change minsyms not to be relocated at read-time
[binutils-gdb.git] / gdb / elfread.c
1 /* Read ELF (Executable and Linking Format) object files for GDB.
2
3 Copyright (C) 1991-2014 Free Software Foundation, Inc.
4
5 Written by Fred Fish at Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "bfd.h"
24 #include <string.h>
25 #include "elf-bfd.h"
26 #include "elf/common.h"
27 #include "elf/internal.h"
28 #include "elf/mips.h"
29 #include "symtab.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "buildsym.h"
33 #include "stabsread.h"
34 #include "gdb-stabs.h"
35 #include "complaints.h"
36 #include "demangle.h"
37 #include "psympriv.h"
38 #include "filenames.h"
39 #include "probe.h"
40 #include "arch-utils.h"
41 #include "gdbtypes.h"
42 #include "value.h"
43 #include "infcall.h"
44 #include "gdbthread.h"
45 #include "regcache.h"
46 #include "bcache.h"
47 #include "gdb_bfd.h"
48 #include "build-id.h"
49
50 extern void _initialize_elfread (void);
51
52 /* Forward declarations. */
53 static const struct sym_fns elf_sym_fns_gdb_index;
54 static const struct sym_fns elf_sym_fns_lazy_psyms;
55
56 /* The struct elfinfo is available only during ELF symbol table and
57 psymtab reading. It is destroyed at the completion of psymtab-reading.
58 It's local to elf_symfile_read. */
59
60 struct elfinfo
61 {
62 asection *stabsect; /* Section pointer for .stab section */
63 asection *mdebugsect; /* Section pointer for .mdebug section */
64 };
65
66 /* Per-objfile data for probe info. */
67
68 static const struct objfile_data *probe_key = NULL;
69
70 static void free_elfinfo (void *);
71
72 /* Minimal symbols located at the GOT entries for .plt - that is the real
73 pointer where the given entry will jump to. It gets updated by the real
74 function address during lazy ld.so resolving in the inferior. These
75 minimal symbols are indexed for <tab>-completion. */
76
77 #define SYMBOL_GOT_PLT_SUFFIX "@got.plt"
78
79 /* Locate the segments in ABFD. */
80
81 static struct symfile_segment_data *
82 elf_symfile_segments (bfd *abfd)
83 {
84 Elf_Internal_Phdr *phdrs, **segments;
85 long phdrs_size;
86 int num_phdrs, num_segments, num_sections, i;
87 asection *sect;
88 struct symfile_segment_data *data;
89
90 phdrs_size = bfd_get_elf_phdr_upper_bound (abfd);
91 if (phdrs_size == -1)
92 return NULL;
93
94 phdrs = alloca (phdrs_size);
95 num_phdrs = bfd_get_elf_phdrs (abfd, phdrs);
96 if (num_phdrs == -1)
97 return NULL;
98
99 num_segments = 0;
100 segments = alloca (sizeof (Elf_Internal_Phdr *) * num_phdrs);
101 for (i = 0; i < num_phdrs; i++)
102 if (phdrs[i].p_type == PT_LOAD)
103 segments[num_segments++] = &phdrs[i];
104
105 if (num_segments == 0)
106 return NULL;
107
108 data = XCNEW (struct symfile_segment_data);
109 data->num_segments = num_segments;
110 data->segment_bases = XCNEWVEC (CORE_ADDR, num_segments);
111 data->segment_sizes = XCNEWVEC (CORE_ADDR, num_segments);
112
113 for (i = 0; i < num_segments; i++)
114 {
115 data->segment_bases[i] = segments[i]->p_vaddr;
116 data->segment_sizes[i] = segments[i]->p_memsz;
117 }
118
119 num_sections = bfd_count_sections (abfd);
120 data->segment_info = XCNEWVEC (int, num_sections);
121
122 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
123 {
124 int j;
125 CORE_ADDR vma;
126
127 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
128 continue;
129
130 vma = bfd_get_section_vma (abfd, sect);
131
132 for (j = 0; j < num_segments; j++)
133 if (segments[j]->p_memsz > 0
134 && vma >= segments[j]->p_vaddr
135 && (vma - segments[j]->p_vaddr) < segments[j]->p_memsz)
136 {
137 data->segment_info[i] = j + 1;
138 break;
139 }
140
141 /* We should have found a segment for every non-empty section.
142 If we haven't, we will not relocate this section by any
143 offsets we apply to the segments. As an exception, do not
144 warn about SHT_NOBITS sections; in normal ELF execution
145 environments, SHT_NOBITS means zero-initialized and belongs
146 in a segment, but in no-OS environments some tools (e.g. ARM
147 RealView) use SHT_NOBITS for uninitialized data. Since it is
148 uninitialized, it doesn't need a program header. Such
149 binaries are not relocatable. */
150 if (bfd_get_section_size (sect) > 0 && j == num_segments
151 && (bfd_get_section_flags (abfd, sect) & SEC_LOAD) != 0)
152 warning (_("Loadable section \"%s\" outside of ELF segments"),
153 bfd_section_name (abfd, sect));
154 }
155
156 return data;
157 }
158
159 /* We are called once per section from elf_symfile_read. We
160 need to examine each section we are passed, check to see
161 if it is something we are interested in processing, and
162 if so, stash away some access information for the section.
163
164 For now we recognize the dwarf debug information sections and
165 line number sections from matching their section names. The
166 ELF definition is no real help here since it has no direct
167 knowledge of DWARF (by design, so any debugging format can be
168 used).
169
170 We also recognize the ".stab" sections used by the Sun compilers
171 released with Solaris 2.
172
173 FIXME: The section names should not be hardwired strings (what
174 should they be? I don't think most object file formats have enough
175 section flags to specify what kind of debug section it is.
176 -kingdon). */
177
178 static void
179 elf_locate_sections (bfd *ignore_abfd, asection *sectp, void *eip)
180 {
181 struct elfinfo *ei;
182
183 ei = (struct elfinfo *) eip;
184 if (strcmp (sectp->name, ".stab") == 0)
185 {
186 ei->stabsect = sectp;
187 }
188 else if (strcmp (sectp->name, ".mdebug") == 0)
189 {
190 ei->mdebugsect = sectp;
191 }
192 }
193
194 static struct minimal_symbol *
195 record_minimal_symbol (const char *name, int name_len, int copy_name,
196 CORE_ADDR address,
197 enum minimal_symbol_type ms_type,
198 asection *bfd_section, struct objfile *objfile)
199 {
200 struct gdbarch *gdbarch = get_objfile_arch (objfile);
201
202 if (ms_type == mst_text || ms_type == mst_file_text
203 || ms_type == mst_text_gnu_ifunc)
204 address = gdbarch_addr_bits_remove (gdbarch, address);
205
206 return prim_record_minimal_symbol_full (name, name_len, copy_name, address,
207 ms_type,
208 gdb_bfd_section_index (objfile->obfd,
209 bfd_section),
210 objfile);
211 }
212
213 /* Read the symbol table of an ELF file.
214
215 Given an objfile, a symbol table, and a flag indicating whether the
216 symbol table contains regular, dynamic, or synthetic symbols, add all
217 the global function and data symbols to the minimal symbol table.
