target_stack -> current_top_target() throughout
[binutils-gdb.git] / gdb / elfread.c
1 /* Read ELF (Executable and Linking Format) object files for GDB.
2
3 Copyright (C) 1991-2018 Free Software Foundation, Inc.
4
5 Written by Fred Fish at Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "bfd.h"
24 #include "elf-bfd.h"
25 #include "elf/common.h"
26 #include "elf/internal.h"
27 #include "elf/mips.h"
28 #include "symtab.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "buildsym.h"
32 #include "stabsread.h"
33 #include "gdb-stabs.h"
34 #include "complaints.h"
35 #include "demangle.h"
36 #include "psympriv.h"
37 #include "filenames.h"
38 #include "probe.h"
39 #include "arch-utils.h"
40 #include "gdbtypes.h"
41 #include "value.h"
42 #include "infcall.h"
43 #include "gdbthread.h"
44 #include "regcache.h"
45 #include "bcache.h"
46 #include "gdb_bfd.h"
47 #include "build-id.h"
48 #include "location.h"
49 #include "auxv.h"
50
51 /* Forward declarations. */
52 extern const struct sym_fns elf_sym_fns_gdb_index;
53 extern const struct sym_fns elf_sym_fns_debug_names;
54 extern const struct sym_fns elf_sym_fns_lazy_psyms;
55
56 /* The struct elfinfo is available only during ELF symbol table and
57 psymtab reading. It is destroyed at the completion of psymtab-reading.
58 It's local to elf_symfile_read. */
59
60 struct elfinfo
61 {
62 asection *stabsect; /* Section pointer for .stab section */
63 asection *mdebugsect; /* Section pointer for .mdebug section */
64 };
65
66 /* Per-BFD data for probe info. */
67
68 static const struct bfd_data *probe_key = NULL;
69
70 /* Minimal symbols located at the GOT entries for .plt - that is the real
71 pointer where the given entry will jump to. It gets updated by the real
72 function address during lazy ld.so resolving in the inferior. These
73 minimal symbols are indexed for <tab>-completion. */
74
75 #define SYMBOL_GOT_PLT_SUFFIX "@got.plt"
76
77 /* Locate the segments in ABFD. */
78
79 static struct symfile_segment_data *
80 elf_symfile_segments (bfd *abfd)
81 {
82 Elf_Internal_Phdr *phdrs, **segments;
83 long phdrs_size;
84 int num_phdrs, num_segments, num_sections, i;
85 asection *sect;
86 struct symfile_segment_data *data;
87
88 phdrs_size = bfd_get_elf_phdr_upper_bound (abfd);
89 if (phdrs_size == -1)
90 return NULL;
91
92 phdrs = (Elf_Internal_Phdr *) alloca (phdrs_size);
93 num_phdrs = bfd_get_elf_phdrs (abfd, phdrs);
94 if (num_phdrs == -1)
95 return NULL;
96
97 num_segments = 0;
98 segments = XALLOCAVEC (Elf_Internal_Phdr *, num_phdrs);
99 for (i = 0; i < num_phdrs; i++)
100 if (phdrs[i].p_type == PT_LOAD)
101 segments[num_segments++] = &phdrs[i];
102
103 if (num_segments == 0)
104 return NULL;
105
106 data = XCNEW (struct symfile_segment_data);
107 data->num_segments = num_segments;
108 data->segment_bases = XCNEWVEC (CORE_ADDR, num_segments);
109 data->segment_sizes = XCNEWVEC (CORE_ADDR, num_segments);
110
111 for (i = 0; i < num_segments; i++)
112 {
113 data->segment_bases[i] = segments[i]->p_vaddr;
114 data->segment_sizes[i] = segments[i]->p_memsz;
115 }
116
117 num_sections = bfd_count_sections (abfd);
118 data->segment_info = XCNEWVEC (int, num_sections);
119
120 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
121 {
122 int j;
123
124 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
125 continue;
126
127 Elf_Internal_Shdr *this_hdr = &elf_section_data (sect)->this_hdr;
128
129 for (j = 0; j < num_segments; j++)
130 if (ELF_SECTION_IN_SEGMENT (this_hdr, segments[j]))
131 {
132 data->segment_info[i] = j + 1;
133 break;
134 }
135
136 /* We should have found a segment for every non-empty section.
137 If we haven't, we will not relocate this section by any
138 offsets we apply to the segments. As an exception, do not
139 warn about SHT_NOBITS sections; in normal ELF execution
140 environments, SHT_NOBITS means zero-initialized and belongs
141 in a segment, but in no-OS environments some tools (e.g. ARM
142 RealView) use SHT_NOBITS for uninitialized data. Since it is
143 uninitialized, it doesn't need a program header. Such
144 binaries are not relocatable. */
145 if (bfd_get_section_size (sect) > 0 && j == num_segments
146 && (bfd_get_section_flags (abfd, sect) & SEC_LOAD) != 0)
147 warning (_("Loadable section \"%s\" outside of ELF segments"),
148 bfd_section_name (abfd, sect));
149 }
150
151 return data;
152 }
153
154 /* We are called once per section from elf_symfile_read. We
155 need to examine each section we are passed, check to see
156 if it is something we are interested in processing, and
157 if so, stash away some access information for the section.
158
159 For now we recognize the dwarf debug information sections and
160 line number sections from matching their section names. The
161 ELF definition is no real help here since it has no direct
162 knowledge of DWARF (by design, so any debugging format can be
163 used).
164
165 We also recognize the ".stab" sections used by the Sun compilers
166 released with Solaris 2.
167
168 FIXME: The section names should not be hardwired strings (what
169 should they be? I don't think most object file formats have enough
170 section flags to specify what kind of debug section it is.
171 -kingdon). */
172
173 static void
174 elf_locate_sections (bfd *ignore_abfd, asection *sectp, void *eip)
175 {
176 struct elfinfo *ei;
177
178 ei = (struct elfinfo *) eip;
179 if (strcmp (sectp->name, ".stab") == 0)
180 {
181 ei->stabsect = sectp;
182 }
183 else if (strcmp (sectp->name, ".mdebug") == 0)
184 {
185 ei->mdebugsect = sectp;
186 }
187 }
188
189 static struct minimal_symbol *
190 record_minimal_symbol (minimal_symbol_reader &reader,
191 const char *name, int name_len, bool copy_name,
192 CORE_ADDR address,
193 enum minimal_symbol_type ms_type,
194 asection *bfd_section, struct objfile *objfile)
195 {
196 struct gdbarch *gdbarch = get_objfile_arch (objfile);
197
198 if (ms_type == mst_text || ms_type == mst_file_text
199 || ms_type == mst_text_gnu_ifunc)
200 address = gdbarch_addr_bits_remove (gdbarch, address);
201
202 return reader.record_full (name, name_len, copy_name, address,
203 ms_type,
204 gdb_bfd_section_index (objfile->obfd,
205 bfd_section));
206 }
207
208 /* Read the symbol table of an ELF file.
