26947812e671f371800ed262a0a34c6607f79903
[binutils-gdb.git] / gdb / eval.c
1 /* Evaluate expressions for GDB.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2005, 2006, 2007, 2008,
5 2009, 2010 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "gdb_string.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "value.h"
27 #include "expression.h"
28 #include "target.h"
29 #include "frame.h"
30 #include "language.h" /* For CAST_IS_CONVERSION */
31 #include "f-lang.h" /* for array bound stuff */
32 #include "cp-abi.h"
33 #include "infcall.h"
34 #include "objc-lang.h"
35 #include "block.h"
36 #include "parser-defs.h"
37 #include "cp-support.h"
38 #include "ui-out.h"
39 #include "exceptions.h"
40 #include "regcache.h"
41 #include "user-regs.h"
42 #include "valprint.h"
43 #include "gdb_obstack.h"
44 #include "objfiles.h"
45 #include "python/python.h"
46 #include "wrapper.h"
47
48 #include "gdb_assert.h"
49
50 #include <ctype.h>
51
52 /* This is defined in valops.c */
53 extern int overload_resolution;
54
55 /* Prototypes for local functions. */
56
57 static struct value *evaluate_subexp_for_sizeof (struct expression *, int *);
58
59 static struct value *evaluate_subexp_for_address (struct expression *,
60 int *, enum noside);
61
62 static char *get_label (struct expression *, int *);
63
64 static struct value *evaluate_struct_tuple (struct value *,
65 struct expression *, int *,
66 enum noside, int);
67
68 static LONGEST init_array_element (struct value *, struct value *,
69 struct expression *, int *, enum noside,
70 LONGEST, LONGEST);
71
72 struct value *
73 evaluate_subexp (struct type *expect_type, struct expression *exp,
74 int *pos, enum noside noside)
75 {
76 return (*exp->language_defn->la_exp_desc->evaluate_exp)
77 (expect_type, exp, pos, noside);
78 }
79 \f
80 /* Parse the string EXP as a C expression, evaluate it,
81 and return the result as a number. */
82
83 CORE_ADDR
84 parse_and_eval_address (char *exp)
85 {
86 struct expression *expr = parse_expression (exp);
87 CORE_ADDR addr;
88 struct cleanup *old_chain =
89 make_cleanup (free_current_contents, &expr);
90
91 addr = value_as_address (evaluate_expression (expr));
92 do_cleanups (old_chain);
93 return addr;
94 }
95
96 /* Like parse_and_eval_address but takes a pointer to a char * variable
97 and advanced that variable across the characters parsed. */
98
99 CORE_ADDR
100 parse_and_eval_address_1 (char **expptr)
101 {
102 struct expression *expr = parse_exp_1 (expptr, (struct block *) 0, 0);
103 CORE_ADDR addr;
104 struct cleanup *old_chain =
105 make_cleanup (free_current_contents, &expr);
106
107 addr = value_as_address (evaluate_expression (expr));
108 do_cleanups (old_chain);
109 return addr;
110 }
111
112 /* Like parse_and_eval_address, but treats the value of the expression
113 as an integer, not an address, returns a LONGEST, not a CORE_ADDR */
114 LONGEST
115 parse_and_eval_long (char *exp)
116 {
117 struct expression *expr = parse_expression (exp);
118 LONGEST retval;
119 struct cleanup *old_chain =
120 make_cleanup (free_current_contents, &expr);
121
122 retval = value_as_long (evaluate_expression (expr));
123 do_cleanups (old_chain);
124 return (retval);
125 }
126
127 struct value *
128 parse_and_eval (char *exp)
129 {
130 struct expression *expr = parse_expression (exp);
131 struct value *val;
132 struct cleanup *old_chain =
133 make_cleanup (free_current_contents, &expr);
134
135 val = evaluate_expression (expr);
136 do_cleanups (old_chain);
137 return val;
138 }
139
140 /* Parse up to a comma (or to a closeparen)
141 in the string EXPP as an expression, evaluate it, and return the value.
142 EXPP is advanced to point to the comma. */
143
144 struct value *
145 parse_to_comma_and_eval (char **expp)
146 {
147 struct expression *expr = parse_exp_1 (expp, (struct block *) 0, 1);
148 struct value *val;
149 struct cleanup *old_chain =
150 make_cleanup (free_current_contents, &expr);
151
152 val = evaluate_expression (expr);
153 do_cleanups (old_chain);
154 return val;
155 }
156 \f
157 /* Evaluate an expression in internal prefix form
158 such as is constructed by parse.y.
159
160 See expression.h for info on the format of an expression. */
161
162 struct value *
163 evaluate_expression (struct expression *exp)
164 {
165 int pc = 0;
166
167 return evaluate_subexp (NULL_TYPE, exp, &pc, EVAL_NORMAL);
168 }
169
170 /* Evaluate an expression, avoiding all memory references
171 and getting a value whose type alone is correct. */
172
173 struct value *
174 evaluate_type (struct expression *exp)
175 {
176 int pc = 0;
177
178 return evaluate_subexp (NULL_TYPE, exp, &pc, EVAL_AVOID_SIDE_EFFECTS);
179 }
180
181 /* Evaluate a subexpression, avoiding all memory references and
182 getting a value whose type alone is correct. */
183
184 struct value *
185 evaluate_subexpression_type (struct expression *exp, int subexp)
186 {
187 return evaluate_subexp (NULL_TYPE, exp, &subexp, EVAL_AVOID_SIDE_EFFECTS);
188 }
189
190 /* Find the current value of a watchpoint on EXP. Return the value in
191 *VALP and *RESULTP and the chain of intermediate and final values
192 in *VAL_CHAIN. RESULTP and VAL_CHAIN may be NULL if the caller does
193 not need them.
194
195 If a memory error occurs while evaluating the expression, *RESULTP will
196 be set to NULL. *RESULTP may be a lazy value, if the result could
197 not be read from memory. It is used to determine whether a value
198 is user-specified (we should watch the whole value) or intermediate
199 (we should watch only the bit used to locate the final value).
200
201 If the final value, or any intermediate value, could not be read
202 from memory, *VALP will be set to NULL. *VAL_CHAIN will still be
203 set to any referenced values. *VALP will never be a lazy value.
204 This is the value which we store in struct breakpoint.
205
206 If VAL_CHAIN is non-NULL, *VAL_CHAIN will be released from the
207 value chain. The caller must free the values individually. If
208 VAL_CHAIN is NULL, all generated values will be left on the value
209 chain. */
210
211 void
212 fetch_subexp_value (struct expression *exp, int *pc, struct value **valp,
213 struct value **resultp, struct value **val_chain)
214 {
215 struct value *mark, *new_mark, *result;
216 volatile struct gdb_exception ex;
217
218 *valp = NULL;
219 if (resultp)
220 *resultp = NULL;
221 if (val_chain)
222 *val_chain = NULL;
223
224 /* Evaluate the expression. */
225 mark = value_mark ();
226 result = NULL;
227
228 TRY_CATCH (ex, RETURN_MASK_ALL)
229 {
230 result = evaluate_subexp (NULL_TYPE, exp, pc, EVAL_NORMAL);
231 }
232 if (ex.reason < 0)
233 {
234 /* Ignore memory errors, we want watchpoints pointing at
235 inaccessible memory to still be created; otherwise, throw the
236 error to some higher catcher. */
237 switch (ex.error)
238 {
239 case MEMORY_ERROR:
240 break;
241 default:
242 throw_exception (ex);
243 break;
244 }
245 }
246
247 new_mark = value_mark ();
248 if (mark == new_mark)
249 return;
250 if (resultp)
251 *resultp = result;
252
253 /* Make sure it's not lazy, so that after the target stops again we
254 have a non-lazy previous value to compare with. */
255 if (result != NULL
256 && (!value_lazy (result) || gdb_value_fetch_lazy (result)))
257 *valp = result;
258
259 if (val_chain)
260 {
261 /* Return the chain of intermediate values. We use this to
262 decide which addresses to watch. */
263 *val_chain = new_mark;
264 value_release_to_mark (mark);
265 }
266 }
267
268 /* Extract a field operation from an expression. If the subexpression
269 of EXP starting at *SUBEXP is not a structure dereference
270 operation, return NULL. Otherwise, return the name of the
271 dereferenced field, and advance *SUBEXP to point to the
272 subexpression of the left-hand-side of the dereference. This is
273 used when completing field names. */
274
275 char *
276 extract_field_op (struct expression *exp, int *subexp)
277 {
278 int tem;
279 char *result;
280
281 if (exp->elts[*subexp].opcode != STRUCTOP_STRUCT
282 && exp->elts[*subexp].opcode != STRUCTOP_PTR)
283 return NULL;
284 tem = longest_to_int (exp->elts[*subexp + 1].longconst);
285 result = &exp->elts[*subexp + 2].string;
286 (*subexp) += 1 + 3 + BYTES_TO_EXP_ELEM (tem + 1);
287 return result;
288 }
289
290 /* If the next expression is an OP_LABELED, skips past it,
291 returning the label. Otherwise, does nothing and returns NULL. */
292
293 static char *
294 get_label (struct expression *exp, int *pos)
295 {
296 if (exp->elts[*pos].opcode == OP_LABELED)
297 {
298 int pc = (*pos)++;
299 char *name = &exp->elts[pc + 2].string;
300 int tem = longest_to_int (exp->elts[pc + 1].longconst);
301
302 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
303 return name;
304 }
305 else
306 return NULL;
307 }
308
309 /* This function evaluates tuples (in (the deleted) Chill) or
310 brace-initializers (in C/C++) for structure types. */
311
312 static struct value *
313 evaluate_struct_tuple (struct value *struct_val,
314 struct expression *exp,
315 int *pos, enum noside noside, int nargs)
316 {
317 struct type *struct_type = check_typedef (value_type (struct_val));
318 struct type *substruct_type = struct_type;
319 struct type *field_type;
320 int fieldno = -1;
321 int variantno = -1;
322 int subfieldno = -1;
323
324 while (--nargs >= 0)
325 {
326 int pc = *pos;
327 struct value *val = NULL;
328 int nlabels = 0;
329 int bitpos, bitsize;
330 bfd_byte *addr;
331
332 /* Skip past the labels, and count them. */
333 while (get_label (exp, pos) != NULL)
334 nlabels++;
335
336 do
337 {
338 char *label = get_label (exp, &pc);
339
340 if (label)
341 {
342 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type);
343 fieldno++)
344 {
345 char *field_name = TYPE_FIELD_NAME (struct_type, fieldno);
346
347 if (field_name != NULL && strcmp (field_name, label) == 0)
348 {
349 variantno = -1;
350 subfieldno = fieldno;
351 substruct_type = struct_type;
352 goto found;
353 }
354 }
355 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type);
356 fieldno++)
357 {
358 char *field_name = TYPE_FIELD_NAME (struct_type, fieldno);
359
360 field_type = TYPE_FIELD_TYPE (struct_type, fieldno);
361 if ((field_name == 0 || *field_name == '\0')
362 && TYPE_CODE (field_type) == TYPE_CODE_UNION)
363 {
364 variantno = 0;
365 for (; variantno < TYPE_NFIELDS (field_type);
366 variantno++)
367 {
368 substruct_type
369 = TYPE_FIELD_TYPE (field_type, variantno);
370 if (TYPE_CODE (substruct_type) == TYPE_CODE_STRUCT)
371 {
372 for (subfieldno = 0;
373 subfieldno < TYPE_NFIELDS (substruct_type);
374 subfieldno++)
375 {
376 if (strcmp(TYPE_FIELD_NAME (substruct_type,
377 subfieldno),
378 label) == 0)
379 {
380 goto found;
381 }
382 }
383 }
384 }
385 }
386 }
387 error (_("there is no field named %s"), label);
388 found:
389 ;
390 }
391 else
392 {
393 /* Unlabelled tuple element - go to next field. */
394 if (variantno >= 0)
395 {
396 subfieldno++;
397 if (subfieldno >= TYPE_NFIELDS (substruct_type))
398 {
399 variantno = -1;
400 substruct_type = struct_type;
401 }
402 }
403 if (variantno < 0)
404 {
405 fieldno++;
406 /* Skip static fields. */
407 while (fieldno < TYPE_NFIELDS (struct_type)
408 && field_is_static (&TYPE_FIELD (struct_type,
409 fieldno)))
410 fieldno++;
411 subfieldno = fieldno;
412 if (fieldno >= TYPE_NFIELDS (struct_type))
413 error (_("too many initializers"));
414 field_type = TYPE_FIELD_TYPE (struct_type, fieldno);
415 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
416 && TYPE_FIELD_NAME (struct_type, fieldno)[0] == '0')
417 error (_("don't know which variant you want to set"));
418 }
419 }
420
421 /* Here, struct_type is the type of the inner struct,
422 while substruct_type is the type of the inner struct.
423 These are the same for normal structures, but a variant struct
424 contains anonymous union fields that contain substruct fields.
