* dwarfread.c (record_minimal_symbol): Remove prototype and
[binutils-gdb.git] / gdb / dwarfread.c
1 /* DWARF debugging format support for GDB.
2 Copyright (C) 1991, 1992 Free Software Foundation, Inc.
3 Written by Fred Fish at Cygnus Support. Portions based on dbxread.c,
4 mipsread.c, coffread.c, and dwarfread.c from a Data General SVR4 gdb port.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
21
22 /*
23
24 FIXME: Figure out how to get the frame pointer register number in the
25 execution environment of the target. Remove R_FP kludge
26
27 FIXME: Do we need to generate dependencies in partial symtabs?
28 (Perhaps we don't need to).
29
30 FIXME: Resolve minor differences between what information we put in the
31 partial symbol table and what dbxread puts in. For example, we don't yet
32 put enum constants there. And dbxread seems to invent a lot of typedefs
33 we never see. Use the new printpsym command to see the partial symbol table
34 contents.
35
36 FIXME: Figure out a better way to tell gdb about the name of the function
37 contain the user's entry point (I.E. main())
38
39 FIXME: See other FIXME's and "ifdef 0" scattered throughout the code for
40 other things to work on, if you get bored. :-)
41
42 */
43
44 #include "defs.h"
45 #include "bfd.h"
46 #include "symtab.h"
47 #include "gdbtypes.h"
48 #include "symfile.h"
49 #include "objfiles.h"
50 #include "libbfd.h" /* FIXME Secret Internal BFD stuff (bfd_read) */
51 #include "elf/dwarf.h"
52 #include "buildsym.h"
53 #include "demangle.h"
54 #include "expression.h" /* Needed for enum exp_opcode in language.h, sigh... */
55 #include "language.h"
56 #include "complaints.h"
57
58 #include <fcntl.h>
59 #include <string.h>
60 #include <sys/types.h>
61
62 #ifndef NO_SYS_FILE
63 #include <sys/file.h>
64 #endif
65
66 /* FIXME -- convert this to SEEK_SET a la POSIX, move to config files. */
67 #ifndef L_SET
68 #define L_SET 0
69 #endif
70
71 /* Some macros to provide DIE info for complaints. */
72
73 #define DIE_ID (curdie!=NULL ? curdie->die_ref : 0)
74 #define DIE_NAME (curdie!=NULL && curdie->at_name!=NULL) ? curdie->at_name : ""
75
76 /* Complaints that can be issued during DWARF debug info reading. */
77
78 struct complaint no_bfd_get_N =
79 {
80 "DIE @ 0x%x \"%s\", no bfd support for %d byte data object", 0, 0
81 };
82
83 struct complaint malformed_die =
84 {
85 "DIE @ 0x%x \"%s\", malformed DIE, bad length (%d bytes)", 0, 0
86 };
87
88 struct complaint bad_die_ref =
89 {
90 "DIE @ 0x%x \"%s\", reference to DIE (0x%x) outside compilation unit", 0, 0
91 };
92
93 struct complaint unknown_attribute_form =
94 {
95 "DIE @ 0x%x \"%s\", unknown attribute form (0x%x)", 0, 0
96 };
97
98 struct complaint unknown_attribute_length =
99 {
100 "DIE @ 0x%x \"%s\", unknown attribute length, skipped remaining attributes", 0, 0
101 };
102
103 struct complaint unexpected_fund_type =
104 {
105 "DIE @ 0x%x \"%s\", unexpected fundamental type 0x%x", 0, 0
106 };
107
108 struct complaint unknown_type_modifier =
109 {
110 "DIE @ 0x%x \"%s\", unknown type modifier %u", 0, 0
111 };
112
113 struct complaint volatile_ignored =
114 {
115 "DIE @ 0x%x \"%s\", type modifier 'volatile' ignored", 0, 0
116 };
117
118 struct complaint const_ignored =
119 {
120 "DIE @ 0x%x \"%s\", type modifier 'const' ignored", 0, 0
121 };
122
123 struct complaint botched_modified_type =
124 {
125 "DIE @ 0x%x \"%s\", botched modified type decoding (mtype 0x%x)", 0, 0
126 };
127
128 struct complaint op_deref2 =
129 {
130 "DIE @ 0x%x \"%s\", OP_DEREF2 address 0x%x not handled", 0, 0
131 };
132
133 struct complaint op_deref4 =
134 {
135 "DIE @ 0x%x \"%s\", OP_DEREF4 address 0x%x not handled", 0, 0
136 };
137
138 struct complaint basereg_not_handled =
139 {
140 "DIE @ 0x%x \"%s\", BASEREG %d not handled", 0, 0
141 };
142
143 struct complaint dup_user_type_allocation =
144 {
145 "DIE @ 0x%x \"%s\", internal error: duplicate user type allocation", 0, 0
146 };
147
148 struct complaint dup_user_type_definition =
149 {
150 "DIE @ 0x%x \"%s\", internal error: duplicate user type definition", 0, 0
151 };
152
153 struct complaint missing_tag =
154 {
155 "DIE @ 0x%x \"%s\", missing class, structure, or union tag", 0, 0
156 };
157
158 struct complaint bad_array_element_type =
159 {
160 "DIE @ 0x%x \"%s\", bad array element type attribute 0x%x", 0, 0
161 };
162
163 struct complaint subscript_data_items =
164 {
165 "DIE @ 0x%x \"%s\", can't decode subscript data items", 0, 0
166 };
167
168 struct complaint unhandled_array_subscript_format =
169 {
170 "DIE @ 0x%x \"%s\", array subscript format 0x%x not handled yet", 0, 0
171 };
172
173 struct complaint unknown_array_subscript_format =
174 {
175 "DIE @ 0x%x \"%s\", unknown array subscript format %x", 0, 0
176 };
177
178 struct complaint not_row_major =
179 {
180 "DIE @ 0x%x \"%s\", array not row major; not handled correctly", 0, 0
181 };
182
183 #ifndef R_FP /* FIXME */
184 #define R_FP 14 /* Kludge to get frame pointer register number */
185 #endif
186
187 typedef unsigned int DIE_REF; /* Reference to a DIE */
188
189 #ifndef GCC_PRODUCER
190 #define GCC_PRODUCER "GNU C "
191 #endif
192
193 #ifndef GPLUS_PRODUCER
194 #define GPLUS_PRODUCER "GNU C++ "
195 #endif
196
197 #ifndef LCC_PRODUCER
198 #define LCC_PRODUCER "NCR C/C++"
199 #endif
200
201 #ifndef CHILL_PRODUCER
202 #define CHILL_PRODUCER "GNU Chill "
203 #endif
204
205 /* Flags to target_to_host() that tell whether or not the data object is
206 expected to be signed. Used, for example, when fetching a signed
207 integer in the target environment which is used as a signed integer
208 in the host environment, and the two environments have different sized
209 ints. In this case, *somebody* has to sign extend the smaller sized
210 int. */
211
212 #define GET_UNSIGNED 0 /* No sign extension required */
213 #define GET_SIGNED 1 /* Sign extension required */
214
215 /* Defines for things which are specified in the document "DWARF Debugging
216 Information Format" published by UNIX International, Programming Languages
217 SIG. These defines are based on revision 1.0.0, Jan 20, 1992. */
218
219 #define SIZEOF_DIE_LENGTH 4
220 #define SIZEOF_DIE_TAG 2
221 #define SIZEOF_ATTRIBUTE 2
222 #define SIZEOF_FORMAT_SPECIFIER 1
223 #define SIZEOF_FMT_FT 2
224 #define SIZEOF_LINETBL_LENGTH 4
225 #define SIZEOF_LINETBL_LINENO 4
226 #define SIZEOF_LINETBL_STMT 2
227 #define SIZEOF_LINETBL_DELTA 4
228 #define SIZEOF_LOC_ATOM_CODE 1
229
230 #define FORM_FROM_ATTR(attr) ((attr) & 0xF) /* Implicitly specified */
231
232 /* Macros that return the sizes of various types of data in the target
233 environment.
234
235 FIXME: Currently these are just compile time constants (as they are in
236 other parts of gdb as well). They need to be able to get the right size
237 either from the bfd or possibly from the DWARF info. It would be nice if
238 the DWARF producer inserted DIES that describe the fundamental types in
239 the target environment into the DWARF info, similar to the way dbx stabs
240 producers produce information about their fundamental types. */
241
242 #define TARGET_FT_POINTER_SIZE(objfile) (TARGET_PTR_BIT / TARGET_CHAR_BIT)
243 #define TARGET_FT_LONG_SIZE(objfile) (TARGET_LONG_BIT / TARGET_CHAR_BIT)
244
245 /* The Amiga SVR4 header file <dwarf.h> defines AT_element_list as a
246 FORM_BLOCK2, and this is the value emitted by the AT&T compiler.
247 However, the Issue 2 DWARF specification from AT&T defines it as
248 a FORM_BLOCK4, as does the latest specification from UI/PLSIG.
249 For backwards compatibility with the AT&T compiler produced executables
250 we define AT_short_element_list for this variant. */
251
252 #define AT_short_element_list (0x00f0|FORM_BLOCK2)
253
254 /* External variables referenced. */
255
256 extern int info_verbose; /* From main.c; nonzero => verbose */
257 extern char *warning_pre_print; /* From utils.c */
258
259 /* The DWARF debugging information consists of two major pieces,
260 one is a block of DWARF Information Entries (DIE's) and the other
261 is a line number table. The "struct dieinfo" structure contains
262 the information for a single DIE, the one currently being processed.
263
264 In order to make it easier to randomly access the attribute fields
265 of the current DIE, which are specifically unordered within the DIE,
266 each DIE is scanned and an instance of the "struct dieinfo"
267 structure is initialized.
268
269 Initialization is done in two levels. The first, done by basicdieinfo(),
270 just initializes those fields that are vital to deciding whether or not
271 to use this DIE, how to skip past it, etc. The second, done by the
272 function completedieinfo(), fills in the rest of the information.
273
274 Attributes which have block forms are not interpreted at the time
275 the DIE is scanned, instead we just save pointers to the start
276 of their value fields.
277
278 Some fields have a flag <name>_p that is set when the value of the
279 field is valid (I.E. we found a matching attribute in the DIE). Since
280 we may want to test for the presence of some attributes in the DIE,
281 such as AT_low_pc, without restricting the values of the field,
282 we need someway to note that we found such an attribute.
283
284 */
285
286 typedef char BLOCK;
287
288 struct dieinfo {
289 char * die; /* Pointer to the raw DIE data */
290 unsigned long die_length; /* Length of the raw DIE data */
291 DIE_REF die_ref; /* Offset of this DIE */
292 unsigned short die_tag; /* Tag for this DIE */
293 unsigned long at_padding;
294 unsigned long at_sibling;
295 BLOCK * at_location;
296 char * at_name;
297 unsigned short at_fund_type;
298 BLOCK * at_mod_fund_type;
299 unsigned long at_user_def_type;
300 BLOCK * at_mod_u_d_type;
301 unsigned short at_ordering;
302 BLOCK * at_subscr_data;
303 unsigned long at_byte_size;
304 unsigned short at_bit_offset;
305 unsigned long at_bit_size;
306 BLOCK * at_element_list;
307 unsigned long at_stmt_list;
308 unsigned long at_low_pc;
309 unsigned long at_high_pc;
310 unsigned long at_language;
311 unsigned long at_member;
312 unsigned long at_discr;
313 BLOCK * at_discr_value;
314 BLOCK * at_string_length;
315 char * at_comp_dir;
316 char * at_producer;
317 unsigned long at_start_scope;
318 unsigned long at_stride_size;
319 unsigned long at_src_info;
320 char * at_prototyped;
321 unsigned int has_at_low_pc:1;
322 unsigned int has_at_stmt_list:1;
323 unsigned int has_at_byte_size:1;
324 unsigned int short_element_list:1;
325 };
326
327 static int diecount; /* Approximate count of dies for compilation unit */
328 static struct dieinfo *curdie; /* For warnings and such */
329
330 static char *dbbase; /* Base pointer to dwarf info */
331 static int dbsize; /* Size of dwarf info in bytes */
332 static int dbroff; /* Relative offset from start of .debug section */
333 static char *lnbase; /* Base pointer to line section */
334 static int isreg; /* Kludge to identify register variables */
335 static int offreg; /* Kludge to identify basereg references */
336
337 /* This value is added to each symbol value. FIXME: Generalize to
338 the section_offsets structure used by dbxread (once this is done,
339 pass the appropriate section number to end_symtab). */
340 static CORE_ADDR baseaddr; /* Add to each symbol value */
341
342 /* The section offsets used in the current psymtab or symtab. FIXME,
343 only used to pass one value (baseaddr) at the moment. */
344 static struct section_offsets *base_section_offsets;
345
346 /* Each partial symbol table entry contains a pointer to private data for the
347 read_symtab() function to use when expanding a partial symbol table entry
348 to a full symbol table entry. For DWARF debugging info, this data is
349 contained in the following structure and macros are provided for easy
350 access to the members given a pointer to a partial symbol table entry.
351
352 dbfoff Always the absolute file offset to the start of the ".debug"
353 section for the file containing the DIE's being accessed.
354
355 dbroff Relative offset from the start of the ".debug" access to the
356 first DIE to be accessed. When building the partial symbol
357 table, this value will be zero since we are accessing the
358 entire ".debug" section. When expanding a partial symbol
359 table entry, this value will be the offset to the first
360 DIE for the compilation unit containing the symbol that
361 triggers the expansion.
362
363 dblength The size of the chunk of DIE's being examined, in bytes.
364
365 lnfoff The absolute file offset to the line table fragment. Ignored
366 when building partial symbol tables, but used when expanding
367 them, and contains the absolute file offset to the fragment
368 of the ".line" section containing the line numbers for the
369 current compilation unit.
370 */
371
372 struct dwfinfo {
373 file_ptr dbfoff; /* Absolute file offset to start of .debug section */
374 int dbroff; /* Relative offset from start of .debug section */
375 int dblength; /* Size of the chunk of DIE's being examined */
376 file_ptr lnfoff; /* Absolute file offset to line table fragment */
377 };
378
379 #define DBFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbfoff)
380 #define DBROFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbroff)
381 #define DBLENGTH(p) (((struct dwfinfo *)((p)->read_symtab_private))->dblength)
382 #define LNFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->lnfoff)
383
384 /* The generic symbol table building routines have separate lists for
385 file scope symbols and all all other scopes (local scopes). So
386 we need to select the right one to pass to add_symbol_to_list().
387 We do it by keeping a pointer to the correct list in list_in_scope.
388
389 FIXME: The original dwarf code just treated the file scope as the first
390 local scope, and all other local scopes as nested local scopes, and worked
391 fine. Check to see if we really need to distinguish these in buildsym.c */
392
393 struct pending **list_in_scope = &file_symbols;
394
395 /* DIES which have user defined types or modified user defined types refer to
396 other DIES for the type information. Thus we need to associate the offset
397 of a DIE for a user defined type with a pointer to the type information.
398
399 Originally this was done using a simple but expensive algorithm, with an
400 array of unsorted structures, each containing an offset/type-pointer pair.
401 This array was scanned linearly each time a lookup was done. The result
402 was that gdb was spending over half it's startup time munging through this
403 array of pointers looking for a structure that had the right offset member.
404
405 The second attempt used the same array of structures, but the array was
406 sorted using qsort each time a new offset/type was recorded, and a binary
407 search was used to find the type pointer for a given DIE offset. This was
408 even slower, due to the overhead of sorting the array each time a new
409 offset/type pair was entered.
410
411 The third attempt uses a fixed size array of type pointers, indexed by a
412 value derived from the DIE offset. Since the minimum DIE size is 4 bytes,
413 we can divide any DIE offset by 4 to obtain a unique index into this fixed
414 size array. Since each element is a 4 byte pointer, it takes exactly as
415 much memory to hold this array as to hold the DWARF info for a given
416 compilation unit. But it gets freed as soon as we are done with it.