218
219 In stabs-in-ELF, as implemented by Sun, there are some local symbols
220 defined in the ELF symbol table, which can be used to locate
221 the beginnings of sections from each ".o" file that was linked to
222 form the executable objfile. We gather any such info and record it
223 in data structures hung off the objfile's private data. */
224
225 #define ST_REGULAR 0
226 #define ST_DYNAMIC 1
227 #define ST_SYNTHETIC 2
228
229 static void
230 elf_symtab_read (struct objfile *objfile, int type,
231 long number_of_symbols, asymbol **symbol_table,
232 int copy_names)
233 {
234 struct gdbarch *gdbarch = get_objfile_arch (objfile);
235 asymbol *sym;
236 long i;
237 CORE_ADDR symaddr;
238 CORE_ADDR offset;
239 enum minimal_symbol_type ms_type;
240 /* If sectinfo is nonNULL, it contains section info that should end up
241 filed in the objfile. */
242 struct stab_section_info *sectinfo = NULL;
243 /* If filesym is nonzero, it points to a file symbol, but we haven't
244 seen any section info for it yet. */
245 asymbol *filesym = 0;
246 /* Name of filesym. This is either a constant string or is saved on
247 the objfile's filename cache. */
248 const char *filesymname = "";
249 struct dbx_symfile_info *dbx = DBX_SYMFILE_INFO (objfile);
250 int stripped = (bfd_get_symcount (objfile->obfd) == 0);
251
252 for (i = 0; i < number_of_symbols; i++)
253 {
254 sym = symbol_table[i];
255 if (sym->name == NULL || *sym->name == '\0')
256 {
257 /* Skip names that don't exist (shouldn't happen), or names
258 that are null strings (may happen). */
259 continue;
260 }
261
262 /* Skip "special" symbols, e.g. ARM mapping symbols. These are
263 symbols which do not correspond to objects in the symbol table,
264 but have some other target-specific meaning. */
265 if (bfd_is_target_special_symbol (objfile->obfd, sym))
266 {
267 if (gdbarch_record_special_symbol_p (gdbarch))
268 gdbarch_record_special_symbol (gdbarch, objfile, sym);
269 continue;
270 }
271
272 offset = ANOFFSET (objfile->section_offsets,
273 gdb_bfd_section_index (objfile->obfd, sym->section));
274 if (type == ST_DYNAMIC
275 && sym->section == bfd_und_section_ptr
276 && (sym->flags & BSF_FUNCTION))
277 {
278 struct minimal_symbol *msym;
279 bfd *abfd = objfile->obfd;
280 asection *sect;
281
282 /* Symbol is a reference to a function defined in
283 a shared library.
284 If its value is non zero then it is usually the address
285 of the corresponding entry in the procedure linkage table,
286 plus the desired section offset.
287 If its value is zero then the dynamic linker has to resolve
288 the symbol. We are unable to find any meaningful address
289 for this symbol in the executable file, so we skip it. */
290 symaddr = sym->value;
291 if (symaddr == 0)
292 continue;
293
294 /* sym->section is the undefined section. However, we want to
295 record the section where the PLT stub resides with the
296 minimal symbol. Search the section table for the one that
297 covers the stub's address. */
298 for (sect = abfd->sections; sect != NULL; sect = sect->next)
299 {
300 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
301 continue;
302
303 if (symaddr >= bfd_get_section_vma (abfd, sect)
304 && symaddr < bfd_get_section_vma (abfd, sect)
305 + bfd_get_section_size (sect))
306 break;
307 }
308 if (!sect)
309 continue;
310
311 /* On ia64-hpux, we have discovered that the system linker
312 adds undefined symbols with nonzero addresses that cannot
313 be right (their address points inside the code of another
314 function in the .text section). This creates problems
315 when trying to determine which symbol corresponds to
316 a given address.
317
318 We try to detect those buggy symbols by checking which
319 section we think they correspond to. Normally, PLT symbols
320 are stored inside their own section, and the typical name
321 for that section is ".plt". So, if there is a ".plt"
322 section, and yet the section name of our symbol does not
323 start with ".plt", we ignore that symbol. */
324 if (strncmp (sect->name, ".plt", 4) != 0
325 && bfd_get_section_by_name (abfd, ".plt") != NULL)
326 continue;
327
328 msym = record_minimal_symbol
329 (sym->name, strlen (sym->name), copy_names,
330 symaddr, mst_solib_trampoline, sect, objfile);
331 if (msym != NULL)
332 msym->filename = filesymname;
333 continue;
334 }
335
336 /* If it is a nonstripped executable, do not enter dynamic
337 symbols, as the dynamic symbol table is usually a subset
338 of the main symbol table. */
339 if (type == ST_DYNAMIC && !stripped)
340 continue;
341 if (sym->flags & BSF_FILE)
342 {
343 /* STT_FILE debugging symbol that helps stabs-in-elf debugging.
344 Chain any old one onto the objfile; remember new sym. */
345 if (sectinfo != NULL)
346 {
347 sectinfo->next = dbx->stab_section_info;
348 dbx->stab_section_info = sectinfo;
349 sectinfo = NULL;
350 }
351 filesym = sym;
352 filesymname = bcache (filesym->name, strlen (filesym->name) + 1,
353 objfile->per_bfd->filename_cache);
354 }
355 else if (sym->flags & BSF_SECTION_SYM)
356 continue;
357 else if (sym->flags & (BSF_GLOBAL | BSF_LOCAL | BSF_WEAK
358 | BSF_GNU_UNIQUE))
359 {
360 struct minimal_symbol *msym;
361
362 /* Select global/local/weak symbols. Note that bfd puts abs
363 symbols in their own section, so all symbols we are
364 interested in will have a section. */
365 /* Bfd symbols are section relative. */
366 symaddr = sym->value + sym->section->vma;
367 /* For non-absolute symbols, use the type of the section
368 they are relative to, to intuit text/data. Bfd provides
369 no way of figuring this out for absolute symbols. */
370 if (sym->section == bfd_abs_section_ptr)
371 {
372 /* This is a hack to get the minimal symbol type
373 right for Irix 5, which has absolute addresses
374 with special section indices for dynamic symbols.
375
376 NOTE: uweigand-20071112: Synthetic symbols do not
377 have an ELF-private part, so do not touch those. */
378 unsigned int shndx = type == ST_SYNTHETIC ? 0 :
379 ((elf_symbol_type *) sym)->internal_elf_sym.st_shndx;
380
381 switch (shndx)
382 {
383 case SHN_MIPS_TEXT:
384 ms_type = mst_text;
385 break;
386 case SHN_MIPS_DATA:
387 ms_type = mst_data;
388 break;
389 case SHN_MIPS_ACOMMON:
390 ms_type = mst_bss;
391 break;
392 default:
393 ms_type = mst_abs;
394 }
395
396 /* If it is an Irix dynamic symbol, skip section name
397 symbols, relocate all others by section offset. */
398 if (ms_type != mst_abs)
399 {
400 if (sym->name[0] == '.')
401 continue;
402 }
403 }
404 else if (sym->section->flags & SEC_CODE)
405 {
406 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
407 {
408 if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
409 ms_type = mst_text_gnu_ifunc;
410 else
411 ms_type = mst_text;
412 }
413 /* The BSF_SYNTHETIC check is there to omit ppc64 function
414 descriptors mistaken for static functions starting with 'L'.
415 */
416 else if ((sym->name[0] == '.' && sym->name[1] == 'L'
417 && (sym->flags & BSF_SYNTHETIC) == 0)
418 || ((sym->flags & BSF_LOCAL)
419 && sym->name[0] == '$'
420 && sym->name[1] == 'L'))
421 /* Looks like a compiler-generated label. Skip
422 it. The assembler should be skipping these (to
423 keep executables small), but apparently with
424 gcc on the (deleted) delta m88k SVR4, it loses.