209
210 Given an objfile, a symbol table, and a flag indicating whether the
211 symbol table contains regular, dynamic, or synthetic symbols, add all
212 the global function and data symbols to the minimal symbol table.
213
214 In stabs-in-ELF, as implemented by Sun, there are some local symbols
215 defined in the ELF symbol table, which can be used to locate
216 the beginnings of sections from each ".o" file that was linked to
217 form the executable objfile. We gather any such info and record it
218 in data structures hung off the objfile's private data. */
219
220 #define ST_REGULAR 0
221 #define ST_DYNAMIC 1
222 #define ST_SYNTHETIC 2
223
224 static void
225 elf_symtab_read (minimal_symbol_reader &reader,
226 struct objfile *objfile, int type,
227 long number_of_symbols, asymbol **symbol_table,
228 bool copy_names)
229 {
230 struct gdbarch *gdbarch = get_objfile_arch (objfile);
231 asymbol *sym;
232 long i;
233 CORE_ADDR symaddr;
234 enum minimal_symbol_type ms_type;
235 /* Name of the last file symbol. This is either a constant string or is
236 saved on the objfile's filename cache. */
237 const char *filesymname = "";
238 int stripped = (bfd_get_symcount (objfile->obfd) == 0);
239 int elf_make_msymbol_special_p
240 = gdbarch_elf_make_msymbol_special_p (gdbarch);
241
242 for (i = 0; i < number_of_symbols; i++)
243 {
244 sym = symbol_table[i];
245 if (sym->name == NULL || *sym->name == '\0')
246 {
247 /* Skip names that don't exist (shouldn't happen), or names
248 that are null strings (may happen). */
249 continue;
250 }
251
252 /* Skip "special" symbols, e.g. ARM mapping symbols. These are
253 symbols which do not correspond to objects in the symbol table,
254 but have some other target-specific meaning. */
255 if (bfd_is_target_special_symbol (objfile->obfd, sym))
256 {
257 if (gdbarch_record_special_symbol_p (gdbarch))
258 gdbarch_record_special_symbol (gdbarch, objfile, sym);
259 continue;
260 }
261
262 if (type == ST_DYNAMIC
263 && sym->section == bfd_und_section_ptr
264 && (sym->flags & BSF_FUNCTION))
265 {
266 struct minimal_symbol *msym;
267 bfd *abfd = objfile->obfd;
268 asection *sect;
269
270 /* Symbol is a reference to a function defined in
271 a shared library.
272 If its value is non zero then it is usually the address
273 of the corresponding entry in the procedure linkage table,
274 plus the desired section offset.
275 If its value is zero then the dynamic linker has to resolve
276 the symbol. We are unable to find any meaningful address
277 for this symbol in the executable file, so we skip it. */
278 symaddr = sym->value;
279 if (symaddr == 0)
280 continue;
281
282 /* sym->section is the undefined section. However, we want to
283 record the section where the PLT stub resides with the
284 minimal symbol. Search the section table for the one that
285 covers the stub's address. */
286 for (sect = abfd->sections; sect != NULL; sect = sect->next)
287 {
288 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
289 continue;
290
291 if (symaddr >= bfd_get_section_vma (abfd, sect)
292 && symaddr < bfd_get_section_vma (abfd, sect)
293 + bfd_get_section_size (sect))
294 break;
295 }
296 if (!sect)
297 continue;
298
299 /* On ia64-hpux, we have discovered that the system linker
300 adds undefined symbols with nonzero addresses that cannot
301 be right (their address points inside the code of another
302 function in the .text section). This creates problems
303 when trying to determine which symbol corresponds to
304 a given address.
305
306 We try to detect those buggy symbols by checking which
307 section we think they correspond to. Normally, PLT symbols
308 are stored inside their own section, and the typical name
309 for that section is ".plt". So, if there is a ".plt"
310 section, and yet the section name of our symbol does not
311 start with ".plt", we ignore that symbol. */
312 if (!startswith (sect->name, ".plt")
313 && bfd_get_section_by_name (abfd, ".plt") != NULL)
314 continue;
315
316 msym = record_minimal_symbol
317 (reader, sym->name, strlen (sym->name), copy_names,
318 symaddr, mst_solib_trampoline, sect, objfile);
319 if (msym != NULL)
320 {
321 msym->filename = filesymname;
322 if (elf_make_msymbol_special_p)
323 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
324 }
325 continue;
326 }
327
328 /* If it is a nonstripped executable, do not enter dynamic
329 symbols, as the dynamic symbol table is usually a subset
330 of the main symbol table. */
331 if (type == ST_DYNAMIC && !stripped)
332 continue;
333 if (sym->flags & BSF_FILE)
334 {
335 filesymname
336 = (const char *) bcache (sym->name, strlen (sym->name) + 1,
337 objfile->per_bfd->filename_cache);
338 }
339 else if (sym->flags & BSF_SECTION_SYM)
340 continue;
341 else if (sym->flags & (BSF_GLOBAL | BSF_LOCAL | BSF_WEAK
342 | BSF_GNU_UNIQUE))
343 {
344 struct minimal_symbol *msym;
345
346 /* Select global/local/weak symbols. Note that bfd puts abs
347 symbols in their own section, so all symbols we are
348 interested in will have a section. */
349 /* Bfd symbols are section relative. */
350 symaddr = sym->value + sym->section->vma;
351 /* For non-absolute symbols, use the type of the section
352 they are relative to, to intuit text/data. Bfd provides
353 no way of figuring this out for absolute symbols. */
354 if (sym->section == bfd_abs_section_ptr)
355 {
356 /* This is a hack to get the minimal symbol type
357 right for Irix 5, which has absolute addresses
358 with special section indices for dynamic symbols.
359
360 NOTE: uweigand-20071112: Synthetic symbols do not
361 have an ELF-private part, so do not touch those. */
362 unsigned int shndx = type == ST_SYNTHETIC ? 0 :
363 ((elf_symbol_type *) sym)->internal_elf_sym.st_shndx;
364
365 switch (shndx)
366 {
367 case SHN_MIPS_TEXT:
368 ms_type = mst_text;
369 break;
370 case SHN_MIPS_DATA:
371 ms_type = mst_data;
372 break;
373 case SHN_MIPS_ACOMMON:
374 ms_type = mst_bss;
375 break;
376 default:
377 ms_type = mst_abs;
378 }
379
380 /* If it is an Irix dynamic symbol, skip section name
381 symbols, relocate all others by section offset. */
382 if (ms_type != mst_abs)
383 {
384 if (sym->name[0] == '.')
385 continue;
386 }
387 }
388 else if (sym->section->flags & SEC_CODE)
389 {
390 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
391 {
392 if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
393 ms_type = mst_text_gnu_ifunc;
394 else
395 ms_type = mst_text;
396 }
397 /* The BSF_SYNTHETIC check is there to omit ppc64 function
398 descriptors mistaken for static functions starting with 'L'.
