MIPS testsuite cleanup - part 4
[binutils-gdb.git] / gdb / elfread.c
1 /* Read ELF (Executable and Linking Format) object files for GDB.
2
3 Copyright (C) 1991-2014 Free Software Foundation, Inc.
4
5 Written by Fred Fish at Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "bfd.h"
24 #include "elf-bfd.h"
25 #include "elf/common.h"
26 #include "elf/internal.h"
27 #include "elf/mips.h"
28 #include "symtab.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "buildsym.h"
32 #include "stabsread.h"
33 #include "gdb-stabs.h"
34 #include "complaints.h"
35 #include "demangle.h"
36 #include "psympriv.h"
37 #include "filenames.h"
38 #include "probe.h"
39 #include "arch-utils.h"
40 #include "gdbtypes.h"
41 #include "value.h"
42 #include "infcall.h"
43 #include "gdbthread.h"
44 #include "regcache.h"
45 #include "bcache.h"
46 #include "gdb_bfd.h"
47 #include "build-id.h"
48
49 extern void _initialize_elfread (void);
50
51 /* Forward declarations. */
52 static const struct sym_fns elf_sym_fns_gdb_index;
53 static const struct sym_fns elf_sym_fns_lazy_psyms;
54
55 /* The struct elfinfo is available only during ELF symbol table and
56 psymtab reading. It is destroyed at the completion of psymtab-reading.
57 It's local to elf_symfile_read. */
58
59 struct elfinfo
60 {
61 asection *stabsect; /* Section pointer for .stab section */
62 asection *mdebugsect; /* Section pointer for .mdebug section */
63 };
64
65 /* Per-BFD data for probe info. */
66
67 static const struct bfd_data *probe_key = NULL;
68
69 static void free_elfinfo (void *);
70
71 /* Minimal symbols located at the GOT entries for .plt - that is the real
72 pointer where the given entry will jump to. It gets updated by the real
73 function address during lazy ld.so resolving in the inferior. These
74 minimal symbols are indexed for <tab>-completion. */
75
76 #define SYMBOL_GOT_PLT_SUFFIX "@got.plt"
77
78 /* Locate the segments in ABFD. */
79
80 static struct symfile_segment_data *
81 elf_symfile_segments (bfd *abfd)
82 {
83 Elf_Internal_Phdr *phdrs, **segments;
84 long phdrs_size;
85 int num_phdrs, num_segments, num_sections, i;
86 asection *sect;
87 struct symfile_segment_data *data;
88
89 phdrs_size = bfd_get_elf_phdr_upper_bound (abfd);
90 if (phdrs_size == -1)
91 return NULL;
92
93 phdrs = alloca (phdrs_size);
94 num_phdrs = bfd_get_elf_phdrs (abfd, phdrs);
95 if (num_phdrs == -1)
96 return NULL;
97
98 num_segments = 0;
99 segments = alloca (sizeof (Elf_Internal_Phdr *) * num_phdrs);
100 for (i = 0; i < num_phdrs; i++)
101 if (phdrs[i].p_type == PT_LOAD)
102 segments[num_segments++] = &phdrs[i];
103
104 if (num_segments == 0)
105 return NULL;
106
107 data = XCNEW (struct symfile_segment_data);
108 data->num_segments = num_segments;
109 data->segment_bases = XCNEWVEC (CORE_ADDR, num_segments);
110 data->segment_sizes = XCNEWVEC (CORE_ADDR, num_segments);
111
112 for (i = 0; i < num_segments; i++)
113 {
114 data->segment_bases[i] = segments[i]->p_vaddr;
115 data->segment_sizes[i] = segments[i]->p_memsz;
116 }
117
118 num_sections = bfd_count_sections (abfd);
119 data->segment_info = XCNEWVEC (int, num_sections);
120
121 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
122 {
123 int j;
124 CORE_ADDR vma;
125
126 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
127 continue;
128
129 vma = bfd_get_section_vma (abfd, sect);
130
131 for (j = 0; j < num_segments; j++)
132 if (segments[j]->p_memsz > 0
133 && vma >= segments[j]->p_vaddr
134 && (vma - segments[j]->p_vaddr) < segments[j]->p_memsz)
135 {
136 data->segment_info[i] = j + 1;
137 break;
138 }
139
140 /* We should have found a segment for every non-empty section.
141 If we haven't, we will not relocate this section by any
142 offsets we apply to the segments. As an exception, do not
143 warn about SHT_NOBITS sections; in normal ELF execution
144 environments, SHT_NOBITS means zero-initialized and belongs
145 in a segment, but in no-OS environments some tools (e.g. ARM
146 RealView) use SHT_NOBITS for uninitialized data. Since it is
147 uninitialized, it doesn't need a program header. Such
148 binaries are not relocatable. */
149 if (bfd_get_section_size (sect) > 0 && j == num_segments
150 && (bfd_get_section_flags (abfd, sect) & SEC_LOAD) != 0)
151 warning (_("Loadable section \"%s\" outside of ELF segments"),
152 bfd_section_name (abfd, sect));
153 }
154
155 return data;
156 }
157
158 /* We are called once per section from elf_symfile_read. We
159 need to examine each section we are passed, check to see
160 if it is something we are interested in processing, and
161 if so, stash away some access information for the section.
162
163 For now we recognize the dwarf debug information sections and
164 line number sections from matching their section names. The
165 ELF definition is no real help here since it has no direct
166 knowledge of DWARF (by design, so any debugging format can be
167 used).
168
169 We also recognize the ".stab" sections used by the Sun compilers
170 released with Solaris 2.
171
172 FIXME: The section names should not be hardwired strings (what
173 should they be? I don't think most object file formats have enough
174 section flags to specify what kind of debug section it is.
175 -kingdon). */
176
177 static void
178 elf_locate_sections (bfd *ignore_abfd, asection *sectp, void *eip)
179 {
180 struct elfinfo *ei;
181
182 ei = (struct elfinfo *) eip;
183 if (strcmp (sectp->name, ".stab") == 0)
184 {
185 ei->stabsect = sectp;
186 }
187 else if (strcmp (sectp->name, ".mdebug") == 0)
188 {
189 ei->mdebugsect = sectp;
190 }
191 }
192
193 static struct minimal_symbol *
194 record_minimal_symbol (const char *name, int name_len, int copy_name,
195 CORE_ADDR address,
196 enum minimal_symbol_type ms_type,
197 asection *bfd_section, struct objfile *objfile)
198 {
199 struct gdbarch *gdbarch = get_objfile_arch (objfile);
200
201 if (ms_type == mst_text || ms_type == mst_file_text
202 || ms_type == mst_text_gnu_ifunc)
203 address = gdbarch_addr_bits_remove (gdbarch, address);
204
205 return prim_record_minimal_symbol_full (name, name_len, copy_name, address,
206 ms_type,
207 gdb_bfd_section_index (objfile->obfd,
208 bfd_section),
209 objfile);
210 }
211
212 /* Read the symbol table of an ELF file.
213
214 Given an objfile, a symbol table, and a flag indicating whether the
215 symbol table contains regular, dynamic, or synthetic symbols, add all
216 the global function and data symbols to the minimal symbol table.
