* symfile.c (syms_from_bfd): New routine.
[binutils-gdb.git] / gdb / dwarfread.c
1 /* DWARF debugging format support for GDB.
2 Copyright (C) 1991 Free Software Foundation, Inc.
3 Written by Fred Fish at Cygnus Support, portions based on dbxread.c,
4 mipsread.c, coffread.c, and dwarfread.c from a Data General SVR4 gdb port.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
21
22 /*
23
24 FIXME: Figure out how to get the frame pointer register number in the
25 execution environment of the target. Remove R_FP kludge
26
27 FIXME: Add generation of dependencies list to partial symtab code.
28
29 FIXME: Currently we ignore host/target byte ordering and integer size
30 differences. Should remap data from external form to an internal form
31 before trying to use it.
32
33 FIXME: Resolve minor differences between what information we put in the
34 partial symbol table and what dbxread puts in. For example, we don't yet
35 put enum constants there. And dbxread seems to invent a lot of typedefs
36 we never see. Use the new printpsym command to see the partial symbol table
37 contents.
38
39 FIXME: Change forward declarations of static functions to allow for compilers
40 without prototypes.
41
42 FIXME: Figure out a better way to tell gdb (all the debug reading routines)
43 the names of the gccX_compiled flags.
44
45 FIXME: Figure out a better way to tell gdb about the name of the function
46 contain the user's entry point (I.E. main())
47
48 FIXME: The current DWARF specification has a very strong bias towards
49 machines with 32-bit integers, as it assumes that many attributes of the
50 program (such as an address) will fit in such an integer. There are many
51 references in the spec to things that are 2, 4, or 8 bytes long. Given that
52 we will probably run into problems on machines where some of these assumptions
53 are invalid (64-bit ints for example), we don't bother at this time to try to
54 make this code more flexible and just use shorts, ints, and longs (and their
55 sizes) where it seems appropriate. I.E. we use a short int to hold DWARF
56 tags, and assume that the tag size in the file is the same as sizeof(short).
57
58 FIXME: Figure out how to get the name of the symbol indicating that a module
59 has been compiled with gcc (gcc_compiledXX) in a more portable way than
60 hardcoding it into the object file readers.
61
62 FIXME: See other FIXME's and "ifdef 0" scattered throughout the code for
63 other things to work on, if you get bored. :-)
64
65 */
66
67 #include <stdio.h>
68 #include <varargs.h>
69 #include <fcntl.h>
70
71 #include "defs.h"
72 #include "param.h"
73 #include "bfd.h"
74 #include "symtab.h"
75 #include "symfile.h"
76 #include "dwarf.h"
77 #include "ansidecl.h"
78
79 #ifdef MAINTENANCE /* Define to 1 to compile in some maintenance stuff */
80 #define SQUAWK(stuff) dwarfwarn stuff
81 #else
82 #define SQUAWK(stuff)
83 #endif
84
85 #ifndef R_FP /* FIXME */
86 #define R_FP 14 /* Kludge to get frame pointer register number */
87 #endif
88
89 typedef unsigned int DIEREF; /* Reference to a DIE */
90
91 #define GCC_COMPILED_FLAG_SYMBOL "gcc_compiled%" /* FIXME */
92 #define GCC2_COMPILED_FLAG_SYMBOL "gcc2_compiled%" /* FIXME */
93
94 #define STREQ(a,b) (strcmp(a,b)==0)
95
96 extern CORE_ADDR startup_file_start; /* From blockframe.c */
97 extern CORE_ADDR startup_file_end; /* From blockframe.c */
98 extern CORE_ADDR entry_scope_lowpc; /* From blockframe.c */
99 extern CORE_ADDR entry_scope_highpc; /* From blockframc.c */
100 extern CORE_ADDR main_scope_lowpc; /* From blockframe.c */
101 extern CORE_ADDR main_scope_highpc; /* From blockframc.c */
102 extern int info_verbose; /* From main.c; nonzero => verbose */
103
104
105 /* The DWARF debugging information consists of two major pieces,
106 one is a block of DWARF Information Entries (DIE's) and the other
107 is a line number table. The "struct dieinfo" structure contains
108 the information for a single DIE, the one currently being processed.
109
110 In order to make it easier to randomly access the attribute fields
111 of the current DIE, which are specifically unordered within the DIE
112 each DIE is scanned and an instance of the "struct dieinfo"
113 structure is initialized.
114
115 Initialization is done in two levels. The first, done by basicdieinfo(),
116 just initializes those fields that are vital to deciding whether or not
117 to use this DIE, how to skip past it, etc. The second, done by the
118 function completedieinfo(), fills in the rest of the information.
119
120 Attributes which have block forms are not interpreted at the time
121 the DIE is scanned, instead we just save pointers to the start
122 of their value fields.
123
124 Some fields have a flag <name>_p that is set when the value of the
125 field is valid (I.E. we found a matching attribute in the DIE). Since
126 we may want to test for the presence of some attributes in the DIE,
127 such as AT_is_external, without restricting the values of the field,
128 we need someway to note that we found such an attribute.
129
130 */
131
132 typedef char BLOCK;
133
134 struct dieinfo {
135 char * die; /* Pointer to the raw DIE data */
136 long dielength; /* Length of the raw DIE data */
137 DIEREF dieref; /* Offset of this DIE */
138 short dietag; /* Tag for this DIE */
139 long at_padding;
140 long at_sibling;
141 BLOCK * at_location;
142 char * at_name;
143 unsigned short at_fund_type;
144 BLOCK * at_mod_fund_type;
145 long at_user_def_type;
146 BLOCK * at_mod_u_d_type;
147 short at_ordering;
148 BLOCK * at_subscr_data;
149 long at_byte_size;
150 short at_bit_offset;
151 long at_bit_size;
152 BLOCK * at_deriv_list;
153 BLOCK * at_element_list;
154 long at_stmt_list;
155 long at_low_pc;
156 long at_high_pc;
157 long at_language;
158 long at_member;
159 long at_discr;
160 BLOCK * at_discr_value;
161 short at_visibility;
162 long at_import;
163 BLOCK * at_string_length;
164 char * at_comp_dir;
165 char * at_producer;
166 long at_loclist;
167 long at_frame_base;
168 short at_incomplete;
169 long at_start_scope;
170 long at_stride_size;
171 long at_src_info;
172 short at_prototyped;
173 BLOCK * at_const_data;
174 short at_is_external;
175 unsigned int at_is_external_p:1;
176 unsigned int at_stmt_list_p:1;
177 };
178
179 static int diecount; /* Approximate count of dies for compilation unit */
180 static struct dieinfo *curdie; /* For warnings and such */
181
182 static char *dbbase; /* Base pointer to dwarf info */
183 static int dbroff; /* Relative offset from start of .debug section */
184 static char *lnbase; /* Base pointer to line section */
185 static int isreg; /* Kludge to identify register variables */
186
187 static CORE_ADDR baseaddr; /* Add to each symbol value */
188
189 /* Each partial symbol table entry contains a pointer to private data for the
190 read_symtab() function to use when expanding a partial symbol table entry
191 to a full symbol table entry. For DWARF debugging info, this data is
192 contained in the following structure and macros are provided for easy
193 access to the members given a pointer to a partial symbol table entry.
194
195 dbfoff Always the absolute file offset to the start of the ".debug"
196 section for the file containing the DIE's being accessed.
197
198 dbroff Relative offset from the start of the ".debug" access to the
199 first DIE to be accessed. When building the partial symbol
200 table, this value will be zero since we are accessing the
201 entire ".debug" section. When expanding a partial symbol
202 table entry, this value will be the offset to the first
203 DIE for the compilation unit containing the symbol that
204 triggers the expansion.
205
206 dblength The size of the chunk of DIE's being examined, in bytes.
207
208 lnfoff The absolute file offset to the line table fragment. Ignored
209 when building partial symbol tables, but used when expanding
210 them, and contains the absolute file offset to the fragment
211 of the ".line" section containing the line numbers for the
212 current compilation unit.
213 */
214
215 struct dwfinfo {
216 int dbfoff; /* Absolute file offset to start of .debug section */
217 int dbroff; /* Relative offset from start of .debug section */
218 int dblength; /* Size of the chunk of DIE's being examined */
219 int lnfoff; /* Absolute file offset to line table fragment */
220 };
221
222 #define DBFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbfoff)
223 #define DBROFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbroff)
224 #define DBLENGTH(p) (((struct dwfinfo *)((p)->read_symtab_private))->dblength)
225 #define LNFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->lnfoff)
226
227 /* Record the symbols defined for each context in a linked list. We don't
228 create a struct block for the context until we know how long to make it.
229 Global symbols for each file are maintained in the global_symbols list. */
230
231 struct pending_symbol {
232 struct pending_symbol *next; /* Next pending symbol */
233 struct symbol *symbol; /* The actual symbol */
234 };
235
236 static struct pending_symbol *global_symbols; /* global funcs and vars */
237 static struct block *global_symbol_block;
238
239 /* Line number entries are read into a dynamically expandable vector before
240 being added to the symbol table section. Once we know how many there are
241 we can add them. */
242
243 static struct linetable *line_vector; /* Vector of line numbers. */
244 static int line_vector_index; /* Index of next entry. */
245 static int line_vector_length; /* Current allocation limit */
246
247 /* Scope information is kept in a scope tree, one node per scope. Each time
248 a new scope is started, a child node is created under the current node
249 and set to the current scope. Each time a scope is closed, the current
250 scope moves back up the tree to the parent of the current scope.
251
252 Each scope contains a pointer to the list of symbols defined in the scope,
253 a pointer to the block vector for the scope, a pointer to the symbol
254 that names the scope (if any), and the range of PC values that mark
255 the start and end of the scope. */
256
257 struct scopenode {
258 struct scopenode *parent;
259 struct scopenode *child;
260 struct scopenode *sibling;
261 struct pending_symbol *symbols;
262 struct block *block;
263 struct symbol *namesym;
264 CORE_ADDR lowpc;
265 CORE_ADDR highpc;
266 };
267
268 static struct scopenode *scopetree;
269 static struct scopenode *scope;
270
271 /* DIES which have user defined types or modified user defined types refer to
272 other DIES for the type information. Thus we need to associate the offset
273 of a DIE for a user defined type with a pointer to the type information.
274
275 Originally this was done using a simple but expensive algorithm, with an
276 array of unsorted structures, each containing an offset/type-pointer pair.
277 This array was scanned linearly each time a lookup was done. The result
278 was that gdb was spending over half it's startup time munging through this
279 array of pointers looking for a structure that had the right offset member.
280
281 The second attempt used the same array of structures, but the array was
282 sorted using qsort each time a new offset/type was recorded, and a binary
283 search was used to find the type pointer for a given DIE offset. This was
284 even slower, due to the overhead of sorting the array each time a new
285 offset/type pair was entered.
286
287 The third attempt uses a fixed size array of type pointers, indexed by a
288 value derived from the DIE offset. Since the minimum DIE size is 4 bytes,
289 we can divide any DIE offset by 4 to obtain a unique index into this fixed
290 size array. Since each element is a 4 byte pointer, it takes exactly as
291 much memory to hold this array as to hold the DWARF info for a given
292 compilation unit. But it gets freed as soon as we are done with it. */
293
294 static struct type **utypes; /* Pointer to array of user type pointers */
295 static int numutypes; /* Max number of user type pointers */
296
297 /* Forward declarations of static functions so we don't have to worry
298 about ordering within this file. The EXFUN macro may be slightly
299 misleading. Should probably be called DCLFUN instead, or something
300 more intuitive, since it can be used for both static and external
301 definitions. */
302
303 static void dwarfwarn (); /* EXFUN breaks with <varargs.h> (FIXME)*/
304
305 static void
306 EXFUN (scan_partial_symbols, (char *thisdie AND char *enddie));
307
308 static void
309 EXFUN (scan_compilation_units,
310 (char *filename AND CORE_ADDR addr AND char *thisdie AND char *enddie
311 AND unsigned int dbfoff AND unsigned int lnoffset));
312
313 static struct partial_symtab *
314 EXFUN(start_psymtab, (char *symfile_name AND CORE_ADDR addr
315 AND char *filename AND CORE_ADDR textlow
316 AND CORE_ADDR texthigh AND int dbfoff
317 AND int curoff AND int culength AND int lnfoff
318 AND struct partial_symbol *global_syms
319 AND struct partial_symbol *static_syms));
320 static void
321 EXFUN(add_partial_symbol, (struct dieinfo *dip));
322
323 static void
324 EXFUN(add_psymbol_to_list,
325 (struct psymbol_allocation_list *listp AND char *name
326 AND enum namespace space AND enum address_class class
327 AND CORE_ADDR value));
328
329 static void
330 EXFUN(init_psymbol_list, (int total_symbols));
331
332 static void
333 EXFUN(basicdieinfo, (struct dieinfo *dip AND char *diep));
334
335 static void
336 EXFUN(completedieinfo, (struct dieinfo *dip));
337
338 static void
339 EXFUN(dwarf_psymtab_to_symtab, (struct partial_symtab *pst));
340
341 static void
342 EXFUN(psymtab_to_symtab_1, (struct partial_symtab *pst AND int desc ));
343
344 static struct symtab *
345 EXFUN(read_ofile_symtab, (struct partial_symtab *pst AND int desc));
346
347 static void
348 EXFUN(process_dies, (char *thisdie AND char *enddie));
349
350 static void
351 EXFUN(read_lexical_block_scope,
352 (struct dieinfo *dip AND char *thisdie AND char *enddie));
353
354 static void
355 EXFUN(read_structure_scope,
356 (struct dieinfo *dip AND char *thisdie AND char *enddie));
357
358 static struct type *
359 EXFUN(decode_array_element_type, (char *scan AND char *end));
360
361 static struct type *
362 EXFUN(decode_subscr_data, (char *scan AND char *end));
363
364 static void
365 EXFUN(read_array_type, (struct dieinfo *dip));
366
367 static void
368 EXFUN(read_subroutine_type,
369 (struct dieinfo *dip AND char *thisdie AND char *enddie));
370
371 static void
372 EXFUN(read_enumeration,
373 (struct dieinfo *dip AND char *thisdie AND char *enddie));
374
375 static struct type *
376 EXFUN(struct_type,
377 (struct dieinfo *dip AND char *thisdie AND char *enddie));
378
379 static struct type *
380 EXFUN(enum_type, (struct dieinfo *dip));
381
382 static void
383 EXFUN(read_func_scope,
384 (struct dieinfo *dip AND char *thisdie AND char *enddie));
385
386 static void
387 EXFUN(read_file_scope,
388 (struct dieinfo *dip AND char *thisdie AND char *enddie));
389
390 static void
391 EXFUN(start_symtab, (void));
392
393 static void
394 EXFUN(end_symtab, (char *filename AND long language));
395
396 static int
397 EXFUN(scopecount, (struct scopenode *node));
398
399 static void
400 EXFUN(openscope,
401 (struct symbol *namesym AND CORE_ADDR lowpc AND CORE_ADDR highpc));
402
403 static void
404 EXFUN(freescope, (struct scopenode *node));
405
406 static struct block *
407 EXFUN(buildblock, (struct pending_symbol *syms));
408
409 static void
410 EXFUN(closescope, (void));
411
412 static void
413 EXFUN(record_line, (int line AND CORE_ADDR pc));
414
415 static void
416 EXFUN(decode_line_numbers, (char *linetable));
417
418 static struct type *
419 EXFUN(decode_die_type, (struct dieinfo *dip));
420
421 static struct type *
422 EXFUN(decode_mod_fund_type, (char *typedata));
423
424 static struct type *
425 EXFUN(decode_mod_u_d_type, (char *typedata));
426
427 static struct type *
428 EXFUN(decode_modified_type,
429 (unsigned char *modifiers AND unsigned short modcount AND int mtype));
430
431 static struct type *
432 EXFUN(decode_fund_type, (unsigned short fundtype));
433
434 static char *
435 EXFUN(create_name, (char *name AND struct obstack *obstackp));
436
437 static void
438 EXFUN(add_symbol_to_list,
439 (struct symbol *symbol AND struct pending_symbol **listhead));
440
441 static struct block **
442 EXFUN(gatherblocks, (struct block **dest AND struct scopenode *node));
443
444 static struct blockvector *
445 EXFUN(make_blockvector, (void));
446
447 static struct type *
448 EXFUN(lookup_utype, (DIEREF dieref));
449
450 static struct type *
451 EXFUN(alloc_utype, (DIEREF dieref AND struct type *usetype));
452
453 static struct symbol *
454 EXFUN(new_symbol, (struct dieinfo *dip));
455
456 static int
457 EXFUN(locval, (char *loc));
458
459 static void
460 EXFUN(record_misc_function, (char *name AND CORE_ADDR address));
461
462 static int
463 EXFUN(compare_psymbols,
464 (struct partial_symbol *s1 AND struct partial_symbol *s2));
465
466
467 /*
468
469 GLOBAL FUNCTION
470
471 dwarf_build_psymtabs -- build partial symtabs from DWARF debug info
472
473 SYNOPSIS
474
475 void dwarf_build_psymtabs (int desc, char *filename, CORE_ADDR addr,
476 int mainline, unsigned int dbfoff, unsigned int dbsize,
477 unsigned int lnoffset, unsigned int lnsize)
478
479 DESCRIPTION
480
481 This function is called upon to build partial symtabs from files
482 containing DIE's (Dwarf Information Entries) and DWARF line numbers.