399 */
400 else if ((sym->name[0] == '.' && sym->name[1] == 'L'
401 && (sym->flags & BSF_SYNTHETIC) == 0)
402 || ((sym->flags & BSF_LOCAL)
403 && sym->name[0] == '$'
404 && sym->name[1] == 'L'))
405 /* Looks like a compiler-generated label. Skip
406 it. The assembler should be skipping these (to
407 keep executables small), but apparently with
408 gcc on the (deleted) delta m88k SVR4, it loses.
409 So to have us check too should be harmless (but
410 I encourage people to fix this in the assembler
411 instead of adding checks here). */
412 continue;
413 else
414 {
415 ms_type = mst_file_text;
416 }
417 }
418 else if (sym->section->flags & SEC_ALLOC)
419 {
420 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
421 {
422 if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
423 {
424 ms_type = mst_data_gnu_ifunc;
425 }
426 else if (sym->section->flags & SEC_LOAD)
427 {
428 ms_type = mst_data;
429 }
430 else
431 {
432 ms_type = mst_bss;
433 }
434 }
435 else if (sym->flags & BSF_LOCAL)
436 {
437 if (sym->section->flags & SEC_LOAD)
438 {
439 ms_type = mst_file_data;
440 }
441 else
442 {
443 ms_type = mst_file_bss;
444 }
445 }
446 else
447 {
448 ms_type = mst_unknown;
449 }
450 }
451 else
452 {
453 /* FIXME: Solaris2 shared libraries include lots of
454 odd "absolute" and "undefined" symbols, that play
455 hob with actions like finding what function the PC
456 is in. Ignore them if they aren't text, data, or bss. */
457 /* ms_type = mst_unknown; */
458 continue; /* Skip this symbol. */
459 }
460 msym = record_minimal_symbol
461 (reader, sym->name, strlen (sym->name), copy_names, symaddr,
462 ms_type, sym->section, objfile);
463
464 if (msym)
465 {
466 /* NOTE: uweigand-20071112: A synthetic symbol does not have an
467 ELF-private part. */
468 if (type != ST_SYNTHETIC)
469 {
470 /* Pass symbol size field in via BFD. FIXME!!! */
471 elf_symbol_type *elf_sym = (elf_symbol_type *) sym;
472 SET_MSYMBOL_SIZE (msym, elf_sym->internal_elf_sym.st_size);
473 }
474
475 msym->filename = filesymname;
476 if (elf_make_msymbol_special_p)
477 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
478 }
479
480 /* If we see a default versioned symbol, install it under
481 its version-less name. */
482 if (msym != NULL)
483 {
484 const char *atsign = strchr (sym->name, '@');
485
486 if (atsign != NULL && atsign[1] == '@' && atsign > sym->name)
487 {
488 int len = atsign - sym->name;
489
490 record_minimal_symbol (reader, sym->name, len, true, symaddr,
491 ms_type, sym->section, objfile);
492 }
493 }
494
495 /* For @plt symbols, also record a trampoline to the
496 destination symbol. The @plt symbol will be used in
497 disassembly, and the trampoline will be used when we are
498 trying to find the target. */
499 if (msym && ms_type == mst_text && type == ST_SYNTHETIC)
500 {
501 int len = strlen (sym->name);
502
503 if (len > 4 && strcmp (sym->name + len - 4, "@plt") == 0)
504 {
505 struct minimal_symbol *mtramp;
506
507 mtramp = record_minimal_symbol (reader, sym->name, len - 4,
508 true, symaddr,
509 mst_solib_trampoline,
510 sym->section, objfile);
511 if (mtramp)
512 {
513 SET_MSYMBOL_SIZE (mtramp, MSYMBOL_SIZE (msym));
514 mtramp->created_by_gdb = 1;
515 mtramp->filename = filesymname;
516 if (elf_make_msymbol_special_p)
517 gdbarch_elf_make_msymbol_special (gdbarch,
518 sym, mtramp);
519 }
520 }
521 }
522 }
523 }
524 }
525
526 /* Build minimal symbols named `function@got.plt' (see SYMBOL_GOT_PLT_SUFFIX)
527 for later look ups of which function to call when user requests
528 a STT_GNU_IFUNC function. As the STT_GNU_IFUNC type is found at the target
529 library defining `function' we cannot yet know while reading OBJFILE which
530 of the SYMBOL_GOT_PLT_SUFFIX entries will be needed and later
531 DYN_SYMBOL_TABLE is no longer easily available for OBJFILE. */
532
533 static void
534 elf_rel_plt_read (minimal_symbol_reader &reader,
535 struct objfile *objfile, asymbol **dyn_symbol_table)
536 {
537 bfd *obfd = objfile->obfd;
538 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
539 asection *relplt, *got_plt;
540 bfd_size_type reloc_count, reloc;
541 struct gdbarch *gdbarch = get_objfile_arch (objfile);
542 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
543 size_t ptr_size = TYPE_LENGTH (ptr_type);
544
545 if (objfile->separate_debug_objfile_backlink)
546 return;
547
548 got_plt = bfd_get_section_by_name (obfd, ".got.plt");
549 if (got_plt == NULL)
550 {
551 /* For platforms where there is no separate .got.plt. */
552 got_plt = bfd_get_section_by_name (obfd, ".got");
553 if (got_plt == NULL)
554 return;
555 }
556
557 /* Depending on system, we may find jump slots in a relocation
558 section for either .got.plt or .plt. */
559 asection *plt = bfd_get_section_by_name (obfd, ".plt");
560 int plt_elf_idx = (plt != NULL) ? elf_section_data (plt)->this_idx : -1;
561
562 int got_plt_elf_idx = elf_section_data (got_plt)->this_idx;
563
564 /* This search algorithm is from _bfd_elf_canonicalize_dynamic_reloc. */
565 for (relplt = obfd->sections; relplt != NULL; relplt = relplt->next)
566 {
567 const auto &this_hdr = elf_section_data (relplt)->this_hdr;
568
569 if (this_hdr.sh_type == SHT_REL || this_hdr.sh_type == SHT_RELA)
570 {
571 if (this_hdr.sh_info == plt_elf_idx
572 || this_hdr.sh_info == got_plt_elf_idx)
573 break;
574 }
575 }
576 if (relplt == NULL)
577 return;
578
579 if (! bed->s->slurp_reloc_table (obfd, relplt, dyn_symbol_table, TRUE))
580 return;
581
582 std::string string_buffer;
583
584 /* Does ADDRESS reside in SECTION of OBFD? */
585 auto within_section = [obfd] (asection *section, CORE_ADDR address)
586 {
587 if (section == NULL)
588 return false;
589
590 return (bfd_get_section_vma (obfd, section) <= address
591 && (address < bfd_get_section_vma (obfd, section)
592 + bfd_get_section_size (section)));
593 };
594
595 reloc_count = relplt->size / elf_section_data (relplt)->this_hdr.sh_entsize;
596 for (reloc = 0; reloc < reloc_count; reloc++)
597 {
598 const char *name;
599 struct minimal_symbol *msym;
600 CORE_ADDR address;
601 const char *got_suffix = SYMBOL_GOT_PLT_SUFFIX;