217
218 In stabs-in-ELF, as implemented by Sun, there are some local symbols
219 defined in the ELF symbol table, which can be used to locate
220 the beginnings of sections from each ".o" file that was linked to
221 form the executable objfile. We gather any such info and record it
222 in data structures hung off the objfile's private data. */
223
224 #define ST_REGULAR 0
225 #define ST_DYNAMIC 1
226 #define ST_SYNTHETIC 2
227
228 static void
229 elf_symtab_read (struct objfile *objfile, int type,
230 long number_of_symbols, asymbol **symbol_table,
231 int copy_names)
232 {
233 struct gdbarch *gdbarch = get_objfile_arch (objfile);
234 asymbol *sym;
235 long i;
236 CORE_ADDR symaddr;
237 CORE_ADDR offset;
238 enum minimal_symbol_type ms_type;
239 /* If sectinfo is nonNULL, it contains section info that should end up
240 filed in the objfile. */
241 struct stab_section_info *sectinfo = NULL;
242 /* If filesym is nonzero, it points to a file symbol, but we haven't
243 seen any section info for it yet. */
244 asymbol *filesym = 0;
245 /* Name of filesym. This is either a constant string or is saved on
246 the objfile's filename cache. */
247 const char *filesymname = "";
248 struct dbx_symfile_info *dbx = DBX_SYMFILE_INFO (objfile);
249 int stripped = (bfd_get_symcount (objfile->obfd) == 0);
250
251 for (i = 0; i < number_of_symbols; i++)
252 {
253 sym = symbol_table[i];
254 if (sym->name == NULL || *sym->name == '\0')
255 {
256 /* Skip names that don't exist (shouldn't happen), or names
257 that are null strings (may happen). */
258 continue;
259 }
260
261 /* Skip "special" symbols, e.g. ARM mapping symbols. These are
262 symbols which do not correspond to objects in the symbol table,
263 but have some other target-specific meaning. */
264 if (bfd_is_target_special_symbol (objfile->obfd, sym))
265 {
266 if (gdbarch_record_special_symbol_p (gdbarch))
267 gdbarch_record_special_symbol (gdbarch, objfile, sym);
268 continue;
269 }
270
271 offset = ANOFFSET (objfile->section_offsets,
272 gdb_bfd_section_index (objfile->obfd, sym->section));
273 if (type == ST_DYNAMIC
274 && sym->section == bfd_und_section_ptr
275 && (sym->flags & BSF_FUNCTION))
276 {
277 struct minimal_symbol *msym;
278 bfd *abfd = objfile->obfd;
279 asection *sect;
280
281 /* Symbol is a reference to a function defined in
282 a shared library.
283 If its value is non zero then it is usually the address
284 of the corresponding entry in the procedure linkage table,
285 plus the desired section offset.
286 If its value is zero then the dynamic linker has to resolve
287 the symbol. We are unable to find any meaningful address
288 for this symbol in the executable file, so we skip it. */
289 symaddr = sym->value;
290 if (symaddr == 0)
291 continue;
292
293 /* sym->section is the undefined section. However, we want to
294 record the section where the PLT stub resides with the
295 minimal symbol. Search the section table for the one that
296 covers the stub's address. */
297 for (sect = abfd->sections; sect != NULL; sect = sect->next)
298 {
299 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
300 continue;
301
302 if (symaddr >= bfd_get_section_vma (abfd, sect)
303 && symaddr < bfd_get_section_vma (abfd, sect)
304 + bfd_get_section_size (sect))
305 break;
306 }
307 if (!sect)
308 continue;
309
310 /* On ia64-hpux, we have discovered that the system linker
311 adds undefined symbols with nonzero addresses that cannot
312 be right (their address points inside the code of another
313 function in the .text section). This creates problems
314 when trying to determine which symbol corresponds to
315 a given address.
316
317 We try to detect those buggy symbols by checking which
318 section we think they correspond to. Normally, PLT symbols
319 are stored inside their own section, and the typical name
320 for that section is ".plt". So, if there is a ".plt"
321 section, and yet the section name of our symbol does not
322 start with ".plt", we ignore that symbol. */
323 if (strncmp (sect->name, ".plt", 4) != 0
324 && bfd_get_section_by_name (abfd, ".plt") != NULL)
325 continue;
326
327 msym = record_minimal_symbol
328 (sym->name, strlen (sym->name), copy_names,
329 symaddr, mst_solib_trampoline, sect, objfile);
330 if (msym != NULL)
331 msym->filename = filesymname;
332 continue;
333 }
334
335 /* If it is a nonstripped executable, do not enter dynamic
336 symbols, as the dynamic symbol table is usually a subset
337 of the main symbol table. */
338 if (type == ST_DYNAMIC && !stripped)
339 continue;
340 if (sym->flags & BSF_FILE)
341 {
342 /* STT_FILE debugging symbol that helps stabs-in-elf debugging.
343 Chain any old one onto the objfile; remember new sym. */
344 if (sectinfo != NULL)
345 {
346 sectinfo->next = dbx->stab_section_info;
347 dbx->stab_section_info = sectinfo;
348 sectinfo = NULL;
349 }
350 filesym = sym;
351 filesymname = bcache (filesym->name, strlen (filesym->name) + 1,
352 objfile->per_bfd->filename_cache);
353 }
354 else if (sym->flags & BSF_SECTION_SYM)
355 continue;
356 else if (sym->flags & (BSF_GLOBAL | BSF_LOCAL | BSF_WEAK
357 | BSF_GNU_UNIQUE))
358 {
359 struct minimal_symbol *msym;
360
361 /* Select global/local/weak symbols. Note that bfd puts abs
362 symbols in their own section, so all symbols we are
363 interested in will have a section. */
364 /* Bfd symbols are section relative. */
365 symaddr = sym->value + sym->section->vma;
366 /* For non-absolute symbols, use the type of the section
367 they are relative to, to intuit text/data. Bfd provides
368 no way of figuring this out for absolute symbols. */
369 if (sym->section == bfd_abs_section_ptr)
370 {
371 /* This is a hack to get the minimal symbol type
372 right for Irix 5, which has absolute addresses
373 with special section indices for dynamic symbols.
374
375 NOTE: uweigand-20071112: Synthetic symbols do not
376 have an ELF-private part, so do not touch those. */
377 unsigned int shndx = type == ST_SYNTHETIC ? 0 :
378 ((elf_symbol_type *) sym)->internal_elf_sym.st_shndx;
379
380 switch (shndx)
381 {
382 case SHN_MIPS_TEXT:
383 ms_type = mst_text;
384 break;
385 case SHN_MIPS_DATA:
386 ms_type = mst_data;
387 break;
388 case SHN_MIPS_ACOMMON:
389 ms_type = mst_bss;
390 break;
391 default:
392 ms_type = mst_abs;
393 }
394
395 /* If it is an Irix dynamic symbol, skip section name
396 symbols, relocate all others by section offset. */
397 if (ms_type != mst_abs)
398 {
399 if (sym->name[0] == '.')
400 continue;
401 }
402 }
403 else if (sym->section->flags & SEC_CODE)
404 {
405 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
406 {
407 if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
408 ms_type = mst_text_gnu_ifunc;
409 else
410 ms_type = mst_text;
411 }
412 /* The BSF_SYNTHETIC check is there to omit ppc64 function
413 descriptors mistaken for static functions starting with 'L'.
414 */
415 else if ((sym->name[0] == '.' && sym->name[1] == 'L'
416 && (sym->flags & BSF_SYNTHETIC) == 0)
417 || ((sym->flags & BSF_LOCAL)
418 && sym->name[0] == '$'
419 && sym->name[1] == 'L'))
420 /* Looks like a compiler-generated label. Skip
421 it. The assembler should be skipping these (to
422 keep executables small), but apparently with
423 gcc on the (deleted) delta m88k SVR4, it loses.
424 So to have us check too should be harmless (but
425 I encourage people to fix this in the assembler
426 instead of adding checks here). */
427 continue;
428 else
429 {
430 ms_type = mst_file_text;
431 }
432 }
433 else if (sym->section->flags & SEC_ALLOC)
434 {
435 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
436 {
437 if (sym->section->flags & SEC_LOAD)
438 {
439 ms_type = mst_data;
440 }
441 else
442 {
443 ms_type = mst_bss;
444 }
445 }
446 else if (sym->flags & BSF_LOCAL)
447 {
448 /* Named Local variable in a Data section.