425 The value fieldno is the index of the top-level (normal or
426 anonymous union) field in struct_field, while the value
427 subfieldno is the index of the actual real (named inner) field
428 in substruct_type. */
429
430 field_type = TYPE_FIELD_TYPE (substruct_type, subfieldno);
431 if (val == 0)
432 val = evaluate_subexp (field_type, exp, pos, noside);
433
434 /* Now actually set the field in struct_val. */
435
436 /* Assign val to field fieldno. */
437 if (value_type (val) != field_type)
438 val = value_cast (field_type, val);
439
440 bitsize = TYPE_FIELD_BITSIZE (substruct_type, subfieldno);
441 bitpos = TYPE_FIELD_BITPOS (struct_type, fieldno);
442 if (variantno >= 0)
443 bitpos += TYPE_FIELD_BITPOS (substruct_type, subfieldno);
444 addr = value_contents_writeable (struct_val) + bitpos / 8;
445 if (bitsize)
446 modify_field (struct_type, addr,
447 value_as_long (val), bitpos % 8, bitsize);
448 else
449 memcpy (addr, value_contents (val),
450 TYPE_LENGTH (value_type (val)));
451 }
452 while (--nlabels > 0);
453 }
454 return struct_val;
455 }
456
457 /* Recursive helper function for setting elements of array tuples for
458 (the deleted) Chill. The target is ARRAY (which has bounds
459 LOW_BOUND to HIGH_BOUND); the element value is ELEMENT; EXP, POS
460 and NOSIDE are as usual. Evaluates index expresions and sets the
461 specified element(s) of ARRAY to ELEMENT. Returns last index
462 value. */
463
464 static LONGEST
465 init_array_element (struct value *array, struct value *element,
466 struct expression *exp, int *pos,
467 enum noside noside, LONGEST low_bound, LONGEST high_bound)
468 {
469 LONGEST index;
470 int element_size = TYPE_LENGTH (value_type (element));
471
472 if (exp->elts[*pos].opcode == BINOP_COMMA)
473 {
474 (*pos)++;
475 init_array_element (array, element, exp, pos, noside,
476 low_bound, high_bound);
477 return init_array_element (array, element,
478 exp, pos, noside, low_bound, high_bound);
479 }
480 else if (exp->elts[*pos].opcode == BINOP_RANGE)
481 {
482 LONGEST low, high;
483
484 (*pos)++;
485 low = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
486 high = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
487 if (low < low_bound || high > high_bound)
488 error (_("tuple range index out of range"));
489 for (index = low; index <= high; index++)
490 {
491 memcpy (value_contents_raw (array)
492 + (index - low_bound) * element_size,
493 value_contents (element), element_size);
494 }
495 }
496 else
497 {
498 index = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
499 if (index < low_bound || index > high_bound)
500 error (_("tuple index out of range"));
501 memcpy (value_contents_raw (array) + (index - low_bound) * element_size,
502 value_contents (element), element_size);
503 }
504 return index;
505 }
506
507 static struct value *
508 value_f90_subarray (struct value *array,
509 struct expression *exp, int *pos, enum noside noside)
510 {
511 int pc = (*pos) + 1;
512 LONGEST low_bound, high_bound;
513 struct type *range = check_typedef (TYPE_INDEX_TYPE (value_type (array)));
514 enum f90_range_type range_type = longest_to_int (exp->elts[pc].longconst);
515
516 *pos += 3;
517
518 if (range_type == LOW_BOUND_DEFAULT || range_type == BOTH_BOUND_DEFAULT)
519 low_bound = TYPE_LOW_BOUND (range);
520 else
521 low_bound = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
522
523 if (range_type == HIGH_BOUND_DEFAULT || range_type == BOTH_BOUND_DEFAULT)
524 high_bound = TYPE_HIGH_BOUND (range);
525 else
526 high_bound = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
527
528 return value_slice (array, low_bound, high_bound - low_bound + 1);
529 }
530
531
532 /* Promote value ARG1 as appropriate before performing a unary operation
533 on this argument.
534 If the result is not appropriate for any particular language then it
535 needs to patch this function. */
536
537 void
538 unop_promote (const struct language_defn *language, struct gdbarch *gdbarch,
539 struct value **arg1)
540 {
541 struct type *type1;
542
543 *arg1 = coerce_ref (*arg1);
544 type1 = check_typedef (value_type (*arg1));
545
546 if (is_integral_type (type1))
547 {
548 switch (language->la_language)
549 {
550 default:
551 /* Perform integral promotion for ANSI C/C++.
552 If not appropropriate for any particular language
553 it needs to modify this function. */
554 {
555 struct type *builtin_int = builtin_type (gdbarch)->builtin_int;
556
557 if (TYPE_LENGTH (type1) < TYPE_LENGTH (builtin_int))
558 *arg1 = value_cast (builtin_int, *arg1);
559 }
560 break;
561 }
562 }
563 }
564
565 /* Promote values ARG1 and ARG2 as appropriate before performing a binary
566 operation on those two operands.
567 If the result is not appropriate for any particular language then it
568 needs to patch this function. */
569
570 void
571 binop_promote (const struct language_defn *language, struct gdbarch *gdbarch,
572 struct value **arg1, struct value **arg2)
573 {
574 struct type *promoted_type = NULL;
575 struct type *type1;
576 struct type *type2;
577
578 *arg1 = coerce_ref (*arg1);
579 *arg2 = coerce_ref (*arg2);
580
581 type1 = check_typedef (value_type (*arg1));
582 type2 = check_typedef (value_type (*arg2));
583
584 if ((TYPE_CODE (type1) != TYPE_CODE_FLT
585 && TYPE_CODE (type1) != TYPE_CODE_DECFLOAT
586 && !is_integral_type (type1))
587 || (TYPE_CODE (type2) != TYPE_CODE_FLT
588 && TYPE_CODE (type2) != TYPE_CODE_DECFLOAT
589 && !is_integral_type (type2)))
590 return;
591
592 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT
593 || TYPE_CODE (type2) == TYPE_CODE_DECFLOAT)
594 {
595 /* No promotion required. */
596 }
597 else if (TYPE_CODE (type1) == TYPE_CODE_FLT
598 || TYPE_CODE (type2) == TYPE_CODE_FLT)
599 {
600 switch (language->la_language)
601 {
602 case language_c:
603 case language_cplus:
604 case language_asm:
605 case language_objc:
606 /* No promotion required. */
607 break;
608
609 default:
610 /* For other languages the result type is unchanged from gdb
611 version 6.7 for backward compatibility.
612 If either arg was long double, make sure that value is also long
613 double. Otherwise use double. */
614 if (TYPE_LENGTH (type1) * 8 > gdbarch_double_bit (gdbarch)
615 || TYPE_LENGTH (type2) * 8 > gdbarch_double_bit (gdbarch))
616 promoted_type = builtin_type (gdbarch)->builtin_long_double;
617 else
618 promoted_type = builtin_type (gdbarch)->builtin_double;
619 break;
620 }
621 }
622 else if (TYPE_CODE (type1) == TYPE_CODE_BOOL
623 && TYPE_CODE (type2) == TYPE_CODE_BOOL)
624 {
625 /* No promotion required. */
626 }
627 else
628 /* Integral operations here. */
629 /* FIXME: Also mixed integral/booleans, with result an integer. */
630 {
631 const struct builtin_type *builtin = builtin_type (gdbarch);
632 unsigned int promoted_len1 = TYPE_LENGTH (type1);
633 unsigned int promoted_len2 = TYPE_LENGTH (type2);
634 int is_unsigned1 = TYPE_UNSIGNED (type1);
635 int is_unsigned2 = TYPE_UNSIGNED (type2);
636 unsigned int result_len;
637 int unsigned_operation;
638
639 /* Determine type length and signedness after promotion for
640 both operands. */
641 if (promoted_len1 < TYPE_LENGTH (builtin->builtin_int))
642 {
643 is_unsigned1 = 0;
644 promoted_len1 = TYPE_LENGTH (builtin->builtin_int);
645 }
646 if (promoted_len2 < TYPE_LENGTH (builtin->builtin_int))
647 {
648 is_unsigned2 = 0;
649 promoted_len2 = TYPE_LENGTH (builtin->builtin_int);
650 }
651
652 if (promoted_len1 > promoted_len2)
653 {
654 unsigned_operation = is_unsigned1;
655 result_len = promoted_len1;
656 }
657 else if (promoted_len2 > promoted_len1)
658 {
659 unsigned_operation = is_unsigned2;
660 result_len = promoted_len2;
661 }
662 else
663 {
664 unsigned_operation = is_unsigned1 || is_unsigned2;
665 result_len = promoted_len1;
666 }
667
668 switch (language->la_language)
669 {
670 case language_c:
671 case language_cplus:
672 case language_asm:
673 case language_objc:
674 if (result_len <= TYPE_LENGTH (builtin->builtin_int))
675 {
676 promoted_type = (unsigned_operation
677 ? builtin->builtin_unsigned_int
678 : builtin->builtin_int);
679 }
680 else if (result_len <= TYPE_LENGTH (builtin->builtin_long))
681 {
682 promoted_type = (unsigned_operation
683 ? builtin->builtin_unsigned_long
684 : builtin->builtin_long);
685 }
686 else
687 {
688 promoted_type = (unsigned_operation
689 ? builtin->builtin_unsigned_long_long
690 : builtin->builtin_long_long);
691 }
692 break;
693
694 default:
695 /* For other languages the result type is unchanged from gdb
696 version 6.7 for backward compatibility.
697 If either arg was long long, make sure that value is also long
698 long. Otherwise use long. */
699 if (unsigned_operation)
700 {
701 if (result_len > gdbarch_long_bit (gdbarch) / HOST_CHAR_BIT)
702 promoted_type = builtin->builtin_unsigned_long_long;
703 else
704 promoted_type = builtin->builtin_unsigned_long;
705 }
706 else
707 {
708 if (result_len > gdbarch_long_bit (gdbarch) / HOST_CHAR_BIT)
709 promoted_type = builtin->builtin_long_long;
710 else
711 promoted_type = builtin->builtin_long;
712 }
713 break;
714 }
715 }
716
717 if (promoted_type)
718 {
719 /* Promote both operands to common type. */
720 *arg1 = value_cast (promoted_type, *arg1);
721 *arg2 = value_cast (promoted_type, *arg2);
722 }
723 }
724
725 static int
726 ptrmath_type_p (const struct language_defn *lang, struct type *type)
727 {
728 type = check_typedef (type);
729 if (TYPE_CODE (type) == TYPE_CODE_REF)
730 type = TYPE_TARGET_TYPE (type);
731
732 switch (TYPE_CODE (type))
733 {
734 case TYPE_CODE_PTR:
735 case TYPE_CODE_FUNC:
736 return 1;
737
738 case TYPE_CODE_ARRAY:
739 return lang->c_style_arrays;
740
741 default:
742 return 0;
743 }
744 }
745
746 /* Constructs a fake method with the given parameter types.
747 This function is used by the parser to construct an "expected"
748 type for method overload resolution. */
749
750 static struct type *
751 make_params (int num_types, struct type **param_types)
752 {
753 struct type *type = XZALLOC (struct type);
754 TYPE_MAIN_TYPE (type) = XZALLOC (struct main_type);
755 TYPE_LENGTH (type) = 1;
756 TYPE_CODE (type) = TYPE_CODE_METHOD;
757 TYPE_VPTR_FIELDNO (type) = -1;
758 TYPE_CHAIN (type) = type;
759 TYPE_NFIELDS (type) = num_types;
760 TYPE_FIELDS (type) = (struct field *)
761 TYPE_ZALLOC (type, sizeof (struct field) * num_types);
762
763 while (num_types-- > 0)
764 TYPE_FIELD_TYPE (type, num_types) = param_types[num_types];
765
766 return type;
767 }
768
769 struct value *
770 evaluate_subexp_standard (struct type *expect_type,
771 struct expression *exp, int *pos,
772 enum noside noside)
773 {
774 enum exp_opcode op;
775 int tem, tem2, tem3;
776 int pc, pc2 = 0, oldpos;
777 struct value *arg1 = NULL;
778 struct value *arg2 = NULL;
779 struct value *arg3;
780 struct type *type;
781 int nargs;
782 struct value **argvec;
783 int upper, lower;
784 int code;
785 int ix;
786 long mem_offset;
787 struct type **arg_types;
788 int save_pos1;
789 struct symbol *function = NULL;
790 char *function_name = NULL;
791
792 pc = (*pos)++;
793 op = exp->elts[pc].opcode;
794
795 switch (op)
796 {
797 case OP_SCOPE:
798 tem = longest_to_int (exp->elts[pc + 2].longconst);
799 (*pos) += 4 + BYTES_TO_EXP_ELEM (tem + 1);
800 if (noside == EVAL_SKIP)
801 goto nosideret;
802 arg1 = value_aggregate_elt (exp->elts[pc + 1].type,
803 &exp->elts[pc + 3].string,
804 expect_type, 0, noside);
805 if (arg1 == NULL)
806 error (_("There is no field named %s"), &exp->elts[pc + 3].string);
807 return arg1;
808
809 case OP_LONG:
810 (*pos) += 3;
811 return value_from_longest (exp->elts[pc + 1].type,
812 exp->elts[pc + 2].longconst);
813
814 case OP_DOUBLE:
815 (*pos) += 3;
816 return value_from_double (exp->elts[pc + 1].type,
817 exp->elts[pc + 2].doubleconst);
818
819 case OP_DECFLOAT:
820 (*pos) += 3;
821 return value_from_decfloat (exp->elts[pc + 1].type,
822 exp->elts[pc + 2].decfloatconst);
823
824 case OP_ADL_FUNC:
825 case OP_VAR_VALUE:
826 (*pos) += 3;
827 if (noside == EVAL_SKIP)
828 goto nosideret;
829
830 /* JYG: We used to just return value_zero of the symbol type
831 if we're asked to avoid side effects. Otherwise we return
832 value_of_variable (...). However I'm not sure if
833 value_of_variable () has any side effect.
