ee7712281024e6d4c29fbe9d2841ec9d2108c037
[binutils-gdb.git] / gdb / eval.c
1 /* Evaluate expressions for GDB.
2
3 Copyright (C) 1986-2021 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "value.h"
24 #include "expression.h"
25 #include "target.h"
26 #include "frame.h"
27 #include "gdbthread.h"
28 #include "language.h" /* For CAST_IS_CONVERSION. */
29 #include "cp-abi.h"
30 #include "infcall.h"
31 #include "objc-lang.h"
32 #include "block.h"
33 #include "parser-defs.h"
34 #include "cp-support.h"
35 #include "ui-out.h"
36 #include "regcache.h"
37 #include "user-regs.h"
38 #include "valprint.h"
39 #include "gdb_obstack.h"
40 #include "objfiles.h"
41 #include "typeprint.h"
42 #include <ctype.h>
43
44 /* Prototypes for local functions. */
45
46 static struct value *evaluate_subexp_for_sizeof (struct expression *, int *,
47 enum noside);
48
49 static struct value *evaluate_subexp_for_address (struct expression *,
50 int *, enum noside);
51
52 static value *evaluate_subexp_for_cast (expression *exp, int *pos,
53 enum noside noside,
54 struct type *type);
55
56 static struct value *evaluate_struct_tuple (struct value *,
57 struct expression *, int *,
58 enum noside, int);
59
60 struct value *
61 evaluate_subexp (struct type *expect_type, struct expression *exp,
62 int *pos, enum noside noside)
63 {
64 return ((*exp->language_defn->expression_ops ()->evaluate_exp)
65 (expect_type, exp, pos, noside));
66 }
67 \f
68 /* Parse the string EXP as a C expression, evaluate it,
69 and return the result as a number. */
70
71 CORE_ADDR
72 parse_and_eval_address (const char *exp)
73 {
74 expression_up expr = parse_expression (exp);
75
76 return value_as_address (evaluate_expression (expr.get ()));
77 }
78
79 /* Like parse_and_eval_address, but treats the value of the expression
80 as an integer, not an address, returns a LONGEST, not a CORE_ADDR. */
81 LONGEST
82 parse_and_eval_long (const char *exp)
83 {
84 expression_up expr = parse_expression (exp);
85
86 return value_as_long (evaluate_expression (expr.get ()));
87 }
88
89 struct value *
90 parse_and_eval (const char *exp)
91 {
92 expression_up expr = parse_expression (exp);
93
94 return evaluate_expression (expr.get ());
95 }
96
97 /* Parse up to a comma (or to a closeparen)
98 in the string EXPP as an expression, evaluate it, and return the value.
99 EXPP is advanced to point to the comma. */
100
101 struct value *
102 parse_to_comma_and_eval (const char **expp)
103 {
104 expression_up expr = parse_exp_1 (expp, 0, nullptr, 1);
105
106 return evaluate_expression (expr.get ());
107 }
108 \f
109
110 /* See expression.h. */
111
112 struct value *
113 expression::evaluate (struct type *expect_type, enum noside noside)
114 {
115 gdb::optional<enable_thread_stack_temporaries> stack_temporaries;
116 if (target_has_execution ()
117 && language_defn->la_language == language_cplus
118 && !thread_stack_temporaries_enabled_p (inferior_thread ()))
119 stack_temporaries.emplace (inferior_thread ());
120
121 int pos = 0;
122 struct value *retval = evaluate_subexp (expect_type, this, &pos, noside);
123
124 if (stack_temporaries.has_value ()
125 && value_in_thread_stack_temporaries (retval, inferior_thread ()))
126 retval = value_non_lval (retval);
127
128 return retval;
129 }
130
131 /* See value.h. */
132
133 struct value *
134 evaluate_expression (struct expression *exp, struct type *expect_type)
135 {
136 return exp->evaluate (expect_type, EVAL_NORMAL);
137 }
138
139 /* Evaluate an expression, avoiding all memory references
140 and getting a value whose type alone is correct. */
141
142 struct value *
143 evaluate_type (struct expression *exp)
144 {
145 return exp->evaluate (nullptr, EVAL_AVOID_SIDE_EFFECTS);
146 }
147
148 /* Evaluate a subexpression, avoiding all memory references and
149 getting a value whose type alone is correct. */
150
151 struct value *
152 evaluate_subexpression_type (struct expression *exp, int subexp)
153 {
154 return evaluate_subexp (nullptr, exp, &subexp, EVAL_AVOID_SIDE_EFFECTS);
155 }
156
157 /* Find the current value of a watchpoint on EXP. Return the value in
158 *VALP and *RESULTP and the chain of intermediate and final values
159 in *VAL_CHAIN. RESULTP and VAL_CHAIN may be NULL if the caller does
160 not need them.
161
162 If PRESERVE_ERRORS is true, then exceptions are passed through.
163 Otherwise, if PRESERVE_ERRORS is false, then if a memory error
164 occurs while evaluating the expression, *RESULTP will be set to
165 NULL. *RESULTP may be a lazy value, if the result could not be
166 read from memory. It is used to determine whether a value is
167 user-specified (we should watch the whole value) or intermediate
168 (we should watch only the bit used to locate the final value).
169
170 If the final value, or any intermediate value, could not be read
171 from memory, *VALP will be set to NULL. *VAL_CHAIN will still be
172 set to any referenced values. *VALP will never be a lazy value.
173 This is the value which we store in struct breakpoint.
174
175 If VAL_CHAIN is non-NULL, the values put into *VAL_CHAIN will be
176 released from the value chain. If VAL_CHAIN is NULL, all generated
177 values will be left on the value chain. */
178
179 void
180 fetch_subexp_value (struct expression *exp, int *pc, struct value **valp,
181 struct value **resultp,
182 std::vector<value_ref_ptr> *val_chain,
183 bool preserve_errors)
184 {
185 struct value *mark, *new_mark, *result;
186
187 *valp = NULL;
188 if (resultp)
189 *resultp = NULL;
190 if (val_chain)
191 val_chain->clear ();
192
193 /* Evaluate the expression. */
194 mark = value_mark ();
195 result = NULL;
196
197 try
198 {
199 result = evaluate_subexp (nullptr, exp, pc, EVAL_NORMAL);
200 }
201 catch (const gdb_exception &ex)
202 {
203 /* Ignore memory errors if we want watchpoints pointing at
204 inaccessible memory to still be created; otherwise, throw the
205 error to some higher catcher. */
206 switch (ex.error)
207 {
208 case MEMORY_ERROR:
209 if (!preserve_errors)
210 break;
211 /* Fall through. */
212 default:
213 throw;
214 break;
215 }
216 }
217
218 new_mark = value_mark ();
219 if (mark == new_mark)
220 return;
221 if (resultp)
222 *resultp = result;
223
224 /* Make sure it's not lazy, so that after the target stops again we
225 have a non-lazy previous value to compare with. */
226 if (result != NULL)
227 {
228 if (!value_lazy (result))
229 *valp = result;
230 else
231 {
232
233 try
234 {
235 value_fetch_lazy (result);
236 *valp = result;
237 }
238 catch (const gdb_exception_error &except)
239 {
240 }
241 }
242 }
243
244 if (val_chain)
245 {
246 /* Return the chain of intermediate values. We use this to
247 decide which addresses to watch. */
248 *val_chain = value_release_to_mark (mark);
249 }
250 }
251
252 /* Extract a field operation from an expression. If the subexpression
253 of EXP starting at *SUBEXP is not a structure dereference
254 operation, return NULL. Otherwise, return the name of the
255 dereferenced field, and advance *SUBEXP to point to the
256 subexpression of the left-hand-side of the dereference. This is
257 used when completing field names. */
258
259 const char *
260 extract_field_op (struct expression *exp, int *subexp)
261 {
262 int tem;
263 char *result;
264
265 if (exp->elts[*subexp].opcode != STRUCTOP_STRUCT
266 && exp->elts[*subexp].opcode != STRUCTOP_PTR)
267 return NULL;
268 tem = longest_to_int (exp->elts[*subexp + 1].longconst);
269 result = &exp->elts[*subexp + 2].string;
270 (*subexp) += 1 + 3 + BYTES_TO_EXP_ELEM (tem + 1);
271 return result;
272 }
273
274 /* This function evaluates brace-initializers (in C/C++) for
275 structure types. */
276
277 static struct value *
278 evaluate_struct_tuple (struct value *struct_val,
279 struct expression *exp,
280 int *pos, enum noside noside, int nargs)
281 {
282 struct type *struct_type = check_typedef (value_type (struct_val));
283 struct type *field_type;
284 int fieldno = -1;
285
286 while (--nargs >= 0)
287 {
288 struct value *val = NULL;
289 int bitpos, bitsize;
290 bfd_byte *addr;
291
292 fieldno++;
293 /* Skip static fields. */
294 while (fieldno < struct_type->num_fields ()
295 && field_is_static (&struct_type->field (fieldno)))
296 fieldno++;
297 if (fieldno >= struct_type->num_fields ())
298 error (_("too many initializers"));
299 field_type = struct_type->field (fieldno).type ();
300 if (field_type->code () == TYPE_CODE_UNION
301 && TYPE_FIELD_NAME (struct_type, fieldno)[0] == '0')
302 error (_("don't know which variant you want to set"));
303
304 /* Here, struct_type is the type of the inner struct,
305 while substruct_type is the type of the inner struct.
306 These are the same for normal structures, but a variant struct
307 contains anonymous union fields that contain substruct fields.
308 The value fieldno is the index of the top-level (normal or
309 anonymous union) field in struct_field, while the value
310 subfieldno is the index of the actual real (named inner) field
311 in substruct_type. */
312
313 field_type = struct_type->field (fieldno).type ();
314 if (val == 0)
315 val = evaluate_subexp (field_type, exp, pos, noside);
316
317 /* Now actually set the field in struct_val. */
318
319 /* Assign val to field fieldno. */
320 if (value_type (val) != field_type)
321 val = value_cast (field_type, val);
322
323 bitsize = TYPE_FIELD_BITSIZE (struct_type, fieldno);
324 bitpos = TYPE_FIELD_BITPOS (struct_type, fieldno);
325 addr = value_contents_writeable (struct_val) + bitpos / 8;
326 if (bitsize)
327 modify_field (struct_type, addr,
328 value_as_long (val), bitpos % 8, bitsize);
329 else
330 memcpy (addr, value_contents (val),
331 TYPE_LENGTH (value_type (val)));
332
333 }
334 return struct_val;
335 }
336
337 /* Promote value ARG1 as appropriate before performing a unary operation
338 on this argument.
339 If the result is not appropriate for any particular language then it
340 needs to patch this function. */
341
342 void
343 unop_promote (const struct language_defn *language, struct gdbarch *gdbarch,
344 struct value **arg1)
345 {
346 struct type *type1;
347
348 *arg1 = coerce_ref (*arg1);
349 type1 = check_typedef (value_type (*arg1));
350
351 if (is_integral_type (type1))
352 {
353 switch (language->la_language)
354 {
355 default:
356 /* Perform integral promotion for ANSI C/C++.
357 If not appropriate for any particular language
358 it needs to modify this function. */
359 {
360 struct type *builtin_int = builtin_type (gdbarch)->builtin_int;
361
362 if (TYPE_LENGTH (type1) < TYPE_LENGTH (builtin_int))
363 *arg1 = value_cast (builtin_int, *arg1);
364 }
365 break;
366 }
367 }
368 }
369
370 /* Promote values ARG1 and ARG2 as appropriate before performing a binary
371 operation on those two operands.
372 If the result is not appropriate for any particular language then it
373 needs to patch this function. */
374
375 void
376 binop_promote (const struct language_defn *language, struct gdbarch *gdbarch,
377 struct value **arg1, struct value **arg2)
378 {
379 struct type *promoted_type = NULL;
380 struct type *type1;
381 struct type *type2;
382
383 *arg1 = coerce_ref (*arg1);
384 *arg2 = coerce_ref (*arg2);
385
386 type1 = check_typedef (value_type (*arg1));
387 type2 = check_typedef (value_type (*arg2));
388
389 if ((type1->code () != TYPE_CODE_FLT
390 && type1->code () != TYPE_CODE_DECFLOAT
391 && !is_integral_type (type1))
392 || (type2->code () != TYPE_CODE_FLT
393 && type2->code () != TYPE_CODE_DECFLOAT
394 && !is_integral_type (type2)))
395 return;
396
397 if (is_fixed_point_type (type1) || is_fixed_point_type (type2))
398 return;
399
400 if (type1->code () == TYPE_CODE_DECFLOAT
401 || type2->code () == TYPE_CODE_DECFLOAT)
402 {
403 /* No promotion required. */
404 }
405 else if (type1->code () == TYPE_CODE_FLT
406 || type2->code () == TYPE_CODE_FLT)
407 {
408 switch (language->la_language)
409 {
410 case language_c:
411 case language_cplus:
412 case language_asm:
413 case language_objc:
414 case language_opencl:
415 /* No promotion required. */
416 break;
417
418 default:
419 /* For other languages the result type is unchanged from gdb
420 version 6.7 for backward compatibility.