425 So to have us check too should be harmless (but
426 I encourage people to fix this in the assembler
427 instead of adding checks here). */
428 continue;
429 else
430 {
431 ms_type = mst_file_text;
432 }
433 }
434 else if (sym->section->flags & SEC_ALLOC)
435 {
436 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
437 {
438 if (sym->section->flags & SEC_LOAD)
439 {
440 ms_type = mst_data;
441 }
442 else
443 {
444 ms_type = mst_bss;
445 }
446 }
447 else if (sym->flags & BSF_LOCAL)
448 {
449 /* Named Local variable in a Data section.
450 Check its name for stabs-in-elf. */
451 int special_local_sect;
452
453 if (strcmp ("Bbss.bss", sym->name) == 0)
454 special_local_sect = SECT_OFF_BSS (objfile);
455 else if (strcmp ("Ddata.data", sym->name) == 0)
456 special_local_sect = SECT_OFF_DATA (objfile);
457 else if (strcmp ("Drodata.rodata", sym->name) == 0)
458 special_local_sect = SECT_OFF_RODATA (objfile);
459 else
460 special_local_sect = -1;
461 if (special_local_sect >= 0)
462 {
463 /* Found a special local symbol. Allocate a
464 sectinfo, if needed, and fill it in. */
465 if (sectinfo == NULL)
466 {
467 int max_index;
468 size_t size;
469
470 max_index = SECT_OFF_BSS (objfile);
471 if (objfile->sect_index_data > max_index)
472 max_index = objfile->sect_index_data;
473 if (objfile->sect_index_rodata > max_index)
474 max_index = objfile->sect_index_rodata;
475
476 /* max_index is the largest index we'll
477 use into this array, so we must
478 allocate max_index+1 elements for it.
479 However, 'struct stab_section_info'
480 already includes one element, so we
481 need to allocate max_index aadditional
482 elements. */
483 size = (sizeof (struct stab_section_info)
484 + (sizeof (CORE_ADDR) * max_index));
485 sectinfo = (struct stab_section_info *)
486 xmalloc (size);
487 memset (sectinfo, 0, size);
488 sectinfo->num_sections = max_index;
489 if (filesym == NULL)
490 {
491 complaint (&symfile_complaints,
492 _("elf/stab section information %s "
493 "without a preceding file symbol"),
494 sym->name);
495 }
496 else
497 {
498 sectinfo->filename =
499 (char *) filesym->name;
500 }
501 }
502 if (sectinfo->sections[special_local_sect] != 0)
503 complaint (&symfile_complaints,
504 _("duplicated elf/stab section "
505 "information for %s"),
506 sectinfo->filename);
507 /* BFD symbols are section relative. */
508 symaddr = sym->value + sym->section->vma;
509 /* Relocate non-absolute symbols by the
510 section offset. */
511 if (sym->section != bfd_abs_section_ptr)
512 symaddr += offset;
513 sectinfo->sections[special_local_sect] = symaddr;
514 /* The special local symbols don't go in the
515 minimal symbol table, so ignore this one. */
516 continue;
517 }
518 /* Not a special stabs-in-elf symbol, do regular
519 symbol processing. */
520 if (sym->section->flags & SEC_LOAD)
521 {
522 ms_type = mst_file_data;
523 }
524 else
525 {
526 ms_type = mst_file_bss;
527 }
528 }
529 else
530 {
531 ms_type = mst_unknown;
532 }
533 }
534 else
535 {
536 /* FIXME: Solaris2 shared libraries include lots of
537 odd "absolute" and "undefined" symbols, that play
538 hob with actions like finding what function the PC
539 is in. Ignore them if they aren't text, data, or bss. */
540 /* ms_type = mst_unknown; */
541 continue; /* Skip this symbol. */
542 }
543 msym = record_minimal_symbol
544 (sym->name, strlen (sym->name), copy_names, symaddr,
545 ms_type, sym->section, objfile);
546
547 if (msym)
548 {
549 /* NOTE: uweigand-20071112: A synthetic symbol does not have an
550 ELF-private part. */
551 if (type != ST_SYNTHETIC)
552 {
553 /* Pass symbol size field in via BFD. FIXME!!! */
554 elf_symbol_type *elf_sym = (elf_symbol_type *) sym;
555 SET_MSYMBOL_SIZE (msym, elf_sym->internal_elf_sym.st_size);
556 }
557
558 msym->filename = filesymname;
559 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
560 }
561
562 /* If we see a default versioned symbol, install it under
563 its version-less name. */
564 if (msym != NULL)
565 {
566 const char *atsign = strchr (sym->name, '@');
567
568 if (atsign != NULL && atsign[1] == '@' && atsign > sym->name)
569 {
570 int len = atsign - sym->name;
571
572 record_minimal_symbol (sym->name, len, 1, symaddr,
573 ms_type, sym->section, objfile);
574 }
575 }
576
577 /* For @plt symbols, also record a trampoline to the
578 destination symbol. The @plt symbol will be used in
579 disassembly, and the trampoline will be used when we are
580 trying to find the target. */
581 if (msym && ms_type == mst_text && type == ST_SYNTHETIC)
582 {
583 int len = strlen (sym->name);
584
585 if (len > 4 && strcmp (sym->name + len - 4, "@plt") == 0)
586 {
587 struct minimal_symbol *mtramp;
588
589 mtramp = record_minimal_symbol (sym->name, len - 4, 1,
590 symaddr,
591 mst_solib_trampoline,
592 sym->section, objfile);
593 if (mtramp)
594 {
595 SET_MSYMBOL_SIZE (mtramp, MSYMBOL_SIZE (msym));
596 mtramp->created_by_gdb = 1;
597 mtramp->filename = filesymname;
598 gdbarch_elf_make_msymbol_special (gdbarch, sym, mtramp);
599 }
600 }
601 }
602 }
603 }
604 }
605
606 /* Build minimal symbols named `function@got.plt' (see SYMBOL_GOT_PLT_SUFFIX)
607 for later look ups of which function to call when user requests
608 a STT_GNU_IFUNC function. As the STT_GNU_IFUNC type is found at the target
609 library defining `function' we cannot yet know while reading OBJFILE which
610 of the SYMBOL_GOT_PLT_SUFFIX entries will be needed and later
611 DYN_SYMBOL_TABLE is no longer easily available for OBJFILE. */
612
613 static void
614 elf_rel_plt_read (struct objfile *objfile, asymbol **dyn_symbol_table)
615 {
616 bfd *obfd = objfile->obfd;
617 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
618 asection *plt, *relplt, *got_plt;
619 int plt_elf_idx;
620 bfd_size_type reloc_count, reloc;
621 char *string_buffer = NULL;
622 size_t string_buffer_size = 0;
623 struct cleanup *back_to;
624 struct gdbarch *gdbarch = get_objfile_arch (objfile);
625 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
626 size_t ptr_size = TYPE_LENGTH (ptr_type);
627
628 if (objfile->separate_debug_objfile_backlink)
629 return;
630
631 plt = bfd_get_section_by_name (obfd, ".plt");
632 if (plt == NULL)
633 return;
634 plt_elf_idx = elf_section_data (plt)->this_idx;
635
636 got_plt = bfd_get_section_by_name (obfd, ".got.plt");
637 if (got_plt == NULL)
638 {
639 /* For platforms where there is no separate .got.plt. */
640 got_plt = bfd_get_section_by_name (obfd, ".got");
641 if (got_plt == NULL)
642 return;
643 }
644
645 /* This search algorithm is from _bfd_elf_canonicalize_dynamic_reloc. */
646 for (relplt = obfd->sections; relplt != NULL; relplt = relplt->next)
