Fix wrong prefix in py-breakpoint.exp
[binutils-gdb.git] / gdb / elfread.c
1 /* Read ELF (Executable and Linking Format) object files for GDB.
2
3 Copyright (C) 1991-2017 Free Software Foundation, Inc.
4
5 Written by Fred Fish at Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "bfd.h"
24 #include "elf-bfd.h"
25 #include "elf/common.h"
26 #include "elf/internal.h"
27 #include "elf/mips.h"
28 #include "symtab.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "buildsym.h"
32 #include "stabsread.h"
33 #include "gdb-stabs.h"
34 #include "complaints.h"
35 #include "demangle.h"
36 #include "psympriv.h"
37 #include "filenames.h"
38 #include "probe.h"
39 #include "arch-utils.h"
40 #include "gdbtypes.h"
41 #include "value.h"
42 #include "infcall.h"
43 #include "gdbthread.h"
44 #include "regcache.h"
45 #include "bcache.h"
46 #include "gdb_bfd.h"
47 #include "build-id.h"
48 #include "location.h"
49 #include "auxv.h"
50
51 /* Forward declarations. */
52 extern const struct sym_fns elf_sym_fns_gdb_index;
53 extern const struct sym_fns elf_sym_fns_lazy_psyms;
54
55 /* The struct elfinfo is available only during ELF symbol table and
56 psymtab reading. It is destroyed at the completion of psymtab-reading.
57 It's local to elf_symfile_read. */
58
59 struct elfinfo
60 {
61 asection *stabsect; /* Section pointer for .stab section */
62 asection *mdebugsect; /* Section pointer for .mdebug section */
63 };
64
65 /* Per-BFD data for probe info. */
66
67 static const struct bfd_data *probe_key = NULL;
68
69 /* Minimal symbols located at the GOT entries for .plt - that is the real
70 pointer where the given entry will jump to. It gets updated by the real
71 function address during lazy ld.so resolving in the inferior. These
72 minimal symbols are indexed for <tab>-completion. */
73
74 #define SYMBOL_GOT_PLT_SUFFIX "@got.plt"
75
76 /* Locate the segments in ABFD. */
77
78 static struct symfile_segment_data *
79 elf_symfile_segments (bfd *abfd)
80 {
81 Elf_Internal_Phdr *phdrs, **segments;
82 long phdrs_size;
83 int num_phdrs, num_segments, num_sections, i;
84 asection *sect;
85 struct symfile_segment_data *data;
86
87 phdrs_size = bfd_get_elf_phdr_upper_bound (abfd);
88 if (phdrs_size == -1)
89 return NULL;
90
91 phdrs = (Elf_Internal_Phdr *) alloca (phdrs_size);
92 num_phdrs = bfd_get_elf_phdrs (abfd, phdrs);
93 if (num_phdrs == -1)
94 return NULL;
95
96 num_segments = 0;
97 segments = XALLOCAVEC (Elf_Internal_Phdr *, num_phdrs);
98 for (i = 0; i < num_phdrs; i++)
99 if (phdrs[i].p_type == PT_LOAD)
100 segments[num_segments++] = &phdrs[i];
101
102 if (num_segments == 0)
103 return NULL;
104
105 data = XCNEW (struct symfile_segment_data);
106 data->num_segments = num_segments;
107 data->segment_bases = XCNEWVEC (CORE_ADDR, num_segments);
108 data->segment_sizes = XCNEWVEC (CORE_ADDR, num_segments);
109
110 for (i = 0; i < num_segments; i++)
111 {
112 data->segment_bases[i] = segments[i]->p_vaddr;
113 data->segment_sizes[i] = segments[i]->p_memsz;
114 }
115
116 num_sections = bfd_count_sections (abfd);
117 data->segment_info = XCNEWVEC (int, num_sections);
118
119 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
120 {
121 int j;
122 CORE_ADDR vma;
123
124 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
125 continue;
126
127 vma = bfd_get_section_vma (abfd, sect);
128
129 for (j = 0; j < num_segments; j++)
130 if (segments[j]->p_memsz > 0
131 && vma >= segments[j]->p_vaddr
132 && (vma - segments[j]->p_vaddr) < segments[j]->p_memsz)
133 {
134 data->segment_info[i] = j + 1;
135 break;
136 }
137
138 /* We should have found a segment for every non-empty section.
139 If we haven't, we will not relocate this section by any
140 offsets we apply to the segments. As an exception, do not
141 warn about SHT_NOBITS sections; in normal ELF execution
142 environments, SHT_NOBITS means zero-initialized and belongs
143 in a segment, but in no-OS environments some tools (e.g. ARM
144 RealView) use SHT_NOBITS for uninitialized data. Since it is
145 uninitialized, it doesn't need a program header. Such
146 binaries are not relocatable. */
147 if (bfd_get_section_size (sect) > 0 && j == num_segments
148 && (bfd_get_section_flags (abfd, sect) & SEC_LOAD) != 0)
149 warning (_("Loadable section \"%s\" outside of ELF segments"),
150 bfd_section_name (abfd, sect));
151 }
152
153 return data;
154 }
155
156 /* We are called once per section from elf_symfile_read. We
157 need to examine each section we are passed, check to see
158 if it is something we are interested in processing, and
159 if so, stash away some access information for the section.
160
161 For now we recognize the dwarf debug information sections and
162 line number sections from matching their section names. The
163 ELF definition is no real help here since it has no direct
164 knowledge of DWARF (by design, so any debugging format can be
165 used).
166
167 We also recognize the ".stab" sections used by the Sun compilers
168 released with Solaris 2.
169
170 FIXME: The section names should not be hardwired strings (what
171 should they be? I don't think most object file formats have enough
172 section flags to specify what kind of debug section it is.
173 -kingdon). */
174
175 static void
176 elf_locate_sections (bfd *ignore_abfd, asection *sectp, void *eip)
177 {
178 struct elfinfo *ei;
179
180 ei = (struct elfinfo *) eip;
181 if (strcmp (sectp->name, ".stab") == 0)
182 {
183 ei->stabsect = sectp;
184 }
185 else if (strcmp (sectp->name, ".mdebug") == 0)
186 {
187 ei->mdebugsect = sectp;
188 }
189 }
190
191 static struct minimal_symbol *
192 record_minimal_symbol (minimal_symbol_reader &reader,
193 const char *name, int name_len, bool copy_name,
194 CORE_ADDR address,
195 enum minimal_symbol_type ms_type,
196 asection *bfd_section, struct objfile *objfile)
197 {
198 struct gdbarch *gdbarch = get_objfile_arch (objfile);
199
200 if (ms_type == mst_text || ms_type == mst_file_text
201 || ms_type == mst_text_gnu_ifunc)
202 address = gdbarch_addr_bits_remove (gdbarch, address);
203
204 return reader.record_full (name, name_len, copy_name, address,
205 ms_type,
206 gdb_bfd_section_index (objfile->obfd,
207 bfd_section));
208 }
209
210 /* Read the symbol table of an ELF file.