421 If either arg was long double, make sure that value is also long
422 double. Otherwise use double. */
423 if (TYPE_LENGTH (type1) * 8 > gdbarch_double_bit (gdbarch)
424 || TYPE_LENGTH (type2) * 8 > gdbarch_double_bit (gdbarch))
425 promoted_type = builtin_type (gdbarch)->builtin_long_double;
426 else
427 promoted_type = builtin_type (gdbarch)->builtin_double;
428 break;
429 }
430 }
431 else if (type1->code () == TYPE_CODE_BOOL
432 && type2->code () == TYPE_CODE_BOOL)
433 {
434 /* No promotion required. */
435 }
436 else
437 /* Integral operations here. */
438 /* FIXME: Also mixed integral/booleans, with result an integer. */
439 {
440 const struct builtin_type *builtin = builtin_type (gdbarch);
441 unsigned int promoted_len1 = TYPE_LENGTH (type1);
442 unsigned int promoted_len2 = TYPE_LENGTH (type2);
443 int is_unsigned1 = type1->is_unsigned ();
444 int is_unsigned2 = type2->is_unsigned ();
445 unsigned int result_len;
446 int unsigned_operation;
447
448 /* Determine type length and signedness after promotion for
449 both operands. */
450 if (promoted_len1 < TYPE_LENGTH (builtin->builtin_int))
451 {
452 is_unsigned1 = 0;
453 promoted_len1 = TYPE_LENGTH (builtin->builtin_int);
454 }
455 if (promoted_len2 < TYPE_LENGTH (builtin->builtin_int))
456 {
457 is_unsigned2 = 0;
458 promoted_len2 = TYPE_LENGTH (builtin->builtin_int);
459 }
460
461 if (promoted_len1 > promoted_len2)
462 {
463 unsigned_operation = is_unsigned1;
464 result_len = promoted_len1;
465 }
466 else if (promoted_len2 > promoted_len1)
467 {
468 unsigned_operation = is_unsigned2;
469 result_len = promoted_len2;
470 }
471 else
472 {
473 unsigned_operation = is_unsigned1 || is_unsigned2;
474 result_len = promoted_len1;
475 }
476
477 switch (language->la_language)
478 {
479 case language_c:
480 case language_cplus:
481 case language_asm:
482 case language_objc:
483 if (result_len <= TYPE_LENGTH (builtin->builtin_int))
484 {
485 promoted_type = (unsigned_operation
486 ? builtin->builtin_unsigned_int
487 : builtin->builtin_int);
488 }
489 else if (result_len <= TYPE_LENGTH (builtin->builtin_long))
490 {
491 promoted_type = (unsigned_operation
492 ? builtin->builtin_unsigned_long
493 : builtin->builtin_long);
494 }
495 else
496 {
497 promoted_type = (unsigned_operation
498 ? builtin->builtin_unsigned_long_long
499 : builtin->builtin_long_long);
500 }
501 break;
502 case language_opencl:
503 if (result_len <= TYPE_LENGTH (lookup_signed_typename
504 (language, "int")))
505 {
506 promoted_type =
507 (unsigned_operation
508 ? lookup_unsigned_typename (language, "int")
509 : lookup_signed_typename (language, "int"));
510 }
511 else if (result_len <= TYPE_LENGTH (lookup_signed_typename
512 (language, "long")))
513 {
514 promoted_type =
515 (unsigned_operation
516 ? lookup_unsigned_typename (language, "long")
517 : lookup_signed_typename (language,"long"));
518 }
519 break;
520 default:
521 /* For other languages the result type is unchanged from gdb
522 version 6.7 for backward compatibility.
523 If either arg was long long, make sure that value is also long
524 long. Otherwise use long. */
525 if (unsigned_operation)
526 {
527 if (result_len > gdbarch_long_bit (gdbarch) / HOST_CHAR_BIT)
528 promoted_type = builtin->builtin_unsigned_long_long;
529 else
530 promoted_type = builtin->builtin_unsigned_long;
531 }
532 else
533 {
534 if (result_len > gdbarch_long_bit (gdbarch) / HOST_CHAR_BIT)
535 promoted_type = builtin->builtin_long_long;
536 else
537 promoted_type = builtin->builtin_long;
538 }
539 break;
540 }
541 }
542
543 if (promoted_type)
544 {
545 /* Promote both operands to common type. */
546 *arg1 = value_cast (promoted_type, *arg1);
547 *arg2 = value_cast (promoted_type, *arg2);
548 }
549 }
550
551 static int
552 ptrmath_type_p (const struct language_defn *lang, struct type *type)
553 {
554 type = check_typedef (type);
555 if (TYPE_IS_REFERENCE (type))
556 type = TYPE_TARGET_TYPE (type);
557
558 switch (type->code ())
559 {
560 case TYPE_CODE_PTR:
561 case TYPE_CODE_FUNC:
562 return 1;
563
564 case TYPE_CODE_ARRAY:
565 return type->is_vector () ? 0 : lang->c_style_arrays_p ();
566
567 default:
568 return 0;
569 }
570 }
571
572 /* Represents a fake method with the given parameter types. This is
573 used by the parser to construct a temporary "expected" type for
574 method overload resolution. FLAGS is used as instance flags of the
575 new type, in order to be able to make the new type represent a
576 const/volatile overload. */
577
578 class fake_method
579 {
580 public:
581 fake_method (type_instance_flags flags,
582 int num_types, struct type **param_types);
583 ~fake_method ();
584
585 /* The constructed type. */
586 struct type *type () { return &m_type; }
587
588 private:
589 struct type m_type {};
590 main_type m_main_type {};
591 };
592
593 fake_method::fake_method (type_instance_flags flags,
594 int num_types, struct type **param_types)
595 {
596 struct type *type = &m_type;
597
598 TYPE_MAIN_TYPE (type) = &m_main_type;
599 TYPE_LENGTH (type) = 1;
600 type->set_code (TYPE_CODE_METHOD);
601 TYPE_CHAIN (type) = type;
602 type->set_instance_flags (flags);
603 if (num_types > 0)
604 {
605 if (param_types[num_types - 1] == NULL)
606 {
607 --num_types;
608 type->set_has_varargs (true);
609 }
610 else if (check_typedef (param_types[num_types - 1])->code ()
611 == TYPE_CODE_VOID)
612 {
613 --num_types;
614 /* Caller should have ensured this. */
615 gdb_assert (num_types == 0);
616 type->set_is_prototyped (true);
617 }
618 }
619
620 /* We don't use TYPE_ZALLOC here to allocate space as TYPE is owned by
621 neither an objfile nor a gdbarch. As a result we must manually
622 allocate memory for auxiliary fields, and free the memory ourselves
623 when we are done with it. */
624 type->set_num_fields (num_types);
625 type->set_fields
626 ((struct field *) xzalloc (sizeof (struct field) * num_types));
627
628 while (num_types-- > 0)
629 type->field (num_types).set_type (param_types[num_types]);
630 }
631
632 fake_method::~fake_method ()
633 {
634 xfree (m_type.fields ());
635 }
636
637 /* Helper for evaluating an OP_VAR_VALUE. */
638
639 value *
640 evaluate_var_value (enum noside noside, const block *blk, symbol *var)
641 {
642 /* JYG: We used to just return value_zero of the symbol type if
643 we're asked to avoid side effects. Otherwise we return
644 value_of_variable (...). However I'm not sure if
645 value_of_variable () has any side effect. We need a full value
646 object returned here for whatis_exp () to call evaluate_type ()
647 and then pass the full value to value_rtti_target_type () if we
648 are dealing with a pointer or reference to a base class and print
649 object is on. */
650
651 struct value *ret = NULL;
652
653 try
654 {
655 ret = value_of_variable (var, blk);
656 }
657
658 catch (const gdb_exception_error &except)
659 {
660 if (noside != EVAL_AVOID_SIDE_EFFECTS)
661 throw;
662
663 ret = value_zero (SYMBOL_TYPE (var), not_lval);
664 }
665
666 return ret;
667 }
668
669 /* Helper for evaluating an OP_VAR_MSYM_VALUE. */
670
671 value *
672 evaluate_var_msym_value (enum noside noside,
673 struct objfile *objfile, minimal_symbol *msymbol)
674 {
675 CORE_ADDR address;
676 type *the_type = find_minsym_type_and_address (msymbol, objfile, &address);
677
678 if (noside == EVAL_AVOID_SIDE_EFFECTS && !the_type->is_gnu_ifunc ())
679 return value_zero (the_type, not_lval);
680 else
681 return value_at_lazy (the_type, address);
682 }
683
684 /* Helper for returning a value when handling EVAL_SKIP. */
685
686 value *
687 eval_skip_value (expression *exp)
688 {
689 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
690 }
691
692 /* See expression.h. */
693
694 value *
695 evaluate_subexp_do_call (expression *exp, enum noside noside,
696 value *callee,
697 gdb::array_view<value *> argvec,
698 const char *function_name,
699 type *default_return_type)
700 {
701 if (callee == NULL)
702 error (_("Cannot evaluate function -- may be inlined"));
703 if (noside == EVAL_AVOID_SIDE_EFFECTS)
704 {
705 /* If the return type doesn't look like a function type,
706 call an error. This can happen if somebody tries to turn
707 a variable into a function call. */
708
709 type *ftype = value_type (callee);
710
711 if (ftype->code () == TYPE_CODE_INTERNAL_FUNCTION)
712 {
713 /* We don't know anything about what the internal
714 function might return, but we have to return
715 something. */
716 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
717 not_lval);
718 }
719 else if (ftype->code () == TYPE_CODE_XMETHOD)
720 {
721 type *return_type = result_type_of_xmethod (callee, argvec);
722
723 if (return_type == NULL)
724 error (_("Xmethod is missing return type."));
725 return value_zero (return_type, not_lval);
726 }
727 else if (ftype->code () == TYPE_CODE_FUNC
728 || ftype->code () == TYPE_CODE_METHOD)
729 {
730 if (ftype->is_gnu_ifunc ())
731 {
732 CORE_ADDR address = value_address (callee);
733 type *resolved_type = find_gnu_ifunc_target_type (address);
734
735 if (resolved_type != NULL)
736 ftype = resolved_type;
737 }
738
739 type *return_type = TYPE_TARGET_TYPE (ftype);
740
741 if (return_type == NULL)
742 return_type = default_return_type;
743
744 if (return_type == NULL)
745 error_call_unknown_return_type (function_name);
746
747 return allocate_value (return_type);
748 }
749 else
750 error (_("Expression of type other than "
751 "\"Function returning ...\" used as function"));
752 }
753 switch (value_type (callee)->code ())
754 {
755 case TYPE_CODE_INTERNAL_FUNCTION:
756 return call_internal_function (exp->gdbarch, exp->language_defn,
757 callee, argvec.size (), argvec.data ());
758 case TYPE_CODE_XMETHOD:
759 return call_xmethod (callee, argvec);
760 default:
761 return call_function_by_hand (callee, default_return_type, argvec);
762 }
763 }
764
765 /* Helper for evaluating an OP_FUNCALL. */
766
767 static value *
768 evaluate_funcall (type *expect_type, expression *exp, int *pos,
769 enum noside noside)
770 {
771 int tem;
772 int pc2 = 0;
773 value *arg1 = NULL;
774 value *arg2 = NULL;
775 int save_pos1;
776 symbol *function = NULL;
777 char *function_name = NULL;
778 const char *var_func_name = NULL;
779
780 int pc = (*pos);
781 (*pos) += 2;
782
783 exp_opcode op = exp->elts[*pos].opcode;
784 int nargs = longest_to_int (exp->elts[pc].longconst);
785 /* Allocate arg vector, including space for the function to be
786 called in argvec[0], a potential `this', and a terminating
787 NULL. */
788 value **argvec = (value **) alloca (sizeof (value *) * (nargs + 3));
789 if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR)
790 {
791 /* First, evaluate the structure into arg2. */
792 pc2 = (*pos)++;
793
794 if (op == STRUCTOP_MEMBER)
795 {
796 arg2 = evaluate_subexp_for_address (exp, pos, noside);
797 }
798 else
799 {
800 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
801 }
802
803 /* If the function is a virtual function, then the aggregate
804 value (providing the structure) plays its part by providing
805 the vtable. Otherwise, it is just along for the ride: call
806 the function directly. */
807
808 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
809
810 type *a1_type = check_typedef (value_type (arg1));
811 if (noside == EVAL_SKIP)
812 tem = 1; /* Set it to the right arg index so that all
813 arguments can also be skipped. */
814 else if (a1_type->code () == TYPE_CODE_METHODPTR)
815 {
816 if (noside == EVAL_AVOID_SIDE_EFFECTS)
817 arg1 = value_zero (TYPE_TARGET_TYPE (a1_type), not_lval);
818 else
819 arg1 = cplus_method_ptr_to_value (&arg2, arg1);
820
821 /* Now, say which argument to start evaluating from. */
822 nargs++;
823 tem = 2;
824 argvec[1] = arg2;
825 }
826 else if (a1_type->code () == TYPE_CODE_MEMBERPTR)
827 {
828 struct type *type_ptr
829 = lookup_pointer_type (TYPE_SELF_TYPE (a1_type));
830 struct type *target_type_ptr
831 = lookup_pointer_type (TYPE_TARGET_TYPE (a1_type));
832
833 /* Now, convert these values to an address. */
834 arg2 = value_cast (type_ptr, arg2);
835
836 long mem_offset = value_as_long (arg1);
837
838 arg1 = value_from_pointer (target_type_ptr,
839 value_as_long (arg2) + mem_offset);
840 arg1 = value_ind (arg1);
841 tem = 1;
842 }
843 else
844 error (_("Non-pointer-to-member value used in pointer-to-member "
845 "construct"));
846 }
847 else if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR)
848 {
849 /* Hair for method invocations. */
850 int tem2;
851
852 nargs++;
853 /* First, evaluate the structure into arg2. */
854 pc2 = (*pos)++;
855 tem2 = longest_to_int (exp->elts[pc2 + 1].longconst);
856 *pos += 3 + BYTES_TO_EXP_ELEM (tem2 + 1);
857
858 if (op == STRUCTOP_STRUCT)
859 {
860 /* If v is a variable in a register, and the user types
861 v.method (), this will produce an error, because v has no
862 address.
