGNED,
1209 current_objfile);
1210 scan += SIZEOF_ATTRIBUTE;
1211 if ((nbytes = attribute_size (attribute)) == -1)
1212 {
1213 SQUAWK (("bad array element type attribute 0x%x", attribute));
1214 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1215 }
1216 else
1217 {
1218 switch (attribute)
1219 {
1220 case AT_fund_type:
1221 fundtype = target_to_host (scan, nbytes, GET_UNSIGNED,
1222 current_objfile);
1223 typep = decode_fund_type (fundtype);
1224 break;
1225 case AT_mod_fund_type:
1226 typep = decode_mod_fund_type (scan);
1227 break;
1228 case AT_user_def_type:
1229 die_ref = target_to_host (scan, nbytes, GET_UNSIGNED,
1230 current_objfile);
1231 if ((typep = lookup_utype (die_ref)) == NULL)
1232 {
1233 typep = alloc_utype (die_ref, NULL);
1234 }
1235 break;
1236 case AT_mod_u_d_type:
1237 typep = decode_mod_u_d_type (scan);
1238 break;
1239 default:
1240 SQUAWK (("bad array element type attribute 0x%x", attribute));
1241 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1242 break;
1243 }
1244 }
1245 return (typep);
1246 }
1247
1248 /*
1249
1250 LOCAL FUNCTION
1251
1252 decode_subscr_data -- decode array subscript and element type data
1253
1254 SYNOPSIS
1255
1256 static struct type *decode_subscr_data (char *scan, char *end)
1257
1258 DESCRIPTION
1259
1260 The array subscripts and the data type of the elements of an
1261 array are described by a list of data items, stored as a block
1262 of contiguous bytes. There is a data item describing each array
1263 dimension, and a final data item describing the element type.
1264 The data items are ordered the same as their appearance in the
1265 source (I.E. leftmost dimension first, next to leftmost second,
1266 etc).
1267
1268 We are passed a pointer to the start of the block of bytes
1269 containing the data items, and a pointer to the first byte past
1270 the data. This function decodes the data and returns a type.
1271
1272 BUGS
1273 FIXME: This code only implements the forms currently used
1274 by the AT&T and GNU C compilers.
1275
1276 The end pointer is supplied for error checking, maybe we should
1277 use it for that...
1278 */
1279
1280 static struct type *
1281 decode_subscr_data (scan, end)
1282 char *scan;
1283 char *end;
1284 {
1285 struct type *typep = NULL;
1286 struct type *nexttype;
1287 unsigned int format;
1288 unsigned short fundtype;
1289 unsigned long lowbound;
1290 unsigned long highbound;
1291 int nbytes;
1292
1293 format = target_to_host (scan, SIZEOF_FORMAT_SPECIFIER, GET_UNSIGNED,
1294 current_objfile);
1295 scan += SIZEOF_FORMAT_SPECIFIER;
1296 switch (format)
1297 {
1298 case FMT_ET:
1299 typep = decode_array_element_type (scan);
1300 break;
1301 case FMT_FT_C_C:
1302 fundtype = target_to_host (scan, SIZEOF_FMT_FT, GET_UNSIGNED,
1303 current_objfile);
1304 scan += SIZEOF_FMT_FT;
1305 if (fundtype != FT_integer && fundtype != FT_signed_integer
1306 && fundtype != FT_unsigned_integer)
1307 {
1308 SQUAWK (("array subscripts must be integral types, not type 0x%x",
1309 fundtype));
1310 }
1311 else
1312 {
1313 nbytes = TARGET_FT_LONG_SIZE (current_objfile);
1314 lowbound = target_to_host (scan, nbytes, GET_UNSIGNED,
1315 current_objfile);
1316 scan += nbytes;
1317 highbound = target_to_host (scan, nbytes, GET_UNSIGNED,
1318 current_objfile);
1319 scan += nbytes;
1320 nexttype = decode_subscr_data (scan, end);
1321 if (nexttype != NULL)
1322 {
1323 typep = alloc_type (current_objfile);
1324 TYPE_CODE (typep) = TYPE_CODE_ARRAY;
1325 TYPE_LENGTH (typep) = TYPE_LENGTH (nexttype);
1326 TYPE_LENGTH (typep) *= (highbound - lowbound) + 1;
1327 TYPE_TARGET_TYPE (typep) = nexttype;
1328 }
1329 }
1330 break;
1331 case FMT_FT_C_X:
1332 case FMT_FT_X_C:
1333 case FMT_FT_X_X:
1334 case FMT_UT_C_C:
1335 case FMT_UT_C_X:
1336 case FMT_UT_X_C:
1337 case FMT_UT_X_X:
1338 SQUAWK (("array subscript format 0x%x not handled yet", format));
1339 break;
1340 default:
1341 SQUAWK (("unknown array subscript format %x", format));
1342 break;
1343 }
1344 return (typep);
1345 }
1346
1347 /*
1348
1349 LOCAL FUNCTION
1350
1351 dwarf_read_array_type -- read TAG_array_type DIE
1352
1353 SYNOPSIS
1354
1355 static void dwarf_read_array_type (struct dieinfo *dip)
1356
1357 DESCRIPTION
1358
1359 Extract all information from a TAG_array_type DIE and add to
1360 the user defined type vector.
1361 */
1362
1363 static void
1364 dwarf_read_array_type (dip)
1365 struct dieinfo *dip;
1366 {
1367 struct type *type;
1368 struct type *utype;
1369 char *sub;
1370 char *subend;
1371 unsigned short blocksz;
1372 int nbytes;
1373
1374 if (dip -> at_ordering != ORD_row_major)
1375 {
1376 /* FIXME: Can gdb even handle column major arrays? */
1377 SQUAWK (("array not row major; not handled correctly"));
1378 }
1379 if ((sub = dip -> at_subscr_data) != NULL)
1380 {
1381 nbytes = attribute_size (AT_subscr_data);
1382 blocksz = target_to_host (sub, nbytes, GET_UNSIGNED, current_objfile);
1383 subend = sub + nbytes + blocksz;
1384 sub += nbytes;
1385 type = decode_subscr_data (sub, subend);
1386 if (type == NULL)
1387 {
1388 if ((utype = lookup_utype (dip -> die_ref)) == NULL)
1389 {
1390 utype = alloc_utype (dip -> die_ref, NULL);
1391 }
1392 TYPE_CODE (utype) = TYPE_CODE_ARRAY;
1393 TYPE_TARGET_TYPE (utype) =
1394 dwarf_fundamental_type (current_objfile, FT_INTEGER);
1395 TYPE_LENGTH (utype) = 1 * TYPE_LENGTH (TYPE_TARGET_TYPE (utype));
1396 }
1397 else
1398 {
1399 if ((utype = lookup_utype (dip -> die_ref)) == NULL)
1400 {
1401 alloc_utype (dip -> die_ref, type);
1402 }
1403 else
1404 {
1405 TYPE_CODE (utype) = TYPE_CODE_ARRAY;
1406 TYPE_LENGTH (utype) = TYPE_LENGTH (type);
1407 TYPE_TARGET_TYPE (utype) = TYPE_TARGET_TYPE (type);
1408 }
1409 }
1410 }
1411 }
1412
1413 /*
1414
1415 LOCAL FUNCTION
1416
1417 read_tag_pointer_type -- read TAG_pointer_type DIE
1418
1419 SYNOPSIS
1420
1421 static void read_tag_pointer_type (struct dieinfo *dip)
1422
1423 DESCRIPTION
1424
1425 Extract all information from a TAG_pointer_type DIE and add to
1426 the user defined type vector.
1427 */
1428
1429 static void
1430 read_tag_pointer_type (dip)
1431 struct dieinfo *dip;
1432 {
1433 struct type *type;
1434 struct type *utype;
1435
1436 type = decode_die_type (dip);
1437 if ((utype = lookup_utype (dip -> die_ref)) == NULL)
1438 {
1439 utype = lookup_pointer_type (type);
1440 alloc_utype (dip -> die_ref, utype);
1441 }
1442 else
1443 {
1444 TYPE_TARGET_TYPE (utype) = type;
1445 TYPE_POINTER_TYPE (type) = utype;
1446
1447 /* We assume the machine has only one representation for pointers! */
1448 /* FIXME: This confuses host<->target data representations, and is a
1449 poor assumption besides. */
1450
1451 TYPE_LENGTH (utype) = sizeof (char *);
1452 TYPE_CODE (utype) = TYPE_CODE_PTR;
1453 }
1454 }
1455
1456 /*
1457
1458 LOCAL FUNCTION
1459
1460 read_subroutine_type -- process TAG_subroutine_type dies
1461
1462 SYNOPSIS
1463
1464 static void read_subroutine_type (struct dieinfo *dip, char thisdie,
1465 char *enddie)
1466
1467 DESCRIPTION
1468
1469 Handle DIES due to C code like:
1470
1471 struct foo {
1472 int (*funcp)(int a, long l); (Generates TAG_subroutine_type DIE)
1473 int b;
1474 };
1475
1476 NOTES
1477
1478 The parameter DIES are currently ignored. See if gdb has a way to
1479 include this info in it's type system, and decode them if so. Is
1480 this what the type structure's "arg_types" field is for? (FIXME)
1481 */
1482
1483 static void
1484 read_subroutine_type (dip, thisdie, enddie)
1485 struct dieinfo *dip;
1486 char *thisdie;
1487 char *enddie;
1488 {
1489 struct type *type; /* Type that this function returns */
1490 struct type *ftype; /* Function that returns above type */
1491
1492 /* Decode the type that this subroutine returns */
1493
1494 type = decode_die_type (dip);
1495
1496 /* Check to see if we already have a partially constructed user
1497 defined type for this DIE, from a forward reference. */
1498
1499 if ((ftype = lookup_utype (dip -> die_ref)) == NULL)
1500 {
1501 /* This is the first reference to one of these types. Make
1502 a new one and place it in the user defined types. */
1503 ftype = lookup_function_type (type);
1504 alloc_utype (dip -> die_ref, ftype);
1505 }
1506 else
1507 {
1508 /* We have an existing partially constructed type, so bash it
1509 into the correct type. */
1510 TYPE_TARGET_TYPE (ftype) = type;
1511 TYPE_FUNCTION_TYPE (type) = ftype;
1512 TYPE_LENGTH (ftype) = 1;
1513 TYPE_CODE (ftype) = TYPE_CODE_FUNC;
1514 }
1515 }
1516
1517 /*
1518
1519 LOCAL FUNCTION
1520
1521 read_enumeration -- process dies which define an enumeration
1522
1523 SYNOPSIS
1524
1525 static void read_enumeration (struct dieinfo *dip, char *thisdie,
1526 char *enddie, struct objfile *objfile)
1527
1528 DESCRIPTION
1529
1530 Given a pointer to a die which begins an enumeration, process all
1531 the dies that define the members of the enumeration.