483
484 It is passed a file descriptor for an open file containing the DIES
485 and line number information, the corresponding filename for that
486 file, a base address for relocating the symbols, a flag indicating
487 whether or not this debugging information is from a "main symbol
488 table" rather than a shared library or dynamically linked file,
489 and file offset/size pairs for the DIE information and line number
490 information.
491
492 RETURNS
493
494 No return value.
495
496 */
497
498 void
499 DEFUN(dwarf_build_psymtabs,
500 (desc, filename, addr, mainline, dbfoff, dbsize, lnoffset, lnsize),
501 int desc AND
502 char *filename AND
503 CORE_ADDR addr AND
504 int mainline AND
505 unsigned int dbfoff AND
506 unsigned int dbsize AND
507 unsigned int lnoffset AND
508 unsigned int lnsize)
509 {
510 struct cleanup *back_to;
511
512 dbbase = xmalloc (dbsize);
513 dbroff = 0;
514 if ((lseek (desc, dbfoff, 0) != dbfoff) ||
515 (read (desc, dbbase, dbsize) != dbsize))
516 {
517 free (dbbase);
518 error ("can't read DWARF data from '%s'", filename);
519 }
520 back_to = make_cleanup (free, dbbase);
521
522 /* If we are reinitializing, or if we have never loaded syms yet, init.
523 Since we have no idea how many DIES we are looking at, we just guess
524 some arbitrary value. */
525
526 if (mainline || global_psymbols.size == 0 || static_psymbols.size == 0)
527 {
528 init_psymbol_list (1024);
529 }
530
531 init_misc_bunches ();
532 make_cleanup (discard_misc_bunches, 0);
533
534 /* Follow the compilation unit sibling chain, building a partial symbol
535 table entry for each one. Save enough information about each compilation
536 unit to locate the full DWARF information later. */
537
538 scan_compilation_units (filename, addr, dbbase, dbbase + dbsize,
539 dbfoff, lnoffset);
540
541 /* Go over the miscellaneous functions and install them in the miscellaneous
542 function vector. */
543
544 condense_misc_bunches (!mainline);
545 do_cleanups (back_to);
546 }
547
548
549 /*
550
551 LOCAL FUNCTION
552
553 record_misc_function -- add entry to miscellaneous function vector
554
555 SYNOPSIS
556
557 static void record_misc_function (char *name, CORE_ADDR address)
558
559 DESCRIPTION
560
561 Given a pointer to the name of a symbol that should be added to the
562 miscellaneous function vector, and the address associated with that
563 symbol, records this information for later use in building the
564 miscellaneous function vector.
565
566 NOTES
567
568 FIXME: For now we just use mf_text as the type. This should be
569 fixed.
570 */
571
572 static void
573 DEFUN(record_misc_function, (name, address), char *name AND CORE_ADDR address)
574 {
575 prim_record_misc_function (obsavestring (name, strlen (name)), address,
576 mf_text);
577 }
578
579 /*
580
581 LOCAL FUNCTION
582
583 dwarfwarn -- issue a DWARF related warning
584
585 DESCRIPTION
586
587 Issue warnings about DWARF related things that aren't serious enough
588 to warrant aborting with an error, but should not be ignored either.
589 This includes things like detectable corruption in DIE's, missing
590 DIE's, unimplemented features, etc.
591
592 In general, running across tags or attributes that we don't recognize
593 is not considered to be a problem and we should not issue warnings
594 about such.
595
596 NOTES
597
598 We mostly follow the example of the error() routine, but without
599 returning to command level. It is arguable about whether warnings
600 should be issued at all, and if so, where they should go (stdout or
601 stderr).
602
603 We assume that curdie is valid and contains at least the basic
604 information for the DIE where the problem was noticed.
605 */
606
607 static void
608 dwarfwarn (va_alist)
609 va_dcl
610 {
611 va_list ap;
612 char *fmt;
613
614 va_start (ap);
615 fmt = va_arg (ap, char *);
616 warning_setup ();
617 fprintf (stderr, "DWARF warning (ref 0x%x): ", curdie -> dieref);
618 if (curdie -> at_name)
619 {
620 fprintf (stderr, "'%s': ", curdie -> at_name);
621 }
622 vfprintf (stderr, fmt, ap);
623 fprintf (stderr, "\n");
624 fflush (stderr);
625 va_end (ap);
626 }
627
628 /*
629
630 LOCAL FUNCTION
631
632 compare_psymbols -- compare two partial symbols by name
633
634 DESCRIPTION
635
636 Given pointer to two partial symbol table entries, compare
637 them by name and return -N, 0, or +N (ala strcmp). Typically
638 used by sorting routines like qsort().
639
640 NOTES
641
642 This is a copy from dbxread.c. It should be moved to a generic
643 gdb file and made available for all psymtab builders (FIXME).
644
645 Does direct compare of first two characters before punting
646 and passing to strcmp for longer compares. Note that the
647 original version had a bug whereby two null strings or two
648 identically named one character strings would return the
649 comparison of memory following the null byte.
650
651 */
652
653 static int
654 DEFUN(compare_psymbols, (s1, s2),
655 struct partial_symbol *s1 AND
656 struct partial_symbol *s2)
657 {
658 register char *st1 = SYMBOL_NAME (s1);
659 register char *st2 = SYMBOL_NAME (s2);
660
661 if ((st1[0] - st2[0]) || !st1[0])
662 {
663 return (st1[0] - st2[0]);
664 }
665 else if ((st1[1] - st2[1]) || !st1[1])
666 {
667 return (st1[1] - st2[1]);
668 }
669 else
670 {
671 return (strcmp (st1 + 2, st2 + 2));
672 }
673 }
674
675 /*
676
677 LOCAL FUNCTION
678
679 read_lexical_block_scope -- process all dies in a lexical block
680
681 SYNOPSIS
682
683 static void read_lexical_block_scope (struct dieinfo *dip,
684 char *thisdie, char *enddie)
685
686 DESCRIPTION
687
688 Process all the DIES contained within a lexical block scope.
689 Start a new scope, process the dies, and then close the scope.
690
691 */
692
693 static void
694 DEFUN(read_lexical_block_scope, (dip, thisdie, enddie),
695 struct dieinfo *dip AND
696 char *thisdie AND
697 char *enddie)
698 {
699 openscope (NULL, dip -> at_low_pc, dip -> at_high_pc);
700 process_dies (thisdie + dip -> dielength, enddie);
701 closescope ();
702 }
703
704 /*
705
706 LOCAL FUNCTION
707
708 lookup_utype -- look up a user defined type from die reference
709
710 SYNOPSIS
711
712 static type *lookup_utype (DIEREF dieref)
713
714 DESCRIPTION
715
716 Given a DIE reference, lookup the user defined type associated with
717 that DIE, if it has been registered already. If not registered, then
718 return NULL. Alloc_utype() can be called to register an empty
719 type for this reference, which will be filled in later when the
720 actual referenced DIE is processed.
721 */
722
723 static struct type *
724 DEFUN(lookup_utype, (dieref), DIEREF dieref)
725 {
726 struct type *type = NULL;
727 int utypeidx;
728
729 utypeidx = (dieref - dbroff) / 4;
730 if ((utypeidx < 0) || (utypeidx >= numutypes))
731 {
732 dwarfwarn ("reference to DIE (0x%x) outside compilation unit", dieref);
733 }
734 else
735 {
736 type = *(utypes + utypeidx);
737 }
738 return (type);
739 }
740
741
742 /*
743
744 LOCAL FUNCTION
745
746 alloc_utype -- add a user defined type for die reference
747
748 SYNOPSIS
749
750 static type *alloc_utype (DIEREF dieref, struct type *utypep)
751
752 DESCRIPTION
753
754 Given a die reference DIEREF, and a possible pointer to a user
755 defined type UTYPEP, register that this reference has a user
756 defined type and either use the specified type in UTYPEP or
757 make a new empty type that will be filled in later.
758
759 We should only be called after calling lookup_utype() to verify that
760 there is not currently a type registered for DIEREF.
761 */
762
763 static struct type *
764 DEFUN(alloc_utype, (dieref, utypep),
765 DIEREF dieref AND
766 struct type *utypep)
767 {
768 struct type **typep;
769 int utypeidx;
770
771 utypeidx = (dieref - dbroff) / 4;
772 typep = utypes + utypeidx;
773 if ((utypeidx < 0) || (utypeidx >= numutypes))
774 {
775 utypep = builtin_type_int;
776 dwarfwarn ("reference to DIE (0x%x) outside compilation unit", dieref);
777 }
778 else if (*typep != NULL)
779 {
780 utypep = *typep;
781 SQUAWK (("internal error: dup user type allocation"));
782 }
783 else
784 {
785 if (utypep == NULL)
786 {
787 utypep = (struct type *)
788 obstack_alloc (symbol_obstack, sizeof (struct type));
789 (void) memset (utypep, 0, sizeof (struct type));
790 }
791 *typep = utypep;
792 }
793 return (utypep);
794 }
795
796 /*
797
798 LOCAL FUNCTION
799
800 decode_die_type -- return a type for a specified die
801
802 SYNOPSIS
803
804 static struct type *decode_die_type (struct dieinfo *dip)
805
806 DESCRIPTION
807
808 Given a pointer to a die information structure DIP, decode the
809 type of the die and return a pointer to the decoded type. All
810 dies without specific types default to type int.
811 */
812
813 static struct type *
814 DEFUN(decode_die_type, (dip), struct dieinfo *dip)
815 {
816 struct type *type = NULL;
817
818 if (dip -> at_fund_type != 0)
819 {
820 type = decode_fund_type (dip -> at_fund_type);
821 }
822 else if (dip -> at_mod_fund_type != NULL)
823 {
824 type = decode_mod_fund_type (dip -> at_mod_fund_type);
825 }
826 else if (dip -> at_user_def_type)
827 {
828 if ((type = lookup_utype (dip -> at_user_def_type)) == NULL)
829 {
830 type = alloc_utype (dip -> at_user_def_type, NULL);
831 }
832 }
833 else if (dip -> at_mod_u_d_type)
834 {
835 type = decode_mod_u_d_type (dip -> at_mod_u_d_type);
836 }
837 else
838 {
839 type = builtin_type_int;
840 }
841 return (type);
842 }
843
844 /*
845
846 LOCAL FUNCTION
847
848 struct_type -- compute and return the type for a struct or union
849
850 SYNOPSIS
851
852 static struct type *struct_type (struct dieinfo *dip, char *thisdie,
853 char *enddie)
854
855 DESCRIPTION
856
857 Given pointer to a die information structure for a die which
858 defines a union or structure, and pointers to the raw die data
859 that define the range of dies which define the members, compute
860 and return the user defined type for the structure or union.