863
864 A possible way around this would be to allocate a copy of
865 the variable on the stack, copy in the contents, call the
866 function, and copy out the contents. I.e. convert this
867 from call by reference to call by copy-return (or
868 whatever it's called). However, this does not work
869 because it is not the same: the method being called could
870 stash a copy of the address, and then future uses through
871 that address (after the method returns) would be expected
872 to use the variable itself, not some copy of it. */
873 arg2 = evaluate_subexp_for_address (exp, pos, noside);
874 }
875 else
876 {
877 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
878
879 /* Check to see if the operator '->' has been overloaded.
880 If the operator has been overloaded replace arg2 with the
881 value returned by the custom operator and continue
882 evaluation. */
883 while (unop_user_defined_p (op, arg2))
884 {
885 struct value *value = NULL;
886 try
887 {
888 value = value_x_unop (arg2, op, noside);
889 }
890
891 catch (const gdb_exception_error &except)
892 {
893 if (except.error == NOT_FOUND_ERROR)
894 break;
895 else
896 throw;
897 }
898
899 arg2 = value;
900 }
901 }
902 /* Now, say which argument to start evaluating from. */
903 tem = 2;
904 }
905 else if (op == OP_SCOPE
906 && overload_resolution
907 && (exp->language_defn->la_language == language_cplus))
908 {
909 /* Unpack it locally so we can properly handle overload
910 resolution. */
911 char *name;
912 int local_tem;
913
914 pc2 = (*pos)++;
915 local_tem = longest_to_int (exp->elts[pc2 + 2].longconst);
916 (*pos) += 4 + BYTES_TO_EXP_ELEM (local_tem + 1);
917 struct type *type = exp->elts[pc2 + 1].type;
918 name = &exp->elts[pc2 + 3].string;
919
920 function = NULL;
921 function_name = NULL;
922 if (type->code () == TYPE_CODE_NAMESPACE)
923 {
924 function = cp_lookup_symbol_namespace (type->name (),
925 name,
926 get_selected_block (0),
927 VAR_DOMAIN).symbol;
928 if (function == NULL)
929 error (_("No symbol \"%s\" in namespace \"%s\"."),
930 name, type->name ());
931
932 tem = 1;
933 /* arg2 is left as NULL on purpose. */
934 }
935 else
936 {
937 gdb_assert (type->code () == TYPE_CODE_STRUCT
938 || type->code () == TYPE_CODE_UNION);
939 function_name = name;
940
941 /* We need a properly typed value for method lookup. For
942 static methods arg2 is otherwise unused. */
943 arg2 = value_zero (type, lval_memory);
944 ++nargs;
945 tem = 2;
946 }
947 }
948 else if (op == OP_ADL_FUNC)
949 {
950 /* Save the function position and move pos so that the arguments
951 can be evaluated. */
952 int func_name_len;
953
954 save_pos1 = *pos;
955 tem = 1;
956
957 func_name_len = longest_to_int (exp->elts[save_pos1 + 3].longconst);
958 (*pos) += 6 + BYTES_TO_EXP_ELEM (func_name_len + 1);
959 }
960 else
961 {
962 /* Non-method function call. */
963 save_pos1 = *pos;
964 tem = 1;
965
966 /* If this is a C++ function wait until overload resolution. */
967 if (op == OP_VAR_VALUE
968 && overload_resolution
969 && (exp->language_defn->la_language == language_cplus))
970 {
971 (*pos) += 4; /* Skip the evaluation of the symbol. */
972 argvec[0] = NULL;
973 }
974 else
975 {
976 if (op == OP_VAR_MSYM_VALUE)
977 {
978 minimal_symbol *msym = exp->elts[*pos + 2].msymbol;
979 var_func_name = msym->print_name ();
980 }
981 else if (op == OP_VAR_VALUE)
982 {
983 symbol *sym = exp->elts[*pos + 2].symbol;
984 var_func_name = sym->print_name ();
985 }
986
987 argvec[0] = evaluate_subexp_with_coercion (exp, pos, noside);
988 type *type = value_type (argvec[0]);
989 if (type && type->code () == TYPE_CODE_PTR)
990 type = TYPE_TARGET_TYPE (type);
991 if (type && type->code () == TYPE_CODE_FUNC)
992 {
993 for (; tem <= nargs && tem <= type->num_fields (); tem++)
994 {
995 argvec[tem] = evaluate_subexp (type->field (tem - 1).type (),
996 exp, pos, noside);
997 }
998 }
999 }
1000 }
1001
1002 /* Evaluate arguments (if not already done, e.g., namespace::func()
1003 and overload-resolution is off). */
1004 for (; tem <= nargs; tem++)
1005 {
1006 /* Ensure that array expressions are coerced into pointer
1007 objects. */
1008 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1009 }
1010
1011 /* Signal end of arglist. */
1012 argvec[tem] = 0;
1013
1014 if (noside == EVAL_SKIP)
1015 return eval_skip_value (exp);
1016
1017 if (op == OP_ADL_FUNC)
1018 {
1019 struct symbol *symp;
1020 char *func_name;
1021 int name_len;
1022 int string_pc = save_pos1 + 3;
1023
1024 /* Extract the function name. */
1025 name_len = longest_to_int (exp->elts[string_pc].longconst);
1026 func_name = (char *) alloca (name_len + 1);
1027 strcpy (func_name, &exp->elts[string_pc + 1].string);
1028
1029 find_overload_match (gdb::make_array_view (&argvec[1], nargs),
1030 func_name,
1031 NON_METHOD, /* not method */
1032 NULL, NULL, /* pass NULL symbol since
1033 symbol is unknown */
1034 NULL, &symp, NULL, 0, noside);
1035
1036 /* Now fix the expression being evaluated. */
1037 exp->elts[save_pos1 + 2].symbol = symp;
1038 argvec[0] = evaluate_subexp_with_coercion (exp, &save_pos1, noside);
1039 }
1040
1041 if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR
1042 || (op == OP_SCOPE && function_name != NULL))
1043 {
1044 int static_memfuncp;
1045 char *tstr;
1046
1047 /* Method invocation: stuff "this" as first parameter. If the
1048 method turns out to be static we undo this below. */
1049 argvec[1] = arg2;
1050
1051 if (op != OP_SCOPE)
1052 {
1053 /* Name of method from expression. */
1054 tstr = &exp->elts[pc2 + 2].string;
1055 }
1056 else
1057 tstr = function_name;
1058
1059 if (overload_resolution && (exp->language_defn->la_language
1060 == language_cplus))
1061 {
1062 /* Language is C++, do some overload resolution before
1063 evaluation. */
1064 struct value *valp = NULL;
1065
1066 (void) find_overload_match (gdb::make_array_view (&argvec[1], nargs),
1067 tstr,
1068 METHOD, /* method */
1069 &arg2, /* the object */
1070 NULL, &valp, NULL,
1071 &static_memfuncp, 0, noside);
1072
1073 if (op == OP_SCOPE && !static_memfuncp)
1074 {
1075 /* For the time being, we don't handle this. */
1076 error (_("Call to overloaded function %s requires "
1077 "`this' pointer"),
1078 function_name);
1079 }
1080 argvec[1] = arg2; /* the ``this'' pointer */
1081 argvec[0] = valp; /* Use the method found after overload
1082 resolution. */
1083 }
1084 else
1085 /* Non-C++ case -- or no overload resolution. */
1086 {
1087 struct value *temp = arg2;
1088
1089 argvec[0] = value_struct_elt (&temp, argvec + 1, tstr,
1090 &static_memfuncp,
1091 op == STRUCTOP_STRUCT
1092 ? "structure" : "structure pointer");
1093 /* value_struct_elt updates temp with the correct value of
1094 the ``this'' pointer if necessary, so modify argvec[1] to
1095 reflect any ``this'' changes. */
1096 arg2
1097 = value_from_longest (lookup_pointer_type(value_type (temp)),
1098 value_address (temp)
1099 + value_embedded_offset (temp));
1100 argvec[1] = arg2; /* the ``this'' pointer */
1101 }
1102
1103 /* Take out `this' if needed. */
1104 if (static_memfuncp)
1105 {
1106 argvec[1] = argvec[0];
1107 nargs--;
1108 argvec++;
1109 }
1110 }
1111 else if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR)
1112 {
1113 /* Pointer to member. argvec[1] is already set up. */
1114 argvec[0] = arg1;
1115 }
1116 else if (op == OP_VAR_VALUE || (op == OP_SCOPE && function != NULL))
1117 {
1118 /* Non-member function being called. */
1119 /* fn: This can only be done for C++ functions. A C-style
1120 function in a C++ program, for instance, does not have the
1121 fields that are expected here. */
1122
1123 if (overload_resolution && (exp->language_defn->la_language
1124 == language_cplus))
1125 {
1126 /* Language is C++, do some overload resolution before
1127 evaluation. */
1128 struct symbol *symp;
1129 int no_adl = 0;
1130
1131 /* If a scope has been specified disable ADL. */
1132 if (op == OP_SCOPE)
1133 no_adl = 1;
1134
1135 if (op == OP_VAR_VALUE)
1136 function = exp->elts[save_pos1+2].symbol;
1137
1138 (void) find_overload_match (gdb::make_array_view (&argvec[1], nargs),
1139 NULL, /* no need for name */
1140 NON_METHOD, /* not method */
1141 NULL, function, /* the function */
1142 NULL, &symp, NULL, no_adl, noside);
1143
1144 if (op == OP_VAR_VALUE)
1145 {
1146 /* Now fix the expression being evaluated. */
1147 exp->elts[save_pos1+2].symbol = symp;
1148 argvec[0] = evaluate_subexp_with_coercion (exp, &save_pos1,
1149 noside);
1150 }
1151 else
1152 argvec[0] = value_of_variable (symp, get_selected_block (0));
1153 }
1154 else
1155 {
1156 /* Not C++, or no overload resolution allowed. */
1157 /* Nothing to be done; argvec already correctly set up. */
1158 }
1159 }
1160 else
1161 {
1162 /* It is probably a C-style function. */
1163 /* Nothing to be done; argvec already correctly set up. */
1164 }
1165
1166 return evaluate_subexp_do_call (exp, noside, argvec[0],
1167 gdb::make_array_view (argvec + 1, nargs),
1168 var_func_name, expect_type);
1169 }
1170
1171 /* Return true if type is integral or reference to integral */
1172
1173 static bool
1174 is_integral_or_integral_reference (struct type *type)
1175 {
1176 if (is_integral_type (type))
1177 return true;
1178
1179 type = check_typedef (type);
1180 return (type != nullptr
1181 && TYPE_IS_REFERENCE (type)
1182 && is_integral_type (TYPE_TARGET_TYPE (type)));
1183 }
1184
1185 /* Helper function that implements the body of OP_SCOPE. */
1186
1187 static struct value *
1188 eval_op_scope (struct type *expect_type, struct expression *exp,
1189 enum noside noside,
1190 struct type *type, const char *string)
1191 {