647 if (elf_section_data (relplt)->this_hdr.sh_info == plt_elf_idx
648 && (elf_section_data (relplt)->this_hdr.sh_type == SHT_REL
649 || elf_section_data (relplt)->this_hdr.sh_type == SHT_RELA))
650 break;
651 if (relplt == NULL)
652 return;
653
654 if (! bed->s->slurp_reloc_table (obfd, relplt, dyn_symbol_table, TRUE))
655 return;
656
657 back_to = make_cleanup (free_current_contents, &string_buffer);
658
659 reloc_count = relplt->size / elf_section_data (relplt)->this_hdr.sh_entsize;
660 for (reloc = 0; reloc < reloc_count; reloc++)
661 {
662 const char *name;
663 struct minimal_symbol *msym;
664 CORE_ADDR address;
665 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
666 size_t name_len;
667
668 name = bfd_asymbol_name (*relplt->relocation[reloc].sym_ptr_ptr);
669 name_len = strlen (name);
670 address = relplt->relocation[reloc].address;
671
672 /* Does the pointer reside in the .got.plt section? */
673 if (!(bfd_get_section_vma (obfd, got_plt) <= address
674 && address < bfd_get_section_vma (obfd, got_plt)
675 + bfd_get_section_size (got_plt)))
676 continue;
677
678 /* We cannot check if NAME is a reference to mst_text_gnu_ifunc as in
679 OBJFILE the symbol is undefined and the objfile having NAME defined
680 may not yet have been loaded. */
681
682 if (string_buffer_size < name_len + got_suffix_len + 1)
683 {
684 string_buffer_size = 2 * (name_len + got_suffix_len);
685 string_buffer = xrealloc (string_buffer, string_buffer_size);
686 }
687 memcpy (string_buffer, name, name_len);
688 memcpy (&string_buffer[name_len], SYMBOL_GOT_PLT_SUFFIX,
689 got_suffix_len + 1);
690
691 msym = record_minimal_symbol (string_buffer, name_len + got_suffix_len,
692 1, address, mst_slot_got_plt, got_plt,
693 objfile);
694 if (msym)
695 SET_MSYMBOL_SIZE (msym, ptr_size);
696 }
697
698 do_cleanups (back_to);
699 }
700
701 /* The data pointer is htab_t for gnu_ifunc_record_cache_unchecked. */
702
703 static const struct objfile_data *elf_objfile_gnu_ifunc_cache_data;
704
705 /* Map function names to CORE_ADDR in elf_objfile_gnu_ifunc_cache_data. */
706
707 struct elf_gnu_ifunc_cache
708 {
709 /* This is always a function entry address, not a function descriptor. */
710 CORE_ADDR addr;
711
712 char name[1];
713 };
714
715 /* htab_hash for elf_objfile_gnu_ifunc_cache_data. */
716
717 static hashval_t
718 elf_gnu_ifunc_cache_hash (const void *a_voidp)
719 {
720 const struct elf_gnu_ifunc_cache *a = a_voidp;
721
722 return htab_hash_string (a->name);
723 }
724
725 /* htab_eq for elf_objfile_gnu_ifunc_cache_data. */
726
727 static int
728 elf_gnu_ifunc_cache_eq (const void *a_voidp, const void *b_voidp)
729 {
730 const struct elf_gnu_ifunc_cache *a = a_voidp;
731 const struct elf_gnu_ifunc_cache *b = b_voidp;
732
733 return strcmp (a->name, b->name) == 0;
734 }
735
736 /* Record the target function address of a STT_GNU_IFUNC function NAME is the
737 function entry address ADDR. Return 1 if NAME and ADDR are considered as
738 valid and therefore they were successfully recorded, return 0 otherwise.
739
740 Function does not expect a duplicate entry. Use
741 elf_gnu_ifunc_resolve_by_cache first to check if the entry for NAME already
742 exists. */
743
744 static int
745 elf_gnu_ifunc_record_cache (const char *name, CORE_ADDR addr)
746 {
747 struct bound_minimal_symbol msym;
748 asection *sect;
749 struct objfile *objfile;
750 htab_t htab;
751 struct elf_gnu_ifunc_cache entry_local, *entry_p;
752 void **slot;
753
754 msym = lookup_minimal_symbol_by_pc (addr);
755 if (msym.minsym == NULL)
756 return 0;
757 if (BMSYMBOL_VALUE_ADDRESS (msym) != addr)
758 return 0;
759 /* minimal symbols have always SYMBOL_OBJ_SECTION non-NULL. */
760 sect = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym)->the_bfd_section;
761 objfile = msym.objfile;
762
763 /* If .plt jumps back to .plt the symbol is still deferred for later
764 resolution and it has no use for GDB. Besides ".text" this symbol can
765 reside also in ".opd" for ppc64 function descriptor. */
766 if (strcmp (bfd_get_section_name (objfile->obfd, sect), ".plt") == 0)
767 return 0;
768
769 htab = objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data);
770 if (htab == NULL)
771 {
772 htab = htab_create_alloc_ex (1, elf_gnu_ifunc_cache_hash,
773 elf_gnu_ifunc_cache_eq,
774 NULL, &objfile->objfile_obstack,
775 hashtab_obstack_allocate,
776 dummy_obstack_deallocate);
777 set_objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data, htab);
778 }
779
780 entry_local.addr = addr;
781 obstack_grow (&objfile->objfile_obstack, &entry_local,
782 offsetof (struct elf_gnu_ifunc_cache, name));
783 obstack_grow_str0 (&objfile->objfile_obstack, name);
784 entry_p = obstack_finish (&objfile->objfile_obstack);
785
786 slot = htab_find_slot (htab, entry_p, INSERT);
787 if (*slot != NULL)
788 {
789 struct elf_gnu_ifunc_cache *entry_found_p = *slot;
790 struct gdbarch *gdbarch = get_objfile_arch (objfile);
791
792 if (entry_found_p->addr != addr)
793 {
794 /* This case indicates buggy inferior program, the resolved address
795 should never change. */
796
797 warning (_("gnu-indirect-function \"%s\" has changed its resolved "
798 "function_address from %s to %s"),
799 name, paddress (gdbarch, entry_found_p->addr),
800 paddress (gdbarch, addr));
801 }
802
803 /* New ENTRY_P is here leaked/duplicate in the OBJFILE obstack. */
804 }
805 *slot = entry_p;
806
807 return 1;
808 }
809
810 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
811 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
812 is not NULL) and the function returns 1. It returns 0 otherwise.
813
814 Only the elf_objfile_gnu_ifunc_cache_data hash table is searched by this
815 function. */
816
817 static int
818 elf_gnu_ifunc_resolve_by_cache (const char *name, CORE_ADDR *addr_p)
819 {
820 struct objfile *objfile;
821
822 ALL_PSPACE_OBJFILES (current_program_space, objfile)
823 {
824 htab_t htab;
825 struct elf_gnu_ifunc_cache *entry_p;
826 void **slot;
827
828 htab = objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data);
829 if (htab == NULL)
830 continue;
831
832 entry_p = alloca (sizeof (*entry_p) + strlen (name));
833 strcpy (entry_p->name, name);
834
835 slot = htab_find_slot (htab, entry_p, NO_INSERT);
836 if (slot == NULL)
837 continue;
838 entry_p = *slot;
839 gdb_assert (entry_p != NULL);
840
841 if (addr_p)
842 *addr_p = entry_p->addr;
843 return 1;
844 }
845
846 return 0;
847 }
848
849 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
850 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
851 is not NULL) and the function returns 1. It returns 0 otherwise.
