Support -prompt and -lbl in gdb_test
[binutils-gdb.git] / gdb / elfread.c
1 /* Read ELF (Executable and Linking Format) object files for GDB.
2
3 Copyright (C) 1991-2022 Free Software Foundation, Inc.
4
5 Written by Fred Fish at Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "bfd.h"
24 #include "elf-bfd.h"
25 #include "elf/common.h"
26 #include "elf/internal.h"
27 #include "elf/mips.h"
28 #include "symtab.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "stabsread.h"
32 #include "demangle.h"
33 #include "psympriv.h"
34 #include "filenames.h"
35 #include "probe.h"
36 #include "arch-utils.h"
37 #include "gdbtypes.h"
38 #include "value.h"
39 #include "infcall.h"
40 #include "gdbthread.h"
41 #include "inferior.h"
42 #include "regcache.h"
43 #include "bcache.h"
44 #include "gdb_bfd.h"
45 #include "build-id.h"
46 #include "location.h"
47 #include "auxv.h"
48 #include "mdebugread.h"
49 #include "ctfread.h"
50 #include "gdbsupport/gdb_string_view.h"
51 #include "gdbsupport/scoped_fd.h"
52 #include "debuginfod-support.h"
53 #include "dwarf2/public.h"
54
55 /* The struct elfinfo is available only during ELF symbol table and
56 psymtab reading. It is destroyed at the completion of psymtab-reading.
57 It's local to elf_symfile_read. */
58
59 struct elfinfo
60 {
61 asection *stabsect; /* Section pointer for .stab section */
62 asection *mdebugsect; /* Section pointer for .mdebug section */
63 asection *ctfsect; /* Section pointer for .ctf section */
64 };
65
66 /* Type for per-BFD data. */
67
68 typedef std::vector<std::unique_ptr<probe>> elfread_data;
69
70 /* Per-BFD data for probe info. */
71
72 static const struct bfd_key<elfread_data> probe_key;
73
74 /* Minimal symbols located at the GOT entries for .plt - that is the real
75 pointer where the given entry will jump to. It gets updated by the real
76 function address during lazy ld.so resolving in the inferior. These
77 minimal symbols are indexed for <tab>-completion. */
78
79 #define SYMBOL_GOT_PLT_SUFFIX "@got.plt"
80
81 /* Locate the segments in ABFD. */
82
83 static symfile_segment_data_up
84 elf_symfile_segments (bfd *abfd)
85 {
86 Elf_Internal_Phdr *phdrs, **segments;
87 long phdrs_size;
88 int num_phdrs, num_segments, num_sections, i;
89 asection *sect;
90
91 phdrs_size = bfd_get_elf_phdr_upper_bound (abfd);
92 if (phdrs_size == -1)
93 return NULL;
94
95 phdrs = (Elf_Internal_Phdr *) alloca (phdrs_size);
96 num_phdrs = bfd_get_elf_phdrs (abfd, phdrs);
97 if (num_phdrs == -1)
98 return NULL;
99
100 num_segments = 0;
101 segments = XALLOCAVEC (Elf_Internal_Phdr *, num_phdrs);
102 for (i = 0; i < num_phdrs; i++)
103 if (phdrs[i].p_type == PT_LOAD)
104 segments[num_segments++] = &phdrs[i];
105
106 if (num_segments == 0)
107 return NULL;
108
109 symfile_segment_data_up data (new symfile_segment_data);
110 data->segments.reserve (num_segments);
111
112 for (i = 0; i < num_segments; i++)
113 data->segments.emplace_back (segments[i]->p_vaddr, segments[i]->p_memsz);
114
115 num_sections = bfd_count_sections (abfd);
116
117 /* All elements are initialized to 0 (map to no segment). */
118 data->segment_info.resize (num_sections);
119
120 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
121 {
122 int j;
123
124 if ((bfd_section_flags (sect) & SEC_ALLOC) == 0)
125 continue;
126
127 Elf_Internal_Shdr *this_hdr = &elf_section_data (sect)->this_hdr;
128
129 for (j = 0; j < num_segments; j++)
130 if (ELF_SECTION_IN_SEGMENT (this_hdr, segments[j]))
131 {
132 data->segment_info[i] = j + 1;
133 break;
134 }
135
136 /* We should have found a segment for every non-empty section.
137 If we haven't, we will not relocate this section by any
138 offsets we apply to the segments. As an exception, do not
139 warn about SHT_NOBITS sections; in normal ELF execution
140 environments, SHT_NOBITS means zero-initialized and belongs
141 in a segment, but in no-OS environments some tools (e.g. ARM
142 RealView) use SHT_NOBITS for uninitialized data. Since it is
143 uninitialized, it doesn't need a program header. Such
144 binaries are not relocatable. */
145
146 /* Exclude debuginfo files from this warning, too, since those
147 are often not strictly compliant with the standard. See, e.g.,
148 ld/24717 for more discussion. */
149 if (!is_debuginfo_file (abfd)
150 && bfd_section_size (sect) > 0 && j == num_segments
151 && (bfd_section_flags (sect) & SEC_LOAD) != 0)
152 warning (_("Loadable section \"%s\" outside of ELF segments\n in %s"),
153 bfd_section_name (sect), bfd_get_filename (abfd));
154 }
155
156 return data;
157 }
158
159 /* We are called once per section from elf_symfile_read. We
160 need to examine each section we are passed, check to see
161 if it is something we are interested in processing, and
162 if so, stash away some access information for the section.
163
164 For now we recognize the dwarf debug information sections and
165 line number sections from matching their section names. The
166 ELF definition is no real help here since it has no direct
167 knowledge of DWARF (by design, so any debugging format can be
168 used).
169
170 We also recognize the ".stab" sections used by the Sun compilers
171 released with Solaris 2.
172
173 FIXME: The section names should not be hardwired strings (what
174 should they be? I don't think most object file formats have enough
175 section flags to specify what kind of debug section it is.