417 This has worked well in practice, as a reasonable tradeoff between memory
418 consumption and speed, without having to resort to much more complicated
419 algorithms. */
420
421 static struct type **utypes; /* Pointer to array of user type pointers */
422 static int numutypes; /* Max number of user type pointers */
423
424 /* Maintain an array of referenced fundamental types for the current
425 compilation unit being read. For DWARF version 1, we have to construct
426 the fundamental types on the fly, since no information about the
427 fundamental types is supplied. Each such fundamental type is created by
428 calling a language dependent routine to create the type, and then a
429 pointer to that type is then placed in the array at the index specified
430 by it's FT_<TYPENAME> value. The array has a fixed size set by the
431 FT_NUM_MEMBERS compile time constant, which is the number of predefined
432 fundamental types gdb knows how to construct. */
433
434 static struct type *ftypes[FT_NUM_MEMBERS]; /* Fundamental types */
435
436 /* Record the language for the compilation unit which is currently being
437 processed. We know it once we have seen the TAG_compile_unit DIE,
438 and we need it while processing the DIE's for that compilation unit.
439 It is eventually saved in the symtab structure, but we don't finalize
440 the symtab struct until we have processed all the DIE's for the
441 compilation unit. We also need to get and save a pointer to the
442 language struct for this language, so we can call the language
443 dependent routines for doing things such as creating fundamental
444 types. */
445
446 static enum language cu_language;
447 static const struct language_defn *cu_language_defn;
448
449 /* Forward declarations of static functions so we don't have to worry
450 about ordering within this file. */
451
452 static int
453 attribute_size PARAMS ((unsigned int));
454
455 static unsigned long
456 target_to_host PARAMS ((char *, int, int, struct objfile *));
457
458 static void
459 add_enum_psymbol PARAMS ((struct dieinfo *, struct objfile *));
460
461 static void
462 handle_producer PARAMS ((char *));
463
464 static void
465 read_file_scope PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
466
467 static void
468 read_func_scope PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
469
470 static void
471 read_lexical_block_scope PARAMS ((struct dieinfo *, char *, char *,
472 struct objfile *));
473
474 static void
475 scan_partial_symbols PARAMS ((char *, char *, struct objfile *));
476
477 static void
478 scan_compilation_units PARAMS ((char *, char *, file_ptr,
479 file_ptr, struct objfile *));
480
481 static void
482 add_partial_symbol PARAMS ((struct dieinfo *, struct objfile *));
483
484 static void
485 init_psymbol_list PARAMS ((struct objfile *, int));
486
487 static void
488 basicdieinfo PARAMS ((struct dieinfo *, char *, struct objfile *));
489
490 static void
491 completedieinfo PARAMS ((struct dieinfo *, struct objfile *));
492
493 static void
494 dwarf_psymtab_to_symtab PARAMS ((struct partial_symtab *));
495
496 static void
497 psymtab_to_symtab_1 PARAMS ((struct partial_symtab *));
498
499 static void
500 read_ofile_symtab PARAMS ((struct partial_symtab *));
501
502 static void
503 process_dies PARAMS ((char *, char *, struct objfile *));
504
505 static void
506 read_structure_scope PARAMS ((struct dieinfo *, char *, char *,
507 struct objfile *));
508
509 static struct type *
510 decode_array_element_type PARAMS ((char *));
511
512 static struct type *
513 decode_subscript_data_item PARAMS ((char *, char *));
514
515 static void
516 dwarf_read_array_type PARAMS ((struct dieinfo *));
517
518 static void
519 read_tag_pointer_type PARAMS ((struct dieinfo *dip));
520
521 static void
522 read_tag_string_type PARAMS ((struct dieinfo *dip));
523
524 static void
525 read_subroutine_type PARAMS ((struct dieinfo *, char *, char *));
526
527 static void
528 read_enumeration PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
529
530 static struct type *
531 struct_type PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
532
533 static struct type *
534 enum_type PARAMS ((struct dieinfo *, struct objfile *));
535
536 static void
537 decode_line_numbers PARAMS ((char *));
538
539 static struct type *
540 decode_die_type PARAMS ((struct dieinfo *));
541
542 static struct type *
543 decode_mod_fund_type PARAMS ((char *));
544
545 static struct type *
546 decode_mod_u_d_type PARAMS ((char *));
547
548 static struct type *
549 decode_modified_type PARAMS ((char *, unsigned int, int));
550
551 static struct type *
552 decode_fund_type PARAMS ((unsigned int));
553
554 static char *
555 create_name PARAMS ((char *, struct obstack *));
556
557 static struct type *
558 lookup_utype PARAMS ((DIE_REF));
559
560 static struct type *
561 alloc_utype PARAMS ((DIE_REF, struct type *));
562
563 static struct symbol *
564 new_symbol PARAMS ((struct dieinfo *, struct objfile *));
565
566 static void
567 synthesize_typedef PARAMS ((struct dieinfo *, struct objfile *,
568 struct type *));
569
570 static int
571 locval PARAMS ((char *));
572
573 static void
574 set_cu_language PARAMS ((struct dieinfo *));
575
576 static struct type *
577 dwarf_fundamental_type PARAMS ((struct objfile *, int));
578
579
580 /*
581
582 LOCAL FUNCTION
583
584 dwarf_fundamental_type -- lookup or create a fundamental type
585
586 SYNOPSIS
587
588 struct type *
589 dwarf_fundamental_type (struct objfile *objfile, int typeid)
590
591 DESCRIPTION
592
593 DWARF version 1 doesn't supply any fundamental type information,
594 so gdb has to construct such types. It has a fixed number of
595 fundamental types that it knows how to construct, which is the
596 union of all types that it knows how to construct for all languages
597 that it knows about. These are enumerated in gdbtypes.h.
598
599 As an example, assume we find a DIE that references a DWARF
600 fundamental type of FT_integer. We first look in the ftypes
601 array to see if we already have such a type, indexed by the
602 gdb internal value of FT_INTEGER. If so, we simply return a
603 pointer to that type. If not, then we ask an appropriate
604 language dependent routine to create a type FT_INTEGER, using
605 defaults reasonable for the current target machine, and install
606 that type in ftypes for future reference.
607
608 RETURNS
609
610 Pointer to a fundamental type.
611
612 */
613
614 static struct type *
615 dwarf_fundamental_type (objfile, typeid)
616 struct objfile *objfile;
617 int typeid;
618 {
619 if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
620 {
621 error ("internal error - invalid fundamental type id %d", typeid);
622 }
623
624 /* Look for this particular type in the fundamental type vector. If one is
625 not found, create and install one appropriate for the current language
626 and the current target machine. */
627
628 if (ftypes[typeid] == NULL)
629 {
630 ftypes[typeid] = cu_language_defn -> la_fund_type(objfile, typeid);
631 }
632
633 return (ftypes[typeid]);
634 }
635
636 /*
637
638 LOCAL FUNCTION
639
640 set_cu_language -- set local copy of language for compilation unit
641
642 SYNOPSIS
643
644 void
645 set_cu_language (struct dieinfo *dip)
646
647 DESCRIPTION
648
649 Decode the language attribute for a compilation unit DIE and
650 remember what the language was. We use this at various times
651 when processing DIE's for a given compilation unit.
652
653 RETURNS
654
655 No return value.
656
657 */
658
659 static void
660 set_cu_language (dip)
661 struct dieinfo *dip;
662 {
663 switch (dip -> at_language)
664 {
665 case LANG_C89:
666 case LANG_C:
667 cu_language = language_c;
668 break;
669 case LANG_C_PLUS_PLUS:
670 cu_language = language_cplus;
671 break;
672 case LANG_CHILL:
673 cu_language = language_chill;
674 break;
675 case LANG_MODULA2:
676 cu_language = language_m2;
677 break;
678 case LANG_ADA83:
679 case LANG_COBOL74:
680 case LANG_COBOL85:
681 case LANG_FORTRAN77:
682 case LANG_FORTRAN90:
683 case LANG_PASCAL83:
684 /* We don't know anything special about these yet. */
685 cu_language = language_unknown;
686 break;
687 default:
688 /* If no at_language, try to deduce one from the filename */
689 cu_language = deduce_language_from_filename (dip -> at_name);
690 break;
691 }
692 cu_language_defn = language_def (cu_language);
693 }
694
695 /*
696
697 GLOBAL FUNCTION
698
699 dwarf_build_psymtabs -- build partial symtabs from DWARF debug info
700
701 SYNOPSIS
702
703 void dwarf_build_psymtabs (struct objfile *objfile,
704 struct section_offsets *section_offsets,
705 int mainline, file_ptr dbfoff, unsigned int dbfsize,
706 file_ptr lnoffset, unsigned int lnsize)
707
708 DESCRIPTION
709
710 This function is called upon to build partial symtabs from files
711 containing DIE's (Dwarf Information Entries) and DWARF line numbers.
712
713 It is passed a bfd* containing the DIES
714 and line number information, the corresponding filename for that
715 file, a base address for relocating the symbols, a flag indicating
716 whether or not this debugging information is from a "main symbol
717 table" rather than a shared library or dynamically linked file,
718 and file offset/size pairs for the DIE information and line number
719 information.
720
721 RETURNS
722
723 No return value.
724
725 */
726
727 void
728 dwarf_build_psymtabs (objfile, section_offsets, mainline, dbfoff, dbfsize,
729 lnoffset, lnsize)
730 struct objfile *objfile;
731 struct section_offsets *section_offsets;
732 int mainline;
733 file_ptr dbfoff;
734 unsigned int dbfsize;
735 file_ptr lnoffset;
736 unsigned int lnsize;
737 {
738 bfd *abfd = objfile->obfd;
739 struct cleanup *back_to;
740
741 current_objfile = objfile;
742 dbsize = dbfsize;
743 dbbase = xmalloc (dbsize);
744 dbroff = 0;
745 if ((bfd_seek (abfd, dbfoff, L_SET) != 0) ||
746 (bfd_read (dbbase, dbsize, 1, abfd) != dbsize))
747 {
748 free (dbbase);
749 error ("can't read DWARF data from '%s'", bfd_get_filename (abfd));
750 }
751 back_to = make_cleanup (free, dbbase);
752
753 /* If we are reinitializing, or if we have never loaded syms yet, init.
754 Since we have no idea how many DIES we are looking at, we just guess
755 some arbitrary value. */
756
757 if (mainline || objfile -> global_psymbols.size == 0 ||
758 objfile -> static_psymbols.size == 0)
759 {
760 init_psymbol_list (objfile, 1024);
761 }
762
763 /* Save the relocation factor where everybody can see it. */
764
765 base_section_offsets = section_offsets;
766 baseaddr = ANOFFSET (section_offsets, 0);
767
768 /* Follow the compilation unit sibling chain, building a partial symbol
769 table entry for each one. Save enough information about each compilation
770 unit to locate the full DWARF information later. */
771
772 scan_compilation_units (dbbase, dbbase + dbsize, dbfoff, lnoffset, objfile);
773
774 do_cleanups (back_to);
775 current_objfile = NULL;
776 }
777
778 /*
779
780 LOCAL FUNCTION
781
782 read_lexical_block_scope -- process all dies in a lexical block
783
784 SYNOPSIS
785
786 static void read_lexical_block_scope (struct dieinfo *dip,
787 char *thisdie, char *enddie)
788
789 DESCRIPTION
790
791 Process all the DIES contained within a lexical block scope.
792 Start a new scope, process the dies, and then close the scope.
793
794 */
795
796 static void
797 read_lexical_block_scope (dip, thisdie, enddie, objfile)
798 struct dieinfo *dip;
799 char *thisdie;
800 char *enddie;
801 struct objfile *objfile;
802 {
803 register struct context_stack *new;
804
805 push_context (0, dip -> at_low_pc);
806 process_dies (thisdie + dip -> die_length, enddie, objfile);
807 new = pop_context ();
808 if (local_symbols != NULL)
809 {
810 finish_block (0, &local_symbols, new -> old_blocks, new -> start_addr,
811 dip -> at_high_pc, objfile);
812 }
813 local_symbols = new -> locals;
814 }
815
816 /*
817
818 LOCAL FUNCTION
819
820 lookup_utype -- look up a user defined type from die reference
821
822 SYNOPSIS
823
824 static type *lookup_utype (DIE_REF die_ref)
825
826 DESCRIPTION
827
828 Given a DIE reference, lookup the user defined type associated with
829 that DIE, if it has been registered already. If not registered, then
830 return NULL. Alloc_utype() can be called to register an empty
831 type for this reference, which will be filled in later when the
832 actual referenced DIE is processed.
833 */
834
835 static struct type *
836 lookup_utype (die_ref)
837 DIE_REF die_ref;
838 {
839 struct type *type = NULL;
840 int utypeidx;
841
842 utypeidx = (die_ref - dbroff) / 4;
843 if ((utypeidx < 0) || (utypeidx >= numutypes))
844 {
845 complain (&bad_die_ref, DIE_ID, DIE_NAME);
846 }
847 else
848 {
849 type = *(utypes + utypeidx);
850 }
851 return (type);
852 }
853
854
855 /*
856
857 LOCAL FUNCTION
858
859 alloc_utype -- add a user defined type for die reference
860
861 SYNOPSIS
862
863 static type *alloc_utype (DIE_REF die_ref, struct type *utypep)
864
865 DESCRIPTION
866
867 Given a die reference DIE_REF, and a possible pointer to a user
868 defined type UTYPEP, register that this reference has a user
869 defined type and either use the specified type in UTYPEP or
870 make a new empty type that will be filled in later.
871
872 We should only be called after calling lookup_utype() to verify that
873 there is not currently a type registered for DIE_REF.
874 */
875
876 static struct type *
877 alloc_utype (die_ref, utypep)
878 DIE_REF die_ref;
879 struct type *utypep;
880 {
881 struct type **typep;
882 int utypeidx;
883
884 utypeidx = (die_ref - dbroff) / 4;
885 typep = utypes + utypeidx;
886 if ((utypeidx < 0) || (utypeidx >= numutypes))
887 {
888 utypep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
889 complain (&bad_die_ref, DIE_ID, DIE_NAME);
890 }
891 else if (*typep != NULL)
892 {
893 utypep = *typep;
894 complain (&dup_user_type_allocation, DIE_ID, DIE_NAME);
895 }
896 else
897 {
898 if (utypep == NULL)
899 {
900 utypep = alloc_type (current_objfile);
901 }
902 *typep = utypep;
903 }
904 return (utypep);
905 }
906
907 /*
908
909 LOCAL FUNCTION
910
911 decode_die_type -- return a type for a specified die
912
913 SYNOPSIS
914
915 static struct type *decode_die_type (struct dieinfo *dip)
916
917 DESCRIPTION
918
919 Given a pointer to a die information structure DIP, decode the
920 type of the die and return a pointer to the decoded type. All
921 dies without specific types default to type int.
922 */
923
924 static struct type *
925 decode_die_type (dip)
926 struct dieinfo *dip;
927 {
928 struct type *type = NULL;
929
930 if (dip -> at_fund_type != 0)
931 {
932 type = decode_fund_type (dip -> at_fund_type);
933 }
934 else if (dip -> at_mod_fund_type != NULL)
935 {
936 type = decode_mod_fund_type (dip -> at_mod_fund_type);
937 }
938 else if (dip -> at_user_def_type)
939 {
940 if ((type = lookup_utype (dip -> at_user_def_type)) == NULL)
941 {
942 type = alloc_utype (dip -> at_user_def_type, NULL);
943 }
944 }
945 else if (dip -> at_mod_u_d_type)
946 {
947 type = decode_mod_u_d_type (dip -> at_mod_u_d_type);
948 }
949 else
950 {
951 type = dwarf_fundamental_type (current_objfile, FT_INTEGER);
952 }
953 return (type);
954 }
955
956 /*
957
958 LOCAL FUNCTION
959
960 struct_type -- compute and return the type for a struct or union
961
962 SYNOPSIS
963
964 static struct type *struct_type (struct dieinfo *dip, char *thisdie,
965 char *enddie, struct objfile *objfile)
966
967 DESCRIPTION
968
969 Given pointer to a die information structure for a die which
970 defines a union or structure (and MUST define one or the other),
971 and pointers to the raw die data that define the range of dies which
972 define the members, compute and return the user defined type for the
973 structure or union.