1532
1533 NOTES
1534
1535 Note that we need to call enum_type regardless of whether or not we
1536 have a symbol, since we might have an enum without a tag name (thus
1537 no symbol for the tagname).
1538 */
1539
1540 static void
1541 read_enumeration (dip, thisdie, enddie, objfile)
1542 struct dieinfo *dip;
1543 char *thisdie;
1544 char *enddie;
1545 struct objfile *objfile;
1546 {
1547 struct type *type;
1548 struct symbol *sym;
1549
1550 type = enum_type (dip, objfile);
1551 sym = new_symbol (dip, objfile);
1552 if (sym != NULL)
1553 {
1554 SYMBOL_TYPE (sym) = type;
1555 if (cu_language == language_cplus)
1556 {
1557 synthesize_typedef (dip, objfile, type);
1558 }
1559 }
1560 }
1561
1562 /*
1563
1564 LOCAL FUNCTION
1565
1566 enum_type -- decode and return a type for an enumeration
1567
1568 SYNOPSIS
1569
1570 static type *enum_type (struct dieinfo *dip, struct objfile *objfile)
1571
1572 DESCRIPTION
1573
1574 Given a pointer to a die information structure for the die which
1575 starts an enumeration, process all the dies that define the members
1576 of the enumeration and return a type pointer for the enumeration.
1577
1578 At the same time, for each member of the enumeration, create a
1579 symbol for it with namespace VAR_NAMESPACE and class LOC_CONST,
1580 and give it the type of the enumeration itself.
1581
1582 NOTES
1583
1584 Note that the DWARF specification explicitly mandates that enum
1585 constants occur in reverse order from the source program order,
1586 for "consistency" and because this ordering is easier for many
1587 compilers to generate. (Draft 6, sec 3.8.5, Enumeration type
1588 Entries). Because gdb wants to see the enum members in program
1589 source order, we have to ensure that the order gets reversed while
1590 we are processing them.
1591 */
1592
1593 static struct type *
1594 enum_type (dip, objfile)
1595 struct dieinfo *dip;
1596 struct objfile *objfile;
1597 {
1598 struct type *type;
1599 struct nextfield {
1600 struct nextfield *next;
1601 struct field field;
1602 };
1603 struct nextfield *list = NULL;
1604 struct nextfield *new;
1605 int nfields = 0;
1606 int n;
1607 char *scan;
1608 char *listend;
1609 unsigned short blocksz;
1610 struct symbol *sym;
1611 int nbytes;
1612
1613 if ((type = lookup_utype (dip -> die_ref)) == NULL)
1614 {
1615 /* No forward references created an empty type, so install one now */
1616 type = alloc_utype (dip -> die_ref, NULL);
1617 }
1618 TYPE_CODE (type) = TYPE_CODE_ENUM;
1619 /* Some compilers try to be helpful by inventing "fake" names for
1620 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1621 Thanks, but no thanks... */
1622 if (dip -> at_name != NULL
1623 && *dip -> at_name != '~'
1624 && *dip -> at_name != '.')
1625 {
1626 TYPE_NAME (type) = obconcat (&objfile -> type_obstack, "enum",
1627 " ", dip -> at_name);
1628 }
1629 if (dip -> at_byte_size != 0)
1630 {
1631 TYPE_LENGTH (type) = dip -> at_byte_size;
1632 }
1633 if ((scan = dip -> at_element_list) != NULL)
1634 {
1635 if (dip -> short_element_list)
1636 {
1637 nbytes = attribute_size (AT_short_element_list);
1638 }
1639 else
1640 {
1641 nbytes = attribute_size (AT_element_list);
1642 }
1643 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
1644 listend = scan + nbytes + blocksz;
1645 scan += nbytes;
1646 while (scan < listend)
1647 {
1648 new = (struct nextfield *) alloca (sizeof (struct nextfield));
1649 new -> next = list;
1650 list = new;
1651 list -> field.type = NULL;
1652 list -> field.bitsize = 0;
1653 list -> field.bitpos =
1654 target_to_host (scan, TARGET_FT_LONG_SIZE (objfile), GET_SIGNED,
1655 objfile);
1656 scan += TARGET_FT_LONG_SIZE (objfile);
1657 list -> field.name = obsavestring (scan, strlen (scan),
1658 &objfile -> type_obstack);
1659 scan += strlen (scan) + 1;
1660 nfields++;
1661 /* Handcraft a new symbol for this enum member. */
1662 sym = (struct symbol *) obstack_alloc (&objfile->symbol_obstack,
1663 sizeof (struct symbol));
1664 memset (sym, 0, sizeof (struct symbol));
1665 SYMBOL_NAME (sym) = create_name (list -> field.name,
1666 &objfile->symbol_obstack);
1667 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1668 SYMBOL_CLASS (sym) = LOC_CONST;
1669 SYMBOL_TYPE (sym) = type;
1670 SYMBOL_VALUE (sym) = list -> field.bitpos;
1671 add_symbol_to_list (sym, list_in_scope);
1672 }
1673 /* Now create the vector of fields, and record how big it is. This is
1674 where we reverse the order, by pulling the members off the list in
1675 reverse order from how they were inserted. If we have no fields
1676 (this is apparently possible in C++) then skip building a field
1677 vector. */
1678 if (nfields > 0)
1679 {
1680 TYPE_NFIELDS (type) = nfields;
1681 TYPE_FIELDS (type) = (struct field *)
1682 obstack_alloc (&objfile->symbol_obstack, sizeof (struct field) * nfields);
1683 /* Copy the saved-up fields into the field vector. */
1684 for (n = 0; (n < nfields) && (list != NULL); list = list -> next)
1685 {
1686 TYPE_FIELD (type, n++) = list -> field;
1687 }
1688 }
1689 }
1690 return (type);
1691 }
1692
1693 /*
1694
1695 LOCAL FUNCTION
1696
1697 read_func_scope -- process all dies within a function scope
1698
1699 DESCRIPTION
1700
1701 Process all dies within a given function scope. We are passed
1702 a die information structure pointer DIP for the die which
1703 starts the function scope, and pointers into the raw die data
1704 that define the dies within the function scope.
1705
1706 For now, we ignore lexical block scopes within the function.
1707 The problem is that AT&T cc does not define a DWARF lexical
1708 block scope for the function itself, while gcc defines a
1709 lexical block scope for the function. We need to think about
1710 how to handle this difference, or if it is even a problem.
1711 (FIXME)
1712 */
1713
1714 static void
1715 read_func_scope (dip, thisdie, enddie, objfile)
1716 struct dieinfo *dip;
1717 char *thisdie;
1718 char *enddie;
1719 struct objfile *objfile;
1720 {
1721 register struct context_stack *new;
1722
1723 if (objfile -> ei.entry_point >= dip -> at_low_pc &&
1724 objfile -> ei.entry_point < dip -> at_high_pc)
1725 {
1726 objfile -> ei.entry_func_lowpc = dip -> at_low_pc;
1727 objfile -> ei.entry_func_highpc = dip -> at_high_pc;
1728 }
1729 if (STREQ (dip -> at_name, "main")) /* FIXME: hardwired name */
1730 {
1731 objfile -> ei.main_func_lowpc = dip -> at_low_pc;
1732 objfile -> ei.main_func_highpc = dip -> at_high_pc;
1733 }
1734 new = push_context (0, dip -> at_low_pc);
1735 new -> name = new_symbol (dip, objfile);
1736 list_in_scope = &local_symbols;
1737 process_dies (thisdie + dip -> die_length, enddie, objfile);
1738 new = pop_context ();
1739 /* Make a block for the local symbols within. */
1740 finish_block (new -> name, &local_symbols, new -> old_blocks,
1741 new -> start_addr, dip -> at_high_pc, objfile);
1742 list_in_scope = &file_symbols;
1743 }
1744
1745
1746 /*
1747
1748 LOCAL FUNCTION
1749
1750 handle_producer -- process the AT_producer attribute
1751
1752 DESCRIPTION
1753
1754 Perform any operations that depend on finding a particular
1755 AT_producer attribute.
1756
1757 */
1758
1759 static void
1760 handle_producer (producer)
1761 char *producer;
1762 {
1763
1764 /* If this compilation unit was compiled with g++ or gcc, then set the
1765 processing_gcc_compilation flag. */
1766
1767 processing_gcc_compilation =
1768 STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER))
1769 /* start-sanitize-chill */
1770 || STREQN (producer, CHILL_PRODUCER, strlen (CHILL_PRODUCER))
1771 /* end-sanitize-chill */
1772 || STREQN (producer, GCC_PRODUCER, strlen (GCC_PRODUCER));
1773
1774 /* Select a demangling style if we can identify the producer and if
1775 the current style is auto. We leave the current style alone if it
1776 is not auto. We also leave the demangling style alone if we find a
1777 gcc (cc1) producer, as opposed to a g++ (cc1plus) producer. */
1778
1779 #if 1 /* Works, but is experimental. -fnf */
1780 if (AUTO_DEMANGLING)
1781 {
1782 if (STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER)))
1783 {
1784 set_demangling_style (GNU_DEMANGLING_STYLE_STRING);
1785 }
1786 else if (STREQN (producer, LCC_PRODUCER, strlen (LCC_PRODUCER)))
1787 {
1788 set_demangling_style (LUCID_DEMANGLING_STYLE_STRING);
1789 }
1790 else if (STREQN (producer, CFRONT_PRODUCER, strlen (CFRONT_PRODUCER)))
1791 {
1792 set_demangling_style (CFRONT_DEMANGLING_STYLE_STRING);
1793 }
1794 }
1795 #endif
1796 }
1797
1798
1799 /*
1800
1801 LOCAL FUNCTION
1802
1803 read_file_scope -- process all dies within a file scope
1804
1805 DESCRIPTION
1806
1807 Process all dies within a given file scope. We are passed a
1808 pointer to the die information structure for the die which
1809 starts the file scope, and pointers into the raw die data which
1810 mark the range of dies within the file scope.
1811
1812 When the partial symbol table is built, the file offset for the line
1813 number table for each compilation unit is saved in the partial symbol
1814 table entry for that compilation unit. As the symbols for each
1815 compilation unit are read, the line number table is read into memory
1816 and the variable lnbase is set to point to it. Thus all we have to
1817 do is use lnbase to access the line number table for the current
1818 compilation unit.