1192 if (noside == EVAL_SKIP)
1193 return eval_skip_value (exp);
1194 struct value *arg1 = value_aggregate_elt (type, string, expect_type,
1195 0, noside);
1196 if (arg1 == NULL)
1197 error (_("There is no field named %s"), string);
1198 return arg1;
1199 }
1200
1201 /* Helper function that implements the body of OP_VAR_ENTRY_VALUE. */
1202
1203 static struct value *
1204 eval_op_var_entry_value (struct type *expect_type, struct expression *exp,
1205 enum noside noside, symbol *sym)
1206 {
1207 if (noside == EVAL_SKIP)
1208 return eval_skip_value (exp);
1209 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1210 return value_zero (SYMBOL_TYPE (sym), not_lval);
1211
1212 if (SYMBOL_COMPUTED_OPS (sym) == NULL
1213 || SYMBOL_COMPUTED_OPS (sym)->read_variable_at_entry == NULL)
1214 error (_("Symbol \"%s\" does not have any specific entry value"),
1215 sym->print_name ());
1216
1217 struct frame_info *frame = get_selected_frame (NULL);
1218 return SYMBOL_COMPUTED_OPS (sym)->read_variable_at_entry (sym, frame);
1219 }
1220
1221 /* Helper function that implements the body of OP_VAR_MSYM_VALUE. */
1222
1223 static struct value *
1224 eval_op_var_msym_value (struct type *expect_type, struct expression *exp,
1225 enum noside noside, bool outermost_p,
1226 minimal_symbol *msymbol, struct objfile *objfile)
1227 {
1228 value *val = evaluate_var_msym_value (noside, objfile, msymbol);
1229
1230 struct type *type = value_type (val);
1231 if (type->code () == TYPE_CODE_ERROR
1232 && (noside != EVAL_AVOID_SIDE_EFFECTS || !outermost_p))
1233 error_unknown_type (msymbol->print_name ());
1234 return val;
1235 }
1236
1237 struct value *
1238 evaluate_subexp_standard (struct type *expect_type,
1239 struct expression *exp, int *pos,
1240 enum noside noside)
1241 {
1242 enum exp_opcode op;
1243 int tem, tem2, tem3;
1244 int pc, oldpos;
1245 struct value *arg1 = NULL;
1246 struct value *arg2 = NULL;
1247 struct value *arg3;
1248 struct type *type;
1249 int nargs;
1250 struct value **argvec;
1251 int ix;
1252 long mem_offset;
1253 struct type **arg_types;
1254
1255 pc = (*pos)++;
1256 op = exp->elts[pc].opcode;
1257
1258 switch (op)
1259 {
1260 case OP_SCOPE:
1261 tem = longest_to_int (exp->elts[pc + 2].longconst);
1262 (*pos) += 4 + BYTES_TO_EXP_ELEM (tem + 1);
1263 return eval_op_scope (expect_type, exp, noside,
1264 exp->elts[pc + 1].type,
1265 &exp->elts[pc + 3].string);
1266
1267 case OP_LONG:
1268 (*pos) += 3;
1269 return value_from_longest (exp->elts[pc + 1].type,
1270 exp->elts[pc + 2].longconst);
1271
1272 case OP_FLOAT:
1273 (*pos) += 3;
1274 return value_from_contents (exp->elts[pc + 1].type,
1275 exp->elts[pc + 2].floatconst);
1276
1277 case OP_ADL_FUNC:
1278 case OP_VAR_VALUE:
1279 {
1280 (*pos) += 3;
1281 symbol *var = exp->elts[pc + 2].symbol;
1282 if (SYMBOL_TYPE (var)->code () == TYPE_CODE_ERROR)
1283 error_unknown_type (var->print_name ());
1284 if (noside != EVAL_SKIP)
1285 return evaluate_var_value (noside, exp->elts[pc + 1].block, var);
1286 else
1287 {
1288 /* Return a dummy value of the correct type when skipping, so
1289 that parent functions know what is to be skipped. */
1290 return allocate_value (SYMBOL_TYPE (var));
1291 }
1292 }
1293
1294 case OP_VAR_MSYM_VALUE:
1295 {
1296 (*pos) += 3;
1297
1298 minimal_symbol *msymbol = exp->elts[pc + 2].msymbol;
1299 return eval_op_var_msym_value (expect_type, exp, noside,
1300 pc == 0, msymbol,
1301 exp->elts[pc + 1].objfile);
1302 }
1303
1304 case OP_VAR_ENTRY_VALUE:
1305 (*pos) += 2;
1306
1307 {
1308 struct symbol *sym = exp->elts[pc + 1].symbol;
1309
1310 return eval_op_var_entry_value (expect_type, exp, noside, sym);
1311 }
1312
1313 case OP_FUNC_STATIC_VAR:
1314 tem = longest_to_int (exp->elts[pc + 1].longconst);
1315 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
1316 if (noside == EVAL_SKIP)
1317 return eval_skip_value (exp);
1318
1319 {
1320 value *func = evaluate_subexp_standard (NULL, exp, pos, noside);
1321 CORE_ADDR addr = value_address (func);
1322
1323 const block *blk = block_for_pc (addr);
1324 const char *var = &exp->elts[pc + 2].string;
1325
1326 struct block_symbol sym = lookup_symbol (var, blk, VAR_DOMAIN, NULL);
1327
1328 if (sym.symbol == NULL)
1329 error (_("No symbol \"%s\" in specified context."), var);
1330
1331 return evaluate_var_value (noside, sym.block, sym.symbol);
1332 }
1333
1334 case OP_LAST:
1335 (*pos) += 2;
1336 return
1337 access_value_history (longest_to_int (exp->elts[pc + 1].longconst));
1338
1339 case OP_REGISTER:
1340 {
1341 const char *name = &exp->elts[pc + 2].string;
1342 int regno;
1343 struct value *val;
1344
1345 (*pos) += 3 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
1346 regno = user_reg_map_name_to_regnum (exp->gdbarch,
1347 name, strlen (name));
1348 if (regno == -1)
1349 error (_("Register $%s not available."), name);
1350
1351 /* In EVAL_AVOID_SIDE_EFFECTS mode, we only need to return
1352 a value with the appropriate register type. Unfortunately,
1353 we don't have easy access to the type of user registers.
1354 So for these registers, we fetch the register value regardless
1355 of the evaluation mode. */
1356 if (noside == EVAL_AVOID_SIDE_EFFECTS
1357 && regno < gdbarch_num_cooked_regs (exp->gdbarch))
1358 val = value_zero (register_type (exp->gdbarch, regno), not_lval);
1359 else
1360 val = value_of_register (regno, get_selected_frame (NULL));
1361 if (val == NULL)
1362 error (_("Value of register %s not available."), name);
1363 else
1364 return val;
1365 }
1366 case OP_BOOL:
1367 (*pos) += 2;
1368 type = language_bool_type (exp->language_defn, exp->gdbarch);
1369 return value_from_longest (type, exp->elts[pc + 1].longconst);
1370
1371 case OP_INTERNALVAR:
1372 (*pos) += 2;
1373 return value_of_internalvar (exp->gdbarch,
1374 exp->elts[pc + 1].internalvar);
1375
1376 case OP_STRING:
1377 tem = longest_to_int (exp->elts[pc + 1].longconst);
1378 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
1379 if (noside == EVAL_SKIP)
1380 return eval_skip_value (exp);
1381 type = language_string_char_type (exp->language_defn, exp->gdbarch);
1382 return value_string (&exp->elts[pc + 2].string, tem, type);
1383
1384 case OP_OBJC_NSSTRING: /* Objective C Foundation Class
1385 NSString constant. */
1386 tem = longest_to_int (exp->elts[pc + 1].longconst);
1387 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
1388 if (noside == EVAL_SKIP)
1389 return eval_skip_value (exp);
1390 return value_nsstring (exp->gdbarch, &exp->elts[pc + 2].string, tem + 1);
1391
1392 case OP_ARRAY:
1393 (*pos) += 3;
1394 tem2 = longest_to_int (exp->elts[pc + 1].longconst);
1395 tem3 = longest_to_int (exp->elts[pc + 2].longconst);
1396 nargs = tem3 - tem2 + 1;
1397 type = expect_type ? check_typedef (expect_type) : nullptr;
1398
1399 if (expect_type != nullptr && noside != EVAL_SKIP
1400 && type->code () == TYPE_CODE_STRUCT)
1401 {
1402 struct value *rec = allocate_value (expect_type);
1403
1404 memset (value_contents_raw (rec), '\0', TYPE_LENGTH (type));
1405 return evaluate_struct_tuple (rec, exp, pos, noside, nargs);
1406 }
1407
1408 if (expect_type != nullptr && noside != EVAL_SKIP
1409 && type->code () == TYPE_CODE_ARRAY)
1410 {
1411 struct type *range_type = type->index_type ();
1412 struct type *element_type = TYPE_TARGET_TYPE (type);
1413 struct value *array = allocate_value (expect_type);
1414 int element_size = TYPE_LENGTH (check_typedef (element_type));
1415 LONGEST low_bound, high_bound, index;
1416
1417 if (!get_discrete_bounds (range_type, &low_bound, &high_bound))
1418 {
1419 low_bound = 0;
1420 high_bound = (TYPE_LENGTH (type) / element_size) - 1;
1421 }
1422 index = low_bound;
1423 memset (value_contents_raw (array), 0, TYPE_LENGTH (expect_type));
1424 for (tem = nargs; --nargs >= 0;)
1425 {
1426 struct value *element;
1427
1428 element = evaluate_subexp (element_type, exp, pos, noside);
1429 if (value_type (element) != element_type)
1430 element = value_cast (element_type, element);
1431 if (index > high_bound)
1432 /* To avoid memory corruption. */
1433 error (_("Too many array elements"));
1434 memcpy (value_contents_raw (array)
1435 + (index - low_bound) * element_size,
1436 value_contents (element),
1437 element_size);
1438 index++;
1439 }
1440 return array;
1441 }
1442
1443 if (expect_type != nullptr && noside != EVAL_SKIP
1444 && type->code () == TYPE_CODE_SET)
1445 {
1446 struct value *set = allocate_value (expect_type);
1447 gdb_byte *valaddr = value_contents_raw (set);
1448 struct type *element_type = type->index_type ();
1449 struct type *check_type = element_type;
1450 LONGEST low_bound, high_bound;
1451
1452 /* Get targettype of elementtype. */
1453 while (check_type->code () == TYPE_CODE_RANGE
1454 || check_type->code () == TYPE_CODE_TYPEDEF)
1455 check_type = TYPE_TARGET_TYPE (check_type);
1456
1457 if (!get_discrete_bounds (element_type, &low_bound, &high_bound))
1458 error (_("(power)set type with unknown size"));
1459 memset (valaddr, '\0', TYPE_LENGTH (type));
1460 for (tem = 0; tem < nargs; tem++)
1461 {
1462 LONGEST range_low, range_high;
1463 struct type *range_low_type, *range_high_type;
1464 struct value *elem_val;
1465
1466 elem_val = evaluate_subexp (element_type, exp, pos, noside);
1467 range_low_type = range_high_type = value_type (elem_val);
1468 range_low = range_high = value_as_long (elem_val);
1469
1470 /* Check types of elements to avoid mixture of elements from
1471 different types. Also check if type of element is "compatible"
1472 with element type of powerset. */
1473 if (range_low_type->code () == TYPE_CODE_RANGE)
1474 range_low_type = TYPE_TARGET_TYPE (range_low_type);