974 */
975
976 static struct type *
977 struct_type (dip, thisdie, enddie, objfile)
978 struct dieinfo *dip;
979 char *thisdie;
980 char *enddie;
981 struct objfile *objfile;
982 {
983 struct type *type;
984 struct nextfield {
985 struct nextfield *next;
986 struct field field;
987 };
988 struct nextfield *list = NULL;
989 struct nextfield *new;
990 int nfields = 0;
991 int n;
992 struct dieinfo mbr;
993 char *nextdie;
994 #if !BITS_BIG_ENDIAN
995 int anonymous_size;
996 #endif
997
998 if ((type = lookup_utype (dip -> die_ref)) == NULL)
999 {
1000 /* No forward references created an empty type, so install one now */
1001 type = alloc_utype (dip -> die_ref, NULL);
1002 }
1003 INIT_CPLUS_SPECIFIC(type);
1004 switch (dip -> die_tag)
1005 {
1006 case TAG_class_type:
1007 TYPE_CODE (type) = TYPE_CODE_CLASS;
1008 break;
1009 case TAG_structure_type:
1010 TYPE_CODE (type) = TYPE_CODE_STRUCT;
1011 break;
1012 case TAG_union_type:
1013 TYPE_CODE (type) = TYPE_CODE_UNION;
1014 break;
1015 default:
1016 /* Should never happen */
1017 TYPE_CODE (type) = TYPE_CODE_UNDEF;
1018 complain (&missing_tag, DIE_ID, DIE_NAME);
1019 break;
1020 }
1021 /* Some compilers try to be helpful by inventing "fake" names for
1022 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1023 Thanks, but no thanks... */
1024 if (dip -> at_name != NULL
1025 && *dip -> at_name != '~'
1026 && *dip -> at_name != '.')
1027 {
1028 TYPE_TAG_NAME (type) = obconcat (&objfile -> type_obstack,
1029 "", "", dip -> at_name);
1030 }
1031 /* Use whatever size is known. Zero is a valid size. We might however
1032 wish to check has_at_byte_size to make sure that some byte size was
1033 given explicitly, but DWARF doesn't specify that explicit sizes of
1034 zero have to present, so complaining about missing sizes should
1035 probably not be the default. */
1036 TYPE_LENGTH (type) = dip -> at_byte_size;
1037 thisdie += dip -> die_length;
1038 while (thisdie < enddie)
1039 {
1040 basicdieinfo (&mbr, thisdie, objfile);
1041 completedieinfo (&mbr, objfile);
1042 if (mbr.die_length <= SIZEOF_DIE_LENGTH)
1043 {
1044 break;
1045 }
1046 else if (mbr.at_sibling != 0)
1047 {
1048 nextdie = dbbase + mbr.at_sibling - dbroff;
1049 }
1050 else
1051 {
1052 nextdie = thisdie + mbr.die_length;
1053 }
1054 switch (mbr.die_tag)
1055 {
1056 case TAG_member:
1057 /* Get space to record the next field's data. */
1058 new = (struct nextfield *) alloca (sizeof (struct nextfield));
1059 new -> next = list;
1060 list = new;
1061 /* Save the data. */
1062 list -> field.name =
1063 obsavestring (mbr.at_name, strlen (mbr.at_name),
1064 &objfile -> type_obstack);
1065 list -> field.type = decode_die_type (&mbr);
1066 list -> field.bitpos = 8 * locval (mbr.at_location);
1067 /* Handle bit fields. */
1068 list -> field.bitsize = mbr.at_bit_size;
1069 #if BITS_BIG_ENDIAN
1070 /* For big endian bits, the at_bit_offset gives the additional
1071 bit offset from the MSB of the containing anonymous object to
1072 the MSB of the field. We don't have to do anything special
1073 since we don't need to know the size of the anonymous object. */
1074 list -> field.bitpos += mbr.at_bit_offset;
1075 #else
1076 /* For little endian bits, we need to have a non-zero at_bit_size,
1077 so that we know we are in fact dealing with a bitfield. Compute
1078 the bit offset to the MSB of the anonymous object, subtract off
1079 the number of bits from the MSB of the field to the MSB of the
1080 object, and then subtract off the number of bits of the field
1081 itself. The result is the bit offset of the LSB of the field. */
1082 if (mbr.at_bit_size > 0)
1083 {
1084 if (mbr.has_at_byte_size)
1085 {
1086 /* The size of the anonymous object containing the bit field
1087 is explicit, so use the indicated size (in bytes). */
1088 anonymous_size = mbr.at_byte_size;
1089 }
1090 else
1091 {
1092 /* The size of the anonymous object containing the bit field
1093 matches the size of an object of the bit field's type.
1094 DWARF allows at_byte_size to be left out in such cases,
1095 as a debug information size optimization. */
1096 anonymous_size = TYPE_LENGTH (list -> field.type);
1097 }
1098 list -> field.bitpos +=
1099 anonymous_size * 8 - mbr.at_bit_offset - mbr.at_bit_size;
1100 }
1101 #endif
1102 nfields++;
1103 break;
1104 default:
1105 process_dies (thisdie, nextdie, objfile);
1106 break;
1107 }
1108 thisdie = nextdie;
1109 }
1110 /* Now create the vector of fields, and record how big it is. We may
1111 not even have any fields, if this DIE was generated due to a reference
1112 to an anonymous structure or union. In this case, TYPE_FLAG_STUB is
1113 set, which clues gdb in to the fact that it needs to search elsewhere
1114 for the full structure definition. */
1115 if (nfields == 0)
1116 {
1117 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1118 }
1119 else
1120 {
1121 TYPE_NFIELDS (type) = nfields;
1122 TYPE_FIELDS (type) = (struct field *)
1123 TYPE_ALLOC (type, sizeof (struct field) * nfields);
1124 /* Copy the saved-up fields into the field vector. */
1125 for (n = nfields; list; list = list -> next)
1126 {
1127 TYPE_FIELD (type, --n) = list -> field;
1128 }
1129 }
1130 return (type);
1131 }
1132
1133 /*
1134
1135 LOCAL FUNCTION
1136
1137 read_structure_scope -- process all dies within struct or union
1138
1139 SYNOPSIS
1140
1141 static void read_structure_scope (struct dieinfo *dip,
1142 char *thisdie, char *enddie, struct objfile *objfile)
1143
1144 DESCRIPTION
1145
1146 Called when we find the DIE that starts a structure or union
1147 scope (definition) to process all dies that define the members
1148 of the structure or union. DIP is a pointer to the die info
1149 struct for the DIE that names the structure or union.
1150
1151 NOTES
1152
1153 Note that we need to call struct_type regardless of whether or not
1154 the DIE has an at_name attribute, since it might be an anonymous
1155 structure or union. This gets the type entered into our set of
1156 user defined types.
1157
1158 However, if the structure is incomplete (an opaque struct/union)
1159 then suppress creating a symbol table entry for it since gdb only
1160 wants to find the one with the complete definition. Note that if
1161 it is complete, we just call new_symbol, which does it's own
1162 checking about whether the struct/union is anonymous or not (and
1163 suppresses creating a symbol table entry itself).
1164
1165 */
1166
1167 static void
1168 read_structure_scope (dip, thisdie, enddie, objfile)
1169 struct dieinfo *dip;
1170 char *thisdie;
1171 char *enddie;
1172 struct objfile *objfile;
1173 {
1174 struct type *type;
1175 struct symbol *sym;
1176
1177 type = struct_type (dip, thisdie, enddie, objfile);
1178 if (!(TYPE_FLAGS (type) & TYPE_FLAG_STUB))
1179 {
1180 sym = new_symbol (dip, objfile);
1181 if (sym != NULL)
1182 {
1183 SYMBOL_TYPE (sym) = type;
1184 if (cu_language == language_cplus)
1185 {
1186 synthesize_typedef (dip, objfile, type);
1187 }
1188 }
1189 }
1190 }
1191
1192 /*
1193
1194 LOCAL FUNCTION
1195
1196 decode_array_element_type -- decode type of the array elements
1197
1198 SYNOPSIS
1199
1200 static struct type *decode_array_element_type (char *scan, char *end)
1201
1202 DESCRIPTION
1203
1204 As the last step in decoding the array subscript information for an
1205 array DIE, we need to decode the type of the array elements. We are
1206 passed a pointer to this last part of the subscript information and
1207 must return the appropriate type. If the type attribute is not
1208 recognized, just warn about the problem and return type int.
1209 */
1210
1211 static struct type *
1212 decode_array_element_type (scan)
1213 char *scan;
1214 {
1215 struct type *typep;
1216 DIE_REF die_ref;
1217 unsigned short attribute;
1218 unsigned short fundtype;
1219 int nbytes;
1220
1221 attribute = target_to_host (scan, SIZEOF_ATTRIBUTE, GET_UNSIGNED,
1222 current_objfile);
1223 scan += SIZEOF_ATTRIBUTE;
1224 if ((nbytes = attribute_size (attribute)) == -1)
1225 {
1226 complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute);
1227 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1228 }
1229 else
1230 {
1231 switch (attribute)
1232 {
1233 case AT_fund_type:
1234 fundtype = target_to_host (scan, nbytes, GET_UNSIGNED,
1235 current_objfile);
1236 typep = decode_fund_type (fundtype);
1237 break;
1238 case AT_mod_fund_type:
1239 typep = decode_mod_fund_type (scan);
1240 break;
1241 case AT_user_def_type:
1242 die_ref = target_to_host (scan, nbytes, GET_UNSIGNED,
1243 current_objfile);
1244 if ((typep = lookup_utype (die_ref)) == NULL)
1245 {
1246 typep = alloc_utype (die_ref, NULL);
1247 }
1248 break;
1249 case AT_mod_u_d_type:
1250 typep = decode_mod_u_d_type (scan);
1251 break;
1252 default:
1253 complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute);
1254 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1255 break;
1256 }
1257 }
1258 return (typep);
1259 }
1260
1261 /*
1262
1263 LOCAL FUNCTION
1264
1265 decode_subscript_data_item -- decode array subscript item
1266
1267 SYNOPSIS
1268
1269 static struct type *
1270 decode_subscript_data_item (char *scan, char *end)
1271
1272 DESCRIPTION
1273
1274 The array subscripts and the data type of the elements of an
1275 array are described by a list of data items, stored as a block
1276 of contiguous bytes. There is a data item describing each array
1277 dimension, and a final data item describing the element type.
1278 The data items are ordered the same as their appearance in the
1279 source (I.E. leftmost dimension first, next to leftmost second,
1280 etc).
1281
1282 The data items describing each array dimension consist of four
1283 parts: (1) a format specifier, (2) type type of the subscript
1284 index, (3) a description of the low bound of the array dimension,
1285 and (4) a description of the high bound of the array dimension.
1286
1287 The last data item is the description of the type of each of
1288 the array elements.
1289
1290 We are passed a pointer to the start of the block of bytes
1291 containing the remaining data items, and a pointer to the first
1292 byte past the data. This function recursively decodes the
1293 remaining data items and returns a type.
1294
1295 If we somehow fail to decode some data, we complain about it
1296 and return a type "array of int".
1297
1298 BUGS
1299 FIXME: This code only implements the forms currently used
1300 by the AT&T and GNU C compilers.
1301
1302 The end pointer is supplied for error checking, maybe we should
1303 use it for that...
1304 */
1305
1306 static struct type *
1307 decode_subscript_data_item (scan, end)
1308 char *scan;
1309 char *end;
1310 {
1311 struct type *typep = NULL; /* Array type we are building */
1312 struct type *nexttype; /* Type of each element (may be array) */
1313 struct type *indextype; /* Type of this index */
1314 struct type *rangetype;
1315 unsigned int format;
1316 unsigned short fundtype;
1317 unsigned long lowbound;
1318 unsigned long highbound;
1319 int nbytes;
1320
1321 format = target_to_host (scan, SIZEOF_FORMAT_SPECIFIER, GET_UNSIGNED,
1322 current_objfile);
1323 scan += SIZEOF_FORMAT_SPECIFIER;
1324 switch (format)
1325 {
1326 case FMT_ET:
1327 typep = decode_array_element_type (scan);
1328 break;
1329 case FMT_FT_C_C:
1330 fundtype = target_to_host (scan, SIZEOF_FMT_FT, GET_UNSIGNED,
1331 current_objfile);
1332 indextype = decode_fund_type (fundtype);
1333 scan += SIZEOF_FMT_FT;
1334 nbytes = TARGET_FT_LONG_SIZE (current_objfile);
1335 lowbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1336 scan += nbytes;
1337 highbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1338 scan += nbytes;
1339 nexttype = decode_subscript_data_item (scan, end);
1340 if (nexttype == NULL)
1341 {
1342 /* Munged subscript data or other problem, fake it. */
1343 complain (&subscript_data_items, DIE_ID, DIE_NAME);
1344 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1345 }
1346 rangetype = create_range_type ((struct type *) NULL, indextype,
1347 lowbound, highbound);
1348 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1349 break;
1350 case FMT_FT_C_X:
1351 case FMT_FT_X_C:
1352 case FMT_FT_X_X:
1353 case FMT_UT_C_C:
1354 case FMT_UT_C_X:
1355 case FMT_UT_X_C:
1356 case FMT_UT_X_X:
1357 complain (&unhandled_array_subscript_format, DIE_ID, DIE_NAME, format);
1358 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1359 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1360 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1361 break;
1362 default:
1363 complain (&unknown_array_subscript_format, DIE_ID, DIE_NAME, format);
1364 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1365 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1366 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1367 break;
1368 }
1369 return (typep);
1370 }
1371
1372 /*
1373
1374 LOCAL FUNCTION
1375
1376 dwarf_read_array_type -- read TAG_array_type DIE
1377
1378 SYNOPSIS
1379
1380 static void dwarf_read_array_type (struct dieinfo *dip)
1381
1382 DESCRIPTION
1383
1384 Extract all information from a TAG_array_type DIE and add to
1385 the user defined type vector.
1386 */
1387
1388 static void
1389 dwarf_read_array_type (dip)
1390 struct dieinfo *dip;
1391 {
1392 struct type *type;
1393 struct type *utype;
1394 char *sub;
1395 char *subend;
1396 unsigned short blocksz;
1397 int nbytes;
1398
1399 if (dip -> at_ordering != ORD_row_major)
1400 {
1401 /* FIXME: Can gdb even handle column major arrays? */
1402 complain (&not_row_major, DIE_ID, DIE_NAME);
1403 }
1404 if ((sub = dip -> at_subscr_data) != NULL)
1405 {
1406 nbytes = attribute_size (AT_subscr_data);
1407 blocksz = target_to_host (sub, nbytes, GET_UNSIGNED, current_objfile);
1408 subend = sub + nbytes + blocksz;
1409 sub += nbytes;
1410 type = decode_subscript_data_item (sub, subend);
1411 if ((utype = lookup_utype (dip -> die_ref)) == NULL)
1412 {
1413 /* Install user defined type that has not been referenced yet. */
1414 alloc_utype (dip -> die_ref, type);
1415 }
1416 else if (TYPE_CODE (utype) == TYPE_CODE_UNDEF)
1417 {
1418 /* Ick! A forward ref has already generated a blank type in our
1419 slot, and this type probably already has things pointing to it
1420 (which is what caused it to be created in the first place).