1819 */
1820
1821 static void
1822 read_file_scope (dip, thisdie, enddie, objfile)
1823 struct dieinfo *dip;
1824 char *thisdie;
1825 char *enddie;
1826 struct objfile *objfile;
1827 {
1828 struct cleanup *back_to;
1829 struct symtab *symtab;
1830
1831 if (objfile -> ei.entry_point >= dip -> at_low_pc &&
1832 objfile -> ei.entry_point < dip -> at_high_pc)
1833 {
1834 objfile -> ei.entry_file_lowpc = dip -> at_low_pc;
1835 objfile -> ei.entry_file_highpc = dip -> at_high_pc;
1836 }
1837 set_cu_language (dip);
1838 if (dip -> at_producer != NULL)
1839 {
1840 handle_producer (dip -> at_producer);
1841 }
1842 numutypes = (enddie - thisdie) / 4;
1843 utypes = (struct type **) xmalloc (numutypes * sizeof (struct type *));
1844 back_to = make_cleanup (free, utypes);
1845 memset (utypes, 0, numutypes * sizeof (struct type *));
1846 memset (ftypes, 0, FT_NUM_MEMBERS * sizeof (struct type *));
1847 start_symtab (dip -> at_name, dip -> at_comp_dir, dip -> at_low_pc);
1848 decode_line_numbers (lnbase);
1849 process_dies (thisdie + dip -> die_length, enddie, objfile);
1850 symtab = end_symtab (dip -> at_high_pc, 0, 0, objfile);
1851 if (symtab != NULL)
1852 {
1853 symtab -> language = cu_language;
1854 }
1855 do_cleanups (back_to);
1856 utypes = NULL;
1857 numutypes = 0;
1858 }
1859
1860 /*
1861
1862 LOCAL FUNCTION
1863
1864 process_dies -- process a range of DWARF Information Entries
1865
1866 SYNOPSIS
1867
1868 static void process_dies (char *thisdie, char *enddie,
1869 struct objfile *objfile)
1870
1871 DESCRIPTION
1872
1873 Process all DIE's in a specified range. May be (and almost
1874 certainly will be) called recursively.
1875 */
1876
1877 static void
1878 process_dies (thisdie, enddie, objfile)
1879 char *thisdie;
1880 char *enddie;
1881 struct objfile *objfile;
1882 {
1883 char *nextdie;
1884 struct dieinfo di;
1885
1886 while (thisdie < enddie)
1887 {
1888 basicdieinfo (&di, thisdie, objfile);
1889 if (di.die_length < SIZEOF_DIE_LENGTH)
1890 {
1891 break;
1892 }
1893 else if (di.die_tag == TAG_padding)
1894 {
1895 nextdie = thisdie + di.die_length;
1896 }
1897 else
1898 {
1899 completedieinfo (&di, objfile);
1900 if (di.at_sibling != 0)
1901 {
1902 nextdie = dbbase + di.at_sibling - dbroff;
1903 }
1904 else
1905 {
1906 nextdie = thisdie + di.die_length;
1907 }
1908 switch (di.die_tag)
1909 {
1910 case TAG_compile_unit:
1911 read_file_scope (&di, thisdie, nextdie, objfile);
1912 break;
1913 case TAG_global_subroutine:
1914 case TAG_subroutine:
1915 if (di.has_at_low_pc)
1916 {
1917 read_func_scope (&di, thisdie, nextdie, objfile);
1918 }
1919 break;
1920 case TAG_lexical_block:
1921 read_lexical_block_scope (&di, thisdie, nextdie, objfile);
1922 break;
1923 case TAG_class_type:
1924 case TAG_structure_type:
1925 case TAG_union_type:
1926 read_structure_scope (&di, thisdie, nextdie, objfile);
1927 break;
1928 case TAG_enumeration_type:
1929 read_enumeration (&di, thisdie, nextdie, objfile);
1930 break;
1931 case TAG_subroutine_type:
1932 read_subroutine_type (&di, thisdie, nextdie);
1933 break;
1934 case TAG_array_type:
1935 dwarf_read_array_type (&di);
1936 break;
1937 case TAG_pointer_type:
1938 read_tag_pointer_type (&di);
1939 break;
1940 default:
1941 new_symbol (&di, objfile);
1942 break;
1943 }
1944 }
1945 thisdie = nextdie;
1946 }
1947 }
1948
1949 /*
1950
1951 LOCAL FUNCTION
1952
1953 decode_line_numbers -- decode a line number table fragment
1954
1955 SYNOPSIS
1956
1957 static void decode_line_numbers (char *tblscan, char *tblend,
1958 long length, long base, long line, long pc)
1959
1960 DESCRIPTION
1961
1962 Translate the DWARF line number information to gdb form.
1963
1964 The ".line" section contains one or more line number tables, one for
1965 each ".line" section from the objects that were linked.
1966
1967 The AT_stmt_list attribute for each TAG_source_file entry in the
1968 ".debug" section contains the offset into the ".line" section for the
1969 start of the table for that file.
1970
1971 The table itself has the following structure:
1972
1973 <table length><base address><source statement entry>
1974 4 bytes 4 bytes 10 bytes
1975
1976 The table length is the total size of the table, including the 4 bytes
1977 for the length information.
1978
1979 The base address is the address of the first instruction generated
1980 for the source file.
1981
1982 Each source statement entry has the following structure:
1983
1984 <line number><statement position><address delta>
1985 4 bytes 2 bytes 4 bytes
1986
1987 The line number is relative to the start of the file, starting with
1988 line 1.
1989
1990 The statement position either -1 (0xFFFF) or the number of characters
1991 from the beginning of the line to the beginning of the statement.
1992
1993 The address delta is the difference between the base address and
1994 the address of the first instruction for the statement.
1995
1996 Note that we must copy the bytes from the packed table to our local
1997 variables before attempting to use them, to avoid alignment problems
1998 on some machines, particularly RISC processors.
1999
2000 BUGS
2001
2002 Does gdb expect the line numbers to be sorted? They are now by
2003 chance/luck, but are not required to be. (FIXME)
2004
2005 The line with number 0 is unused, gdb apparently can discover the
2006 span of the last line some other way. How? (FIXME)
2007 */
2008
2009 static void
2010 decode_line_numbers (linetable)
2011 char *linetable;
2012 {
2013 char *tblscan;
2014 char *tblend;
2015 unsigned long length;
2016 unsigned long base;
2017 unsigned long line;
2018 unsigned long pc;
2019
2020 if (linetable != NULL)
2021 {
2022 tblscan = tblend = linetable;
2023 length = target_to_host (tblscan, SIZEOF_LINETBL_LENGTH, GET_UNSIGNED,
2024 current_objfile);
2025 tblscan += SIZEOF_LINETBL_LENGTH;
2026 tblend += length;
2027 base = target_to_host (tblscan, TARGET_FT_POINTER_SIZE (objfile),
2028 GET_UNSIGNED, current_objfile);
2029 tblscan += TARGET_FT_POINTER_SIZE (objfile);
2030 base += baseaddr;
2031 while (tblscan < tblend)
2032 {
2033 line = target_to_host (tblscan, SIZEOF_LINETBL_LINENO, GET_UNSIGNED,
2034 current_objfile);
2035 tblscan += SIZEOF_LINETBL_LINENO + SIZEOF_LINETBL_STMT;
2036 pc = target_to_host (tblscan, SIZEOF_LINETBL_DELTA, GET_UNSIGNED,
2037 current_objfile);
2038 tblscan += SIZEOF_LINETBL_DELTA;
2039 pc += base;
2040 if (line != 0)
2041 {
2042 record_line (current_subfile, line, pc);
2043 }
2044 }
2045 }
2046 }
2047
2048 /*
2049
2050 LOCAL FUNCTION
2051
2052 locval -- compute the value of a location attribute
2053
2054 SYNOPSIS
2055
2056 static int locval (char *loc)
2057
2058 DESCRIPTION
2059
2060 Given pointer to a string of bytes that define a location, compute
2061 the location and return the value.
2062
2063 When computing values involving the current value of the frame pointer,
2064 the value zero is used, which results in a value relative to the frame
2065 pointer, rather than the absolute value. This is what GDB wants
2066 anyway.
2067
2068 When the result is a register number, the global isreg flag is set,
2069 otherwise it is cleared. This is a kludge until we figure out a better
2070 way to handle the problem. Gdb's design does not mesh well with the
2071 DWARF notion of a location computing interpreter, which is a shame
2072 because the flexibility goes unused.
2073
2074 NOTES
2075
2076 Note that stack[0] is unused except as a default error return.
2077 Note that stack overflow is not yet handled.
2078 */
2079
2080 static int
2081 locval (loc)
2082 char *loc;
2083 {
2084 unsigned short nbytes;
2085 unsigned short locsize;
2086 auto long stack[64];
2087 int stacki;
2088 char *end;
2089 long regno;
2090 int loc_atom_code;
2091 int loc_value_size;
2092
2093 nbytes = attribute_size (AT_location);
2094 locsize = target_to_host (loc, nbytes, GET_UNSIGNED, current_objfile);
2095 loc += nbytes;
2096 end = loc + locsize;
2097 stacki = 0;
2098 stack[stacki] = 0;
2099 isreg = 0;
2100 offreg = 0;
2101 loc_value_size = TARGET_FT_LONG_SIZE (current_objfile);
2102 while (loc < end)
2103 {
2104 loc_atom_code = target_to_host (loc, SIZEOF_LOC_ATOM_CODE, GET_UNSIGNED,
2105 current_objfile);
2106 loc += SIZEOF_LOC_ATOM_CODE;
2107 switch (loc_atom_code)
2108 {
2109 case 0:
2110 /* error */
2111 loc = end;
2112 break;
2113 case OP_REG:
2114 /* push register (number) */
2115 stack[++stacki] = target_to_host (loc, loc_value_size,
2116 GET_UNSIGNED, current_objfile);
2117 loc += loc_value_size;
2118 isreg = 1;
2119 break;
2120 case OP_BASEREG:
2121 /* push value of register (number) */
2122 /* Actually, we compute the value as if register has 0 */
2123 offreg = 1;
2124 regno = target_to_host (loc, loc_value_size, GET_UNSIGNED,
2125 current_objfile);
2126 loc += loc_value_size;
2127 if (regno == R_FP)
2128 {
2129 stack[++stacki] = 0;
2130 }
2131 else
2132 {
2133 stack[++stacki] = 0;
2134 SQUAWK (("BASEREG %d not handled!", regno));
2135 }
2136 break;
2137 case OP_ADDR:
2138 /* push address (relocated address) */
2139 stack[++stacki] = target_to_host (loc, loc_value_size,
2140 GET_UNSIGNED, current_objfile);
2141 loc += loc_value_size;
2142 break;
2143 case OP_CONST:
2144 /* push constant (number) FIXME: signed or unsigned! */
2145 stack[++stacki] = target_to_host (loc, loc_value_size,
2146 GET_SIGNED, current_objfile);
2147 loc += loc_value_size;
2148 break;
2149 case OP_DEREF2:
2150 /* pop, deref and push 2 bytes (as a long) */
2151 SQUAWK (("OP_DEREF2 address 0x%x not handled", stack[stacki]));
2152 break;
2153 case OP_DEREF4: /* pop, deref and push 4 bytes (as a long) */
2154 SQUAWK (("OP_DEREF4 address 0x%x not handled", stack[stacki]));
2155 break;
2156 case OP_ADD: /* pop top 2 items, add, push result */
2157 stack[stacki - 1] += stack[stacki];
2158 stacki--;
2159 break;
2160 }
2161 }
2162 return (stack[stacki]);
2163 }
2164
2165 /*
2166
2167 LOCAL FUNCTION
2168
2169 read_ofile_symtab -- build a full symtab entry from chunk of DIE's
2170
2171 SYNOPSIS
2172
2173 static struct symtab *read_ofile_symtab (struct partial_symtab *pst)
2174
2175 DESCRIPTION
2176
2177 When expanding a partial symbol table entry to a full symbol table
2178 entry, this is the function that gets called to read in the symbols
2179 for the compilation unit.