449 Check its name for stabs-in-elf. */
450 int special_local_sect;
451
452 if (strcmp ("Bbss.bss", sym->name) == 0)
453 special_local_sect = SECT_OFF_BSS (objfile);
454 else if (strcmp ("Ddata.data", sym->name) == 0)
455 special_local_sect = SECT_OFF_DATA (objfile);
456 else if (strcmp ("Drodata.rodata", sym->name) == 0)
457 special_local_sect = SECT_OFF_RODATA (objfile);
458 else
459 special_local_sect = -1;
460 if (special_local_sect >= 0)
461 {
462 /* Found a special local symbol. Allocate a
463 sectinfo, if needed, and fill it in. */
464 if (sectinfo == NULL)
465 {
466 int max_index;
467 size_t size;
468
469 max_index = SECT_OFF_BSS (objfile);
470 if (objfile->sect_index_data > max_index)
471 max_index = objfile->sect_index_data;
472 if (objfile->sect_index_rodata > max_index)
473 max_index = objfile->sect_index_rodata;
474
475 /* max_index is the largest index we'll
476 use into this array, so we must
477 allocate max_index+1 elements for it.
478 However, 'struct stab_section_info'
479 already includes one element, so we
480 need to allocate max_index aadditional
481 elements. */
482 size = (sizeof (struct stab_section_info)
483 + (sizeof (CORE_ADDR) * max_index));
484 sectinfo = (struct stab_section_info *)
485 xmalloc (size);
486 memset (sectinfo, 0, size);
487 sectinfo->num_sections = max_index;
488 if (filesym == NULL)
489 {
490 complaint (&symfile_complaints,
491 _("elf/stab section information %s "
492 "without a preceding file symbol"),
493 sym->name);
494 }
495 else
496 {
497 sectinfo->filename =
498 (char *) filesym->name;
499 }
500 }
501 if (sectinfo->sections[special_local_sect] != 0)
502 complaint (&symfile_complaints,
503 _("duplicated elf/stab section "
504 "information for %s"),
505 sectinfo->filename);
506 /* BFD symbols are section relative. */
507 symaddr = sym->value + sym->section->vma;
508 /* Relocate non-absolute symbols by the
509 section offset. */
510 if (sym->section != bfd_abs_section_ptr)
511 symaddr += offset;
512 sectinfo->sections[special_local_sect] = symaddr;
513 /* The special local symbols don't go in the
514 minimal symbol table, so ignore this one. */
515 continue;
516 }
517 /* Not a special stabs-in-elf symbol, do regular
518 symbol processing. */
519 if (sym->section->flags & SEC_LOAD)
520 {
521 ms_type = mst_file_data;
522 }
523 else
524 {
525 ms_type = mst_file_bss;
526 }
527 }
528 else
529 {
530 ms_type = mst_unknown;
531 }
532 }
533 else
534 {
535 /* FIXME: Solaris2 shared libraries include lots of
536 odd "absolute" and "undefined" symbols, that play
537 hob with actions like finding what function the PC
538 is in. Ignore them if they aren't text, data, or bss. */
539 /* ms_type = mst_unknown; */
540 continue; /* Skip this symbol. */
541 }
542 msym = record_minimal_symbol
543 (sym->name, strlen (sym->name), copy_names, symaddr,
544 ms_type, sym->section, objfile);
545
546 if (msym)
547 {
548 /* NOTE: uweigand-20071112: A synthetic symbol does not have an
549 ELF-private part. */
550 if (type != ST_SYNTHETIC)
551 {
552 /* Pass symbol size field in via BFD. FIXME!!! */
553 elf_symbol_type *elf_sym = (elf_symbol_type *) sym;
554 SET_MSYMBOL_SIZE (msym, elf_sym->internal_elf_sym.st_size);
555 }
556
557 msym->filename = filesymname;
558 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
559 }
560
561 /* If we see a default versioned symbol, install it under
562 its version-less name. */
563 if (msym != NULL)
564 {
565 const char *atsign = strchr (sym->name, '@');
566
567 if (atsign != NULL && atsign[1] == '@' && atsign > sym->name)
568 {
569 int len = atsign - sym->name;
570
571 record_minimal_symbol (sym->name, len, 1, symaddr,
572 ms_type, sym->section, objfile);
573 }
574 }
575
576 /* For @plt symbols, also record a trampoline to the
577 destination symbol. The @plt symbol will be used in
578 disassembly, and the trampoline will be used when we are
579 trying to find the target. */
580 if (msym && ms_type == mst_text && type == ST_SYNTHETIC)
581 {
582 int len = strlen (sym->name);
583
584 if (len > 4 && strcmp (sym->name + len - 4, "@plt") == 0)
585 {
586 struct minimal_symbol *mtramp;
587
588 mtramp = record_minimal_symbol (sym->name, len - 4, 1,
589 symaddr,
590 mst_solib_trampoline,
591 sym->section, objfile);
592 if (mtramp)
593 {
594 SET_MSYMBOL_SIZE (mtramp, MSYMBOL_SIZE (msym));
595 mtramp->created_by_gdb = 1;
596 mtramp->filename = filesymname;
597 gdbarch_elf_make_msymbol_special (gdbarch, sym, mtramp);
598 }
599 }
600 }
601 }
602 }
603 }
604
605 /* Build minimal symbols named `function@got.plt' (see SYMBOL_GOT_PLT_SUFFIX)
606 for later look ups of which function to call when user requests
607 a STT_GNU_IFUNC function. As the STT_GNU_IFUNC type is found at the target
608 library defining `function' we cannot yet know while reading OBJFILE which
609 of the SYMBOL_GOT_PLT_SUFFIX entries will be needed and later
610 DYN_SYMBOL_TABLE is no longer easily available for OBJFILE. */
611
612 static void
613 elf_rel_plt_read (struct objfile *objfile, asymbol **dyn_symbol_table)
614 {
615 bfd *obfd = objfile->obfd;
616 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
617 asection *plt, *relplt, *got_plt;
618 int plt_elf_idx;
619 bfd_size_type reloc_count, reloc;
620 char *string_buffer = NULL;
621 size_t string_buffer_size = 0;
622 struct cleanup *back_to;
623 struct gdbarch *gdbarch = get_objfile_arch (objfile);
624 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
625 size_t ptr_size = TYPE_LENGTH (ptr_type);
626
627 if (objfile->separate_debug_objfile_backlink)
628 return;
629
630 plt = bfd_get_section_by_name (obfd, ".plt");
631 if (plt == NULL)
632 return;
633 plt_elf_idx = elf_section_data (plt)->this_idx;
634
635 got_plt = bfd_get_section_by_name (obfd, ".got.plt");
636 if (got_plt == NULL)
637 {
638 /* For platforms where there is no separate .got.plt. */
639 got_plt = bfd_get_section_by_name (obfd, ".got");
640 if (got_plt == NULL)
641 return;
642 }
643
644 /* This search algorithm is from _bfd_elf_canonicalize_dynamic_reloc. */
645 for (relplt = obfd->sections; relplt != NULL; relplt = relplt->next)
646 if (elf_section_data (relplt)->this_hdr.sh_info == plt_elf_idx
647 && (elf_section_data (relplt)->this_hdr.sh_type == SHT_REL
648 || elf_section_data (relplt)->this_hdr.sh_type == SHT_RELA))
649 break;
650 if (relplt == NULL)
651 return;
652