1421 If it's just a place holder we can plop our fully defined type
1422 on top of it. We can't recover the space allocated for our
1423 new type since it might be on an obstack, but we could reuse
1424 it if we kept a list of them, but it might not be worth it
1425 (FIXME). */
1426 *utype = *type;
1427 }
1428 else
1429 {
1430 /* Double ick! Not only is a type already in our slot, but
1431 someone has decorated it. Complain and leave it alone. */
1432 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1433 }
1434 }
1435 }
1436
1437 /*
1438
1439 LOCAL FUNCTION
1440
1441 read_tag_pointer_type -- read TAG_pointer_type DIE
1442
1443 SYNOPSIS
1444
1445 static void read_tag_pointer_type (struct dieinfo *dip)
1446
1447 DESCRIPTION
1448
1449 Extract all information from a TAG_pointer_type DIE and add to
1450 the user defined type vector.
1451 */
1452
1453 static void
1454 read_tag_pointer_type (dip)
1455 struct dieinfo *dip;
1456 {
1457 struct type *type;
1458 struct type *utype;
1459
1460 type = decode_die_type (dip);
1461 if ((utype = lookup_utype (dip -> die_ref)) == NULL)
1462 {
1463 utype = lookup_pointer_type (type);
1464 alloc_utype (dip -> die_ref, utype);
1465 }
1466 else
1467 {
1468 TYPE_TARGET_TYPE (utype) = type;
1469 TYPE_POINTER_TYPE (type) = utype;
1470
1471 /* We assume the machine has only one representation for pointers! */
1472 /* FIXME: This confuses host<->target data representations, and is a
1473 poor assumption besides. */
1474
1475 TYPE_LENGTH (utype) = sizeof (char *);
1476 TYPE_CODE (utype) = TYPE_CODE_PTR;
1477 }
1478 }
1479
1480 /*
1481
1482 LOCAL FUNCTION
1483
1484 read_tag_string_type -- read TAG_string_type DIE
1485
1486 SYNOPSIS
1487
1488 static void read_tag_string_type (struct dieinfo *dip)
1489
1490 DESCRIPTION
1491
1492 Extract all information from a TAG_string_type DIE and add to
1493 the user defined type vector. It isn't really a user defined
1494 type, but it behaves like one, with other DIE's using an
1495 AT_user_def_type attribute to reference it.
1496 */
1497
1498 static void
1499 read_tag_string_type (dip)
1500 struct dieinfo *dip;
1501 {
1502 struct type *utype;
1503 struct type *indextype;
1504 struct type *rangetype;
1505 unsigned long lowbound = 0;
1506 unsigned long highbound;
1507
1508 if (dip -> has_at_byte_size)
1509 {
1510 /* A fixed bounds string */
1511 highbound = dip -> at_byte_size - 1;
1512 }
1513 else
1514 {
1515 /* A varying length string. Stub for now. (FIXME) */
1516 highbound = 1;
1517 }
1518 indextype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1519 rangetype = create_range_type ((struct type *) NULL, indextype, lowbound,
1520 highbound);
1521
1522 utype = lookup_utype (dip -> die_ref);
1523 if (utype == NULL)
1524 {
1525 /* No type defined, go ahead and create a blank one to use. */
1526 utype = alloc_utype (dip -> die_ref, (struct type *) NULL);
1527 }
1528 else
1529 {
1530 /* Already a type in our slot due to a forward reference. Make sure it
1531 is a blank one. If not, complain and leave it alone. */
1532 if (TYPE_CODE (utype) != TYPE_CODE_UNDEF)
1533 {
1534 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1535 return;
1536 }
1537 }
1538
1539 /* Create the string type using the blank type we either found or created. */
1540 utype = create_string_type (utype, rangetype);
1541 }
1542
1543 /*
1544
1545 LOCAL FUNCTION
1546
1547 read_subroutine_type -- process TAG_subroutine_type dies
1548
1549 SYNOPSIS
1550
1551 static void read_subroutine_type (struct dieinfo *dip, char thisdie,
1552 char *enddie)
1553
1554 DESCRIPTION
1555
1556 Handle DIES due to C code like:
1557
1558 struct foo {
1559 int (*funcp)(int a, long l); (Generates TAG_subroutine_type DIE)
1560 int b;
1561 };
1562
1563 NOTES
1564
1565 The parameter DIES are currently ignored. See if gdb has a way to
1566 include this info in it's type system, and decode them if so. Is
1567 this what the type structure's "arg_types" field is for? (FIXME)
1568 */
1569
1570 static void
1571 read_subroutine_type (dip, thisdie, enddie)
1572 struct dieinfo *dip;
1573 char *thisdie;
1574 char *enddie;
1575 {
1576 struct type *type; /* Type that this function returns */
1577 struct type *ftype; /* Function that returns above type */
1578
1579 /* Decode the type that this subroutine returns */
1580
1581 type = decode_die_type (dip);
1582
1583 /* Check to see if we already have a partially constructed user
1584 defined type for this DIE, from a forward reference. */
1585
1586 if ((ftype = lookup_utype (dip -> die_ref)) == NULL)
1587 {
1588 /* This is the first reference to one of these types. Make
1589 a new one and place it in the user defined types. */
1590 ftype = lookup_function_type (type);
1591 alloc_utype (dip -> die_ref, ftype);
1592 }
1593 else if (TYPE_CODE (ftype) == TYPE_CODE_UNDEF)
1594 {
1595 /* We have an existing partially constructed type, so bash it
1596 into the correct type. */
1597 TYPE_TARGET_TYPE (ftype) = type;
1598 TYPE_FUNCTION_TYPE (type) = ftype;
1599 TYPE_LENGTH (ftype) = 1;
1600 TYPE_CODE (ftype) = TYPE_CODE_FUNC;
1601 }
1602 else
1603 {
1604 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1605 }
1606 }
1607
1608 /*
1609
1610 LOCAL FUNCTION
1611
1612 read_enumeration -- process dies which define an enumeration
1613
1614 SYNOPSIS
1615
1616 static void read_enumeration (struct dieinfo *dip, char *thisdie,
1617 char *enddie, struct objfile *objfile)
1618
1619 DESCRIPTION
1620
1621 Given a pointer to a die which begins an enumeration, process all
1622 the dies that define the members of the enumeration.
1623
1624 NOTES
1625
1626 Note that we need to call enum_type regardless of whether or not we
1627 have a symbol, since we might have an enum without a tag name (thus
1628 no symbol for the tagname).
1629 */
1630
1631 static void
1632 read_enumeration (dip, thisdie, enddie, objfile)
1633 struct dieinfo *dip;
1634 char *thisdie;
1635 char *enddie;
1636 struct objfile *objfile;
1637 {
1638 struct type *type;
1639 struct symbol *sym;
1640
1641 type = enum_type (dip, objfile);
1642 sym = new_symbol (dip, objfile);
1643 if (sym != NULL)
1644 {
1645 SYMBOL_TYPE (sym) = type;
1646 if (cu_language == language_cplus)
1647 {
1648 synthesize_typedef (dip, objfile, type);
1649 }
1650 }
1651 }
1652
1653 /*
1654
1655 LOCAL FUNCTION
1656
1657 enum_type -- decode and return a type for an enumeration
1658
1659 SYNOPSIS
1660
1661 static type *enum_type (struct dieinfo *dip, struct objfile *objfile)
1662
1663 DESCRIPTION
1664
1665 Given a pointer to a die information structure for the die which
1666 starts an enumeration, process all the dies that define the members
1667 of the enumeration and return a type pointer for the enumeration.
1668
1669 At the same time, for each member of the enumeration, create a
1670 symbol for it with namespace VAR_NAMESPACE and class LOC_CONST,
1671 and give it the type of the enumeration itself.
1672
1673 NOTES
1674
1675 Note that the DWARF specification explicitly mandates that enum
1676 constants occur in reverse order from the source program order,
1677 for "consistency" and because this ordering is easier for many
1678 compilers to generate. (Draft 6, sec 3.8.5, Enumeration type
1679 Entries). Because gdb wants to see the enum members in program
1680 source order, we have to ensure that the order gets reversed while
1681 we are processing them.
1682 */
1683
1684 static struct type *
1685 enum_type (dip, objfile)
1686 struct dieinfo *dip;
1687 struct objfile *objfile;
1688 {
1689 struct type *type;
1690 struct nextfield {
1691 struct nextfield *next;
1692 struct field field;
1693 };
1694 struct nextfield *list = NULL;
1695 struct nextfield *new;
1696 int nfields = 0;
1697 int n;
1698 char *scan;
1699 char *listend;
1700 unsigned short blocksz;
1701 struct symbol *sym;
1702 int nbytes;
1703
1704 if ((type = lookup_utype (dip -> die_ref)) == NULL)
1705 {
1706 /* No forward references created an empty type, so install one now */
1707 type = alloc_utype (dip -> die_ref, NULL);
1708 }
1709 TYPE_CODE (type) = TYPE_CODE_ENUM;
1710 /* Some compilers try to be helpful by inventing "fake" names for
1711 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1712 Thanks, but no thanks... */
1713 if (dip -> at_name != NULL
1714 && *dip -> at_name != '~'
1715 && *dip -> at_name != '.')
1716 {
1717 TYPE_TAG_NAME (type) = obconcat (&objfile -> type_obstack,
1718 "", "", dip -> at_name);
1719 }
1720 if (dip -> at_byte_size != 0)
1721 {
1722 TYPE_LENGTH (type) = dip -> at_byte_size;
1723 }
1724 if ((scan = dip -> at_element_list) != NULL)
1725 {
1726 if (dip -> short_element_list)
1727 {
1728 nbytes = attribute_size (AT_short_element_list);
1729 }
1730 else
1731 {
1732 nbytes = attribute_size (AT_element_list);
1733 }
1734 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
1735 listend = scan + nbytes + blocksz;
1736 scan += nbytes;
1737 while (scan < listend)
1738 {
1739 new = (struct nextfield *) alloca (sizeof (struct nextfield));
1740 new -> next = list;
1741 list = new;
1742 list -> field.type = NULL;
1743 list -> field.bitsize = 0;
1744 list -> field.bitpos =
1745 target_to_host (scan, TARGET_FT_LONG_SIZE (objfile), GET_SIGNED,
1746 objfile);
1747 scan += TARGET_FT_LONG_SIZE (objfile);
1748 list -> field.name = obsavestring (scan, strlen (scan),
1749 &objfile -> type_obstack);
1750 scan += strlen (scan) + 1;
1751 nfields++;
1752 /* Handcraft a new symbol for this enum member. */
1753 sym = (struct symbol *) obstack_alloc (&objfile->symbol_obstack,
1754 sizeof (struct symbol));
1755 memset (sym, 0, sizeof (struct symbol));
1756 SYMBOL_NAME (sym) = create_name (list -> field.name,
1757 &objfile->symbol_obstack);
1758 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
1759 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1760 SYMBOL_CLASS (sym) = LOC_CONST;
1761 SYMBOL_TYPE (sym) = type;
1762 SYMBOL_VALUE (sym) = list -> field.bitpos;
1763 add_symbol_to_list (sym, list_in_scope);
1764 }
1765 /* Now create the vector of fields, and record how big it is. This is
1766 where we reverse the order, by pulling the members off the list in
1767 reverse order from how they were inserted. If we have no fields
1768 (this is apparently possible in C++) then skip building a field
1769 vector. */
1770 if (nfields > 0)
1771 {
1772 TYPE_NFIELDS (type) = nfields;
1773 TYPE_FIELDS (type) = (struct field *)
1774 obstack_alloc (&objfile->symbol_obstack, sizeof (struct field) * nfields);
1775 /* Copy the saved-up fields into the field vector. */
1776 for (n = 0; (n < nfields) && (list != NULL); list = list -> next)
1777 {
1778 TYPE_FIELD (type, n++) = list -> field;
1779 }
1780 }
1781 }
1782 return (type);
1783 }
1784
1785 /*
1786
1787 LOCAL FUNCTION
1788
1789 read_func_scope -- process all dies within a function scope
1790
1791 DESCRIPTION
1792
1793 Process all dies within a given function scope. We are passed
1794 a die information structure pointer DIP for the die which
1795 starts the function scope, and pointers into the raw die data
1796 that define the dies within the function scope.
1797
1798 For now, we ignore lexical block scopes within the function.
1799 The problem is that AT&T cc does not define a DWARF lexical
1800 block scope for the function itself, while gcc defines a
1801 lexical block scope for the function. We need to think about
1802 how to handle this difference, or if it is even a problem.
1803 (FIXME)
1804 */
1805
1806 static void
1807 read_func_scope (dip, thisdie, enddie, objfile)
1808 struct dieinfo *dip;
1809 char *thisdie;
1810 char *enddie;
1811 struct objfile *objfile;
1812 {
1813 register struct context_stack *new;
1814
1815 if (objfile -> ei.entry_point >= dip -> at_low_pc &&
1816 objfile -> ei.entry_point < dip -> at_high_pc)
1817 {
1818 objfile -> ei.entry_func_lowpc = dip -> at_low_pc;
1819 objfile -> ei.entry_func_highpc = dip -> at_high_pc;
1820 }
1821 if (STREQ (dip -> at_name, "main")) /* FIXME: hardwired name */
1822 {
1823 objfile -> ei.main_func_lowpc = dip -> at_low_pc;
1824 objfile -> ei.main_func_highpc = dip -> at_high_pc;
1825 }
1826 new = push_context (0, dip -> at_low_pc);
1827 new -> name = new_symbol (dip, objfile);
1828 list_in_scope = &local_symbols;
1829 process_dies (thisdie + dip -> die_length, enddie, objfile);
1830 new = pop_context ();
1831 /* Make a block for the local symbols within. */
1832 finish_block (new -> name, &local_symbols, new -> old_blocks,
1833 new -> start_addr, dip -> at_high_pc, objfile);
1834 list_in_scope = &file_symbols;
1835 }
1836
1837
1838 /*
1839
1840 LOCAL FUNCTION
1841
1842 handle_producer -- process the AT_producer attribute
1843
1844 DESCRIPTION
1845
1846 Perform any operations that depend on finding a particular
1847 AT_producer attribute.
1848
1849 */
1850
1851 static void
1852 handle_producer (producer)
1853 char *producer;
1854 {
1855
1856 /* If this compilation unit was compiled with g++ or gcc, then set the
1857 processing_gcc_compilation flag. */
1858
1859 processing_gcc_compilation =
1860 STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER))
1861 || STREQN (producer, CHILL_PRODUCER, strlen (CHILL_PRODUCER))
1862 || STREQN (producer, GCC_PRODUCER, strlen (GCC_PRODUCER));
1863
1864 /* Select a demangling style if we can identify the producer and if
1865 the current style is auto. We leave the current style alone if it
1866 is not auto. We also leave the demangling style alone if we find a
1867 gcc (cc1) producer, as opposed to a g++ (cc1plus) producer. */
1868
1869 if (AUTO_DEMANGLING)
1870 {
1871 if (STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER)))
1872 {
1873 set_demangling_style (GNU_DEMANGLING_STYLE_STRING);
1874 }
1875 else if (STREQN (producer, LCC_PRODUCER, strlen (LCC_PRODUCER)))
1876 {
1877 set_demangling_style (LUCID_DEMANGLING_STYLE_STRING);
1878 }
1879 }
1880 }
1881
1882
1883 /*
1884
1885 LOCAL FUNCTION
1886
1887 read_file_scope -- process all dies within a file scope
1888
1889 DESCRIPTION
1890
1891 Process all dies within a given file scope. We are passed a
1892 pointer to the die information structure for the die which
1893 starts the file scope, and pointers into the raw die data which
1894 mark the range of dies within the file scope.
1895
1896 When the partial symbol table is built, the file offset for the line
1897 number table for each compilation unit is saved in the partial symbol
1898 table entry for that compilation unit. As the symbols for each
1899 compilation unit are read, the line number table is read into memory
1900 and the variable lnbase is set to point to it. Thus all we have to
1901 do is use lnbase to access the line number table for the current
1902 compilation unit.