2180
2181 Returns a pointer to the newly constructed symtab (which is now
2182 the new first one on the objfile's symtab list).
2183 */
2184
2185 static struct symtab *
2186 read_ofile_symtab (pst)
2187 struct partial_symtab *pst;
2188 {
2189 struct cleanup *back_to;
2190 unsigned long lnsize;
2191 file_ptr foffset;
2192 bfd *abfd;
2193 char lnsizedata[SIZEOF_LINETBL_LENGTH];
2194
2195 abfd = pst -> objfile -> obfd;
2196 current_objfile = pst -> objfile;
2197
2198 /* Allocate a buffer for the entire chunk of DIE's for this compilation
2199 unit, seek to the location in the file, and read in all the DIE's. */
2200
2201 diecount = 0;
2202 dbsize = DBLENGTH (pst);
2203 dbbase = xmalloc (dbsize);
2204 dbroff = DBROFF(pst);
2205 foffset = DBFOFF(pst) + dbroff;
2206 base_section_offsets = pst->section_offsets;
2207 baseaddr = ANOFFSET (pst->section_offsets, 0);
2208 if (bfd_seek (abfd, foffset, L_SET) ||
2209 (bfd_read (dbbase, dbsize, 1, abfd) != dbsize))
2210 {
2211 free (dbbase);
2212 error ("can't read DWARF data");
2213 }
2214 back_to = make_cleanup (free, dbbase);
2215
2216 /* If there is a line number table associated with this compilation unit
2217 then read the size of this fragment in bytes, from the fragment itself.
2218 Allocate a buffer for the fragment and read it in for future
2219 processing. */
2220
2221 lnbase = NULL;
2222 if (LNFOFF (pst))
2223 {
2224 if (bfd_seek (abfd, LNFOFF (pst), L_SET) ||
2225 (bfd_read ((PTR) lnsizedata, sizeof (lnsizedata), 1, abfd) !=
2226 sizeof (lnsizedata)))
2227 {
2228 error ("can't read DWARF line number table size");
2229 }
2230 lnsize = target_to_host (lnsizedata, SIZEOF_LINETBL_LENGTH,
2231 GET_UNSIGNED, pst -> objfile);
2232 lnbase = xmalloc (lnsize);
2233 if (bfd_seek (abfd, LNFOFF (pst), L_SET) ||
2234 (bfd_read (lnbase, lnsize, 1, abfd) != lnsize))
2235 {
2236 free (lnbase);
2237 error ("can't read DWARF line numbers");
2238 }
2239 make_cleanup (free, lnbase);
2240 }
2241
2242 process_dies (dbbase, dbbase + dbsize, pst -> objfile);
2243 do_cleanups (back_to);
2244 current_objfile = NULL;
2245 return (pst -> objfile -> symtabs);
2246 }
2247
2248 /*
2249
2250 LOCAL FUNCTION
2251
2252 psymtab_to_symtab_1 -- do grunt work for building a full symtab entry
2253
2254 SYNOPSIS
2255
2256 static void psymtab_to_symtab_1 (struct partial_symtab *pst)
2257
2258 DESCRIPTION
2259
2260 Called once for each partial symbol table entry that needs to be
2261 expanded into a full symbol table entry.
2262
2263 */
2264
2265 static void
2266 psymtab_to_symtab_1 (pst)
2267 struct partial_symtab *pst;
2268 {
2269 int i;
2270 struct cleanup *old_chain;
2271
2272 if (pst != NULL)
2273 {
2274 if (pst->readin)
2275 {
2276 warning ("psymtab for %s already read in. Shouldn't happen.",
2277 pst -> filename);
2278 }
2279 else
2280 {
2281 /* Read in all partial symtabs on which this one is dependent */
2282 for (i = 0; i < pst -> number_of_dependencies; i++)
2283 {
2284 if (!pst -> dependencies[i] -> readin)
2285 {
2286 /* Inform about additional files that need to be read in. */
2287 if (info_verbose)
2288 {
2289 fputs_filtered (" ", stdout);
2290 wrap_here ("");
2291 fputs_filtered ("and ", stdout);
2292 wrap_here ("");
2293 printf_filtered ("%s...",
2294 pst -> dependencies[i] -> filename);
2295 wrap_here ("");
2296 fflush (stdout); /* Flush output */
2297 }
2298 psymtab_to_symtab_1 (pst -> dependencies[i]);
2299 }
2300 }
2301 if (DBLENGTH (pst)) /* Otherwise it's a dummy */
2302 {
2303 buildsym_init ();
2304 old_chain = make_cleanup (really_free_pendings, 0);
2305 pst -> symtab = read_ofile_symtab (pst);
2306 if (info_verbose)
2307 {
2308 printf_filtered ("%d DIE's, sorting...", diecount);
2309 wrap_here ("");
2310 fflush (stdout);
2311 }
2312 sort_symtab_syms (pst -> symtab);
2313 do_cleanups (old_chain);
2314 }
2315 pst -> readin = 1;
2316 }
2317 }
2318 }
2319
2320 /*
2321
2322 LOCAL FUNCTION
2323
2324 dwarf_psymtab_to_symtab -- build a full symtab entry from partial one
2325
2326 SYNOPSIS
2327
2328 static void dwarf_psymtab_to_symtab (struct partial_symtab *pst)
2329
2330 DESCRIPTION
2331
2332 This is the DWARF support entry point for building a full symbol
2333 table entry from a partial symbol table entry. We are passed a
2334 pointer to the partial symbol table entry that needs to be expanded.
2335
2336 */
2337
2338 static void
2339 dwarf_psymtab_to_symtab (pst)
2340 struct partial_symtab *pst;
2341 {
2342
2343 if (pst != NULL)
2344 {
2345 if (pst -> readin)
2346 {
2347 warning ("psymtab for %s already read in. Shouldn't happen.",
2348 pst -> filename);
2349 }
2350 else
2351 {
2352 if (DBLENGTH (pst) || pst -> number_of_dependencies)
2353 {
2354 /* Print the message now, before starting serious work, to avoid
2355 disconcerting pauses. */
2356 if (info_verbose)
2357 {
2358 printf_filtered ("Reading in symbols for %s...",
2359 pst -> filename);
2360 fflush (stdout);
2361 }
2362
2363 psymtab_to_symtab_1 (pst);
2364
2365 #if 0 /* FIXME: Check to see what dbxread is doing here and see if
2366 we need to do an equivalent or is this something peculiar to
2367 stabs/a.out format.
2368 Match with global symbols. This only needs to be done once,
2369 after all of the symtabs and dependencies have been read in.
2370 */
2371 scan_file_globals (pst -> objfile);
2372 #endif
2373
2374 /* Finish up the verbose info message. */
2375 if (info_verbose)
2376 {
2377 printf_filtered ("done.\n");
2378 fflush (stdout);
2379 }
2380 }
2381 }
2382 }
2383 }
2384
2385 /*
2386
2387 LOCAL FUNCTION
2388
2389 init_psymbol_list -- initialize storage for partial symbols
2390
2391 SYNOPSIS
2392
2393 static void init_psymbol_list (struct objfile *objfile, int total_symbols)
2394
2395 DESCRIPTION
2396
2397 Initializes storage for all of the partial symbols that will be
2398 created by dwarf_build_psymtabs and subsidiaries.
2399 */
2400
2401 static void
2402 init_psymbol_list (objfile, total_symbols)
2403 struct objfile *objfile;
2404 int total_symbols;
2405 {
2406 /* Free any previously allocated psymbol lists. */
2407
2408 if (objfile -> global_psymbols.list)
2409 {
2410 mfree (objfile -> md, (PTR)objfile -> global_psymbols.list);
2411 }
2412 if (objfile -> static_psymbols.list)
2413 {
2414 mfree (objfile -> md, (PTR)objfile -> static_psymbols.list);
2415 }
2416
2417 /* Current best guess is that there are approximately a twentieth
2418 of the total symbols (in a debugging file) are global or static
2419 oriented symbols */
2420
2421 objfile -> global_psymbols.size = total_symbols / 10;
2422 objfile -> static_psymbols.size = total_symbols / 10;
2423 objfile -> global_psymbols.next =
2424 objfile -> global_psymbols.list = (struct partial_symbol *)
2425 xmmalloc (objfile -> md, objfile -> global_psymbols.size
2426 * sizeof (struct partial_symbol));
2427 objfile -> static_psymbols.next =
2428 objfile -> static_psymbols.list = (struct partial_symbol *)
2429 xmmalloc (objfile -> md, objfile -> static_psymbols.size
2430 * sizeof (struct partial_symbol));
2431 }
2432
2433 /*
2434
2435 LOCAL FUNCTION
2436
2437 add_enum_psymbol -- add enumeration members to partial symbol table
2438
2439 DESCRIPTION
2440
2441 Given pointer to a DIE that is known to be for an enumeration,
2442 extract the symbolic names of the enumeration members and add
2443 partial symbols for them.