176 -kingdon). */
177
178 static void
179 elf_locate_sections (asection *sectp, struct elfinfo *ei)
180 {
181 if (strcmp (sectp->name, ".stab") == 0)
182 {
183 ei->stabsect = sectp;
184 }
185 else if (strcmp (sectp->name, ".mdebug") == 0)
186 {
187 ei->mdebugsect = sectp;
188 }
189 else if (strcmp (sectp->name, ".ctf") == 0)
190 {
191 ei->ctfsect = sectp;
192 }
193 }
194
195 static struct minimal_symbol *
196 record_minimal_symbol (minimal_symbol_reader &reader,
197 gdb::string_view name, bool copy_name,
198 CORE_ADDR address,
199 enum minimal_symbol_type ms_type,
200 asection *bfd_section, struct objfile *objfile)
201 {
202 struct gdbarch *gdbarch = objfile->arch ();
203
204 if (ms_type == mst_text || ms_type == mst_file_text
205 || ms_type == mst_text_gnu_ifunc)
206 address = gdbarch_addr_bits_remove (gdbarch, address);
207
208 /* We only setup section information for allocatable sections. Usually
209 we'd only expect to find msymbols for allocatable sections, but if the
210 ELF is malformed then this might not be the case. In that case don't
211 create an msymbol that references an uninitialised section object. */
212 int section_index = 0;
213 if ((bfd_section_flags (bfd_section) & SEC_ALLOC) == SEC_ALLOC)
214 section_index = gdb_bfd_section_index (objfile->obfd, bfd_section);
215
216 struct minimal_symbol *result
217 = reader.record_full (name, copy_name, address, ms_type, section_index);
218 if ((objfile->flags & OBJF_MAINLINE) == 0
219 && (ms_type == mst_data || ms_type == mst_bss))
220 result->maybe_copied = 1;
221
222 return result;
223 }
224
225 /* Read the symbol table of an ELF file.
226
227 Given an objfile, a symbol table, and a flag indicating whether the
228 symbol table contains regular, dynamic, or synthetic symbols, add all
229 the global function and data symbols to the minimal symbol table.
230
231 In stabs-in-ELF, as implemented by Sun, there are some local symbols
232 defined in the ELF symbol table, which can be used to locate
233 the beginnings of sections from each ".o" file that was linked to
234 form the executable objfile. We gather any such info and record it
235 in data structures hung off the objfile's private data. */
236
237 #define ST_REGULAR 0
238 #define ST_DYNAMIC 1
239 #define ST_SYNTHETIC 2
240
241 static void
242 elf_symtab_read (minimal_symbol_reader &reader,
243 struct objfile *objfile, int type,
244 long number_of_symbols, asymbol **symbol_table,
245 bool copy_names)
246 {
247 struct gdbarch *gdbarch = objfile->arch ();
248 asymbol *sym;
249 long i;
250 CORE_ADDR symaddr;
251 enum minimal_symbol_type ms_type;
252 /* Name of the last file symbol. This is either a constant string or is
253 saved on the objfile's filename cache. */
254 const char *filesymname = "";
255 int stripped = (bfd_get_symcount (objfile->obfd) == 0);
256 int elf_make_msymbol_special_p
257 = gdbarch_elf_make_msymbol_special_p (gdbarch);
258
259 for (i = 0; i < number_of_symbols; i++)
260 {
261 sym = symbol_table[i];
262 if (sym->name == NULL || *sym->name == '\0')
263 {
264 /* Skip names that don't exist (shouldn't happen), or names
265 that are null strings (may happen). */
266 continue;
267 }
268
269 elf_symbol_type *elf_sym = (elf_symbol_type *) sym;
270
271 /* Skip "special" symbols, e.g. ARM mapping symbols. These are
272 symbols which do not correspond to objects in the symbol table,
273 but have some other target-specific meaning. */
274 if (bfd_is_target_special_symbol (objfile->obfd, sym))
275 {
276 if (gdbarch_record_special_symbol_p (gdbarch))
277 gdbarch_record_special_symbol (gdbarch, objfile, sym);
278 continue;
279 }
280
281 if (type == ST_DYNAMIC
282 && sym->section == bfd_und_section_ptr
283 && (sym->flags & BSF_FUNCTION))
284 {
285 struct minimal_symbol *msym;
286 bfd *abfd = objfile->obfd;
287 asection *sect;
288
289 /* Symbol is a reference to a function defined in
290 a shared library.
291 If its value is non zero then it is usually the address
292 of the corresponding entry in the procedure linkage table,
293 plus the desired section offset.
294 If its value is zero then the dynamic linker has to resolve
295 the symbol. We are unable to find any meaningful address
296 for this symbol in the executable file, so we skip it. */
297 symaddr = sym->value;
298 if (symaddr == 0)
299 continue;
300
301 /* sym->section is the undefined section. However, we want to
302 record the section where the PLT stub resides with the
303 minimal symbol. Search the section table for the one that
304 covers the stub's address. */
305 for (sect = abfd->sections; sect != NULL; sect = sect->next)
306 {
307 if ((bfd_section_flags (sect) & SEC_ALLOC) == 0)
308 continue;
309
310 if (symaddr >= bfd_section_vma (sect)
311 && symaddr < bfd_section_vma (sect)
312 + bfd_section_size (sect))
313 break;
314 }
315 if (!sect)
316 continue;
317
318 /* On ia64-hpux, we have discovered that the system linker
319 adds undefined symbols with nonzero addresses that cannot
320 be right (their address points inside the code of another
321 function in the .text section). This creates problems
322 when trying to determine which symbol corresponds to
323 a given address.
324
325 We try to detect those buggy symbols by checking which
326 section we think they correspond to. Normally, PLT symbols
327 are stored inside their own section, and the typical name
328 for that section is ".plt". So, if there is a ".plt"
329 section, and yet the section name of our symbol does not
330 start with ".plt", we ignore that symbol. */
331 if (!startswith (sect->name, ".plt")
332 && bfd_get_section_by_name (abfd, ".plt") != NULL)
333 continue;
334
335 msym = record_minimal_symbol
336 (reader, sym->name, copy_names,
337 symaddr, mst_solib_trampoline, sect, objfile);
338 if (msym != NULL)
339 {
340 msym->filename = filesymname;
341 if (elf_make_msymbol_special_p)
342 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
343 }
344 continue;
345 }
346
347 /* If it is a nonstripped executable, do not enter dynamic
348 symbols, as the dynamic symbol table is usually a subset
349 of the main symbol table. */
350 if (type == ST_DYNAMIC && !stripped)
351 continue;
352 if (sym->flags & BSF_FILE)
353 filesymname = objfile->intern (sym->name);
354 else if (sym->flags & BSF_SECTION_SYM)
355 continue;
356 else if (sym->flags & (BSF_GLOBAL | BSF_LOCAL | BSF_WEAK
357 | BSF_GNU_UNIQUE))
358 {
359 struct minimal_symbol *msym;
360
361 /* Select global/local/weak symbols. Note that bfd puts abs
362 symbols in their own section, so all symbols we are
363 interested in will have a section. */
364 /* Bfd symbols are section relative. */
365 symaddr = sym->value + sym->section->vma;
366 /* For non-absolute symbols, use the type of the section
367 they are relative to, to intuit text/data. Bfd provides
368 no way of figuring this out for absolute symbols. */
369 if (sym->section == bfd_abs_section_ptr)
370 {
371 /* This is a hack to get the minimal symbol type
372 right for Irix 5, which has absolute addresses
373 with special section indices for dynamic symbols.