653 if (! bed->s->slurp_reloc_table (obfd, relplt, dyn_symbol_table, TRUE))
654 return;
655
656 back_to = make_cleanup (free_current_contents, &string_buffer);
657
658 reloc_count = relplt->size / elf_section_data (relplt)->this_hdr.sh_entsize;
659 for (reloc = 0; reloc < reloc_count; reloc++)
660 {
661 const char *name;
662 struct minimal_symbol *msym;
663 CORE_ADDR address;
664 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
665 size_t name_len;
666
667 name = bfd_asymbol_name (*relplt->relocation[reloc].sym_ptr_ptr);
668 name_len = strlen (name);
669 address = relplt->relocation[reloc].address;
670
671 /* Does the pointer reside in the .got.plt section? */
672 if (!(bfd_get_section_vma (obfd, got_plt) <= address
673 && address < bfd_get_section_vma (obfd, got_plt)
674 + bfd_get_section_size (got_plt)))
675 continue;
676
677 /* We cannot check if NAME is a reference to mst_text_gnu_ifunc as in
678 OBJFILE the symbol is undefined and the objfile having NAME defined
679 may not yet have been loaded. */
680
681 if (string_buffer_size < name_len + got_suffix_len + 1)
682 {
683 string_buffer_size = 2 * (name_len + got_suffix_len);
684 string_buffer = xrealloc (string_buffer, string_buffer_size);
685 }
686 memcpy (string_buffer, name, name_len);
687 memcpy (&string_buffer[name_len], SYMBOL_GOT_PLT_SUFFIX,
688 got_suffix_len + 1);
689
690 msym = record_minimal_symbol (string_buffer, name_len + got_suffix_len,
691 1, address, mst_slot_got_plt, got_plt,
692 objfile);
693 if (msym)
694 SET_MSYMBOL_SIZE (msym, ptr_size);
695 }
696
697 do_cleanups (back_to);
698 }
699
700 /* The data pointer is htab_t for gnu_ifunc_record_cache_unchecked. */
701
702 static const struct objfile_data *elf_objfile_gnu_ifunc_cache_data;
703
704 /* Map function names to CORE_ADDR in elf_objfile_gnu_ifunc_cache_data. */
705
706 struct elf_gnu_ifunc_cache
707 {
708 /* This is always a function entry address, not a function descriptor. */
709 CORE_ADDR addr;
710
711 char name[1];
712 };
713
714 /* htab_hash for elf_objfile_gnu_ifunc_cache_data. */
715
716 static hashval_t
717 elf_gnu_ifunc_cache_hash (const void *a_voidp)
718 {
719 const struct elf_gnu_ifunc_cache *a = a_voidp;
720
721 return htab_hash_string (a->name);
722 }
723
724 /* htab_eq for elf_objfile_gnu_ifunc_cache_data. */
725
726 static int
727 elf_gnu_ifunc_cache_eq (const void *a_voidp, const void *b_voidp)
728 {
729 const struct elf_gnu_ifunc_cache *a = a_voidp;
730 const struct elf_gnu_ifunc_cache *b = b_voidp;
731
732 return strcmp (a->name, b->name) == 0;
733 }
734
735 /* Record the target function address of a STT_GNU_IFUNC function NAME is the
736 function entry address ADDR. Return 1 if NAME and ADDR are considered as
737 valid and therefore they were successfully recorded, return 0 otherwise.
738
739 Function does not expect a duplicate entry. Use
740 elf_gnu_ifunc_resolve_by_cache first to check if the entry for NAME already
741 exists. */
742
743 static int
744 elf_gnu_ifunc_record_cache (const char *name, CORE_ADDR addr)
745 {
746 struct bound_minimal_symbol msym;
747 asection *sect;
748 struct objfile *objfile;
749 htab_t htab;
750 struct elf_gnu_ifunc_cache entry_local, *entry_p;
751 void **slot;
752
753 msym = lookup_minimal_symbol_by_pc (addr);
754 if (msym.minsym == NULL)
755 return 0;
756 if (BMSYMBOL_VALUE_ADDRESS (msym) != addr)
757 return 0;
758 /* minimal symbols have always SYMBOL_OBJ_SECTION non-NULL. */
759 sect = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym)->the_bfd_section;
760 objfile = msym.objfile;
761
762 /* If .plt jumps back to .plt the symbol is still deferred for later
763 resolution and it has no use for GDB. Besides ".text" this symbol can
764 reside also in ".opd" for ppc64 function descriptor. */
765 if (strcmp (bfd_get_section_name (objfile->obfd, sect), ".plt") == 0)
766 return 0;
767
768 htab = objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data);
769 if (htab == NULL)
770 {
771 htab = htab_create_alloc_ex (1, elf_gnu_ifunc_cache_hash,
772 elf_gnu_ifunc_cache_eq,
773 NULL, &objfile->objfile_obstack,
774 hashtab_obstack_allocate,
775 dummy_obstack_deallocate);
776 set_objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data, htab);
777 }
778
779 entry_local.addr = addr;
780 obstack_grow (&objfile->objfile_obstack, &entry_local,
781 offsetof (struct elf_gnu_ifunc_cache, name));
782 obstack_grow_str0 (&objfile->objfile_obstack, name);
783 entry_p = obstack_finish (&objfile->objfile_obstack);
784
785 slot = htab_find_slot (htab, entry_p, INSERT);
786 if (*slot != NULL)
787 {
788 struct elf_gnu_ifunc_cache *entry_found_p = *slot;
789 struct gdbarch *gdbarch = get_objfile_arch (objfile);
790
791 if (entry_found_p->addr != addr)
792 {
793 /* This case indicates buggy inferior program, the resolved address
794 should never change. */
795
796 warning (_("gnu-indirect-function \"%s\" has changed its resolved "
797 "function_address from %s to %s"),
798 name, paddress (gdbarch, entry_found_p->addr),
799 paddress (gdbarch, addr));
800 }
801
802 /* New ENTRY_P is here leaked/duplicate in the OBJFILE obstack. */
803 }
804 *slot = entry_p;
805
806 return 1;
807 }
808
809 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
810 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
811 is not NULL) and the function returns 1. It returns 0 otherwise.
812
813 Only the elf_objfile_gnu_ifunc_cache_data hash table is searched by this
814 function. */
815
816 static int
817 elf_gnu_ifunc_resolve_by_cache (const char *name, CORE_ADDR *addr_p)
818 {
819 struct objfile *objfile;
820
821 ALL_PSPACE_OBJFILES (current_program_space, objfile)
822 {
823 htab_t htab;
824 struct elf_gnu_ifunc_cache *entry_p;
825 void **slot;
826
827 htab = objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data);
828 if (htab == NULL)
829 continue;
830
831 entry_p = alloca (sizeof (*entry_p) + strlen (name));
832 strcpy (entry_p->name, name);
833
834 slot = htab_find_slot (htab, entry_p, NO_INSERT);
835 if (slot == NULL)
836 continue;
837 entry_p = *slot;
838 gdb_assert (entry_p != NULL);
839
840 if (addr_p)
841 *addr_p = entry_p->addr;
842 return 1;
843 }
844
845 return 0;
846 }
847
848 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
849 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
850 is not NULL) and the function returns 1. It returns 0 otherwise.