2444 */
2445
2446 static void
2447 add_enum_psymbol (dip, objfile)
2448 struct dieinfo *dip;
2449 struct objfile *objfile;
2450 {
2451 char *scan;
2452 char *listend;
2453 unsigned short blocksz;
2454 int nbytes;
2455
2456 if ((scan = dip -> at_element_list) != NULL)
2457 {
2458 if (dip -> short_element_list)
2459 {
2460 nbytes = attribute_size (AT_short_element_list);
2461 }
2462 else
2463 {
2464 nbytes = attribute_size (AT_element_list);
2465 }
2466 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
2467 scan += nbytes;
2468 listend = scan + blocksz;
2469 while (scan < listend)
2470 {
2471 scan += TARGET_FT_LONG_SIZE (objfile);
2472 ADD_PSYMBOL_TO_LIST (scan, strlen (scan), VAR_NAMESPACE, LOC_CONST,
2473 objfile -> static_psymbols, 0);
2474 scan += strlen (scan) + 1;
2475 }
2476 }
2477 }
2478
2479 /*
2480
2481 LOCAL FUNCTION
2482
2483 add_partial_symbol -- add symbol to partial symbol table
2484
2485 DESCRIPTION
2486
2487 Given a DIE, if it is one of the types that we want to
2488 add to a partial symbol table, finish filling in the die info
2489 and then add a partial symbol table entry for it.
2490
2491 NOTES
2492
2493 The caller must ensure that the DIE has a valid name attribute.
2494 */
2495
2496 static void
2497 add_partial_symbol (dip, objfile)
2498 struct dieinfo *dip;
2499 struct objfile *objfile;
2500 {
2501 switch (dip -> die_tag)
2502 {
2503 case TAG_global_subroutine:
2504 record_minimal_symbol (dip -> at_name, dip -> at_low_pc, mst_text,
2505 objfile);
2506 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2507 VAR_NAMESPACE, LOC_BLOCK,
2508 objfile -> global_psymbols,
2509 dip -> at_low_pc);
2510 break;
2511 case TAG_global_variable:
2512 record_minimal_symbol (dip -> at_name, locval (dip -> at_location),
2513 mst_data, objfile);
2514 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2515 VAR_NAMESPACE, LOC_STATIC,
2516 objfile -> global_psymbols,
2517 0);
2518 break;
2519 case TAG_subroutine:
2520 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2521 VAR_NAMESPACE, LOC_BLOCK,
2522 objfile -> static_psymbols,
2523 dip -> at_low_pc);
2524 break;
2525 case TAG_local_variable:
2526 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2527 VAR_NAMESPACE, LOC_STATIC,
2528 objfile -> static_psymbols,
2529 0);
2530 break;
2531 case TAG_typedef:
2532 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2533 VAR_NAMESPACE, LOC_TYPEDEF,
2534 objfile -> static_psymbols,
2535 0);
2536 break;
2537 case TAG_class_type:
2538 case TAG_structure_type:
2539 case TAG_union_type:
2540 case TAG_enumeration_type:
2541 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2542 STRUCT_NAMESPACE, LOC_TYPEDEF,
2543 objfile -> static_psymbols,
2544 0);
2545 if (cu_language == language_cplus)
2546 {
2547 /* For C++, these implicitly act as typedefs as well. */
2548 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2549 VAR_NAMESPACE, LOC_TYPEDEF,
2550 objfile -> static_psymbols,
2551 0);
2552 }
2553 break;
2554 }
2555 }
2556
2557 /*
2558
2559 LOCAL FUNCTION
2560
2561 scan_partial_symbols -- scan DIE's within a single compilation unit
2562
2563 DESCRIPTION
2564
2565 Process the DIE's within a single compilation unit, looking for
2566 interesting DIE's that contribute to the partial symbol table entry
2567 for this compilation unit.
2568
2569 NOTES
2570
2571 There are some DIE's that may appear both at file scope and within
2572 the scope of a function. We are only interested in the ones at file
2573 scope, and the only way to tell them apart is to keep track of the
2574 scope. For example, consider the test case:
2575
2576 static int i;
2577 main () { int j; }
2578
2579 for which the relevant DWARF segment has the structure:
2580
2581 0x51:
2582 0x23 global subrtn sibling 0x9b
2583 name main
2584 fund_type FT_integer
2585 low_pc 0x800004cc
2586 high_pc 0x800004d4
2587
2588 0x74:
2589 0x23 local var sibling 0x97
2590 name j
2591 fund_type FT_integer
2592 location OP_BASEREG 0xe
2593 OP_CONST 0xfffffffc
2594 OP_ADD
2595 0x97:
2596 0x4
2597
2598 0x9b:
2599 0x1d local var sibling 0xb8
2600 name i
2601 fund_type FT_integer
2602 location OP_ADDR 0x800025dc
2603
2604 0xb8:
2605 0x4
2606
2607 We want to include the symbol 'i' in the partial symbol table, but
2608 not the symbol 'j'. In essence, we want to skip all the dies within
2609 the scope of a TAG_global_subroutine DIE.
2610
2611 Don't attempt to add anonymous structures or unions since they have
2612 no name. Anonymous enumerations however are processed, because we
2613 want to extract their member names (the check for a tag name is
2614 done later).
2615
2616 Also, for variables and subroutines, check that this is the place
2617 where the actual definition occurs, rather than just a reference
2618 to an external.
2619 */
2620
2621 static void
2622 scan_partial_symbols (thisdie, enddie, objfile)
2623 char *thisdie;
2624 char *enddie;
2625 struct objfile *objfile;
2626 {
2627 char *nextdie;
2628 char *temp;
2629 struct dieinfo di;
2630
2631 while (thisdie < enddie)
2632 {
2633 basicdieinfo (&di, thisdie, objfile);
2634 if (di.die_length < SIZEOF_DIE_LENGTH)
2635 {
2636 break;
2637 }
2638 else
2639 {
2640 nextdie = thisdie + di.die_length;
2641 /* To avoid getting complete die information for every die, we
2642 only do it (below) for the cases we are interested in. */
2643 switch (di.die_tag)
2644 {
2645 case TAG_global_subroutine:
2646 case TAG_subroutine:
2647 completedieinfo (&di, objfile);
2648 if (di.at_name && (di.has_at_low_pc || di.at_location))
2649 {
2650 add_partial_symbol (&di, objfile);
2651 /* If there is a sibling attribute, adjust the nextdie
2652 pointer to skip the entire scope of the subroutine.
2653 Apply some sanity checking to make sure we don't
2654 overrun or underrun the range of remaining DIE's */
2655 if (di.at_sibling != 0)
2656 {
2657 temp = dbbase + di.at_sibling - dbroff;
2658 if ((temp < thisdie) || (temp >= enddie))
2659 {
2660 dwarfwarn ("reference to DIE (0x%x) outside compilation unit", di.at_sibling);
2661 }
2662 else
2663 {
2664 nextdie = temp;
2665 }
2666 }
2667 }
2668 break;
2669 case TAG_global_variable:
2670 case TAG_local_variable:
2671 completedieinfo (&di, objfile);
2672 if (di.at_name && (di.has_at_low_pc || di.at_location))
2673 {
2674 add_partial_symbol (&di, objfile);
2675 }
2676 break;
2677 case TAG_typedef:
2678 case TAG_class_type:
2679 case TAG_structure_type:
2680 case TAG_union_type:
2681 completedieinfo (&di, objfile);
2682 if (di.at_name)
2683 {
2684 add_partial_symbol (&di, objfile);
2685 }
2686 break;
2687 case TAG_enumeration_type:
2688 completedieinfo (&di, objfile);
2689 if (di.at_name)
2690 {
2691 add_partial_symbol (&di, objfile);
2692 }
2693 add_enum_psymbol (&di, objfile);
2694 break;
2695 }
2696 }
2697 thisdie = nextdie;
2698 }
2699 }
2700
2701 /*
2702
2703 LOCAL FUNCTION
2704
2705 scan_compilation_units -- build a psymtab entry for each compilation
2706
2707 DESCRIPTION
2708
2709 This is the top level dwarf parsing routine for building partial
2710 symbol tables.
2711
2712 It scans from the beginning of the DWARF table looking for the first
2713 TAG_compile_unit DIE, and then follows the sibling chain to locate
2714 each additional TAG_compile_unit DIE.
2715
2716 For each TAG_compile_unit DIE it creates a partial symtab structure,
2717 calls a subordinate routine to collect all the compilation unit's
2718 global DIE's, file scope DIEs, typedef DIEs, etc, and then links the
2719 new partial symtab structure into the partial symbol table. It also
2720 records the appropriate information in the partial symbol table entry
2721 to allow the chunk of DIE's and line number table for this compilation
2722 unit to be located and re-read later, to generate a complete symbol
2723 table entry for the compilation unit.
2724
2725 Thus it effectively partitions up a chunk of DIE's for multiple
2726 compilation units into smaller DIE chunks and line number tables,
2727 and associates them with a partial symbol table entry.
2728
2729 NOTES
2730
2731 If any compilation unit has no line number table associated with
2732 it for some reason (a missing at_stmt_list attribute, rather than
2733 just one with a value of zero, which is valid) then we ensure that
2734 the recorded file offset is zero so that the routine which later
2735 reads line number table fragments knows that there is no fragment
2736 to read.