1903 */
1904
1905 static void
1906 read_file_scope (dip, thisdie, enddie, objfile)
1907 struct dieinfo *dip;
1908 char *thisdie;
1909 char *enddie;
1910 struct objfile *objfile;
1911 {
1912 struct cleanup *back_to;
1913 struct symtab *symtab;
1914
1915 if (objfile -> ei.entry_point >= dip -> at_low_pc &&
1916 objfile -> ei.entry_point < dip -> at_high_pc)
1917 {
1918 objfile -> ei.entry_file_lowpc = dip -> at_low_pc;
1919 objfile -> ei.entry_file_highpc = dip -> at_high_pc;
1920 }
1921 set_cu_language (dip);
1922 if (dip -> at_producer != NULL)
1923 {
1924 handle_producer (dip -> at_producer);
1925 }
1926 numutypes = (enddie - thisdie) / 4;
1927 utypes = (struct type **) xmalloc (numutypes * sizeof (struct type *));
1928 back_to = make_cleanup (free, utypes);
1929 memset (utypes, 0, numutypes * sizeof (struct type *));
1930 memset (ftypes, 0, FT_NUM_MEMBERS * sizeof (struct type *));
1931 start_symtab (dip -> at_name, dip -> at_comp_dir, dip -> at_low_pc);
1932 decode_line_numbers (lnbase);
1933 process_dies (thisdie + dip -> die_length, enddie, objfile);
1934
1935 symtab = end_symtab (dip -> at_high_pc, 0, 0, objfile, 0);
1936 if (symtab != NULL)
1937 {
1938 symtab -> language = cu_language;
1939 }
1940 do_cleanups (back_to);
1941 utypes = NULL;
1942 numutypes = 0;
1943 }
1944
1945 /*
1946
1947 LOCAL FUNCTION
1948
1949 process_dies -- process a range of DWARF Information Entries
1950
1951 SYNOPSIS
1952
1953 static void process_dies (char *thisdie, char *enddie,
1954 struct objfile *objfile)
1955
1956 DESCRIPTION
1957
1958 Process all DIE's in a specified range. May be (and almost
1959 certainly will be) called recursively.
1960 */
1961
1962 static void
1963 process_dies (thisdie, enddie, objfile)
1964 char *thisdie;
1965 char *enddie;
1966 struct objfile *objfile;
1967 {
1968 char *nextdie;
1969 struct dieinfo di;
1970
1971 while (thisdie < enddie)
1972 {
1973 basicdieinfo (&di, thisdie, objfile);
1974 if (di.die_length < SIZEOF_DIE_LENGTH)
1975 {
1976 break;
1977 }
1978 else if (di.die_tag == TAG_padding)
1979 {
1980 nextdie = thisdie + di.die_length;
1981 }
1982 else
1983 {
1984 completedieinfo (&di, objfile);
1985 if (di.at_sibling != 0)
1986 {
1987 nextdie = dbbase + di.at_sibling - dbroff;
1988 }
1989 else
1990 {
1991 nextdie = thisdie + di.die_length;
1992 }
1993 switch (di.die_tag)
1994 {
1995 case TAG_compile_unit:
1996 read_file_scope (&di, thisdie, nextdie, objfile);
1997 break;
1998 case TAG_global_subroutine:
1999 case TAG_subroutine:
2000 if (di.has_at_low_pc)
2001 {
2002 read_func_scope (&di, thisdie, nextdie, objfile);
2003 }
2004 break;
2005 case TAG_lexical_block:
2006 read_lexical_block_scope (&di, thisdie, nextdie, objfile);
2007 break;
2008 case TAG_class_type:
2009 case TAG_structure_type:
2010 case TAG_union_type:
2011 read_structure_scope (&di, thisdie, nextdie, objfile);
2012 break;
2013 case TAG_enumeration_type:
2014 read_enumeration (&di, thisdie, nextdie, objfile);
2015 break;
2016 case TAG_subroutine_type:
2017 read_subroutine_type (&di, thisdie, nextdie);
2018 break;
2019 case TAG_array_type:
2020 dwarf_read_array_type (&di);
2021 break;
2022 case TAG_pointer_type:
2023 read_tag_pointer_type (&di);
2024 break;
2025 case TAG_string_type:
2026 read_tag_string_type (&di);
2027 break;
2028 default:
2029 new_symbol (&di, objfile);
2030 break;
2031 }
2032 }
2033 thisdie = nextdie;
2034 }
2035 }
2036
2037 /*
2038
2039 LOCAL FUNCTION
2040
2041 decode_line_numbers -- decode a line number table fragment
2042
2043 SYNOPSIS
2044
2045 static void decode_line_numbers (char *tblscan, char *tblend,
2046 long length, long base, long line, long pc)
2047
2048 DESCRIPTION
2049
2050 Translate the DWARF line number information to gdb form.
2051
2052 The ".line" section contains one or more line number tables, one for
2053 each ".line" section from the objects that were linked.
2054
2055 The AT_stmt_list attribute for each TAG_source_file entry in the
2056 ".debug" section contains the offset into the ".line" section for the
2057 start of the table for that file.
2058
2059 The table itself has the following structure:
2060
2061 <table length><base address><source statement entry>
2062 4 bytes 4 bytes 10 bytes
2063
2064 The table length is the total size of the table, including the 4 bytes
2065 for the length information.
2066
2067 The base address is the address of the first instruction generated
2068 for the source file.
2069
2070 Each source statement entry has the following structure:
2071
2072 <line number><statement position><address delta>
2073 4 bytes 2 bytes 4 bytes
2074
2075 The line number is relative to the start of the file, starting with
2076 line 1.
2077
2078 The statement position either -1 (0xFFFF) or the number of characters
2079 from the beginning of the line to the beginning of the statement.
2080
2081 The address delta is the difference between the base address and
2082 the address of the first instruction for the statement.
2083
2084 Note that we must copy the bytes from the packed table to our local
2085 variables before attempting to use them, to avoid alignment problems
2086 on some machines, particularly RISC processors.
2087
2088 BUGS
2089
2090 Does gdb expect the line numbers to be sorted? They are now by
2091 chance/luck, but are not required to be. (FIXME)
2092
2093 The line with number 0 is unused, gdb apparently can discover the
2094 span of the last line some other way. How? (FIXME)
2095 */
2096
2097 static void
2098 decode_line_numbers (linetable)
2099 char *linetable;
2100 {
2101 char *tblscan;
2102 char *tblend;
2103 unsigned long length;
2104 unsigned long base;
2105 unsigned long line;
2106 unsigned long pc;
2107
2108 if (linetable != NULL)
2109 {
2110 tblscan = tblend = linetable;
2111 length = target_to_host (tblscan, SIZEOF_LINETBL_LENGTH, GET_UNSIGNED,
2112 current_objfile);
2113 tblscan += SIZEOF_LINETBL_LENGTH;
2114 tblend += length;
2115 base = target_to_host (tblscan, TARGET_FT_POINTER_SIZE (objfile),
2116 GET_UNSIGNED, current_objfile);
2117 tblscan += TARGET_FT_POINTER_SIZE (objfile);
2118 base += baseaddr;
2119 while (tblscan < tblend)
2120 {
2121 line = target_to_host (tblscan, SIZEOF_LINETBL_LINENO, GET_UNSIGNED,
2122 current_objfile);
2123 tblscan += SIZEOF_LINETBL_LINENO + SIZEOF_LINETBL_STMT;
2124 pc = target_to_host (tblscan, SIZEOF_LINETBL_DELTA, GET_UNSIGNED,
2125 current_objfile);
2126 tblscan += SIZEOF_LINETBL_DELTA;
2127 pc += base;
2128 if (line != 0)
2129 {
2130 record_line (current_subfile, line, pc);
2131 }
2132 }
2133 }
2134 }
2135
2136 /*
2137
2138 LOCAL FUNCTION
2139
2140 locval -- compute the value of a location attribute
2141
2142 SYNOPSIS
2143
2144 static int locval (char *loc)
2145
2146 DESCRIPTION
2147
2148 Given pointer to a string of bytes that define a location, compute
2149 the location and return the value.
2150
2151 When computing values involving the current value of the frame pointer,
2152 the value zero is used, which results in a value relative to the frame
2153 pointer, rather than the absolute value. This is what GDB wants
2154 anyway.
2155
2156 When the result is a register number, the global isreg flag is set,
2157 otherwise it is cleared. This is a kludge until we figure out a better
2158 way to handle the problem. Gdb's design does not mesh well with the
2159 DWARF notion of a location computing interpreter, which is a shame
2160 because the flexibility goes unused.
2161
2162 NOTES
2163
2164 Note that stack[0] is unused except as a default error return.
2165 Note that stack overflow is not yet handled.
2166 */
2167
2168 static int
2169 locval (loc)
2170 char *loc;
2171 {
2172 unsigned short nbytes;
2173 unsigned short locsize;
2174 auto long stack[64];
2175 int stacki;
2176 char *end;
2177 long regno;
2178 int loc_atom_code;
2179 int loc_value_size;
2180
2181 nbytes = attribute_size (AT_location);
2182 locsize = target_to_host (loc, nbytes, GET_UNSIGNED, current_objfile);
2183 loc += nbytes;
2184 end = loc + locsize;
2185 stacki = 0;
2186 stack[stacki] = 0;
2187 isreg = 0;
2188 offreg = 0;
2189 loc_value_size = TARGET_FT_LONG_SIZE (current_objfile);
2190 while (loc < end)
2191 {
2192 loc_atom_code = target_to_host (loc, SIZEOF_LOC_ATOM_CODE, GET_UNSIGNED,
2193 current_objfile);
2194 loc += SIZEOF_LOC_ATOM_CODE;
2195 switch (loc_atom_code)
2196 {
2197 case 0:
2198 /* error */
2199 loc = end;
2200 break;
2201 case OP_REG:
2202 /* push register (number) */
2203 stack[++stacki] = target_to_host (loc, loc_value_size,
2204 GET_UNSIGNED, current_objfile);
2205 loc += loc_value_size;
2206 isreg = 1;
2207 break;
2208 case OP_BASEREG:
2209 /* push value of register (number) */
2210 /* Actually, we compute the value as if register has 0 */
2211 offreg = 1;
2212 regno = target_to_host (loc, loc_value_size, GET_UNSIGNED,
2213 current_objfile);
2214 loc += loc_value_size;
2215 if (regno == R_FP)
2216 {
2217 stack[++stacki] = 0;
2218 }
2219 else
2220 {
2221 stack[++stacki] = 0;
2222
2223 complain (&basereg_not_handled, DIE_ID, DIE_NAME, regno);
2224 }
2225 break;
2226 case OP_ADDR:
2227 /* push address (relocated address) */
2228 stack[++stacki] = target_to_host (loc, loc_value_size,
2229 GET_UNSIGNED, current_objfile);
2230 loc += loc_value_size;
2231 break;
2232 case OP_CONST:
2233 /* push constant (number) FIXME: signed or unsigned! */
2234 stack[++stacki] = target_to_host (loc, loc_value_size,
2235 GET_SIGNED, current_objfile);
2236 loc += loc_value_size;
2237 break;
2238 case OP_DEREF2:
2239 /* pop, deref and push 2 bytes (as a long) */
2240 complain (&op_deref2, DIE_ID, DIE_NAME, stack[stacki]);
2241 break;
2242 case OP_DEREF4: /* pop, deref and push 4 bytes (as a long) */
2243 complain (&op_deref4, DIE_ID, DIE_NAME, stack[stacki]);
2244 break;
2245 case OP_ADD: /* pop top 2 items, add, push result */
2246 stack[stacki - 1] += stack[stacki];
2247 stacki--;
2248 break;
2249 }
2250 }
2251 return (stack[stacki]);
2252 }
2253
2254 /*
2255
2256 LOCAL FUNCTION
2257
2258 read_ofile_symtab -- build a full symtab entry from chunk of DIE's
2259
2260 SYNOPSIS
2261
2262 static void read_ofile_symtab (struct partial_symtab *pst)
2263
2264 DESCRIPTION
2265
2266 When expanding a partial symbol table entry to a full symbol table
2267 entry, this is the function that gets called to read in the symbols
2268 for the compilation unit. A pointer to the newly constructed symtab,
2269 which is now the new first one on the objfile's symtab list, is
2270 stashed in the partial symbol table entry.
2271 */
2272
2273 static void
2274 read_ofile_symtab (pst)
2275 struct partial_symtab *pst;
2276 {
2277 struct cleanup *back_to;
2278 unsigned long lnsize;
2279 file_ptr foffset;
2280 bfd *abfd;
2281 char lnsizedata[SIZEOF_LINETBL_LENGTH];
2282
2283 abfd = pst -> objfile -> obfd;
2284 current_objfile = pst -> objfile;
2285
2286 /* Allocate a buffer for the entire chunk of DIE's for this compilation
2287 unit, seek to the location in the file, and read in all the DIE's. */
2288
2289 diecount = 0;
2290 dbsize = DBLENGTH (pst);
2291 dbbase = xmalloc (dbsize);
2292 dbroff = DBROFF(pst);
2293 foffset = DBFOFF(pst) + dbroff;
2294 base_section_offsets = pst->section_offsets;
2295 baseaddr = ANOFFSET (pst->section_offsets, 0);
2296 if (bfd_seek (abfd, foffset, L_SET) ||
2297 (bfd_read (dbbase, dbsize, 1, abfd) != dbsize))
2298 {
2299 free (dbbase);
2300 error ("can't read DWARF data");
2301 }
2302 back_to = make_cleanup (free, dbbase);
2303
2304 /* If there is a line number table associated with this compilation unit
2305 then read the size of this fragment in bytes, from the fragment itself.
2306 Allocate a buffer for the fragment and read it in for future
2307 processing. */
2308
2309 lnbase = NULL;
2310 if (LNFOFF (pst))
2311 {
2312 if (bfd_seek (abfd, LNFOFF (pst), L_SET) ||
2313 (bfd_read ((PTR) lnsizedata, sizeof (lnsizedata), 1, abfd) !=
2314 sizeof (lnsizedata)))
2315 {
2316 error ("can't read DWARF line number table size");
2317 }
2318 lnsize = target_to_host (lnsizedata, SIZEOF_LINETBL_LENGTH,
2319 GET_UNSIGNED, pst -> objfile);
2320 lnbase = xmalloc (lnsize);
2321 if (bfd_seek (abfd, LNFOFF (pst), L_SET) ||
2322 (bfd_read (lnbase, lnsize, 1, abfd) != lnsize))
2323 {
2324 free (lnbase);
2325 error ("can't read DWARF line numbers");
2326 }
2327 make_cleanup (free, lnbase);
2328 }
2329
2330 process_dies (dbbase, dbbase + dbsize, pst -> objfile);
2331 do_cleanups (back_to);
2332 current_objfile = NULL;
2333 pst -> symtab = pst -> objfile -> symtabs;
2334 }
2335
2336 /*
2337
2338 LOCAL FUNCTION
2339
2340 psymtab_to_symtab_1 -- do grunt work for building a full symtab entry
2341
2342 SYNOPSIS
2343
2344 static void psymtab_to_symtab_1 (struct partial_symtab *pst)
2345
2346 DESCRIPTION
2347
2348 Called once for each partial symbol table entry that needs to be
2349 expanded into a full symbol table entry.