861 */
862
863 static struct type *
864 DEFUN(struct_type, (dip, thisdie, enddie),
865 struct dieinfo *dip AND
866 char *thisdie AND
867 char *enddie)
868 {
869 struct type *type;
870 struct nextfield {
871 struct nextfield *next;
872 struct field field;
873 };
874 struct nextfield *list = NULL;
875 struct nextfield *new;
876 int nfields = 0;
877 int n;
878 char *tpart1;
879 char *tpart2;
880 char *tpart3;
881 struct dieinfo mbr;
882
883 if ((type = lookup_utype (dip -> dieref)) == NULL)
884 {
885 type = alloc_utype (dip -> dieref, NULL);
886 }
887 switch (dip -> dietag)
888 {
889 case TAG_structure_type:
890 TYPE_CODE (type) = TYPE_CODE_STRUCT;
891 tpart1 = "struct ";
892 break;
893 case TAG_union_type:
894 TYPE_CODE (type) = TYPE_CODE_UNION;
895 tpart1 = "union ";
896 break;
897 default:
898 tpart1 = "";
899 SQUAWK (("missing structure or union tag"));
900 TYPE_CODE (type) = TYPE_CODE_UNDEF;
901 break;
902 }
903 if (dip -> at_name == NULL)
904 {
905 tpart2 = "{...}";
906 }
907 else
908 {
909 tpart2 = dip -> at_name;
910 }
911 if (dip -> at_byte_size == 0)
912 {
913 tpart3 = " <opaque>";
914 } else {
915 TYPE_LENGTH (type) = dip -> at_byte_size;
916 tpart3 = "";
917 }
918 TYPE_NAME (type) = concat (tpart1, tpart2, tpart3);
919 thisdie += dip -> dielength;
920 while (thisdie < enddie)
921 {
922 basicdieinfo (&mbr, thisdie);
923 completedieinfo (&mbr);
924 if (mbr.dielength <= sizeof (long))
925 {
926 break;
927 }
928 switch (mbr.dietag)
929 {
930 case TAG_member:
931 /* Get space to record the next field's data. */
932 new = (struct nextfield *) alloca (sizeof (struct nextfield));
933 new -> next = list;
934 list = new;
935 /* Save the data. */
936 list -> field.name = savestring (mbr.at_name, strlen (mbr.at_name));
937 list -> field.type = decode_die_type (&mbr);
938 list -> field.bitpos = 8 * locval (mbr.at_location);
939 list -> field.bitsize = 0;
940 nfields++;
941 break;
942 default:
943 SQUAWK (("bad member of '%s'", TYPE_NAME (type)));
944 break;
945 }
946 thisdie += mbr.dielength;
947 }
948 /* Now create the vector of fields, and record how big it is. */
949 TYPE_NFIELDS (type) = nfields;
950 TYPE_FIELDS (type) = (struct field *)
951 obstack_alloc (symbol_obstack, sizeof (struct field) * nfields);
952 /* Copy the saved-up fields into the field vector. */
953 for (n = nfields; list; list = list -> next)
954 {
955 TYPE_FIELD (type, --n) = list -> field;
956 }
957 return (type);
958 }
959
960 /*
961
962 LOCAL FUNCTION
963
964 read_structure_scope -- process all dies within struct or union
965
966 SYNOPSIS
967
968 static void read_structure_scope (struct dieinfo *dip,
969 char *thisdie, char *enddie)
970
971 DESCRIPTION
972
973 Called when we find the DIE that starts a structure or union
974 scope (definition) to process all dies that define the members
975 of the structure or union. DIP is a pointer to the die info
976 struct for the DIE that names the structure or union.
977
978 NOTES
979
980 Note that we need to call struct_type regardless of whether or not
981 we have a symbol, since we might have a structure or union without
982 a tag name (thus no symbol for the tagname).
983 */
984
985 static void
986 DEFUN(read_structure_scope, (dip, thisdie, enddie),
987 struct dieinfo *dip AND
988 char *thisdie AND
989 char *enddie)
990 {
991 struct type *type;
992 struct symbol *sym;
993
994 type = struct_type (dip, thisdie, enddie);
995 if ((sym = new_symbol (dip)) != NULL)
996 {
997 SYMBOL_TYPE (sym) = type;
998 }
999 }
1000
1001 /*
1002
1003 LOCAL FUNCTION
1004
1005 decode_array_element_type -- decode type of the array elements
1006
1007 SYNOPSIS
1008
1009 static struct type *decode_array_element_type (char *scan, char *end)
1010
1011 DESCRIPTION
1012
1013 As the last step in decoding the array subscript information for an
1014 array DIE, we need to decode the type of the array elements. We are
1015 passed a pointer to this last part of the subscript information and
1016 must return the appropriate type. If the type attribute is not
1017 recognized, just warn about the problem and return type int.
1018 */
1019
1020 static struct type *
1021 DEFUN(decode_array_element_type, (scan, end), char *scan AND char *end)
1022 {
1023 struct type *typep;
1024 short attribute;
1025 DIEREF dieref;
1026 unsigned short fundtype;
1027
1028 (void) memcpy (&attribute, scan, sizeof (short));
1029 scan += sizeof (short);
1030 switch (attribute)
1031 {
1032 case AT_fund_type:
1033 (void) memcpy (&fundtype, scan, sizeof (short));
1034 typep = decode_fund_type (fundtype);
1035 break;
1036 case AT_mod_fund_type:
1037 typep = decode_mod_fund_type (scan);
1038 break;
1039 case AT_user_def_type:
1040 (void) memcpy (&dieref, scan, sizeof (DIEREF));
1041 if ((typep = lookup_utype (dieref)) == NULL)
1042 {
1043 typep = alloc_utype (dieref, NULL);
1044 }
1045 break;
1046 case AT_mod_u_d_type:
1047 typep = decode_mod_u_d_type (scan);
1048 break;
1049 default:
1050 SQUAWK (("bad array element type attribute 0x%x", attribute));
1051 typep = builtin_type_int;
1052 break;
1053 }
1054 return (typep);
1055 }
1056
1057 /*
1058
1059 LOCAL FUNCTION
1060
1061 decode_subscr_data -- decode array subscript and element type data
1062
1063 SYNOPSIS
1064
1065 static struct type *decode_subscr_data (char *scan, char *end)
1066
1067 DESCRIPTION
1068
1069 The array subscripts and the data type of the elements of an
1070 array are described by a list of data items, stored as a block
1071 of contiguous bytes. There is a data item describing each array
1072 dimension, and a final data item describing the element type.
1073 The data items are ordered the same as their appearance in the
1074 source (I.E. leftmost dimension first, next to leftmost second,
1075 etc).
1076
1077 We are passed a pointer to the start of the block of bytes
1078 containing the data items, and a pointer to the first byte past
1079 the data. This function decodes the data and returns a type.
1080
1081 BUGS
1082 FIXME: This code only implements the forms currently used
1083 by the AT&T and GNU C compilers.
1084
1085 The end pointer is supplied for error checking, maybe we should
1086 use it for that...
1087 */
1088
1089 static struct type *
1090 DEFUN(decode_subscr_data, (scan, end), char *scan AND char *end)
1091 {
1092 struct type *typep = NULL;
1093 struct type *nexttype;
1094 int format;
1095 short fundtype;
1096 long lowbound;
1097 long highbound;
1098
1099 format = *scan++;
1100 switch (format)
1101 {
1102 case FMT_ET:
1103 typep = decode_array_element_type (scan, end);
1104 break;
1105 case FMT_FT_C_C:
1106 (void) memcpy (&fundtype, scan, sizeof (short));
1107 scan += sizeof (short);
1108 if (fundtype != FT_integer && fundtype != FT_signed_integer
1109 && fundtype != FT_unsigned_integer)
1110 {
1111 SQUAWK (("array subscripts must be integral types, not type 0x%x",
1112 fundtype));
1113 }
1114 else
1115 {
1116 (void) memcpy (&lowbound, scan, sizeof (long));
1117 scan += sizeof (long);
1118 (void) memcpy (&highbound, scan, sizeof (long));
1119 scan += sizeof (long);
1120 nexttype = decode_subscr_data (scan, end);
1121 if (nexttype != NULL)
1122 {
1123 typep = (struct type *)
1124 obstack_alloc (symbol_obstack, sizeof (struct type));
1125 (void) memset (typep, 0, sizeof (struct type));
1126 TYPE_CODE (typep) = TYPE_CODE_ARRAY;
1127 TYPE_LENGTH (typep) = TYPE_LENGTH (nexttype);
1128 TYPE_LENGTH (typep) *= lowbound + highbound + 1;
1129 TYPE_TARGET_TYPE (typep) = nexttype;
1130 }
1131 }
1132 break;
1133 case FMT_FT_C_X:
1134 case FMT_FT_X_C:
1135 case FMT_FT_X_X:
1136 case FMT_UT_C_C:
1137 case FMT_UT_C_X:
1138 case FMT_UT_X_C:
1139 case FMT_UT_X_X:
1140 SQUAWK (("array subscript format 0x%x not handled yet", format));
1141 break;
1142 default:
1143 SQUAWK (("unknown array subscript format %x", format));
1144 break;
1145 }
1146 return (typep);
1147 }
1148
1149 /*
1150
1151 LOCAL FUNCTION
1152
1153 read_array_type -- read TAG_array_type DIE
1154
1155 SYNOPSIS
1156
1157 static void read_array_type (struct dieinfo *dip)
1158
1159 DESCRIPTION
1160
1161 Extract all information from a TAG_array_type DIE and add to
1162 the user defined type vector.
1163 */
1164
1165 static void
1166 DEFUN(read_array_type, (dip), struct dieinfo *dip)
1167 {
1168 struct type *type;
1169 char *sub;
1170 char *subend;
1171 short temp;
1172
1173 if (dip -> at_ordering != ORD_row_major)
1174 {
1175 /* FIXME: Can gdb even handle column major arrays? */
1176 SQUAWK (("array not row major; not handled correctly"));
1177 }
1178 if ((sub = dip -> at_subscr_data) != NULL)
1179 {
1180 (void) memcpy (&temp, sub, sizeof (short));
1181 subend = sub + sizeof (short) + temp;
1182 sub += sizeof (short);
1183 type = decode_subscr_data (sub, subend);
1184 if (type == NULL)
1185 {
1186 type = alloc_utype (dip -> dieref, NULL);
1187 TYPE_CODE (type) = TYPE_CODE_ARRAY;
1188 TYPE_TARGET_TYPE (type) = builtin_type_int;
1189 TYPE_LENGTH (type) = 1 * TYPE_LENGTH (TYPE_TARGET_TYPE (type));
1190 }
1191 else
1192 {
1193 type = alloc_utype (dip -> dieref, type);
1194 }
1195 }
1196 }
1197
1198 /*
1199
1200 LOCAL FUNCTION
1201
1202 read_subroutine_type -- process TAG_subroutine_type dies
1203
1204 SYNOPSIS
1205
1206 static void read_subroutine_type (struct dieinfo *dip, char thisdie,
1207 char *enddie)
1208
1209 DESCRIPTION
1210
1211 Handle DIES due to C code like:
1212
1213 struct foo {
1214 int (*funcp)(int a, long l); (Generates TAG_subroutine_type DIE)
1215 int b;
1216 };
1217
1218 NOTES
1219
1220 The parameter DIES are currently ignored. See if gdb has a way to
1221 include this info in it's type system, and decode them if so. Is
1222 this what the type structure's "arg_types" field is for? (FIXME)
1223 */
1224
1225 static void
1226 DEFUN(read_subroutine_type, (dip, thisdie, enddie),
1227 struct dieinfo *dip AND
1228 char *thisdie AND
1229 char *enddie)
1230 {
1231 struct type *type;
1232
1233 type = decode_die_type (dip);
1234 type = lookup_function_type (type);
1235 type = alloc_utype (dip -> dieref, type);
1236 }
1237
1238 /*
1239
1240 LOCAL FUNCTION
1241
1242 read_enumeration -- process dies which define an enumeration
1243
1244 SYNOPSIS
1245
1246 static void read_enumeration (struct dieinfo *dip, char *thisdie,
1247 char *enddie)
1248
1249 DESCRIPTION
1250
1251 Given a pointer to a die which begins an enumeration, process all
1252 the dies that define the members of the enumeration.
1253
1254 NOTES
1255
1256 Note that we need to call enum_type regardless of whether or not we
1257 have a symbol, since we might have an enum without a tag name (thus
1258 no symbol for the tagname).
1259 */
1260
1261 static void
1262 DEFUN(read_enumeration, (dip, thisdie, enddie),
1263 struct dieinfo *dip AND
1264 char *thisdie AND
1265 char *enddie)
1266 {
1267 struct type *type;
1268 struct symbol *sym;
1269
1270 type = enum_type (dip);
1271 if ((sym = new_symbol (dip)) != NULL)
1272 {
1273 SYMBOL_TYPE (sym) = type;
1274 }
1275 }
1276
1277 /*
1278
1279 LOCAL FUNCTION
1280
1281 enum_type -- decode and return a type for an enumeration
1282
1283 SYNOPSIS
1284
1285 static type *enum_type (struct dieinfo *dip)
1286
1287 DESCRIPTION
1288
1289 Given a pointer to a die information structure for the die which
1290 starts an enumeration, process all the dies that define the members
1291 of the enumeration and return a type pointer for the enumeration.
1292 */
1293
1294 static struct type *
1295 DEFUN(enum_type, (dip), struct dieinfo *dip)
1296 {
1297 struct type *type;
1298 struct nextfield {
1299 struct nextfield *next;
1300 struct field field;
1301 };
1302 struct nextfield *list = NULL;
1303 struct nextfield *new;
1304 int nfields = 0;
1305 int n;
1306 char *tpart1;
1307 char *tpart2;
1308 char *tpart3;
1309 char *scan;
1310 char *listend;
1311 long temp;
1312
1313 if ((type = lookup_utype (dip -> dieref)) == NULL)
1314 {
1315 type = alloc_utype (dip -> dieref, NULL);
1316 }
1317 TYPE_CODE (type) = TYPE_CODE_ENUM;
1318 tpart1 = "enum ";
1319 if (dip -> at_name == NULL)
1320 {
1321 tpart2 = "{...}";
1322 } else {
1323 tpart2 = dip -> at_name;
1324 }
1325 if (dip -> at_byte_size == 0)
1326 {
1327 tpart3 = " <opaque>";
1328 }
1329 else
1330 {
1331 TYPE_LENGTH (type) = dip -> at_byte_size;
1332 tpart3 = "";
1333 }
1334 TYPE_NAME (type) = concat (tpart1, tpart2, tpart3);
1335 if ((scan = dip -> at_element_list) != NULL)
1336 {
1337 (void) memcpy (&temp, scan, sizeof (temp));
1338 listend = scan + temp + sizeof (temp);
1339 scan += sizeof (temp);
1340 while (scan < listend)
1341 {
1342 new = (struct nextfield *) alloca (sizeof (struct nextfield));
1343 new -> next = list;
1344 list = new;
1345 list -> field.type = NULL;
1346 list -> field.bitsize = 0;
1347 (void) memcpy (&list -> field.bitpos, scan, sizeof (long));
1348 scan += sizeof (long);
1349 list -> field.name = savestring (scan, strlen (scan));
1350 scan += strlen (scan) + 1;
1351 nfields++;
1352 }
1353 }
1354 /* Now create the vector of fields, and record how big it is. */
1355 TYPE_NFIELDS (type) = nfields;
1356 TYPE_FIELDS (type) = (struct field *)
1357 obstack_alloc (symbol_obstack, sizeof (struct field) * nfields);
1358 /* Copy the saved-up fields into the field vector. */
1359 for (n = nfields; list; list = list -> next)
1360 {
1361 TYPE_FIELD (type, --n) = list -> field;
1362 }
1363 return (type);
1364 }
1365
1366 /*
1367
1368 LOCAL FUNCTION
1369
1370 read_func_scope -- process all dies within a function scope
1371
1372 SYNOPSIS
1373
1374 static void read_func_scope (struct dieinfo dip, char *thisdie,
1375 char *enddie)
1376
1377 DESCRIPTION
1378
1379 Process all dies within a given function scope. We are passed
1380 a die information structure pointer DIP for the die which
1381 starts the function scope, and pointers into the raw die data
1382 that define the dies within the function scope.