374
375 NOTE: uweigand-20071112: Synthetic symbols do not
376 have an ELF-private part, so do not touch those. */
377 unsigned int shndx = type == ST_SYNTHETIC ? 0 :
378 elf_sym->internal_elf_sym.st_shndx;
379
380 switch (shndx)
381 {
382 case SHN_MIPS_TEXT:
383 ms_type = mst_text;
384 break;
385 case SHN_MIPS_DATA:
386 ms_type = mst_data;
387 break;
388 case SHN_MIPS_ACOMMON:
389 ms_type = mst_bss;
390 break;
391 default:
392 ms_type = mst_abs;
393 }
394
395 /* If it is an Irix dynamic symbol, skip section name
396 symbols, relocate all others by section offset. */
397 if (ms_type != mst_abs)
398 {
399 if (sym->name[0] == '.')
400 continue;
401 }
402 }
403 else if (sym->section->flags & SEC_CODE)
404 {
405 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
406 {
407 if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
408 ms_type = mst_text_gnu_ifunc;
409 else
410 ms_type = mst_text;
411 }
412 /* The BSF_SYNTHETIC check is there to omit ppc64 function
413 descriptors mistaken for static functions starting with 'L'.
414 */
415 else if ((sym->name[0] == '.' && sym->name[1] == 'L'
416 && (sym->flags & BSF_SYNTHETIC) == 0)
417 || ((sym->flags & BSF_LOCAL)
418 && sym->name[0] == '$'
419 && sym->name[1] == 'L'))
420 /* Looks like a compiler-generated label. Skip
421 it. The assembler should be skipping these (to
422 keep executables small), but apparently with
423 gcc on the (deleted) delta m88k SVR4, it loses.
424 So to have us check too should be harmless (but
425 I encourage people to fix this in the assembler
426 instead of adding checks here). */
427 continue;
428 else
429 {
430 ms_type = mst_file_text;
431 }
432 }
433 else if (sym->section->flags & SEC_ALLOC)
434 {
435 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
436 {
437 if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
438 {
439 ms_type = mst_data_gnu_ifunc;
440 }
441 else if (sym->section->flags & SEC_LOAD)
442 {
443 ms_type = mst_data;
444 }
445 else
446 {
447 ms_type = mst_bss;
448 }
449 }
450 else if (sym->flags & BSF_LOCAL)
451 {
452 if (sym->section->flags & SEC_LOAD)
453 {
454 ms_type = mst_file_data;
455 }
456 else
457 {
458 ms_type = mst_file_bss;
459 }
460 }
461 else
462 {
463 ms_type = mst_unknown;
464 }
465 }
466 else
467 {
468 /* FIXME: Solaris2 shared libraries include lots of
469 odd "absolute" and "undefined" symbols, that play
470 hob with actions like finding what function the PC
471 is in. Ignore them if they aren't text, data, or bss. */
472 /* ms_type = mst_unknown; */
473 continue; /* Skip this symbol. */
474 }
475 msym = record_minimal_symbol
476 (reader, sym->name, copy_names, symaddr,
477 ms_type, sym->section, objfile);
478
479 if (msym)
480 {
481 /* NOTE: uweigand-20071112: A synthetic symbol does not have an
482 ELF-private part. */
483 if (type != ST_SYNTHETIC)
484 {
485 /* Pass symbol size field in via BFD. FIXME!!! */
486 msym->set_size (elf_sym->internal_elf_sym.st_size);
487 }
488
489 msym->filename = filesymname;
490 if (elf_make_msymbol_special_p)
491 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
492 }
493
494 /* If we see a default versioned symbol, install it under
495 its version-less name. */
496 if (msym != NULL)
497 {
498 const char *atsign = strchr (sym->name, '@');
499 bool is_at_symbol = atsign != nullptr && atsign > sym->name;
500 bool is_plt = is_at_symbol && strcmp (atsign, "@plt") == 0;
501 int len = is_at_symbol ? atsign - sym->name : 0;
502
503 if (is_at_symbol
504 && !is_plt
505 && (elf_sym->version & VERSYM_HIDDEN) == 0)
506 record_minimal_symbol (reader,
507 gdb::string_view (sym->name, len),
508 true, symaddr, ms_type, sym->section,
509 objfile);
510 else if (is_plt)
511 {
512 /* For @plt symbols, also record a trampoline to the
513 destination symbol. The @plt symbol will be used
514 in disassembly, and the trampoline will be used
515 when we are trying to find the target. */
516 if (ms_type == mst_text && type == ST_SYNTHETIC)
517 {
518 struct minimal_symbol *mtramp;
519
520 mtramp = record_minimal_symbol
521 (reader, gdb::string_view (sym->name, len), true,
522 symaddr, mst_solib_trampoline, sym->section, objfile);
523 if (mtramp)
524 {
525 mtramp->set_size (msym->size());
526 mtramp->created_by_gdb = 1;
527 mtramp->filename = filesymname;
528 if (elf_make_msymbol_special_p)
529 gdbarch_elf_make_msymbol_special (gdbarch,
530 sym, mtramp);
531 }
532 }
533 }
534 }
535 }
536 }
537 }
538
539 /* Build minimal symbols named `function@got.plt' (see SYMBOL_GOT_PLT_SUFFIX)
540 for later look ups of which function to call when user requests
541 a STT_GNU_IFUNC function. As the STT_GNU_IFUNC type is found at the target
542 library defining `function' we cannot yet know while reading OBJFILE which
543 of the SYMBOL_GOT_PLT_SUFFIX entries will be needed and later
544 DYN_SYMBOL_TABLE is no longer easily available for OBJFILE. */
545
546 static void
547 elf_rel_plt_read (minimal_symbol_reader &reader,
548 struct objfile *objfile, asymbol **dyn_symbol_table)
549 {
550 bfd *obfd = objfile->obfd;
551 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
552 asection *relplt, *got_plt;
553 bfd_size_type reloc_count, reloc;
554 struct gdbarch *gdbarch = objfile->arch ();
555 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
556 size_t ptr_size = TYPE_LENGTH (ptr_type);
557
558 if (objfile->separate_debug_objfile_backlink)
559 return;
560
561 got_plt = bfd_get_section_by_name (obfd, ".got.plt");
562 if (got_plt == NULL)
563 {
564 /* For platforms where there is no separate .got.plt. */
565 got_plt = bfd_get_section_by_name (obfd, ".got");
566 if (got_plt == NULL)
567 return;
568 }
569
570 /* Depending on system, we may find jump slots in a relocation
571 section for either .got.plt or .plt. */
572 asection *plt = bfd_get_section_by_name (obfd, ".plt");
573 int plt_elf_idx = (plt != NULL) ? elf_section_data (plt)->this_idx : -1;
574
575 int got_plt_elf_idx = elf_section_data (got_plt)->this_idx;
576