602 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
603
604 name = bfd_asymbol_name (*relplt->relocation[reloc].sym_ptr_ptr);
605 address = relplt->relocation[reloc].address;
606
607 asection *msym_section;
608
609 /* Does the pointer reside in either the .got.plt or .plt
610 sections? */
611 if (within_section (got_plt, address))
612 msym_section = got_plt;
613 else if (within_section (plt, address))
614 msym_section = plt;
615 else
616 continue;
617
618 /* We cannot check if NAME is a reference to
619 mst_text_gnu_ifunc/mst_data_gnu_ifunc as in OBJFILE the
620 symbol is undefined and the objfile having NAME defined may
621 not yet have been loaded. */
622
623 string_buffer.assign (name);
624 string_buffer.append (got_suffix, got_suffix + got_suffix_len);
625
626 msym = record_minimal_symbol (reader, string_buffer.c_str (),
627 string_buffer.size (),
628 true, address, mst_slot_got_plt,
629 msym_section, objfile);
630 if (msym)
631 SET_MSYMBOL_SIZE (msym, ptr_size);
632 }
633 }
634
635 /* The data pointer is htab_t for gnu_ifunc_record_cache_unchecked. */
636
637 static const struct objfile_data *elf_objfile_gnu_ifunc_cache_data;
638
639 /* Map function names to CORE_ADDR in elf_objfile_gnu_ifunc_cache_data. */
640
641 struct elf_gnu_ifunc_cache
642 {
643 /* This is always a function entry address, not a function descriptor. */
644 CORE_ADDR addr;
645
646 char name[1];
647 };
648
649 /* htab_hash for elf_objfile_gnu_ifunc_cache_data. */
650
651 static hashval_t
652 elf_gnu_ifunc_cache_hash (const void *a_voidp)
653 {
654 const struct elf_gnu_ifunc_cache *a
655 = (const struct elf_gnu_ifunc_cache *) a_voidp;
656
657 return htab_hash_string (a->name);
658 }
659
660 /* htab_eq for elf_objfile_gnu_ifunc_cache_data. */
661
662 static int
663 elf_gnu_ifunc_cache_eq (const void *a_voidp, const void *b_voidp)
664 {
665 const struct elf_gnu_ifunc_cache *a
666 = (const struct elf_gnu_ifunc_cache *) a_voidp;
667 const struct elf_gnu_ifunc_cache *b
668 = (const struct elf_gnu_ifunc_cache *) b_voidp;
669
670 return strcmp (a->name, b->name) == 0;
671 }
672
673 /* Record the target function address of a STT_GNU_IFUNC function NAME is the
674 function entry address ADDR. Return 1 if NAME and ADDR are considered as
675 valid and therefore they were successfully recorded, return 0 otherwise.
676
677 Function does not expect a duplicate entry. Use
678 elf_gnu_ifunc_resolve_by_cache first to check if the entry for NAME already
679 exists. */
680
681 static int
682 elf_gnu_ifunc_record_cache (const char *name, CORE_ADDR addr)
683 {
684 struct bound_minimal_symbol msym;
685 struct objfile *objfile;
686 htab_t htab;
687 struct elf_gnu_ifunc_cache entry_local, *entry_p;
688 void **slot;
689
690 msym = lookup_minimal_symbol_by_pc (addr);
691 if (msym.minsym == NULL)
692 return 0;
693 if (BMSYMBOL_VALUE_ADDRESS (msym) != addr)
694 return 0;
695 objfile = msym.objfile;
696
697 /* If .plt jumps back to .plt the symbol is still deferred for later
698 resolution and it has no use for GDB. */
699 const char *target_name = MSYMBOL_LINKAGE_NAME (msym.minsym);
700 size_t len = strlen (target_name);
701
702 /* Note we check the symbol's name instead of checking whether the
703 symbol is in the .plt section because some systems have @plt
704 symbols in the .text section. */
705 if (len > 4 && strcmp (target_name + len - 4, "@plt") == 0)
706 return 0;
707
708 htab = (htab_t) objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data);
709 if (htab == NULL)
710 {
711 htab = htab_create_alloc_ex (1, elf_gnu_ifunc_cache_hash,
712 elf_gnu_ifunc_cache_eq,
713 NULL, &objfile->objfile_obstack,
714 hashtab_obstack_allocate,
715 dummy_obstack_deallocate);
716 set_objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data, htab);
717 }
718
719 entry_local.addr = addr;
720 obstack_grow (&objfile->objfile_obstack, &entry_local,
721 offsetof (struct elf_gnu_ifunc_cache, name));
722 obstack_grow_str0 (&objfile->objfile_obstack, name);
723 entry_p
724 = (struct elf_gnu_ifunc_cache *) obstack_finish (&objfile->objfile_obstack);
725
726 slot = htab_find_slot (htab, entry_p, INSERT);
727 if (*slot != NULL)
728 {
729 struct elf_gnu_ifunc_cache *entry_found_p
730 = (struct elf_gnu_ifunc_cache *) *slot;
731 struct gdbarch *gdbarch = get_objfile_arch (objfile);
732
733 if (entry_found_p->addr != addr)
734 {
735 /* This case indicates buggy inferior program, the resolved address
736 should never change. */
737
738 warning (_("gnu-indirect-function \"%s\" has changed its resolved "
739 "function_address from %s to %s"),
740 name, paddress (gdbarch, entry_found_p->addr),
741 paddress (gdbarch, addr));
742 }
743
744 /* New ENTRY_P is here leaked/duplicate in the OBJFILE obstack. */
745 }
746 *slot = entry_p;
747
748 return 1;
749 }
750
751 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
752 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
753 is not NULL) and the function returns 1. It returns 0 otherwise.
754
755 Only the elf_objfile_gnu_ifunc_cache_data hash table is searched by this
756 function. */
757
758 static int
759 elf_gnu_ifunc_resolve_by_cache (const char *name, CORE_ADDR *addr_p)
760 {
761 struct objfile *objfile;
762
763 ALL_PSPACE_OBJFILES (current_program_space, objfile)
764 {
765 htab_t htab;
766 struct elf_gnu_ifunc_cache *entry_p;
767 void **slot;
768
769 htab = (htab_t) objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data);
770 if (htab == NULL)
771 continue;
772
773 entry_p = ((struct elf_gnu_ifunc_cache *)
774 alloca (sizeof (*entry_p) + strlen (name)));
775 strcpy (entry_p->name, name);
776
777 slot = htab_find_slot (htab, entry_p, NO_INSERT);
778 if (slot == NULL)
779 continue;
780 entry_p = (struct elf_gnu_ifunc_cache *) *slot;
781 gdb_assert (entry_p != NULL);
782
783 if (addr_p)
784 *addr_p = entry_p->addr;
785 return 1;
786 }
787
788 return 0;
789 }
790
791 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
792 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
793 is not NULL) and the function returns 1. It returns 0 otherwise.