1383
1384 For now, we ignore lexical block scopes within the function.
1385 The problem is that AT&T cc does not define a DWARF lexical
1386 block scope for the function itself, while gcc defines a
1387 lexical block scope for the function. We need to think about
1388 how to handle this difference, or if it is even a problem.
1389 (FIXME)
1390 */
1391
1392 static void
1393 DEFUN(read_func_scope, (dip, thisdie, enddie),
1394 struct dieinfo *dip AND
1395 char *thisdie AND
1396 char *enddie)
1397 {
1398 struct symbol *sym;
1399
1400 if (entry_point >= dip -> at_low_pc && entry_point < dip -> at_high_pc)
1401 {
1402 entry_scope_lowpc = dip -> at_low_pc;
1403 entry_scope_highpc = dip -> at_high_pc;
1404 }
1405 if (strcmp (dip -> at_name, "main") == 0) /* FIXME: hardwired name */
1406 {
1407 main_scope_lowpc = dip -> at_low_pc;
1408 main_scope_highpc = dip -> at_high_pc;
1409 }
1410 sym = new_symbol (dip);
1411 openscope (sym, dip -> at_low_pc, dip -> at_high_pc);
1412 process_dies (thisdie + dip -> dielength, enddie);
1413 closescope ();
1414 }
1415
1416 /*
1417
1418 LOCAL FUNCTION
1419
1420 read_file_scope -- process all dies within a file scope
1421
1422 SYNOPSIS
1423
1424 static void read_file_scope (struct dieinfo *dip, char *thisdie
1425 char *enddie)
1426
1427 DESCRIPTION
1428
1429 Process all dies within a given file scope. We are passed a
1430 pointer to the die information structure for the die which
1431 starts the file scope, and pointers into the raw die data which
1432 mark the range of dies within the file scope.
1433
1434 When the partial symbol table is built, the file offset for the line
1435 number table for each compilation unit is saved in the partial symbol
1436 table entry for that compilation unit. As the symbols for each
1437 compilation unit are read, the line number table is read into memory
1438 and the variable lnbase is set to point to it. Thus all we have to
1439 do is use lnbase to access the line number table for the current
1440 compilation unit.
1441 */
1442
1443 static void
1444 DEFUN(read_file_scope, (dip, thisdie, enddie),
1445 struct dieinfo *dip AND
1446 char *thisdie AND
1447 char *enddie)
1448 {
1449 struct cleanup *back_to;
1450
1451 if (entry_point >= dip -> at_low_pc && entry_point < dip -> at_high_pc)
1452 {
1453 startup_file_start = dip -> at_low_pc;
1454 startup_file_end = dip -> at_high_pc;
1455 }
1456 numutypes = (enddie - thisdie) / 4;
1457 utypes = (struct type **) xmalloc (numutypes * sizeof (struct type *));
1458 back_to = make_cleanup (free, utypes);
1459 (void) memset (utypes, 0, numutypes * sizeof (struct type *));
1460 start_symtab ();
1461 openscope (NULL, dip -> at_low_pc, dip -> at_high_pc);
1462 decode_line_numbers (lnbase);
1463 process_dies (thisdie + dip -> dielength, enddie);
1464 closescope ();
1465 end_symtab (dip -> at_name, dip -> at_language);
1466 do_cleanups (back_to);
1467 utypes = NULL;
1468 numutypes = 0;
1469 }
1470
1471 /*
1472
1473 LOCAL FUNCTION
1474
1475 start_symtab -- do initialization for starting new symbol table
1476
1477 SYNOPSIS
1478
1479 static void start_symtab (void)
1480
1481 DESCRIPTION
1482
1483 Called whenever we are starting to process dies for a new
1484 compilation unit, to perform initializations. Right now
1485 the only thing we really have to do is initialize storage
1486 space for the line number vector.
1487
1488 */
1489
1490 static void
1491 DEFUN_VOID (start_symtab)
1492 {
1493 int nbytes;
1494
1495 line_vector_index = 0;
1496 line_vector_length = 1000;
1497 nbytes = sizeof (struct linetable);
1498 nbytes += line_vector_length * sizeof (struct linetable_entry);
1499 line_vector = (struct linetable *) xmalloc (nbytes);
1500 }
1501
1502 /*
1503
1504 LOCAL FUNCTION
1505
1506 process_dies -- process a range of DWARF Information Entries
1507
1508 SYNOPSIS
1509
1510 static void process_dies (char *thisdie, char *enddie)
1511
1512 DESCRIPTION
1513
1514 Process all DIE's in a specified range. May be (and almost
1515 certainly will be) called recursively.
1516 */
1517
1518 static void
1519 DEFUN(process_dies, (thisdie, enddie), char *thisdie AND char *enddie)
1520 {
1521 char *nextdie;
1522 struct dieinfo di;
1523
1524 while (thisdie < enddie)
1525 {
1526 basicdieinfo (&di, thisdie);
1527 if (di.dielength < sizeof (long))
1528 {
1529 break;
1530 }
1531 else if (di.dietag == TAG_padding)
1532 {
1533 nextdie = thisdie + di.dielength;
1534 }
1535 else
1536 {
1537 completedieinfo (&di);
1538 if (di.at_sibling != 0)
1539 {
1540 nextdie = dbbase + di.at_sibling - dbroff;
1541 }
1542 else
1543 {
1544 nextdie = thisdie + di.dielength;
1545 }
1546 switch (di.dietag)
1547 {
1548 case TAG_compile_unit:
1549 read_file_scope (&di, thisdie, nextdie);
1550 break;
1551 case TAG_global_subroutine:
1552 case TAG_subroutine:
1553 if (!di.at_is_external_p)
1554 {
1555 read_func_scope (&di, thisdie, nextdie);
1556 }
1557 break;
1558 case TAG_lexical_block:
1559 read_lexical_block_scope (&di, thisdie, nextdie);
1560 break;
1561 case TAG_structure_type:
1562 case TAG_union_type:
1563 read_structure_scope (&di, thisdie, nextdie);
1564 break;
1565 case TAG_enumeration_type:
1566 read_enumeration (&di, thisdie, nextdie);
1567 break;
1568 case TAG_subroutine_type:
1569 read_subroutine_type (&di, thisdie, nextdie);
1570 break;
1571 case TAG_array_type:
1572 read_array_type (&di);
1573 break;
1574 default:
1575 (void) new_symbol (&di);
1576 break;
1577 }
1578 }
1579 thisdie = nextdie;
1580 }
1581 }
1582
1583 /*
1584
1585 LOCAL FUNCTION
1586
1587 end_symtab -- finish processing for a compilation unit
1588
1589 SYNOPSIS
1590
1591 static void end_symtab (char *filename, long language)
1592
1593 DESCRIPTION
1594
1595 Complete the symbol table entry for the current compilation
1596 unit. Make the struct symtab and put it on the list of all
1597 such symtabs.
1598
1599 */
1600
1601 static void
1602 DEFUN(end_symtab, (filename, language), char *filename AND long language)
1603 {
1604 struct symtab *symtab;
1605 struct blockvector *blockvector;
1606 int nbytes;
1607
1608 /* Ignore a file that has no functions with real debugging info. */
1609 if (global_symbols == NULL && scopetree -> block == NULL)
1610 {
1611 free (line_vector);
1612 line_vector = NULL;
1613 line_vector_length = -1;
1614 freescope (scopetree);
1615 scope = scopetree = NULL;
1616 }
1617
1618 /* Create the blockvector that points to all the file's blocks. */
1619
1620 blockvector = make_blockvector ();
1621
1622 /* Now create the symtab object for this source file. */
1623
1624 symtab = (struct symtab *) xmalloc (sizeof (struct symtab));
1625 (void) memset (symtab, 0, sizeof (struct symtab));
1626
1627 symtab -> free_ptr = 0;
1628
1629 /* Fill in its components. */
1630 symtab -> blockvector = blockvector;
1631 symtab -> free_code = free_linetable;
1632 symtab -> filename = savestring (filename, strlen (filename));
1633
1634 /* Save the line number information. */
1635
1636 line_vector -> nitems = line_vector_index;
1637 nbytes = sizeof (struct linetable);
1638 if (line_vector_index > 1)
1639 {
1640 nbytes += (line_vector_index - 1) * sizeof (struct linetable_entry);
1641 }
1642 symtab -> linetable = (struct linetable *) xrealloc (line_vector, nbytes);
1643 symtab -> nlines = 0;
1644 symtab -> line_charpos = 0;
1645
1646 /* FIXME: The following may need to be expanded for other languages */
1647 if (language == LANG_C89 || language == LANG_C)
1648 {
1649 symtab -> language = language_c;
1650 }
1651
1652 /* Link the new symtab into the list of such. */
1653 symtab -> next = symtab_list;
1654 symtab_list = symtab;
1655
1656 /* Recursively free the scope tree */
1657 freescope (scopetree);
1658 scope = scopetree = NULL;
1659
1660 /* Reinitialize for beginning of new file. */
1661 line_vector = 0;
1662 line_vector_length = -1;
1663 }
1664
1665 /*
1666
1667 LOCAL FUNCTION
1668
1669 scopecount -- count the number of enclosed scopes
1670
1671 SYNOPSIS
1672
1673 static int scopecount (struct scopenode *node)
1674
1675 DESCRIPTION
1676
1677 Given pointer to a node, compute the size of the subtree which is
1678 rooted in this node, which also happens to be the number of scopes
1679 to the subtree.
1680 */
1681
1682 static int
1683 DEFUN(scopecount, (node), struct scopenode *node)
1684 {
1685 int count = 0;
1686
1687 if (node != NULL)
1688 {
1689 count += scopecount (node -> child);
1690 count += scopecount (node -> sibling);
1691 count++;
1692 }
1693 return (count);
1694 }
1695
1696 /*
1697
1698 LOCAL FUNCTION
1699
1700 openscope -- start a new lexical block scope
1701
1702 SYNOPSIS
1703
1704 static void openscope (struct symbol *namesym, CORE_ADDR lowpc,
1705 CORE_ADDR highpc)
1706
1707 DESCRIPTION
1708
1709 Start a new scope by allocating a new scopenode, adding it as the
1710 next child of the current scope (if any) or as the root of the
1711 scope tree, and then making the new node the current scope node.
1712 */
1713
1714 static void
1715 DEFUN(openscope, (namesym, lowpc, highpc),
1716 struct symbol *namesym AND
1717 CORE_ADDR lowpc AND
1718 CORE_ADDR highpc)
1719 {
1720 struct scopenode *new;
1721 struct scopenode *child;
1722
1723 new = (struct scopenode *) xmalloc (sizeof (*new));
1724 (void) memset (new, 0, sizeof (*new));
1725 new -> namesym = namesym;
1726 new -> lowpc = lowpc;
1727 new -> highpc = highpc;
1728 if (scope == NULL)
1729 {
1730 scopetree = new;
1731 }
1732 else if ((child = scope -> child) == NULL)
1733 {
1734 scope -> child = new;
1735 new -> parent = scope;
1736 }
1737 else
1738 {
1739 while (child -> sibling != NULL)
1740 {
1741 child = child -> sibling;
1742 }
1743 child -> sibling = new;
1744 new -> parent = scope;
1745 }
1746 scope = new;
1747 }
1748
1749 /*
1750
1751 LOCAL FUNCTION
1752
1753 freescope -- free a scope tree rooted at the given node
1754
1755 SYNOPSIS
1756
1757 static void freescope (struct scopenode *node)
1758
1759 DESCRIPTION
1760
1761 Given a pointer to a node in the scope tree, free the subtree
1762 rooted at that node. First free all the children and sibling
1763 nodes, and then the node itself. Used primarily for cleaning
1764 up after ourselves and returning memory to the system.
1765 */
1766
1767 static void
1768 DEFUN(freescope, (node), struct scopenode *node)
1769 {
1770 if (node != NULL)
1771 {
1772 freescope (node -> child);
1773 freescope (node -> sibling);
1774 free (node);
1775 }
1776 }
1777
1778 /*
1779
1780 LOCAL FUNCTION
1781
1782 buildblock -- build a new block from pending symbols list
1783
1784 SYNOPSIS
1785
1786 static struct block *buildblock (struct pending_symbol *syms)
1787
1788 DESCRIPTION
1789
1790 Given a pointer to a list of symbols, build a new block and free
1791 the symbol list structure. Also check each symbol to see if it
1792 is the special symbol that flags that this block was compiled by
1793 gcc, and if so, mark the block appropriately.
1794 */
1795
1796 static struct block *
1797 DEFUN(buildblock, (syms), struct pending_symbol *syms)
1798 {
1799 struct pending_symbol *next, *next1;
1800 int i;
1801 struct block *newblock;
1802 int nbytes;
1803
1804 for (next = syms, i = 0 ; next ; next = next -> next, i++) {;}
1805
1806 /* Allocate a new block */
1807
1808 nbytes = sizeof (struct block);
1809 if (i > 1)
1810 {
1811 nbytes += (i - 1) * sizeof (struct symbol *);
1812 }
1813 newblock = (struct block *) obstack_alloc (symbol_obstack, nbytes);
1814 (void) memset (newblock, 0, nbytes);
1815
1816 /* Copy the symbols into the block. */
1817
1818 BLOCK_NSYMS (newblock) = i;
1819 for (next = syms ; next ; next = next -> next)
1820 {
1821 BLOCK_SYM (newblock, --i) = next -> symbol;
1822 if (STREQ (GCC_COMPILED_FLAG_SYMBOL, SYMBOL_NAME (next -> symbol)) ||
1823 STREQ (GCC2_COMPILED_FLAG_SYMBOL, SYMBOL_NAME (next -> symbol)))
1824 {
1825 BLOCK_GCC_COMPILED (newblock) = 1;
1826 }
1827 }
1828
1829 /* Now free the links of the list, and empty the list. */
1830
1831 for (next = syms ; next ; next = next1)
1832 {
1833 next1 = next -> next;
1834 free (next);
1835 }
1836
1837 return (newblock);
1838 }
1839
1840 /*
1841
1842 LOCAL FUNCTION
1843
1844 closescope -- close a lexical block scope
1845
1846 SYNOPSIS
1847
1848 static void closescope (void)
1849
1850 DESCRIPTION
1851
1852 Close the current lexical block scope. Closing the current scope
1853 is as simple as moving the current scope pointer up to the parent
1854 of the current scope pointer. But we also take this opportunity
1855 to build the block for the current scope first, since we now have
1856 all of it's symbols.