2350
2351 */
2352
2353 static void
2354 psymtab_to_symtab_1 (pst)
2355 struct partial_symtab *pst;
2356 {
2357 int i;
2358 struct cleanup *old_chain;
2359
2360 if (pst != NULL)
2361 {
2362 if (pst->readin)
2363 {
2364 warning ("psymtab for %s already read in. Shouldn't happen.",
2365 pst -> filename);
2366 }
2367 else
2368 {
2369 /* Read in all partial symtabs on which this one is dependent */
2370 for (i = 0; i < pst -> number_of_dependencies; i++)
2371 {
2372 if (!pst -> dependencies[i] -> readin)
2373 {
2374 /* Inform about additional files that need to be read in. */
2375 if (info_verbose)
2376 {
2377 fputs_filtered (" ", stdout);
2378 wrap_here ("");
2379 fputs_filtered ("and ", stdout);
2380 wrap_here ("");
2381 printf_filtered ("%s...",
2382 pst -> dependencies[i] -> filename);
2383 wrap_here ("");
2384 fflush (stdout); /* Flush output */
2385 }
2386 psymtab_to_symtab_1 (pst -> dependencies[i]);
2387 }
2388 }
2389 if (DBLENGTH (pst)) /* Otherwise it's a dummy */
2390 {
2391 buildsym_init ();
2392 old_chain = make_cleanup (really_free_pendings, 0);
2393 read_ofile_symtab (pst);
2394 if (info_verbose)
2395 {
2396 printf_filtered ("%d DIE's, sorting...", diecount);
2397 wrap_here ("");
2398 fflush (stdout);
2399 }
2400 sort_symtab_syms (pst -> symtab);
2401 do_cleanups (old_chain);
2402 }
2403 pst -> readin = 1;
2404 }
2405 }
2406 }
2407
2408 /*
2409
2410 LOCAL FUNCTION
2411
2412 dwarf_psymtab_to_symtab -- build a full symtab entry from partial one
2413
2414 SYNOPSIS
2415
2416 static void dwarf_psymtab_to_symtab (struct partial_symtab *pst)
2417
2418 DESCRIPTION
2419
2420 This is the DWARF support entry point for building a full symbol
2421 table entry from a partial symbol table entry. We are passed a
2422 pointer to the partial symbol table entry that needs to be expanded.
2423
2424 */
2425
2426 static void
2427 dwarf_psymtab_to_symtab (pst)
2428 struct partial_symtab *pst;
2429 {
2430
2431 if (pst != NULL)
2432 {
2433 if (pst -> readin)
2434 {
2435 warning ("psymtab for %s already read in. Shouldn't happen.",
2436 pst -> filename);
2437 }
2438 else
2439 {
2440 if (DBLENGTH (pst) || pst -> number_of_dependencies)
2441 {
2442 /* Print the message now, before starting serious work, to avoid
2443 disconcerting pauses. */
2444 if (info_verbose)
2445 {
2446 printf_filtered ("Reading in symbols for %s...",
2447 pst -> filename);
2448 fflush (stdout);
2449 }
2450
2451 psymtab_to_symtab_1 (pst);
2452
2453 #if 0 /* FIXME: Check to see what dbxread is doing here and see if
2454 we need to do an equivalent or is this something peculiar to
2455 stabs/a.out format.
2456 Match with global symbols. This only needs to be done once,
2457 after all of the symtabs and dependencies have been read in.
2458 */
2459 scan_file_globals (pst -> objfile);
2460 #endif
2461
2462 /* Finish up the verbose info message. */
2463 if (info_verbose)
2464 {
2465 printf_filtered ("done.\n");
2466 fflush (stdout);
2467 }
2468 }
2469 }
2470 }
2471 }
2472
2473 /*
2474
2475 LOCAL FUNCTION
2476
2477 init_psymbol_list -- initialize storage for partial symbols
2478
2479 SYNOPSIS
2480
2481 static void init_psymbol_list (struct objfile *objfile, int total_symbols)
2482
2483 DESCRIPTION
2484
2485 Initializes storage for all of the partial symbols that will be
2486 created by dwarf_build_psymtabs and subsidiaries.
2487 */
2488
2489 static void
2490 init_psymbol_list (objfile, total_symbols)
2491 struct objfile *objfile;
2492 int total_symbols;
2493 {
2494 /* Free any previously allocated psymbol lists. */
2495
2496 if (objfile -> global_psymbols.list)
2497 {
2498 mfree (objfile -> md, (PTR)objfile -> global_psymbols.list);
2499 }
2500 if (objfile -> static_psymbols.list)
2501 {
2502 mfree (objfile -> md, (PTR)objfile -> static_psymbols.list);
2503 }
2504
2505 /* Current best guess is that there are approximately a twentieth
2506 of the total symbols (in a debugging file) are global or static
2507 oriented symbols */
2508
2509 objfile -> global_psymbols.size = total_symbols / 10;
2510 objfile -> static_psymbols.size = total_symbols / 10;
2511 objfile -> global_psymbols.next =
2512 objfile -> global_psymbols.list = (struct partial_symbol *)
2513 xmmalloc (objfile -> md, objfile -> global_psymbols.size
2514 * sizeof (struct partial_symbol));
2515 objfile -> static_psymbols.next =
2516 objfile -> static_psymbols.list = (struct partial_symbol *)
2517 xmmalloc (objfile -> md, objfile -> static_psymbols.size
2518 * sizeof (struct partial_symbol));
2519 }
2520
2521 /*
2522
2523 LOCAL FUNCTION
2524
2525 add_enum_psymbol -- add enumeration members to partial symbol table
2526
2527 DESCRIPTION
2528
2529 Given pointer to a DIE that is known to be for an enumeration,
2530 extract the symbolic names of the enumeration members and add
2531 partial symbols for them.
2532 */
2533
2534 static void
2535 add_enum_psymbol (dip, objfile)
2536 struct dieinfo *dip;
2537 struct objfile *objfile;
2538 {
2539 char *scan;
2540 char *listend;
2541 unsigned short blocksz;
2542 int nbytes;
2543
2544 if ((scan = dip -> at_element_list) != NULL)
2545 {
2546 if (dip -> short_element_list)
2547 {
2548 nbytes = attribute_size (AT_short_element_list);
2549 }
2550 else
2551 {
2552 nbytes = attribute_size (AT_element_list);
2553 }
2554 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
2555 scan += nbytes;
2556 listend = scan + blocksz;
2557 while (scan < listend)
2558 {
2559 scan += TARGET_FT_LONG_SIZE (objfile);
2560 ADD_PSYMBOL_TO_LIST (scan, strlen (scan), VAR_NAMESPACE, LOC_CONST,
2561 objfile -> static_psymbols, 0, cu_language,
2562 objfile);
2563 scan += strlen (scan) + 1;
2564 }
2565 }
2566 }
2567
2568 /*
2569
2570 LOCAL FUNCTION
2571
2572 add_partial_symbol -- add symbol to partial symbol table
2573
2574 DESCRIPTION
2575
2576 Given a DIE, if it is one of the types that we want to
2577 add to a partial symbol table, finish filling in the die info
2578 and then add a partial symbol table entry for it.
2579
2580 NOTES
2581
2582 The caller must ensure that the DIE has a valid name attribute.
2583 */
2584
2585 static void
2586 add_partial_symbol (dip, objfile)
2587 struct dieinfo *dip;
2588 struct objfile *objfile;
2589 {
2590 switch (dip -> die_tag)
2591 {
2592 case TAG_global_subroutine:
2593 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2594 VAR_NAMESPACE, LOC_BLOCK,
2595 objfile -> global_psymbols,
2596 dip -> at_low_pc, cu_language, objfile);
2597 break;
2598 case TAG_global_variable:
2599 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2600 VAR_NAMESPACE, LOC_STATIC,
2601 objfile -> global_psymbols,
2602 0, cu_language, objfile);
2603 break;
2604 case TAG_subroutine:
2605 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2606 VAR_NAMESPACE, LOC_BLOCK,
2607 objfile -> static_psymbols,
2608 dip -> at_low_pc, cu_language, objfile);
2609 break;
2610 case TAG_local_variable:
2611 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2612 VAR_NAMESPACE, LOC_STATIC,
2613 objfile -> static_psymbols,
2614 0, cu_language, objfile);
2615 break;
2616 case TAG_typedef:
2617 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2618 VAR_NAMESPACE, LOC_TYPEDEF,
2619 objfile -> static_psymbols,
2620 0, cu_language, objfile);
2621 break;
2622 case TAG_class_type:
2623 case TAG_structure_type:
2624 case TAG_union_type:
2625 case TAG_enumeration_type:
2626 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2627 STRUCT_NAMESPACE, LOC_TYPEDEF,
2628 objfile -> static_psymbols,
2629 0, cu_language, objfile);
2630 if (cu_language == language_cplus)
2631 {
2632 /* For C++, these implicitly act as typedefs as well. */
2633 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2634 VAR_NAMESPACE, LOC_TYPEDEF,
2635 objfile -> static_psymbols,
2636 0, cu_language, objfile);
2637 }
2638 break;
2639 }
2640 }
2641
2642 /*
2643
2644 LOCAL FUNCTION
2645
2646 scan_partial_symbols -- scan DIE's within a single compilation unit
2647
2648 DESCRIPTION
2649
2650 Process the DIE's within a single compilation unit, looking for
2651 interesting DIE's that contribute to the partial symbol table entry
2652 for this compilation unit.
2653
2654 NOTES
2655
2656 There are some DIE's that may appear both at file scope and within
2657 the scope of a function. We are only interested in the ones at file
2658 scope, and the only way to tell them apart is to keep track of the
2659 scope. For example, consider the test case:
2660
2661 static int i;
2662 main () { int j; }
2663
2664 for which the relevant DWARF segment has the structure:
2665
2666 0x51:
2667 0x23 global subrtn sibling 0x9b
2668 name main
2669 fund_type FT_integer
2670 low_pc 0x800004cc
2671 high_pc 0x800004d4
2672
2673 0x74:
2674 0x23 local var sibling 0x97
2675 name j
2676 fund_type FT_integer
2677 location OP_BASEREG 0xe
2678 OP_CONST 0xfffffffc
2679 OP_ADD
2680 0x97:
2681 0x4
2682
2683 0x9b:
2684 0x1d local var sibling 0xb8
2685 name i
2686 fund_type FT_integer
2687 location OP_ADDR 0x800025dc
2688
2689 0xb8:
2690 0x4
2691
2692 We want to include the symbol 'i' in the partial symbol table, but
2693 not the symbol 'j'. In essence, we want to skip all the dies within
2694 the scope of a TAG_global_subroutine DIE.
2695
2696 Don't attempt to add anonymous structures or unions since they have
2697 no name. Anonymous enumerations however are processed, because we
2698 want to extract their member names (the check for a tag name is
2699 done later).
2700
2701 Also, for variables and subroutines, check that this is the place
2702 where the actual definition occurs, rather than just a reference
2703 to an external.
2704 */
2705
2706 static void
2707 scan_partial_symbols (thisdie, enddie, objfile)
2708 char *thisdie;
2709 char *enddie;
2710 struct objfile *objfile;
2711 {
2712 char *nextdie;
2713 char *temp;
2714 struct dieinfo di;
2715
2716 while (thisdie < enddie)
2717 {
2718 basicdieinfo (&di, thisdie, objfile);
2719 if (di.die_length < SIZEOF_DIE_LENGTH)
2720 {
2721 break;
2722 }
2723 else
2724 {
2725 nextdie = thisdie + di.die_length;
2726 /* To avoid getting complete die information for every die, we
2727 only do it (below) for the cases we are interested in. */
2728 switch (di.die_tag)
2729 {
2730 case TAG_global_subroutine:
2731 case TAG_subroutine:
2732 completedieinfo (&di, objfile);
2733 if (di.at_name && (di.has_at_low_pc || di.at_location))
2734 {
2735 add_partial_symbol (&di, objfile);
2736 /* If there is a sibling attribute, adjust the nextdie
2737 pointer to skip the entire scope of the subroutine.
2738 Apply some sanity checking to make sure we don't
2739 overrun or underrun the range of remaining DIE's */
2740 if (di.at_sibling != 0)
2741 {
2742 temp = dbbase + di.at_sibling - dbroff;
2743 if ((temp < thisdie) || (temp >= enddie))
2744 {
2745 complain (&bad_die_ref, DIE_ID, DIE_NAME,
2746 di.at_sibling);
2747 }
2748 else
2749 {
2750 nextdie = temp;
2751 }
2752 }
2753 }
2754 break;
2755 case TAG_global_variable:
2756 case TAG_local_variable:
2757 completedieinfo (&di, objfile);
2758 if (di.at_name && (di.has_at_low_pc || di.at_location))
2759 {
2760 add_partial_symbol (&di, objfile);
2761 }
2762 break;
2763 case TAG_typedef:
2764 case TAG_class_type:
2765 case TAG_structure_type:
2766 case TAG_union_type:
2767 completedieinfo (&di, objfile);
2768 if (di.at_name)
2769 {
2770 add_partial_symbol (&di, objfile);
2771 }
2772 break;
2773 case TAG_enumeration_type:
2774 completedieinfo (&di, objfile);
2775 if (di.at_name)
2776 {
2777 add_partial_symbol (&di, objfile);
2778 }
2779 add_enum_psymbol (&di, objfile);
2780 break;
2781 }
2782 }
2783 thisdie = nextdie;
2784 }
2785 }
2786
2787 /*
2788
2789 LOCAL FUNCTION
2790
2791 scan_compilation_units -- build a psymtab entry for each compilation
2792
2793 DESCRIPTION
2794
2795 This is the top level dwarf parsing routine for building partial
2796 symbol tables.
2797
2798 It scans from the beginning of the DWARF table looking for the first
2799 TAG_compile_unit DIE, and then follows the sibling chain to locate
2800 each additional TAG_compile_unit DIE.
2801
2802 For each TAG_compile_unit DIE it creates a partial symtab structure,
2803 calls a subordinate routine to collect all the compilation unit's
2804 global DIE's, file scope DIEs, typedef DIEs, etc, and then links the
2805 new partial symtab structure into the partial symbol table. It also
2806 records the appropriate information in the partial symbol table entry
2807 to allow the chunk of DIE's and line number table for this compilation
2808 unit to be located and re-read later, to generate a complete symbol
2809 table entry for the compilation unit.
2810
2811 Thus it effectively partitions up a chunk of DIE's for multiple
2812 compilation units into smaller DIE chunks and line number tables,
2813 and associates them with a partial symbol table entry.
2814
2815 NOTES
2816
2817 If any compilation unit has no line number table associated with
2818 it for some reason (a missing at_stmt_list attribute, rather than
2819 just one with a value of zero, which is valid) then we ensure that
2820 the recorded file offset is zero so that the routine which later
2821 reads line number table fragments knows that there is no fragment
2822 to read.