794
795 Only the SYMBOL_GOT_PLT_SUFFIX locations are searched by this function.
796 elf_gnu_ifunc_resolve_by_cache must have been already called for NAME to
797 prevent cache entries duplicates. */
798
799 static int
800 elf_gnu_ifunc_resolve_by_got (const char *name, CORE_ADDR *addr_p)
801 {
802 char *name_got_plt;
803 struct objfile *objfile;
804 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
805
806 name_got_plt = (char *) alloca (strlen (name) + got_suffix_len + 1);
807 sprintf (name_got_plt, "%s" SYMBOL_GOT_PLT_SUFFIX, name);
808
809 ALL_PSPACE_OBJFILES (current_program_space, objfile)
810 {
811 bfd *obfd = objfile->obfd;
812 struct gdbarch *gdbarch = get_objfile_arch (objfile);
813 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
814 size_t ptr_size = TYPE_LENGTH (ptr_type);
815 CORE_ADDR pointer_address, addr;
816 asection *plt;
817 gdb_byte *buf = (gdb_byte *) alloca (ptr_size);
818 struct bound_minimal_symbol msym;
819
820 msym = lookup_minimal_symbol (name_got_plt, NULL, objfile);
821 if (msym.minsym == NULL)
822 continue;
823 if (MSYMBOL_TYPE (msym.minsym) != mst_slot_got_plt)
824 continue;
825 pointer_address = BMSYMBOL_VALUE_ADDRESS (msym);
826
827 plt = bfd_get_section_by_name (obfd, ".plt");
828 if (plt == NULL)
829 continue;
830
831 if (MSYMBOL_SIZE (msym.minsym) != ptr_size)
832 continue;
833 if (target_read_memory (pointer_address, buf, ptr_size) != 0)
834 continue;
835 addr = extract_typed_address (buf, ptr_type);
836 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
837 current_top_target ());
838 addr = gdbarch_addr_bits_remove (gdbarch, addr);
839
840 if (elf_gnu_ifunc_record_cache (name, addr))
841 {
842 if (addr_p != NULL)
843 *addr_p = addr;
844 return 1;
845 }
846 }
847
848 return 0;
849 }
850
851 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
852 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
853 is not NULL) and the function returns 1. It returns 0 otherwise.
854
855 Both the elf_objfile_gnu_ifunc_cache_data hash table and
856 SYMBOL_GOT_PLT_SUFFIX locations are searched by this function. */
857
858 static int
859 elf_gnu_ifunc_resolve_name (const char *name, CORE_ADDR *addr_p)
860 {
861 if (elf_gnu_ifunc_resolve_by_cache (name, addr_p))
862 return 1;
863
864 if (elf_gnu_ifunc_resolve_by_got (name, addr_p))
865 return 1;
866
867 return 0;
868 }
869
870 /* Call STT_GNU_IFUNC - a function returning addresss of a real function to
871 call. PC is theSTT_GNU_IFUNC resolving function entry. The value returned
872 is the entry point of the resolved STT_GNU_IFUNC target function to call.
873 */
874
875 static CORE_ADDR
876 elf_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc)
877 {
878 const char *name_at_pc;
879 CORE_ADDR start_at_pc, address;
880 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
881 struct value *function, *address_val;
882 CORE_ADDR hwcap = 0;
883 struct value *hwcap_val;
884
885 /* Try first any non-intrusive methods without an inferior call. */
886
887 if (find_pc_partial_function (pc, &name_at_pc, &start_at_pc, NULL)
888 && start_at_pc == pc)
889 {
890 if (elf_gnu_ifunc_resolve_name (name_at_pc, &address))
891 return address;
892 }
893 else
894 name_at_pc = NULL;
895
896 function = allocate_value (func_func_type);
897 VALUE_LVAL (function) = lval_memory;
898 set_value_address (function, pc);
899
900 /* STT_GNU_IFUNC resolver functions usually receive the HWCAP vector as
901 parameter. FUNCTION is the function entry address. ADDRESS may be a
902 function descriptor. */
903
904 target_auxv_search (current_top_target (), AT_HWCAP, &hwcap);
905 hwcap_val = value_from_longest (builtin_type (gdbarch)
906 ->builtin_unsigned_long, hwcap);
907 address_val = call_function_by_hand (function, NULL, 1, &hwcap_val);
908 address = value_as_address (address_val);
909 address = gdbarch_convert_from_func_ptr_addr (gdbarch, address, current_top_target ());
910 address = gdbarch_addr_bits_remove (gdbarch, address);
911
912 if (name_at_pc)
913 elf_gnu_ifunc_record_cache (name_at_pc, address);
914
915 return address;
916 }
917
918 /* Handle inferior hit of bp_gnu_ifunc_resolver, see its definition. */
919
920 static void
921 elf_gnu_ifunc_resolver_stop (struct breakpoint *b)
922 {
923 struct breakpoint *b_return;
924 struct frame_info *prev_frame = get_prev_frame (get_current_frame ());
925 struct frame_id prev_frame_id = get_stack_frame_id (prev_frame);
926 CORE_ADDR prev_pc = get_frame_pc (prev_frame);
927 int thread_id = ptid_to_global_thread_id (inferior_ptid);
928
929 gdb_assert (b->type == bp_gnu_ifunc_resolver);
930
931 for (b_return = b->related_breakpoint; b_return != b;
932 b_return = b_return->related_breakpoint)
933 {
934 gdb_assert (b_return->type == bp_gnu_ifunc_resolver_return);
935 gdb_assert (b_return->loc != NULL && b_return->loc->next == NULL);
936 gdb_assert (frame_id_p (b_return->frame_id));
937
938 if (b_return->thread == thread_id
939 && b_return->loc->requested_address == prev_pc
940 && frame_id_eq (b_return->frame_id, prev_frame_id))
941 break;
942 }
943
944 if (b_return == b)
945 {
946 /* No need to call find_pc_line for symbols resolving as this is only
947 a helper breakpointer never shown to the user. */
948
949 symtab_and_line sal;
950 sal.pspace = current_inferior ()->pspace;
951 sal.pc = prev_pc;
952 sal.section = find_pc_overlay (sal.pc);
953 sal.explicit_pc = 1;
954 b_return
955 = set_momentary_breakpoint (get_frame_arch (prev_frame), sal,
956 prev_frame_id,
957 bp_gnu_ifunc_resolver_return).release ();
958
959 /* set_momentary_breakpoint invalidates PREV_FRAME. */
960 prev_frame = NULL;
961
962 /* Add new b_return to the ring list b->related_breakpoint. */
963 gdb_assert (b_return->related_breakpoint == b_return);
964 b_return->related_breakpoint = b->related_breakpoint;
965 b->related_breakpoint = b_return;
966 }
967 }
968