1857 */
1858
1859 static void
1860 DEFUN_VOID(closescope)
1861 {
1862 struct scopenode *child;
1863
1864 if (scope == NULL)
1865 {
1866 error ("DWARF parse error, too many close scopes");
1867 }
1868 else
1869 {
1870 if (scope -> parent == NULL)
1871 {
1872 global_symbol_block = buildblock (global_symbols);
1873 global_symbols = NULL;
1874 BLOCK_START (global_symbol_block) = scope -> lowpc + baseaddr;
1875 BLOCK_END (global_symbol_block) = scope -> highpc + baseaddr;
1876 }
1877 scope -> block = buildblock (scope -> symbols);
1878 scope -> symbols = NULL;
1879 BLOCK_START (scope -> block) = scope -> lowpc + baseaddr;
1880 BLOCK_END (scope -> block) = scope -> highpc + baseaddr;
1881
1882 /* Put the local block in as the value of the symbol that names it. */
1883
1884 if (scope -> namesym)
1885 {
1886 SYMBOL_BLOCK_VALUE (scope -> namesym) = scope -> block;
1887 BLOCK_FUNCTION (scope -> block) = scope -> namesym;
1888 }
1889
1890 /* Install this scope's local block as the superblock of all child
1891 scope blocks. */
1892
1893 for (child = scope -> child ; child ; child = child -> sibling)
1894 {
1895 BLOCK_SUPERBLOCK (child -> block) = scope -> block;
1896 }
1897
1898 scope = scope -> parent;
1899 }
1900 }
1901
1902 /*
1903
1904 LOCAL FUNCTION
1905
1906 record_line -- record a line number entry in the line vector
1907
1908 SYNOPSIS
1909
1910 static void record_line (int line, CORE_ADDR pc)
1911
1912 DESCRIPTION
1913
1914 Given a line number and the corresponding pc value, record
1915 this pair in the line number vector, expanding the vector as
1916 necessary.
1917 */
1918
1919 static void
1920 DEFUN(record_line, (line, pc), int line AND CORE_ADDR pc)
1921 {
1922 struct linetable_entry *e;
1923 int nbytes;
1924
1925 /* Make sure line vector is big enough. */
1926
1927 if (line_vector_index + 2 >= line_vector_length)
1928 {
1929 line_vector_length *= 2;
1930 nbytes = sizeof (struct linetable);
1931 nbytes += (line_vector_length * sizeof (struct linetable_entry));
1932 line_vector = (struct linetable *) xrealloc (line_vector, nbytes);
1933 }
1934 e = line_vector -> item + line_vector_index++;
1935 e -> line = line;
1936 e -> pc = pc;
1937 }
1938
1939 /*
1940
1941 LOCAL FUNCTION
1942
1943 decode_line_numbers -- decode a line number table fragment
1944
1945 SYNOPSIS
1946
1947 static void decode_line_numbers (char *tblscan, char *tblend,
1948 long length, long base, long line, long pc)
1949
1950 DESCRIPTION
1951
1952 Translate the DWARF line number information to gdb form.
1953
1954 The ".line" section contains one or more line number tables, one for
1955 each ".line" section from the objects that were linked.
1956
1957 The AT_stmt_list attribute for each TAG_source_file entry in the
1958 ".debug" section contains the offset into the ".line" section for the
1959 start of the table for that file.
1960
1961 The table itself has the following structure:
1962
1963 <table length><base address><source statement entry>
1964 4 bytes 4 bytes 10 bytes
1965
1966 The table length is the total size of the table, including the 4 bytes
1967 for the length information.
1968
1969 The base address is the address of the first instruction generated
1970 for the source file.
1971
1972 Each source statement entry has the following structure:
1973
1974 <line number><statement position><address delta>
1975 4 bytes 2 bytes 4 bytes
1976
1977 The line number is relative to the start of the file, starting with
1978 line 1.
1979
1980 The statement position either -1 (0xFFFF) or the number of characters
1981 from the beginning of the line to the beginning of the statement.
1982
1983 The address delta is the difference between the base address and
1984 the address of the first instruction for the statement.
1985
1986 Note that we must copy the bytes from the packed table to our local
1987 variables before attempting to use them, to avoid alignment problems
1988 on some machines, particularly RISC processors.
1989
1990 BUGS
1991
1992 Does gdb expect the line numbers to be sorted? They are now by
1993 chance/luck, but are not required to be. (FIXME)
1994
1995 The line with number 0 is unused, gdb apparently can discover the
1996 span of the last line some other way. How? (FIXME)
1997 */
1998
1999 static void
2000 DEFUN(decode_line_numbers, (linetable), char *linetable)
2001 {
2002 char *tblscan;
2003 char *tblend;
2004 long length;
2005 long base;
2006 long line;
2007 long pc;
2008
2009 if (linetable != NULL)
2010 {
2011 tblscan = tblend = linetable;
2012 (void) memcpy (&length, tblscan, sizeof (long));
2013 tblscan += sizeof (long);
2014 tblend += length;
2015 (void) memcpy (&base, tblscan, sizeof (long));
2016 base += baseaddr;
2017 tblscan += sizeof (long);
2018 while (tblscan < tblend)
2019 {
2020 (void) memcpy (&line, tblscan, sizeof (long));
2021 tblscan += sizeof (long) + sizeof (short);
2022 (void) memcpy (&pc, tblscan, sizeof (long));
2023 tblscan += sizeof (long);
2024 pc += base;
2025 if (line > 0)
2026 {
2027 record_line (line, pc);
2028 }
2029 }
2030 }
2031 }
2032
2033 /*
2034
2035 LOCAL FUNCTION
2036
2037 add_symbol_to_list -- add a symbol to head of current symbol list
2038
2039 SYNOPSIS
2040
2041 static void add_symbol_to_list (struct symbol *symbol, struct
2042 pending_symbol **listhead)
2043
2044 DESCRIPTION
2045
2046 Given a pointer to a symbol and a pointer to a pointer to a
2047 list of symbols, add this symbol as the current head of the
2048 list. Typically used for example to add a symbol to the
2049 symbol list for the current scope.
2050
2051 */
2052
2053 static void
2054 DEFUN(add_symbol_to_list, (symbol, listhead),
2055 struct symbol *symbol AND struct pending_symbol **listhead)
2056 {
2057 struct pending_symbol *link;
2058
2059 if (symbol != NULL)
2060 {
2061 link = (struct pending_symbol *) xmalloc (sizeof (*link));
2062 link -> next = *listhead;
2063 link -> symbol = symbol;
2064 *listhead = link;
2065 }
2066 }
2067
2068 /*
2069
2070 LOCAL FUNCTION
2071
2072 gatherblocks -- walk a scope tree and build block vectors
2073
2074 SYNOPSIS
2075
2076 static struct block **gatherblocks (struct block **dest,
2077 struct scopenode *node)
2078
2079 DESCRIPTION
2080
2081 Recursively walk a scope tree rooted in the given node, adding blocks
2082 to the array pointed to by DEST, in preorder. I.E., first we add the
2083 block for the current scope, then all the blocks for child scopes,
2084 and finally all the blocks for sibling scopes.
2085 */
2086
2087 static struct block **
2088 DEFUN(gatherblocks, (dest, node),
2089 struct block **dest AND struct scopenode *node)
2090 {
2091 if (node != NULL)
2092 {
2093 *dest++ = node -> block;
2094 dest = gatherblocks (dest, node -> child);
2095 dest = gatherblocks (dest, node -> sibling);
2096 }
2097 return (dest);
2098 }
2099
2100 /*
2101
2102 LOCAL FUNCTION
2103
2104 make_blockvector -- make a block vector from current scope tree
2105
2106 SYNOPSIS
2107
2108 static struct blockvector *make_blockvector (void)
2109
2110 DESCRIPTION
2111
2112 Make a blockvector from all the blocks in the current scope tree.
2113 The first block is always the global symbol block, followed by the
2114 block for the root of the scope tree which is the local symbol block,
2115 followed by all the remaining blocks in the scope tree, which are all
2116 local scope blocks.
2117
2118 NOTES
2119
2120 Note that since the root node of the scope tree is created at the time
2121 each file scope is entered, there are always at least two blocks,
2122 neither of which may have any symbols, but always contribute a block
2123 to the block vector. So the test for number of blocks greater than 1
2124 below is unnecessary given bug free code.
2125
2126 The resulting block structure varies slightly from that produced
2127 by dbxread.c, in that block 0 and block 1 are sibling blocks while
2128 with dbxread.c, block 1 is a child of block 0. This does not
2129 seem to cause any problems, but probably should be fixed. (FIXME)
2130 */
2131
2132 static struct blockvector *
2133 DEFUN_VOID(make_blockvector)
2134 {
2135 struct blockvector *blockvector = NULL;
2136 int i;
2137 int nbytes;
2138
2139 /* Recursively walk down the tree, counting the number of blocks.
2140 Then add one to account for the global's symbol block */
2141
2142 i = scopecount (scopetree) + 1;
2143 nbytes = sizeof (struct blockvector);
2144 if (i > 1)
2145 {
2146 nbytes += (i - 1) * sizeof (struct block *);
2147 }
2148 blockvector = (struct blockvector *)
2149 obstack_alloc (symbol_obstack, nbytes);
2150
2151 /* Copy the blocks into the blockvector. */
2152
2153 BLOCKVECTOR_NBLOCKS (blockvector) = i;
2154 BLOCKVECTOR_BLOCK (blockvector, 0) = global_symbol_block;
2155 gatherblocks (&BLOCKVECTOR_BLOCK (blockvector, 1), scopetree);
2156
2157 return (blockvector);
2158 }
2159
2160 /*
2161
2162 LOCAL FUNCTION
2163
2164 locval -- compute the value of a location attribute
2165
2166 SYNOPSIS
2167
2168 static int locval (char *loc)
2169
2170 DESCRIPTION
2171
2172 Given pointer to a string of bytes that define a location, compute
2173 the location and return the value.
2174
2175 When computing values involving the current value of the frame pointer,
2176 the value zero is used, which results in a value relative to the frame
2177 pointer, rather than the absolute value. This is what GDB wants
2178 anyway.
2179
2180 When the result is a register number, the global isreg flag is set,
2181 otherwise it is cleared. This is a kludge until we figure out a better
2182 way to handle the problem. Gdb's design does not mesh well with the
2183 DWARF notion of a location computing interpreter, which is a shame
2184 because the flexibility goes unused.
2185
2186 NOTES
2187
2188 Note that stack[0] is unused except as a default error return.
2189 Note that stack overflow is not yet handled.
2190 */
2191
2192 static int
2193 DEFUN(locval, (loc), char *loc)
2194 {
2195 unsigned short nbytes;
2196 auto int stack[64];
2197 int stacki;
2198 char *end;
2199 long regno;
2200
2201 (void) memcpy (&nbytes, loc, sizeof (short));
2202 end = loc + sizeof (short) + nbytes;
2203 stacki = 0;
2204 stack[stacki] = 0;
2205 isreg = 0;
2206 for (loc += sizeof (short); loc < end; loc += sizeof (long))
2207 {
2208 switch (*loc++) {
2209 case 0:
2210 /* error */
2211 loc = end;
2212 break;
2213 case OP_REG:
2214 /* push register (number) */
2215 (void) memcpy (&stack[++stacki], loc, sizeof (long));
2216 isreg = 1;
2217 break;
2218 case OP_BASEREG:
2219 /* push value of register (number) */
2220 /* Actually, we compute the value as if register has 0 */
2221 (void) memcpy (&regno, loc, sizeof (long));
2222 if (regno == R_FP)
2223 {
2224 stack[++stacki] = 0;
2225 }
2226 else
2227 {
2228 stack[++stacki] = 0;
2229 SQUAWK (("BASEREG %d not handled!", regno));
2230 }
2231 break;
2232 case OP_ADDR:
2233 /* push address (relocated address) */
2234 (void) memcpy (&stack[++stacki], loc, sizeof (long));
2235 break;
2236 case OP_CONST:
2237 /* push constant (number) */
2238 (void) memcpy (&stack[++stacki], loc, sizeof (long));
2239 break;
2240 case OP_DEREF2:
2241 /* pop, deref and push 2 bytes (as a long) */
2242 SQUAWK (("OP_DEREF2 address %#x not handled", stack[stacki]));
2243 break;
2244 case OP_DEREF4: /* pop, deref and push 4 bytes (as a long) */
2245 SQUAWK (("OP_DEREF4 address %#x not handled", stack[stacki]));
2246 break;
2247 case OP_ADD: /* pop top 2 items, add, push result */
2248 stack[stacki - 1] += stack[stacki];
2249 stacki--;
2250 break;
2251 }
2252 }
2253 return (stack[stacki]);
2254 }
2255
2256 /*
2257
2258 LOCAL FUNCTION
2259
2260 read_ofile_symtab -- build a full symtab entry from chunk of DIE's
2261
2262 SYNOPSIS
2263
2264 static struct symtab *read_ofile_symtab (struct partial_symtab *pst,
2265 int desc)
2266
2267 DESCRIPTION
2268
2269 DESC is the file descriptor for the file, positioned at the
2270 beginning of the symtab
2271 SYM_SIZE is the size of the symbol section to read
2272 TEXT_OFFSET is the beginning of the text segment we are reading
2273 symbols for
2274 TEXT_SIZE is the size of the text segment read in.
2275 OFFSET is a relocation offset which gets added to each symbol
2276
2277 */
2278
2279 static struct symtab *
2280 DEFUN(read_ofile_symtab, (pst, desc),
2281 struct partial_symtab *pst AND
2282 int desc)
2283 {
2284 struct cleanup *back_to;
2285 long lnsize;
2286 int foffset;
2287
2288 /* Allocate a buffer for the entire chunk of DIE's for this compilation
2289 unit, seek to the location in the file, and read in all the DIE's. */
2290
2291 diecount = 0;
2292 dbbase = xmalloc (DBLENGTH(pst));
2293 dbroff = DBROFF(pst);
2294 foffset = DBFOFF(pst) + dbroff;
2295 if ((lseek (desc, foffset, 0) != foffset) ||
2296 (read (desc, dbbase, DBLENGTH(pst)) != DBLENGTH(pst)))
2297 {
2298 free (dbbase);
2299 error ("can't read DWARF data");
2300 }
2301 back_to = make_cleanup (free, dbbase);
2302
2303 /* If there is a line number table associated with this compilation unit
2304 then read the first long word from the line number table fragment, which
2305 contains the size of the fragment in bytes (including the long word
2306 itself). Allocate a buffer for the fragment and read it in for future
2307 processing. */
2308
2309 lnbase = NULL;
2310 if (LNFOFF (pst))
2311 {
2312 if ((lseek (desc, LNFOFF (pst), 0) != LNFOFF (pst)) ||
2313 (read (desc, &lnsize, sizeof(long)) != sizeof(long)))
2314 {
2315 error ("can't read DWARF line number table size");
2316 }
2317 lnbase = xmalloc (lnsize);
2318 if ((lseek (desc, LNFOFF (pst), 0) != LNFOFF (pst)) ||
2319 (read (desc, lnbase, lnsize) != lnsize))
2320 {
2321 free (lnbase);
2322 error ("can't read DWARF line numbers");
2323 }
2324 make_cleanup (free, lnbase);
2325 }
2326
2327 process_dies (dbbase, dbbase + DBLENGTH(pst));
2328 do_cleanups (back_to);
2329 return (symtab_list);
2330 }
2331
2332 /*
2333
2334 LOCAL FUNCTION
2335
2336 psymtab_to_symtab_1 -- do grunt work for building a full symtab entry
2337
2338 SYNOPSIS
2339
2340 static void psymtab_to_symtab_1 (struct partial_symtab *pst, int desc)
2341
2342 DESCRIPTION
2343
2344 Called once for each partial symbol table entry that needs to be
2345 expanded into a full symbol table entry.