577 /* This search algorithm is from _bfd_elf_canonicalize_dynamic_reloc. */
578 for (relplt = obfd->sections; relplt != NULL; relplt = relplt->next)
579 {
580 const auto &this_hdr = elf_section_data (relplt)->this_hdr;
581
582 if (this_hdr.sh_type == SHT_REL || this_hdr.sh_type == SHT_RELA)
583 {
584 if (this_hdr.sh_info == plt_elf_idx
585 || this_hdr.sh_info == got_plt_elf_idx)
586 break;
587 }
588 }
589 if (relplt == NULL)
590 return;
591
592 if (! bed->s->slurp_reloc_table (obfd, relplt, dyn_symbol_table, TRUE))
593 return;
594
595 std::string string_buffer;
596
597 /* Does ADDRESS reside in SECTION of OBFD? */
598 auto within_section = [obfd] (asection *section, CORE_ADDR address)
599 {
600 if (section == NULL)
601 return false;
602
603 return (bfd_section_vma (section) <= address
604 && (address < bfd_section_vma (section)
605 + bfd_section_size (section)));
606 };
607
608 reloc_count = relplt->size / elf_section_data (relplt)->this_hdr.sh_entsize;
609 for (reloc = 0; reloc < reloc_count; reloc++)
610 {
611 const char *name;
612 struct minimal_symbol *msym;
613 CORE_ADDR address;
614 const char *got_suffix = SYMBOL_GOT_PLT_SUFFIX;
615 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
616
617 name = bfd_asymbol_name (*relplt->relocation[reloc].sym_ptr_ptr);
618 address = relplt->relocation[reloc].address;
619
620 asection *msym_section;
621
622 /* Does the pointer reside in either the .got.plt or .plt
623 sections? */
624 if (within_section (got_plt, address))
625 msym_section = got_plt;
626 else if (within_section (plt, address))
627 msym_section = plt;
628 else
629 continue;
630
631 /* We cannot check if NAME is a reference to
632 mst_text_gnu_ifunc/mst_data_gnu_ifunc as in OBJFILE the
633 symbol is undefined and the objfile having NAME defined may
634 not yet have been loaded. */
635
636 string_buffer.assign (name);
637 string_buffer.append (got_suffix, got_suffix + got_suffix_len);
638
639 msym = record_minimal_symbol (reader, string_buffer,
640 true, address, mst_slot_got_plt,
641 msym_section, objfile);
642 if (msym)
643 msym->set_size (ptr_size);
644 }
645 }
646
647 /* The data pointer is htab_t for gnu_ifunc_record_cache_unchecked. */
648
649 static const struct objfile_key<htab, htab_deleter>
650 elf_objfile_gnu_ifunc_cache_data;
651
652 /* Map function names to CORE_ADDR in elf_objfile_gnu_ifunc_cache_data. */
653
654 struct elf_gnu_ifunc_cache
655 {
656 /* This is always a function entry address, not a function descriptor. */
657 CORE_ADDR addr;
658
659 char name[1];
660 };
661
662 /* htab_hash for elf_objfile_gnu_ifunc_cache_data. */
663
664 static hashval_t
665 elf_gnu_ifunc_cache_hash (const void *a_voidp)
666 {
667 const struct elf_gnu_ifunc_cache *a
668 = (const struct elf_gnu_ifunc_cache *) a_voidp;
669
670 return htab_hash_string (a->name);
671 }
672
673 /* htab_eq for elf_objfile_gnu_ifunc_cache_data. */
674
675 static int
676 elf_gnu_ifunc_cache_eq (const void *a_voidp, const void *b_voidp)
677 {
678 const struct elf_gnu_ifunc_cache *a
679 = (const struct elf_gnu_ifunc_cache *) a_voidp;
680 const struct elf_gnu_ifunc_cache *b
681 = (const struct elf_gnu_ifunc_cache *) b_voidp;
682
683 return strcmp (a->name, b->name) == 0;
684 }
685
686 /* Record the target function address of a STT_GNU_IFUNC function NAME is the
687 function entry address ADDR. Return 1 if NAME and ADDR are considered as
688 valid and therefore they were successfully recorded, return 0 otherwise.
689
690 Function does not expect a duplicate entry. Use
691 elf_gnu_ifunc_resolve_by_cache first to check if the entry for NAME already
692 exists. */
693
694 static int
695 elf_gnu_ifunc_record_cache (const char *name, CORE_ADDR addr)
696 {
697 struct bound_minimal_symbol msym;
698 struct objfile *objfile;
699 htab_t htab;
700 struct elf_gnu_ifunc_cache entry_local, *entry_p;
701 void **slot;
702
703 msym = lookup_minimal_symbol_by_pc (addr);
704 if (msym.minsym == NULL)
705 return 0;
706 if (msym.value_address () != addr)
707 return 0;
708 objfile = msym.objfile;
709
710 /* If .plt jumps back to .plt the symbol is still deferred for later
711 resolution and it has no use for GDB. */
712 const char *target_name = msym.minsym->linkage_name ();
713 size_t len = strlen (target_name);
714
715 /* Note we check the symbol's name instead of checking whether the
716 symbol is in the .plt section because some systems have @plt
717 symbols in the .text section. */
718 if (len > 4 && strcmp (target_name + len - 4, "@plt") == 0)
719 return 0;
720
721 htab = elf_objfile_gnu_ifunc_cache_data.get (objfile);
722 if (htab == NULL)
723 {
724 htab = htab_create_alloc (1, elf_gnu_ifunc_cache_hash,
725 elf_gnu_ifunc_cache_eq,
726 NULL, xcalloc, xfree);
727 elf_objfile_gnu_ifunc_cache_data.set (objfile, htab);
728 }
729
730 entry_local.addr = addr;
731 obstack_grow (&objfile->objfile_obstack, &entry_local,
732 offsetof (struct elf_gnu_ifunc_cache, name));
733 obstack_grow_str0 (&objfile->objfile_obstack, name);
734 entry_p
735 = (struct elf_gnu_ifunc_cache *) obstack_finish (&objfile->objfile_obstack);
736
737 slot = htab_find_slot (htab, entry_p, INSERT);
738 if (*slot != NULL)
739 {
740 struct elf_gnu_ifunc_cache *entry_found_p
741 = (struct elf_gnu_ifunc_cache *) *slot;
742 struct gdbarch *gdbarch = objfile->arch ();
743
744 if (entry_found_p->addr != addr)
745 {
746 /* This case indicates buggy inferior program, the resolved address
747 should never change. */
748
749 warning (_("gnu-indirect-function \"%s\" has changed its resolved "
750 "function_address from %s to %s"),
751 name, paddress (gdbarch, entry_found_p->addr),
752 paddress (gdbarch, addr));
753 }
754
755 /* New ENTRY_P is here leaked/duplicate in the OBJFILE obstack. */
756 }
757 *slot = entry_p;
758
759 return 1;
760 }
761
762 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
763 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
764 is not NULL) and the function returns 1. It returns 0 otherwise.