851
852 Only the SYMBOL_GOT_PLT_SUFFIX locations are searched by this function.
853 elf_gnu_ifunc_resolve_by_cache must have been already called for NAME to
854 prevent cache entries duplicates. */
855
856 static int
857 elf_gnu_ifunc_resolve_by_got (const char *name, CORE_ADDR *addr_p)
858 {
859 char *name_got_plt;
860 struct objfile *objfile;
861 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
862
863 name_got_plt = alloca (strlen (name) + got_suffix_len + 1);
864 sprintf (name_got_plt, "%s" SYMBOL_GOT_PLT_SUFFIX, name);
865
866 ALL_PSPACE_OBJFILES (current_program_space, objfile)
867 {
868 bfd *obfd = objfile->obfd;
869 struct gdbarch *gdbarch = get_objfile_arch (objfile);
870 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
871 size_t ptr_size = TYPE_LENGTH (ptr_type);
872 CORE_ADDR pointer_address, addr;
873 asection *plt;
874 gdb_byte *buf = alloca (ptr_size);
875 struct bound_minimal_symbol msym;
876
877 msym = lookup_minimal_symbol (name_got_plt, NULL, objfile);
878 if (msym.minsym == NULL)
879 continue;
880 if (MSYMBOL_TYPE (msym.minsym) != mst_slot_got_plt)
881 continue;
882 pointer_address = BMSYMBOL_VALUE_ADDRESS (msym);
883
884 plt = bfd_get_section_by_name (obfd, ".plt");
885 if (plt == NULL)
886 continue;
887
888 if (MSYMBOL_SIZE (msym.minsym) != ptr_size)
889 continue;
890 if (target_read_memory (pointer_address, buf, ptr_size) != 0)
891 continue;
892 addr = extract_typed_address (buf, ptr_type);
893 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
894 &current_target);
895 addr = gdbarch_addr_bits_remove (gdbarch, addr);
896
897 if (addr_p)
898 *addr_p = addr;
899 if (elf_gnu_ifunc_record_cache (name, addr))
900 return 1;
901 }
902
903 return 0;
904 }
905
906 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
907 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
908 is not NULL) and the function returns 1. It returns 0 otherwise.
909
910 Both the elf_objfile_gnu_ifunc_cache_data hash table and
911 SYMBOL_GOT_PLT_SUFFIX locations are searched by this function. */
912
913 static int
914 elf_gnu_ifunc_resolve_name (const char *name, CORE_ADDR *addr_p)
915 {
916 if (elf_gnu_ifunc_resolve_by_cache (name, addr_p))
917 return 1;
918
919 if (elf_gnu_ifunc_resolve_by_got (name, addr_p))
920 return 1;
921
922 return 0;
923 }
924
925 /* Call STT_GNU_IFUNC - a function returning addresss of a real function to
926 call. PC is theSTT_GNU_IFUNC resolving function entry. The value returned
927 is the entry point of the resolved STT_GNU_IFUNC target function to call.
928 */
929
930 static CORE_ADDR
931 elf_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc)
932 {
933 const char *name_at_pc;
934 CORE_ADDR start_at_pc, address;
935 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
936 struct value *function, *address_val;
937
938 /* Try first any non-intrusive methods without an inferior call. */
939
940 if (find_pc_partial_function (pc, &name_at_pc, &start_at_pc, NULL)
941 && start_at_pc == pc)
942 {
943 if (elf_gnu_ifunc_resolve_name (name_at_pc, &address))
944 return address;
945 }
946 else
947 name_at_pc = NULL;
948
949 function = allocate_value (func_func_type);
950 set_value_address (function, pc);
951
952 /* STT_GNU_IFUNC resolver functions have no parameters. FUNCTION is the
953 function entry address. ADDRESS may be a function descriptor. */
954
955 address_val = call_function_by_hand (function, 0, NULL);
956 address = value_as_address (address_val);
957 address = gdbarch_convert_from_func_ptr_addr (gdbarch, address,
958 &current_target);
959 address = gdbarch_addr_bits_remove (gdbarch, address);
960
961 if (name_at_pc)
962 elf_gnu_ifunc_record_cache (name_at_pc, address);
963
964 return address;
965 }
966
967 /* Handle inferior hit of bp_gnu_ifunc_resolver, see its definition. */
968
969 static void
970 elf_gnu_ifunc_resolver_stop (struct breakpoint *b)
971 {
972 struct breakpoint *b_return;
973 struct frame_info *prev_frame = get_prev_frame (get_current_frame ());
974 struct frame_id prev_frame_id = get_stack_frame_id (prev_frame);
975 CORE_ADDR prev_pc = get_frame_pc (prev_frame);
976 int thread_id = pid_to_thread_id (inferior_ptid);
977
978 gdb_assert (b->type == bp_gnu_ifunc_resolver);
979
980 for (b_return = b->related_breakpoint; b_return != b;
981 b_return = b_return->related_breakpoint)
982 {
983 gdb_assert (b_return->type == bp_gnu_ifunc_resolver_return);
984 gdb_assert (b_return->loc != NULL && b_return->loc->next == NULL);
985 gdb_assert (frame_id_p (b_return->frame_id));
986
987 if (b_return->thread == thread_id
988 && b_return->loc->requested_address == prev_pc
989 && frame_id_eq (b_return->frame_id, prev_frame_id))
990 break;
991 }
992
993 if (b_return == b)
994 {
995 struct symtab_and_line sal;
996
997 /* No need to call find_pc_line for symbols resolving as this is only
998 a helper breakpointer never shown to the user. */
999
1000 init_sal (&sal);
1001 sal.pspace = current_inferior ()->pspace;
1002 sal.pc = prev_pc;
1003 sal.section = find_pc_overlay (sal.pc);
1004 sal.explicit_pc = 1;
1005 b_return = set_momentary_breakpoint (get_frame_arch (prev_frame), sal,
1006 prev_frame_id,
1007 bp_gnu_ifunc_resolver_return);
1008
1009 /* set_momentary_breakpoint invalidates PREV_FRAME. */
1010 prev_frame = NULL;
1011
1012 /* Add new b_return to the ring list b->related_breakpoint. */
1013 gdb_assert (b_return->related_breakpoint == b_return);
1014 b_return->related_breakpoint = b->related_breakpoint;
1015 b->related_breakpoint = b_return;
1016 }
1017 }
1018
1019 /* Handle inferior hit of bp_gnu_ifunc_resolver_return, see its definition. */
1020
1021 static void
1022 elf_gnu_ifunc_resolver_return_stop (struct breakpoint *b)
1023 {
1024 struct gdbarch *gdbarch = get_frame_arch (get_current_frame ());
1025 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
1026 struct type *value_type = TYPE_TARGET_TYPE (func_func_type);
1027 struct regcache *regcache = get_thread_regcache (inferior_ptid);
1028 struct value *func_func;
1029 struct value *value;
1030 CORE_ADDR resolved_address, resolved_pc;
1031 struct symtab_and_line sal;
1032 struct symtabs_and_lines sals, sals_end;
1033
1034 gdb_assert (b->type == bp_gnu_ifunc_resolver_return);
1035
1036 while (b->related_breakpoint != b)
1037 {
1038 struct breakpoint *b_next = b->related_breakpoint;
1039
1040 switch (b->type)
1041 {
1042 case bp_gnu_ifunc_resolver:
1043 break;
1044 case bp_gnu_ifunc_resolver_return:
1045 delete_breakpoint (b);
1046 break;
1047 default:
1048 internal_error (__FILE__, __LINE__,
1049 _("handle_inferior_event: Invalid "
1050 "gnu-indirect-function breakpoint type %d"),
1051 (int) b->type);
1052 }
1053 b = b_next;
1054 }
1055 gdb_assert (b->type == bp_gnu_ifunc_resolver);
1056 gdb_assert (b->loc->next == NULL);
1057
1058 func_func = allocate_value (func_func_type);
1059 set_value_address (func_func, b->loc->related_address);
1060
1061 value = allocate_value (value_type);
1062 gdbarch_return_value (gdbarch, func_func, value_type, regcache,
1063 value_contents_raw (value), NULL);
1064 resolved_address = value_as_address (value);
1065 resolved_pc = gdbarch_convert_from_func_ptr_addr (gdbarch,
1066 resolved_address,
1067 &current_target);
1068 resolved_pc = gdbarch_addr_bits_remove (gdbarch, resolved_pc);
1069
1070 gdb_assert (current_program_space == b->pspace || b->pspace == NULL);
1071 elf_gnu_ifunc_record_cache (b->addr_string, resolved_pc);
1072
1073 sal = find_pc_line (resolved_pc, 0);
1074 sals.nelts = 1;
1075 sals.sals = &sal;
1076 sals_end.nelts = 0;
1077
1078 b->type = bp_breakpoint;
1079 update_breakpoint_locations (b, sals, sals_end);
1080 }
1081
1082 /* A helper function for elf_symfile_read that reads the minimal
1083 symbols. */
1084
1085 static void
1086 elf_read_minimal_symbols (struct objfile *objfile, int symfile_flags,
1087 const struct elfinfo *ei)
1088 {
1089 bfd *synth_abfd, *abfd = objfile->obfd;
1090 struct cleanup *back_to;
1091 long symcount = 0, dynsymcount = 0, synthcount, storage_needed;
1092 asymbol **symbol_table = NULL, **dyn_symbol_table = NULL;
1093 asymbol *synthsyms;
1094 struct dbx_symfile_info *dbx;
1095
1096 if (symtab_create_debug)
1097 {
1098 fprintf_unfiltered (gdb_stdlog,
1099 "Reading minimal symbols of objfile %s ...\n",
1100 objfile_name (objfile));
1101 }
1102
1103 /* If we already have minsyms, then we can skip some work here.