2346
2347 */
2348
2349 static void
2350 DEFUN(psymtab_to_symtab_1,
2351 (pst, desc),
2352 struct partial_symtab *pst AND
2353 int desc)
2354 {
2355 int i;
2356
2357 if (!pst)
2358 {
2359 return;
2360 }
2361 if (pst->readin)
2362 {
2363 fprintf (stderr, "Psymtab for %s already read in. Shouldn't happen.\n",
2364 pst -> filename);
2365 return;
2366 }
2367
2368 /* Read in all partial symtabs on which this one is dependent */
2369 for (i = 0; i < pst -> number_of_dependencies; i++)
2370 if (!pst -> dependencies[i] -> readin)
2371 {
2372 /* Inform about additional files that need to be read in. */
2373 if (info_verbose)
2374 {
2375 fputs_filtered (" ", stdout);
2376 wrap_here ("");
2377 fputs_filtered ("and ", stdout);
2378 wrap_here ("");
2379 printf_filtered ("%s...", pst -> dependencies[i] -> filename);
2380 wrap_here (""); /* Flush output */
2381 fflush (stdout);
2382 }
2383 psymtab_to_symtab_1 (pst -> dependencies[i], desc);
2384 }
2385
2386 if (DBLENGTH(pst)) /* Otherwise it's a dummy */
2387 {
2388 /* Init stuff necessary for reading in symbols */
2389 pst -> symtab = read_ofile_symtab (pst, desc);
2390 if (info_verbose)
2391 {
2392 printf_filtered ("%d DIE's, sorting...", diecount);
2393 fflush (stdout);
2394 }
2395 sort_symtab_syms (pst -> symtab);
2396 }
2397 pst -> readin = 1;
2398 }
2399
2400 /*
2401
2402 LOCAL FUNCTION
2403
2404 dwarf_psymtab_to_symtab -- build a full symtab entry from partial one
2405
2406 SYNOPSIS
2407
2408 static void dwarf_psymtab_to_symtab (struct partial_symtab *pst)
2409
2410 DESCRIPTION
2411
2412 This is the DWARF support entry point for building a full symbol
2413 table entry from a partial symbol table entry. We are passed a
2414 pointer to the partial symbol table entry that needs to be expanded.
2415
2416 */
2417
2418 static void
2419 DEFUN(dwarf_psymtab_to_symtab, (pst), struct partial_symtab *pst)
2420 {
2421 int desc;
2422 struct cleanup *old_chain;
2423 bfd *sym_bfd;
2424
2425 if (!pst)
2426 {
2427 return;
2428 }
2429 if (pst -> readin)
2430 {
2431 fprintf (stderr, "Psymtab for %s already read in. Shouldn't happen.\n",
2432 pst -> filename);
2433 return;
2434 }
2435
2436 if (DBLENGTH(pst) || pst -> number_of_dependencies)
2437 {
2438 /* Print the message now, before starting serious work, to avoid
2439 disconcerting pauses. */
2440 if (info_verbose)
2441 {
2442 printf_filtered ("Reading in symbols for %s...", pst -> filename);
2443 fflush (stdout);
2444 }
2445
2446 /* Open symbol file. Symbol_file_command guarantees that the symbol
2447 file name will be absolute, so there is no need for openp. */
2448 desc = open (pst -> symfile_name, O_RDONLY, 0);
2449
2450 if (desc < 0)
2451 {
2452 perror_with_name (pst -> symfile_name);
2453 }
2454
2455 sym_bfd = bfd_fdopenr (pst -> symfile_name, NULL, desc);
2456 if (!sym_bfd)
2457 {
2458 (void) close (desc);
2459 error ("Could not open `%s' to read symbols: %s",
2460 pst -> symfile_name, bfd_errmsg (bfd_error));
2461 }
2462 old_chain = make_cleanup (bfd_close, sym_bfd);
2463 if (!bfd_check_format (sym_bfd, bfd_object))
2464 {
2465 error ("\"%s\": can't read symbols: %s.",
2466 pst -> symfile_name, bfd_errmsg (bfd_error));
2467 }
2468
2469 psymtab_to_symtab_1 (pst, desc);
2470
2471 #if 0 /* FIXME: Check to see what dbxread is doing here and see if
2472 we need to do an equivalent or is this something peculiar to
2473 stabs/a.out format. */
2474 /* Match with global symbols. This only needs to be done once,
2475 after all of the symtabs and dependencies have been read in. */
2476 scan_file_globals ();
2477 #endif
2478
2479 do_cleanups (old_chain);
2480
2481 /* Finish up the debug error message. */
2482 if (info_verbose)
2483 {
2484 printf_filtered ("done.\n");
2485 }
2486 }
2487 }
2488
2489 /*
2490
2491 LOCAL FUNCTION
2492
2493 init_psymbol_list -- initialize storage for partial symbols
2494
2495 SYNOPSIS
2496
2497 static void init_psymbol_list (int total_symbols)
2498
2499 DESCRIPTION
2500
2501 Initializes storage for all of the partial symbols that will be
2502 created by dwarf_build_psymtabs and subsidiaries.
2503 */
2504
2505 static void
2506 DEFUN(init_psymbol_list, (total_symbols), int total_symbols)
2507 {
2508 /* Free any previously allocated psymbol lists. */
2509
2510 if (global_psymbols.list)
2511 {
2512 free (global_psymbols.list);
2513 }
2514 if (static_psymbols.list)
2515 {
2516 free (static_psymbols.list);
2517 }
2518
2519 /* Current best guess is that there are approximately a twentieth
2520 of the total symbols (in a debugging file) are global or static
2521 oriented symbols */
2522
2523 global_psymbols.size = total_symbols / 10;
2524 static_psymbols.size = total_symbols / 10;
2525 global_psymbols.next = global_psymbols.list = (struct partial_symbol *)
2526 xmalloc (global_psymbols.size * sizeof (struct partial_symbol));
2527 static_psymbols.next = static_psymbols.list = (struct partial_symbol *)
2528 xmalloc (static_psymbols.size * sizeof (struct partial_symbol));
2529 }
2530
2531 /*
2532
2533 LOCAL FUNCTION
2534
2535 start_psymtab -- allocate and partially fill a partial symtab entry
2536
2537 DESCRIPTION
2538
2539 Allocate and partially fill a partial symtab. It will be completely
2540 filled at the end of the symbol list.
2541
2542 SYMFILE_NAME is the name of the symbol-file we are reading from, and
2543 ADDR is the address relative to which its symbols are (incremental)
2544 or 0 (normal). FILENAME is the name of the compilation unit that
2545 these symbols were defined in, and they appear starting a address
2546 TEXTLOW. DBROFF is the absolute file offset in SYMFILE_NAME where
2547 the full symbols can be read for compilation unit FILENAME.
2548 GLOBAL_SYMS and STATIC_SYMS are pointers to the current end of the
2549 psymtab vector.
2550
2551 */
2552
2553 static struct partial_symtab *
2554 DEFUN(start_psymtab,
2555 (symfile_name, addr, filename, textlow, texthigh, dbfoff, curoff,
2556 culength, lnfoff, global_syms, static_syms),
2557 char *symfile_name AND
2558 CORE_ADDR addr AND
2559 char *filename AND
2560 CORE_ADDR textlow AND
2561 CORE_ADDR texthigh AND
2562 int dbfoff AND
2563 int curoff AND
2564 int culength AND
2565 int lnfoff AND
2566 struct partial_symbol *global_syms AND
2567 struct partial_symbol *static_syms)
2568 {
2569 struct partial_symtab *result;
2570
2571 result = (struct partial_symtab *)
2572 obstack_alloc (psymbol_obstack, sizeof (struct partial_symtab));
2573 (void) memset (result, 0, sizeof (struct partial_symtab));
2574 result -> addr = addr;
2575 result -> symfile_name = create_name (symfile_name, psymbol_obstack);
2576 result -> filename = create_name (filename, psymbol_obstack);
2577 result -> textlow = textlow;
2578 result -> texthigh = texthigh;
2579 result -> read_symtab_private = (char *) obstack_alloc (psymbol_obstack,
2580 sizeof (struct dwfinfo));
2581 DBFOFF (result) = dbfoff;
2582 DBROFF (result) = curoff;
2583 DBLENGTH (result) = culength;
2584 LNFOFF (result) = lnfoff;
2585 result -> readin = 0;
2586 result -> symtab = NULL;
2587 result -> read_symtab = dwarf_psymtab_to_symtab;
2588 result -> globals_offset = global_syms - global_psymbols.list;
2589 result -> statics_offset = static_syms - static_psymbols.list;
2590
2591 result->n_global_syms = 0;
2592 result->n_static_syms = 0;
2593
2594 return result;
2595 }
2596
2597 /*
2598
2599 LOCAL FUNCTION
2600
2601 add_psymbol_to_list -- add a partial symbol to given list
2602
2603 DESCRIPTION
2604
2605 Add a partial symbol to one of the partial symbol vectors (pointed to
2606 by listp). The vector is grown as necessary.
2607
2608 */
2609
2610 static void
2611 DEFUN(add_psymbol_to_list,
2612 (listp, name, space, class, value),
2613 struct psymbol_allocation_list *listp AND
2614 char *name AND
2615 enum namespace space AND
2616 enum address_class class AND
2617 CORE_ADDR value)
2618 {
2619 struct partial_symbol *psym;
2620 int newsize;
2621
2622 if (listp -> next >= listp -> list + listp -> size)
2623 {
2624 newsize = listp -> size * 2;
2625 listp -> list = (struct partial_symbol *)
2626 xrealloc (listp -> list, (newsize * sizeof (struct partial_symbol)));
2627 /* Next assumes we only went one over. Should be good if program works
2628 correctly */
2629 listp -> next = listp -> list + listp -> size;
2630 listp -> size = newsize;
2631 }
2632 psym = listp -> next++;
2633 SYMBOL_NAME (psym) = create_name (name, psymbol_obstack);
2634 SYMBOL_NAMESPACE (psym) = space;
2635 SYMBOL_CLASS (psym) = class;
2636 SYMBOL_VALUE (psym) = value;
2637 }
2638
2639 /*
2640
2641 LOCAL FUNCTION
2642
2643 add_partial_symbol -- add symbol to partial symbol table
2644
2645 DESCRIPTION
2646
2647 Given a DIE, if it is one of the types that we want to
2648 add to a partial symbol table, finish filling in the die info
2649 and then add a partial symbol table entry for it.
2650
2651 */
2652
2653 static void
2654 DEFUN(add_partial_symbol, (dip), struct dieinfo *dip)
2655 {
2656 switch (dip -> dietag)
2657 {
2658 case TAG_global_subroutine:
2659 record_misc_function (dip -> at_name, dip -> at_low_pc);
2660 add_psymbol_to_list (&global_psymbols, dip -> at_name, VAR_NAMESPACE,
2661 LOC_BLOCK, dip -> at_low_pc);
2662 break;
2663 case TAG_global_variable:
2664 add_psymbol_to_list (&global_psymbols, dip -> at_name, VAR_NAMESPACE,
2665 LOC_STATIC, 0);
2666 break;
2667 case TAG_subroutine:
2668 add_psymbol_to_list (&static_psymbols, dip -> at_name, VAR_NAMESPACE,
2669 LOC_BLOCK, dip -> at_low_pc);
2670 break;
2671 case TAG_local_variable:
2672 add_psymbol_to_list (&static_psymbols, dip -> at_name, VAR_NAMESPACE,
2673 LOC_STATIC, 0);
2674 break;
2675 case TAG_typedef:
2676 add_psymbol_to_list (&static_psymbols, dip -> at_name, VAR_NAMESPACE,
2677 LOC_TYPEDEF, 0);
2678 break;
2679 case TAG_structure_type:
2680 case TAG_union_type:
2681 case TAG_enumeration_type:
2682 add_psymbol_to_list (&static_psymbols, dip -> at_name, STRUCT_NAMESPACE,
2683 LOC_TYPEDEF, 0);
2684 break;
2685 }
2686 }
2687
2688 /*
2689
2690 LOCAL FUNCTION
2691
2692 scan_partial_symbols -- scan DIE's within a single compilation unit
2693
2694 DESCRIPTION
2695
2696 Process the DIE's within a single compilation unit, looking for
2697 interesting DIE's that contribute to the partial symbol table entry
2698 for this compilation unit. Since we cannot follow any sibling
2699 chains without reading the complete DIE info for every DIE,
2700 it is probably faster to just sequentially check each one to
2701 see if it is one of the types we are interested in, and if
2702 so, then extracting all the attributes info and generating a
2703 partial symbol table entry.