834 We need a full value object returned here for whatis_exp ()
835 to call evaluate_type () and then pass the full value to
836 value_rtti_target_type () if we are dealing with a pointer
837 or reference to a base class and print object is on. */
838
839 {
840 volatile struct gdb_exception except;
841 struct value *ret = NULL;
842
843 TRY_CATCH (except, RETURN_MASK_ERROR)
844 {
845 ret = value_of_variable (exp->elts[pc + 2].symbol,
846 exp->elts[pc + 1].block);
847 }
848
849 if (except.reason < 0)
850 {
851 if (noside == EVAL_AVOID_SIDE_EFFECTS)
852 ret = value_zero (SYMBOL_TYPE (exp->elts[pc + 2].symbol), not_lval);
853 else
854 throw_exception (except);
855 }
856
857 return ret;
858 }
859
860 case OP_LAST:
861 (*pos) += 2;
862 return
863 access_value_history (longest_to_int (exp->elts[pc + 1].longconst));
864
865 case OP_REGISTER:
866 {
867 const char *name = &exp->elts[pc + 2].string;
868 int regno;
869 struct value *val;
870
871 (*pos) += 3 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
872 regno = user_reg_map_name_to_regnum (exp->gdbarch,
873 name, strlen (name));
874 if (regno == -1)
875 error (_("Register $%s not available."), name);
876
877 /* In EVAL_AVOID_SIDE_EFFECTS mode, we only need to return
878 a value with the appropriate register type. Unfortunately,
879 we don't have easy access to the type of user registers.
880 So for these registers, we fetch the register value regardless
881 of the evaluation mode. */
882 if (noside == EVAL_AVOID_SIDE_EFFECTS
883 && regno < gdbarch_num_regs (exp->gdbarch)
884 + gdbarch_num_pseudo_regs (exp->gdbarch))
885 val = value_zero (register_type (exp->gdbarch, regno), not_lval);
886 else
887 val = value_of_register (regno, get_selected_frame (NULL));
888 if (val == NULL)
889 error (_("Value of register %s not available."), name);
890 else
891 return val;
892 }
893 case OP_BOOL:
894 (*pos) += 2;
895 type = language_bool_type (exp->language_defn, exp->gdbarch);
896 return value_from_longest (type, exp->elts[pc + 1].longconst);
897
898 case OP_INTERNALVAR:
899 (*pos) += 2;
900 return value_of_internalvar (exp->gdbarch,
901 exp->elts[pc + 1].internalvar);
902
903 case OP_STRING:
904 tem = longest_to_int (exp->elts[pc + 1].longconst);
905 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
906 if (noside == EVAL_SKIP)
907 goto nosideret;
908 type = language_string_char_type (exp->language_defn, exp->gdbarch);
909 return value_string (&exp->elts[pc + 2].string, tem, type);
910
911 case OP_OBJC_NSSTRING: /* Objective C Foundation Class NSString constant. */
912 tem = longest_to_int (exp->elts[pc + 1].longconst);
913 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
914 if (noside == EVAL_SKIP)
915 {
916 goto nosideret;
917 }
918 return value_nsstring (exp->gdbarch, &exp->elts[pc + 2].string, tem + 1);
919
920 case OP_BITSTRING:
921 tem = longest_to_int (exp->elts[pc + 1].longconst);
922 (*pos)
923 += 3 + BYTES_TO_EXP_ELEM ((tem + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT);
924 if (noside == EVAL_SKIP)
925 goto nosideret;
926 return value_bitstring (&exp->elts[pc + 2].string, tem,
927 builtin_type (exp->gdbarch)->builtin_int);
928 break;
929
930 case OP_ARRAY:
931 (*pos) += 3;
932 tem2 = longest_to_int (exp->elts[pc + 1].longconst);
933 tem3 = longest_to_int (exp->elts[pc + 2].longconst);
934 nargs = tem3 - tem2 + 1;
935 type = expect_type ? check_typedef (expect_type) : NULL_TYPE;
936
937 if (expect_type != NULL_TYPE && noside != EVAL_SKIP
938 && TYPE_CODE (type) == TYPE_CODE_STRUCT)
939 {
940 struct value *rec = allocate_value (expect_type);
941
942 memset (value_contents_raw (rec), '\0', TYPE_LENGTH (type));
943 return evaluate_struct_tuple (rec, exp, pos, noside, nargs);
944 }
945
946 if (expect_type != NULL_TYPE && noside != EVAL_SKIP
947 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
948 {
949 struct type *range_type = TYPE_INDEX_TYPE (type);
950 struct type *element_type = TYPE_TARGET_TYPE (type);
951 struct value *array = allocate_value (expect_type);
952 int element_size = TYPE_LENGTH (check_typedef (element_type));
953 LONGEST low_bound, high_bound, index;
954
955 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
956 {
957 low_bound = 0;
958 high_bound = (TYPE_LENGTH (type) / element_size) - 1;
959 }
960 index = low_bound;
961 memset (value_contents_raw (array), 0, TYPE_LENGTH (expect_type));
962 for (tem = nargs; --nargs >= 0;)
963 {
964 struct value *element;
965 int index_pc = 0;
966
967 if (exp->elts[*pos].opcode == BINOP_RANGE)
968 {
969 index_pc = ++(*pos);
970 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
971 }
972 element = evaluate_subexp (element_type, exp, pos, noside);
973 if (value_type (element) != element_type)
974 element = value_cast (element_type, element);
975 if (index_pc)
976 {
977 int continue_pc = *pos;
978
979 *pos = index_pc;
980 index = init_array_element (array, element, exp, pos, noside,
981 low_bound, high_bound);
982 *pos = continue_pc;
983 }
984 else
985 {
986 if (index > high_bound)
987 /* to avoid memory corruption */
988 error (_("Too many array elements"));
989 memcpy (value_contents_raw (array)
990 + (index - low_bound) * element_size,
991 value_contents (element),
992 element_size);
993 }
994 index++;
995 }
996 return array;
997 }
998
999 if (expect_type != NULL_TYPE && noside != EVAL_SKIP
1000 && TYPE_CODE (type) == TYPE_CODE_SET)
1001 {
1002 struct value *set = allocate_value (expect_type);
1003 gdb_byte *valaddr = value_contents_raw (set);
1004 struct type *element_type = TYPE_INDEX_TYPE (type);
1005 struct type *check_type = element_type;
1006 LONGEST low_bound, high_bound;
1007
1008 /* get targettype of elementtype */
1009 while (TYPE_CODE (check_type) == TYPE_CODE_RANGE
1010 || TYPE_CODE (check_type) == TYPE_CODE_TYPEDEF)
1011 check_type = TYPE_TARGET_TYPE (check_type);
1012
1013 if (get_discrete_bounds (element_type, &low_bound, &high_bound) < 0)
1014 error (_("(power)set type with unknown size"));
1015 memset (valaddr, '\0', TYPE_LENGTH (type));
1016 for (tem = 0; tem < nargs; tem++)
1017 {
1018 LONGEST range_low, range_high;
1019 struct type *range_low_type, *range_high_type;
1020 struct value *elem_val;
1021
1022 if (exp->elts[*pos].opcode == BINOP_RANGE)
1023 {
1024 (*pos)++;
1025 elem_val = evaluate_subexp (element_type, exp, pos, noside);
1026 range_low_type = value_type (elem_val);
1027 range_low = value_as_long (elem_val);
1028 elem_val = evaluate_subexp (element_type, exp, pos, noside);
1029 range_high_type = value_type (elem_val);
1030 range_high = value_as_long (elem_val);
1031 }
1032 else
1033 {
1034 elem_val = evaluate_subexp (element_type, exp, pos, noside);
1035 range_low_type = range_high_type = value_type (elem_val);
1036 range_low = range_high = value_as_long (elem_val);
1037 }
1038 /* check types of elements to avoid mixture of elements from
1039 different types. Also check if type of element is "compatible"
1040 with element type of powerset */
1041 if (TYPE_CODE (range_low_type) == TYPE_CODE_RANGE)
1042 range_low_type = TYPE_TARGET_TYPE (range_low_type);
1043 if (TYPE_CODE (range_high_type) == TYPE_CODE_RANGE)
1044 range_high_type = TYPE_TARGET_TYPE (range_high_type);
1045 if ((TYPE_CODE (range_low_type) != TYPE_CODE (range_high_type))
1046 || (TYPE_CODE (range_low_type) == TYPE_CODE_ENUM
1047 && (range_low_type != range_high_type)))
1048 /* different element modes */
1049 error (_("POWERSET tuple elements of different mode"));
1050 if ((TYPE_CODE (check_type) != TYPE_CODE (range_low_type))
1051 || (TYPE_CODE (check_type) == TYPE_CODE_ENUM
1052 && range_low_type != check_type))
1053 error (_("incompatible POWERSET tuple elements"));
1054 if (range_low > range_high)
1055 {
1056 warning (_("empty POWERSET tuple range"));
1057 continue;
1058 }
1059 if (range_low < low_bound || range_high > high_bound)
1060 error (_("POWERSET tuple element out of range"));
1061 range_low -= low_bound;
1062 range_high -= low_bound;
1063 for (; range_low <= range_high; range_low++)
1064 {
1065 int bit_index = (unsigned) range_low % TARGET_CHAR_BIT;
1066
1067 if (gdbarch_bits_big_endian (exp->gdbarch))
1068 bit_index = TARGET_CHAR_BIT - 1 - bit_index;
1069 valaddr[(unsigned) range_low / TARGET_CHAR_BIT]
1070 |= 1 << bit_index;
1071 }
1072 }
1073 return set;
1074 }
1075
1076 argvec = (struct value **) alloca (sizeof (struct value *) * nargs);
1077 for (tem = 0; tem < nargs; tem++)
1078 {
1079 /* Ensure that array expressions are coerced into pointer objects. */
1080 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1081 }
1082 if (noside == EVAL_SKIP)
1083 goto nosideret;
1084 return value_array (tem2, tem3, argvec);
1085
1086 case TERNOP_SLICE:
1087 {
1088 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1089 int lowbound
1090 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
1091 int upper
1092 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
1093
1094 if (noside == EVAL_SKIP)
1095 goto nosideret;
1096 return value_slice (array, lowbound, upper - lowbound + 1);
1097 }
1098
1099 case TERNOP_SLICE_COUNT:
1100 {
1101 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1102 int lowbound
1103 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
1104 int length
1105 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
1106
1107 return value_slice (array, lowbound, length);
1108 }
1109
1110 case TERNOP_COND:
1111 /* Skip third and second args to evaluate the first one. */
1112 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1113 if (value_logical_not (arg1))
1114 {
1115 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
1116 return evaluate_subexp (NULL_TYPE, exp, pos, noside);
1117 }
1118 else
1119 {
1120 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1121 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
1122 return arg2;
1123 }
1124
1125 case OP_OBJC_SELECTOR:
1126 { /* Objective C @selector operator. */
1127 char *sel = &exp->elts[pc + 2].string;
1128 int len = longest_to_int (exp->elts[pc + 1].longconst);
1129 struct type *selector_type;
1130
1131 (*pos) += 3 + BYTES_TO_EXP_ELEM (len + 1);
1132 if (noside == EVAL_SKIP)
1133 goto nosideret;
1134
1135 if (sel[len] != 0)
1136 sel[len] = 0; /* Make sure it's terminated. */
1137
1138 selector_type = builtin_type (exp->gdbarch)->builtin_data_ptr;
1139 return value_from_longest (selector_type,
1140 lookup_child_selector (exp->gdbarch, sel));
1141 }
1142
1143 case OP_OBJC_MSGCALL:
1144 { /* Objective C message (method) call. */
1145
1146 CORE_ADDR responds_selector = 0;
1147 CORE_ADDR method_selector = 0;
1148
1149 CORE_ADDR selector = 0;
1150
1151 int struct_return = 0;
1152 int sub_no_side = 0;
1153
1154 struct value *msg_send = NULL;
1155 struct value *msg_send_stret = NULL;
1156 int gnu_runtime = 0;
1157
1158 struct value *target = NULL;
1159 struct value *method = NULL;
1160 struct value *called_method = NULL;
1161
1162 struct type *selector_type = NULL;
1163 struct type *long_type;
1164
1165 struct value *ret = NULL;
1166 CORE_ADDR addr = 0;
1167
1168 selector = exp->elts[pc + 1].longconst;
1169 nargs = exp->elts[pc + 2].longconst;
1170 argvec = (struct value **) alloca (sizeof (struct value *)