211
212 Given an objfile, a symbol table, and a flag indicating whether the
213 symbol table contains regular, dynamic, or synthetic symbols, add all
214 the global function and data symbols to the minimal symbol table.
215
216 In stabs-in-ELF, as implemented by Sun, there are some local symbols
217 defined in the ELF symbol table, which can be used to locate
218 the beginnings of sections from each ".o" file that was linked to
219 form the executable objfile. We gather any such info and record it
220 in data structures hung off the objfile's private data. */
221
222 #define ST_REGULAR 0
223 #define ST_DYNAMIC 1
224 #define ST_SYNTHETIC 2
225
226 static void
227 elf_symtab_read (minimal_symbol_reader &reader,
228 struct objfile *objfile, int type,
229 long number_of_symbols, asymbol **symbol_table,
230 bool copy_names)
231 {
232 struct gdbarch *gdbarch = get_objfile_arch (objfile);
233 asymbol *sym;
234 long i;
235 CORE_ADDR symaddr;
236 enum minimal_symbol_type ms_type;
237 /* Name of the last file symbol. This is either a constant string or is
238 saved on the objfile's filename cache. */
239 const char *filesymname = "";
240 int stripped = (bfd_get_symcount (objfile->obfd) == 0);
241 int elf_make_msymbol_special_p
242 = gdbarch_elf_make_msymbol_special_p (gdbarch);
243
244 for (i = 0; i < number_of_symbols; i++)
245 {
246 sym = symbol_table[i];
247 if (sym->name == NULL || *sym->name == '\0')
248 {
249 /* Skip names that don't exist (shouldn't happen), or names
250 that are null strings (may happen). */
251 continue;
252 }
253
254 /* Skip "special" symbols, e.g. ARM mapping symbols. These are
255 symbols which do not correspond to objects in the symbol table,
256 but have some other target-specific meaning. */
257 if (bfd_is_target_special_symbol (objfile->obfd, sym))
258 {
259 if (gdbarch_record_special_symbol_p (gdbarch))
260 gdbarch_record_special_symbol (gdbarch, objfile, sym);
261 continue;
262 }
263
264 if (type == ST_DYNAMIC
265 && sym->section == bfd_und_section_ptr
266 && (sym->flags & BSF_FUNCTION))
267 {
268 struct minimal_symbol *msym;
269 bfd *abfd = objfile->obfd;
270 asection *sect;
271
272 /* Symbol is a reference to a function defined in
273 a shared library.
274 If its value is non zero then it is usually the address
275 of the corresponding entry in the procedure linkage table,
276 plus the desired section offset.
277 If its value is zero then the dynamic linker has to resolve
278 the symbol. We are unable to find any meaningful address
279 for this symbol in the executable file, so we skip it. */
280 symaddr = sym->value;
281 if (symaddr == 0)
282 continue;
283
284 /* sym->section is the undefined section. However, we want to
285 record the section where the PLT stub resides with the
286 minimal symbol. Search the section table for the one that
287 covers the stub's address. */
288 for (sect = abfd->sections; sect != NULL; sect = sect->next)
289 {
290 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
291 continue;
292
293 if (symaddr >= bfd_get_section_vma (abfd, sect)
294 && symaddr < bfd_get_section_vma (abfd, sect)
295 + bfd_get_section_size (sect))
296 break;
297 }
298 if (!sect)
299 continue;
300
301 /* On ia64-hpux, we have discovered that the system linker
302 adds undefined symbols with nonzero addresses that cannot
303 be right (their address points inside the code of another
304 function in the .text section). This creates problems
305 when trying to determine which symbol corresponds to
306 a given address.
307
308 We try to detect those buggy symbols by checking which
309 section we think they correspond to. Normally, PLT symbols
310 are stored inside their own section, and the typical name
311 for that section is ".plt". So, if there is a ".plt"
312 section, and yet the section name of our symbol does not
313 start with ".plt", we ignore that symbol. */
314 if (!startswith (sect->name, ".plt")
315 && bfd_get_section_by_name (abfd, ".plt") != NULL)
316 continue;
317
318 msym = record_minimal_symbol
319 (reader, sym->name, strlen (sym->name), copy_names,
320 symaddr, mst_solib_trampoline, sect, objfile);
321 if (msym != NULL)
322 {
323 msym->filename = filesymname;
324 if (elf_make_msymbol_special_p)
325 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
326 }
327 continue;
328 }
329
330 /* If it is a nonstripped executable, do not enter dynamic
331 symbols, as the dynamic symbol table is usually a subset
332 of the main symbol table. */
333 if (type == ST_DYNAMIC && !stripped)
334 continue;
335 if (sym->flags & BSF_FILE)
336 {
337 filesymname
338 = (const char *) bcache (sym->name, strlen (sym->name) + 1,
339 objfile->per_bfd->filename_cache);
340 }
341 else if (sym->flags & BSF_SECTION_SYM)
342 continue;
343 else if (sym->flags & (BSF_GLOBAL | BSF_LOCAL | BSF_WEAK
344 | BSF_GNU_UNIQUE))
345 {
346 struct minimal_symbol *msym;
347
348 /* Select global/local/weak symbols. Note that bfd puts abs
349 symbols in their own section, so all symbols we are
350 interested in will have a section. */
351 /* Bfd symbols are section relative. */
352 symaddr = sym->value + sym->section->vma;
353 /* For non-absolute symbols, use the type of the section
354 they are relative to, to intuit text/data. Bfd provides
355 no way of figuring this out for absolute symbols. */
356 if (sym->section == bfd_abs_section_ptr)
357 {
358 /* This is a hack to get the minimal symbol type
359 right for Irix 5, which has absolute addresses
360 with special section indices for dynamic symbols.
361
362 NOTE: uweigand-20071112: Synthetic symbols do not
363 have an ELF-private part, so do not touch those. */
364 unsigned int shndx = type == ST_SYNTHETIC ? 0 :
365 ((elf_symbol_type *) sym)->internal_elf_sym.st_shndx;
366
367 switch (shndx)
368 {
369 case SHN_MIPS_TEXT:
370 ms_type = mst_text;
371 break;
372 case SHN_MIPS_DATA:
373 ms_type = mst_data;
374 break;
375 case SHN_MIPS_ACOMMON:
376 ms_type = mst_bss;
377 break;
378 default:
379 ms_type = mst_abs;
380 }
381
382 /* If it is an Irix dynamic symbol, skip section name
383 symbols, relocate all others by section offset. */
384 if (ms_type != mst_abs)
385 {
386 if (sym->name[0] == '.')