765
766 Only the elf_objfile_gnu_ifunc_cache_data hash table is searched by this
767 function. */
768
769 static int
770 elf_gnu_ifunc_resolve_by_cache (const char *name, CORE_ADDR *addr_p)
771 {
772 for (objfile *objfile : current_program_space->objfiles ())
773 {
774 htab_t htab;
775 struct elf_gnu_ifunc_cache *entry_p;
776 void **slot;
777
778 htab = elf_objfile_gnu_ifunc_cache_data.get (objfile);
779 if (htab == NULL)
780 continue;
781
782 entry_p = ((struct elf_gnu_ifunc_cache *)
783 alloca (sizeof (*entry_p) + strlen (name)));
784 strcpy (entry_p->name, name);
785
786 slot = htab_find_slot (htab, entry_p, NO_INSERT);
787 if (slot == NULL)
788 continue;
789 entry_p = (struct elf_gnu_ifunc_cache *) *slot;
790 gdb_assert (entry_p != NULL);
791
792 if (addr_p)
793 *addr_p = entry_p->addr;
794 return 1;
795 }
796
797 return 0;
798 }
799
800 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
801 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
802 is not NULL) and the function returns 1. It returns 0 otherwise.
803
804 Only the SYMBOL_GOT_PLT_SUFFIX locations are searched by this function.
805 elf_gnu_ifunc_resolve_by_cache must have been already called for NAME to
806 prevent cache entries duplicates. */
807
808 static int
809 elf_gnu_ifunc_resolve_by_got (const char *name, CORE_ADDR *addr_p)
810 {
811 char *name_got_plt;
812 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
813
814 name_got_plt = (char *) alloca (strlen (name) + got_suffix_len + 1);
815 sprintf (name_got_plt, "%s" SYMBOL_GOT_PLT_SUFFIX, name);
816
817 for (objfile *objfile : current_program_space->objfiles ())
818 {
819 bfd *obfd = objfile->obfd;
820 struct gdbarch *gdbarch = objfile->arch ();
821 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
822 size_t ptr_size = TYPE_LENGTH (ptr_type);
823 CORE_ADDR pointer_address, addr;
824 asection *plt;
825 gdb_byte *buf = (gdb_byte *) alloca (ptr_size);
826 struct bound_minimal_symbol msym;
827
828 msym = lookup_minimal_symbol (name_got_plt, NULL, objfile);
829 if (msym.minsym == NULL)
830 continue;
831 if (msym.minsym->type () != mst_slot_got_plt)
832 continue;
833 pointer_address = msym.value_address ();
834
835 plt = bfd_get_section_by_name (obfd, ".plt");
836 if (plt == NULL)
837 continue;
838
839 if (msym.minsym->size () != ptr_size)
840 continue;
841 if (target_read_memory (pointer_address, buf, ptr_size) != 0)
842 continue;
843 addr = extract_typed_address (buf, ptr_type);
844 addr = gdbarch_convert_from_func_ptr_addr
845 (gdbarch, addr, current_inferior ()->top_target ());
846 addr = gdbarch_addr_bits_remove (gdbarch, addr);
847
848 if (elf_gnu_ifunc_record_cache (name, addr))
849 {
850 if (addr_p != NULL)
851 *addr_p = addr;
852 return 1;
853 }
854 }
855
856 return 0;
857 }
858
859 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
860 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
861 is not NULL) and the function returns true. It returns false otherwise.
862
863 Both the elf_objfile_gnu_ifunc_cache_data hash table and
864 SYMBOL_GOT_PLT_SUFFIX locations are searched by this function. */
865
866 static bool
867 elf_gnu_ifunc_resolve_name (const char *name, CORE_ADDR *addr_p)
868 {
869 if (elf_gnu_ifunc_resolve_by_cache (name, addr_p))
870 return true;
871
872 if (elf_gnu_ifunc_resolve_by_got (name, addr_p))
873 return true;
874
875 return false;
876 }
877
878 /* Call STT_GNU_IFUNC - a function returning addresss of a real function to
879 call. PC is theSTT_GNU_IFUNC resolving function entry. The value returned
880 is the entry point of the resolved STT_GNU_IFUNC target function to call.