1475 if (range_high_type->code () == TYPE_CODE_RANGE)
1476 range_high_type = TYPE_TARGET_TYPE (range_high_type);
1477 if ((range_low_type->code () != range_high_type->code ())
1478 || (range_low_type->code () == TYPE_CODE_ENUM
1479 && (range_low_type != range_high_type)))
1480 /* different element modes. */
1481 error (_("POWERSET tuple elements of different mode"));
1482 if ((check_type->code () != range_low_type->code ())
1483 || (check_type->code () == TYPE_CODE_ENUM
1484 && range_low_type != check_type))
1485 error (_("incompatible POWERSET tuple elements"));
1486 if (range_low > range_high)
1487 {
1488 warning (_("empty POWERSET tuple range"));
1489 continue;
1490 }
1491 if (range_low < low_bound || range_high > high_bound)
1492 error (_("POWERSET tuple element out of range"));
1493 range_low -= low_bound;
1494 range_high -= low_bound;
1495 for (; range_low <= range_high; range_low++)
1496 {
1497 int bit_index = (unsigned) range_low % TARGET_CHAR_BIT;
1498
1499 if (gdbarch_byte_order (exp->gdbarch) == BFD_ENDIAN_BIG)
1500 bit_index = TARGET_CHAR_BIT - 1 - bit_index;
1501 valaddr[(unsigned) range_low / TARGET_CHAR_BIT]
1502 |= 1 << bit_index;
1503 }
1504 }
1505 return set;
1506 }
1507
1508 argvec = XALLOCAVEC (struct value *, nargs);
1509 for (tem = 0; tem < nargs; tem++)
1510 {
1511 /* Ensure that array expressions are coerced into pointer
1512 objects. */
1513 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1514 }
1515 if (noside == EVAL_SKIP)
1516 return eval_skip_value (exp);
1517 return value_array (tem2, tem3, argvec);
1518
1519 case TERNOP_SLICE:
1520 {
1521 struct value *array = evaluate_subexp (nullptr, exp, pos, noside);
1522 int lowbound
1523 = value_as_long (evaluate_subexp (nullptr, exp, pos, noside));
1524 int upper = value_as_long (evaluate_subexp (nullptr, exp, pos, noside));
1525
1526 if (noside == EVAL_SKIP)
1527 return eval_skip_value (exp);
1528 return value_slice (array, lowbound, upper - lowbound + 1);
1529 }
1530
1531 case TERNOP_COND:
1532 /* Skip third and second args to evaluate the first one. */
1533 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
1534 if (value_logical_not (arg1))
1535 {
1536 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
1537 return evaluate_subexp (nullptr, exp, pos, noside);
1538 }
1539 else
1540 {
1541 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
1542 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
1543 return arg2;
1544 }
1545
1546 case OP_OBJC_SELECTOR:
1547 { /* Objective C @selector operator. */
1548 char *sel = &exp->elts[pc + 2].string;
1549 int len = longest_to_int (exp->elts[pc + 1].longconst);
1550 struct type *selector_type;
1551
1552 (*pos) += 3 + BYTES_TO_EXP_ELEM (len + 1);
1553 if (noside == EVAL_SKIP)
1554 return eval_skip_value (exp);
1555
1556 if (sel[len] != 0)
1557 sel[len] = 0; /* Make sure it's terminated. */
1558
1559 selector_type = builtin_type (exp->gdbarch)->builtin_data_ptr;
1560 return value_from_longest (selector_type,
1561 lookup_child_selector (exp->gdbarch, sel));
1562 }
1563
1564 case OP_OBJC_MSGCALL:
1565 { /* Objective C message (method) call. */
1566
1567 CORE_ADDR responds_selector = 0;
1568 CORE_ADDR method_selector = 0;
1569
1570 CORE_ADDR selector = 0;
1571
1572 int struct_return = 0;
1573 enum noside sub_no_side = EVAL_NORMAL;
1574
1575 struct value *msg_send = NULL;
1576 struct value *msg_send_stret = NULL;
1577 int gnu_runtime = 0;
1578
1579 struct value *target = NULL;
1580 struct value *method = NULL;
1581 struct value *called_method = NULL;
1582
1583 struct type *selector_type = NULL;
1584 struct type *long_type;
1585
1586 struct value *ret = NULL;
1587 CORE_ADDR addr = 0;
1588
1589 selector = exp->elts[pc + 1].longconst;
1590 nargs = exp->elts[pc + 2].longconst;
1591 argvec = XALLOCAVEC (struct value *, nargs + 5);
1592
1593 (*pos) += 3;
1594
1595 long_type = builtin_type (exp->gdbarch)->builtin_long;
1596 selector_type = builtin_type (exp->gdbarch)->builtin_data_ptr;
1597
1598 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1599 sub_no_side = EVAL_NORMAL;
1600 else
1601 sub_no_side = noside;
1602
1603 target = evaluate_subexp (selector_type, exp, pos, sub_no_side);
1604
1605 if (value_as_long (target) == 0)
1606 return value_from_longest (long_type, 0);
1607
1608 if (lookup_minimal_symbol ("objc_msg_lookup", 0, 0).minsym)
1609 gnu_runtime = 1;
1610
1611 /* Find the method dispatch (Apple runtime) or method lookup
1612 (GNU runtime) function for Objective-C. These will be used
1613 to lookup the symbol information for the method. If we
1614 can't find any symbol information, then we'll use these to
1615 call the method, otherwise we can call the method
1616 directly. The msg_send_stret function is used in the special
1617 case of a method that returns a structure (Apple runtime
1618 only). */
1619 if (gnu_runtime)
1620 {
1621 type = selector_type;
1622
1623 type = lookup_function_type (type);
1624 type = lookup_pointer_type (type);
1625 type = lookup_function_type (type);
1626 type = lookup_pointer_type (type);
1627
1628 msg_send = find_function_in_inferior ("objc_msg_lookup", NULL);
1629 msg_send_stret
1630 = find_function_in_inferior ("objc_msg_lookup", NULL);
1631
1632 msg_send = value_from_pointer (type, value_as_address (msg_send));
1633 msg_send_stret = value_from_pointer (type,
1634 value_as_address (msg_send_stret));
1635 }
1636 else
1637 {
1638 msg_send = find_function_in_inferior ("objc_msgSend", NULL);
1639 /* Special dispatcher for methods returning structs. */
1640 msg_send_stret
1641 = find_function_in_inferior ("objc_msgSend_stret", NULL);
1642 }
1643
1644 /* Verify the target object responds to this method. The
1645 standard top-level 'Object' class uses a different name for
1646 the verification method than the non-standard, but more
1647 often used, 'NSObject' class. Make sure we check for both. */
1648
1649 responds_selector
1650 = lookup_child_selector (exp->gdbarch, "respondsToSelector:");
1651 if (responds_selector == 0)
1652 responds_selector
1653 = lookup_child_selector (exp->gdbarch, "respondsTo:");
1654
1655 if (responds_selector == 0)
1656 error (_("no 'respondsTo:' or 'respondsToSelector:' method"));
1657
1658 method_selector
1659 = lookup_child_selector (exp->gdbarch, "methodForSelector:");
1660 if (method_selector == 0)
1661 method_selector
1662 = lookup_child_selector (exp->gdbarch, "methodFor:");
1663
1664 if (method_selector == 0)
1665 error (_("no 'methodFor:' or 'methodForSelector:' method"));
1666
1667 /* Call the verification method, to make sure that the target
1668 class implements the desired method. */
1669
1670 argvec[0] = msg_send;
1671 argvec[1] = target;
1672 argvec[2] = value_from_longest (long_type, responds_selector);
1673 argvec[3] = value_from_longest (long_type, selector);
1674 argvec[4] = 0;
1675
1676 ret = call_function_by_hand (argvec[0], NULL, {argvec + 1, 3});
1677 if (gnu_runtime)
1678 {
1679 /* Function objc_msg_lookup returns a pointer. */
1680 argvec[0] = ret;
1681 ret = call_function_by_hand (argvec[0], NULL, {argvec + 1, 3});
1682 }
1683 if (value_as_long (ret) == 0)
1684 error (_("Target does not respond to this message selector."));
1685
1686 /* Call "methodForSelector:" method, to get the address of a
1687 function method that implements this selector for this
1688 class. If we can find a symbol at that address, then we
1689 know the return type, parameter types etc. (that's a good
1690 thing). */
1691
1692 argvec[0] = msg_send;
1693 argvec[1] = target;
1694 argvec[2] = value_from_longest (long_type, method_selector);
1695 argvec[3] = value_from_longest (long_type, selector);
1696 argvec[4] = 0;
1697
1698 ret = call_function_by_hand (argvec[0], NULL, {argvec + 1, 3});
1699 if (gnu_runtime)
1700 {
1701 argvec[0] = ret;
1702 ret = call_function_by_hand (argvec[0], NULL, {argvec + 1, 3});
1703 }
1704
1705 /* ret should now be the selector. */
1706
1707 addr = value_as_long (ret);
1708 if (addr)
1709 {
1710 struct symbol *sym = NULL;
1711
1712 /* The address might point to a function descriptor;
1713 resolve it to the actual code address instead. */
1714 addr = gdbarch_convert_from_func_ptr_addr (exp->gdbarch, addr,
1715 current_top_target ());
1716
1717 /* Is it a high_level symbol? */
1718 sym = find_pc_function (addr);
1719 if (sym != NULL)
1720 method = value_of_variable (sym, 0);
1721 }
1722
1723 /* If we found a method with symbol information, check to see
1724 if it returns a struct. Otherwise assume it doesn't. */
1725
1726 if (method)
1727 {
1728 CORE_ADDR funaddr;
1729 struct type *val_type;
1730
1731 funaddr = find_function_addr (method, &val_type);
1732
1733 block_for_pc (funaddr);
1734
1735 val_type = check_typedef (val_type);
1736
1737 if ((val_type == NULL)
1738 || (val_type->code () == TYPE_CODE_ERROR))
1739 {
1740 if (expect_type != NULL)
1741 val_type = expect_type;
1742 }
1743
1744 struct_return = using_struct_return (exp->gdbarch, method,
1745 val_type);
1746 }
1747 else if (expect_type != NULL)
1748 {
1749 struct_return = using_struct_return (exp->gdbarch, NULL,
1750 check_typedef (expect_type));
1751 }
1752
1753 /* Found a function symbol. Now we will substitute its
1754 value in place of the message dispatcher (obj_msgSend),
1755 so that we call the method directly instead of thru
1756 the dispatcher. The main reason for doing this is that
1757 we can now evaluate the return value and parameter values
1758 according to their known data types, in case we need to
1759 do things like promotion, dereferencing, special handling
1760 of structs and doubles, etc.