1104 However, if there were stabs or mdebug sections, we go ahead and
1105 redo all the work anyway, because the psym readers for those
1106 kinds of debuginfo need extra information found here. This can
1107 go away once all types of symbols are in the per-BFD object. */
1108 if (objfile->per_bfd->minsyms_read
1109 && ei->stabsect == NULL
1110 && ei->mdebugsect == NULL)
1111 {
1112 if (symtab_create_debug)
1113 fprintf_unfiltered (gdb_stdlog,
1114 "... minimal symbols previously read\n");
1115 return;
1116 }
1117
1118 init_minimal_symbol_collection ();
1119 back_to = make_cleanup_discard_minimal_symbols ();
1120
1121 /* Allocate struct to keep track of the symfile. */
1122 dbx = XCNEW (struct dbx_symfile_info);
1123 set_objfile_data (objfile, dbx_objfile_data_key, dbx);
1124 make_cleanup (free_elfinfo, (void *) objfile);
1125
1126 /* Process the normal ELF symbol table first. This may write some
1127 chain of info into the dbx_symfile_info of the objfile, which can
1128 later be used by elfstab_offset_sections. */
1129
1130 storage_needed = bfd_get_symtab_upper_bound (objfile->obfd);
1131 if (storage_needed < 0)
1132 error (_("Can't read symbols from %s: %s"),
1133 bfd_get_filename (objfile->obfd),
1134 bfd_errmsg (bfd_get_error ()));
1135
1136 if (storage_needed > 0)
1137 {
1138 symbol_table = (asymbol **) xmalloc (storage_needed);
1139 make_cleanup (xfree, symbol_table);
1140 symcount = bfd_canonicalize_symtab (objfile->obfd, symbol_table);
1141
1142 if (symcount < 0)
1143 error (_("Can't read symbols from %s: %s"),
1144 bfd_get_filename (objfile->obfd),
1145 bfd_errmsg (bfd_get_error ()));
1146
1147 elf_symtab_read (objfile, ST_REGULAR, symcount, symbol_table, 0);
1148 }
1149
1150 /* Add the dynamic symbols. */
1151
1152 storage_needed = bfd_get_dynamic_symtab_upper_bound (objfile->obfd);
1153
1154 if (storage_needed > 0)
1155 {
1156 /* Memory gets permanently referenced from ABFD after
1157 bfd_get_synthetic_symtab so it must not get freed before ABFD gets.
1158 It happens only in the case when elf_slurp_reloc_table sees
1159 asection->relocation NULL. Determining which section is asection is
1160 done by _bfd_elf_get_synthetic_symtab which is all a bfd
1161 implementation detail, though. */
1162
1163 dyn_symbol_table = bfd_alloc (abfd, storage_needed);
1164 dynsymcount = bfd_canonicalize_dynamic_symtab (objfile->obfd,
1165 dyn_symbol_table);
1166
1167 if (dynsymcount < 0)
1168 error (_("Can't read symbols from %s: %s"),
1169 bfd_get_filename (objfile->obfd),
1170 bfd_errmsg (bfd_get_error ()));
1171
1172 elf_symtab_read (objfile, ST_DYNAMIC, dynsymcount, dyn_symbol_table, 0);
1173
1174 elf_rel_plt_read (objfile, dyn_symbol_table);
1175 }
1176
1177 /* Contrary to binutils --strip-debug/--only-keep-debug the strip command from
1178 elfutils (eu-strip) moves even the .symtab section into the .debug file.
1179
1180 bfd_get_synthetic_symtab on ppc64 for each function descriptor ELF symbol
1181 'name' creates a new BSF_SYNTHETIC ELF symbol '.name' with its code
1182 address. But with eu-strip files bfd_get_synthetic_symtab would fail to
1183 read the code address from .opd while it reads the .symtab section from
1184 a separate debug info file as the .opd section is SHT_NOBITS there.
1185
1186 With SYNTH_ABFD the .opd section will be read from the original
1187 backlinked binary where it is valid. */
1188
1189 if (objfile->separate_debug_objfile_backlink)
1190 synth_abfd = objfile->separate_debug_objfile_backlink->obfd;
1191 else
1192 synth_abfd = abfd;
1193
1194 /* Add synthetic symbols - for instance, names for any PLT entries. */
1195
1196 synthcount = bfd_get_synthetic_symtab (synth_abfd, symcount, symbol_table,
1197 dynsymcount, dyn_symbol_table,
1198 &synthsyms);
1199 if (synthcount > 0)
1200 {
1201 asymbol **synth_symbol_table;
1202 long i;
1203
1204 make_cleanup (xfree, synthsyms);
1205 synth_symbol_table = xmalloc (sizeof (asymbol *) * synthcount);
1206 for (i = 0; i < synthcount; i++)
1207 synth_symbol_table[i] = synthsyms + i;
1208 make_cleanup (xfree, synth_symbol_table);
1209 elf_symtab_read (objfile, ST_SYNTHETIC, synthcount,
1210 synth_symbol_table, 1);
1211 }
1212
1213 /* Install any minimal symbols that have been collected as the current
1214 minimal symbols for this objfile. The debug readers below this point
1215 should not generate new minimal symbols; if they do it's their
1216 responsibility to install them. "mdebug" appears to be the only one
1217 which will do this. */
1218
1219 install_minimal_symbols (objfile);
1220 do_cleanups (back_to);
1221
1222 if (symtab_create_debug)
1223 fprintf_unfiltered (gdb_stdlog, "Done reading minimal symbols.\n");
1224 }
1225
1226 /* Scan and build partial symbols for a symbol file.
1227 We have been initialized by a call to elf_symfile_init, which
1228 currently does nothing.
1229
1230 SECTION_OFFSETS is a set of offsets to apply to relocate the symbols
1231 in each section. We simplify it down to a single offset for all
1232 symbols. FIXME.
1233
1234 This function only does the minimum work necessary for letting the
1235 user "name" things symbolically; it does not read the entire symtab.