1171 * (nargs + 5));
1172
1173 (*pos) += 3;
1174
1175 long_type = builtin_type (exp->gdbarch)->builtin_long;
1176 selector_type = builtin_type (exp->gdbarch)->builtin_data_ptr;
1177
1178 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1179 sub_no_side = EVAL_NORMAL;
1180 else
1181 sub_no_side = noside;
1182
1183 target = evaluate_subexp (selector_type, exp, pos, sub_no_side);
1184
1185 if (value_as_long (target) == 0)
1186 return value_from_longest (long_type, 0);
1187
1188 if (lookup_minimal_symbol ("objc_msg_lookup", 0, 0))
1189 gnu_runtime = 1;
1190
1191 /* Find the method dispatch (Apple runtime) or method lookup
1192 (GNU runtime) function for Objective-C. These will be used
1193 to lookup the symbol information for the method. If we
1194 can't find any symbol information, then we'll use these to
1195 call the method, otherwise we can call the method
1196 directly. The msg_send_stret function is used in the special
1197 case of a method that returns a structure (Apple runtime
1198 only). */
1199 if (gnu_runtime)
1200 {
1201 struct type *type = selector_type;
1202
1203 type = lookup_function_type (type);
1204 type = lookup_pointer_type (type);
1205 type = lookup_function_type (type);
1206 type = lookup_pointer_type (type);
1207
1208 msg_send = find_function_in_inferior ("objc_msg_lookup", NULL);
1209 msg_send_stret
1210 = find_function_in_inferior ("objc_msg_lookup", NULL);
1211
1212 msg_send = value_from_pointer (type, value_as_address (msg_send));
1213 msg_send_stret = value_from_pointer (type,
1214 value_as_address (msg_send_stret));
1215 }
1216 else
1217 {
1218 msg_send = find_function_in_inferior ("objc_msgSend", NULL);
1219 /* Special dispatcher for methods returning structs */
1220 msg_send_stret
1221 = find_function_in_inferior ("objc_msgSend_stret", NULL);
1222 }
1223
1224 /* Verify the target object responds to this method. The
1225 standard top-level 'Object' class uses a different name for
1226 the verification method than the non-standard, but more
1227 often used, 'NSObject' class. Make sure we check for both. */
1228
1229 responds_selector
1230 = lookup_child_selector (exp->gdbarch, "respondsToSelector:");
1231 if (responds_selector == 0)
1232 responds_selector
1233 = lookup_child_selector (exp->gdbarch, "respondsTo:");
1234
1235 if (responds_selector == 0)
1236 error (_("no 'respondsTo:' or 'respondsToSelector:' method"));
1237
1238 method_selector
1239 = lookup_child_selector (exp->gdbarch, "methodForSelector:");
1240 if (method_selector == 0)
1241 method_selector
1242 = lookup_child_selector (exp->gdbarch, "methodFor:");
1243
1244 if (method_selector == 0)
1245 error (_("no 'methodFor:' or 'methodForSelector:' method"));
1246
1247 /* Call the verification method, to make sure that the target
1248 class implements the desired method. */
1249
1250 argvec[0] = msg_send;
1251 argvec[1] = target;
1252 argvec[2] = value_from_longest (long_type, responds_selector);
1253 argvec[3] = value_from_longest (long_type, selector);
1254 argvec[4] = 0;
1255
1256 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
1257 if (gnu_runtime)
1258 {
1259 /* Function objc_msg_lookup returns a pointer. */
1260 argvec[0] = ret;
1261 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
1262 }
1263 if (value_as_long (ret) == 0)
1264 error (_("Target does not respond to this message selector."));
1265
1266 /* Call "methodForSelector:" method, to get the address of a
1267 function method that implements this selector for this
1268 class. If we can find a symbol at that address, then we
1269 know the return type, parameter types etc. (that's a good
1270 thing). */
1271
1272 argvec[0] = msg_send;
1273 argvec[1] = target;
1274 argvec[2] = value_from_longest (long_type, method_selector);
1275 argvec[3] = value_from_longest (long_type, selector);
1276 argvec[4] = 0;
1277
1278 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
1279 if (gnu_runtime)
1280 {
1281 argvec[0] = ret;
1282 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
1283 }
1284
1285 /* ret should now be the selector. */
1286
1287 addr = value_as_long (ret);
1288 if (addr)
1289 {
1290 struct symbol *sym = NULL;
1291
1292 /* The address might point to a function descriptor;
1293 resolve it to the actual code address instead. */
1294 addr = gdbarch_convert_from_func_ptr_addr (exp->gdbarch, addr,
1295 &current_target);
1296
1297 /* Is it a high_level symbol? */
1298 sym = find_pc_function (addr);
1299 if (sym != NULL)
1300 method = value_of_variable (sym, 0);
1301 }
1302
1303 /* If we found a method with symbol information, check to see
1304 if it returns a struct. Otherwise assume it doesn't. */
1305
1306 if (method)
1307 {
1308 struct block *b;
1309 CORE_ADDR funaddr;
1310 struct type *val_type;
1311
1312 funaddr = find_function_addr (method, &val_type);
1313
1314 b = block_for_pc (funaddr);
1315
1316 CHECK_TYPEDEF (val_type);
1317
1318 if ((val_type == NULL)
1319 || (TYPE_CODE(val_type) == TYPE_CODE_ERROR))
1320 {
1321 if (expect_type != NULL)
1322 val_type = expect_type;
1323 }
1324
1325 struct_return = using_struct_return (exp->gdbarch,
1326 value_type (method), val_type);
1327 }
1328 else if (expect_type != NULL)
1329 {
1330 struct_return = using_struct_return (exp->gdbarch, NULL,
1331 check_typedef (expect_type));
1332 }
1333
1334 /* Found a function symbol. Now we will substitute its
1335 value in place of the message dispatcher (obj_msgSend),
1336 so that we call the method directly instead of thru
1337 the dispatcher. The main reason for doing this is that
1338 we can now evaluate the return value and parameter values
1339 according to their known data types, in case we need to
1340 do things like promotion, dereferencing, special handling
1341 of structs and doubles, etc.
1342
1343 We want to use the type signature of 'method', but still
1344 jump to objc_msgSend() or objc_msgSend_stret() to better
1345 mimic the behavior of the runtime. */
1346
1347 if (method)
1348 {
1349 if (TYPE_CODE (value_type (method)) != TYPE_CODE_FUNC)
1350 error (_("method address has symbol information with non-function type; skipping"));
1351
1352 /* Create a function pointer of the appropriate type, and replace
1353 its value with the value of msg_send or msg_send_stret. We must
1354 use a pointer here, as msg_send and msg_send_stret are of pointer
1355 type, and the representation may be different on systems that use
1356 function descriptors. */
1357 if (struct_return)
1358 called_method
1359 = value_from_pointer (lookup_pointer_type (value_type (method)),
1360 value_as_address (msg_send_stret));
1361 else
1362 called_method
1363 = value_from_pointer (lookup_pointer_type (value_type (method)),
1364 value_as_address (msg_send));
1365 }
1366 else
1367 {
1368 if (struct_return)
1369 called_method = msg_send_stret;
1370 else
1371 called_method = msg_send;
1372 }
1373
1374 if (noside == EVAL_SKIP)
1375 goto nosideret;
1376
1377 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1378 {
1379 /* If the return type doesn't look like a function type,
1380 call an error. This can happen if somebody tries to
1381 turn a variable into a function call. This is here
1382 because people often want to call, eg, strcmp, which
1383 gdb doesn't know is a function. If gdb isn't asked for
1384 it's opinion (ie. through "whatis"), it won't offer
1385 it. */
1386
1387 struct type *type = value_type (called_method);
1388
1389 if (type && TYPE_CODE (type) == TYPE_CODE_PTR)
1390 type = TYPE_TARGET_TYPE (type);
1391 type = TYPE_TARGET_TYPE (type);
1392
1393 if (type)
1394 {
1395 if ((TYPE_CODE (type) == TYPE_CODE_ERROR) && expect_type)
1396 return allocate_value (expect_type);
1397 else
1398 return allocate_value (type);
1399 }
1400 else
1401 error (_("Expression of type other than \"method returning ...\" used as a method"));
1402 }
1403
1404 /* Now depending on whether we found a symbol for the method,
1405 we will either call the runtime dispatcher or the method
1406 directly. */
1407
1408 argvec[0] = called_method;
1409 argvec[1] = target;
1410 argvec[2] = value_from_longest (long_type, selector);
1411 /* User-supplied arguments. */
1412 for (tem = 0; tem < nargs; tem++)
1413 argvec[tem + 3] = evaluate_subexp_with_coercion (exp, pos, noside);
1414 argvec[tem + 3] = 0;
1415
1416 if (gnu_runtime && (method != NULL))
1417 {
1418 /* Function objc_msg_lookup returns a pointer. */
1419 deprecated_set_value_type (argvec[0],
1420 lookup_pointer_type (lookup_function_type (value_type (argvec[0]))));
1421 argvec[0] = call_function_by_hand (argvec[0], nargs + 2, argvec + 1);
1422 }
1423
1424 ret = call_function_by_hand (argvec[0], nargs + 2, argvec + 1);
1425 return ret;
1426 }
1427 break;
1428
1429 case OP_FUNCALL:
1430 (*pos) += 2;
1431 op = exp->elts[*pos].opcode;
1432 nargs = longest_to_int (exp->elts[pc + 1].longconst);
1433 /* Allocate arg vector, including space for the function to be
1434 called in argvec[0] and a terminating NULL */
1435 argvec = (struct value **) alloca (sizeof (struct value *) * (nargs + 3));
1436 if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR)
1437 {
1438 nargs++;
1439 /* First, evaluate the structure into arg2 */
1440 pc2 = (*pos)++;
1441
1442 if (noside == EVAL_SKIP)
1443 goto nosideret;
1444
1445 if (op == STRUCTOP_MEMBER)
1446 {
1447 arg2 = evaluate_subexp_for_address (exp, pos, noside);
1448 }
1449 else
1450 {
1451 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1452 }
1453
1454 /* If the function is a virtual function, then the
1455 aggregate value (providing the structure) plays
1456 its part by providing the vtable. Otherwise,
1457 it is just along for the ride: call the function
1458 directly. */
1459
1460 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1461
1462 if (TYPE_CODE (check_typedef (value_type (arg1)))
1463 != TYPE_CODE_METHODPTR)
1464 error (_("Non-pointer-to-member value used in pointer-to-member "
1465 "construct"));
1466
1467 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1468 {
1469 struct type *method_type = check_typedef (value_type (arg1));
1470
1471 arg1 = value_zero (method_type, not_lval);
1472 }
1473 else
1474 arg1 = cplus_method_ptr_to_value (&arg2, arg1);
1475
1476 /* Now, say which argument to start evaluating from */
1477 tem = 2;
1478 }
1479 else if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR)
1480 {
1481 /* Hair for method invocations */
1482 int tem2;
1483
1484 nargs++;
1485 /* First, evaluate the structure into arg2 */
1486 pc2 = (*pos)++;
1487 tem2 = longest_to_int (exp->elts[pc2 + 1].longconst);
1488 *pos += 3 + BYTES_TO_EXP_ELEM (tem2 + 1);
1489 if (noside == EVAL_SKIP)
1490 goto nosideret;
1491
1492 if (op == STRUCTOP_STRUCT)
1493 {
1494 /* If v is a variable in a register, and the user types
1495 v.method (), this will produce an error, because v has
1496 no address.
1497
1498 A possible way around this would be to allocate a
1499 copy of the variable on the stack, copy in the
1500 contents, call the function, and copy out the
1501 contents. I.e. convert this from call by reference
1502 to call by copy-return (or whatever it's called).