1761
1762 We want to use the type signature of 'method', but still
1763 jump to objc_msgSend() or objc_msgSend_stret() to better
1764 mimic the behavior of the runtime. */
1765
1766 if (method)
1767 {
1768 if (value_type (method)->code () != TYPE_CODE_FUNC)
1769 error (_("method address has symbol information "
1770 "with non-function type; skipping"));
1771
1772 /* Create a function pointer of the appropriate type, and
1773 replace its value with the value of msg_send or
1774 msg_send_stret. We must use a pointer here, as
1775 msg_send and msg_send_stret are of pointer type, and
1776 the representation may be different on systems that use
1777 function descriptors. */
1778 if (struct_return)
1779 called_method
1780 = value_from_pointer (lookup_pointer_type (value_type (method)),
1781 value_as_address (msg_send_stret));
1782 else
1783 called_method
1784 = value_from_pointer (lookup_pointer_type (value_type (method)),
1785 value_as_address (msg_send));
1786 }
1787 else
1788 {
1789 if (struct_return)
1790 called_method = msg_send_stret;
1791 else
1792 called_method = msg_send;
1793 }
1794
1795 if (noside == EVAL_SKIP)
1796 return eval_skip_value (exp);
1797
1798 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1799 {
1800 /* If the return type doesn't look like a function type,
1801 call an error. This can happen if somebody tries to
1802 turn a variable into a function call. This is here
1803 because people often want to call, eg, strcmp, which
1804 gdb doesn't know is a function. If gdb isn't asked for
1805 it's opinion (ie. through "whatis"), it won't offer
1806 it. */
1807
1808 struct type *callee_type = value_type (called_method);
1809
1810 if (callee_type && callee_type->code () == TYPE_CODE_PTR)
1811 callee_type = TYPE_TARGET_TYPE (callee_type);
1812 callee_type = TYPE_TARGET_TYPE (callee_type);
1813
1814 if (callee_type)
1815 {
1816 if ((callee_type->code () == TYPE_CODE_ERROR) && expect_type)
1817 return allocate_value (expect_type);
1818 else
1819 return allocate_value (callee_type);
1820 }
1821 else
1822 error (_("Expression of type other than "
1823 "\"method returning ...\" used as a method"));
1824 }
1825
1826 /* Now depending on whether we found a symbol for the method,
1827 we will either call the runtime dispatcher or the method
1828 directly. */
1829
1830 argvec[0] = called_method;
1831 argvec[1] = target;
1832 argvec[2] = value_from_longest (long_type, selector);
1833 /* User-supplied arguments. */
1834 for (tem = 0; tem < nargs; tem++)
1835 argvec[tem + 3] = evaluate_subexp_with_coercion (exp, pos, noside);
1836 argvec[tem + 3] = 0;
1837
1838 auto call_args = gdb::make_array_view (argvec + 1, nargs + 2);
1839
1840 if (gnu_runtime && (method != NULL))
1841 {
1842 /* Function objc_msg_lookup returns a pointer. */
1843 deprecated_set_value_type (argvec[0],
1844 lookup_pointer_type (lookup_function_type (value_type (argvec[0]))));
1845 argvec[0] = call_function_by_hand (argvec[0], NULL, call_args);
1846 }
1847
1848 return call_function_by_hand (argvec[0], NULL, call_args);
1849 }
1850 break;
1851
1852 case OP_FUNCALL:
1853 return evaluate_funcall (expect_type, exp, pos, noside);
1854
1855 case OP_COMPLEX:
1856 /* We have a complex number, There should be 2 floating
1857 point numbers that compose it. */
1858 (*pos) += 2;
1859 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
1860 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
1861
1862 return value_literal_complex (arg1, arg2, exp->elts[pc + 1].type);
1863
1864 case STRUCTOP_STRUCT:
1865 tem = longest_to_int (exp->elts[pc + 1].longconst);
1866 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
1867 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
1868 if (noside == EVAL_SKIP)
1869 return eval_skip_value (exp);
1870 arg3 = value_struct_elt (&arg1, NULL, &exp->elts[pc + 2].string,
1871 NULL, "structure");
1872 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1873 arg3 = value_zero (value_type (arg3), VALUE_LVAL (arg3));
1874 return arg3;
1875
1876 case STRUCTOP_PTR:
1877 tem = longest_to_int (exp->elts[pc + 1].longconst);
1878 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
1879 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
1880 if (noside == EVAL_SKIP)
1881 return eval_skip_value (exp);
1882
1883 /* Check to see if operator '->' has been overloaded. If so replace
1884 arg1 with the value returned by evaluating operator->(). */
1885 while (unop_user_defined_p (op, arg1))
1886 {
1887 struct value *value = NULL;
1888 try
1889 {
1890 value = value_x_unop (arg1, op, noside);
1891 }
1892
1893 catch (const gdb_exception_error &except)
1894 {
1895 if (except.error == NOT_FOUND_ERROR)
1896 break;
1897 else
1898 throw;
1899 }
1900
1901 arg1 = value;
1902 }
1903
1904 /* JYG: if print object is on we need to replace the base type
1905 with rtti type in order to continue on with successful
1906 lookup of member / method only available in the rtti type. */
1907 {
1908 struct type *arg_type = value_type (arg1);
1909 struct type *real_type;
1910 int full, using_enc;
1911 LONGEST top;
1912 struct value_print_options opts;
1913
1914 get_user_print_options (&opts);
1915 if (opts.objectprint && TYPE_TARGET_TYPE (arg_type)
1916 && (TYPE_TARGET_TYPE (arg_type)->code () == TYPE_CODE_STRUCT))
1917 {
1918 real_type = value_rtti_indirect_type (arg1, &full, &top,
1919 &using_enc);
1920 if (real_type)
1921 arg1 = value_cast (real_type, arg1);
1922 }
1923 }
1924
1925 arg3 = value_struct_elt (&arg1, NULL, &exp->elts[pc + 2].string,
1926 NULL, "structure pointer");
1927 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1928 arg3 = value_zero (value_type (arg3), VALUE_LVAL (arg3));
1929 return arg3;
1930
1931 case STRUCTOP_MEMBER:
1932 case STRUCTOP_MPTR:
1933 if (op == STRUCTOP_MEMBER)
1934 arg1 = evaluate_subexp_for_address (exp, pos, noside);
1935 else
1936 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
1937
1938 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
1939
1940 if (noside == EVAL_SKIP)
1941 return eval_skip_value (exp);
1942
1943 type = check_typedef (value_type (arg2));
1944 switch (type->code ())
1945 {
1946 case TYPE_CODE_METHODPTR:
1947 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1948 return value_zero (TYPE_TARGET_TYPE (type), not_lval);
1949 else
1950 {
1951 arg2 = cplus_method_ptr_to_value (&arg1, arg2);
1952 gdb_assert (value_type (arg2)->code () == TYPE_CODE_PTR);
1953 return value_ind (arg2);
1954 }
1955
1956 case TYPE_CODE_MEMBERPTR:
1957 /* Now, convert these values to an address. */
1958 arg1 = value_cast_pointers (lookup_pointer_type (TYPE_SELF_TYPE (type)),
1959 arg1, 1);
1960
1961 mem_offset = value_as_long (arg2);
1962
1963 arg3 = value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
1964 value_as_long (arg1) + mem_offset);
1965 return value_ind (arg3);
1966
1967 default:
1968 error (_("non-pointer-to-member value used "
1969 "in pointer-to-member construct"));
1970 }
1971
1972 case TYPE_INSTANCE:
1973 {
1974 type_instance_flags flags
1975 = (type_instance_flag_value) longest_to_int (exp->elts[pc + 1].longconst);
1976 nargs = longest_to_int (exp->elts[pc + 2].longconst);
1977 arg_types = (struct type **) alloca (nargs * sizeof (struct type *));
1978 for (ix = 0; ix < nargs; ++ix)
1979 arg_types[ix] = exp->elts[pc + 2 + ix + 1].type;
1980
1981 fake_method fake_expect_type (flags, nargs, arg_types);
1982 *(pos) += 4 + nargs;
1983 return evaluate_subexp_standard (fake_expect_type.type (), exp, pos,
1984 noside);
1985 }
1986
1987 case BINOP_CONCAT:
1988 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
1989 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1990 if (noside == EVAL_SKIP)
1991 return eval_skip_value (exp);
1992 if (binop_user_defined_p (op, arg1, arg2))
1993 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1994 else
1995 return value_concat (arg1, arg2);
1996
1997 case BINOP_ASSIGN:
1998 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
1999 /* Special-case assignments where the left-hand-side is a
2000 convenience variable -- in these, don't bother setting an
2001 expected type. This avoids a weird case where re-assigning a
2002 string or array to an internal variable could error with "Too
2003 many array elements". */
2004 arg2 = evaluate_subexp (VALUE_LVAL (arg1) == lval_internalvar
2005 ? nullptr
2006 : value_type (arg1),
2007 exp, pos, noside);
2008
2009 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2010 return arg1;
2011 if (binop_user_defined_p (op, arg1, arg2))
2012 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2013 else
2014 return value_assign (arg1, arg2);
2015
2016 case BINOP_ASSIGN_MODIFY:
2017 (*pos) += 2;
2018 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2019 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2020 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2021 return arg1;
2022 op = exp->elts[pc + 1].opcode;
2023 if (binop_user_defined_p (op, arg1, arg2))
2024 return value_x_binop (arg1, arg2, BINOP_ASSIGN_MODIFY, op, noside);
2025 else if (op == BINOP_ADD && ptrmath_type_p (exp->language_defn,
2026 value_type (arg1))
2027 && is_integral_type (value_type (arg2)))
2028 arg2 = value_ptradd (arg1, value_as_long (arg2));
2029 else if (op == BINOP_SUB && ptrmath_type_p (exp->language_defn,
2030 value_type (arg1))
2031 && is_integral_type (value_type (arg2)))
2032 arg2 = value_ptradd (arg1, - value_as_long (arg2));
2033 else
2034 {
2035 struct value *tmp = arg1;
2036
2037 /* For shift and integer exponentiation operations,
2038 only promote the first argument. */
2039 if ((op == BINOP_LSH || op == BINOP_RSH || op == BINOP_EXP)
2040 && is_integral_type (value_type (arg2)))
2041 unop_promote (exp->language_defn, exp->gdbarch, &tmp);
2042 else
2043 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2044
2045 arg2 = value_binop (tmp, arg2, op);
2046 }
2047 return value_assign (arg1, arg2);
2048
2049 case BINOP_ADD:
2050 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2051 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2052 if (noside == EVAL_SKIP)
2053 return eval_skip_value (exp);
2054 if (binop_user_defined_p (op, arg1, arg2))
2055 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2056 else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
2057 && is_integral_or_integral_reference (value_type (arg2)))
2058 return value_ptradd (arg1, value_as_long (arg2));
2059 else if (ptrmath_type_p (exp->language_defn, value_type (arg2))
2060 && is_integral_or_integral_reference (value_type (arg1)))
2061 return value_ptradd (arg2, value_as_long (arg1));
2062 else
2063 {
2064 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2065 return value_binop (arg1, arg2, BINOP_ADD);
2066 }
2067
2068 case BINOP_SUB:
2069 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2070 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2071 if (noside == EVAL_SKIP)
2072 return eval_skip_value (exp);
2073 if (binop_user_defined_p (op, arg1, arg2))
2074 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2075 else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
2076 && ptrmath_type_p (exp->language_defn, value_type (arg2)))
2077 {
2078 /* FIXME -- should be ptrdiff_t */
2079 type = builtin_type (exp->gdbarch)->builtin_long;
2080 return value_from_longest (type, value_ptrdiff (arg1, arg2));
2081 }
2082 else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
2083 && is_integral_or_integral_reference (value_type (arg2)))
2084 return value_ptradd (arg1, - value_as_long (arg2));
2085 else
2086 {
2087 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2088 return value_binop (arg1, arg2, BINOP_SUB);
2089 }
2090
2091 case BINOP_EXP:
2092 case BINOP_MUL:
2093 case BINOP_DIV:
2094 case BINOP_INTDIV:
2095 case BINOP_REM:
2096 case BINOP_MOD:
2097 case BINOP_LSH:
2098 case BINOP_RSH:
2099 case BINOP_BITWISE_AND:
2100 case BINOP_BITWISE_IOR:
2101 case BINOP_BITWISE_XOR:
2102 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2103 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
2104 if (noside == EVAL_SKIP)
2105 return eval_skip_value (exp);
2106 if (binop_user_defined_p (op, arg1, arg2))
2107 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2108 else
2109 {
2110 /* If EVAL_AVOID_SIDE_EFFECTS and we're dividing by zero,
2111 fudge arg2 to avoid division-by-zero, the caller is
2112 (theoretically) only looking for the type of the result. */
2113 if (noside == EVAL_AVOID_SIDE_EFFECTS
2114 /* ??? Do we really want to test for BINOP_MOD here?