852
853 Only the SYMBOL_GOT_PLT_SUFFIX locations are searched by this function.
854 elf_gnu_ifunc_resolve_by_cache must have been already called for NAME to
855 prevent cache entries duplicates. */
856
857 static int
858 elf_gnu_ifunc_resolve_by_got (const char *name, CORE_ADDR *addr_p)
859 {
860 char *name_got_plt;
861 struct objfile *objfile;
862 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
863
864 name_got_plt = alloca (strlen (name) + got_suffix_len + 1);
865 sprintf (name_got_plt, "%s" SYMBOL_GOT_PLT_SUFFIX, name);
866
867 ALL_PSPACE_OBJFILES (current_program_space, objfile)
868 {
869 bfd *obfd = objfile->obfd;
870 struct gdbarch *gdbarch = get_objfile_arch (objfile);
871 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
872 size_t ptr_size = TYPE_LENGTH (ptr_type);
873 CORE_ADDR pointer_address, addr;
874 asection *plt;
875 gdb_byte *buf = alloca (ptr_size);
876 struct bound_minimal_symbol msym;
877
878 msym = lookup_minimal_symbol (name_got_plt, NULL, objfile);
879 if (msym.minsym == NULL)
880 continue;
881 if (MSYMBOL_TYPE (msym.minsym) != mst_slot_got_plt)
882 continue;
883 pointer_address = BMSYMBOL_VALUE_ADDRESS (msym);
884
885 plt = bfd_get_section_by_name (obfd, ".plt");
886 if (plt == NULL)
887 continue;
888
889 if (MSYMBOL_SIZE (msym.minsym) != ptr_size)
890 continue;
891 if (target_read_memory (pointer_address, buf, ptr_size) != 0)
892 continue;
893 addr = extract_typed_address (buf, ptr_type);
894 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
895 &current_target);
896 addr = gdbarch_addr_bits_remove (gdbarch, addr);
897
898 if (addr_p)
899 *addr_p = addr;
900 if (elf_gnu_ifunc_record_cache (name, addr))
901 return 1;
902 }
903
904 return 0;
905 }
906
907 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
908 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
909 is not NULL) and the function returns 1. It returns 0 otherwise.
910
911 Both the elf_objfile_gnu_ifunc_cache_data hash table and
912 SYMBOL_GOT_PLT_SUFFIX locations are searched by this function. */
913
914 static int
915 elf_gnu_ifunc_resolve_name (const char *name, CORE_ADDR *addr_p)
916 {
917 if (elf_gnu_ifunc_resolve_by_cache (name, addr_p))
918 return 1;
919
920 if (elf_gnu_ifunc_resolve_by_got (name, addr_p))
921 return 1;
922
923 return 0;
924 }
925
926 /* Call STT_GNU_IFUNC - a function returning addresss of a real function to
927 call. PC is theSTT_GNU_IFUNC resolving function entry. The value returned
928 is the entry point of the resolved STT_GNU_IFUNC target function to call.
929 */
930
931 static CORE_ADDR
932 elf_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc)
933 {
934 const char *name_at_pc;
935 CORE_ADDR start_at_pc, address;
936 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
937 struct value *function, *address_val;
938
939 /* Try first any non-intrusive methods without an inferior call. */
940
941 if (find_pc_partial_function (pc, &name_at_pc, &start_at_pc, NULL)
942 && start_at_pc == pc)
943 {
944 if (elf_gnu_ifunc_resolve_name (name_at_pc, &address))
945 return address;
946 }
947 else
948 name_at_pc = NULL;
949
950 function = allocate_value (func_func_type);
951 set_value_address (function, pc);
952
953 /* STT_GNU_IFUNC resolver functions have no parameters. FUNCTION is the
954 function entry address. ADDRESS may be a function descriptor. */
955
956 address_val = call_function_by_hand (function, 0, NULL);
957 address = value_as_address (address_val);
958 address = gdbarch_convert_from_func_ptr_addr (gdbarch, address,
959 &current_target);
960 address = gdbarch_addr_bits_remove (gdbarch, address);
961
962 if (name_at_pc)
963 elf_gnu_ifunc_record_cache (name_at_pc, address);
964
965 return address;
966 }
967
968 /* Handle inferior hit of bp_gnu_ifunc_resolver, see its definition. */
969
970 static void
971 elf_gnu_ifunc_resolver_stop (struct breakpoint *b)
972 {
973 struct breakpoint *b_return;
974 struct frame_info *prev_frame = get_prev_frame (get_current_frame ());
975 struct frame_id prev_frame_id = get_stack_frame_id (prev_frame);
976 CORE_ADDR prev_pc = get_frame_pc (prev_frame);
977 int thread_id = pid_to_thread_id (inferior_ptid);
978
979 gdb_assert (b->type == bp_gnu_ifunc_resolver);
980
981 for (b_return = b->related_breakpoint; b_return != b;
982 b_return = b_return->related_breakpoint)
983 {
984 gdb_assert (b_return->type == bp_gnu_ifunc_resolver_return);
985 gdb_assert (b_return->loc != NULL && b_return->loc->next == NULL);
986 gdb_assert (frame_id_p (b_return->frame_id));
987
988 if (b_return->thread == thread_id
989 && b_return->loc->requested_address == prev_pc
990 && frame_id_eq (b_return->frame_id, prev_frame_id))
991 break;
992 }
993
994 if (b_return == b)
995 {
996 struct symtab_and_line sal;
997
998 /* No need to call find_pc_line for symbols resolving as this is only
999 a helper breakpointer never shown to the user. */
1000
1001 init_sal (&sal);
1002 sal.pspace = current_inferior ()->pspace;
1003 sal.pc = prev_pc;
1004 sal.section = find_pc_overlay (sal.pc);
1005 sal.explicit_pc = 1;
1006 b_return = set_momentary_breakpoint (get_frame_arch (prev_frame), sal,
1007 prev_frame_id,
1008 bp_gnu_ifunc_resolver_return);
1009
1010 /* set_momentary_breakpoint invalidates PREV_FRAME. */
1011 prev_frame = NULL;
1012
1013 /* Add new b_return to the ring list b->related_breakpoint. */
1014 gdb_assert (b_return->related_breakpoint == b_return);
1015 b_return->related_breakpoint = b->related_breakpoint;
1016 b->related_breakpoint = b_return;
1017 }
1018 }
1019
1020 /* Handle inferior hit of bp_gnu_ifunc_resolver_return, see its definition. */
1021
1022 static void
1023 elf_gnu_ifunc_resolver_return_stop (struct breakpoint *b)
1024 {
1025 struct gdbarch *gdbarch = get_frame_arch (get_current_frame ());
1026 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
1027 struct type *value_type = TYPE_TARGET_TYPE (func_func_type);
1028 struct regcache *regcache = get_thread_regcache (inferior_ptid);
1029 struct value *func_func;
1030 struct value *value;
1031 CORE_ADDR resolved_address, resolved_pc;
1032 struct symtab_and_line sal;
1033 struct symtabs_and_lines sals, sals_end;
1034
1035 gdb_assert (b->type == bp_gnu_ifunc_resolver_return);
1036
1037 while (b->related_breakpoint != b)
1038 {
1039 struct breakpoint *b_next = b->related_breakpoint;
1040
1041 switch (b->type)
1042 {
1043 case bp_gnu_ifunc_resolver:
1044 break;
1045 case bp_gnu_ifunc_resolver_return:
1046 delete_breakpoint (b);
1047 break;
1048 default:
1049 internal_error (__FILE__, __LINE__,
1050 _("handle_inferior_event: Invalid "
1051 "gnu-indirect-function breakpoint type %d"),
1052 (int) b->type);
1053 }
1054 b = b_next;
1055 }
1056 gdb_assert (b->type == bp_gnu_ifunc_resolver);
1057 gdb_assert (b->loc->next == NULL);
1058
1059 func_func = allocate_value (func_func_type);
1060 set_value_address (func_func, b->loc->related_address);
1061
1062 value = allocate_value (value_type);
1063 gdbarch_return_value (gdbarch, func_func, value_type, regcache,
1064 value_contents_raw (value), NULL);
1065 resolved_address = value_as_address (value);
1066 resolved_pc = gdbarch_convert_from_func_ptr_addr (gdbarch,
1067 resolved_address,
1068 &current_target);
1069 resolved_pc = gdbarch_addr_bits_remove (gdbarch, resolved_pc);
1070
1071 gdb_assert (current_program_space == b->pspace || b->pspace == NULL);
1072 elf_gnu_ifunc_record_cache (b->addr_string, resolved_pc);
1073
1074 sal = find_pc_line (resolved_pc, 0);
1075 sals.nelts = 1;
1076 sals.sals = &sal;
1077 sals_end.nelts = 0;
1078
1079 b->type = bp_breakpoint;
1080 update_breakpoint_locations (b, sals, sals_end);
1081 }
1082
1083 /* Scan and build partial symbols for a symbol file.