2737
2738 RETURNS
2739
2740 Returns no value.
2741
2742 */
2743
2744 static void
2745 scan_compilation_units (thisdie, enddie, dbfoff, lnoffset, objfile)
2746 char *thisdie;
2747 char *enddie;
2748 file_ptr dbfoff;
2749 file_ptr lnoffset;
2750 struct objfile *objfile;
2751 {
2752 char *nextdie;
2753 struct dieinfo di;
2754 struct partial_symtab *pst;
2755 int culength;
2756 int curoff;
2757 file_ptr curlnoffset;
2758
2759 while (thisdie < enddie)
2760 {
2761 basicdieinfo (&di, thisdie, objfile);
2762 if (di.die_length < SIZEOF_DIE_LENGTH)
2763 {
2764 break;
2765 }
2766 else if (di.die_tag != TAG_compile_unit)
2767 {
2768 nextdie = thisdie + di.die_length;
2769 }
2770 else
2771 {
2772 completedieinfo (&di, objfile);
2773 set_cu_language (&di);
2774 if (di.at_sibling != 0)
2775 {
2776 nextdie = dbbase + di.at_sibling - dbroff;
2777 }
2778 else
2779 {
2780 nextdie = thisdie + di.die_length;
2781 }
2782 curoff = thisdie - dbbase;
2783 culength = nextdie - thisdie;
2784 curlnoffset = di.has_at_stmt_list ? lnoffset + di.at_stmt_list : 0;
2785
2786 /* First allocate a new partial symbol table structure */
2787
2788 pst = start_psymtab_common (objfile, base_section_offsets,
2789 di.at_name, di.at_low_pc,
2790 objfile -> global_psymbols.next,
2791 objfile -> static_psymbols.next);
2792
2793 pst -> texthigh = di.at_high_pc;
2794 pst -> read_symtab_private = (char *)
2795 obstack_alloc (&objfile -> psymbol_obstack,
2796 sizeof (struct dwfinfo));
2797 DBFOFF (pst) = dbfoff;
2798 DBROFF (pst) = curoff;
2799 DBLENGTH (pst) = culength;
2800 LNFOFF (pst) = curlnoffset;
2801 pst -> read_symtab = dwarf_psymtab_to_symtab;
2802
2803 /* Now look for partial symbols */
2804
2805 scan_partial_symbols (thisdie + di.die_length, nextdie, objfile);
2806
2807 pst -> n_global_syms = objfile -> global_psymbols.next -
2808 (objfile -> global_psymbols.list + pst -> globals_offset);
2809 pst -> n_static_syms = objfile -> static_psymbols.next -
2810 (objfile -> static_psymbols.list + pst -> statics_offset);
2811 sort_pst_symbols (pst);
2812 /* If there is already a psymtab or symtab for a file of this name,
2813 remove it. (If there is a symtab, more drastic things also
2814 happen.) This happens in VxWorks. */
2815 free_named_symtabs (pst -> filename);
2816 }
2817 thisdie = nextdie;
2818 }
2819 }
2820
2821 /*
2822
2823 LOCAL FUNCTION
2824
2825 new_symbol -- make a symbol table entry for a new symbol
2826
2827 SYNOPSIS
2828
2829 static struct symbol *new_symbol (struct dieinfo *dip,
2830 struct objfile *objfile)
2831
2832 DESCRIPTION
2833
2834 Given a pointer to a DWARF information entry, figure out if we need
2835 to make a symbol table entry for it, and if so, create a new entry
2836 and return a pointer to it.
2837 */
2838
2839 static struct symbol *
2840 new_symbol (dip, objfile)
2841 struct dieinfo *dip;
2842 struct objfile *objfile;
2843 {
2844 struct symbol *sym = NULL;
2845
2846 if (dip -> at_name != NULL)
2847 {
2848 sym = (struct symbol *) obstack_alloc (&objfile -> symbol_obstack,
2849 sizeof (struct symbol));
2850 memset (sym, 0, sizeof (struct symbol));
2851 SYMBOL_NAME (sym) = create_name (dip -> at_name,
2852 &objfile->symbol_obstack);
2853 /* default assumptions */
2854 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2855 SYMBOL_CLASS (sym) = LOC_STATIC;
2856 SYMBOL_TYPE (sym) = decode_die_type (dip);
2857 switch (dip -> die_tag)
2858 {
2859 case TAG_label:
2860 SYMBOL_VALUE (sym) = dip -> at_low_pc;
2861 SYMBOL_CLASS (sym) = LOC_LABEL;
2862 break;
2863 case TAG_global_subroutine:
2864 case TAG_subroutine:
2865 SYMBOL_VALUE (sym) = dip -> at_low_pc;
2866 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
2867 SYMBOL_CLASS (sym) = LOC_BLOCK;
2868 if (dip -> die_tag == TAG_global_subroutine)
2869 {
2870 add_symbol_to_list (sym, &global_symbols);
2871 }
2872 else
2873 {
2874 add_symbol_to_list (sym, list_in_scope);
2875 }
2876 break;
2877 case TAG_global_variable:
2878 if (dip -> at_location != NULL)
2879 {
2880 SYMBOL_VALUE (sym) = locval (dip -> at_location);
2881 add_symbol_to_list (sym, &global_symbols);
2882 SYMBOL_CLASS (sym) = LOC_STATIC;
2883 SYMBOL_VALUE (sym) += baseaddr;
2884 }
2885 break;
2886 case TAG_local_variable:
2887 if (dip -> at_location != NULL)
2888 {
2889 SYMBOL_VALUE (sym) = locval (dip -> at_location);
2890 add_symbol_to_list (sym, list_in_scope);
2891 if (isreg)
2892 {
2893 SYMBOL_CLASS (sym) = LOC_REGISTER;
2894 }
2895 else if (offreg)
2896 {
2897 SYMBOL_CLASS (sym) = LOC_LOCAL;
2898 }
2899 else
2900 {
2901 SYMBOL_CLASS (sym) = LOC_STATIC;
2902 SYMBOL_VALUE (sym) += baseaddr;
2903 }
2904 }
2905 break;
2906 case TAG_formal_parameter:
2907 if (dip -> at_location != NULL)
2908 {
2909 SYMBOL_VALUE (sym) = locval (dip -> at_location);
2910 }
2911 add_symbol_to_list (sym, list_in_scope);
2912 if (isreg)
2913 {
2914 SYMBOL_CLASS (sym) = LOC_REGPARM;
2915 }
2916 else
2917 {
2918 SYMBOL_CLASS (sym) = LOC_ARG;
2919 }
2920 break;
2921 case TAG_unspecified_parameters:
2922 /* From varargs functions; gdb doesn't seem to have any interest in
2923 this information, so just ignore it for now. (FIXME?) */
2924 break;
2925 case TAG_class_type:
2926 case TAG_structure_type:
2927 case TAG_union_type:
2928 case TAG_enumeration_type:
2929 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
2930 SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE;
2931 add_symbol_to_list (sym, list_in_scope);
2932 break;
2933 case TAG_typedef:
2934 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
2935 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2936 add_symbol_to_list (sym, list_in_scope);
2937 break;
2938 default:
2939 /* Not a tag we recognize. Hopefully we aren't processing trash
2940 data, but since we must specifically ignore things we don't
2941 recognize, there is nothing else we should do at this point. */
2942 break;
2943 }
2944 }
2945 return (sym);
2946 }
2947
2948 /*
2949
2950 LOCAL FUNCTION
2951
2952 synthesize_typedef -- make a symbol table entry for a "fake" typedef
2953
2954 SYNOPSIS
2955
2956 static void synthesize_typedef (struct dieinfo *dip,
2957 struct objfile *objfile,
2958 struct type *type);
2959
2960 DESCRIPTION
2961
2962 Given a pointer to a DWARF information entry, synthesize a typedef
2963 for the name in the DIE, using the specified type.
2964
2965 This is used for C++ class, structs, unions, and enumerations to
2966 set up the tag name as a type.
2967
2968 */
2969
2970 static void
2971 synthesize_typedef (dip, objfile, type)
2972 struct dieinfo *dip;
2973 struct objfile *objfile;
2974 struct type *type;
2975 {
2976 struct symbol *sym = NULL;
2977
2978 if (dip -> at_name != NULL)
2979 {
2980 sym = (struct symbol *)
2981 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
2982 memset (sym, 0, sizeof (struct symbol));
2983 SYMBOL_NAME (sym) = create_name (dip -> at_name,
2984 &objfile->symbol_obstack);
2985 SYMBOL_TYPE (sym) = type;
2986 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
2987 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2988 add_symbol_to_list (sym, list_in_scope);
2989 }
2990 }
2991
2992 /*
2993
2994 LOCAL FUNCTION
2995
2996 decode_mod_fund_type -- decode a modified fundamental type
2997
2998 SYNOPSIS
2999
3000 static struct type *decode_mod_fund_type (char *typedata)
3001
3002 DESCRIPTION
3003
3004 Decode a block of data containing a modified fundamental
3005 type specification. TYPEDATA is a pointer to the block,
3006 which starts with a length containing the size of the rest
3007 of the block. At the end of the block is a fundmental type
3008 code value that gives the fundamental type. Everything
3009 in between are type modifiers.
3010
3011 We simply compute the number of modifiers and call the general
3012 function decode_modified_type to do the actual work.
3013 */
3014
3015 static struct type *
3016 decode_mod_fund_type (typedata)
3017 char *typedata;
3018 {
3019 struct type *typep = NULL;
3020 unsigned short modcount;
3021 int nbytes;
3022
3023 /* Get the total size of the block, exclusive of the size itself */
3024
3025 nbytes = attribute_size (AT_mod_fund_type);
3026 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3027 typedata += nbytes;
3028
3029 /* Deduct the size of the fundamental type bytes at the end of the block. */
3030
3031 modcount -= attribute_size (AT_fund_type);
3032
3033 /* Now do the actual decoding */
3034
3035 typep = decode_modified_type (typedata, modcount, AT_mod_fund_type);
3036 return (typep);
3037 }
3038
3039 /*
3040
3041 LOCAL FUNCTION
3042
3043 decode_mod_u_d_type -- decode a modified user defined type
3044
3045 SYNOPSIS
3046
3047 static struct type *decode_mod_u_d_type (char *typedata)
3048
3049 DESCRIPTION
3050
3051 Decode a block of data containing a modified user defined
3052 type specification. TYPEDATA is a pointer to the block,
3053 which consists of a two byte length, containing the size
3054 of the rest of the block. At the end of the block is a
3055 four byte value that gives a reference to a user defined type.
3056 Everything in between are type modifiers.
3057
3058 We simply compute the number of modifiers and call the general
3059 function decode_modified_type to do the actual work.
3060 */
3061
3062 static struct type *
3063 decode_mod_u_d_type (typedata)
3064 char *typedata;
3065 {
3066 struct type *typep = NULL;
3067 unsigned short modcount;
3068 int nbytes;
3069
3070 /* Get the total size of the block, exclusive of the size itself */
3071
3072 nbytes = attribute_size (AT_mod_u_d_type);
3073 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3074 typedata += nbytes;
3075
3076 /* Deduct the size of the reference type bytes at the end of the block. */
3077
3078 modcount -= attribute_size (AT_user_def_type);
3079
3080 /* Now do the actual decoding */
3081
3082 typep = decode_modified_type (typedata, modcount, AT_mod_u_d_type);
3083 return (typep);
3084 }
3085
3086 /*
3087
3088 LOCAL FUNCTION
3089
3090 decode_modified_type -- decode modified user or fundamental type
3091
3092 SYNOPSIS
3093
3094 static struct type *decode_modified_type (char *modifiers,
3095 unsigned short modcount, int mtype)
3096
3097 DESCRIPTION
3098
3099 Decode a modified type, either a modified fundamental type or
3100 a modified user defined type. MODIFIERS is a pointer to the
3101 block of bytes that define MODCOUNT modifiers. Immediately
3102 following the last modifier is a short containing the fundamental
3103 type or a long containing the reference to the user defined
3104 type. Which one is determined by MTYPE, which is either
3105 AT_mod_fund_type or AT_mod_u_d_type to indicate what modified
3106 type we are generating.