881 */
882
883 static CORE_ADDR
884 elf_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc)
885 {
886 const char *name_at_pc;
887 CORE_ADDR start_at_pc, address;
888 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
889 struct value *function, *address_val;
890 CORE_ADDR hwcap = 0;
891 struct value *hwcap_val;
892
893 /* Try first any non-intrusive methods without an inferior call. */
894
895 if (find_pc_partial_function (pc, &name_at_pc, &start_at_pc, NULL)
896 && start_at_pc == pc)
897 {
898 if (elf_gnu_ifunc_resolve_name (name_at_pc, &address))
899 return address;
900 }
901 else
902 name_at_pc = NULL;
903
904 function = allocate_value (func_func_type);
905 VALUE_LVAL (function) = lval_memory;
906 set_value_address (function, pc);
907
908 /* STT_GNU_IFUNC resolver functions usually receive the HWCAP vector as
909 parameter. FUNCTION is the function entry address. ADDRESS may be a
910 function descriptor. */
911
912 target_auxv_search (current_inferior ()->top_target (), AT_HWCAP, &hwcap);
913 hwcap_val = value_from_longest (builtin_type (gdbarch)
914 ->builtin_unsigned_long, hwcap);
915 address_val = call_function_by_hand (function, NULL, hwcap_val);
916 address = value_as_address (address_val);
917 address = gdbarch_convert_from_func_ptr_addr
918 (gdbarch, address, current_inferior ()->top_target ());
919 address = gdbarch_addr_bits_remove (gdbarch, address);
920
921 if (name_at_pc)
922 elf_gnu_ifunc_record_cache (name_at_pc, address);
923
924 return address;
925 }
926
927 /* Handle inferior hit of bp_gnu_ifunc_resolver, see its definition. */
928
929 static void
930 elf_gnu_ifunc_resolver_stop (struct breakpoint *b)
931 {
932 struct breakpoint *b_return;
933 struct frame_info *prev_frame = get_prev_frame (get_current_frame ());
934 struct frame_id prev_frame_id = get_stack_frame_id (prev_frame);
935 CORE_ADDR prev_pc = get_frame_pc (prev_frame);
936 int thread_id = inferior_thread ()->global_num;
937
938 gdb_assert (b->type == bp_gnu_ifunc_resolver);
939
940 for (b_return = b->related_breakpoint; b_return != b;
941 b_return = b_return->related_breakpoint)
942 {
943 gdb_assert (b_return->type == bp_gnu_ifunc_resolver_return);
944 gdb_assert (b_return->loc != NULL && b_return->loc->next == NULL);
945 gdb_assert (frame_id_p (b_return->frame_id));
946
947 if (b_return->thread == thread_id
948 && b_return->loc->requested_address == prev_pc
949 && frame_id_eq (b_return->frame_id, prev_frame_id))
950 break;
951 }
952
953 if (b_return == b)
954 {
955 /* No need to call find_pc_line for symbols resolving as this is only
956 a helper breakpointer never shown to the user. */
957
958 symtab_and_line sal;
959 sal.pspace = current_inferior ()->pspace;
960 sal.pc = prev_pc;
961 sal.section = find_pc_overlay (sal.pc);
962 sal.explicit_pc = 1;
963 b_return
964 = set_momentary_breakpoint (get_frame_arch (prev_frame), sal,
965 prev_frame_id,
966 bp_gnu_ifunc_resolver_return).release ();
967
968 /* set_momentary_breakpoint invalidates PREV_FRAME. */
969 prev_frame = NULL;
970
971 /* Add new b_return to the ring list b->related_breakpoint. */
972 gdb_assert (b_return->related_breakpoint == b_return);
973 b_return->related_breakpoint = b->related_breakpoint;
974 b->related_breakpoint = b_return;
975 }
976 }
977
978 /* Handle inferior hit of bp_gnu_ifunc_resolver_return, see its definition. */
979
980 static void
981 elf_gnu_ifunc_resolver_return_stop (struct breakpoint *b)
982 {
983 thread_info *thread = inferior_thread ();
984 struct gdbarch *gdbarch = get_frame_arch (get_current_frame ());
985 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
986 struct type *value_type = TYPE_TARGET_TYPE (func_func_type);
987 struct regcache *regcache = get_thread_regcache (thread);
988 struct value *func_func;
989 struct value *value;
990 CORE_ADDR resolved_address, resolved_pc;
991
992 gdb_assert (b->type == bp_gnu_ifunc_resolver_return);
993
994 while (b->related_breakpoint != b)
995 {
996 struct breakpoint *b_next = b->related_breakpoint;
997
998 switch (b->type)
999 {
1000 case bp_gnu_ifunc_resolver:
1001 break;
1002 case bp_gnu_ifunc_resolver_return:
1003 delete_breakpoint (b);
1004 break;
1005 default:
1006 internal_error (__FILE__, __LINE__,
1007 _("handle_inferior_event: Invalid "
1008 "gnu-indirect-function breakpoint type %d"),
1009 (int) b->type);
1010 }
1011 b = b_next;
1012 }
1013 gdb_assert (b->type == bp_gnu_ifunc_resolver);
1014 gdb_assert (b->loc->next == NULL);
1015
1016 func_func = allocate_value (func_func_type);
1017 VALUE_LVAL (func_func) = lval_memory;
1018 set_value_address (func_func, b->loc->related_address);
1019
1020 value = allocate_value (value_type);
1021 gdbarch_return_value (gdbarch, func_func, value_type, regcache,
1022 value_contents_raw (value).data (), NULL);
1023 resolved_address = value_as_address (value);
1024 resolved_pc = gdbarch_convert_from_func_ptr_addr
1025 (gdbarch, resolved_address, current_inferior ()->top_target ());
1026 resolved_pc = gdbarch_addr_bits_remove (gdbarch, resolved_pc);
1027
1028 gdb_assert (current_program_space == b->pspace || b->pspace == NULL);
1029 elf_gnu_ifunc_record_cache (event_location_to_string (b->location.get ()),
1030 resolved_pc);
1031
1032 b->type = bp_breakpoint;
1033 update_breakpoint_locations (b, current_program_space,
1034 find_function_start_sal (resolved_pc, NULL, true),
1035 {});
1036 }
1037
1038 /* A helper function for elf_symfile_read that reads the minimal
1039 symbols. */
1040
1041 static void
1042 elf_read_minimal_symbols (struct objfile *objfile, int symfile_flags,
1043 const struct elfinfo *ei)
1044 {
1045 bfd *synth_abfd, *abfd = objfile->obfd;
1046 long symcount = 0, dynsymcount = 0, synthcount, storage_needed;
1047 asymbol **symbol_table = NULL, **dyn_symbol_table = NULL;
1048 asymbol *synthsyms;
1049
1050 if (symtab_create_debug)
1051 {
1052 gdb_printf (gdb_stdlog,
1053 "Reading minimal symbols of objfile %s ...\n",
1054 objfile_name (objfile));
1055 }
1056
1057 /* If we already have minsyms, then we can skip some work here.
1058 However, if there were stabs or mdebug sections, we go ahead and
1059 redo all the work anyway, because the psym readers for those
1060 kinds of debuginfo need extra information found here. This can
1061 go away once all types of symbols are in the per-BFD object. */
1062 if (objfile->per_bfd->minsyms_read
1063 && ei->stabsect == NULL
1064 && ei->mdebugsect == NULL
1065 && ei->ctfsect == NULL)
1066 {
1067 if (symtab_create_debug)
1068 gdb_printf (gdb_stdlog,
1069 "... minimal symbols previously read\n");
1070 return;
1071 }
1072
1073 minimal_symbol_reader reader (objfile);
1074
1075 /* Process the normal ELF symbol table first. */
1076
1077 storage_needed = bfd_get_symtab_upper_bound (objfile->obfd);
1078 if (storage_needed < 0)
1079 error (_("Can't read symbols from %s: %s"),
1080 bfd_get_filename (objfile->obfd),
1081 bfd_errmsg (bfd_get_error ()));
1082
1083 if (storage_needed > 0)
1084 {
1085 /* Memory gets permanently referenced from ABFD after
1086 bfd_canonicalize_symtab so it must not get freed before ABFD gets. */
1087
1088 symbol_table = (asymbol **) bfd_alloc (abfd, storage_needed);
1089 symcount = bfd_canonicalize_symtab (objfile->obfd, symbol_table);
1090
1091 if (symcount < 0)
1092 error (_("Can't read symbols from %s: %s"),
1093 bfd_get_filename (objfile->obfd),
1094 bfd_errmsg (bfd_get_error ()));
1095
1096 elf_symtab_read (reader, objfile, ST_REGULAR, symcount, symbol_table,
1097 false);
1098 }
1099
1100 /* Add the dynamic symbols. */
1101
1102 storage_needed = bfd_get_dynamic_symtab_upper_bound (objfile->obfd);
1103
1104 if (storage_needed > 0)
1105 {
1106 /* Memory gets permanently referenced from ABFD after
1107 bfd_get_synthetic_symtab so it must not get freed before ABFD gets.