1503 However, this does not work because it is not the
1504 same: the method being called could stash a copy of
1505 the address, and then future uses through that address
1506 (after the method returns) would be expected to
1507 use the variable itself, not some copy of it. */
1508 arg2 = evaluate_subexp_for_address (exp, pos, noside);
1509 }
1510 else
1511 {
1512 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1513 }
1514 /* Now, say which argument to start evaluating from */
1515 tem = 2;
1516 }
1517 else if (op == OP_SCOPE
1518 && overload_resolution
1519 && (exp->language_defn->la_language == language_cplus))
1520 {
1521 /* Unpack it locally so we can properly handle overload
1522 resolution. */
1523 char *name;
1524 int local_tem;
1525
1526 pc2 = (*pos)++;
1527 local_tem = longest_to_int (exp->elts[pc2 + 2].longconst);
1528 (*pos) += 4 + BYTES_TO_EXP_ELEM (local_tem + 1);
1529 type = exp->elts[pc2 + 1].type;
1530 name = &exp->elts[pc2 + 3].string;
1531
1532 function = NULL;
1533 function_name = NULL;
1534 if (TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
1535 {
1536 function = cp_lookup_symbol_namespace (TYPE_TAG_NAME (type),
1537 name,
1538 get_selected_block (0),
1539 VAR_DOMAIN);
1540 if (function == NULL)
1541 error (_("No symbol \"%s\" in namespace \"%s\"."),
1542 name, TYPE_TAG_NAME (type));
1543
1544 tem = 1;
1545 }
1546 else
1547 {
1548 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1549 || TYPE_CODE (type) == TYPE_CODE_UNION);
1550 function_name = name;
1551
1552 arg2 = value_zero (type, lval_memory);
1553 ++nargs;
1554 tem = 2;
1555 }
1556 }
1557 else if (op == OP_ADL_FUNC)
1558 {
1559 /* Save the function position and move pos so that the arguments
1560 can be evaluated. */
1561 int func_name_len;
1562
1563 save_pos1 = *pos;
1564 tem = 1;
1565
1566 func_name_len = longest_to_int (exp->elts[save_pos1 + 3].longconst);
1567 (*pos) += 6 + BYTES_TO_EXP_ELEM (func_name_len + 1);
1568 }
1569 else
1570 {
1571 /* Non-method function call */
1572 save_pos1 = *pos;
1573 tem = 1;
1574
1575 /* If this is a C++ function wait until overload resolution. */
1576 if (op == OP_VAR_VALUE
1577 && overload_resolution
1578 && (exp->language_defn->la_language == language_cplus))
1579 {
1580 (*pos) += 4; /* Skip the evaluation of the symbol. */
1581 argvec[0] = NULL;
1582 }
1583 else
1584 {
1585 argvec[0] = evaluate_subexp_with_coercion (exp, pos, noside);
1586 type = value_type (argvec[0]);
1587 if (type && TYPE_CODE (type) == TYPE_CODE_PTR)
1588 type = TYPE_TARGET_TYPE (type);
1589 if (type && TYPE_CODE (type) == TYPE_CODE_FUNC)
1590 {
1591 for (; tem <= nargs && tem <= TYPE_NFIELDS (type); tem++)
1592 {
1593 argvec[tem] = evaluate_subexp (TYPE_FIELD_TYPE (type, tem - 1),
1594 exp, pos, noside);
1595 }
1596 }
1597 }
1598 }
1599
1600 /* Evaluate arguments */
1601 for (; tem <= nargs; tem++)
1602 {
1603 /* Ensure that array expressions are coerced into pointer objects. */
1604 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1605 }
1606
1607 /* signal end of arglist */
1608 argvec[tem] = 0;
1609 if (op == OP_ADL_FUNC)
1610 {
1611 struct symbol *symp;
1612 char *func_name;
1613 int name_len;
1614 int string_pc = save_pos1 + 3;
1615
1616 /* Extract the function name. */
1617 name_len = longest_to_int (exp->elts[string_pc].longconst);
1618 func_name = (char *) alloca (name_len + 1);
1619 strcpy (func_name, &exp->elts[string_pc + 1].string);
1620
1621 /* Prepare list of argument types for overload resolution */
1622 arg_types = (struct type **) alloca (nargs * (sizeof (struct type *)));
1623 for (ix = 1; ix <= nargs; ix++)
1624 arg_types[ix - 1] = value_type (argvec[ix]);
1625
1626 find_overload_match (arg_types, nargs, func_name,
1627 NON_METHOD /* not method */ , 0 /* strict match */ ,
1628 NULL, NULL /* pass NULL symbol since symbol is unknown */ ,
1629 NULL, &symp, NULL, 0);
1630
1631 /* Now fix the expression being evaluated. */
1632 exp->elts[save_pos1 + 2].symbol = symp;
1633 argvec[0] = evaluate_subexp_with_coercion (exp, &save_pos1, noside);
1634 }
1635
1636 if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR
1637 || (op == OP_SCOPE && function_name != NULL))
1638 {
1639 int static_memfuncp;
1640 char *tstr;
1641
1642 /* Method invocation : stuff "this" as first parameter */
1643 argvec[1] = arg2;
1644
1645 if (op != OP_SCOPE)
1646 {
1647 /* Name of method from expression */
1648 tstr = &exp->elts[pc2 + 2].string;
1649 }
1650 else
1651 tstr = function_name;
1652
1653 if (overload_resolution && (exp->language_defn->la_language == language_cplus))
1654 {
1655 /* Language is C++, do some overload resolution before evaluation */
1656 struct value *valp = NULL;
1657
1658 /* Prepare list of argument types for overload resolution */
1659 arg_types = (struct type **) alloca (nargs * (sizeof (struct type *)));
1660 for (ix = 1; ix <= nargs; ix++)
1661 arg_types[ix - 1] = value_type (argvec[ix]);
1662
1663 (void) find_overload_match (arg_types, nargs, tstr,
1664 METHOD /* method */ , 0 /* strict match */ ,
1665 &arg2 /* the object */ , NULL,
1666 &valp, NULL, &static_memfuncp, 0);
1667
1668 if (op == OP_SCOPE && !static_memfuncp)
1669 {
1670 /* For the time being, we don't handle this. */
1671 error (_("Call to overloaded function %s requires "
1672 "`this' pointer"),
1673 function_name);
1674 }
1675 argvec[1] = arg2; /* the ``this'' pointer */
1676 argvec[0] = valp; /* use the method found after overload resolution */
1677 }
1678 else
1679 /* Non-C++ case -- or no overload resolution */
1680 {
1681 struct value *temp = arg2;
1682
1683 argvec[0] = value_struct_elt (&temp, argvec + 1, tstr,
1684 &static_memfuncp,
1685 op == STRUCTOP_STRUCT
1686 ? "structure" : "structure pointer");
1687 /* value_struct_elt updates temp with the correct value
1688 of the ``this'' pointer if necessary, so modify argvec[1] to
1689 reflect any ``this'' changes. */
1690 arg2 = value_from_longest (lookup_pointer_type(value_type (temp)),
1691 value_address (temp)
1692 + value_embedded_offset (temp));
1693 argvec[1] = arg2; /* the ``this'' pointer */
1694 }
1695
1696 if (static_memfuncp)
1697 {
1698 argvec[1] = argvec[0];
1699 nargs--;
1700 argvec++;
1701 }
1702 }
1703 else if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR)
1704 {
1705 argvec[1] = arg2;
1706 argvec[0] = arg1;
1707 }
1708 else if (op == OP_VAR_VALUE || (op == OP_SCOPE && function != NULL))
1709 {
1710 /* Non-member function being called */
1711 /* fn: This can only be done for C++ functions. A C-style function
1712 in a C++ program, for instance, does not have the fields that
1713 are expected here */
1714
1715 if (overload_resolution && (exp->language_defn->la_language == language_cplus))
1716 {
1717 /* Language is C++, do some overload resolution before evaluation */
1718 struct symbol *symp;
1719 int no_adl = 0;
1720
1721 /* If a scope has been specified disable ADL. */
1722 if (op == OP_SCOPE)
1723 no_adl = 1;
1724
1725 if (op == OP_VAR_VALUE)
1726 function = exp->elts[save_pos1+2].symbol;
1727
1728 /* Prepare list of argument types for overload resolution */
1729 arg_types = (struct type **) alloca (nargs * (sizeof (struct type *)));
1730 for (ix = 1; ix <= nargs; ix++)
1731 arg_types[ix - 1] = value_type (argvec[ix]);
1732
1733 (void) find_overload_match (arg_types, nargs, NULL /* no need for name */ ,
1734 NON_METHOD /* not method */ , 0 /* strict match */ ,
1735 NULL, function /* the function */ ,
1736 NULL, &symp, NULL, no_adl);
1737
1738 if (op == OP_VAR_VALUE)
1739 {
1740 /* Now fix the expression being evaluated */
1741 exp->elts[save_pos1+2].symbol = symp;
1742 argvec[0] = evaluate_subexp_with_coercion (exp, &save_pos1,
1743 noside);
1744 }
1745 else
1746 argvec[0] = value_of_variable (symp, get_selected_block (0));
1747 }
1748 else
1749 {
1750 /* Not C++, or no overload resolution allowed */
1751 /* nothing to be done; argvec already correctly set up */
1752 }
1753 }
1754 else
1755 {
1756 /* It is probably a C-style function */
1757 /* nothing to be done; argvec already correctly set up */
1758 }
1759
1760 do_call_it:
1761
1762 if (noside == EVAL_SKIP)
1763 goto nosideret;
1764 if (argvec[0] == NULL)
1765 error (_("Cannot evaluate function -- may be inlined"));
1766 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1767 {
1768 /* If the return type doesn't look like a function type, call an
1769 error. This can happen if somebody tries to turn a variable into
1770 a function call. This is here because people often want to
1771 call, eg, strcmp, which gdb doesn't know is a function. If
1772 gdb isn't asked for it's opinion (ie. through "whatis"),
1773 it won't offer it. */
1774
1775 struct type *ftype = value_type (argvec[0]);
1776
1777 if (TYPE_CODE (ftype) == TYPE_CODE_INTERNAL_FUNCTION)
1778 {
1779 /* We don't know anything about what the internal
1780 function might return, but we have to return
1781 something. */
1782 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
1783 not_lval);
1784 }
1785 else if (TYPE_TARGET_TYPE (ftype))
1786 return allocate_value (TYPE_TARGET_TYPE (ftype));
1787 else
1788 error (_("Expression of type other than \"Function returning ...\" used as function"));
1789 }
1790 if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_INTERNAL_FUNCTION)
1791 return call_internal_function (exp->gdbarch, exp->language_defn,
1792 argvec[0], nargs, argvec + 1);
1793
1794 return call_function_by_hand (argvec[0], nargs, argvec + 1);
1795 /* pai: FIXME save value from call_function_by_hand, then adjust pc by adjust_fn_pc if +ve */
1796
1797 case OP_F77_UNDETERMINED_ARGLIST:
1798
1799 /* Remember that in F77, functions, substring ops and
1800 array subscript operations cannot be disambiguated
1801 at parse time. We have made all array subscript operations,
1802 substring operations as well as function calls come here
1803 and we now have to discover what the heck this thing actually was.
1804 If it is a function, we process just as if we got an OP_FUNCALL. */
1805
1806 nargs = longest_to_int (exp->elts[pc + 1].longconst);
1807 (*pos) += 2;
1808
1809 /* First determine the type code we are dealing with. */
1810 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1811 type = check_typedef (value_type (arg1));
1812 code = TYPE_CODE (type);
1813
1814 if (code == TYPE_CODE_PTR)
1815 {
1816 /* Fortran always passes variable to subroutines as pointer.