387 continue;
388 }
389 }
390 else if (sym->section->flags & SEC_CODE)
391 {
392 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
393 {
394 if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
395 ms_type = mst_text_gnu_ifunc;
396 else
397 ms_type = mst_text;
398 }
399 /* The BSF_SYNTHETIC check is there to omit ppc64 function
400 descriptors mistaken for static functions starting with 'L'.
401 */
402 else if ((sym->name[0] == '.' && sym->name[1] == 'L'
403 && (sym->flags & BSF_SYNTHETIC) == 0)
404 || ((sym->flags & BSF_LOCAL)
405 && sym->name[0] == '$'
406 && sym->name[1] == 'L'))
407 /* Looks like a compiler-generated label. Skip
408 it. The assembler should be skipping these (to
409 keep executables small), but apparently with
410 gcc on the (deleted) delta m88k SVR4, it loses.
411 So to have us check too should be harmless (but
412 I encourage people to fix this in the assembler
413 instead of adding checks here). */
414 continue;
415 else
416 {
417 ms_type = mst_file_text;
418 }
419 }
420 else if (sym->section->flags & SEC_ALLOC)
421 {
422 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
423 {
424 if (sym->section->flags & SEC_LOAD)
425 {
426 ms_type = mst_data;
427 }
428 else
429 {
430 ms_type = mst_bss;
431 }
432 }
433 else if (sym->flags & BSF_LOCAL)
434 {
435 if (sym->section->flags & SEC_LOAD)
436 {
437 ms_type = mst_file_data;
438 }
439 else
440 {
441 ms_type = mst_file_bss;
442 }
443 }
444 else
445 {
446 ms_type = mst_unknown;
447 }
448 }
449 else
450 {
451 /* FIXME: Solaris2 shared libraries include lots of
452 odd "absolute" and "undefined" symbols, that play
453 hob with actions like finding what function the PC
454 is in. Ignore them if they aren't text, data, or bss. */
455 /* ms_type = mst_unknown; */
456 continue; /* Skip this symbol. */
457 }
458 msym = record_minimal_symbol
459 (reader, sym->name, strlen (sym->name), copy_names, symaddr,
460 ms_type, sym->section, objfile);
461
462 if (msym)
463 {
464 /* NOTE: uweigand-20071112: A synthetic symbol does not have an
465 ELF-private part. */
466 if (type != ST_SYNTHETIC)
467 {
468 /* Pass symbol size field in via BFD. FIXME!!! */
469 elf_symbol_type *elf_sym = (elf_symbol_type *) sym;
470 SET_MSYMBOL_SIZE (msym, elf_sym->internal_elf_sym.st_size);
471 }
472
473 msym->filename = filesymname;
474 if (elf_make_msymbol_special_p)
475 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
476 }
477
478 /* If we see a default versioned symbol, install it under
479 its version-less name. */
480 if (msym != NULL)
481 {
482 const char *atsign = strchr (sym->name, '@');
483
484 if (atsign != NULL && atsign[1] == '@' && atsign > sym->name)
485 {
486 int len = atsign - sym->name;
487
488 record_minimal_symbol (reader, sym->name, len, true, symaddr,
489 ms_type, sym->section, objfile);
490 }
491 }
492
493 /* For @plt symbols, also record a trampoline to the
494 destination symbol. The @plt symbol will be used in
495 disassembly, and the trampoline will be used when we are
496 trying to find the target. */
497 if (msym && ms_type == mst_text && type == ST_SYNTHETIC)
498 {
499 int len = strlen (sym->name);
500
501 if (len > 4 && strcmp (sym->name + len - 4, "@plt") == 0)
502 {
503 struct minimal_symbol *mtramp;
504
505 mtramp = record_minimal_symbol (reader, sym->name, len - 4,
506 true, symaddr,
507 mst_solib_trampoline,
508 sym->section, objfile);
509 if (mtramp)
510 {
511 SET_MSYMBOL_SIZE (mtramp, MSYMBOL_SIZE (msym));
512 mtramp->created_by_gdb = 1;
513 mtramp->filename = filesymname;
514 if (elf_make_msymbol_special_p)
515 gdbarch_elf_make_msymbol_special (gdbarch,
516 sym, mtramp);
517 }
518 }
519 }
520 }
521 }
522 }
523
524 /* Build minimal symbols named `function@got.plt' (see SYMBOL_GOT_PLT_SUFFIX)
525 for later look ups of which function to call when user requests
526 a STT_GNU_IFUNC function. As the STT_GNU_IFUNC type is found at the target
527 library defining `function' we cannot yet know while reading OBJFILE which
528 of the SYMBOL_GOT_PLT_SUFFIX entries will be needed and later
529 DYN_SYMBOL_TABLE is no longer easily available for OBJFILE. */
530
531 static void
532 elf_rel_plt_read (minimal_symbol_reader &reader,
533 struct objfile *objfile, asymbol **dyn_symbol_table)
534 {
535 bfd *obfd = objfile->obfd;
536 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
537 asection *plt, *relplt, *got_plt;
538 int plt_elf_idx;
539 bfd_size_type reloc_count, reloc;
540 struct gdbarch *gdbarch = get_objfile_arch (objfile);
541 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
542 size_t ptr_size = TYPE_LENGTH (ptr_type);
543
544 if (objfile->separate_debug_objfile_backlink)
545 return;
546
547 plt = bfd_get_section_by_name (obfd, ".plt");
548 if (plt == NULL)
549 return;
550 plt_elf_idx = elf_section_data (plt)->this_idx;
551
552 got_plt = bfd_get_section_by_name (obfd, ".got.plt");
553 if (got_plt == NULL)
554 {
555 /* For platforms where there is no separate .got.plt. */
556 got_plt = bfd_get_section_by_name (obfd, ".got");
557 if (got_plt == NULL)
558 return;
559 }
560
561 /* This search algorithm is from _bfd_elf_canonicalize_dynamic_reloc. */
562 for (relplt = obfd->sections; relplt != NULL; relplt = relplt->next)
563 if (elf_section_data (relplt)->this_hdr.sh_info == plt_elf_idx
564 && (elf_section_data (relplt)->this_hdr.sh_type == SHT_REL
565 || elf_section_data (relplt)->this_hdr.sh_type == SHT_RELA))
566 break;
567 if (relplt == NULL)
568 return;
569
570 if (! bed->s->slurp_reloc_table (obfd, relplt, dyn_symbol_table, TRUE))
571 return;
572
573 std::string string_buffer;
574
575 reloc_count = relplt->size / elf_section_data (relplt)->this_hdr.sh_entsize;
576 for (reloc = 0; reloc < reloc_count; reloc++)
577 {
578 const char *name;
579 struct minimal_symbol *msym;
580 CORE_ADDR address;
581 const char *got_suffix = SYMBOL_GOT_PLT_SUFFIX;
582 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
583