969 /* Handle inferior hit of bp_gnu_ifunc_resolver_return, see its definition. */
970
971 static void
972 elf_gnu_ifunc_resolver_return_stop (struct breakpoint *b)
973 {
974 struct gdbarch *gdbarch = get_frame_arch (get_current_frame ());
975 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
976 struct type *value_type = TYPE_TARGET_TYPE (func_func_type);
977 struct regcache *regcache = get_thread_regcache (inferior_ptid);
978 struct value *func_func;
979 struct value *value;
980 CORE_ADDR resolved_address, resolved_pc;
981
982 gdb_assert (b->type == bp_gnu_ifunc_resolver_return);
983
984 while (b->related_breakpoint != b)
985 {
986 struct breakpoint *b_next = b->related_breakpoint;
987
988 switch (b->type)
989 {
990 case bp_gnu_ifunc_resolver:
991 break;
992 case bp_gnu_ifunc_resolver_return:
993 delete_breakpoint (b);
994 break;
995 default:
996 internal_error (__FILE__, __LINE__,
997 _("handle_inferior_event: Invalid "
998 "gnu-indirect-function breakpoint type %d"),
999 (int) b->type);
1000 }
1001 b = b_next;
1002 }
1003 gdb_assert (b->type == bp_gnu_ifunc_resolver);
1004 gdb_assert (b->loc->next == NULL);
1005
1006 func_func = allocate_value (func_func_type);
1007 VALUE_LVAL (func_func) = lval_memory;
1008 set_value_address (func_func, b->loc->related_address);
1009
1010 value = allocate_value (value_type);
1011 gdbarch_return_value (gdbarch, func_func, value_type, regcache,
1012 value_contents_raw (value), NULL);
1013 resolved_address = value_as_address (value);
1014 resolved_pc = gdbarch_convert_from_func_ptr_addr (gdbarch,
1015 resolved_address,
1016 current_top_target ());
1017 resolved_pc = gdbarch_addr_bits_remove (gdbarch, resolved_pc);
1018
1019 gdb_assert (current_program_space == b->pspace || b->pspace == NULL);
1020 elf_gnu_ifunc_record_cache (event_location_to_string (b->location.get ()),
1021 resolved_pc);
1022
1023 b->type = bp_breakpoint;
1024 update_breakpoint_locations (b, current_program_space,
1025 find_function_start_sal (resolved_pc, NULL, true),
1026 {});
1027 }
1028
1029 /* A helper function for elf_symfile_read that reads the minimal
1030 symbols. */
1031
1032 static void
1033 elf_read_minimal_symbols (struct objfile *objfile, int symfile_flags,
1034 const struct elfinfo *ei)
1035 {
1036 bfd *synth_abfd, *abfd = objfile->obfd;
1037 long symcount = 0, dynsymcount = 0, synthcount, storage_needed;
1038 asymbol **symbol_table = NULL, **dyn_symbol_table = NULL;
1039 asymbol *synthsyms;
1040 struct dbx_symfile_info *dbx;
1041
1042 if (symtab_create_debug)
1043 {
1044 fprintf_unfiltered (gdb_stdlog,
1045 "Reading minimal symbols of objfile %s ...\n",
1046 objfile_name (objfile));
1047 }
1048
1049 /* If we already have minsyms, then we can skip some work here.
1050 However, if there were stabs or mdebug sections, we go ahead and
1051 redo all the work anyway, because the psym readers for those
1052 kinds of debuginfo need extra information found here. This can
1053 go away once all types of symbols are in the per-BFD object. */
1054 if (objfile->per_bfd->minsyms_read
1055 && ei->stabsect == NULL
1056 && ei->mdebugsect == NULL)
1057 {
1058 if (symtab_create_debug)
1059 fprintf_unfiltered (gdb_stdlog,
1060 "... minimal symbols previously read\n");
1061 return;
1062 }
1063
1064 minimal_symbol_reader reader (objfile);
1065
1066 /* Allocate struct to keep track of the symfile. */
1067 dbx = XCNEW (struct dbx_symfile_info);
1068 set_objfile_data (objfile, dbx_objfile_data_key, dbx);
1069
1070 /* Process the normal ELF symbol table first. */
1071
1072 storage_needed = bfd_get_symtab_upper_bound (objfile->obfd);
1073 if (storage_needed < 0)
1074 error (_("Can't read symbols from %s: %s"),
1075 bfd_get_filename (objfile->obfd),
1076 bfd_errmsg (bfd_get_error ()));
1077
1078 if (storage_needed > 0)
1079 {
1080 /* Memory gets permanently referenced from ABFD after
1081 bfd_canonicalize_symtab so it must not get freed before ABFD gets. */
1082
1083 symbol_table = (asymbol **) bfd_alloc (abfd, storage_needed);
1084 symcount = bfd_canonicalize_symtab (objfile->obfd, symbol_table);
1085
1086 if (symcount < 0)
1087 error (_("Can't read symbols from %s: %s"),
1088 bfd_get_filename (objfile->obfd),
1089 bfd_errmsg (bfd_get_error ()));
1090
1091 elf_symtab_read (reader, objfile, ST_REGULAR, symcount, symbol_table,
1092 false);
1093 }
1094
1095 /* Add the dynamic symbols. */
1096
1097 storage_needed = bfd_get_dynamic_symtab_upper_bound (objfile->obfd);
1098
1099 if (storage_needed > 0)
1100 {
1101 /* Memory gets permanently referenced from ABFD after
1102 bfd_get_synthetic_symtab so it must not get freed before ABFD gets.
1103 It happens only in the case when elf_slurp_reloc_table sees
1104 asection->relocation NULL. Determining which section is asection is
1105 done by _bfd_elf_get_synthetic_symtab which is all a bfd
1106 implementation detail, though. */
1107
1108 dyn_symbol_table = (asymbol **) bfd_alloc (abfd, storage_needed);
1109 dynsymcount = bfd_canonicalize_dynamic_symtab (objfile->obfd,
1110 dyn_symbol_table);
1111
1112 if (dynsymcount < 0)
1113 error (_("Can't read symbols from %s: %s"),
1114 bfd_get_filename (objfile->obfd),
1115 bfd_errmsg (bfd_get_error ()));
1116
1117 elf_symtab_read (reader, objfile, ST_DYNAMIC, dynsymcount,
1118 dyn_symbol_table, false);
1119
1120 elf_rel_plt_read (reader, objfile, dyn_symbol_table);
1121 }
1122
1123 /* Contrary to binutils --strip-debug/--only-keep-debug the strip command from
1124 elfutils (eu-strip) moves even the .symtab section into the .debug file.
1125
1126 bfd_get_synthetic_symtab on ppc64 for each function descriptor ELF symbol
1127 'name' creates a new BSF_SYNTHETIC ELF symbol '.name' with its code
1128 address. But with eu-strip files bfd_get_synthetic_symtab would fail to
1129 read the code address from .opd while it reads the .symtab section from
1130 a separate debug info file as the .opd section is SHT_NOBITS there.