1817 So we need to look into its target type to see if it is
1818 array, string or function. If it is, we need to switch
1819 to the target value the original one points to. */
1820 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1821
1822 if (TYPE_CODE (target_type) == TYPE_CODE_ARRAY
1823 || TYPE_CODE (target_type) == TYPE_CODE_STRING
1824 || TYPE_CODE (target_type) == TYPE_CODE_FUNC)
1825 {
1826 arg1 = value_ind (arg1);
1827 type = check_typedef (value_type (arg1));
1828 code = TYPE_CODE (type);
1829 }
1830 }
1831
1832 switch (code)
1833 {
1834 case TYPE_CODE_ARRAY:
1835 if (exp->elts[*pos].opcode == OP_F90_RANGE)
1836 return value_f90_subarray (arg1, exp, pos, noside);
1837 else
1838 goto multi_f77_subscript;
1839
1840 case TYPE_CODE_STRING:
1841 if (exp->elts[*pos].opcode == OP_F90_RANGE)
1842 return value_f90_subarray (arg1, exp, pos, noside);
1843 else
1844 {
1845 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1846 return value_subscript (arg1, value_as_long (arg2));
1847 }
1848
1849 case TYPE_CODE_PTR:
1850 case TYPE_CODE_FUNC:
1851 /* It's a function call. */
1852 /* Allocate arg vector, including space for the function to be
1853 called in argvec[0] and a terminating NULL */
1854 argvec = (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
1855 argvec[0] = arg1;
1856 tem = 1;
1857 for (; tem <= nargs; tem++)
1858 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1859 argvec[tem] = 0; /* signal end of arglist */
1860 goto do_call_it;
1861
1862 default:
1863 error (_("Cannot perform substring on this type"));
1864 }
1865
1866 case OP_COMPLEX:
1867 /* We have a complex number, There should be 2 floating
1868 point numbers that compose it */
1869 (*pos) += 2;
1870 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1871 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1872
1873 return value_literal_complex (arg1, arg2, exp->elts[pc + 1].type);
1874
1875 case STRUCTOP_STRUCT:
1876 tem = longest_to_int (exp->elts[pc + 1].longconst);
1877 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
1878 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1879 if (noside == EVAL_SKIP)
1880 goto nosideret;
1881 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1882 return value_zero (lookup_struct_elt_type (value_type (arg1),
1883 &exp->elts[pc + 2].string,
1884 0),
1885 lval_memory);
1886 else
1887 {
1888 struct value *temp = arg1;
1889
1890 return value_struct_elt (&temp, NULL, &exp->elts[pc + 2].string,
1891 NULL, "structure");
1892 }
1893
1894 case STRUCTOP_PTR:
1895 tem = longest_to_int (exp->elts[pc + 1].longconst);
1896 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
1897 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1898 if (noside == EVAL_SKIP)
1899 goto nosideret;
1900
1901 /* JYG: if print object is on we need to replace the base type
1902 with rtti type in order to continue on with successful
1903 lookup of member / method only available in the rtti type. */
1904 {
1905 struct type *type = value_type (arg1);
1906 struct type *real_type;
1907 int full, top, using_enc;
1908 struct value_print_options opts;
1909
1910 get_user_print_options (&opts);
1911 if (opts.objectprint && TYPE_TARGET_TYPE(type)
1912 && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_CLASS))
1913 {
1914 real_type = value_rtti_target_type (arg1, &full, &top, &using_enc);
1915 if (real_type)
1916 {
1917 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1918 real_type = lookup_pointer_type (real_type);
1919 else
1920 real_type = lookup_reference_type (real_type);
1921
1922 arg1 = value_cast (real_type, arg1);
1923 }
1924 }
1925 }
1926
1927 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1928 return value_zero (lookup_struct_elt_type (value_type (arg1),
1929 &exp->elts[pc + 2].string,
1930 0),
1931 lval_memory);
1932 else
1933 {
1934 struct value *temp = arg1;
1935
1936 return value_struct_elt (&temp, NULL, &exp->elts[pc + 2].string,
1937 NULL, "structure pointer");
1938 }
1939
1940 case STRUCTOP_MEMBER:
1941 case STRUCTOP_MPTR:
1942 if (op == STRUCTOP_MEMBER)
1943 arg1 = evaluate_subexp_for_address (exp, pos, noside);
1944 else
1945 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1946
1947 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1948
1949 if (noside == EVAL_SKIP)
1950 goto nosideret;
1951
1952 type = check_typedef (value_type (arg2));
1953 switch (TYPE_CODE (type))
1954 {
1955 case TYPE_CODE_METHODPTR:
1956 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1957 return value_zero (TYPE_TARGET_TYPE (type), not_lval);
1958 else
1959 {
1960 arg2 = cplus_method_ptr_to_value (&arg1, arg2);
1961 gdb_assert (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR);
1962 return value_ind (arg2);
1963 }
1964
1965 case TYPE_CODE_MEMBERPTR:
1966 /* Now, convert these values to an address. */
1967 arg1 = value_cast (lookup_pointer_type (TYPE_DOMAIN_TYPE (type)),
1968 arg1);
1969
1970 mem_offset = value_as_long (arg2);
1971
1972 arg3 = value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
1973 value_as_long (arg1) + mem_offset);
1974 return value_ind (arg3);
1975
1976 default:
1977 error (_("non-pointer-to-member value used in pointer-to-member construct"));
1978 }
1979
1980 case TYPE_INSTANCE:
1981 nargs = longest_to_int (exp->elts[pc + 1].longconst);
1982 arg_types = (struct type **) alloca (nargs * sizeof (struct type *));
1983 for (ix = 0; ix < nargs; ++ix)
1984 arg_types[ix] = exp->elts[pc + 1 + ix + 1].type;
1985
1986 expect_type = make_params (nargs, arg_types);
1987 *(pos) += 3 + nargs;
1988 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
1989 xfree (TYPE_FIELDS (expect_type));
1990 xfree (TYPE_MAIN_TYPE (expect_type));
1991 xfree (expect_type);
1992 return arg1;
1993
1994 case BINOP_CONCAT:
1995 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
1996 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1997 if (noside == EVAL_SKIP)
1998 goto nosideret;
1999 if (binop_user_defined_p (op, arg1, arg2))
2000 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2001 else
2002 return value_concat (arg1, arg2);
2003
2004 case BINOP_ASSIGN:
2005 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2006 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2007
2008 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2009 return arg1;
2010 if (binop_user_defined_p (op, arg1, arg2))
2011 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2012 else
2013 return value_assign (arg1, arg2);
2014
2015 case BINOP_ASSIGN_MODIFY:
2016 (*pos) += 2;
2017 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2018 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2019 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2020 return arg1;
2021 op = exp->elts[pc + 1].opcode;
2022 if (binop_user_defined_p (op, arg1, arg2))
2023 return value_x_binop (arg1, arg2, BINOP_ASSIGN_MODIFY, op, noside);
2024 else if (op == BINOP_ADD && ptrmath_type_p (exp->language_defn,
2025 value_type (arg1))
2026 && is_integral_type (value_type (arg2)))
2027 arg2 = value_ptradd (arg1, value_as_long (arg2));
2028 else if (op == BINOP_SUB && ptrmath_type_p (exp->language_defn,
2029 value_type (arg1))
2030 && is_integral_type (value_type (arg2)))
2031 arg2 = value_ptradd (arg1, - value_as_long (arg2));
2032 else
2033 {
2034 struct value *tmp = arg1;
2035
2036 /* For shift and integer exponentiation operations,
2037 only promote the first argument. */
2038 if ((op == BINOP_LSH || op == BINOP_RSH || op == BINOP_EXP)
2039 && is_integral_type (value_type (arg2)))
2040 unop_promote (exp->language_defn, exp->gdbarch, &tmp);
2041 else
2042 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2043
2044 arg2 = value_binop (tmp, arg2, op);
2045 }
2046 return value_assign (arg1, arg2);
2047
2048 case BINOP_ADD:
2049 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2050 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2051 if (noside == EVAL_SKIP)
2052 goto nosideret;
2053 if (binop_user_defined_p (op, arg1, arg2))
2054 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2055 else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
2056 && is_integral_type (value_type (arg2)))
2057 return value_ptradd (arg1, value_as_long (arg2));
2058 else if (ptrmath_type_p (exp->language_defn, value_type (arg2))
2059 && is_integral_type (value_type (arg1)))
2060 return value_ptradd (arg2, value_as_long (arg1));
2061 else
2062 {
2063 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2064 return value_binop (arg1, arg2, BINOP_ADD);
2065 }
2066
2067 case BINOP_SUB:
2068 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2069 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2070 if (noside == EVAL_SKIP)
2071 goto nosideret;
2072 if (binop_user_defined_p (op, arg1, arg2))
2073 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2074 else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
2075 && ptrmath_type_p (exp->language_defn, value_type (arg2)))
2076 {
2077 /* FIXME -- should be ptrdiff_t */
2078 type = builtin_type (exp->gdbarch)->builtin_long;
2079 return value_from_longest (type, value_ptrdiff (arg1, arg2));
2080 }
2081 else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
2082 && is_integral_type (value_type (arg2)))
2083 return value_ptradd (arg1, - value_as_long (arg2));
2084 else
2085 {
2086 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2087 return value_binop (arg1, arg2, BINOP_SUB);
2088 }
2089
2090 case BINOP_EXP:
2091 case BINOP_MUL:
2092 case BINOP_DIV:
2093 case BINOP_INTDIV:
2094 case BINOP_REM:
2095 case BINOP_MOD:
2096 case BINOP_LSH:
2097 case BINOP_RSH:
2098 case BINOP_BITWISE_AND:
2099 case BINOP_BITWISE_IOR:
2100 case BINOP_BITWISE_XOR:
2101 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2102 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2103 if (noside == EVAL_SKIP)
2104 goto nosideret;
2105 if (binop_user_defined_p (op, arg1, arg2))
2106 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2107 else
2108 {
2109 /* If EVAL_AVOID_SIDE_EFFECTS and we're dividing by zero,
2110 fudge arg2 to avoid division-by-zero, the caller is
2111 (theoretically) only looking for the type of the result. */
2112 if (noside == EVAL_AVOID_SIDE_EFFECTS
2113 /* ??? Do we really want to test for BINOP_MOD here?
2114 The implementation of value_binop gives it a well-defined
2115 value. */
2116 && (op == BINOP_DIV
2117 || op == BINOP_INTDIV
2118 || op == BINOP_REM
2119 || op == BINOP_MOD)
2120 && value_logical_not (arg2))
2121 {
2122 struct value *v_one, *retval;
2123
2124 v_one = value_one (value_type (arg2), not_lval);
2125 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &v_one);
2126 retval = value_binop (arg1, v_one, op);
2127 return retval;
2128 }
2129 else
2130 {
2131 /* For shift and integer exponentiation operations,
2132 only promote the first argument. */
2133 if ((op == BINOP_LSH || op == BINOP_RSH || op == BINOP_EXP)
2134 && is_integral_type (value_type (arg2)))
2135 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2136 else
2137 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2138
2139 return value_binop (arg1, arg2, op);
2140 }
2141 }
2142
2143 case BINOP_RANGE:
2144 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2145 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2146 if (noside == EVAL_SKIP)
2147 goto nosideret;
2148 error (_("':' operator used in invalid context"));
2149
2150 case BINOP_SUBSCRIPT:
2151 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2152 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2153 if (noside == EVAL_SKIP)
2154 goto nosideret;
2155 if (binop_user_defined_p (op, arg1, arg2))
2156 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2157 else
2158 {
2159 /* If the user attempts to subscript something that is not an
2160 array or pointer type (like a plain int variable for example),
2161 then report this as an error. */
2162
2163 arg1 = coerce_ref (arg1);
2164 type = check_typedef (value_type (arg1));
2165 if (TYPE_CODE (type) != TYPE_CODE_ARRAY
2166 && TYPE_CODE (type) != TYPE_CODE_PTR)
2167 {
2168 if (TYPE_NAME (type))
2169 error (_("cannot subscript something of type `%s'"),
2170 TYPE_NAME (type));
2171 else
2172 error (_("cannot subscript requested type"));
2173 }
2174
2175 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2176 return value_zero (TYPE_TARGET_TYPE (type), VALUE_LVAL (arg1));
2177 else
2178 return value_subscript (arg1, value_as_long (arg2));
2179 }
2180
2181 case BINOP_IN:
2182 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2183 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2184 if (noside == EVAL_SKIP)
2185 goto nosideret;
2186 type = language_bool_type (exp->language_defn, exp->gdbarch);
2187 return value_from_longest (type, (LONGEST) value_in (arg1, arg2));
2188
2189 case MULTI_SUBSCRIPT:
2190 (*pos) += 2;
2191 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2192 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2193 while (nargs-- > 0)