584 name = bfd_asymbol_name (*relplt->relocation[reloc].sym_ptr_ptr);
585 address = relplt->relocation[reloc].address;
586
587 /* Does the pointer reside in the .got.plt section? */
588 if (!(bfd_get_section_vma (obfd, got_plt) <= address
589 && address < bfd_get_section_vma (obfd, got_plt)
590 + bfd_get_section_size (got_plt)))
591 continue;
592
593 /* We cannot check if NAME is a reference to mst_text_gnu_ifunc as in
594 OBJFILE the symbol is undefined and the objfile having NAME defined
595 may not yet have been loaded. */
596
597 string_buffer.assign (name);
598 string_buffer.append (got_suffix, got_suffix + got_suffix_len);
599
600 msym = record_minimal_symbol (reader, string_buffer.c_str (),
601 string_buffer.size (),
602 true, address, mst_slot_got_plt, got_plt,
603 objfile);
604 if (msym)
605 SET_MSYMBOL_SIZE (msym, ptr_size);
606 }
607 }
608
609 /* The data pointer is htab_t for gnu_ifunc_record_cache_unchecked. */
610
611 static const struct objfile_data *elf_objfile_gnu_ifunc_cache_data;
612
613 /* Map function names to CORE_ADDR in elf_objfile_gnu_ifunc_cache_data. */
614
615 struct elf_gnu_ifunc_cache
616 {
617 /* This is always a function entry address, not a function descriptor. */
618 CORE_ADDR addr;
619
620 char name[1];
621 };
622
623 /* htab_hash for elf_objfile_gnu_ifunc_cache_data. */
624
625 static hashval_t
626 elf_gnu_ifunc_cache_hash (const void *a_voidp)
627 {
628 const struct elf_gnu_ifunc_cache *a
629 = (const struct elf_gnu_ifunc_cache *) a_voidp;
630
631 return htab_hash_string (a->name);
632 }
633
634 /* htab_eq for elf_objfile_gnu_ifunc_cache_data. */
635
636 static int
637 elf_gnu_ifunc_cache_eq (const void *a_voidp, const void *b_voidp)
638 {
639 const struct elf_gnu_ifunc_cache *a
640 = (const struct elf_gnu_ifunc_cache *) a_voidp;
641 const struct elf_gnu_ifunc_cache *b
642 = (const struct elf_gnu_ifunc_cache *) b_voidp;
643
644 return strcmp (a->name, b->name) == 0;
645 }
646
647 /* Record the target function address of a STT_GNU_IFUNC function NAME is the
648 function entry address ADDR. Return 1 if NAME and ADDR are considered as
649 valid and therefore they were successfully recorded, return 0 otherwise.
650
651 Function does not expect a duplicate entry. Use
652 elf_gnu_ifunc_resolve_by_cache first to check if the entry for NAME already
653 exists. */
654
655 static int
656 elf_gnu_ifunc_record_cache (const char *name, CORE_ADDR addr)
657 {
658 struct bound_minimal_symbol msym;
659 asection *sect;
660 struct objfile *objfile;
661 htab_t htab;
662 struct elf_gnu_ifunc_cache entry_local, *entry_p;
663 void **slot;
664
665 msym = lookup_minimal_symbol_by_pc (addr);
666 if (msym.minsym == NULL)
667 return 0;
668 if (BMSYMBOL_VALUE_ADDRESS (msym) != addr)
669 return 0;
670 /* minimal symbols have always SYMBOL_OBJ_SECTION non-NULL. */
671 sect = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym)->the_bfd_section;
672 objfile = msym.objfile;
673
674 /* If .plt jumps back to .plt the symbol is still deferred for later
675 resolution and it has no use for GDB. Besides ".text" this symbol can
676 reside also in ".opd" for ppc64 function descriptor. */
677 if (strcmp (bfd_get_section_name (objfile->obfd, sect), ".plt") == 0)
678 return 0;
679
680 htab = (htab_t) objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data);
681 if (htab == NULL)
682 {
683 htab = htab_create_alloc_ex (1, elf_gnu_ifunc_cache_hash,
684 elf_gnu_ifunc_cache_eq,
685 NULL, &objfile->objfile_obstack,
686 hashtab_obstack_allocate,
687 dummy_obstack_deallocate);
688 set_objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data, htab);
689 }
690
691 entry_local.addr = addr;
692 obstack_grow (&objfile->objfile_obstack, &entry_local,
693 offsetof (struct elf_gnu_ifunc_cache, name));
694 obstack_grow_str0 (&objfile->objfile_obstack, name);
695 entry_p
696 = (struct elf_gnu_ifunc_cache *) obstack_finish (&objfile->objfile_obstack);
697
698 slot = htab_find_slot (htab, entry_p, INSERT);
699 if (*slot != NULL)
700 {
701 struct elf_gnu_ifunc_cache *entry_found_p
702 = (struct elf_gnu_ifunc_cache *) *slot;
703 struct gdbarch *gdbarch = get_objfile_arch (objfile);
704
705 if (entry_found_p->addr != addr)
706 {
707 /* This case indicates buggy inferior program, the resolved address
708 should never change. */
709
710 warning (_("gnu-indirect-function \"%s\" has changed its resolved "
711 "function_address from %s to %s"),
712 name, paddress (gdbarch, entry_found_p->addr),
713 paddress (gdbarch, addr));
714 }
715
716 /* New ENTRY_P is here leaked/duplicate in the OBJFILE obstack. */
717 }
718 *slot = entry_p;
719
720 return 1;
721 }
722
723 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
724 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
725 is not NULL) and the function returns 1. It returns 0 otherwise.
726
727 Only the elf_objfile_gnu_ifunc_cache_data hash table is searched by this
728 function. */
729
730 static int
731 elf_gnu_ifunc_resolve_by_cache (const char *name, CORE_ADDR *addr_p)
732 {
733 struct objfile *objfile;
734
735 ALL_PSPACE_OBJFILES (current_program_space, objfile)
736 {
737 htab_t htab;
738 struct elf_gnu_ifunc_cache *entry_p;
739 void **slot;
740
741 htab = (htab_t) objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data);
742 if (htab == NULL)
743 continue;
744
745 entry_p = ((struct elf_gnu_ifunc_cache *)
746 alloca (sizeof (*entry_p) + strlen (name)));
747 strcpy (entry_p->name, name);
748
749 slot = htab_find_slot (htab, entry_p, NO_INSERT);
750 if (slot == NULL)
751 continue;
752 entry_p = (struct elf_gnu_ifunc_cache *) *slot;
753 gdb_assert (entry_p != NULL);
754
755 if (addr_p)
756 *addr_p = entry_p->addr;
757 return 1;
758 }
759
760 return 0;
761 }
762
763 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
764 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
765 is not NULL) and the function returns 1. It returns 0 otherwise.