1131
1132 With SYNTH_ABFD the .opd section will be read from the original
1133 backlinked binary where it is valid. */
1134
1135 if (objfile->separate_debug_objfile_backlink)
1136 synth_abfd = objfile->separate_debug_objfile_backlink->obfd;
1137 else
1138 synth_abfd = abfd;
1139
1140 /* Add synthetic symbols - for instance, names for any PLT entries. */
1141
1142 synthcount = bfd_get_synthetic_symtab (synth_abfd, symcount, symbol_table,
1143 dynsymcount, dyn_symbol_table,
1144 &synthsyms);
1145 if (synthcount > 0)
1146 {
1147 long i;
1148
1149 std::unique_ptr<asymbol *[]>
1150 synth_symbol_table (new asymbol *[synthcount]);
1151 for (i = 0; i < synthcount; i++)
1152 synth_symbol_table[i] = synthsyms + i;
1153 elf_symtab_read (reader, objfile, ST_SYNTHETIC, synthcount,
1154 synth_symbol_table.get (), true);
1155
1156 xfree (synthsyms);
1157 synthsyms = NULL;
1158 }
1159
1160 /* Install any minimal symbols that have been collected as the current
1161 minimal symbols for this objfile. The debug readers below this point
1162 should not generate new minimal symbols; if they do it's their
1163 responsibility to install them. "mdebug" appears to be the only one
1164 which will do this. */
1165
1166 reader.install ();
1167
1168 if (symtab_create_debug)
1169 fprintf_unfiltered (gdb_stdlog, "Done reading minimal symbols.\n");
1170 }
1171
1172 /* Scan and build partial symbols for a symbol file.
1173 We have been initialized by a call to elf_symfile_init, which
1174 currently does nothing.
1175
1176 This function only does the minimum work necessary for letting the
1177 user "name" things symbolically; it does not read the entire symtab.
1178 Instead, it reads the external and static symbols and puts them in partial
1179 symbol tables. When more extensive information is requested of a
1180 file, the corresponding partial symbol table is mutated into a full
1181 fledged symbol table by going back and reading the symbols
1182 for real.
1183
1184 We look for sections with specific names, to tell us what debug
1185 format to look for: FIXME!!!
1186
1187 elfstab_build_psymtabs() handles STABS symbols;
1188 mdebug_build_psymtabs() handles ECOFF debugging information.
1189
1190 Note that ELF files have a "minimal" symbol table, which looks a lot
1191 like a COFF symbol table, but has only the minimal information necessary
1192 for linking. We process this also, and use the information to
1193 build gdb's minimal symbol table. This gives us some minimal debugging
1194 capability even for files compiled without -g. */
1195
1196 static void
1197 elf_symfile_read (struct objfile *objfile, symfile_add_flags symfile_flags)
1198 {
1199 bfd *abfd = objfile->obfd;
1200 struct elfinfo ei;
1201
1202 memset ((char *) &ei, 0, sizeof (ei));
1203 if (!(objfile->flags & OBJF_READNEVER))
1204 bfd_map_over_sections (abfd, elf_locate_sections, (void *) & ei);
1205
1206 elf_read_minimal_symbols (objfile, symfile_flags, &ei);
1207
1208 /* ELF debugging information is inserted into the psymtab in the
1209 order of least informative first - most informative last. Since
1210 the psymtab table is searched `most recent insertion first' this
1211 increases the probability that more detailed debug information
1212 for a section is found.
1213
1214 For instance, an object file might contain both .mdebug (XCOFF)
1215 and .debug_info (DWARF2) sections then .mdebug is inserted first
1216 (searched last) and DWARF2 is inserted last (searched first). If
1217 we don't do this then the XCOFF info is found first - for code in
1218 an included file XCOFF info is useless. */
1219
1220 if (ei.mdebugsect)
1221 {
1222 const struct ecoff_debug_swap *swap;
1223
1224 /* .mdebug section, presumably holding ECOFF debugging
1225 information. */
1226 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1227 if (swap)
1228 elfmdebug_build_psymtabs (objfile, swap, ei.mdebugsect);
1229 }
1230 if (ei.stabsect)
1231 {
1232 asection *str_sect;
1233
1234 /* Stab sections have an associated string table that looks like
1235 a separate section. */
1236 str_sect = bfd_get_section_by_name (abfd, ".stabstr");
1237
1238 /* FIXME should probably warn about a stab section without a stabstr. */
1239 if (str_sect)
1240 elfstab_build_psymtabs (objfile,
1241 ei.stabsect,
1242 str_sect->filepos,
1243 bfd_section_size (abfd, str_sect));
1244 }
1245
1246 if (dwarf2_has_info (objfile, NULL))
1247 {
1248 dw_index_kind index_kind;
1249
1250 /* elf_sym_fns_gdb_index cannot handle simultaneous non-DWARF
1251 debug information present in OBJFILE. If there is such debug
1252 info present never use an index. */
1253 if (!objfile_has_partial_symbols (objfile)
1254 && dwarf2_initialize_objfile (objfile, &index_kind))
1255 {
1256 switch (index_kind)
1257 {
1258 case dw_index_kind::GDB_INDEX:
1259 objfile_set_sym_fns (objfile, &elf_sym_fns_gdb_index);
1260 break;
1261 case dw_index_kind::DEBUG_NAMES:
1262 objfile_set_sym_fns (objfile, &elf_sym_fns_debug_names);
1263 break;
1264 }
1265 }
1266 else
1267 {
1268 /* It is ok to do this even if the stabs reader made some
1269 partial symbols, because OBJF_PSYMTABS_READ has not been
1270 set, and so our lazy reader function will still be called
1271 when needed. */
1272 objfile_set_sym_fns (objfile, &elf_sym_fns_lazy_psyms);
1273 }
1274 }
1275 /* If the file has its own symbol tables it has no separate debug
1276 info. `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to
1277 SYMTABS/PSYMTABS. `.gnu_debuglink' may no longer be present with
1278 `.note.gnu.build-id'.
1279
1280 .gnu_debugdata is !objfile_has_partial_symbols because it contains only
1281 .symtab, not .debug_* section. But if we already added .gnu_debugdata as
1282 an objfile via find_separate_debug_file_in_section there was no separate
1283 debug info available. Therefore do not attempt to search for another one,
1284 objfile->separate_debug_objfile->separate_debug_objfile GDB guarantees to
1285 be NULL and we would possibly violate it. */
1286
1287 else if (!objfile_has_partial_symbols (objfile)
1288 && objfile->separate_debug_objfile == NULL
1289 && objfile->separate_debug_objfile_backlink == NULL)
1290 {
1291 std::string debugfile = find_separate_debug_file_by_buildid (objfile);
1292
1293 if (debugfile.empty ())
1294 debugfile = find_separate_debug_file_by_debuglink (objfile);
1295
1296 if (!debugfile.empty ())
1297 {
1298 gdb_bfd_ref_ptr abfd (symfile_bfd_open (debugfile.c_str ()));
1299
1300 symbol_file_add_separate (abfd.get (), debugfile.c_str (),
1301 symfile_flags, objfile);
1302 }
1303 }
1304 }
1305
1306 /* Callback to lazily read psymtabs. */
1307
1308 static void
1309 read_psyms (struct objfile *objfile)
1310 {
1311 if (dwarf2_has_info (objfile, NULL))
1312 dwarf2_build_psymtabs (objfile);
1313 }
1314
1315 /* Initialize anything that needs initializing when a completely new symbol
1316 file is specified (not just adding some symbols from another file, e.g. a
1317 shared library).