1108 It happens only in the case when elf_slurp_reloc_table sees
1109 asection->relocation NULL. Determining which section is asection is
1110 done by _bfd_elf_get_synthetic_symtab which is all a bfd
1111 implementation detail, though. */
1112
1113 dyn_symbol_table = (asymbol **) bfd_alloc (abfd, storage_needed);
1114 dynsymcount = bfd_canonicalize_dynamic_symtab (objfile->obfd,
1115 dyn_symbol_table);
1116
1117 if (dynsymcount < 0)
1118 error (_("Can't read symbols from %s: %s"),
1119 bfd_get_filename (objfile->obfd),
1120 bfd_errmsg (bfd_get_error ()));
1121
1122 elf_symtab_read (reader, objfile, ST_DYNAMIC, dynsymcount,
1123 dyn_symbol_table, false);
1124
1125 elf_rel_plt_read (reader, objfile, dyn_symbol_table);
1126 }
1127
1128 /* Contrary to binutils --strip-debug/--only-keep-debug the strip command from
1129 elfutils (eu-strip) moves even the .symtab section into the .debug file.
1130
1131 bfd_get_synthetic_symtab on ppc64 for each function descriptor ELF symbol
1132 'name' creates a new BSF_SYNTHETIC ELF symbol '.name' with its code
1133 address. But with eu-strip files bfd_get_synthetic_symtab would fail to
1134 read the code address from .opd while it reads the .symtab section from
1135 a separate debug info file as the .opd section is SHT_NOBITS there.
1136
1137 With SYNTH_ABFD the .opd section will be read from the original
1138 backlinked binary where it is valid. */
1139
1140 if (objfile->separate_debug_objfile_backlink)
1141 synth_abfd = objfile->separate_debug_objfile_backlink->obfd;
1142 else
1143 synth_abfd = abfd;
1144
1145 /* Add synthetic symbols - for instance, names for any PLT entries. */
1146
1147 synthcount = bfd_get_synthetic_symtab (synth_abfd, symcount, symbol_table,
1148 dynsymcount, dyn_symbol_table,
1149 &synthsyms);
1150 if (synthcount > 0)
1151 {
1152 long i;
1153
1154 std::unique_ptr<asymbol *[]>
1155 synth_symbol_table (new asymbol *[synthcount]);
1156 for (i = 0; i < synthcount; i++)
1157 synth_symbol_table[i] = synthsyms + i;
1158 elf_symtab_read (reader, objfile, ST_SYNTHETIC, synthcount,
1159 synth_symbol_table.get (), true);
1160
1161 xfree (synthsyms);
1162 synthsyms = NULL;
1163 }
1164
1165 /* Install any minimal symbols that have been collected as the current
1166 minimal symbols for this objfile. The debug readers below this point
1167 should not generate new minimal symbols; if they do it's their
1168 responsibility to install them. "mdebug" appears to be the only one
1169 which will do this. */
1170
1171 reader.install ();
1172
1173 if (symtab_create_debug)
1174 gdb_printf (gdb_stdlog, "Done reading minimal symbols.\n");
1175 }
1176
1177 /* Scan and build partial symbols for a symbol file.
1178 We have been initialized by a call to elf_symfile_init, which
1179 currently does nothing.
1180
1181 This function only does the minimum work necessary for letting the
1182 user "name" things symbolically; it does not read the entire symtab.
1183 Instead, it reads the external and static symbols and puts them in partial
1184 symbol tables. When more extensive information is requested of a
1185 file, the corresponding partial symbol table is mutated into a full
1186 fledged symbol table by going back and reading the symbols
1187 for real.
1188
1189 We look for sections with specific names, to tell us what debug
1190 format to look for: FIXME!!!
1191
1192 elfstab_build_psymtabs() handles STABS symbols;
1193 mdebug_build_psymtabs() handles ECOFF debugging information.
1194
1195 Note that ELF files have a "minimal" symbol table, which looks a lot
1196 like a COFF symbol table, but has only the minimal information necessary
1197 for linking. We process this also, and use the information to
1198 build gdb's minimal symbol table. This gives us some minimal debugging
1199 capability even for files compiled without -g. */
1200
1201 static void
1202 elf_symfile_read (struct objfile *objfile, symfile_add_flags symfile_flags)
1203 {
1204 bfd *abfd = objfile->obfd;
1205 struct elfinfo ei;
1206 bool has_dwarf2 = true;
1207
1208 memset ((char *) &ei, 0, sizeof (ei));
1209 if (!(objfile->flags & OBJF_READNEVER))
1210 {
1211 for (asection *sect : gdb_bfd_sections (abfd))
1212 elf_locate_sections (sect, &ei);
1213 }
1214
1215 elf_read_minimal_symbols (objfile, symfile_flags, &ei);
1216
1217 /* ELF debugging information is inserted into the psymtab in the
1218 order of least informative first - most informative last. Since
1219 the psymtab table is searched `most recent insertion first' this
1220 increases the probability that more detailed debug information
1221 for a section is found.
1222
1223 For instance, an object file might contain both .mdebug (XCOFF)
1224 and .debug_info (DWARF2) sections then .mdebug is inserted first
1225 (searched last) and DWARF2 is inserted last (searched first). If
1226 we don't do this then the XCOFF info is found first - for code in
1227 an included file XCOFF info is useless. */
1228
1229 if (ei.mdebugsect)
1230 {
1231 const struct ecoff_debug_swap *swap;
1232
1233 /* .mdebug section, presumably holding ECOFF debugging
1234 information. */
1235 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1236 if (swap)
1237 elfmdebug_build_psymtabs (objfile, swap, ei.mdebugsect);
1238 }
1239 if (ei.stabsect)
1240 {
1241 asection *str_sect;
1242
1243 /* Stab sections have an associated string table that looks like
1244 a separate section. */
1245 str_sect = bfd_get_section_by_name (abfd, ".stabstr");
1246
1247 /* FIXME should probably warn about a stab section without a stabstr. */
1248 if (str_sect)
1249 elfstab_build_psymtabs (objfile,
1250 ei.stabsect,
1251 str_sect->filepos,
1252 bfd_section_size (str_sect));
1253 }
1254
1255 if (dwarf2_has_info (objfile, NULL, true))
1256 dwarf2_initialize_objfile (objfile);
1257 /* If the file has its own symbol tables it has no separate debug
1258 info. `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to
1259 SYMTABS/PSYMTABS. `.gnu_debuglink' may no longer be present with
1260 `.note.gnu.build-id'.