2823
2824 RETURNS
2825
2826 Returns no value.
2827
2828 */
2829
2830 static void
2831 scan_compilation_units (thisdie, enddie, dbfoff, lnoffset, objfile)
2832 char *thisdie;
2833 char *enddie;
2834 file_ptr dbfoff;
2835 file_ptr lnoffset;
2836 struct objfile *objfile;
2837 {
2838 char *nextdie;
2839 struct dieinfo di;
2840 struct partial_symtab *pst;
2841 int culength;
2842 int curoff;
2843 file_ptr curlnoffset;
2844
2845 while (thisdie < enddie)
2846 {
2847 basicdieinfo (&di, thisdie, objfile);
2848 if (di.die_length < SIZEOF_DIE_LENGTH)
2849 {
2850 break;
2851 }
2852 else if (di.die_tag != TAG_compile_unit)
2853 {
2854 nextdie = thisdie + di.die_length;
2855 }
2856 else
2857 {
2858 completedieinfo (&di, objfile);
2859 set_cu_language (&di);
2860 if (di.at_sibling != 0)
2861 {
2862 nextdie = dbbase + di.at_sibling - dbroff;
2863 }
2864 else
2865 {
2866 nextdie = thisdie + di.die_length;
2867 }
2868 curoff = thisdie - dbbase;
2869 culength = nextdie - thisdie;
2870 curlnoffset = di.has_at_stmt_list ? lnoffset + di.at_stmt_list : 0;
2871
2872 /* First allocate a new partial symbol table structure */
2873
2874 pst = start_psymtab_common (objfile, base_section_offsets,
2875 di.at_name, di.at_low_pc,
2876 objfile -> global_psymbols.next,
2877 objfile -> static_psymbols.next);
2878
2879 pst -> texthigh = di.at_high_pc;
2880 pst -> read_symtab_private = (char *)
2881 obstack_alloc (&objfile -> psymbol_obstack,
2882 sizeof (struct dwfinfo));
2883 DBFOFF (pst) = dbfoff;
2884 DBROFF (pst) = curoff;
2885 DBLENGTH (pst) = culength;
2886 LNFOFF (pst) = curlnoffset;
2887 pst -> read_symtab = dwarf_psymtab_to_symtab;
2888
2889 /* Now look for partial symbols */
2890
2891 scan_partial_symbols (thisdie + di.die_length, nextdie, objfile);
2892
2893 pst -> n_global_syms = objfile -> global_psymbols.next -
2894 (objfile -> global_psymbols.list + pst -> globals_offset);
2895 pst -> n_static_syms = objfile -> static_psymbols.next -
2896 (objfile -> static_psymbols.list + pst -> statics_offset);
2897 sort_pst_symbols (pst);
2898 /* If there is already a psymtab or symtab for a file of this name,
2899 remove it. (If there is a symtab, more drastic things also
2900 happen.) This happens in VxWorks. */
2901 free_named_symtabs (pst -> filename);
2902 }
2903 thisdie = nextdie;
2904 }
2905 }
2906
2907 /*
2908
2909 LOCAL FUNCTION
2910
2911 new_symbol -- make a symbol table entry for a new symbol
2912
2913 SYNOPSIS
2914
2915 static struct symbol *new_symbol (struct dieinfo *dip,
2916 struct objfile *objfile)
2917
2918 DESCRIPTION
2919
2920 Given a pointer to a DWARF information entry, figure out if we need
2921 to make a symbol table entry for it, and if so, create a new entry
2922 and return a pointer to it.
2923 */
2924
2925 static struct symbol *
2926 new_symbol (dip, objfile)
2927 struct dieinfo *dip;
2928 struct objfile *objfile;
2929 {
2930 struct symbol *sym = NULL;
2931
2932 if (dip -> at_name != NULL)
2933 {
2934 sym = (struct symbol *) obstack_alloc (&objfile -> symbol_obstack,
2935 sizeof (struct symbol));
2936 memset (sym, 0, sizeof (struct symbol));
2937 SYMBOL_NAME (sym) = create_name (dip -> at_name,
2938 &objfile->symbol_obstack);
2939 /* default assumptions */
2940 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2941 SYMBOL_CLASS (sym) = LOC_STATIC;
2942 SYMBOL_TYPE (sym) = decode_die_type (dip);
2943
2944 /* If this symbol is from a C++ compilation, then attempt to cache the
2945 demangled form for future reference. This is a typical time versus
2946 space tradeoff, that was decided in favor of time because it sped up
2947 C++ symbol lookups by a factor of about 20. */
2948
2949 SYMBOL_LANGUAGE (sym) = cu_language;
2950 SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile -> symbol_obstack);
2951 switch (dip -> die_tag)
2952 {
2953 case TAG_label:
2954 SYMBOL_VALUE (sym) = dip -> at_low_pc;
2955 SYMBOL_CLASS (sym) = LOC_LABEL;
2956 break;
2957 case TAG_global_subroutine:
2958 case TAG_subroutine:
2959 SYMBOL_VALUE (sym) = dip -> at_low_pc;
2960 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
2961 SYMBOL_CLASS (sym) = LOC_BLOCK;
2962 if (dip -> die_tag == TAG_global_subroutine)
2963 {
2964 add_symbol_to_list (sym, &global_symbols);
2965 }
2966 else
2967 {
2968 add_symbol_to_list (sym, list_in_scope);
2969 }
2970 break;
2971 case TAG_global_variable:
2972 if (dip -> at_location != NULL)
2973 {
2974 SYMBOL_VALUE (sym) = locval (dip -> at_location);
2975 add_symbol_to_list (sym, &global_symbols);
2976 SYMBOL_CLASS (sym) = LOC_STATIC;
2977 SYMBOL_VALUE (sym) += baseaddr;
2978 }
2979 break;
2980 case TAG_local_variable:
2981 if (dip -> at_location != NULL)
2982 {
2983 SYMBOL_VALUE (sym) = locval (dip -> at_location);
2984 add_symbol_to_list (sym, list_in_scope);
2985 if (isreg)
2986 {
2987 SYMBOL_CLASS (sym) = LOC_REGISTER;
2988 }
2989 else if (offreg)
2990 {
2991 SYMBOL_CLASS (sym) = LOC_LOCAL;
2992 }
2993 else
2994 {
2995 SYMBOL_CLASS (sym) = LOC_STATIC;
2996 SYMBOL_VALUE (sym) += baseaddr;
2997 }
2998 }
2999 break;
3000 case TAG_formal_parameter:
3001 if (dip -> at_location != NULL)
3002 {
3003 SYMBOL_VALUE (sym) = locval (dip -> at_location);
3004 }
3005 add_symbol_to_list (sym, list_in_scope);
3006 if (isreg)
3007 {
3008 SYMBOL_CLASS (sym) = LOC_REGPARM;
3009 }
3010 else
3011 {
3012 SYMBOL_CLASS (sym) = LOC_ARG;
3013 }
3014 break;
3015 case TAG_unspecified_parameters:
3016 /* From varargs functions; gdb doesn't seem to have any interest in
3017 this information, so just ignore it for now. (FIXME?) */
3018 break;
3019 case TAG_class_type:
3020 case TAG_structure_type:
3021 case TAG_union_type:
3022 case TAG_enumeration_type:
3023 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3024 SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE;
3025 add_symbol_to_list (sym, list_in_scope);
3026 break;
3027 case TAG_typedef:
3028 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3029 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3030 add_symbol_to_list (sym, list_in_scope);
3031 break;
3032 default:
3033 /* Not a tag we recognize. Hopefully we aren't processing trash
3034 data, but since we must specifically ignore things we don't
3035 recognize, there is nothing else we should do at this point. */
3036 break;
3037 }
3038 }
3039 return (sym);
3040 }
3041
3042 /*
3043
3044 LOCAL FUNCTION
3045
3046 synthesize_typedef -- make a symbol table entry for a "fake" typedef
3047
3048 SYNOPSIS
3049
3050 static void synthesize_typedef (struct dieinfo *dip,
3051 struct objfile *objfile,
3052 struct type *type);
3053
3054 DESCRIPTION
3055
3056 Given a pointer to a DWARF information entry, synthesize a typedef
3057 for the name in the DIE, using the specified type.
3058
3059 This is used for C++ class, structs, unions, and enumerations to
3060 set up the tag name as a type.
3061
3062 */
3063
3064 static void
3065 synthesize_typedef (dip, objfile, type)
3066 struct dieinfo *dip;
3067 struct objfile *objfile;
3068 struct type *type;
3069 {
3070 struct symbol *sym = NULL;
3071
3072 if (dip -> at_name != NULL)
3073 {
3074 sym = (struct symbol *)
3075 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
3076 memset (sym, 0, sizeof (struct symbol));
3077 SYMBOL_NAME (sym) = create_name (dip -> at_name,
3078 &objfile->symbol_obstack);
3079 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
3080 SYMBOL_TYPE (sym) = type;
3081 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3082 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3083 add_symbol_to_list (sym, list_in_scope);
3084 }
3085 }
3086
3087 /*
3088
3089 LOCAL FUNCTION
3090
3091 decode_mod_fund_type -- decode a modified fundamental type
3092
3093 SYNOPSIS
3094
3095 static struct type *decode_mod_fund_type (char *typedata)
3096
3097 DESCRIPTION
3098
3099 Decode a block of data containing a modified fundamental
3100 type specification. TYPEDATA is a pointer to the block,
3101 which starts with a length containing the size of the rest
3102 of the block. At the end of the block is a fundmental type
3103 code value that gives the fundamental type. Everything
3104 in between are type modifiers.
3105
3106 We simply compute the number of modifiers and call the general
3107 function decode_modified_type to do the actual work.
3108 */
3109
3110 static struct type *
3111 decode_mod_fund_type (typedata)
3112 char *typedata;
3113 {
3114 struct type *typep = NULL;
3115 unsigned short modcount;
3116 int nbytes;
3117
3118 /* Get the total size of the block, exclusive of the size itself */
3119
3120 nbytes = attribute_size (AT_mod_fund_type);
3121 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3122 typedata += nbytes;
3123
3124 /* Deduct the size of the fundamental type bytes at the end of the block. */
3125
3126 modcount -= attribute_size (AT_fund_type);
3127
3128 /* Now do the actual decoding */
3129
3130 typep = decode_modified_type (typedata, modcount, AT_mod_fund_type);
3131 return (typep);
3132 }
3133
3134 /*
3135
3136 LOCAL FUNCTION
3137
3138 decode_mod_u_d_type -- decode a modified user defined type
3139
3140 SYNOPSIS
3141
3142 static struct type *decode_mod_u_d_type (char *typedata)
3143
3144 DESCRIPTION
3145
3146 Decode a block of data containing a modified user defined
3147 type specification. TYPEDATA is a pointer to the block,
3148 which consists of a two byte length, containing the size
3149 of the rest of the block. At the end of the block is a
3150 four byte value that gives a reference to a user defined type.
3151 Everything in between are type modifiers.
3152
3153 We simply compute the number of modifiers and call the general
3154 function decode_modified_type to do the actual work.
3155 */
3156
3157 static struct type *
3158 decode_mod_u_d_type (typedata)
3159 char *typedata;
3160 {
3161 struct type *typep = NULL;
3162 unsigned short modcount;
3163 int nbytes;
3164
3165 /* Get the total size of the block, exclusive of the size itself */
3166
3167 nbytes = attribute_size (AT_mod_u_d_type);
3168 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3169 typedata += nbytes;
3170
3171 /* Deduct the size of the reference type bytes at the end of the block. */
3172
3173 modcount -= attribute_size (AT_user_def_type);
3174
3175 /* Now do the actual decoding */
3176
3177 typep = decode_modified_type (typedata, modcount, AT_mod_u_d_type);
3178 return (typep);
3179 }
3180
3181 /*
3182
3183 LOCAL FUNCTION
3184
3185 decode_modified_type -- decode modified user or fundamental type
3186
3187 SYNOPSIS
3188
3189 static struct type *decode_modified_type (char *modifiers,
3190 unsigned short modcount, int mtype)
3191
3192 DESCRIPTION
3193
3194 Decode a modified type, either a modified fundamental type or
3195 a modified user defined type. MODIFIERS is a pointer to the
3196 block of bytes that define MODCOUNT modifiers. Immediately
3197 following the last modifier is a short containing the fundamental
3198 type or a long containing the reference to the user defined
3199 type. Which one is determined by MTYPE, which is either
3200 AT_mod_fund_type or AT_mod_u_d_type to indicate what modified
3201 type we are generating.
3202
3203 We call ourself recursively to generate each modified type,`
3204 until MODCOUNT reaches zero, at which point we have consumed
3205 all the modifiers and generate either the fundamental type or
3206 user defined type. When the recursion unwinds, each modifier
3207 is applied in turn to generate the full modified type.
3208
3209 NOTES
3210
3211 If we find a modifier that we don't recognize, and it is not one
3212 of those reserved for application specific use, then we issue a
3213 warning and simply ignore the modifier.
3214
3215 BUGS
3216
3217 We currently ignore MOD_const and MOD_volatile. (FIXME)
3218
3219 */
3220
3221 static struct type *
3222 decode_modified_type (modifiers, modcount, mtype)
3223 char *modifiers;
3224 unsigned int modcount;
3225 int mtype;
3226 {
3227 struct type *typep = NULL;
3228 unsigned short fundtype;
3229 DIE_REF die_ref;
3230 char modifier;
3231 int nbytes;
3232
3233 if (modcount == 0)
3234 {
3235 switch (mtype)
3236 {
3237 case AT_mod_fund_type:
3238 nbytes = attribute_size (AT_fund_type);
3239 fundtype = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3240 current_objfile);
3241 typep = decode_fund_type (fundtype);
3242 break;
3243 case AT_mod_u_d_type:
3244 nbytes = attribute_size (AT_user_def_type);
3245 die_ref = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3246 current_objfile);
3247 if ((typep = lookup_utype (die_ref)) == NULL)
3248 {
3249 typep = alloc_utype (die_ref, NULL);
3250 }
3251 break;
3252 default:
3253 complain (&botched_modified_type, DIE_ID, DIE_NAME, mtype);
3254 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3255 break;
3256 }
3257 }
3258 else
3259 {
3260 modifier = *modifiers++;
3261 typep = decode_modified_type (modifiers, --modcount, mtype);
3262 switch (modifier)
3263 {
3264 case MOD_pointer_to:
3265 typep = lookup_pointer_type (typep);
3266 break;
3267 case MOD_reference_to:
3268 typep = lookup_reference_type (typep);
3269 break;
3270 case MOD_const:
3271 complain (&const_ignored, DIE_ID, DIE_NAME); /* FIXME */
3272 break;
3273 case MOD_volatile:
3274 complain (&volatile_ignored, DIE_ID, DIE_NAME); /* FIXME */
3275 break;
3276 default:
3277 if (!(MOD_lo_user <= (unsigned char) modifier
3278 && (unsigned char) modifier <= MOD_hi_user))
3279 {
3280 complain (&unknown_type_modifier, DIE_ID, DIE_NAME, modifier);
3281 }
3282 break;
3283 }
3284 }
3285 return (typep);
3286 }
3287
3288 /*
3289
3290 LOCAL FUNCTION
3291
3292 decode_fund_type -- translate basic DWARF type to gdb base type
3293
3294 DESCRIPTION
3295
3296 Given an integer that is one of the fundamental DWARF types,
3297 translate it to one of the basic internal gdb types and return
3298 a pointer to the appropriate gdb type (a "struct type *").
3299
3300 NOTES
3301
3302 For robustness, if we are asked to translate a fundamental
3303 type that we are unprepared to deal with, we return int so
3304 callers can always depend upon a valid type being returned,
3305 and so gdb may at least do something reasonable by default.
3306 If the type is not in the range of those types defined as
3307 application specific types, we also issue a warning.
3308 */
3309
3310 static struct type *
3311 decode_fund_type (fundtype)
3312 unsigned int fundtype;
3313 {
3314 struct type *typep = NULL;
3315
3316 switch (fundtype)
3317 {
3318
3319 case FT_void:
3320 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3321 break;
3322
3323 case FT_boolean: /* Was FT_set in AT&T version */
3324 typep = dwarf_fundamental_type (current_objfile, FT_BOOLEAN);
3325 break;
3326
3327 case FT_pointer: /* (void *) */
3328 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3329 typep = lookup_pointer_type (typep);
3330 break;
3331
3332 case FT_char:
3333 typep = dwarf_fundamental_type (current_objfile, FT_CHAR);
3334 break;
3335
3336 case FT_signed_char:
3337 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_CHAR);
3338 break;
3339
3340 case FT_unsigned_char:
3341 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_CHAR);
3342 break;
3343
3344 case FT_short:
3345 typep = dwarf_fundamental_type (current_objfile, FT_SHORT);
3346 break;
3347
3348 case FT_signed_short:
3349 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_SHORT);
3350 break;
3351
3352 case FT_unsigned_short:
3353 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_SHORT);
3354 break;
3355
3356 case FT_integer:
3357 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3358 break;
3359
3360 case FT_signed_integer:
3361 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_INTEGER);
3362 break;
3363
3364 case FT_unsigned_integer:
3365 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_INTEGER);
3366 break;
3367
3368 case FT_long:
3369 typep = dwarf_fundamental_type (current_objfile, FT_LONG);
3370 break;
3371
3372 case FT_signed_long:
3373 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG);
3374 break;
3375
3376 case FT_unsigned_long:
3377 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG);
3378 break;
3379
3380 case FT_long_long:
3381 typep = dwarf_fundamental_type (current_objfile, FT_LONG_LONG);
3382 break;
3383
3384 case FT_signed_long_long:
3385 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG_LONG);
3386 break;
3387
3388 case FT_unsigned_long_long:
3389 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG_LONG);
3390 break;
3391
3392 case FT_float:
3393 typep = dwarf_fundamental_type (current_objfile, FT_FLOAT);
3394 break;
3395
3396 case FT_dbl_prec_float:
3397 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_FLOAT);
3398 break;
3399
3400 case FT_ext_prec_float:
3401 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_FLOAT);
3402 break;
3403
3404 case FT_complex:
3405 typep = dwarf_fundamental_type (current_objfile, FT_COMPLEX);
3406 break;
3407
3408 case FT_dbl_prec_complex:
3409 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_COMPLEX);
3410 break;
3411
3412 case FT_ext_prec_complex:
3413 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_COMPLEX);
3414 break;
3415
3416 }
3417
3418 if (typep == NULL)
3419 {
3420 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3421 if (!(FT_lo_user <= fundtype && fundtype <= FT_hi_user))
3422 {
3423 complain (&unexpected_fund_type, DIE_ID, DIE_NAME, fundtype);
3424 }
3425 }
3426
3427 return (typep);
3428 }
3429
3430 /*
3431
3432 LOCAL FUNCTION
3433
3434 create_name -- allocate a fresh copy of a string on an obstack
3435
3436 DESCRIPTION
3437
3438 Given a pointer to a string and a pointer to an obstack, allocates
3439 a fresh copy of the string on the specified obstack.