1318
1319 We reinitialize buildsym, since we may be reading stabs from an ELF
1320 file. */
1321
1322 static void
1323 elf_new_init (struct objfile *ignore)
1324 {
1325 stabsread_new_init ();
1326 buildsym_new_init ();
1327 }
1328
1329 /* Perform any local cleanups required when we are done with a particular
1330 objfile. I.E, we are in the process of discarding all symbol information
1331 for an objfile, freeing up all memory held for it, and unlinking the
1332 objfile struct from the global list of known objfiles. */
1333
1334 static void
1335 elf_symfile_finish (struct objfile *objfile)
1336 {
1337 dwarf2_free_objfile (objfile);
1338 }
1339
1340 /* ELF specific initialization routine for reading symbols. */
1341
1342 static void
1343 elf_symfile_init (struct objfile *objfile)
1344 {
1345 /* ELF objects may be reordered, so set OBJF_REORDERED. If we
1346 find this causes a significant slowdown in gdb then we could
1347 set it in the debug symbol readers only when necessary. */
1348 objfile->flags |= OBJF_REORDERED;
1349 }
1350
1351 /* Implementation of `sym_get_probes', as documented in symfile.h. */
1352
1353 static const std::vector<probe *> &
1354 elf_get_probes (struct objfile *objfile)
1355 {
1356 std::vector<probe *> *probes_per_bfd;
1357
1358 /* Have we parsed this objfile's probes already? */
1359 probes_per_bfd = (std::vector<probe *> *) bfd_data (objfile->obfd, probe_key);
1360
1361 if (probes_per_bfd == NULL)
1362 {
1363 probes_per_bfd = new std::vector<probe *>;
1364
1365 /* Here we try to gather information about all types of probes from the
1366 objfile. */
1367 for (const static_probe_ops *ops : all_static_probe_ops)
1368 ops->get_probes (probes_per_bfd, objfile);
1369
1370 set_bfd_data (objfile->obfd, probe_key, probes_per_bfd);
1371 }
1372
1373 return *probes_per_bfd;
1374 }
1375
1376 /* Helper function used to free the space allocated for storing SystemTap
1377 probe information. */
1378
1379 static void
1380 probe_key_free (bfd *abfd, void *d)
1381 {
1382 std::vector<probe *> *probes = (std::vector<probe *> *) d;
1383
1384 for (probe *p : *probes)
1385 delete p;
1386
1387 delete probes;
1388 }
1389
1390 \f
1391
1392 /* Implementation `sym_probe_fns', as documented in symfile.h. */
1393
1394 static const struct sym_probe_fns elf_probe_fns =
1395 {
1396 elf_get_probes, /* sym_get_probes */
1397 };
1398
1399 /* Register that we are able to handle ELF object file formats. */
1400
1401 static const struct sym_fns elf_sym_fns =
1402 {
1403 elf_new_init, /* init anything gbl to entire symtab */
1404 elf_symfile_init, /* read initial info, setup for sym_read() */
1405 elf_symfile_read, /* read a symbol file into symtab */
1406 NULL, /* sym_read_psymbols */
1407 elf_symfile_finish, /* finished with file, cleanup */
1408 default_symfile_offsets, /* Translate ext. to int. relocation */
1409 elf_symfile_segments, /* Get segment information from a file. */
1410 NULL,
1411 default_symfile_relocate, /* Relocate a debug section. */
1412 &elf_probe_fns, /* sym_probe_fns */
1413 &psym_functions
1414 };
1415
1416 /* The same as elf_sym_fns, but not registered and lazily reads
1417 psymbols. */
1418
1419 const struct sym_fns elf_sym_fns_lazy_psyms =
1420 {
1421 elf_new_init, /* init anything gbl to entire symtab */
1422 elf_symfile_init, /* read initial info, setup for sym_read() */
1423 elf_symfile_read, /* read a symbol file into symtab */
1424 read_psyms, /* sym_read_psymbols */
1425 elf_symfile_finish, /* finished with file, cleanup */
1426 default_symfile_offsets, /* Translate ext. to int. relocation */
1427 elf_symfile_segments, /* Get segment information from a file. */
1428 NULL,
1429 default_symfile_relocate, /* Relocate a debug section. */
1430 &elf_probe_fns, /* sym_probe_fns */
1431 &psym_functions
1432 };
1433
1434 /* The same as elf_sym_fns, but not registered and uses the
1435 DWARF-specific GNU index rather than psymtab. */
1436 const struct sym_fns elf_sym_fns_gdb_index =
1437 {
1438 elf_new_init, /* init anything gbl to entire symab */
1439 elf_symfile_init, /* read initial info, setup for sym_red() */
1440 elf_symfile_read, /* read a symbol file into symtab */
1441 NULL, /* sym_read_psymbols */
1442 elf_symfile_finish, /* finished with file, cleanup */
1443 default_symfile_offsets, /* Translate ext. to int. relocatin */
1444 elf_symfile_segments, /* Get segment information from a file. */
1445 NULL,
1446 default_symfile_relocate, /* Relocate a debug section. */
1447 &elf_probe_fns, /* sym_probe_fns */
1448 &dwarf2_gdb_index_functions
1449 };
1450
1451 /* The same as elf_sym_fns, but not registered and uses the
1452 DWARF-specific .debug_names index rather than psymtab. */
1453 const struct sym_fns elf_sym_fns_debug_names =
1454 {
1455 elf_new_init, /* init anything gbl to entire symab */
1456 elf_symfile_init, /* read initial info, setup for sym_red() */
1457 elf_symfile_read, /* read a symbol file into symtab */
1458 NULL, /* sym_read_psymbols */
1459 elf_symfile_finish, /* finished with file, cleanup */
1460 default_symfile_offsets, /* Translate ext. to int. relocatin */
1461 elf_symfile_segments, /* Get segment information from a file. */
1462 NULL,
1463 default_symfile_relocate, /* Relocate a debug section. */
1464 &elf_probe_fns, /* sym_probe_fns */
1465 &dwarf2_debug_names_functions
1466 };
1467
1468 /* STT_GNU_IFUNC resolver vector to be installed to gnu_ifunc_fns_p. */
1469
1470 static const struct gnu_ifunc_fns elf_gnu_ifunc_fns =
1471 {
1472 elf_gnu_ifunc_resolve_addr,
1473 elf_gnu_ifunc_resolve_name,
1474 elf_gnu_ifunc_resolver_stop,
1475 elf_gnu_ifunc_resolver_return_stop
1476 };
1477
1478 void
1479 _initialize_elfread (void)
1480 {
1481 probe_key = register_bfd_data_with_cleanup (NULL, probe_key_free);
1482 add_symtab_fns (bfd_target_elf_flavour, &elf_sym_fns);
1483
1484 elf_objfile_gnu_ifunc_cache_data = register_objfile_data ();
1485 gnu_ifunc_fns_p = &elf_gnu_ifunc_fns;
1486 }