766
767 Only the SYMBOL_GOT_PLT_SUFFIX locations are searched by this function.
768 elf_gnu_ifunc_resolve_by_cache must have been already called for NAME to
769 prevent cache entries duplicates. */
770
771 static int
772 elf_gnu_ifunc_resolve_by_got (const char *name, CORE_ADDR *addr_p)
773 {
774 char *name_got_plt;
775 struct objfile *objfile;
776 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
777
778 name_got_plt = (char *) alloca (strlen (name) + got_suffix_len + 1);
779 sprintf (name_got_plt, "%s" SYMBOL_GOT_PLT_SUFFIX, name);
780
781 ALL_PSPACE_OBJFILES (current_program_space, objfile)
782 {
783 bfd *obfd = objfile->obfd;
784 struct gdbarch *gdbarch = get_objfile_arch (objfile);
785 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
786 size_t ptr_size = TYPE_LENGTH (ptr_type);
787 CORE_ADDR pointer_address, addr;
788 asection *plt;
789 gdb_byte *buf = (gdb_byte *) alloca (ptr_size);
790 struct bound_minimal_symbol msym;
791
792 msym = lookup_minimal_symbol (name_got_plt, NULL, objfile);
793 if (msym.minsym == NULL)
794 continue;
795 if (MSYMBOL_TYPE (msym.minsym) != mst_slot_got_plt)
796 continue;
797 pointer_address = BMSYMBOL_VALUE_ADDRESS (msym);
798
799 plt = bfd_get_section_by_name (obfd, ".plt");
800 if (plt == NULL)
801 continue;
802
803 if (MSYMBOL_SIZE (msym.minsym) != ptr_size)
804 continue;
805 if (target_read_memory (pointer_address, buf, ptr_size) != 0)
806 continue;
807 addr = extract_typed_address (buf, ptr_type);
808 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
809 &current_target);
810 addr = gdbarch_addr_bits_remove (gdbarch, addr);
811
812 if (addr_p)
813 *addr_p = addr;
814 if (elf_gnu_ifunc_record_cache (name, addr))
815 return 1;
816 }
817
818 return 0;
819 }
820
821 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
822 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
823 is not NULL) and the function returns 1. It returns 0 otherwise.
824
825 Both the elf_objfile_gnu_ifunc_cache_data hash table and
826 SYMBOL_GOT_PLT_SUFFIX locations are searched by this function. */
827
828 static int
829 elf_gnu_ifunc_resolve_name (const char *name, CORE_ADDR *addr_p)
830 {
831 if (elf_gnu_ifunc_resolve_by_cache (name, addr_p))
832 return 1;
833
834 if (elf_gnu_ifunc_resolve_by_got (name, addr_p))
835 return 1;
836
837 return 0;
838 }
839
840 /* Call STT_GNU_IFUNC - a function returning addresss of a real function to
841 call. PC is theSTT_GNU_IFUNC resolving function entry. The value returned
842 is the entry point of the resolved STT_GNU_IFUNC target function to call.
843 */
844
845 static CORE_ADDR
846 elf_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc)
847 {
848 const char *name_at_pc;
849 CORE_ADDR start_at_pc, address;
850 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
851 struct value *function, *address_val;
852 CORE_ADDR hwcap = 0;
853 struct value *hwcap_val;
854
855 /* Try first any non-intrusive methods without an inferior call. */
856
857 if (find_pc_partial_function (pc, &name_at_pc, &start_at_pc, NULL)
858 && start_at_pc == pc)
859 {
860 if (elf_gnu_ifunc_resolve_name (name_at_pc, &address))
861 return address;
862 }
863 else
864 name_at_pc = NULL;
865
866 function = allocate_value (func_func_type);
867 VALUE_LVAL (function) = lval_memory;
868 set_value_address (function, pc);
869
870 /* STT_GNU_IFUNC resolver functions usually receive the HWCAP vector as
871 parameter. FUNCTION is the function entry address. ADDRESS may be a
872 function descriptor. */
873
874 target_auxv_search (&current_target, AT_HWCAP, &hwcap);
875 hwcap_val = value_from_longest (builtin_type (gdbarch)
876 ->builtin_unsigned_long, hwcap);
877 address_val = call_function_by_hand (function, NULL, 1, &hwcap_val);
878 address = value_as_address (address_val);
879 address = gdbarch_convert_from_func_ptr_addr (gdbarch, address,
880 &current_target);
881 address = gdbarch_addr_bits_remove (gdbarch, address);
882
883 if (name_at_pc)
884 elf_gnu_ifunc_record_cache (name_at_pc, address);
885
886 return address;
887 }
888
889 /* Handle inferior hit of bp_gnu_ifunc_resolver, see its definition. */
890
891 static void
892 elf_gnu_ifunc_resolver_stop (struct breakpoint *b)
893 {
894 struct breakpoint *b_return;
895 struct frame_info *prev_frame = get_prev_frame (get_current_frame ());
896 struct frame_id prev_frame_id = get_stack_frame_id (prev_frame);
897 CORE_ADDR prev_pc = get_frame_pc (prev_frame);
898 int thread_id = ptid_to_global_thread_id (inferior_ptid);
899
900 gdb_assert (b->type == bp_gnu_ifunc_resolver);
901
902 for (b_return = b->related_breakpoint; b_return != b;
903 b_return = b_return->related_breakpoint)
904 {
905 gdb_assert (b_return->type == bp_gnu_ifunc_resolver_return);
906 gdb_assert (b_return->loc != NULL && b_return->loc->next == NULL);
907 gdb_assert (frame_id_p (b_return->frame_id));
908
909 if (b_return->thread == thread_id
910 && b_return->loc->requested_address == prev_pc
911 && frame_id_eq (b_return->frame_id, prev_frame_id))
912 break;
913 }
914
915 if (b_return == b)
916 {
917 /* No need to call find_pc_line for symbols resolving as this is only
918 a helper breakpointer never shown to the user. */
919
920 symtab_and_line sal;
921 sal.pspace = current_inferior ()->pspace;
922 sal.pc = prev_pc;
923 sal.section = find_pc_overlay (sal.pc);
924 sal.explicit_pc = 1;
925 b_return
926 = set_momentary_breakpoint (get_frame_arch (prev_frame), sal,
927 prev_frame_id,
928 bp_gnu_ifunc_resolver_return).release ();
929
930 /* set_momentary_breakpoint invalidates PREV_FRAME. */
931 prev_frame = NULL;
932
933 /* Add new b_return to the ring list b->related_breakpoint. */