3440
3441 */
3442
3443 static char *
3444 create_name (name, obstackp)
3445 char *name;
3446 struct obstack *obstackp;
3447 {
3448 int length;
3449 char *newname;
3450
3451 length = strlen (name) + 1;
3452 newname = (char *) obstack_alloc (obstackp, length);
3453 strcpy (newname, name);
3454 return (newname);
3455 }
3456
3457 /*
3458
3459 LOCAL FUNCTION
3460
3461 basicdieinfo -- extract the minimal die info from raw die data
3462
3463 SYNOPSIS
3464
3465 void basicdieinfo (char *diep, struct dieinfo *dip,
3466 struct objfile *objfile)
3467
3468 DESCRIPTION
3469
3470 Given a pointer to raw DIE data, and a pointer to an instance of a
3471 die info structure, this function extracts the basic information
3472 from the DIE data required to continue processing this DIE, along
3473 with some bookkeeping information about the DIE.
3474
3475 The information we absolutely must have includes the DIE tag,
3476 and the DIE length. If we need the sibling reference, then we
3477 will have to call completedieinfo() to process all the remaining
3478 DIE information.
3479
3480 Note that since there is no guarantee that the data is properly
3481 aligned in memory for the type of access required (indirection
3482 through anything other than a char pointer), and there is no
3483 guarantee that it is in the same byte order as the gdb host,
3484 we call a function which deals with both alignment and byte
3485 swapping issues. Possibly inefficient, but quite portable.
3486
3487 We also take care of some other basic things at this point, such
3488 as ensuring that the instance of the die info structure starts
3489 out completely zero'd and that curdie is initialized for use
3490 in error reporting if we have a problem with the current die.
3491
3492 NOTES
3493
3494 All DIE's must have at least a valid length, thus the minimum
3495 DIE size is SIZEOF_DIE_LENGTH. In order to have a valid tag, the
3496 DIE size must be at least SIZEOF_DIE_TAG larger, otherwise they
3497 are forced to be TAG_padding DIES.
3498
3499 Padding DIES must be at least SIZEOF_DIE_LENGTH in length, implying
3500 that if a padding DIE is used for alignment and the amount needed is
3501 less than SIZEOF_DIE_LENGTH, then the padding DIE has to be big
3502 enough to align to the next alignment boundry.
3503
3504 We do some basic sanity checking here, such as verifying that the
3505 length of the die would not cause it to overrun the recorded end of
3506 the buffer holding the DIE info. If we find a DIE that is either
3507 too small or too large, we force it's length to zero which should
3508 cause the caller to take appropriate action.
3509 */
3510
3511 static void
3512 basicdieinfo (dip, diep, objfile)
3513 struct dieinfo *dip;
3514 char *diep;
3515 struct objfile *objfile;
3516 {
3517 curdie = dip;
3518 memset (dip, 0, sizeof (struct dieinfo));
3519 dip -> die = diep;
3520 dip -> die_ref = dbroff + (diep - dbbase);
3521 dip -> die_length = target_to_host (diep, SIZEOF_DIE_LENGTH, GET_UNSIGNED,
3522 objfile);
3523 if ((dip -> die_length < SIZEOF_DIE_LENGTH) ||
3524 ((diep + dip -> die_length) > (dbbase + dbsize)))
3525 {
3526 complain (&malformed_die, DIE_ID, DIE_NAME, dip -> die_length);
3527 dip -> die_length = 0;
3528 }
3529 else if (dip -> die_length < (SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG))
3530 {
3531 dip -> die_tag = TAG_padding;
3532 }
3533 else
3534 {
3535 diep += SIZEOF_DIE_LENGTH;
3536 dip -> die_tag = target_to_host (diep, SIZEOF_DIE_TAG, GET_UNSIGNED,
3537 objfile);
3538 }
3539 }
3540
3541 /*
3542
3543 LOCAL FUNCTION
3544
3545 completedieinfo -- finish reading the information for a given DIE
3546
3547 SYNOPSIS
3548
3549 void completedieinfo (struct dieinfo *dip, struct objfile *objfile)
3550
3551 DESCRIPTION
3552
3553 Given a pointer to an already partially initialized die info structure,
3554 scan the raw DIE data and finish filling in the die info structure
3555 from the various attributes found.
3556
3557 Note that since there is no guarantee that the data is properly
3558 aligned in memory for the type of access required (indirection
3559 through anything other than a char pointer), and there is no
3560 guarantee that it is in the same byte order as the gdb host,
3561 we call a function which deals with both alignment and byte
3562 swapping issues. Possibly inefficient, but quite portable.
3563
3564 NOTES
3565
3566 Each time we are called, we increment the diecount variable, which
3567 keeps an approximate count of the number of dies processed for
3568 each compilation unit. This information is presented to the user
3569 if the info_verbose flag is set.
3570
3571 */
3572
3573 static void
3574 completedieinfo (dip, objfile)
3575 struct dieinfo *dip;
3576 struct objfile *objfile;
3577 {
3578 char *diep; /* Current pointer into raw DIE data */
3579 char *end; /* Terminate DIE scan here */
3580 unsigned short attr; /* Current attribute being scanned */
3581 unsigned short form; /* Form of the attribute */
3582 int nbytes; /* Size of next field to read */
3583
3584 diecount++;
3585 diep = dip -> die;
3586 end = diep + dip -> die_length;
3587 diep += SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG;
3588 while (diep < end)
3589 {
3590 attr = target_to_host (diep, SIZEOF_ATTRIBUTE, GET_UNSIGNED, objfile);
3591 diep += SIZEOF_ATTRIBUTE;
3592 if ((nbytes = attribute_size (attr)) == -1)
3593 {
3594 complain (&unknown_attribute_length, DIE_ID, DIE_NAME);
3595 diep = end;
3596 continue;
3597 }
3598 switch (attr)
3599 {
3600 case AT_fund_type:
3601 dip -> at_fund_type = target_to_host (diep, nbytes, GET_UNSIGNED,
3602 objfile);
3603 break;
3604 case AT_ordering:
3605 dip -> at_ordering = target_to_host (diep, nbytes, GET_UNSIGNED,
3606 objfile);
3607 break;
3608 case AT_bit_offset:
3609 dip -> at_bit_offset = target_to_host (diep, nbytes, GET_UNSIGNED,
3610 objfile);
3611 break;
3612 case AT_sibling:
3613 dip -> at_sibling = target_to_host (diep, nbytes, GET_UNSIGNED,
3614 objfile);
3615 break;
3616 case AT_stmt_list:
3617 dip -> at_stmt_list = target_to_host (diep, nbytes, GET_UNSIGNED,
3618 objfile);
3619 dip -> has_at_stmt_list = 1;
3620 break;
3621 case AT_low_pc:
3622 dip -> at_low_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3623 objfile);
3624 dip -> at_low_pc += baseaddr;
3625 dip -> has_at_low_pc = 1;
3626 break;
3627 case AT_high_pc:
3628 dip -> at_high_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3629 objfile);
3630 dip -> at_high_pc += baseaddr;
3631 break;
3632 case AT_language:
3633 dip -> at_language = target_to_host (diep, nbytes, GET_UNSIGNED,
3634 objfile);
3635 break;
3636 case AT_user_def_type:
3637 dip -> at_user_def_type = target_to_host (diep, nbytes,
3638 GET_UNSIGNED, objfile);
3639 break;
3640 case AT_byte_size:
3641 dip -> at_byte_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3642 objfile);
3643 dip -> has_at_byte_size = 1;
3644 break;
3645 case AT_bit_size:
3646 dip -> at_bit_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3647 objfile);
3648 break;
3649 case AT_member:
3650 dip -> at_member = target_to_host (diep, nbytes, GET_UNSIGNED,
3651 objfile);
3652 break;
3653 case AT_discr:
3654 dip -> at_discr = target_to_host (diep, nbytes, GET_UNSIGNED,
3655 objfile);
3656 break;
3657 case AT_location:
3658 dip -> at_location = diep;
3659 break;
3660 case AT_mod_fund_type:
3661 dip -> at_mod_fund_type = diep;
3662 break;
3663 case AT_subscr_data:
3664 dip -> at_subscr_data = diep;
3665 break;
3666 case AT_mod_u_d_type:
3667 dip -> at_mod_u_d_type = diep;
3668 break;
3669 case AT_element_list:
3670 dip -> at_element_list = diep;
3671 dip -> short_element_list = 0;
3672 break;
3673 case AT_short_element_list:
3674 dip -> at_element_list = diep;
3675 dip -> short_element_list = 1;
3676 break;
3677 case AT_discr_value:
3678 dip -> at_discr_value = diep;
3679 break;
3680 case AT_string_length:
3681 dip -> at_string_length = diep;
3682 break;
3683 case AT_name:
3684 dip -> at_name = diep;
3685 break;
3686 case AT_comp_dir:
3687 /* For now, ignore any "hostname:" portion, since gdb doesn't
3688 know how to deal with it. (FIXME). */
3689 dip -> at_comp_dir = strrchr (diep, ':');
3690 if (dip -> at_comp_dir != NULL)
3691 {
3692 dip -> at_comp_dir++;
3693 }
3694 else
3695 {
3696 dip -> at_comp_dir = diep;
3697 }
3698 break;
3699 case AT_producer:
3700 dip -> at_producer = diep;
3701 break;
3702 case AT_start_scope:
3703 dip -> at_start_scope = target_to_host (diep, nbytes, GET_UNSIGNED,
3704 objfile);
3705 break;
3706 case AT_stride_size:
3707 dip -> at_stride_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3708 objfile);
3709 break;
3710 case AT_src_info:
3711 dip -> at_src_info = target_to_host (diep, nbytes, GET_UNSIGNED,
3712 objfile);
3713 break;
3714 case AT_prototyped:
3715 dip -> at_prototyped = diep;
3716 break;
3717 default:
3718 /* Found an attribute that we are unprepared to handle. However
3719 it is specifically one of the design goals of DWARF that
3720 consumers should ignore unknown attributes. As long as the
3721 form is one that we recognize (so we know how to skip it),
3722 we can just ignore the unknown attribute. */
3723 break;
3724 }
3725 form = FORM_FROM_ATTR (attr);
3726 switch (form)
3727 {
3728 case FORM_DATA2:
3729 diep += 2;
3730 break;
3731 case FORM_DATA4:
3732 case FORM_REF:
3733 diep += 4;
3734 break;
3735 case FORM_DATA8:
3736 diep += 8;
3737 break;
3738 case FORM_ADDR:
3739 diep += TARGET_FT_POINTER_SIZE (objfile);
3740 break;
3741 case FORM_BLOCK2:
3742 diep += 2 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3743 break;
3744 case FORM_BLOCK4:
3745 diep += 4 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3746 break;
3747 case FORM_STRING:
3748 diep += strlen (diep) + 1;
3749 break;
3750 default:
3751 complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form);
3752 diep = end;
3753 break;
3754 }
3755 }
3756 }
3757
3758 /*
3759
3760 LOCAL FUNCTION
3761
3762 target_to_host -- swap in target data to host
3763
3764 SYNOPSIS
3765
3766 target_to_host (char *from, int nbytes, int signextend,
3767 struct objfile *objfile)
3768
3769 DESCRIPTION
3770
3771 Given pointer to data in target format in FROM, a byte count for
3772 the size of the data in NBYTES, a flag indicating whether or not
3773 the data is signed in SIGNEXTEND, and a pointer to the current
3774 objfile in OBJFILE, convert the data to host format and return
3775 the converted value.
3776
3777 NOTES
3778
3779 FIXME: If we read data that is known to be signed, and expect to
3780 use it as signed data, then we need to explicitly sign extend the
3781 result until the bfd library is able to do this for us.
3782
3783 */
3784
3785 static unsigned long
3786 target_to_host (from, nbytes, signextend, objfile)
3787 char *from;
3788 int nbytes;
3789 int signextend; /* FIXME: Unused */
3790 struct objfile *objfile;
3791 {
3792 unsigned long rtnval;
3793
3794 switch (nbytes)
3795 {
3796 case 8:
3797 rtnval = bfd_get_64 (objfile -> obfd, (bfd_byte *) from);
3798 break;
3799 case 4:
3800 rtnval = bfd_get_32 (objfile -> obfd, (bfd_byte *) from);
3801 break;
3802 case 2:
3803 rtnval = bfd_get_16 (objfile -> obfd, (bfd_byte *) from);
3804 break;
3805 case 1:
3806 rtnval = bfd_get_8 (objfile -> obfd, (bfd_byte *) from);
3807 break;
3808 default:
3809 complain (&no_bfd_get_N, DIE_ID, DIE_NAME, nbytes);
3810 rtnval = 0;
3811 break;
3812 }
3813 return (rtnval);
3814 }
3815
3816 /*
3817
3818 LOCAL FUNCTION
3819
3820 attribute_size -- compute size of data for a DWARF attribute
3821
3822 SYNOPSIS
3823
3824 static int attribute_size (unsigned int attr)
3825
3826 DESCRIPTION
3827
3828 Given a DWARF attribute in ATTR, compute the size of the first
3829 piece of data associated with this attribute and return that
3830 size.
3831
3832 Returns -1 for unrecognized attributes.
3833
3834 */
3835
3836 static int
3837 attribute_size (attr)
3838 unsigned int attr;
3839 {
3840 int nbytes; /* Size of next data for this attribute */
3841 unsigned short form; /* Form of the attribute */
3842
3843 form = FORM_FROM_ATTR (attr);
3844 switch (form)
3845 {
3846 case FORM_STRING: /* A variable length field is next */
3847 nbytes = 0;
3848 break;
3849 case FORM_DATA2: /* Next 2 byte field is the data itself */
3850 case FORM_BLOCK2: /* Next 2 byte field is a block length */
3851 nbytes = 2;
3852 break;
3853 case FORM_DATA4: /* Next 4 byte field is the data itself */
3854 case FORM_BLOCK4: /* Next 4 byte field is a block length */
3855 case FORM_REF: /* Next 4 byte field is a DIE offset */
3856 nbytes = 4;
3857 break;
3858 case FORM_DATA8: /* Next 8 byte field is the data itself */
3859 nbytes = 8;
3860 break;
3861 case FORM_ADDR: /* Next field size is target sizeof(void *) */
3862 nbytes = TARGET_FT_POINTER_SIZE (objfile);
3863 break;
3864 default:
3865 complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form);
3866 nbytes = -1;
3867 break;
3868 }
3869 return (nbytes);
3870 }