2194 {
2195 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2196 /* FIXME: EVAL_SKIP handling may not be correct. */
2197 if (noside == EVAL_SKIP)
2198 {
2199 if (nargs > 0)
2200 {
2201 continue;
2202 }
2203 else
2204 {
2205 goto nosideret;
2206 }
2207 }
2208 /* FIXME: EVAL_AVOID_SIDE_EFFECTS handling may not be correct. */
2209 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2210 {
2211 /* If the user attempts to subscript something that has no target
2212 type (like a plain int variable for example), then report this
2213 as an error. */
2214
2215 type = TYPE_TARGET_TYPE (check_typedef (value_type (arg1)));
2216 if (type != NULL)
2217 {
2218 arg1 = value_zero (type, VALUE_LVAL (arg1));
2219 noside = EVAL_SKIP;
2220 continue;
2221 }
2222 else
2223 {
2224 error (_("cannot subscript something of type `%s'"),
2225 TYPE_NAME (value_type (arg1)));
2226 }
2227 }
2228
2229 if (binop_user_defined_p (op, arg1, arg2))
2230 {
2231 arg1 = value_x_binop (arg1, arg2, op, OP_NULL, noside);
2232 }
2233 else
2234 {
2235 arg1 = coerce_ref (arg1);
2236 type = check_typedef (value_type (arg1));
2237
2238 switch (TYPE_CODE (type))
2239 {
2240 case TYPE_CODE_PTR:
2241 case TYPE_CODE_ARRAY:
2242 case TYPE_CODE_STRING:
2243 arg1 = value_subscript (arg1, value_as_long (arg2));
2244 break;
2245
2246 case TYPE_CODE_BITSTRING:
2247 type = language_bool_type (exp->language_defn, exp->gdbarch);
2248 arg1 = value_bitstring_subscript (type, arg1,
2249 value_as_long (arg2));
2250 break;
2251
2252 default:
2253 if (TYPE_NAME (type))
2254 error (_("cannot subscript something of type `%s'"),
2255 TYPE_NAME (type));
2256 else
2257 error (_("cannot subscript requested type"));
2258 }
2259 }
2260 }
2261 return (arg1);
2262
2263 multi_f77_subscript:
2264 {
2265 int subscript_array[MAX_FORTRAN_DIMS];
2266 int array_size_array[MAX_FORTRAN_DIMS];
2267 int ndimensions = 1, i;
2268 struct type *tmp_type;
2269 int offset_item; /* The array offset where the item lives */
2270
2271 if (nargs > MAX_FORTRAN_DIMS)
2272 error (_("Too many subscripts for F77 (%d Max)"), MAX_FORTRAN_DIMS);
2273
2274 tmp_type = check_typedef (value_type (arg1));
2275 ndimensions = calc_f77_array_dims (type);
2276
2277 if (nargs != ndimensions)
2278 error (_("Wrong number of subscripts"));
2279
2280 gdb_assert (nargs > 0);
2281
2282 /* Now that we know we have a legal array subscript expression
2283 let us actually find out where this element exists in the array. */
2284
2285 offset_item = 0;
2286 /* Take array indices left to right */
2287 for (i = 0; i < nargs; i++)
2288 {
2289 /* Evaluate each subscript, It must be a legal integer in F77 */
2290 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2291
2292 /* Fill in the subscript and array size arrays */
2293
2294 subscript_array[i] = value_as_long (arg2);
2295 }
2296
2297 /* Internal type of array is arranged right to left */
2298 for (i = 0; i < nargs; i++)
2299 {
2300 upper = f77_get_upperbound (tmp_type);
2301 lower = f77_get_lowerbound (tmp_type);
2302
2303 array_size_array[nargs - i - 1] = upper - lower + 1;
2304
2305 /* Zero-normalize subscripts so that offsetting will work. */
2306
2307 subscript_array[nargs - i - 1] -= lower;
2308
2309 /* If we are at the bottom of a multidimensional
2310 array type then keep a ptr to the last ARRAY
2311 type around for use when calling value_subscript()
2312 below. This is done because we pretend to value_subscript
2313 that we actually have a one-dimensional array
2314 of base element type that we apply a simple
2315 offset to. */
2316
2317 if (i < nargs - 1)
2318 tmp_type = check_typedef (TYPE_TARGET_TYPE (tmp_type));
2319 }
2320
2321 /* Now let us calculate the offset for this item */
2322
2323 offset_item = subscript_array[ndimensions - 1];
2324
2325 for (i = ndimensions - 1; i > 0; --i)
2326 offset_item =
2327 array_size_array[i - 1] * offset_item + subscript_array[i - 1];
2328
2329 /* Let us now play a dirty trick: we will take arg1
2330 which is a value node pointing to the topmost level
2331 of the multidimensional array-set and pretend
2332 that it is actually a array of the final element
2333 type, this will ensure that value_subscript()
2334 returns the correct type value */
2335
2336 deprecated_set_value_type (arg1, tmp_type);
2337 return value_subscripted_rvalue (arg1, offset_item, 0);
2338 }
2339
2340 case BINOP_LOGICAL_AND:
2341 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2342 if (noside == EVAL_SKIP)
2343 {
2344 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2345 goto nosideret;
2346 }
2347
2348 oldpos = *pos;
2349 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2350 *pos = oldpos;
2351
2352 if (binop_user_defined_p (op, arg1, arg2))
2353 {
2354 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2355 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2356 }
2357 else
2358 {
2359 tem = value_logical_not (arg1);
2360 arg2 = evaluate_subexp (NULL_TYPE, exp, pos,
2361 (tem ? EVAL_SKIP : noside));
2362 type = language_bool_type (exp->language_defn, exp->gdbarch);
2363 return value_from_longest (type,
2364 (LONGEST) (!tem && !value_logical_not (arg2)));
2365 }
2366
2367 case BINOP_LOGICAL_OR:
2368 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2369 if (noside == EVAL_SKIP)
2370 {
2371 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2372 goto nosideret;
2373 }
2374
2375 oldpos = *pos;
2376 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2377 *pos = oldpos;
2378
2379 if (binop_user_defined_p (op, arg1, arg2))
2380 {
2381 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2382 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2383 }
2384 else
2385 {
2386 tem = value_logical_not (arg1);
2387 arg2 = evaluate_subexp (NULL_TYPE, exp, pos,
2388 (!tem ? EVAL_SKIP : noside));
2389 type = language_bool_type (exp->language_defn, exp->gdbarch);
2390 return value_from_longest (type,
2391 (LONGEST) (!tem || !value_logical_not (arg2)));
2392 }
2393
2394 case BINOP_EQUAL:
2395 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2396 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2397 if (noside == EVAL_SKIP)
2398 goto nosideret;
2399 if (binop_user_defined_p (op, arg1, arg2))
2400 {
2401 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2402 }
2403 else
2404 {
2405 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2406 tem = value_equal (arg1, arg2);
2407 type = language_bool_type (exp->language_defn, exp->gdbarch);
2408 return value_from_longest (type, (LONGEST) tem);
2409 }
2410
2411 case BINOP_NOTEQUAL:
2412 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2413 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2414 if (noside == EVAL_SKIP)
2415 goto nosideret;
2416 if (binop_user_defined_p (op, arg1, arg2))
2417 {
2418 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2419 }
2420 else
2421 {
2422 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2423 tem = value_equal (arg1, arg2);
2424 type = language_bool_type (exp->language_defn, exp->gdbarch);
2425 return value_from_longest (type, (LONGEST) ! tem);
2426 }
2427
2428 case BINOP_LESS:
2429 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2430 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2431 if (noside == EVAL_SKIP)
2432 goto nosideret;
2433 if (binop_user_defined_p (op, arg1, arg2))
2434 {
2435 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2436 }
2437 else
2438 {
2439 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2440 tem = value_less (arg1, arg2);
2441 type = language_bool_type (exp->language_defn, exp->gdbarch);
2442 return value_from_longest (type, (LONGEST) tem);
2443 }
2444
2445 case BINOP_GTR:
2446 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2447 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2448 if (noside == EVAL_SKIP)
2449 goto nosideret;
2450 if (binop_user_defined_p (op, arg1, arg2))
2451 {
2452 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2453 }
2454 else
2455 {
2456 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2457 tem = value_less (arg2, arg1);
2458 type = language_bool_type (exp->language_defn, exp->gdbarch);
2459 return value_from_longest (type, (LONGEST) tem);
2460 }
2461
2462 case BINOP_GEQ:
2463 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2464 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2465 if (noside == EVAL_SKIP)
2466 goto nosideret;
2467 if (binop_user_defined_p (op, arg1, arg2))
2468 {
2469 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2470 }
2471 else
2472 {
2473 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2474 tem = value_less (arg2, arg1) || value_equal (arg1, arg2);
2475 type = language_bool_type (exp->language_defn, exp->gdbarch);
2476 return value_from_longest (type, (LONGEST) tem);
2477 }
2478
2479 case BINOP_LEQ:
2480 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2481 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2482 if (noside == EVAL_SKIP)
2483 goto nosideret;
2484 if (binop_user_defined_p (op, arg1, arg2))
2485 {
2486 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2487 }
2488 else
2489 {
2490 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2491 tem = value_less (arg1, arg2) || value_equal (arg1, arg2);
2492 type = language_bool_type (exp->language_defn, exp->gdbarch);
2493 return value_from_longest (type, (LONGEST) tem);
2494 }
2495
2496 case BINOP_REPEAT:
2497 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2498 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2499 if (noside == EVAL_SKIP)
2500 goto nosideret;
2501 type = check_typedef (value_type (arg2));
2502 if (TYPE_CODE (type) != TYPE_CODE_INT)
2503 error (_("Non-integral right operand for \"@\" operator."));
2504 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2505 {
2506 return allocate_repeat_value (value_type (arg1),
2507 longest_to_int (value_as_long (arg2)));
2508 }
2509 else
2510 return value_repeat (arg1, longest_to_int (value_as_long (arg2)));
2511
2512 case BINOP_COMMA:
2513 evaluate_subexp (NULL_TYPE, exp, pos, noside);
2514 return evaluate_subexp (NULL_TYPE, exp, pos, noside);
2515
2516 case UNOP_PLUS:
2517 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2518 if (noside == EVAL_SKIP)
2519 goto nosideret;
2520 if (unop_user_defined_p (op, arg1))
2521 return value_x_unop (arg1, op, noside);
2522 else
2523 {
2524 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2525 return value_pos (arg1);
2526 }
2527
2528 case UNOP_NEG:
2529 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2530 if (noside == EVAL_SKIP)
2531 goto nosideret;
2532 if (unop_user_defined_p (op, arg1))
2533 return value_x_unop (arg1, op, noside);
2534 else
2535 {
2536 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2537 return value_neg (arg1);
2538 }
2539
2540 case UNOP_COMPLEMENT:
2541 /* C++: check for and handle destructor names. */
2542 op = exp->elts[*pos].opcode;
2543
2544 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2545 if (noside == EVAL_SKIP)
2546 goto nosideret;
2547 if (unop_user_defined_p (UNOP_COMPLEMENT, arg1))
2548 return value_x_unop (arg1, UNOP_COMPLEMENT, noside);
2549 else
2550 {
2551 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2552 return value_complement (arg1);
2553 }
2554
2555 case UNOP_LOGICAL_NOT:
2556 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2557 if (noside == EVAL_SKIP)
2558 goto nosideret;
2559 if (unop_user_defined_p (op, arg1))
2560 return value_x_unop (arg1, op, noside);
2561 else
2562 {
2563 type = language_bool_type (exp->language_defn, exp->gdbarch);
2564 return value_from_longest (type, (LONGEST) value_logical_not (arg1));
2565 }
2566
2567 case UNOP_IND:
2568 if (expect_type && TYPE_CODE (expect_type) == TYPE_CODE_PTR)
2569 expect_type = TYPE_TARGET_TYPE (check_typedef (expect_type));
2570 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2571 type = check_typedef (value_type (arg1));
2572 if (TYPE_CODE (type) == TYPE_CODE_METHODPTR
2573 || TYPE_CODE (type) == TYPE_CODE_MEMBERPTR)
2574 error (_("Attempt to dereference pointer to member without an object"));
2575 if (noside == EVAL_SKIP)
2576 goto nosideret;
2577 if (unop_user_defined_p (op, arg1))
2578 return value_x_unop (arg1, op, noside);
2579 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2580 {
2581 type = check_typedef (value_type (arg1));
2582 if (TYPE_CODE (type) == TYPE_CODE_PTR
2583 || TYPE_CODE (type) == TYPE_CODE_REF
2584 /* In C you can dereference an array to get the 1st elt. */
2585 || TYPE_CODE (type) == TYPE_CODE_ARRAY
2586 )
2587 return value_zero (TYPE_TARGET_TYPE (type),
2588 lval_memory);
2589 else if (TYPE_CODE (type) == TYPE_CODE_INT)
2590 /* GDB allows dereferencing an int. */
2591 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
2592 lval_memory);
2593 else
2594 error (_("Attempt to take contents of a non-pointer value."));
2595 }
2596
2597 /* Allow * on an integer so we can cast it to whatever we want.