1236 Instead, it reads the external and static symbols and puts them in partial
1237 symbol tables. When more extensive information is requested of a
1238 file, the corresponding partial symbol table is mutated into a full
1239 fledged symbol table by going back and reading the symbols
1240 for real.
1241
1242 We look for sections with specific names, to tell us what debug
1243 format to look for: FIXME!!!
1244
1245 elfstab_build_psymtabs() handles STABS symbols;
1246 mdebug_build_psymtabs() handles ECOFF debugging information.
1247
1248 Note that ELF files have a "minimal" symbol table, which looks a lot
1249 like a COFF symbol table, but has only the minimal information necessary
1250 for linking. We process this also, and use the information to
1251 build gdb's minimal symbol table. This gives us some minimal debugging
1252 capability even for files compiled without -g. */
1253
1254 static void
1255 elf_symfile_read (struct objfile *objfile, int symfile_flags)
1256 {
1257 bfd *abfd = objfile->obfd;
1258 struct elfinfo ei;
1259
1260 memset ((char *) &ei, 0, sizeof (ei));
1261 bfd_map_over_sections (abfd, elf_locate_sections, (void *) & ei);
1262
1263 elf_read_minimal_symbols (objfile, symfile_flags, &ei);
1264
1265 /* ELF debugging information is inserted into the psymtab in the
1266 order of least informative first - most informative last. Since
1267 the psymtab table is searched `most recent insertion first' this
1268 increases the probability that more detailed debug information
1269 for a section is found.
1270
1271 For instance, an object file might contain both .mdebug (XCOFF)
1272 and .debug_info (DWARF2) sections then .mdebug is inserted first
1273 (searched last) and DWARF2 is inserted last (searched first). If
1274 we don't do this then the XCOFF info is found first - for code in
1275 an included file XCOFF info is useless. */
1276
1277 if (ei.mdebugsect)
1278 {
1279 const struct ecoff_debug_swap *swap;
1280
1281 /* .mdebug section, presumably holding ECOFF debugging
1282 information. */
1283 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1284 if (swap)
1285 elfmdebug_build_psymtabs (objfile, swap, ei.mdebugsect);
1286 }
1287 if (ei.stabsect)
1288 {
1289 asection *str_sect;
1290
1291 /* Stab sections have an associated string table that looks like
1292 a separate section. */
1293 str_sect = bfd_get_section_by_name (abfd, ".stabstr");
1294
1295 /* FIXME should probably warn about a stab section without a stabstr. */
1296 if (str_sect)
1297 elfstab_build_psymtabs (objfile,
1298 ei.stabsect,
1299 str_sect->filepos,
1300 bfd_section_size (abfd, str_sect));
1301 }
1302
1303 if (dwarf2_has_info (objfile, NULL))
1304 {
1305 /* elf_sym_fns_gdb_index cannot handle simultaneous non-DWARF debug
1306 information present in OBJFILE. If there is such debug info present
1307 never use .gdb_index. */
1308
1309 if (!objfile_has_partial_symbols (objfile)
1310 && dwarf2_initialize_objfile (objfile))
1311 objfile_set_sym_fns (objfile, &elf_sym_fns_gdb_index);
1312 else
1313 {
1314 /* It is ok to do this even if the stabs reader made some
1315 partial symbols, because OBJF_PSYMTABS_READ has not been
1316 set, and so our lazy reader function will still be called
1317 when needed. */
1318 objfile_set_sym_fns (objfile, &elf_sym_fns_lazy_psyms);
1319 }
1320 }
1321 /* If the file has its own symbol tables it has no separate debug
1322 info. `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to
1323 SYMTABS/PSYMTABS. `.gnu_debuglink' may no longer be present with
1324 `.note.gnu.build-id'.
1325
1326 .gnu_debugdata is !objfile_has_partial_symbols because it contains only
1327 .symtab, not .debug_* section. But if we already added .gnu_debugdata as
1328 an objfile via find_separate_debug_file_in_section there was no separate
1329 debug info available. Therefore do not attempt to search for another one,
1330 objfile->separate_debug_objfile->separate_debug_objfile GDB guarantees to
1331 be NULL and we would possibly violate it. */
1332
1333 else if (!objfile_has_partial_symbols (objfile)
1334 && objfile->separate_debug_objfile == NULL
1335 && objfile->separate_debug_objfile_backlink == NULL)
1336 {
1337 char *debugfile;
1338
1339 debugfile = find_separate_debug_file_by_buildid (objfile);
1340
1341 if (debugfile == NULL)
1342 debugfile = find_separate_debug_file_by_debuglink (objfile);
1343
1344 if (debugfile)
1345 {
1346 struct cleanup *cleanup = make_cleanup (xfree, debugfile);
1347 bfd *abfd = symfile_bfd_open (debugfile);
1348
1349 make_cleanup_bfd_unref (abfd);
1350 symbol_file_add_separate (abfd, debugfile, symfile_flags, objfile);
1351 do_cleanups (cleanup);
1352 }
1353 }
1354 }
1355
1356 /* Callback to lazily read psymtabs. */
1357
1358 static void
1359 read_psyms (struct objfile *objfile)
1360 {
1361 if (dwarf2_has_info (objfile, NULL))
1362 dwarf2_build_psymtabs (objfile);
1363 }
1364
1365 /* This cleans up the objfile's dbx symfile info, and the chain of
1366 stab_section_info's, that might be dangling from it. */
1367
1368 static void
1369 free_elfinfo (void *objp)
1370 {
1371 struct objfile *objfile = (struct objfile *) objp;
1372 struct dbx_symfile_info *dbxinfo = DBX_SYMFILE_INFO (objfile);
1373 struct stab_section_info *ssi, *nssi;
1374
1375 ssi = dbxinfo->stab_section_info;
1376 while (ssi)
1377 {
1378 nssi = ssi->next;
1379 xfree (ssi);
1380 ssi = nssi;
1381 }
1382
1383 dbxinfo->stab_section_info = 0; /* Just say No mo info about this. */
1384 }
1385
1386
1387 /* Initialize anything that needs initializing when a completely new symbol
1388 file is specified (not just adding some symbols from another file, e.g. a
1389 shared library).
1390
1391 We reinitialize buildsym, since we may be reading stabs from an ELF
1392 file. */
1393
1394 static void
1395 elf_new_init (struct objfile *ignore)
1396 {
1397 stabsread_new_init ();
1398 buildsym_new_init ();
1399 }
1400
1401 /* Perform any local cleanups required when we are done with a particular
1402 objfile. I.E, we are in the process of discarding all symbol information
1403 for an objfile, freeing up all memory held for it, and unlinking the
1404 objfile struct from the global list of known objfiles. */
1405
1406 static void
1407 elf_symfile_finish (struct objfile *objfile)
1408 {
1409 dwarf2_free_objfile (objfile);
1410 }
1411
1412 /* ELF specific initialization routine for reading symbols.
1413
1414 It is passed a pointer to a struct sym_fns which contains, among other
1415 things, the BFD for the file whose symbols are being read, and a slot for
1416 a pointer to "private data" which we can fill with goodies.
1417
1418 For now at least, we have nothing in particular to do, so this function is
1419 just a stub. */
1420
1421 static void
1422 elf_symfile_init (struct objfile *objfile)
1423 {
1424 /* ELF objects may be reordered, so set OBJF_REORDERED. If we
1425 find this causes a significant slowdown in gdb then we could
1426 set it in the debug symbol readers only when necessary. */
1427 objfile->flags |= OBJF_REORDERED;
1428 }
1429
1430 /* When handling an ELF file that contains Sun STABS debug info,
1431 some of the debug info is relative to the particular chunk of the
1432 section that was generated in its individual .o file. E.g.