1084 We have been initialized by a call to elf_symfile_init, which
1085 currently does nothing.
1086
1087 SECTION_OFFSETS is a set of offsets to apply to relocate the symbols
1088 in each section. We simplify it down to a single offset for all
1089 symbols. FIXME.
1090
1091 This function only does the minimum work necessary for letting the
1092 user "name" things symbolically; it does not read the entire symtab.
1093 Instead, it reads the external and static symbols and puts them in partial
1094 symbol tables. When more extensive information is requested of a
1095 file, the corresponding partial symbol table is mutated into a full
1096 fledged symbol table by going back and reading the symbols
1097 for real.
1098
1099 We look for sections with specific names, to tell us what debug
1100 format to look for: FIXME!!!
1101
1102 elfstab_build_psymtabs() handles STABS symbols;
1103 mdebug_build_psymtabs() handles ECOFF debugging information.
1104
1105 Note that ELF files have a "minimal" symbol table, which looks a lot
1106 like a COFF symbol table, but has only the minimal information necessary
1107 for linking. We process this also, and use the information to
1108 build gdb's minimal symbol table. This gives us some minimal debugging
1109 capability even for files compiled without -g. */
1110
1111 static void
1112 elf_symfile_read (struct objfile *objfile, int symfile_flags)
1113 {
1114 bfd *synth_abfd, *abfd = objfile->obfd;
1115 struct elfinfo ei;
1116 struct cleanup *back_to;
1117 long symcount = 0, dynsymcount = 0, synthcount, storage_needed;
1118 asymbol **symbol_table = NULL, **dyn_symbol_table = NULL;
1119 asymbol *synthsyms;
1120 struct dbx_symfile_info *dbx;
1121
1122 if (symtab_create_debug)
1123 {
1124 fprintf_unfiltered (gdb_stdlog,
1125 "Reading minimal symbols of objfile %s ...\n",
1126 objfile_name (objfile));
1127 }
1128
1129 init_minimal_symbol_collection ();
1130 back_to = make_cleanup_discard_minimal_symbols ();
1131
1132 memset ((char *) &ei, 0, sizeof (ei));
1133
1134 /* Allocate struct to keep track of the symfile. */
1135 dbx = XCNEW (struct dbx_symfile_info);
1136 set_objfile_data (objfile, dbx_objfile_data_key, dbx);
1137 make_cleanup (free_elfinfo, (void *) objfile);
1138
1139 /* Process the normal ELF symbol table first. This may write some
1140 chain of info into the dbx_symfile_info of the objfile, which can
1141 later be used by elfstab_offset_sections. */
1142
1143 storage_needed = bfd_get_symtab_upper_bound (objfile->obfd);
1144 if (storage_needed < 0)
1145 error (_("Can't read symbols from %s: %s"),
1146 bfd_get_filename (objfile->obfd),
1147 bfd_errmsg (bfd_get_error ()));
1148
1149 if (storage_needed > 0)
1150 {
1151 symbol_table = (asymbol **) xmalloc (storage_needed);
1152 make_cleanup (xfree, symbol_table);
1153 symcount = bfd_canonicalize_symtab (objfile->obfd, symbol_table);
1154
1155 if (symcount < 0)
1156 error (_("Can't read symbols from %s: %s"),
1157 bfd_get_filename (objfile->obfd),
1158 bfd_errmsg (bfd_get_error ()));
1159
1160 elf_symtab_read (objfile, ST_REGULAR, symcount, symbol_table, 0);
1161 }
1162
1163 /* Add the dynamic symbols. */
1164
1165 storage_needed = bfd_get_dynamic_symtab_upper_bound (objfile->obfd);
1166
1167 if (storage_needed > 0)
1168 {
1169 /* Memory gets permanently referenced from ABFD after
1170 bfd_get_synthetic_symtab so it must not get freed before ABFD gets.
1171 It happens only in the case when elf_slurp_reloc_table sees
1172 asection->relocation NULL. Determining which section is asection is
1173 done by _bfd_elf_get_synthetic_symtab which is all a bfd
1174 implementation detail, though. */
1175
1176 dyn_symbol_table = bfd_alloc (abfd, storage_needed);
1177 dynsymcount = bfd_canonicalize_dynamic_symtab (objfile->obfd,
1178 dyn_symbol_table);
1179
1180 if (dynsymcount < 0)
1181 error (_("Can't read symbols from %s: %s"),
1182 bfd_get_filename (objfile->obfd),
1183 bfd_errmsg (bfd_get_error ()));
1184
1185 elf_symtab_read (objfile, ST_DYNAMIC, dynsymcount, dyn_symbol_table, 0);
1186
1187 elf_rel_plt_read (objfile, dyn_symbol_table);
1188 }
1189
1190 /* Contrary to binutils --strip-debug/--only-keep-debug the strip command from
1191 elfutils (eu-strip) moves even the .symtab section into the .debug file.
1192
1193 bfd_get_synthetic_symtab on ppc64 for each function descriptor ELF symbol
1194 'name' creates a new BSF_SYNTHETIC ELF symbol '.name' with its code
1195 address. But with eu-strip files bfd_get_synthetic_symtab would fail to
1196 read the code address from .opd while it reads the .symtab section from
1197 a separate debug info file as the .opd section is SHT_NOBITS there.
1198
1199 With SYNTH_ABFD the .opd section will be read from the original
1200 backlinked binary where it is valid. */
1201
1202 if (objfile->separate_debug_objfile_backlink)
1203 synth_abfd = objfile->separate_debug_objfile_backlink->obfd;
1204 else
1205 synth_abfd = abfd;
1206
1207 /* Add synthetic symbols - for instance, names for any PLT entries. */
1208
1209 synthcount = bfd_get_synthetic_symtab (synth_abfd, symcount, symbol_table,
1210 dynsymcount, dyn_symbol_table,
1211 &synthsyms);
1212 if (synthcount > 0)
1213 {
1214 asymbol **synth_symbol_table;
1215 long i;
1216
1217 make_cleanup (xfree, synthsyms);
1218 synth_symbol_table = xmalloc (sizeof (asymbol *) * synthcount);
1219 for (i = 0; i < synthcount; i++)
1220 synth_symbol_table[i] = synthsyms + i;
1221 make_cleanup (xfree, synth_symbol_table);
1222 elf_symtab_read (objfile, ST_SYNTHETIC, synthcount,
1223 synth_symbol_table, 1);
1224 }
1225
1226 /* Install any minimal symbols that have been collected as the current
1227 minimal symbols for this objfile. The debug readers below this point
1228 should not generate new minimal symbols; if they do it's their
1229 responsibility to install them. "mdebug" appears to be the only one
1230 which will do this. */
1231
1232 install_minimal_symbols (objfile);
1233 do_cleanups (back_to);
1234
1235 if (symtab_create_debug)
1236 fprintf_unfiltered (gdb_stdlog, "Done reading minimal symbols.\n");
1237
1238 /* Now process debugging information, which is contained in
1239 special ELF sections. */
1240
1241 /* We first have to find them... */
1242 bfd_map_over_sections (abfd, elf_locate_sections, (void *) & ei);
1243
1244 /* ELF debugging information is inserted into the psymtab in the
1245 order of least informative first - most informative last. Since
1246 the psymtab table is searched `most recent insertion first' this
1247 increases the probability that more detailed debug information
1248 for a section is found.