2598 This returns an int, which seems like the most C-like thing to
2599 do. "long long" variables are rare enough that
2600 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
2601 if (TYPE_CODE (type) == TYPE_CODE_INT)
2602 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
2603 (CORE_ADDR) value_as_address (arg1));
2604 return value_ind (arg1);
2605
2606 case UNOP_ADDR:
2607 /* C++: check for and handle pointer to members. */
2608
2609 op = exp->elts[*pos].opcode;
2610
2611 if (noside == EVAL_SKIP)
2612 {
2613 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
2614 goto nosideret;
2615 }
2616 else
2617 {
2618 struct value *retvalp = evaluate_subexp_for_address (exp, pos, noside);
2619
2620 return retvalp;
2621 }
2622
2623 case UNOP_SIZEOF:
2624 if (noside == EVAL_SKIP)
2625 {
2626 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
2627 goto nosideret;
2628 }
2629 return evaluate_subexp_for_sizeof (exp, pos);
2630
2631 case UNOP_CAST:
2632 (*pos) += 2;
2633 type = exp->elts[pc + 1].type;
2634 arg1 = evaluate_subexp (type, exp, pos, noside);
2635 if (noside == EVAL_SKIP)
2636 goto nosideret;
2637 if (type != value_type (arg1))
2638 arg1 = value_cast (type, arg1);
2639 return arg1;
2640
2641 case UNOP_DYNAMIC_CAST:
2642 (*pos) += 2;
2643 type = exp->elts[pc + 1].type;
2644 arg1 = evaluate_subexp (type, exp, pos, noside);
2645 if (noside == EVAL_SKIP)
2646 goto nosideret;
2647 return value_dynamic_cast (type, arg1);
2648
2649 case UNOP_REINTERPRET_CAST:
2650 (*pos) += 2;
2651 type = exp->elts[pc + 1].type;
2652 arg1 = evaluate_subexp (type, exp, pos, noside);
2653 if (noside == EVAL_SKIP)
2654 goto nosideret;
2655 return value_reinterpret_cast (type, arg1);
2656
2657 case UNOP_MEMVAL:
2658 (*pos) += 2;
2659 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2660 if (noside == EVAL_SKIP)
2661 goto nosideret;
2662 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2663 return value_zero (exp->elts[pc + 1].type, lval_memory);
2664 else
2665 return value_at_lazy (exp->elts[pc + 1].type,
2666 value_as_address (arg1));
2667
2668 case UNOP_MEMVAL_TLS:
2669 (*pos) += 3;
2670 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2671 if (noside == EVAL_SKIP)
2672 goto nosideret;
2673 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2674 return value_zero (exp->elts[pc + 2].type, lval_memory);
2675 else
2676 {
2677 CORE_ADDR tls_addr;
2678
2679 tls_addr = target_translate_tls_address (exp->elts[pc + 1].objfile,
2680 value_as_address (arg1));
2681 return value_at_lazy (exp->elts[pc + 2].type, tls_addr);
2682 }
2683
2684 case UNOP_PREINCREMENT:
2685 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2686 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2687 return arg1;
2688 else if (unop_user_defined_p (op, arg1))
2689 {
2690 return value_x_unop (arg1, op, noside);
2691 }
2692 else
2693 {
2694 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2695 arg2 = value_ptradd (arg1, 1);
2696 else
2697 {
2698 struct value *tmp = arg1;
2699
2700 arg2 = value_one (value_type (arg1), not_lval);
2701 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2702 arg2 = value_binop (tmp, arg2, BINOP_ADD);
2703 }
2704
2705 return value_assign (arg1, arg2);
2706 }
2707
2708 case UNOP_PREDECREMENT:
2709 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2710 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2711 return arg1;
2712 else if (unop_user_defined_p (op, arg1))
2713 {
2714 return value_x_unop (arg1, op, noside);
2715 }
2716 else
2717 {
2718 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2719 arg2 = value_ptradd (arg1, -1);
2720 else
2721 {
2722 struct value *tmp = arg1;
2723
2724 arg2 = value_one (value_type (arg1), not_lval);
2725 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2726 arg2 = value_binop (tmp, arg2, BINOP_SUB);
2727 }
2728
2729 return value_assign (arg1, arg2);
2730 }
2731
2732 case UNOP_POSTINCREMENT:
2733 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2734 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2735 return arg1;
2736 else if (unop_user_defined_p (op, arg1))
2737 {
2738 return value_x_unop (arg1, op, noside);
2739 }
2740 else
2741 {
2742 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2743 arg2 = value_ptradd (arg1, 1);
2744 else
2745 {
2746 struct value *tmp = arg1;
2747
2748 arg2 = value_one (value_type (arg1), not_lval);
2749 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2750 arg2 = value_binop (tmp, arg2, BINOP_ADD);
2751 }
2752
2753 value_assign (arg1, arg2);
2754 return arg1;
2755 }
2756
2757 case UNOP_POSTDECREMENT:
2758 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2759 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2760 return arg1;
2761 else if (unop_user_defined_p (op, arg1))
2762 {
2763 return value_x_unop (arg1, op, noside);
2764 }
2765 else
2766 {
2767 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2768 arg2 = value_ptradd (arg1, -1);
2769 else
2770 {
2771 struct value *tmp = arg1;
2772
2773 arg2 = value_one (value_type (arg1), not_lval);
2774 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2775 arg2 = value_binop (tmp, arg2, BINOP_SUB);
2776 }
2777
2778 value_assign (arg1, arg2);
2779 return arg1;
2780 }
2781
2782 case OP_THIS:
2783 (*pos) += 1;
2784 return value_of_this (1);
2785
2786 case OP_OBJC_SELF:
2787 (*pos) += 1;
2788 return value_of_local ("self", 1);
2789
2790 case OP_TYPE:
2791 /* The value is not supposed to be used. This is here to make it
2792 easier to accommodate expressions that contain types. */
2793 (*pos) += 2;
2794 if (noside == EVAL_SKIP)
2795 goto nosideret;
2796 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2797 {
2798 struct type *type = exp->elts[pc + 1].type;
2799
2800 /* If this is a typedef, then find its immediate target. We
2801 use check_typedef to resolve stubs, but we ignore its
2802 result because we do not want to dig past all
2803 typedefs. */
2804 check_typedef (type);
2805 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2806 type = TYPE_TARGET_TYPE (type);
2807 return allocate_value (type);
2808 }
2809 else
2810 error (_("Attempt to use a type name as an expression"));
2811
2812 default:
2813 /* Removing this case and compiling with gcc -Wall reveals that
2814 a lot of cases are hitting this case. Some of these should
2815 probably be removed from expression.h; others are legitimate
2816 expressions which are (apparently) not fully implemented.
2817
2818 If there are any cases landing here which mean a user error,
2819 then they should be separate cases, with more descriptive
2820 error messages. */
2821
2822 error (_("\
2823 GDB does not (yet) know how to evaluate that kind of expression"));
2824 }
2825
2826 nosideret:
2827 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
2828 }
2829 \f
2830 /* Evaluate a subexpression of EXP, at index *POS,
2831 and return the address of that subexpression.
2832 Advance *POS over the subexpression.
2833 If the subexpression isn't an lvalue, get an error.
2834 NOSIDE may be EVAL_AVOID_SIDE_EFFECTS;
2835 then only the type of the result need be correct. */
2836
2837 static struct value *
2838 evaluate_subexp_for_address (struct expression *exp, int *pos,
2839 enum noside noside)
2840 {
2841 enum exp_opcode op;
2842 int pc;
2843 struct symbol *var;
2844 struct value *x;
2845 int tem;
2846
2847 pc = (*pos);
2848 op = exp->elts[pc].opcode;
2849
2850 switch (op)
2851 {
2852 case UNOP_IND:
2853 (*pos)++;
2854 x = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2855
2856 /* We can't optimize out "&*" if there's a user-defined operator*. */
2857 if (unop_user_defined_p (op, x))
2858 {
2859 x = value_x_unop (x, op, noside);
2860 goto default_case_after_eval;
2861 }
2862
2863 return coerce_array (x);
2864
2865 case UNOP_MEMVAL:
2866 (*pos) += 3;
2867 return value_cast (lookup_pointer_type (exp->elts[pc + 1].type),
2868 evaluate_subexp (NULL_TYPE, exp, pos, noside));
2869
2870 case OP_VAR_VALUE:
2871 var = exp->elts[pc + 2].symbol;
2872
2873 /* C++: The "address" of a reference should yield the address
2874 * of the object pointed to. Let value_addr() deal with it. */
2875 if (TYPE_CODE (SYMBOL_TYPE (var)) == TYPE_CODE_REF)
2876 goto default_case;
2877
2878 (*pos) += 4;
2879 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2880 {
2881 struct type *type =
2882 lookup_pointer_type (SYMBOL_TYPE (var));
2883 enum address_class sym_class = SYMBOL_CLASS (var);
2884
2885 if (sym_class == LOC_CONST
2886 || sym_class == LOC_CONST_BYTES
2887 || sym_class == LOC_REGISTER)
2888 error (_("Attempt to take address of register or constant."));
2889
2890 return
2891 value_zero (type, not_lval);
2892 }
2893 else
2894 return address_of_variable (var, exp->elts[pc + 1].block);
2895
2896 case OP_SCOPE:
2897 tem = longest_to_int (exp->elts[pc + 2].longconst);
2898 (*pos) += 5 + BYTES_TO_EXP_ELEM (tem + 1);
2899 x = value_aggregate_elt (exp->elts[pc + 1].type,
2900 &exp->elts[pc + 3].string,
2901 NULL, 1, noside);
2902 if (x == NULL)
2903 error (_("There is no field named %s"), &exp->elts[pc + 3].string);
2904 return x;
2905
2906 default:
2907 default_case:
2908 x = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2909 default_case_after_eval:
2910 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2911 {
2912 struct type *type = check_typedef (value_type (x));
2913
2914 if (VALUE_LVAL (x) == lval_memory || value_must_coerce_to_target (x))
2915 return value_zero (lookup_pointer_type (value_type (x)),
2916 not_lval);
2917 else if (TYPE_CODE (type) == TYPE_CODE_REF)
2918 return value_zero (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2919 not_lval);
2920 else
2921 error (_("Attempt to take address of value not located in memory."));
2922 }
2923 return value_addr (x);
2924 }
2925 }
2926
2927 /* Evaluate like `evaluate_subexp' except coercing arrays to pointers.
2928 When used in contexts where arrays will be coerced anyway, this is
2929 equivalent to `evaluate_subexp' but much faster because it avoids
2930 actually fetching array contents (perhaps obsolete now that we have
2931 value_lazy()).
2932
2933 Note that we currently only do the coercion for C expressions, where
2934 arrays are zero based and the coercion is correct. For other languages,
2935 with nonzero based arrays, coercion loses. Use CAST_IS_CONVERSION
2936 to decide if coercion is appropriate.
2937
2938 */
2939
2940 struct value *
2941 evaluate_subexp_with_coercion (struct expression *exp,
2942 int *pos, enum noside noside)
2943 {
2944 enum exp_opcode op;
2945 int pc;
2946 struct value *val;
2947 struct symbol *var;
2948 struct type *type;
2949
2950 pc = (*pos);
2951 op = exp->elts[pc].opcode;
2952
2953 switch (op)
2954 {
2955 case OP_VAR_VALUE:
2956 var = exp->elts[pc + 2].symbol;
2957 type = check_typedef (SYMBOL_TYPE (var));
2958 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2959 && CAST_IS_CONVERSION (exp->language_defn))
2960 {
2961 (*pos) += 4;
2962 val = address_of_variable (var, exp->elts[pc + 1].block);
2963 return value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2964 val);
2965 }
2966 /* FALLTHROUGH */
2967
2968 default:
2969 return evaluate_subexp (NULL_TYPE, exp, pos, noside);
2970 }
2971 }
2972
2973 /* Evaluate a subexpression of EXP, at index *POS,
2974 and return a value for the size of that subexpression.
2975 Advance *POS over the subexpression. */
2976
2977 static struct value *
2978 evaluate_subexp_for_sizeof (struct expression *exp, int *pos)
2979 {
2980 /* FIXME: This should be size_t. */
2981 struct type *size_type = builtin_type (exp->gdbarch)->builtin_int;
2982 enum exp_opcode op;
2983 int pc;
2984 struct type *type;
2985 struct value *val;
2986
2987 pc = (*pos);
2988 op = exp->elts[pc].opcode;
2989
2990 switch (op)
2991 {
2992 /* This case is handled specially
2993 so that we avoid creating a value for the result type.
2994 If the result type is very big, it's desirable not to
2995 create a value unnecessarily. */
2996 case UNOP_IND:
2997 (*pos)++;
2998 val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2999 type = check_typedef (value_type (val));
3000 if (TYPE_CODE (type) != TYPE_CODE_PTR
3001 && TYPE_CODE (type) != TYPE_CODE_REF
3002 && TYPE_CODE (type) != TYPE_CODE_ARRAY)
3003 error (_("Attempt to take contents of a non-pointer value."));
3004 type = check_typedef (TYPE_TARGET_TYPE (type));
3005 return value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
3006
3007 case UNOP_MEMVAL:
3008 (*pos) += 3;
3009 type = check_typedef (exp->elts[pc + 1].type);
3010 return value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
3011
3012 case OP_VAR_VALUE:
3013 (*pos) += 4;
3014 type = check_typedef (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
3015 return
3016 value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
3017
3018 default:
3019 val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3020 return value_from_longest (size_type,
3021 (LONGEST) TYPE_LENGTH (value_type (val)));
3022 }
3023 }
3024
3025 /* Parse a type expression in the string [P..P+LENGTH). */
3026
3027 struct type *
3028 parse_and_eval_type (char *p, int length)
3029 {
3030 char *tmp = (char *) alloca (length + 4);
3031 struct expression *expr;
3032
3033 tmp[0] = '(';
3034 memcpy (tmp + 1, p, length);
3035 tmp[length + 1] = ')';
3036 tmp[length + 2] = '0';
3037 tmp[length + 3] = '\0';
3038 expr = parse_expression (tmp);
3039 if (expr->elts[0].opcode != UNOP_CAST)
3040 error (_("Internal error in eval_type."));
3041 return expr->elts[1].type;
3042 }
3043
3044 int
3045 calc_f77_array_dims (struct type *array_type)
3046 {
3047 int ndimen = 1;
3048 struct type *tmp_type;
3049
3050 if ((TYPE_CODE (array_type) != TYPE_CODE_ARRAY))
3051 error (_("Can't get dimensions for a non-array type"));
3052
3053 tmp_type = array_type;
3054
3055 while ((tmp_type = TYPE_TARGET_TYPE (tmp_type)))
3056 {
3057 if (TYPE_CODE (tmp_type) == TYPE_CODE_ARRAY)
3058 ++ndimen;
3059 }
3060 return ndimen;
3061 }