2704
2705 */
2706
2707 static void
2708 DEFUN(scan_partial_symbols, (thisdie, enddie), char *thisdie AND char *enddie)
2709 {
2710 char *nextdie;
2711 struct dieinfo di;
2712
2713 while (thisdie < enddie)
2714 {
2715 basicdieinfo (&di, thisdie);
2716 if (di.dielength < sizeof (long))
2717 {
2718 break;
2719 }
2720 else
2721 {
2722 nextdie = thisdie + di.dielength;
2723 switch (di.dietag)
2724 {
2725 case TAG_global_subroutine:
2726 case TAG_global_variable:
2727 case TAG_subroutine:
2728 case TAG_local_variable:
2729 case TAG_typedef:
2730 case TAG_structure_type:
2731 case TAG_union_type:
2732 case TAG_enumeration_type:
2733 completedieinfo (&di);
2734 /* Don't attempt to add anonymous structures, unions, or
2735 enumerations since they have no name. Also check that
2736 this is the place where the actual definition occurs,
2737 rather than just a reference to an external. */
2738 if (di.at_name != NULL && !di.at_is_external_p)
2739 {
2740 add_partial_symbol (&di);
2741 }
2742 break;
2743 }
2744 }
2745 thisdie = nextdie;
2746 }
2747 }
2748
2749 /*
2750
2751 LOCAL FUNCTION
2752
2753 scan_compilation_units -- build a psymtab entry for each compilation
2754
2755 DESCRIPTION
2756
2757 This is the top level dwarf parsing routine for building partial
2758 symbol tables.
2759
2760 It scans from the beginning of the DWARF table looking for the first
2761 TAG_compile_unit DIE, and then follows the sibling chain to locate
2762 each additional TAG_compile_unit DIE.
2763
2764 For each TAG_compile_unit DIE it creates a partial symtab structure,
2765 calls a subordinate routine to collect all the compilation unit's
2766 global DIE's, file scope DIEs, typedef DIEs, etc, and then links the
2767 new partial symtab structure into the partial symbol table. It also
2768 records the appropriate information in the partial symbol table entry
2769 to allow the chunk of DIE's and line number table for this compilation
2770 unit to be located and re-read later, to generate a complete symbol
2771 table entry for the compilation unit.
2772
2773 Thus it effectively partitions up a chunk of DIE's for multiple
2774 compilation units into smaller DIE chunks and line number tables,
2775 and associates them with a partial symbol table entry.
2776
2777 NOTES
2778
2779 If any compilation unit has no line number table associated with
2780 it for some reason (a missing at_stmt_list attribute, rather than
2781 just one with a value of zero, which is valid) then we ensure that
2782 the recorded file offset is zero so that the routine which later
2783 reads line number table fragments knows that there is no fragment
2784 to read.
2785
2786 RETURNS
2787
2788 Returns no value.
2789
2790 */
2791
2792 static void
2793 DEFUN(scan_compilation_units,
2794 (filename, addr, thisdie, enddie, dbfoff, lnoffset),
2795 char *filename AND
2796 CORE_ADDR addr AND
2797 char *thisdie AND
2798 char *enddie AND
2799 unsigned int dbfoff AND
2800 unsigned int lnoffset)
2801 {
2802 char *nextdie;
2803 struct dieinfo di;
2804 struct partial_symtab *pst;
2805 int culength;
2806 int curoff;
2807 int curlnoffset;
2808
2809 while (thisdie < enddie)
2810 {
2811 basicdieinfo (&di, thisdie);
2812 if (di.dielength < sizeof (long))
2813 {
2814 break;
2815 }
2816 else if (di.dietag != TAG_compile_unit)
2817 {
2818 nextdie = thisdie + di.dielength;
2819 }
2820 else
2821 {
2822 completedieinfo (&di);
2823 if (di.at_sibling != 0)
2824 {
2825 nextdie = dbbase + di.at_sibling - dbroff;
2826 }
2827 else
2828 {
2829 nextdie = thisdie + di.dielength;
2830 }
2831 curoff = thisdie - dbbase;
2832 culength = nextdie - thisdie;
2833 curlnoffset = di.at_stmt_list_p ? lnoffset + di.at_stmt_list : 0;
2834 pst = start_psymtab (filename, addr, di.at_name,
2835 di.at_low_pc, di.at_high_pc,
2836 dbfoff, curoff, culength, curlnoffset,
2837 global_psymbols.next,
2838 static_psymbols.next);
2839 scan_partial_symbols (thisdie + di.dielength, nextdie);
2840 pst -> n_global_syms = global_psymbols.next -
2841 (global_psymbols.list + pst -> globals_offset);
2842 pst -> n_static_syms = static_psymbols.next -
2843 (static_psymbols.list + pst -> statics_offset);
2844 /* Sort the global list; don't sort the static list */
2845 qsort (global_psymbols.list + pst -> globals_offset,
2846 pst -> n_global_syms, sizeof (struct partial_symbol),
2847 compare_psymbols);
2848 /* If there is already a psymtab or symtab for a file of this name,
2849 remove it. (If there is a symtab, more drastic things also
2850 happen.) This happens in VxWorks. */
2851 free_named_symtabs (pst -> filename);
2852 /* Place the partial symtab on the partial symtab list */
2853 pst -> next = partial_symtab_list;
2854 partial_symtab_list = pst;
2855 }
2856 thisdie = nextdie;
2857 }
2858 }
2859
2860 /*
2861
2862 LOCAL FUNCTION
2863
2864 new_symbol -- make a symbol table entry for a new symbol
2865
2866 SYNOPSIS
2867
2868 static struct symbol *new_symbol (struct dieinfo *dip)
2869
2870 DESCRIPTION
2871
2872 Given a pointer to a DWARF information entry, figure out if we need
2873 to make a symbol table entry for it, and if so, create a new entry
2874 and return a pointer to it.
2875 */
2876
2877 static struct symbol *
2878 DEFUN(new_symbol, (dip), struct dieinfo *dip)
2879 {
2880 struct symbol *sym = NULL;
2881
2882 if (dip -> at_name != NULL)
2883 {
2884 sym = (struct symbol *) obstack_alloc (symbol_obstack,
2885 sizeof (struct symbol));
2886 (void) memset (sym, 0, sizeof (struct symbol));
2887 SYMBOL_NAME (sym) = create_name (dip -> at_name, symbol_obstack);
2888 /* default assumptions */
2889 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2890 SYMBOL_CLASS (sym) = LOC_STATIC;
2891 SYMBOL_TYPE (sym) = decode_die_type (dip);
2892 switch (dip -> dietag)
2893 {
2894 case TAG_label:
2895 SYMBOL_VALUE (sym) = dip -> at_low_pc + baseaddr;
2896 SYMBOL_CLASS (sym) = LOC_LABEL;
2897 break;
2898 case TAG_global_subroutine:
2899 case TAG_subroutine:
2900 SYMBOL_VALUE (sym) = dip -> at_low_pc + baseaddr;
2901 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
2902 SYMBOL_CLASS (sym) = LOC_BLOCK;
2903 if (dip -> dietag == TAG_global_subroutine)
2904 {
2905 add_symbol_to_list (sym, &global_symbols);
2906 }
2907 else
2908 {
2909 add_symbol_to_list (sym, &scope -> symbols);
2910 }
2911 break;
2912 case TAG_global_variable:
2913 case TAG_local_variable:
2914 if (dip -> at_location != NULL)
2915 {
2916 SYMBOL_VALUE (sym) = locval (dip -> at_location);
2917 }
2918 if (dip -> dietag == TAG_global_variable)
2919 {
2920 add_symbol_to_list (sym, &global_symbols);
2921 SYMBOL_CLASS (sym) = LOC_STATIC;
2922 SYMBOL_VALUE (sym) += baseaddr;
2923 }
2924 else
2925 {
2926 add_symbol_to_list (sym, &scope -> symbols);
2927 if (scope -> parent != NULL)
2928 {
2929 if (isreg)
2930 {
2931 SYMBOL_CLASS (sym) = LOC_REGISTER;
2932 }
2933 else
2934 {
2935 SYMBOL_CLASS (sym) = LOC_LOCAL;
2936 }
2937 }
2938 else
2939 {
2940 SYMBOL_CLASS (sym) = LOC_STATIC;
2941 SYMBOL_VALUE (sym) += baseaddr;
2942 }
2943 }
2944 break;
2945 case TAG_formal_parameter:
2946 if (dip -> at_location != NULL)
2947 {
2948 SYMBOL_VALUE (sym) = locval (dip -> at_location);
2949 }
2950 add_symbol_to_list (sym, &scope -> symbols);
2951 if (isreg)
2952 {
2953 SYMBOL_CLASS (sym) = LOC_REGPARM;
2954 }
2955 else
2956 {
2957 SYMBOL_CLASS (sym) = LOC_ARG;
2958 }
2959 break;
2960 case TAG_unspecified_parameters:
2961 /* From varargs functions; gdb doesn't seem to have any interest in
2962 this information, so just ignore it for now. (FIXME?) */
2963 break;
2964 case TAG_structure_type:
2965 case TAG_union_type:
2966 case TAG_enumeration_type:
2967 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
2968 SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE;
2969 add_symbol_to_list (sym, &scope -> symbols);
2970 break;
2971 case TAG_typedef:
2972 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
2973 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2974 add_symbol_to_list (sym, &scope -> symbols);
2975 break;
2976 default:
2977 /* Not a tag we recognize. Hopefully we aren't processing trash
2978 data, but since we must specifically ignore things we don't
2979 recognize, there is nothing else we should do at this point. */
2980 break;
2981 }
2982 }
2983 return (sym);
2984 }
2985
2986 /*
2987
2988 LOCAL FUNCTION
2989
2990 decode_mod_fund_type -- decode a modified fundamental type
2991
2992 SYNOPSIS
2993
2994 static struct type *decode_mod_fund_type (char *typedata)
2995
2996 DESCRIPTION
2997
2998 Decode a block of data containing a modified fundamental
2999 type specification. TYPEDATA is a pointer to the block,
3000 which consists of a two byte length, containing the size
3001 of the rest of the block. At the end of the block is a
3002 two byte value that gives the fundamental type. Everything
3003 in between are type modifiers.
3004
3005 We simply compute the number of modifiers and call the general
3006 function decode_modified_type to do the actual work.
3007 */
3008
3009 static struct type *
3010 DEFUN(decode_mod_fund_type, (typedata), char *typedata)
3011 {
3012 struct type *typep = NULL;
3013 unsigned short modcount;
3014 unsigned char *modifiers;
3015
3016 /* Get the total size of the block, exclusive of the size itself */
3017 (void) memcpy (&modcount, typedata, sizeof (short));
3018 /* Deduct the size of the fundamental type bytes at the end of the block. */
3019 modcount -= sizeof (short);
3020 /* Skip over the two size bytes at the beginning of the block. */
3021 modifiers = (unsigned char *) typedata + sizeof (short);
3022 /* Now do the actual decoding */
3023 typep = decode_modified_type (modifiers, modcount, AT_mod_fund_type);
3024 return (typep);
3025 }
3026
3027 /*
3028
3029 LOCAL FUNCTION
3030
3031 decode_mod_u_d_type -- decode a modified user defined type
3032
3033 SYNOPSIS
3034
3035 static struct type *decode_mod_u_d_type (char *typedata)
3036
3037 DESCRIPTION
3038
3039 Decode a block of data containing a modified user defined
3040 type specification. TYPEDATA is a pointer to the block,
3041 which consists of a two byte length, containing the size
3042 of the rest of the block. At the end of the block is a
3043 four byte value that gives a reference to a user defined type.
3044 Everything in between are type modifiers.
3045
3046 We simply compute the number of modifiers and call the general
3047 function decode_modified_type to do the actual work.
3048 */
3049
3050 static struct type *
3051 DEFUN(decode_mod_u_d_type, (typedata), char *typedata)
3052 {
3053 struct type *typep = NULL;
3054 unsigned short modcount;
3055 unsigned char *modifiers;
3056
3057 /* Get the total size of the block, exclusive of the size itself */
3058 (void) memcpy (&modcount, typedata, sizeof (short));
3059 /* Deduct the size of the reference type bytes at the end of the block. */
3060 modcount -= sizeof (long);
3061 /* Skip over the two size bytes at the beginning of the block. */
3062 modifiers = (unsigned char *) typedata + sizeof (short);
3063 /* Now do the actual decoding */
3064 typep = decode_modified_type (modifiers, modcount, AT_mod_u_d_type);
3065 return (typep);
3066 }
3067
3068 /*
3069
3070 LOCAL FUNCTION
3071
3072 decode_modified_type -- decode modified user or fundamental type
3073
3074 SYNOPSIS
3075
3076 static struct type *decode_modified_type (unsigned char *modifiers,
3077 unsigned short modcount, int mtype)
3078
3079 DESCRIPTION
3080
3081 Decode a modified type, either a modified fundamental type or
3082 a modified user defined type. MODIFIERS is a pointer to the
3083 block of bytes that define MODCOUNT modifiers. Immediately
3084 following the last modifier is a short containing the fundamental
3085 type or a long containing the reference to the user defined
3086 type. Which one is determined by MTYPE, which is either
3087 AT_mod_fund_type or AT_mod_u_d_type to indicate what modified
3088 type we are generating.
3089
3090 We call ourself recursively to generate each modified type,`
3091 until MODCOUNT reaches zero, at which point we have consumed
3092 all the modifiers and generate either the fundamental type or
3093 user defined type. When the recursion unwinds, each modifier
3094 is applied in turn to generate the full modified type.
3095
3096 NOTES
3097
3098 If we find a modifier that we don't recognize, and it is not one
3099 of those reserved for application specific use, then we issue a
3100 warning and simply ignore the modifier.