1249
1250 For instance, an object file might contain both .mdebug (XCOFF)
1251 and .debug_info (DWARF2) sections then .mdebug is inserted first
1252 (searched last) and DWARF2 is inserted last (searched first). If
1253 we don't do this then the XCOFF info is found first - for code in
1254 an included file XCOFF info is useless. */
1255
1256 if (ei.mdebugsect)
1257 {
1258 const struct ecoff_debug_swap *swap;
1259
1260 /* .mdebug section, presumably holding ECOFF debugging
1261 information. */
1262 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1263 if (swap)
1264 elfmdebug_build_psymtabs (objfile, swap, ei.mdebugsect);
1265 }
1266 if (ei.stabsect)
1267 {
1268 asection *str_sect;
1269
1270 /* Stab sections have an associated string table that looks like
1271 a separate section. */
1272 str_sect = bfd_get_section_by_name (abfd, ".stabstr");
1273
1274 /* FIXME should probably warn about a stab section without a stabstr. */
1275 if (str_sect)
1276 elfstab_build_psymtabs (objfile,
1277 ei.stabsect,
1278 str_sect->filepos,
1279 bfd_section_size (abfd, str_sect));
1280 }
1281
1282 if (dwarf2_has_info (objfile, NULL))
1283 {
1284 /* elf_sym_fns_gdb_index cannot handle simultaneous non-DWARF debug
1285 information present in OBJFILE. If there is such debug info present
1286 never use .gdb_index. */
1287
1288 if (!objfile_has_partial_symbols (objfile)
1289 && dwarf2_initialize_objfile (objfile))
1290 objfile_set_sym_fns (objfile, &elf_sym_fns_gdb_index);
1291 else
1292 {
1293 /* It is ok to do this even if the stabs reader made some
1294 partial symbols, because OBJF_PSYMTABS_READ has not been
1295 set, and so our lazy reader function will still be called
1296 when needed. */
1297 objfile_set_sym_fns (objfile, &elf_sym_fns_lazy_psyms);
1298 }
1299 }
1300 /* If the file has its own symbol tables it has no separate debug
1301 info. `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to
1302 SYMTABS/PSYMTABS. `.gnu_debuglink' may no longer be present with
1303 `.note.gnu.build-id'.
1304
1305 .gnu_debugdata is !objfile_has_partial_symbols because it contains only
1306 .symtab, not .debug_* section. But if we already added .gnu_debugdata as
1307 an objfile via find_separate_debug_file_in_section there was no separate
1308 debug info available. Therefore do not attempt to search for another one,
1309 objfile->separate_debug_objfile->separate_debug_objfile GDB guarantees to
1310 be NULL and we would possibly violate it. */
1311
1312 else if (!objfile_has_partial_symbols (objfile)
1313 && objfile->separate_debug_objfile == NULL
1314 && objfile->separate_debug_objfile_backlink == NULL)
1315 {
1316 char *debugfile;
1317
1318 debugfile = find_separate_debug_file_by_buildid (objfile);
1319
1320 if (debugfile == NULL)
1321 debugfile = find_separate_debug_file_by_debuglink (objfile);
1322
1323 if (debugfile)
1324 {
1325 struct cleanup *cleanup = make_cleanup (xfree, debugfile);
1326 bfd *abfd = symfile_bfd_open (debugfile);
1327
1328 make_cleanup_bfd_unref (abfd);
1329 symbol_file_add_separate (abfd, debugfile, symfile_flags, objfile);
1330 do_cleanups (cleanup);
1331 }
1332 }
1333 }
1334
1335 /* Callback to lazily read psymtabs. */
1336
1337 static void
1338 read_psyms (struct objfile *objfile)
1339 {
1340 if (dwarf2_has_info (objfile, NULL))
1341 dwarf2_build_psymtabs (objfile);
1342 }
1343
1344 /* This cleans up the objfile's dbx symfile info, and the chain of
1345 stab_section_info's, that might be dangling from it. */
1346
1347 static void
1348 free_elfinfo (void *objp)
1349 {
1350 struct objfile *objfile = (struct objfile *) objp;
1351 struct dbx_symfile_info *dbxinfo = DBX_SYMFILE_INFO (objfile);
1352 struct stab_section_info *ssi, *nssi;
1353
1354 ssi = dbxinfo->stab_section_info;
1355 while (ssi)
1356 {
1357 nssi = ssi->next;
1358 xfree (ssi);
1359 ssi = nssi;
1360 }
1361
1362 dbxinfo->stab_section_info = 0; /* Just say No mo info about this. */
1363 }
1364
1365
1366 /* Initialize anything that needs initializing when a completely new symbol
1367 file is specified (not just adding some symbols from another file, e.g. a
1368 shared library).
1369
1370 We reinitialize buildsym, since we may be reading stabs from an ELF
1371 file. */
1372
1373 static void
1374 elf_new_init (struct objfile *ignore)
1375 {
1376 stabsread_new_init ();
1377 buildsym_new_init ();
1378 }
1379
1380 /* Perform any local cleanups required when we are done with a particular
1381 objfile. I.E, we are in the process of discarding all symbol information
1382 for an objfile, freeing up all memory held for it, and unlinking the
1383 objfile struct from the global list of known objfiles. */
1384
1385 static void
1386 elf_symfile_finish (struct objfile *objfile)
1387 {
1388 dwarf2_free_objfile (objfile);
1389 }
1390
1391 /* ELF specific initialization routine for reading symbols.
1392
1393 It is passed a pointer to a struct sym_fns which contains, among other
1394 things, the BFD for the file whose symbols are being read, and a slot for
1395 a pointer to "private data" which we can fill with goodies.
1396
1397 For now at least, we have nothing in particular to do, so this function is
1398 just a stub. */
1399
1400 static void
1401 elf_symfile_init (struct objfile *objfile)
1402 {
1403 /* ELF objects may be reordered, so set OBJF_REORDERED. If we
1404 find this causes a significant slowdown in gdb then we could
1405 set it in the debug symbol readers only when necessary. */
1406 objfile->flags |= OBJF_REORDERED;
1407 }
1408
1409 /* When handling an ELF file that contains Sun STABS debug info,
1410 some of the debug info is relative to the particular chunk of the
1411 section that was generated in its individual .o file. E.g.