3107
3108 We call ourself recursively to generate each modified type,`
3109 until MODCOUNT reaches zero, at which point we have consumed
3110 all the modifiers and generate either the fundamental type or
3111 user defined type. When the recursion unwinds, each modifier
3112 is applied in turn to generate the full modified type.
3113
3114 NOTES
3115
3116 If we find a modifier that we don't recognize, and it is not one
3117 of those reserved for application specific use, then we issue a
3118 warning and simply ignore the modifier.
3119
3120 BUGS
3121
3122 We currently ignore MOD_const and MOD_volatile. (FIXME)
3123
3124 */
3125
3126 static struct type *
3127 decode_modified_type (modifiers, modcount, mtype)
3128 char *modifiers;
3129 unsigned int modcount;
3130 int mtype;
3131 {
3132 struct type *typep = NULL;
3133 unsigned short fundtype;
3134 DIE_REF die_ref;
3135 char modifier;
3136 int nbytes;
3137
3138 if (modcount == 0)
3139 {
3140 switch (mtype)
3141 {
3142 case AT_mod_fund_type:
3143 nbytes = attribute_size (AT_fund_type);
3144 fundtype = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3145 current_objfile);
3146 typep = decode_fund_type (fundtype);
3147 break;
3148 case AT_mod_u_d_type:
3149 nbytes = attribute_size (AT_user_def_type);
3150 die_ref = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3151 current_objfile);
3152 if ((typep = lookup_utype (die_ref)) == NULL)
3153 {
3154 typep = alloc_utype (die_ref, NULL);
3155 }
3156 break;
3157 default:
3158 SQUAWK (("botched modified type decoding (mtype 0x%x)", mtype));
3159 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3160 break;
3161 }
3162 }
3163 else
3164 {
3165 modifier = *modifiers++;
3166 typep = decode_modified_type (modifiers, --modcount, mtype);
3167 switch (modifier)
3168 {
3169 case MOD_pointer_to:
3170 typep = lookup_pointer_type (typep);
3171 break;
3172 case MOD_reference_to:
3173 typep = lookup_reference_type (typep);
3174 break;
3175 case MOD_const:
3176 SQUAWK (("type modifier 'const' ignored")); /* FIXME */
3177 break;
3178 case MOD_volatile:
3179 SQUAWK (("type modifier 'volatile' ignored")); /* FIXME */
3180 break;
3181 default:
3182 if (!(MOD_lo_user <= (unsigned char) modifier
3183 && (unsigned char) modifier <= MOD_hi_user))
3184 {
3185 SQUAWK (("unknown type modifier %u",
3186 (unsigned char) modifier));
3187 }
3188 break;
3189 }
3190 }
3191 return (typep);
3192 }
3193
3194 /*
3195
3196 LOCAL FUNCTION
3197
3198 decode_fund_type -- translate basic DWARF type to gdb base type
3199
3200 DESCRIPTION
3201
3202 Given an integer that is one of the fundamental DWARF types,
3203 translate it to one of the basic internal gdb types and return
3204 a pointer to the appropriate gdb type (a "struct type *").
3205
3206 NOTES
3207
3208 If we encounter a fundamental type that we are unprepared to
3209 deal with, and it is not in the range of those types defined
3210 as application specific types, then we issue a warning and
3211 treat the type as an "int".
3212 */
3213
3214 static struct type *
3215 decode_fund_type (fundtype)
3216 unsigned int fundtype;
3217 {
3218 struct type *typep = NULL;
3219
3220 switch (fundtype)
3221 {
3222
3223 case FT_void:
3224 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3225 break;
3226
3227 case FT_boolean: /* Was FT_set in AT&T version */
3228 typep = dwarf_fundamental_type (current_objfile, FT_BOOLEAN);
3229 break;
3230
3231 case FT_pointer: /* (void *) */
3232 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3233 typep = lookup_pointer_type (typep);
3234 break;
3235
3236 case FT_char:
3237 typep = dwarf_fundamental_type (current_objfile, FT_CHAR);
3238 break;
3239
3240 case FT_signed_char:
3241 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_CHAR);
3242 break;
3243
3244 case FT_unsigned_char:
3245 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_CHAR);
3246 break;
3247
3248 case FT_short:
3249 typep = dwarf_fundamental_type (current_objfile, FT_SHORT);
3250 break;
3251
3252 case FT_signed_short:
3253 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_SHORT);
3254 break;
3255
3256 case FT_unsigned_short:
3257 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_SHORT);
3258 break;
3259
3260 case FT_integer:
3261 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3262 break;
3263
3264 case FT_signed_integer:
3265 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_INTEGER);
3266 break;
3267
3268 case FT_unsigned_integer:
3269 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_INTEGER);
3270 break;
3271
3272 case FT_long:
3273 typep = dwarf_fundamental_type (current_objfile, FT_LONG);
3274 break;
3275
3276 case FT_signed_long:
3277 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG);
3278 break;
3279
3280 case FT_unsigned_long:
3281 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG);
3282 break;
3283
3284 case FT_long_long:
3285 typep = dwarf_fundamental_type (current_objfile, FT_LONG_LONG);
3286 break;
3287
3288 case FT_signed_long_long:
3289 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG_LONG);
3290 break;
3291
3292 case FT_unsigned_long_long:
3293 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG_LONG);
3294 break;
3295
3296 case FT_float:
3297 typep = dwarf_fundamental_type (current_objfile, FT_FLOAT);
3298 break;
3299
3300 case FT_dbl_prec_float:
3301 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_FLOAT);
3302 break;
3303
3304 case FT_ext_prec_float:
3305 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_FLOAT);
3306 break;
3307
3308 case FT_complex:
3309 typep = dwarf_fundamental_type (current_objfile, FT_COMPLEX);
3310 break;
3311
3312 case FT_dbl_prec_complex:
3313 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_COMPLEX);
3314 break;
3315
3316 case FT_ext_prec_complex:
3317 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_COMPLEX);
3318 break;
3319
3320 }
3321
3322 if ((typep == NULL) && !(FT_lo_user <= fundtype && fundtype <= FT_hi_user))
3323 {
3324 SQUAWK (("unexpected fundamental type 0x%x", fundtype));
3325 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3326 }
3327
3328 return (typep);
3329 }
3330
3331 /*
3332
3333 LOCAL FUNCTION
3334
3335 create_name -- allocate a fresh copy of a string on an obstack
3336
3337 DESCRIPTION
3338
3339 Given a pointer to a string and a pointer to an obstack, allocates
3340 a fresh copy of the string on the specified obstack.
3341
3342 */
3343
3344 static char *
3345 create_name (name, obstackp)
3346 char *name;
3347 struct obstack *obstackp;
3348 {
3349 int length;
3350 char *newname;
3351
3352 length = strlen (name) + 1;
3353 newname = (char *) obstack_alloc (obstackp, length);
3354 strcpy (newname, name);
3355 return (newname);
3356 }
3357
3358 /*
3359
3360 LOCAL FUNCTION
3361
3362 basicdieinfo -- extract the minimal die info from raw die data
3363
3364 SYNOPSIS
3365
3366 void basicdieinfo (char *diep, struct dieinfo *dip,
3367 struct objfile *objfile)
3368
3369 DESCRIPTION
3370
3371 Given a pointer to raw DIE data, and a pointer to an instance of a
3372 die info structure, this function extracts the basic information
3373 from the DIE data required to continue processing this DIE, along
3374 with some bookkeeping information about the DIE.
3375
3376 The information we absolutely must have includes the DIE tag,
3377 and the DIE length. If we need the sibling reference, then we
3378 will have to call completedieinfo() to process all the remaining
3379 DIE information.
3380
3381 Note that since there is no guarantee that the data is properly
3382 aligned in memory for the type of access required (indirection
3383 through anything other than a char pointer), and there is no
3384 guarantee that it is in the same byte order as the gdb host,
3385 we call a function which deals with both alignment and byte
3386 swapping issues. Possibly inefficient, but quite portable.
3387
3388 We also take care of some other basic things at this point, such
3389 as ensuring that the instance of the die info structure starts
3390 out completely zero'd and that curdie is initialized for use
3391 in error reporting if we have a problem with the current die.
3392
3393 NOTES
3394
3395 All DIE's must have at least a valid length, thus the minimum
3396 DIE size is SIZEOF_DIE_LENGTH. In order to have a valid tag, the
3397 DIE size must be at least SIZEOF_DIE_TAG larger, otherwise they
3398 are forced to be TAG_padding DIES.
3399
3400 Padding DIES must be at least SIZEOF_DIE_LENGTH in length, implying
3401 that if a padding DIE is used for alignment and the amount needed is
3402 less than SIZEOF_DIE_LENGTH, then the padding DIE has to be big
3403 enough to align to the next alignment boundry.
3404
3405 We do some basic sanity checking here, such as verifying that the
3406 length of the die would not cause it to overrun the recorded end of
3407 the buffer holding the DIE info. If we find a DIE that is either
3408 too small or too large, we force it's length to zero which should
3409 cause the caller to take appropriate action.
3410 */
3411
3412 static void
3413 basicdieinfo (dip, diep, objfile)
3414 struct dieinfo *dip;
3415 char *diep;
3416 struct objfile *objfile;
3417 {
3418 curdie = dip;
3419 memset (dip, 0, sizeof (struct dieinfo));
3420 dip -> die = diep;
3421 dip -> die_ref = dbroff + (diep - dbbase);
3422 dip -> die_length = target_to_host (diep, SIZEOF_DIE_LENGTH, GET_UNSIGNED,
3423 objfile);
3424 if ((dip -> die_length < SIZEOF_DIE_LENGTH) ||
3425 ((diep + dip -> die_length) > (dbbase + dbsize)))
3426 {
3427 dwarfwarn ("malformed DIE, bad length (%d bytes)", dip -> die_length);
3428 dip -> die_length = 0;
3429 }
3430 else if (dip -> die_length < (SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG))
3431 {
3432 dip -> die_tag = TAG_padding;
3433 }
3434 else
3435 {
3436 diep += SIZEOF_DIE_LENGTH;
3437 dip -> die_tag = target_to_host (diep, SIZEOF_DIE_TAG, GET_UNSIGNED,
3438 objfile);
3439 }
3440 }
3441
3442 /*
3443
3444 LOCAL FUNCTION
3445
3446 completedieinfo -- finish reading the information for a given DIE
3447
3448 SYNOPSIS
3449
3450 void completedieinfo (struct dieinfo *dip, struct objfile *objfile)
3451
3452 DESCRIPTION
3453
3454 Given a pointer to an already partially initialized die info structure,
3455 scan the raw DIE data and finish filling in the die info structure
3456 from the various attributes found.