3101
3102 BUGS
3103
3104 We currently ignore MOD_const and MOD_volatile. (FIXME)
3105
3106 */
3107
3108 static struct type *
3109 DEFUN(decode_modified_type,
3110 (modifiers, modcount, mtype),
3111 unsigned char *modifiers AND unsigned short modcount AND int mtype)
3112 {
3113 struct type *typep = NULL;
3114 unsigned short fundtype;
3115 DIEREF dieref;
3116 unsigned char modifier;
3117
3118 if (modcount == 0)
3119 {
3120 switch (mtype)
3121 {
3122 case AT_mod_fund_type:
3123 (void) memcpy (&fundtype, modifiers, sizeof (short));
3124 typep = decode_fund_type (fundtype);
3125 break;
3126 case AT_mod_u_d_type:
3127 (void) memcpy (&dieref, modifiers, sizeof (DIEREF));
3128 if ((typep = lookup_utype (dieref)) == NULL)
3129 {
3130 typep = alloc_utype (dieref, NULL);
3131 }
3132 break;
3133 default:
3134 SQUAWK (("botched modified type decoding (mtype 0x%x)", mtype));
3135 typep = builtin_type_int;
3136 break;
3137 }
3138 }
3139 else
3140 {
3141 modifier = *modifiers++;
3142 typep = decode_modified_type (modifiers, --modcount, mtype);
3143 switch (modifier)
3144 {
3145 case MOD_pointer_to:
3146 typep = lookup_pointer_type (typep);
3147 break;
3148 case MOD_reference_to:
3149 typep = lookup_reference_type (typep);
3150 break;
3151 case MOD_const:
3152 SQUAWK (("type modifier 'const' ignored")); /* FIXME */
3153 break;
3154 case MOD_volatile:
3155 SQUAWK (("type modifier 'volatile' ignored")); /* FIXME */
3156 break;
3157 default:
3158 if (!(MOD_lo_user <= modifier && modifier <= MOD_hi_user))
3159 {
3160 SQUAWK (("unknown type modifier %u", modifier));
3161 }
3162 break;
3163 }
3164 }
3165 return (typep);
3166 }
3167
3168 /*
3169
3170 LOCAL FUNCTION
3171
3172 decode_fund_type -- translate basic DWARF type to gdb base type
3173
3174 DESCRIPTION
3175
3176 Given an integer that is one of the fundamental DWARF types,
3177 translate it to one of the basic internal gdb types and return
3178 a pointer to the appropriate gdb type (a "struct type *").
3179
3180 NOTES
3181
3182 If we encounter a fundamental type that we are unprepared to
3183 deal with, and it is not in the range of those types defined
3184 as application specific types, then we issue a warning and
3185 treat the type as builtin_type_int.
3186 */
3187
3188 static struct type *
3189 DEFUN(decode_fund_type, (fundtype), unsigned short fundtype)
3190 {
3191 struct type *typep = NULL;
3192
3193 switch (fundtype)
3194 {
3195
3196 case FT_void:
3197 typep = builtin_type_void;
3198 break;
3199
3200 case FT_pointer: /* (void *) */
3201 typep = lookup_pointer_type (builtin_type_void);
3202 break;
3203
3204 case FT_char:
3205 case FT_signed_char:
3206 typep = builtin_type_char;
3207 break;
3208
3209 case FT_short:
3210 case FT_signed_short:
3211 typep = builtin_type_short;
3212 break;
3213
3214 case FT_integer:
3215 case FT_signed_integer:
3216 case FT_boolean: /* Was FT_set in AT&T version */
3217 typep = builtin_type_int;
3218 break;
3219
3220 case FT_long:
3221 case FT_signed_long:
3222 typep = builtin_type_long;
3223 break;
3224
3225 case FT_float:
3226 typep = builtin_type_float;
3227 break;
3228
3229 case FT_dbl_prec_float:
3230 typep = builtin_type_double;
3231 break;
3232
3233 case FT_unsigned_char:
3234 typep = builtin_type_unsigned_char;
3235 break;
3236
3237 case FT_unsigned_short:
3238 typep = builtin_type_unsigned_short;
3239 break;
3240
3241 case FT_unsigned_integer:
3242 typep = builtin_type_unsigned_int;
3243 break;
3244
3245 case FT_unsigned_long:
3246 typep = builtin_type_unsigned_long;
3247 break;
3248
3249 case FT_ext_prec_float:
3250 typep = builtin_type_long_double;
3251 break;
3252
3253 case FT_complex:
3254 typep = builtin_type_complex;
3255 break;
3256
3257 case FT_dbl_prec_complex:
3258 typep = builtin_type_double_complex;
3259 break;
3260
3261 case FT_long_long:
3262 case FT_signed_long_long:
3263 typep = builtin_type_long_long;
3264 break;
3265
3266 case FT_unsigned_long_long:
3267 typep = builtin_type_unsigned_long_long;
3268 break;
3269
3270 }
3271
3272 if ((typep == NULL) && !(FT_lo_user <= fundtype && fundtype <= FT_hi_user))
3273 {
3274 SQUAWK (("unexpected fundamental type 0x%x", fundtype));
3275 typep = builtin_type_void;
3276 }
3277
3278 return (typep);
3279 }
3280
3281 /*
3282
3283 LOCAL FUNCTION
3284
3285 create_name -- allocate a fresh copy of a string on an obstack
3286
3287 DESCRIPTION
3288
3289 Given a pointer to a string and a pointer to an obstack, allocates
3290 a fresh copy of the string on the specified obstack.
3291
3292 */
3293
3294 static char *
3295 DEFUN(create_name, (name, obstackp), char *name AND struct obstack *obstackp)
3296 {
3297 int length;
3298 char *newname;
3299
3300 length = strlen (name) + 1;
3301 newname = (char *) obstack_alloc (obstackp, length);
3302 (void) strcpy (newname, name);
3303 return (newname);
3304 }
3305
3306 /*
3307
3308 LOCAL FUNCTION
3309
3310 basicdieinfo -- extract the minimal die info from raw die data
3311
3312 SYNOPSIS
3313
3314 void basicdieinfo (char *diep, struct dieinfo *dip)
3315
3316 DESCRIPTION
3317
3318 Given a pointer to raw DIE data, and a pointer to an instance of a
3319 die info structure, this function extracts the basic information
3320 from the DIE data required to continue processing this DIE, along
3321 with some bookkeeping information about the DIE.
3322
3323 The information we absolutely must have includes the DIE tag,
3324 and the DIE length. If we need the sibling reference, then we
3325 will have to call completedieinfo() to process all the remaining
3326 DIE information.
3327
3328 Note that since there is no guarantee that the data is properly
3329 aligned in memory for the type of access required (indirection
3330 through anything other than a char pointer), we use memcpy to
3331 shuffle data items larger than a char. Possibly inefficient, but
3332 quite portable.
3333
3334 We also take care of some other basic things at this point, such
3335 as ensuring that the instance of the die info structure starts
3336 out completely zero'd and that curdie is initialized for use
3337 in error reporting if we have a problem with the current die.
3338
3339 NOTES
3340
3341 All DIE's must have at least a valid length, thus the minimum
3342 DIE size is sizeof (long). In order to have a valid tag, the
3343 DIE size must be at least sizeof (short) larger, otherwise they
3344 are forced to be TAG_padding DIES.
3345
3346 Padding DIES must be at least sizeof(long) in length, implying that
3347 if a padding DIE is used for alignment and the amount needed is less
3348 than sizeof(long) then the padding DIE has to be big enough to align
3349 to the next alignment boundry.
3350 */
3351
3352 static void
3353 DEFUN(basicdieinfo, (dip, diep), struct dieinfo *dip AND char *diep)
3354 {
3355 curdie = dip;
3356 (void) memset (dip, 0, sizeof (struct dieinfo));
3357 dip -> die = diep;
3358 dip -> dieref = dbroff + (diep - dbbase);
3359 (void) memcpy (&dip -> dielength, diep, sizeof (long));
3360 if (dip -> dielength < sizeof (long))
3361 {
3362 dwarfwarn ("malformed DIE, bad length (%d bytes)", dip -> dielength);
3363 }
3364 else if (dip -> dielength < (sizeof (long) + sizeof (short)))
3365 {
3366 dip -> dietag = TAG_padding;
3367 }
3368 else
3369 {
3370 (void) memcpy (&dip -> dietag, diep + sizeof (long), sizeof (short));
3371 }
3372 }
3373
3374 /*
3375
3376 LOCAL FUNCTION
3377
3378 completedieinfo -- finish reading the information for a given DIE
3379
3380 SYNOPSIS
3381
3382 void completedieinfo (struct dieinfo *dip)
3383
3384 DESCRIPTION
3385
3386 Given a pointer to an already partially initialized die info structure,
3387 scan the raw DIE data and finish filling in the die info structure
3388 from the various attributes found.
3389
3390 Note that since there is no guarantee that the data is properly
3391 aligned in memory for the type of access required (indirection
3392 through anything other than a char pointer), we use memcpy to
3393 shuffle data items larger than a char. Possibly inefficient, but
3394 quite portable.
3395
3396 NOTES
3397
3398 Each time we are called, we increment the diecount variable, which
3399 keeps an approximate count of the number of dies processed for
3400 each compilation unit. This information is presented to the user
3401 if the info_verbose flag is set.
3402
3403 */
3404
3405 static void
3406 DEFUN(completedieinfo, (dip), struct dieinfo *dip)
3407 {
3408 char *diep; /* Current pointer into raw DIE data */
3409 char *end; /* Terminate DIE scan here */
3410 unsigned short attr; /* Current attribute being scanned */
3411 unsigned short form; /* Form of the attribute */
3412 short block2sz; /* Size of a block2 attribute field */
3413 long block4sz; /* Size of a block4 attribute field */
3414
3415 diecount++;
3416 diep = dip -> die;
3417 end = diep + dip -> dielength;
3418 diep += sizeof (long) + sizeof (short);
3419 while (diep < end)
3420 {
3421 (void) memcpy (&attr, diep, sizeof (short));
3422 diep += sizeof (short);
3423 switch (attr)
3424 {
3425 case AT_fund_type:
3426 (void) memcpy (&dip -> at_fund_type, diep, sizeof (short));
3427 break;
3428 case AT_ordering:
3429 (void) memcpy (&dip -> at_ordering, diep, sizeof (short));
3430 break;
3431 case AT_bit_offset:
3432 (void) memcpy (&dip -> at_bit_offset, diep, sizeof (short));
3433 break;
3434 case AT_visibility:
3435 (void) memcpy (&dip -> at_visibility, diep, sizeof (short));
3436 break;
3437 case AT_sibling:
3438 (void) memcpy (&dip -> at_sibling, diep, sizeof (long));
3439 break;
3440 case AT_stmt_list:
3441 (void) memcpy (&dip -> at_stmt_list, diep, sizeof (long));
3442 dip -> at_stmt_list_p = 1;
3443 break;
3444 case AT_low_pc:
3445 (void) memcpy (&dip -> at_low_pc, diep, sizeof (long));
3446 break;
3447 case AT_high_pc:
3448 (void) memcpy (&dip -> at_high_pc, diep, sizeof (long));
3449 break;
3450 case AT_language:
3451 (void) memcpy (&dip -> at_language, diep, sizeof (long));
3452 break;
3453 case AT_user_def_type:
3454 (void) memcpy (&dip -> at_user_def_type, diep, sizeof (long));
3455 break;
3456 case AT_byte_size:
3457 (void) memcpy (&dip -> at_byte_size, diep, sizeof (long));
3458 break;
3459 case AT_bit_size:
3460 (void) memcpy (&dip -> at_bit_size, diep, sizeof (long));
3461 break;
3462 case AT_member:
3463 (void) memcpy (&dip -> at_member, diep, sizeof (long));
3464 break;
3465 case AT_discr:
3466 (void) memcpy (&dip -> at_discr, diep, sizeof (long));
3467 break;
3468 case AT_import:
3469 (void) memcpy (&dip -> at_import, diep, sizeof (long));
3470 break;
3471 case AT_location:
3472 dip -> at_location = diep;
3473 break;
3474 case AT_mod_fund_type:
3475 dip -> at_mod_fund_type = diep;
3476 break;
3477 case AT_subscr_data:
3478 dip -> at_subscr_data = diep;
3479 break;
3480 case AT_mod_u_d_type:
3481 dip -> at_mod_u_d_type = diep;
3482 break;
3483 case AT_deriv_list:
3484 dip -> at_deriv_list = diep;
3485 break;
3486 case AT_element_list:
3487 dip -> at_element_list = diep;
3488 break;
3489 case AT_discr_value:
3490 dip -> at_discr_value = diep;
3491 break;
3492 case AT_string_length:
3493 dip -> at_string_length = diep;
3494 break;
3495 case AT_name:
3496 dip -> at_name = diep;
3497 break;
3498 case AT_comp_dir:
3499 dip -> at_comp_dir = diep;
3500 break;
3501 case AT_producer:
3502 dip -> at_producer = diep;
3503 break;
3504 case AT_loclist:
3505 (void) memcpy (&dip -> at_loclist, diep, sizeof (long));
3506 break;
3507 case AT_frame_base:
3508 (void) memcpy (&dip -> at_frame_base, diep, sizeof (long));
3509 break;
3510 case AT_incomplete:
3511 (void) memcpy (&dip -> at_incomplete, diep, sizeof (short));
3512 break;
3513 case AT_start_scope:
3514 (void) memcpy (&dip -> at_start_scope, diep, sizeof (long));
3515 break;
3516 case AT_stride_size:
3517 (void) memcpy (&dip -> at_stride_size, diep, sizeof (long));
3518 break;
3519 case AT_src_info:
3520 (void) memcpy (&dip -> at_src_info, diep, sizeof (long));
3521 break;
3522 case AT_prototyped:
3523 (void) memcpy (&dip -> at_prototyped, diep, sizeof (short));
3524 break;
3525 case AT_const_data:
3526 dip -> at_const_data = diep;
3527 break;
3528 case AT_is_external:
3529 (void) memcpy (&dip -> at_is_external, diep, sizeof (short));
3530 dip -> at_is_external_p = 1;
3531 break;
3532 default:
3533 /* Found an attribute that we are unprepared to handle. However
3534 it is specifically one of the design goals of DWARF that
3535 consumers should ignore unknown attributes. As long as the
3536 form is one that we recognize (so we know how to skip it),
3537 we can just ignore the unknown attribute. */
3538 break;
3539 }
3540 form = attr & 0xF;
3541 switch (form)
3542 {
3543 case FORM_DATA2:
3544 diep += sizeof (short);
3545 break;
3546 case FORM_DATA4:
3547 diep += sizeof (long);
3548 break;
3549 case FORM_DATA8:
3550 diep += 8 * sizeof (char); /* sizeof (long long) ? */
3551 break;
3552 case FORM_ADDR:
3553 case FORM_REF:
3554 diep += sizeof (long);
3555 break;
3556 case FORM_BLOCK2:
3557 (void) memcpy (&block2sz, diep, sizeof (short));
3558 block2sz += sizeof (short);
3559 diep += block2sz;
3560 break;
3561 case FORM_BLOCK4:
3562 (void) memcpy (&block4sz, diep, sizeof (long));
3563 block4sz += sizeof (long);
3564 diep += block4sz;
3565 break;
3566 case FORM_STRING:
3567 diep += strlen (diep) + 1;
3568 break;
3569 default:
3570 SQUAWK (("unknown attribute form (0x%x), skipped rest", form));
3571 diep = end;
3572 break;
3573 }
3574 }
3575 }