934 gdb_assert (b_return->related_breakpoint == b_return);
935 b_return->related_breakpoint = b->related_breakpoint;
936 b->related_breakpoint = b_return;
937 }
938 }
939
940 /* Handle inferior hit of bp_gnu_ifunc_resolver_return, see its definition. */
941
942 static void
943 elf_gnu_ifunc_resolver_return_stop (struct breakpoint *b)
944 {
945 struct gdbarch *gdbarch = get_frame_arch (get_current_frame ());
946 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
947 struct type *value_type = TYPE_TARGET_TYPE (func_func_type);
948 struct regcache *regcache = get_thread_regcache (inferior_ptid);
949 struct value *func_func;
950 struct value *value;
951 CORE_ADDR resolved_address, resolved_pc;
952
953 gdb_assert (b->type == bp_gnu_ifunc_resolver_return);
954
955 while (b->related_breakpoint != b)
956 {
957 struct breakpoint *b_next = b->related_breakpoint;
958
959 switch (b->type)
960 {
961 case bp_gnu_ifunc_resolver:
962 break;
963 case bp_gnu_ifunc_resolver_return:
964 delete_breakpoint (b);
965 break;
966 default:
967 internal_error (__FILE__, __LINE__,
968 _("handle_inferior_event: Invalid "
969 "gnu-indirect-function breakpoint type %d"),
970 (int) b->type);
971 }
972 b = b_next;
973 }
974 gdb_assert (b->type == bp_gnu_ifunc_resolver);
975 gdb_assert (b->loc->next == NULL);
976
977 func_func = allocate_value (func_func_type);
978 VALUE_LVAL (func_func) = lval_memory;
979 set_value_address (func_func, b->loc->related_address);
980
981 value = allocate_value (value_type);
982 gdbarch_return_value (gdbarch, func_func, value_type, regcache,
983 value_contents_raw (value), NULL);
984 resolved_address = value_as_address (value);
985 resolved_pc = gdbarch_convert_from_func_ptr_addr (gdbarch,
986 resolved_address,
987 &current_target);
988 resolved_pc = gdbarch_addr_bits_remove (gdbarch, resolved_pc);
989
990 gdb_assert (current_program_space == b->pspace || b->pspace == NULL);
991 elf_gnu_ifunc_record_cache (event_location_to_string (b->location.get ()),
992 resolved_pc);
993
994 b->type = bp_breakpoint;
995 update_breakpoint_locations (b, current_program_space,
996 find_pc_line (resolved_pc, 0), {});
997 }
998
999 /* A helper function for elf_symfile_read that reads the minimal
1000 symbols. */
1001
1002 static void
1003 elf_read_minimal_symbols (struct objfile *objfile, int symfile_flags,
1004 const struct elfinfo *ei)
1005 {
1006 bfd *synth_abfd, *abfd = objfile->obfd;
1007 long symcount = 0, dynsymcount = 0, synthcount, storage_needed;
1008 asymbol **symbol_table = NULL, **dyn_symbol_table = NULL;
1009 asymbol *synthsyms;
1010 struct dbx_symfile_info *dbx;
1011
1012 if (symtab_create_debug)
1013 {
1014 fprintf_unfiltered (gdb_stdlog,
1015 "Reading minimal symbols of objfile %s ...\n",
1016 objfile_name (objfile));
1017 }
1018
1019 /* If we already have minsyms, then we can skip some work here.
1020 However, if there were stabs or mdebug sections, we go ahead and
1021 redo all the work anyway, because the psym readers for those
1022 kinds of debuginfo need extra information found here. This can
1023 go away once all types of symbols are in the per-BFD object. */
1024 if (objfile->per_bfd->minsyms_read
1025 && ei->stabsect == NULL
1026 && ei->mdebugsect == NULL)
1027 {
1028 if (symtab_create_debug)
1029 fprintf_unfiltered (gdb_stdlog,
1030 "... minimal symbols previously read\n");
1031 return;
1032 }
1033
1034 minimal_symbol_reader reader (objfile);
1035
1036 /* Allocate struct to keep track of the symfile. */
1037 dbx = XCNEW (struct dbx_symfile_info);
1038 set_objfile_data (objfile, dbx_objfile_data_key, dbx);
1039
1040 /* Process the normal ELF symbol table first. */
1041
1042 storage_needed = bfd_get_symtab_upper_bound (objfile->obfd);
1043 if (storage_needed < 0)
1044 error (_("Can't read symbols from %s: %s"),
1045 bfd_get_filename (objfile->obfd),
1046 bfd_errmsg (bfd_get_error ()));
1047
1048 if (storage_needed > 0)
1049 {
1050 /* Memory gets permanently referenced from ABFD after
1051 bfd_canonicalize_symtab so it must not get freed before ABFD gets. */
1052
1053 symbol_table = (asymbol **) bfd_alloc (abfd, storage_needed);
1054 symcount = bfd_canonicalize_symtab (objfile->obfd, symbol_table);
1055
1056 if (symcount < 0)
1057 error (_("Can't read symbols from %s: %s"),
1058 bfd_get_filename (objfile->obfd),
1059 bfd_errmsg (bfd_get_error ()));
1060
1061 elf_symtab_read (reader, objfile, ST_REGULAR, symcount, symbol_table,
1062 false);
1063 }
1064
1065 /* Add the dynamic symbols. */
1066
1067 storage_needed = bfd_get_dynamic_symtab_upper_bound (objfile->obfd);
1068
1069 if (storage_needed > 0)
1070 {
1071 /* Memory gets permanently referenced from ABFD after
1072 bfd_get_synthetic_symtab so it must not get freed before ABFD gets.
1073 It happens only in the case when elf_slurp_reloc_table sees
1074 asection->relocation NULL. Determining which section is asection is
1075 done by _bfd_elf_get_synthetic_symtab which is all a bfd
1076 implementation detail, though. */
1077
1078 dyn_symbol_table = (asymbol **) bfd_alloc (abfd, storage_needed);
1079 dynsymcount = bfd_canonicalize_dynamic_symtab (objfile->obfd,
1080 dyn_symbol_table);
1081
1082 if (dynsymcount < 0)
1083 error (_("Can't read symbols from %s: %s"),
1084 bfd_get_filename (objfile->obfd),
1085 bfd_errmsg (bfd_get_error ()));
1086
1087 elf_symtab_read (reader, objfile, ST_DYNAMIC, dynsymcount,
1088 dyn_symbol_table, false);
1089
1090 elf_rel_plt_read (reader, objfile, dyn_symbol_table);
1091 }
1092
1093 /* Contrary to binutils --strip-debug/--only-keep-debug the strip command from
1094 elfutils (eu-strip) moves even the .symtab section into the .debug file.