1261
1262 .gnu_debugdata is !objfile::has_partial_symbols because it contains only
1263 .symtab, not .debug_* section. But if we already added .gnu_debugdata as
1264 an objfile via find_separate_debug_file_in_section there was no separate
1265 debug info available. Therefore do not attempt to search for another one,
1266 objfile->separate_debug_objfile->separate_debug_objfile GDB guarantees to
1267 be NULL and we would possibly violate it. */
1268
1269 else if (!objfile->has_partial_symbols ()
1270 && objfile->separate_debug_objfile == NULL
1271 && objfile->separate_debug_objfile_backlink == NULL)
1272 {
1273 std::string debugfile = find_separate_debug_file_by_buildid (objfile);
1274
1275 if (debugfile.empty ())
1276 debugfile = find_separate_debug_file_by_debuglink (objfile);
1277
1278 if (!debugfile.empty ())
1279 {
1280 gdb_bfd_ref_ptr debug_bfd (symfile_bfd_open (debugfile.c_str ()));
1281
1282 symbol_file_add_separate (debug_bfd.get (), debugfile.c_str (),
1283 symfile_flags, objfile);
1284 }
1285 else
1286 {
1287 has_dwarf2 = false;
1288 const struct bfd_build_id *build_id = build_id_bfd_get (objfile->obfd);
1289
1290 if (build_id != nullptr)
1291 {
1292 gdb::unique_xmalloc_ptr<char> symfile_path;
1293 scoped_fd fd (debuginfod_debuginfo_query (build_id->data,
1294 build_id->size,
1295 objfile->original_name,
1296 &symfile_path));
1297
1298 if (fd.get () >= 0)
1299 {
1300 /* File successfully retrieved from server. */
1301 gdb_bfd_ref_ptr debug_bfd (symfile_bfd_open (symfile_path.get ()));
1302
1303 if (debug_bfd == nullptr)
1304 warning (_("File \"%s\" from debuginfod cannot be opened as bfd"),
1305 objfile->original_name);
1306 else if (build_id_verify (debug_bfd.get (), build_id->size, build_id->data))
1307 {
1308 symbol_file_add_separate (debug_bfd.get (), symfile_path.get (),
1309 symfile_flags, objfile);
1310 has_dwarf2 = true;
1311 }
1312 }
1313 }
1314 }
1315 }
1316
1317 /* Read the CTF section only if there is no DWARF info. */
1318 if (!has_dwarf2 && ei.ctfsect)
1319 {
1320 elfctf_build_psymtabs (objfile);
1321 }
1322 }
1323
1324 /* Initialize anything that needs initializing when a completely new symbol
1325 file is specified (not just adding some symbols from another file, e.g. a
1326 shared library). */
1327
1328 static void
1329 elf_new_init (struct objfile *ignore)
1330 {
1331 }
1332
1333 /* Perform any local cleanups required when we are done with a particular
1334 objfile. I.E, we are in the process of discarding all symbol information
1335 for an objfile, freeing up all memory held for it, and unlinking the
1336 objfile struct from the global list of known objfiles. */
1337
1338 static void
1339 elf_symfile_finish (struct objfile *objfile)
1340 {
1341 }
1342
1343 /* ELF specific initialization routine for reading symbols. */
1344
1345 static void
1346 elf_symfile_init (struct objfile *objfile)
1347 {
1348 /* ELF objects may be reordered, so set OBJF_REORDERED. If we
1349 find this causes a significant slowdown in gdb then we could
1350 set it in the debug symbol readers only when necessary. */
1351 objfile->flags |= OBJF_REORDERED;
1352 }
1353
1354 /* Implementation of `sym_get_probes', as documented in symfile.h. */
1355
1356 static const elfread_data &
1357 elf_get_probes (struct objfile *objfile)
1358 {
1359 elfread_data *probes_per_bfd = probe_key.get (objfile->obfd);
1360
1361 if (probes_per_bfd == NULL)
1362 {
1363 probes_per_bfd = probe_key.emplace (objfile->obfd);
1364
1365 /* Here we try to gather information about all types of probes from the
1366 objfile. */
1367 for (const static_probe_ops *ops : all_static_probe_ops)
1368 ops->get_probes (probes_per_bfd, objfile);
1369 }
1370
1371 return *probes_per_bfd;
1372 }
1373
1374 \f
1375
1376 /* Implementation `sym_probe_fns', as documented in symfile.h. */
1377
1378 static const struct sym_probe_fns elf_probe_fns =
1379 {
1380 elf_get_probes, /* sym_get_probes */
1381 };
1382
1383 /* Register that we are able to handle ELF object file formats. */
1384
1385 static const struct sym_fns elf_sym_fns =
1386 {
1387 elf_new_init, /* init anything gbl to entire symtab */
1388 elf_symfile_init, /* read initial info, setup for sym_read() */
1389 elf_symfile_read, /* read a symbol file into symtab */
1390 elf_symfile_finish, /* finished with file, cleanup */
1391 default_symfile_offsets, /* Translate ext. to int. relocation */
1392 elf_symfile_segments, /* Get segment information from a file. */
1393 NULL,
1394 default_symfile_relocate, /* Relocate a debug section. */
1395 &elf_probe_fns, /* sym_probe_fns */
1396 };
1397
1398 /* STT_GNU_IFUNC resolver vector to be installed to gnu_ifunc_fns_p. */
1399
1400 static const struct gnu_ifunc_fns elf_gnu_ifunc_fns =
1401 {
1402 elf_gnu_ifunc_resolve_addr,
1403 elf_gnu_ifunc_resolve_name,
1404 elf_gnu_ifunc_resolver_stop,
1405 elf_gnu_ifunc_resolver_return_stop
1406 };
1407
1408 void _initialize_elfread ();
1409 void
1410 _initialize_elfread ()
1411 {
1412 add_symtab_fns (bfd_target_elf_flavour, &elf_sym_fns);
1413
1414 gnu_ifunc_fns_p = &elf_gnu_ifunc_fns;
1415 }