2115 The implementation of value_binop gives it a well-defined
2116 value. */
2117 && (op == BINOP_DIV
2118 || op == BINOP_INTDIV
2119 || op == BINOP_REM
2120 || op == BINOP_MOD)
2121 && value_logical_not (arg2))
2122 {
2123 struct value *v_one;
2124
2125 v_one = value_one (value_type (arg2));
2126 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &v_one);
2127 return value_binop (arg1, v_one, op);
2128 }
2129 else
2130 {
2131 /* For shift and integer exponentiation operations,
2132 only promote the first argument. */
2133 if ((op == BINOP_LSH || op == BINOP_RSH || op == BINOP_EXP)
2134 && is_integral_type (value_type (arg2)))
2135 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2136 else
2137 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2138
2139 return value_binop (arg1, arg2, op);
2140 }
2141 }
2142
2143 case BINOP_SUBSCRIPT:
2144 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2145 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
2146 if (noside == EVAL_SKIP)
2147 return eval_skip_value (exp);
2148 if (binop_user_defined_p (op, arg1, arg2))
2149 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2150 else
2151 {
2152 /* If the user attempts to subscript something that is not an
2153 array or pointer type (like a plain int variable for example),
2154 then report this as an error. */
2155
2156 arg1 = coerce_ref (arg1);
2157 type = check_typedef (value_type (arg1));
2158 if (type->code () != TYPE_CODE_ARRAY
2159 && type->code () != TYPE_CODE_PTR)
2160 {
2161 if (type->name ())
2162 error (_("cannot subscript something of type `%s'"),
2163 type->name ());
2164 else
2165 error (_("cannot subscript requested type"));
2166 }
2167
2168 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2169 return value_zero (TYPE_TARGET_TYPE (type), VALUE_LVAL (arg1));
2170 else
2171 return value_subscript (arg1, value_as_long (arg2));
2172 }
2173 case MULTI_SUBSCRIPT:
2174 (*pos) += 2;
2175 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2176 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2177 argvec = XALLOCAVEC (struct value *, nargs);
2178 for (ix = 0; ix < nargs; ++ix)
2179 argvec[ix] = evaluate_subexp_with_coercion (exp, pos, noside);
2180 if (noside == EVAL_SKIP)
2181 return arg1;
2182 for (ix = 0; ix < nargs; ++ix)
2183 {
2184 arg2 = argvec[ix];
2185
2186 if (binop_user_defined_p (op, arg1, arg2))
2187 {
2188 arg1 = value_x_binop (arg1, arg2, op, OP_NULL, noside);
2189 }
2190 else
2191 {
2192 arg1 = coerce_ref (arg1);
2193 type = check_typedef (value_type (arg1));
2194
2195 switch (type->code ())
2196 {
2197 case TYPE_CODE_PTR:
2198 case TYPE_CODE_ARRAY:
2199 case TYPE_CODE_STRING:
2200 arg1 = value_subscript (arg1, value_as_long (arg2));
2201 break;
2202
2203 default:
2204 if (type->name ())
2205 error (_("cannot subscript something of type `%s'"),
2206 type->name ());
2207 else
2208 error (_("cannot subscript requested type"));
2209 }
2210 }
2211 }
2212 return (arg1);
2213
2214 case BINOP_LOGICAL_AND:
2215 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2216 if (noside == EVAL_SKIP)
2217 {
2218 evaluate_subexp (nullptr, exp, pos, noside);
2219 return eval_skip_value (exp);
2220 }
2221
2222 oldpos = *pos;
2223 arg2 = evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2224 *pos = oldpos;
2225
2226 if (binop_user_defined_p (op, arg1, arg2))
2227 {
2228 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
2229 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2230 }
2231 else
2232 {
2233 tem = value_logical_not (arg1);
2234 arg2
2235 = evaluate_subexp (nullptr, exp, pos, (tem ? EVAL_SKIP : noside));
2236 type = language_bool_type (exp->language_defn, exp->gdbarch);
2237 return value_from_longest (type,
2238 (LONGEST) (!tem && !value_logical_not (arg2)));
2239 }
2240
2241 case BINOP_LOGICAL_OR:
2242 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2243 if (noside == EVAL_SKIP)
2244 {
2245 evaluate_subexp (nullptr, exp, pos, noside);
2246 return eval_skip_value (exp);
2247 }
2248
2249 oldpos = *pos;
2250 arg2 = evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2251 *pos = oldpos;
2252
2253 if (binop_user_defined_p (op, arg1, arg2))
2254 {
2255 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
2256 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2257 }
2258 else
2259 {
2260 tem = value_logical_not (arg1);
2261 arg2
2262 = evaluate_subexp (nullptr, exp, pos, (!tem ? EVAL_SKIP : noside));
2263 type = language_bool_type (exp->language_defn, exp->gdbarch);
2264 return value_from_longest (type,
2265 (LONGEST) (!tem || !value_logical_not (arg2)));
2266 }
2267
2268 case BINOP_EQUAL:
2269 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2270 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2271 if (noside == EVAL_SKIP)
2272 return eval_skip_value (exp);
2273 if (binop_user_defined_p (op, arg1, arg2))
2274 {
2275 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2276 }
2277 else
2278 {
2279 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2280 tem = value_equal (arg1, arg2);
2281 type = language_bool_type (exp->language_defn, exp->gdbarch);
2282 return value_from_longest (type, (LONGEST) tem);
2283 }
2284
2285 case BINOP_NOTEQUAL:
2286 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2287 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2288 if (noside == EVAL_SKIP)
2289 return eval_skip_value (exp);
2290 if (binop_user_defined_p (op, arg1, arg2))
2291 {
2292 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2293 }
2294 else
2295 {
2296 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2297 tem = value_equal (arg1, arg2);
2298 type = language_bool_type (exp->language_defn, exp->gdbarch);
2299 return value_from_longest (type, (LONGEST) ! tem);
2300 }
2301
2302 case BINOP_LESS:
2303 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2304 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2305 if (noside == EVAL_SKIP)
2306 return eval_skip_value (exp);
2307 if (binop_user_defined_p (op, arg1, arg2))
2308 {
2309 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2310 }
2311 else
2312 {
2313 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2314 tem = value_less (arg1, arg2);
2315 type = language_bool_type (exp->language_defn, exp->gdbarch);
2316 return value_from_longest (type, (LONGEST) tem);
2317 }
2318
2319 case BINOP_GTR:
2320 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2321 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2322 if (noside == EVAL_SKIP)
2323 return eval_skip_value (exp);
2324 if (binop_user_defined_p (op, arg1, arg2))
2325 {
2326 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2327 }
2328 else
2329 {
2330 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2331 tem = value_less (arg2, arg1);
2332 type = language_bool_type (exp->language_defn, exp->gdbarch);
2333 return value_from_longest (type, (LONGEST) tem);
2334 }
2335
2336 case BINOP_GEQ:
2337 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2338 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2339 if (noside == EVAL_SKIP)
2340 return eval_skip_value (exp);
2341 if (binop_user_defined_p (op, arg1, arg2))
2342 {
2343 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2344 }
2345 else
2346 {
2347 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2348 tem = value_less (arg2, arg1) || value_equal (arg1, arg2);
2349 type = language_bool_type (exp->language_defn, exp->gdbarch);
2350 return value_from_longest (type, (LONGEST) tem);
2351 }
2352
2353 case BINOP_LEQ:
2354 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2355 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2356 if (noside == EVAL_SKIP)
2357 return eval_skip_value (exp);
2358 if (binop_user_defined_p (op, arg1, arg2))
2359 {
2360 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2361 }
2362 else
2363 {
2364 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2365 tem = value_less (arg1, arg2) || value_equal (arg1, arg2);
2366 type = language_bool_type (exp->language_defn, exp->gdbarch);
2367 return value_from_longest (type, (LONGEST) tem);
2368 }
2369
2370 case BINOP_REPEAT:
2371 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2372 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
2373 if (noside == EVAL_SKIP)
2374 return eval_skip_value (exp);
2375 type = check_typedef (value_type (arg2));
2376 if (type->code () != TYPE_CODE_INT
2377 && type->code () != TYPE_CODE_ENUM)
2378 error (_("Non-integral right operand for \"@\" operator."));
2379 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2380 {
2381 return allocate_repeat_value (value_type (arg1),
2382 longest_to_int (value_as_long (arg2)));
2383 }
2384 else
2385 return value_repeat (arg1, longest_to_int (value_as_long (arg2)));
2386
2387 case BINOP_COMMA:
2388 evaluate_subexp (nullptr, exp, pos, noside);
2389 return evaluate_subexp (nullptr, exp, pos, noside);
2390
2391 case UNOP_PLUS:
2392 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2393 if (noside == EVAL_SKIP)
2394 return eval_skip_value (exp);
2395 if (unop_user_defined_p (op, arg1))
2396 return value_x_unop (arg1, op, noside);
2397 else
2398 {
2399 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2400 return value_pos (arg1);
2401 }
2402
2403 case UNOP_NEG:
2404 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2405 if (noside == EVAL_SKIP)
2406 return eval_skip_value (exp);
2407 if (unop_user_defined_p (op, arg1))
2408 return value_x_unop (arg1, op, noside);
2409 else
2410 {
2411 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2412 return value_neg (arg1);
2413 }
2414
2415 case UNOP_COMPLEMENT:
2416 /* C++: check for and handle destructor names. */
2417
2418 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2419 if (noside == EVAL_SKIP)
2420 return eval_skip_value (exp);
2421 if (unop_user_defined_p (UNOP_COMPLEMENT, arg1))
2422 return value_x_unop (arg1, UNOP_COMPLEMENT, noside);
2423 else
2424 {
2425 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2426 return value_complement (arg1);
2427 }
2428
2429 case UNOP_LOGICAL_NOT:
2430 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2431 if (noside == EVAL_SKIP)
2432 return eval_skip_value (exp);
2433 if (unop_user_defined_p (op, arg1))
2434 return value_x_unop (arg1, op, noside);
2435 else
2436 {
2437 type = language_bool_type (exp->language_defn, exp->gdbarch);
2438 return value_from_longest (type, (LONGEST) value_logical_not (arg1));
2439 }
2440
2441 case UNOP_IND:
2442 if (expect_type && expect_type->code () == TYPE_CODE_PTR)
2443 expect_type = TYPE_TARGET_TYPE (check_typedef (expect_type));
2444 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2445 type = check_typedef (value_type (arg1));
2446 if (type->code () == TYPE_CODE_METHODPTR
2447 || type->code () == TYPE_CODE_MEMBERPTR)
2448 error (_("Attempt to dereference pointer "
2449 "to member without an object"));
2450 if (noside == EVAL_SKIP)
2451 return eval_skip_value (exp);
2452 if (unop_user_defined_p (op, arg1))
2453 return value_x_unop (arg1, op, noside);
2454 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2455 {
2456 type = check_typedef (value_type (arg1));
2457
2458 /* If the type pointed to is dynamic then in order to resolve the
2459 dynamic properties we must actually dereference the pointer.
2460 There is a risk that this dereference will have side-effects
2461 in the inferior, but being able to print accurate type
2462 information seems worth the risk. */
2463 if ((type->code () != TYPE_CODE_PTR
2464 && !TYPE_IS_REFERENCE (type))
2465 || !is_dynamic_type (TYPE_TARGET_TYPE (type)))
2466 {
2467 if (type->code () == TYPE_CODE_PTR
2468 || TYPE_IS_REFERENCE (type)
2469 /* In C you can dereference an array to get the 1st elt. */
2470 || type->code () == TYPE_CODE_ARRAY)
2471 return value_zero (TYPE_TARGET_TYPE (type),
2472 lval_memory);
2473 else if (type->code () == TYPE_CODE_INT)
2474 /* GDB allows dereferencing an int. */
2475 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
2476 lval_memory);
2477 else
2478 error (_("Attempt to take contents of a non-pointer value."));
2479 }
2480 }
2481
2482 /* Allow * on an integer so we can cast it to whatever we want.
2483 This returns an int, which seems like the most C-like thing to
2484 do. "long long" variables are rare enough that
2485 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
2486 if (type->code () == TYPE_CODE_INT)
2487 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
2488 (CORE_ADDR) value_as_address (arg1));
2489 return value_ind (arg1);
2490
2491 case UNOP_ADDR:
2492 /* C++: check for and handle pointer to members. */
2493
2494 if (noside == EVAL_SKIP)
2495 {
2496 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
2497 return eval_skip_value (exp);
2498 }
2499 else
2500 return evaluate_subexp_for_address (exp, pos, noside);
2501
2502 case UNOP_SIZEOF:
2503 if (noside == EVAL_SKIP)
2504 {
2505 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
2506 return eval_skip_value (exp);
2507 }
2508 return evaluate_subexp_for_sizeof (exp, pos, noside);
2509
2510 case UNOP_ALIGNOF:
2511 {
2512 type = value_type (
2513 evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS));
2514 /* FIXME: This should be size_t. */
2515 struct type *size_type = builtin_type (exp->gdbarch)->builtin_int;
2516 ULONGEST align = type_align (type);
2517 if (align == 0)
2518 error (_("could not determine alignment of type"));
2519 return value_from_longest (size_type, align);
2520 }
2521
2522 case UNOP_CAST:
2523 (*pos) += 2;
2524 type = exp->elts[pc + 1].type;
2525 return evaluate_subexp_for_cast (exp, pos, noside, type);
2526
2527 case UNOP_CAST_TYPE:
2528 arg1 = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2529 type = value_type (arg1);
2530 return evaluate_subexp_for_cast (exp, pos, noside, type);
2531
2532 case UNOP_DYNAMIC_CAST:
2533 arg1 = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2534 type = value_type (arg1);
2535 arg1 = evaluate_subexp (type, exp, pos, noside);