1095
1096 bfd_get_synthetic_symtab on ppc64 for each function descriptor ELF symbol
1097 'name' creates a new BSF_SYNTHETIC ELF symbol '.name' with its code
1098 address. But with eu-strip files bfd_get_synthetic_symtab would fail to
1099 read the code address from .opd while it reads the .symtab section from
1100 a separate debug info file as the .opd section is SHT_NOBITS there.
1101
1102 With SYNTH_ABFD the .opd section will be read from the original
1103 backlinked binary where it is valid. */
1104
1105 if (objfile->separate_debug_objfile_backlink)
1106 synth_abfd = objfile->separate_debug_objfile_backlink->obfd;
1107 else
1108 synth_abfd = abfd;
1109
1110 /* Add synthetic symbols - for instance, names for any PLT entries. */
1111
1112 synthcount = bfd_get_synthetic_symtab (synth_abfd, symcount, symbol_table,
1113 dynsymcount, dyn_symbol_table,
1114 &synthsyms);
1115 if (synthcount > 0)
1116 {
1117 long i;
1118
1119 std::unique_ptr<asymbol *[]>
1120 synth_symbol_table (new asymbol *[synthcount]);
1121 for (i = 0; i < synthcount; i++)
1122 synth_symbol_table[i] = synthsyms + i;
1123 elf_symtab_read (reader, objfile, ST_SYNTHETIC, synthcount,
1124 synth_symbol_table.get (), true);
1125
1126 xfree (synthsyms);
1127 synthsyms = NULL;
1128 }
1129
1130 /* Install any minimal symbols that have been collected as the current
1131 minimal symbols for this objfile. The debug readers below this point
1132 should not generate new minimal symbols; if they do it's their
1133 responsibility to install them. "mdebug" appears to be the only one
1134 which will do this. */
1135
1136 reader.install ();
1137
1138 if (symtab_create_debug)
1139 fprintf_unfiltered (gdb_stdlog, "Done reading minimal symbols.\n");
1140 }
1141
1142 /* Scan and build partial symbols for a symbol file.
1143 We have been initialized by a call to elf_symfile_init, which
1144 currently does nothing.
1145
1146 This function only does the minimum work necessary for letting the
1147 user "name" things symbolically; it does not read the entire symtab.
1148 Instead, it reads the external and static symbols and puts them in partial
1149 symbol tables. When more extensive information is requested of a
1150 file, the corresponding partial symbol table is mutated into a full
1151 fledged symbol table by going back and reading the symbols
1152 for real.
1153
1154 We look for sections with specific names, to tell us what debug
1155 format to look for: FIXME!!!
1156
1157 elfstab_build_psymtabs() handles STABS symbols;
1158 mdebug_build_psymtabs() handles ECOFF debugging information.
1159
1160 Note that ELF files have a "minimal" symbol table, which looks a lot
1161 like a COFF symbol table, but has only the minimal information necessary
1162 for linking. We process this also, and use the information to
1163 build gdb's minimal symbol table. This gives us some minimal debugging
1164 capability even for files compiled without -g. */
1165
1166 static void
1167 elf_symfile_read (struct objfile *objfile, symfile_add_flags symfile_flags)
1168 {
1169 bfd *abfd = objfile->obfd;
1170 struct elfinfo ei;
1171
1172 memset ((char *) &ei, 0, sizeof (ei));
1173 if (!(objfile->flags & OBJF_READNEVER))
1174 bfd_map_over_sections (abfd, elf_locate_sections, (void *) & ei);
1175
1176 elf_read_minimal_symbols (objfile, symfile_flags, &ei);
1177
1178 /* ELF debugging information is inserted into the psymtab in the
1179 order of least informative first - most informative last. Since
1180 the psymtab table is searched `most recent insertion first' this
1181 increases the probability that more detailed debug information
1182 for a section is found.
1183
1184 For instance, an object file might contain both .mdebug (XCOFF)
1185 and .debug_info (DWARF2) sections then .mdebug is inserted first
1186 (searched last) and DWARF2 is inserted last (searched first). If
1187 we don't do this then the XCOFF info is found first - for code in
1188 an included file XCOFF info is useless. */
1189
1190 if (ei.mdebugsect)
1191 {
1192 const struct ecoff_debug_swap *swap;
1193
1194 /* .mdebug section, presumably holding ECOFF debugging
1195 information. */
1196 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1197 if (swap)
1198 elfmdebug_build_psymtabs (objfile, swap, ei.mdebugsect);
1199 }
1200 if (ei.stabsect)
1201 {
1202 asection *str_sect;
1203
1204 /* Stab sections have an associated string table that looks like
1205 a separate section. */
1206 str_sect = bfd_get_section_by_name (abfd, ".stabstr");
1207
1208 /* FIXME should probably warn about a stab section without a stabstr. */
1209 if (str_sect)
1210 elfstab_build_psymtabs (objfile,
1211 ei.stabsect,
1212 str_sect->filepos,
1213 bfd_section_size (abfd, str_sect));
1214 }
1215
1216 if (dwarf2_has_info (objfile, NULL))
1217 {
1218 /* elf_sym_fns_gdb_index cannot handle simultaneous non-DWARF debug
1219 information present in OBJFILE. If there is such debug info present
1220 never use .gdb_index. */
1221
1222 if (!objfile_has_partial_symbols (objfile)
1223 && dwarf2_initialize_objfile (objfile))
1224 objfile_set_sym_fns (objfile, &elf_sym_fns_gdb_index);
1225 else
1226 {
1227 /* It is ok to do this even if the stabs reader made some
1228 partial symbols, because OBJF_PSYMTABS_READ has not been
1229 set, and so our lazy reader function will still be called
1230 when needed. */
1231 objfile_set_sym_fns (objfile, &elf_sym_fns_lazy_psyms);
1232 }
1233 }
1234 /* If the file has its own symbol tables it has no separate debug
1235 info. `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to
1236 SYMTABS/PSYMTABS. `.gnu_debuglink' may no longer be present with
1237 `.note.gnu.build-id'.
1238
1239 .gnu_debugdata is !objfile_has_partial_symbols because it contains only
1240 .symtab, not .debug_* section. But if we already added .gnu_debugdata as
1241 an objfile via find_separate_debug_file_in_section there was no separate
1242 debug info available. Therefore do not attempt to search for another one,
1243 objfile->separate_debug_objfile->separate_debug_objfile GDB guarantees to
1244 be NULL and we would possibly violate it. */
1245
1246 else if (!objfile_has_partial_symbols (objfile)
1247 && objfile->separate_debug_objfile == NULL
1248 && objfile->separate_debug_objfile_backlink == NULL)
1249 {
1250 gdb::unique_xmalloc_ptr<char> debugfile
1251 (find_separate_debug_file_by_buildid (objfile));
1252
1253 if (debugfile == NULL)
1254 debugfile.reset (find_separate_debug_file_by_debuglink (objfile));
1255
1256 if (debugfile != NULL)
1257 {
1258 gdb_bfd_ref_ptr abfd (symfile_bfd_open (debugfile.get ()));
1259
1260 symbol_file_add_separate (abfd.get (), debugfile.get (),
1261 symfile_flags, objfile);
1262 }
1263 }
1264 }
1265
1266 /* Callback to lazily read psymtabs. */
1267
1268 static void
1269 read_psyms (struct objfile *objfile)
1270 {
1271 if (dwarf2_has_info (objfile, NULL))
1272 dwarf2_build_psymtabs (objfile);
1273 }
1274
1275 /* Initialize anything that needs initializing when a completely new symbol
1276 file is specified (not just adding some symbols from another file, e.g. a
1277 shared library).