1412 offsets to static variables are relative to the start of the data
1413 segment *for that module before linking*. This information is
1414 painfully squirreled away in the ELF symbol table as local symbols
1415 with wierd names. Go get 'em when needed. */
1416
1417 void
1418 elfstab_offset_sections (struct objfile *objfile, struct partial_symtab *pst)
1419 {
1420 const char *filename = pst->filename;
1421 struct dbx_symfile_info *dbx = DBX_SYMFILE_INFO (objfile);
1422 struct stab_section_info *maybe = dbx->stab_section_info;
1423 struct stab_section_info *questionable = 0;
1424 int i;
1425
1426 /* The ELF symbol info doesn't include path names, so strip the path
1427 (if any) from the psymtab filename. */
1428 filename = lbasename (filename);
1429
1430 /* FIXME: This linear search could speed up significantly
1431 if it was chained in the right order to match how we search it,
1432 and if we unchained when we found a match. */
1433 for (; maybe; maybe = maybe->next)
1434 {
1435 if (filename[0] == maybe->filename[0]
1436 && filename_cmp (filename, maybe->filename) == 0)
1437 {
1438 /* We found a match. But there might be several source files
1439 (from different directories) with the same name. */
1440 if (0 == maybe->found)
1441 break;
1442 questionable = maybe; /* Might use it later. */
1443 }
1444 }
1445
1446 if (maybe == 0 && questionable != 0)
1447 {
1448 complaint (&symfile_complaints,
1449 _("elf/stab section information questionable for %s"),
1450 filename);
1451 maybe = questionable;
1452 }
1453
1454 if (maybe)
1455 {
1456 /* Found it! Allocate a new psymtab struct, and fill it in. */
1457 maybe->found++;
1458 pst->section_offsets = (struct section_offsets *)
1459 obstack_alloc (&objfile->objfile_obstack,
1460 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
1461 for (i = 0; i < maybe->num_sections; i++)
1462 (pst->section_offsets)->offsets[i] = maybe->sections[i];
1463 return;
1464 }
1465
1466 /* We were unable to find any offsets for this file. Complain. */
1467 if (dbx->stab_section_info) /* If there *is* any info, */
1468 complaint (&symfile_complaints,
1469 _("elf/stab section information missing for %s"), filename);
1470 }
1471
1472 /* Implementation of `sym_get_probes', as documented in symfile.h. */
1473
1474 static VEC (probe_p) *
1475 elf_get_probes (struct objfile *objfile)
1476 {
1477 VEC (probe_p) *probes_per_objfile;
1478
1479 /* Have we parsed this objfile's probes already? */
1480 probes_per_objfile = objfile_data (objfile, probe_key);
1481
1482 if (!probes_per_objfile)
1483 {
1484 int ix;
1485 const struct probe_ops *probe_ops;
1486
1487 /* Here we try to gather information about all types of probes from the
1488 objfile. */
1489 for (ix = 0; VEC_iterate (probe_ops_cp, all_probe_ops, ix, probe_ops);
1490 ix++)
1491 probe_ops->get_probes (&probes_per_objfile, objfile);
1492
1493 if (probes_per_objfile == NULL)
1494 {
1495 VEC_reserve (probe_p, probes_per_objfile, 1);
1496 gdb_assert (probes_per_objfile != NULL);
1497 }
1498
1499 set_objfile_data (objfile, probe_key, probes_per_objfile);
1500 }
1501
1502 return probes_per_objfile;
1503 }
1504
1505 /* Implementation of `sym_relocate_probe', as documented in symfile.h. */
1506
1507 static void
1508 elf_symfile_relocate_probe (struct objfile *objfile,
1509 const struct section_offsets *new_offsets,
1510 const struct section_offsets *delta)
1511 {
1512 int ix;
1513 VEC (probe_p) *probes = objfile_data (objfile, probe_key);
1514 struct probe *probe;
1515
1516 for (ix = 0; VEC_iterate (probe_p, probes, ix, probe); ix++)
1517 probe->pops->relocate (probe, ANOFFSET (delta, SECT_OFF_TEXT (objfile)));
1518 }
1519
1520 /* Helper function used to free the space allocated for storing SystemTap
1521 probe information. */
1522
1523 static void
1524 probe_key_free (struct objfile *objfile, void *d)
1525 {
1526 int ix;
1527 VEC (probe_p) *probes = d;
1528 struct probe *probe;
1529
1530 for (ix = 0; VEC_iterate (probe_p, probes, ix, probe); ix++)
1531 probe->pops->destroy (probe);
1532
1533 VEC_free (probe_p, probes);
1534 }
1535
1536 \f
1537
1538 /* Implementation `sym_probe_fns', as documented in symfile.h. */
1539
1540 static const struct sym_probe_fns elf_probe_fns =
1541 {
1542 elf_get_probes, /* sym_get_probes */
1543 elf_symfile_relocate_probe, /* sym_relocate_probe */
1544 };
1545
1546 /* Register that we are able to handle ELF object file formats. */
1547
1548 static const struct sym_fns elf_sym_fns =
1549 {
1550 elf_new_init, /* init anything gbl to entire symtab */
1551 elf_symfile_init, /* read initial info, setup for sym_read() */
1552 elf_symfile_read, /* read a symbol file into symtab */
1553 NULL, /* sym_read_psymbols */
1554 elf_symfile_finish, /* finished with file, cleanup */
1555 default_symfile_offsets, /* Translate ext. to int. relocation */
1556 elf_symfile_segments, /* Get segment information from a file. */
1557 NULL,
1558 default_symfile_relocate, /* Relocate a debug section. */
1559 &elf_probe_fns, /* sym_probe_fns */
1560 &psym_functions
1561 };
1562
1563 /* The same as elf_sym_fns, but not registered and lazily reads
1564 psymbols. */
1565
1566 static const struct sym_fns elf_sym_fns_lazy_psyms =
1567 {
1568 elf_new_init, /* init anything gbl to entire symtab */
1569 elf_symfile_init, /* read initial info, setup for sym_read() */
1570 elf_symfile_read, /* read a symbol file into symtab */
1571 read_psyms, /* sym_read_psymbols */
1572 elf_symfile_finish, /* finished with file, cleanup */
1573 default_symfile_offsets, /* Translate ext. to int. relocation */
1574 elf_symfile_segments, /* Get segment information from a file. */
1575 NULL,
1576 default_symfile_relocate, /* Relocate a debug section. */
1577 &elf_probe_fns, /* sym_probe_fns */
1578 &psym_functions
1579 };
1580
1581 /* The same as elf_sym_fns, but not registered and uses the
1582 DWARF-specific GNU index rather than psymtab. */
1583 static const struct sym_fns elf_sym_fns_gdb_index =
1584 {
1585 elf_new_init, /* init anything gbl to entire symab */
1586 elf_symfile_init, /* read initial info, setup for sym_red() */
1587 elf_symfile_read, /* read a symbol file into symtab */
1588 NULL, /* sym_read_psymbols */
1589 elf_symfile_finish, /* finished with file, cleanup */
1590 default_symfile_offsets, /* Translate ext. to int. relocatin */
1591 elf_symfile_segments, /* Get segment information from a file. */
1592 NULL,
1593 default_symfile_relocate, /* Relocate a debug section. */
1594 &elf_probe_fns, /* sym_probe_fns */
1595 &dwarf2_gdb_index_functions
1596 };
1597
1598 /* STT_GNU_IFUNC resolver vector to be installed to gnu_ifunc_fns_p. */
1599
1600 static const struct gnu_ifunc_fns elf_gnu_ifunc_fns =
1601 {
1602 elf_gnu_ifunc_resolve_addr,
1603 elf_gnu_ifunc_resolve_name,
1604 elf_gnu_ifunc_resolver_stop,
1605 elf_gnu_ifunc_resolver_return_stop
1606 };
1607
1608 void
1609 _initialize_elfread (void)
1610 {
1611 probe_key = register_objfile_data_with_cleanup (NULL, probe_key_free);
1612 add_symtab_fns (bfd_target_elf_flavour, &elf_sym_fns);
1613
1614 elf_objfile_gnu_ifunc_cache_data = register_objfile_data ();
1615 gnu_ifunc_fns_p = &elf_gnu_ifunc_fns;
1616 }