1433 offsets to static variables are relative to the start of the data
1434 segment *for that module before linking*. This information is
1435 painfully squirreled away in the ELF symbol table as local symbols
1436 with wierd names. Go get 'em when needed. */
1437
1438 void
1439 elfstab_offset_sections (struct objfile *objfile, struct partial_symtab *pst)
1440 {
1441 const char *filename = pst->filename;
1442 struct dbx_symfile_info *dbx = DBX_SYMFILE_INFO (objfile);
1443 struct stab_section_info *maybe = dbx->stab_section_info;
1444 struct stab_section_info *questionable = 0;
1445 int i;
1446
1447 /* The ELF symbol info doesn't include path names, so strip the path
1448 (if any) from the psymtab filename. */
1449 filename = lbasename (filename);
1450
1451 /* FIXME: This linear search could speed up significantly
1452 if it was chained in the right order to match how we search it,
1453 and if we unchained when we found a match. */
1454 for (; maybe; maybe = maybe->next)
1455 {
1456 if (filename[0] == maybe->filename[0]
1457 && filename_cmp (filename, maybe->filename) == 0)
1458 {
1459 /* We found a match. But there might be several source files
1460 (from different directories) with the same name. */
1461 if (0 == maybe->found)
1462 break;
1463 questionable = maybe; /* Might use it later. */
1464 }
1465 }
1466
1467 if (maybe == 0 && questionable != 0)
1468 {
1469 complaint (&symfile_complaints,
1470 _("elf/stab section information questionable for %s"),
1471 filename);
1472 maybe = questionable;
1473 }
1474
1475 if (maybe)
1476 {
1477 /* Found it! Allocate a new psymtab struct, and fill it in. */
1478 maybe->found++;
1479 pst->section_offsets = (struct section_offsets *)
1480 obstack_alloc (&objfile->objfile_obstack,
1481 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
1482 for (i = 0; i < maybe->num_sections; i++)
1483 (pst->section_offsets)->offsets[i] = maybe->sections[i];
1484 return;
1485 }
1486
1487 /* We were unable to find any offsets for this file. Complain. */
1488 if (dbx->stab_section_info) /* If there *is* any info, */
1489 complaint (&symfile_complaints,
1490 _("elf/stab section information missing for %s"), filename);
1491 }
1492
1493 /* Implementation of `sym_get_probes', as documented in symfile.h. */
1494
1495 static VEC (probe_p) *
1496 elf_get_probes (struct objfile *objfile)
1497 {
1498 VEC (probe_p) *probes_per_bfd;
1499
1500 /* Have we parsed this objfile's probes already? */
1501 probes_per_bfd = bfd_data (objfile->obfd, probe_key);
1502
1503 if (!probes_per_bfd)
1504 {
1505 int ix;
1506 const struct probe_ops *probe_ops;
1507
1508 /* Here we try to gather information about all types of probes from the
1509 objfile. */
1510 for (ix = 0; VEC_iterate (probe_ops_cp, all_probe_ops, ix, probe_ops);
1511 ix++)
1512 probe_ops->get_probes (&probes_per_bfd, objfile);
1513
1514 if (probes_per_bfd == NULL)
1515 {
1516 VEC_reserve (probe_p, probes_per_bfd, 1);
1517 gdb_assert (probes_per_bfd != NULL);
1518 }
1519
1520 set_bfd_data (objfile->obfd, probe_key, probes_per_bfd);
1521 }
1522
1523 return probes_per_bfd;
1524 }
1525
1526 /* Helper function used to free the space allocated for storing SystemTap
1527 probe information. */
1528
1529 static void
1530 probe_key_free (bfd *abfd, void *d)
1531 {
1532 int ix;
1533 VEC (probe_p) *probes = d;
1534 struct probe *probe;
1535
1536 for (ix = 0; VEC_iterate (probe_p, probes, ix, probe); ix++)
1537 probe->pops->destroy (probe);
1538
1539 VEC_free (probe_p, probes);
1540 }
1541
1542 \f
1543
1544 /* Implementation `sym_probe_fns', as documented in symfile.h. */
1545
1546 static const struct sym_probe_fns elf_probe_fns =
1547 {
1548 elf_get_probes, /* sym_get_probes */
1549 };
1550
1551 /* Register that we are able to handle ELF object file formats. */
1552
1553 static const struct sym_fns elf_sym_fns =
1554 {
1555 elf_new_init, /* init anything gbl to entire symtab */
1556 elf_symfile_init, /* read initial info, setup for sym_read() */
1557 elf_symfile_read, /* read a symbol file into symtab */
1558 NULL, /* sym_read_psymbols */
1559 elf_symfile_finish, /* finished with file, cleanup */
1560 default_symfile_offsets, /* Translate ext. to int. relocation */
1561 elf_symfile_segments, /* Get segment information from a file. */
1562 NULL,
1563 default_symfile_relocate, /* Relocate a debug section. */
1564 &elf_probe_fns, /* sym_probe_fns */
1565 &psym_functions
1566 };
1567
1568 /* The same as elf_sym_fns, but not registered and lazily reads
1569 psymbols. */
1570
1571 static const struct sym_fns elf_sym_fns_lazy_psyms =
1572 {
1573 elf_new_init, /* init anything gbl to entire symtab */
1574 elf_symfile_init, /* read initial info, setup for sym_read() */
1575 elf_symfile_read, /* read a symbol file into symtab */
1576 read_psyms, /* sym_read_psymbols */
1577 elf_symfile_finish, /* finished with file, cleanup */
1578 default_symfile_offsets, /* Translate ext. to int. relocation */
1579 elf_symfile_segments, /* Get segment information from a file. */
1580 NULL,
1581 default_symfile_relocate, /* Relocate a debug section. */
1582 &elf_probe_fns, /* sym_probe_fns */
1583 &psym_functions
1584 };
1585
1586 /* The same as elf_sym_fns, but not registered and uses the
1587 DWARF-specific GNU index rather than psymtab. */
1588 static const struct sym_fns elf_sym_fns_gdb_index =
1589 {
1590 elf_new_init, /* init anything gbl to entire symab */
1591 elf_symfile_init, /* read initial info, setup for sym_red() */
1592 elf_symfile_read, /* read a symbol file into symtab */
1593 NULL, /* sym_read_psymbols */
1594 elf_symfile_finish, /* finished with file, cleanup */
1595 default_symfile_offsets, /* Translate ext. to int. relocatin */
1596 elf_symfile_segments, /* Get segment information from a file. */
1597 NULL,
1598 default_symfile_relocate, /* Relocate a debug section. */
1599 &elf_probe_fns, /* sym_probe_fns */
1600 &dwarf2_gdb_index_functions
1601 };
1602
1603 /* STT_GNU_IFUNC resolver vector to be installed to gnu_ifunc_fns_p. */
1604
1605 static const struct gnu_ifunc_fns elf_gnu_ifunc_fns =
1606 {
1607 elf_gnu_ifunc_resolve_addr,
1608 elf_gnu_ifunc_resolve_name,
1609 elf_gnu_ifunc_resolver_stop,
1610 elf_gnu_ifunc_resolver_return_stop
1611 };
1612
1613 void
1614 _initialize_elfread (void)
1615 {
1616 probe_key = register_bfd_data_with_cleanup (NULL, probe_key_free);
1617 add_symtab_fns (bfd_target_elf_flavour, &elf_sym_fns);
1618
1619 elf_objfile_gnu_ifunc_cache_data = register_objfile_data ();
1620 gnu_ifunc_fns_p = &elf_gnu_ifunc_fns;
1621 }