1278
1279 We reinitialize buildsym, since we may be reading stabs from an ELF
1280 file. */
1281
1282 static void
1283 elf_new_init (struct objfile *ignore)
1284 {
1285 stabsread_new_init ();
1286 buildsym_new_init ();
1287 }
1288
1289 /* Perform any local cleanups required when we are done with a particular
1290 objfile. I.E, we are in the process of discarding all symbol information
1291 for an objfile, freeing up all memory held for it, and unlinking the
1292 objfile struct from the global list of known objfiles. */
1293
1294 static void
1295 elf_symfile_finish (struct objfile *objfile)
1296 {
1297 dwarf2_free_objfile (objfile);
1298 }
1299
1300 /* ELF specific initialization routine for reading symbols. */
1301
1302 static void
1303 elf_symfile_init (struct objfile *objfile)
1304 {
1305 /* ELF objects may be reordered, so set OBJF_REORDERED. If we
1306 find this causes a significant slowdown in gdb then we could
1307 set it in the debug symbol readers only when necessary. */
1308 objfile->flags |= OBJF_REORDERED;
1309 }
1310
1311 /* Implementation of `sym_get_probes', as documented in symfile.h. */
1312
1313 static const std::vector<probe *> &
1314 elf_get_probes (struct objfile *objfile)
1315 {
1316 std::vector<probe *> *probes_per_bfd;
1317
1318 /* Have we parsed this objfile's probes already? */
1319 probes_per_bfd = (std::vector<probe *> *) bfd_data (objfile->obfd, probe_key);
1320
1321 if (probes_per_bfd == NULL)
1322 {
1323 probes_per_bfd = new std::vector<probe *>;
1324
1325 /* Here we try to gather information about all types of probes from the
1326 objfile. */
1327 for (const static_probe_ops *ops : all_static_probe_ops)
1328 ops->get_probes (probes_per_bfd, objfile);
1329
1330 set_bfd_data (objfile->obfd, probe_key, probes_per_bfd);
1331 }
1332
1333 return *probes_per_bfd;
1334 }
1335
1336 /* Helper function used to free the space allocated for storing SystemTap
1337 probe information. */
1338
1339 static void
1340 probe_key_free (bfd *abfd, void *d)
1341 {
1342 std::vector<probe *> *probes = (std::vector<probe *> *) d;
1343
1344 for (probe *p : *probes)
1345 delete p;
1346
1347 delete probes;
1348 }
1349
1350 \f
1351
1352 /* Implementation `sym_probe_fns', as documented in symfile.h. */
1353
1354 static const struct sym_probe_fns elf_probe_fns =
1355 {
1356 elf_get_probes, /* sym_get_probes */
1357 };
1358
1359 /* Register that we are able to handle ELF object file formats. */
1360
1361 static const struct sym_fns elf_sym_fns =
1362 {
1363 elf_new_init, /* init anything gbl to entire symtab */
1364 elf_symfile_init, /* read initial info, setup for sym_read() */
1365 elf_symfile_read, /* read a symbol file into symtab */
1366 NULL, /* sym_read_psymbols */
1367 elf_symfile_finish, /* finished with file, cleanup */
1368 default_symfile_offsets, /* Translate ext. to int. relocation */
1369 elf_symfile_segments, /* Get segment information from a file. */
1370 NULL,
1371 default_symfile_relocate, /* Relocate a debug section. */
1372 &elf_probe_fns, /* sym_probe_fns */
1373 &psym_functions
1374 };
1375
1376 /* The same as elf_sym_fns, but not registered and lazily reads
1377 psymbols. */
1378
1379 const struct sym_fns elf_sym_fns_lazy_psyms =
1380 {
1381 elf_new_init, /* init anything gbl to entire symtab */
1382 elf_symfile_init, /* read initial info, setup for sym_read() */
1383 elf_symfile_read, /* read a symbol file into symtab */
1384 read_psyms, /* sym_read_psymbols */
1385 elf_symfile_finish, /* finished with file, cleanup */
1386 default_symfile_offsets, /* Translate ext. to int. relocation */
1387 elf_symfile_segments, /* Get segment information from a file. */
1388 NULL,
1389 default_symfile_relocate, /* Relocate a debug section. */
1390 &elf_probe_fns, /* sym_probe_fns */
1391 &psym_functions
1392 };
1393
1394 /* The same as elf_sym_fns, but not registered and uses the
1395 DWARF-specific GNU index rather than psymtab. */
1396 const struct sym_fns elf_sym_fns_gdb_index =
1397 {
1398 elf_new_init, /* init anything gbl to entire symab */
1399 elf_symfile_init, /* read initial info, setup for sym_red() */
1400 elf_symfile_read, /* read a symbol file into symtab */
1401 NULL, /* sym_read_psymbols */
1402 elf_symfile_finish, /* finished with file, cleanup */
1403 default_symfile_offsets, /* Translate ext. to int. relocatin */
1404 elf_symfile_segments, /* Get segment information from a file. */
1405 NULL,
1406 default_symfile_relocate, /* Relocate a debug section. */
1407 &elf_probe_fns, /* sym_probe_fns */
1408 &dwarf2_gdb_index_functions
1409 };
1410
1411 /* STT_GNU_IFUNC resolver vector to be installed to gnu_ifunc_fns_p. */
1412
1413 static const struct gnu_ifunc_fns elf_gnu_ifunc_fns =
1414 {
1415 elf_gnu_ifunc_resolve_addr,
1416 elf_gnu_ifunc_resolve_name,
1417 elf_gnu_ifunc_resolver_stop,
1418 elf_gnu_ifunc_resolver_return_stop
1419 };
1420
1421 void
1422 _initialize_elfread (void)
1423 {
1424 probe_key = register_bfd_data_with_cleanup (NULL, probe_key_free);
1425 add_symtab_fns (bfd_target_elf_flavour, &elf_sym_fns);
1426
1427 elf_objfile_gnu_ifunc_cache_data = register_objfile_data ();
1428 gnu_ifunc_fns_p = &elf_gnu_ifunc_fns;
1429 }