3457
3458 Note that since there is no guarantee that the data is properly
3459 aligned in memory for the type of access required (indirection
3460 through anything other than a char pointer), and there is no
3461 guarantee that it is in the same byte order as the gdb host,
3462 we call a function which deals with both alignment and byte
3463 swapping issues. Possibly inefficient, but quite portable.
3464
3465 NOTES
3466
3467 Each time we are called, we increment the diecount variable, which
3468 keeps an approximate count of the number of dies processed for
3469 each compilation unit. This information is presented to the user
3470 if the info_verbose flag is set.
3471
3472 */
3473
3474 static void
3475 completedieinfo (dip, objfile)
3476 struct dieinfo *dip;
3477 struct objfile *objfile;
3478 {
3479 char *diep; /* Current pointer into raw DIE data */
3480 char *end; /* Terminate DIE scan here */
3481 unsigned short attr; /* Current attribute being scanned */
3482 unsigned short form; /* Form of the attribute */
3483 int nbytes; /* Size of next field to read */
3484
3485 diecount++;
3486 diep = dip -> die;
3487 end = diep + dip -> die_length;
3488 diep += SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG;
3489 while (diep < end)
3490 {
3491 attr = target_to_host (diep, SIZEOF_ATTRIBUTE, GET_UNSIGNED, objfile);
3492 diep += SIZEOF_ATTRIBUTE;
3493 if ((nbytes = attribute_size (attr)) == -1)
3494 {
3495 SQUAWK (("unknown attribute length, skipped remaining attributes"));;
3496 diep = end;
3497 continue;
3498 }
3499 switch (attr)
3500 {
3501 case AT_fund_type:
3502 dip -> at_fund_type = target_to_host (diep, nbytes, GET_UNSIGNED,
3503 objfile);
3504 break;
3505 case AT_ordering:
3506 dip -> at_ordering = target_to_host (diep, nbytes, GET_UNSIGNED,
3507 objfile);
3508 break;
3509 case AT_bit_offset:
3510 dip -> at_bit_offset = target_to_host (diep, nbytes, GET_UNSIGNED,
3511 objfile);
3512 break;
3513 case AT_sibling:
3514 dip -> at_sibling = target_to_host (diep, nbytes, GET_UNSIGNED,
3515 objfile);
3516 break;
3517 case AT_stmt_list:
3518 dip -> at_stmt_list = target_to_host (diep, nbytes, GET_UNSIGNED,
3519 objfile);
3520 dip -> has_at_stmt_list = 1;
3521 break;
3522 case AT_low_pc:
3523 dip -> at_low_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3524 objfile);
3525 dip -> at_low_pc += baseaddr;
3526 dip -> has_at_low_pc = 1;
3527 break;
3528 case AT_high_pc:
3529 dip -> at_high_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3530 objfile);
3531 dip -> at_high_pc += baseaddr;
3532 break;
3533 case AT_language:
3534 dip -> at_language = target_to_host (diep, nbytes, GET_UNSIGNED,
3535 objfile);
3536 break;
3537 case AT_user_def_type:
3538 dip -> at_user_def_type = target_to_host (diep, nbytes,
3539 GET_UNSIGNED, objfile);
3540 break;
3541 case AT_byte_size:
3542 dip -> at_byte_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3543 objfile);
3544 dip -> has_at_byte_size = 1;
3545 break;
3546 case AT_bit_size:
3547 dip -> at_bit_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3548 objfile);
3549 break;
3550 case AT_member:
3551 dip -> at_member = target_to_host (diep, nbytes, GET_UNSIGNED,
3552 objfile);
3553 break;
3554 case AT_discr:
3555 dip -> at_discr = target_to_host (diep, nbytes, GET_UNSIGNED,
3556 objfile);
3557 break;
3558 case AT_location:
3559 dip -> at_location = diep;
3560 break;
3561 case AT_mod_fund_type:
3562 dip -> at_mod_fund_type = diep;
3563 break;
3564 case AT_subscr_data:
3565 dip -> at_subscr_data = diep;
3566 break;
3567 case AT_mod_u_d_type:
3568 dip -> at_mod_u_d_type = diep;
3569 break;
3570 case AT_element_list:
3571 dip -> at_element_list = diep;
3572 dip -> short_element_list = 0;
3573 break;
3574 case AT_short_element_list:
3575 dip -> at_element_list = diep;
3576 dip -> short_element_list = 1;
3577 break;
3578 case AT_discr_value:
3579 dip -> at_discr_value = diep;
3580 break;
3581 case AT_string_length:
3582 dip -> at_string_length = diep;
3583 break;
3584 case AT_name:
3585 dip -> at_name = diep;
3586 break;
3587 case AT_comp_dir:
3588 /* For now, ignore any "hostname:" portion, since gdb doesn't
3589 know how to deal with it. (FIXME). */
3590 dip -> at_comp_dir = strrchr (diep, ':');
3591 if (dip -> at_comp_dir != NULL)
3592 {
3593 dip -> at_comp_dir++;
3594 }
3595 else
3596 {
3597 dip -> at_comp_dir = diep;
3598 }
3599 break;
3600 case AT_producer:
3601 dip -> at_producer = diep;
3602 break;
3603 case AT_start_scope:
3604 dip -> at_start_scope = target_to_host (diep, nbytes, GET_UNSIGNED,
3605 objfile);
3606 break;
3607 case AT_stride_size:
3608 dip -> at_stride_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3609 objfile);
3610 break;
3611 case AT_src_info:
3612 dip -> at_src_info = target_to_host (diep, nbytes, GET_UNSIGNED,
3613 objfile);
3614 break;
3615 case AT_prototyped:
3616 dip -> at_prototyped = diep;
3617 break;
3618 default:
3619 /* Found an attribute that we are unprepared to handle. However
3620 it is specifically one of the design goals of DWARF that
3621 consumers should ignore unknown attributes. As long as the
3622 form is one that we recognize (so we know how to skip it),
3623 we can just ignore the unknown attribute. */
3624 break;
3625 }
3626 form = FORM_FROM_ATTR (attr);
3627 switch (form)
3628 {
3629 case FORM_DATA2:
3630 diep += 2;
3631 break;
3632 case FORM_DATA4:
3633 case FORM_REF:
3634 diep += 4;
3635 break;
3636 case FORM_DATA8:
3637 diep += 8;
3638 break;
3639 case FORM_ADDR:
3640 diep += TARGET_FT_POINTER_SIZE (objfile);
3641 break;
3642 case FORM_BLOCK2:
3643 diep += 2 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3644 break;
3645 case FORM_BLOCK4:
3646 diep += 4 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3647 break;
3648 case FORM_STRING:
3649 diep += strlen (diep) + 1;
3650 break;
3651 default:
3652 SQUAWK (("unknown attribute form (0x%x)", form));
3653 SQUAWK (("unknown attribute length, skipped remaining attributes"));;
3654 diep = end;
3655 break;
3656 }
3657 }
3658 }
3659
3660 /*
3661
3662 LOCAL FUNCTION
3663
3664 target_to_host -- swap in target data to host
3665
3666 SYNOPSIS
3667
3668 target_to_host (char *from, int nbytes, int signextend,
3669 struct objfile *objfile)
3670
3671 DESCRIPTION
3672
3673 Given pointer to data in target format in FROM, a byte count for
3674 the size of the data in NBYTES, a flag indicating whether or not
3675 the data is signed in SIGNEXTEND, and a pointer to the current
3676 objfile in OBJFILE, convert the data to host format and return
3677 the converted value.
3678
3679 NOTES
3680
3681 FIXME: If we read data that is known to be signed, and expect to
3682 use it as signed data, then we need to explicitly sign extend the
3683 result until the bfd library is able to do this for us.
3684
3685 */
3686
3687 static unsigned long
3688 target_to_host (from, nbytes, signextend, objfile)
3689 char *from;
3690 int nbytes;
3691 int signextend; /* FIXME: Unused */
3692 struct objfile *objfile;
3693 {
3694 unsigned long rtnval;
3695
3696 switch (nbytes)
3697 {
3698 case 8:
3699 rtnval = bfd_get_64 (objfile -> obfd, (bfd_byte *) from);
3700 break;
3701 case 4:
3702 rtnval = bfd_get_32 (objfile -> obfd, (bfd_byte *) from);
3703 break;
3704 case 2:
3705 rtnval = bfd_get_16 (objfile -> obfd, (bfd_byte *) from);
3706 break;
3707 case 1:
3708 rtnval = bfd_get_8 (objfile -> obfd, (bfd_byte *) from);
3709 break;
3710 default:
3711 dwarfwarn ("no bfd support for %d byte data object", nbytes);
3712 rtnval = 0;
3713 break;
3714 }
3715 return (rtnval);
3716 }
3717
3718 /*
3719
3720 LOCAL FUNCTION
3721
3722 attribute_size -- compute size of data for a DWARF attribute
3723
3724 SYNOPSIS
3725
3726 static int attribute_size (unsigned int attr)
3727
3728 DESCRIPTION
3729
3730 Given a DWARF attribute in ATTR, compute the size of the first
3731 piece of data associated with this attribute and return that
3732 size.
3733
3734 Returns -1 for unrecognized attributes.
3735
3736 */
3737
3738 static int
3739 attribute_size (attr)
3740 unsigned int attr;
3741 {
3742 int nbytes; /* Size of next data for this attribute */
3743 unsigned short form; /* Form of the attribute */
3744
3745 form = FORM_FROM_ATTR (attr);
3746 switch (form)
3747 {
3748 case FORM_STRING: /* A variable length field is next */
3749 nbytes = 0;
3750 break;
3751 case FORM_DATA2: /* Next 2 byte field is the data itself */
3752 case FORM_BLOCK2: /* Next 2 byte field is a block length */
3753 nbytes = 2;
3754 break;
3755 case FORM_DATA4: /* Next 4 byte field is the data itself */
3756 case FORM_BLOCK4: /* Next 4 byte field is a block length */
3757 case FORM_REF: /* Next 4 byte field is a DIE offset */
3758 nbytes = 4;
3759 break;
3760 case FORM_DATA8: /* Next 8 byte field is the data itself */
3761 nbytes = 8;
3762 break;
3763 case FORM_ADDR: /* Next field size is target sizeof(void *) */
3764 nbytes = TARGET_FT_POINTER_SIZE (objfile);
3765 break;
3766 default:
3767 SQUAWK (("unknown attribute form (0x%x)", form));
3768 nbytes = -1;
3769 break;
3770 }
3771 return (nbytes);
3772 }