2536 if (noside == EVAL_SKIP)
2537 return eval_skip_value (exp);
2538 return value_dynamic_cast (type, arg1);
2539
2540 case UNOP_REINTERPRET_CAST:
2541 arg1 = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2542 type = value_type (arg1);
2543 arg1 = evaluate_subexp (type, exp, pos, noside);
2544 if (noside == EVAL_SKIP)
2545 return eval_skip_value (exp);
2546 return value_reinterpret_cast (type, arg1);
2547
2548 case UNOP_MEMVAL:
2549 (*pos) += 2;
2550 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2551 if (noside == EVAL_SKIP)
2552 return eval_skip_value (exp);
2553 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2554 return value_zero (exp->elts[pc + 1].type, lval_memory);
2555 else
2556 return value_at_lazy (exp->elts[pc + 1].type,
2557 value_as_address (arg1));
2558
2559 case UNOP_MEMVAL_TYPE:
2560 arg1 = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2561 type = value_type (arg1);
2562 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2563 if (noside == EVAL_SKIP)
2564 return eval_skip_value (exp);
2565 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2566 return value_zero (type, lval_memory);
2567 else
2568 return value_at_lazy (type, value_as_address (arg1));
2569
2570 case UNOP_PREINCREMENT:
2571 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2572 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2573 return arg1;
2574 else if (unop_user_defined_p (op, arg1))
2575 {
2576 return value_x_unop (arg1, op, noside);
2577 }
2578 else
2579 {
2580 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2581 arg2 = value_ptradd (arg1, 1);
2582 else
2583 {
2584 struct value *tmp = arg1;
2585
2586 arg2 = value_one (value_type (arg1));
2587 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2588 arg2 = value_binop (tmp, arg2, BINOP_ADD);
2589 }
2590
2591 return value_assign (arg1, arg2);
2592 }
2593
2594 case UNOP_PREDECREMENT:
2595 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2596 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2597 return arg1;
2598 else if (unop_user_defined_p (op, arg1))
2599 {
2600 return value_x_unop (arg1, op, noside);
2601 }
2602 else
2603 {
2604 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2605 arg2 = value_ptradd (arg1, -1);
2606 else
2607 {
2608 struct value *tmp = arg1;
2609
2610 arg2 = value_one (value_type (arg1));
2611 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2612 arg2 = value_binop (tmp, arg2, BINOP_SUB);
2613 }
2614
2615 return value_assign (arg1, arg2);
2616 }
2617
2618 case UNOP_POSTINCREMENT:
2619 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2620 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2621 return arg1;
2622 else if (unop_user_defined_p (op, arg1))
2623 {
2624 return value_x_unop (arg1, op, noside);
2625 }
2626 else
2627 {
2628 arg3 = value_non_lval (arg1);
2629
2630 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2631 arg2 = value_ptradd (arg1, 1);
2632 else
2633 {
2634 struct value *tmp = arg1;
2635
2636 arg2 = value_one (value_type (arg1));
2637 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2638 arg2 = value_binop (tmp, arg2, BINOP_ADD);
2639 }
2640
2641 value_assign (arg1, arg2);
2642 return arg3;
2643 }
2644
2645 case UNOP_POSTDECREMENT:
2646 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2647 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2648 return arg1;
2649 else if (unop_user_defined_p (op, arg1))
2650 {
2651 return value_x_unop (arg1, op, noside);
2652 }
2653 else
2654 {
2655 arg3 = value_non_lval (arg1);
2656
2657 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2658 arg2 = value_ptradd (arg1, -1);
2659 else
2660 {
2661 struct value *tmp = arg1;
2662
2663 arg2 = value_one (value_type (arg1));
2664 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2665 arg2 = value_binop (tmp, arg2, BINOP_SUB);
2666 }
2667
2668 value_assign (arg1, arg2);
2669 return arg3;
2670 }
2671
2672 case OP_THIS:
2673 (*pos) += 1;
2674 return value_of_this (exp->language_defn);
2675
2676 case OP_TYPE:
2677 /* The value is not supposed to be used. This is here to make it
2678 easier to accommodate expressions that contain types. */
2679 (*pos) += 2;
2680 if (noside == EVAL_SKIP)
2681 return eval_skip_value (exp);
2682 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2683 return allocate_value (exp->elts[pc + 1].type);
2684 else
2685 error (_("Attempt to use a type name as an expression"));
2686
2687 case OP_TYPEOF:
2688 case OP_DECLTYPE:
2689 if (noside == EVAL_SKIP)
2690 {
2691 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
2692 return eval_skip_value (exp);
2693 }
2694 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2695 {
2696 enum exp_opcode sub_op = exp->elts[*pos].opcode;
2697 struct value *result;
2698
2699 result = evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2700
2701 /* 'decltype' has special semantics for lvalues. */
2702 if (op == OP_DECLTYPE
2703 && (sub_op == BINOP_SUBSCRIPT
2704 || sub_op == STRUCTOP_MEMBER
2705 || sub_op == STRUCTOP_MPTR
2706 || sub_op == UNOP_IND
2707 || sub_op == STRUCTOP_STRUCT
2708 || sub_op == STRUCTOP_PTR
2709 || sub_op == OP_SCOPE))
2710 {
2711 type = value_type (result);
2712
2713 if (!TYPE_IS_REFERENCE (type))
2714 {
2715 type = lookup_lvalue_reference_type (type);
2716 result = allocate_value (type);
2717 }
2718 }
2719
2720 return result;
2721 }
2722 else
2723 error (_("Attempt to use a type as an expression"));
2724
2725 case OP_TYPEID:
2726 {
2727 struct value *result;
2728 enum exp_opcode sub_op = exp->elts[*pos].opcode;
2729
2730 if (sub_op == OP_TYPE || sub_op == OP_DECLTYPE || sub_op == OP_TYPEOF)
2731 result = evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2732 else
2733 result = evaluate_subexp (nullptr, exp, pos, noside);
2734
2735 if (noside != EVAL_NORMAL)
2736 return allocate_value (cplus_typeid_type (exp->gdbarch));
2737
2738 return cplus_typeid (result);
2739 }
2740
2741 default:
2742 /* Removing this case and compiling with gcc -Wall reveals that
2743 a lot of cases are hitting this case. Some of these should
2744 probably be removed from expression.h; others are legitimate
2745 expressions which are (apparently) not fully implemented.
2746
2747 If there are any cases landing here which mean a user error,
2748 then they should be separate cases, with more descriptive
2749 error messages. */
2750
2751 error (_("GDB does not (yet) know how to "
2752 "evaluate that kind of expression"));
2753 }
2754
2755 gdb_assert_not_reached ("missed return?");
2756 }
2757 \f
2758 /* Evaluate a subexpression of EXP, at index *POS,
2759 and return the address of that subexpression.
2760 Advance *POS over the subexpression.
2761 If the subexpression isn't an lvalue, get an error.
2762 NOSIDE may be EVAL_AVOID_SIDE_EFFECTS;
2763 then only the type of the result need be correct. */
2764
2765 static struct value *
2766 evaluate_subexp_for_address (struct expression *exp, int *pos,
2767 enum noside noside)
2768 {
2769 enum exp_opcode op;
2770 int pc;
2771 struct symbol *var;
2772 struct value *x;
2773 int tem;
2774
2775 pc = (*pos);
2776 op = exp->elts[pc].opcode;
2777
2778 switch (op)
2779 {
2780 case UNOP_IND:
2781 (*pos)++;
2782 x = evaluate_subexp (nullptr, exp, pos, noside);
2783
2784 /* We can't optimize out "&*" if there's a user-defined operator*. */
2785 if (unop_user_defined_p (op, x))
2786 {
2787 x = value_x_unop (x, op, noside);
2788 goto default_case_after_eval;
2789 }
2790
2791 return coerce_array (x);
2792
2793 case UNOP_MEMVAL:
2794 (*pos) += 3;
2795 return value_cast (lookup_pointer_type (exp->elts[pc + 1].type),
2796 evaluate_subexp (nullptr, exp, pos, noside));
2797
2798 case UNOP_MEMVAL_TYPE:
2799 {
2800 struct type *type;
2801
2802 (*pos) += 1;
2803 x = evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2804 type = value_type (x);
2805 return value_cast (lookup_pointer_type (type),
2806 evaluate_subexp (nullptr, exp, pos, noside));
2807 }
2808
2809 case OP_VAR_VALUE:
2810 var = exp->elts[pc + 2].symbol;
2811
2812 /* C++: The "address" of a reference should yield the address
2813 * of the object pointed to. Let value_addr() deal with it. */
2814 if (TYPE_IS_REFERENCE (SYMBOL_TYPE (var)))
2815 goto default_case;
2816
2817 (*pos) += 4;
2818 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2819 {
2820 struct type *type =
2821 lookup_pointer_type (SYMBOL_TYPE (var));
2822 enum address_class sym_class = SYMBOL_CLASS (var);
2823
2824 if (sym_class == LOC_CONST
2825 || sym_class == LOC_CONST_BYTES
2826 || sym_class == LOC_REGISTER)
2827 error (_("Attempt to take address of register or constant."));
2828
2829 return
2830 value_zero (type, not_lval);
2831 }
2832 else
2833 return address_of_variable (var, exp->elts[pc + 1].block);
2834
2835 case OP_VAR_MSYM_VALUE:
2836 {
2837 (*pos) += 4;
2838
2839 value *val = evaluate_var_msym_value (noside,
2840 exp->elts[pc + 1].objfile,
2841 exp->elts[pc + 2].msymbol);
2842 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2843 {
2844 struct type *type = lookup_pointer_type (value_type (val));
2845 return value_zero (type, not_lval);
2846 }
2847 else
2848 return value_addr (val);
2849 }
2850
2851 case OP_SCOPE:
2852 tem = longest_to_int (exp->elts[pc + 2].longconst);
2853 (*pos) += 5 + BYTES_TO_EXP_ELEM (tem + 1);
2854 x = value_aggregate_elt (exp->elts[pc + 1].type,
2855 &exp->elts[pc + 3].string,
2856 NULL, 1, noside);
2857 if (x == NULL)
2858 error (_("There is no field named %s"), &exp->elts[pc + 3].string);
2859 return x;
2860
2861 default:
2862 default_case:
2863 x = evaluate_subexp (nullptr, exp, pos, noside);
2864 default_case_after_eval:
2865 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2866 {
2867 struct type *type = check_typedef (value_type (x));
2868
2869 if (TYPE_IS_REFERENCE (type))
2870 return value_zero (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2871 not_lval);
2872 else if (VALUE_LVAL (x) == lval_memory || value_must_coerce_to_target (x))
2873 return value_zero (lookup_pointer_type (value_type (x)),
2874 not_lval);
2875 else
2876 error (_("Attempt to take address of "
2877 "value not located in memory."));
2878 }
2879 return value_addr (x);
2880 }
2881 }
2882
2883 /* Evaluate like `evaluate_subexp' except coercing arrays to pointers.
2884 When used in contexts where arrays will be coerced anyway, this is
2885 equivalent to `evaluate_subexp' but much faster because it avoids
2886 actually fetching array contents (perhaps obsolete now that we have
2887 value_lazy()).
2888
2889 Note that we currently only do the coercion for C expressions, where
2890 arrays are zero based and the coercion is correct. For other languages,
2891 with nonzero based arrays, coercion loses. Use CAST_IS_CONVERSION
2892 to decide if coercion is appropriate. */
2893
2894 struct value *
2895 evaluate_subexp_with_coercion (struct expression *exp,
2896 int *pos, enum noside noside)
2897 {
2898 enum exp_opcode op;
2899 int pc;
2900 struct value *val;
2901 struct symbol *var;
2902 struct type *type;
2903
2904 pc = (*pos);
2905 op = exp->elts[pc].opcode;
2906
2907 switch (op)
2908 {
2909 case OP_VAR_VALUE:
2910 var = exp->elts[pc + 2].symbol;
2911 type = check_typedef (SYMBOL_TYPE (var));
2912 if (type->code () == TYPE_CODE_ARRAY
2913 && !type->is_vector ()
2914 && CAST_IS_CONVERSION (exp->language_defn))
2915 {
2916 (*pos) += 4;
2917 val = address_of_variable (var, exp->elts[pc + 1].block);
2918 return value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2919 val);
2920 }
2921 /* FALLTHROUGH */
2922
2923 default:
2924 return evaluate_subexp (nullptr, exp, pos, noside);
2925 }
2926 }
2927
2928 /* Evaluate a subexpression of EXP, at index *POS,
2929 and return a value for the size of that subexpression.
2930 Advance *POS over the subexpression. If NOSIDE is EVAL_NORMAL
2931 we allow side-effects on the operand if its type is a variable
2932 length array. */
2933
2934 static struct value *
2935 evaluate_subexp_for_sizeof (struct expression *exp, int *pos,
2936 enum noside noside)
2937 {
2938 /* FIXME: This should be size_t. */
2939 struct type *size_type = builtin_type (exp->gdbarch)->builtin_int;
2940 enum exp_opcode op;
2941 int pc;
2942 struct type *type;
2943 struct value *val;
2944
2945 pc = (*pos);
2946 op = exp->elts[pc].opcode;
2947
2948 switch (op)
2949 {
2950 /* This case is handled specially
2951 so that we avoid creating a value for the result type.
2952 If the result type is very big, it's desirable not to
2953 create a value unnecessarily. */
2954 case UNOP_IND:
2955 (*pos)++;
2956 val = evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2957 type = check_typedef (value_type (val));
2958 if (type->code () != TYPE_CODE_PTR
2959 && !TYPE_IS_REFERENCE (type)
2960 && type->code () != TYPE_CODE_ARRAY)
2961 error (_("Attempt to take contents of a non-pointer value."));
2962 type = TYPE_TARGET_TYPE (type);
2963 if (is_dynamic_type (type))
2964 type = value_type (value_ind (val));
2965 return value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
2966
2967 case UNOP_MEMVAL:
2968 (*pos) += 3;
2969 type = exp->elts[pc + 1].type;
2970 break;
2971
2972 case UNOP_MEMVAL_TYPE:
2973 (*pos) += 1;
2974 val = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2975 type = value_type (val);
2976 break;
2977
2978 case OP_VAR_VALUE:
2979 type = SYMBOL_TYPE (exp->elts[pc + 2].symbol);
2980 if (is_dynamic_type (type))
2981 {
2982 val = evaluate_subexp (nullptr, exp, pos, EVAL_NORMAL);
2983 type = value_type (val);
2984 if (type->code () == TYPE_CODE_ARRAY)
2985 {
2986 if (type_not_allocated (type) || type_not_associated (type))
2987 return value_zero (size_type, not_lval);
2988 else if (is_dynamic_type (type->index_type ())
2989 && type->bounds ()->high.kind () == PROP_UNDEFINED)
2990 return allocate_optimized_out_value (size_type);
2991 }
2992 }
2993 else
2994 (*pos) += 4;
2995 break;
2996
2997 case OP_VAR_MSYM_VALUE:
2998 {
2999 (*pos) += 4;
3000
3001 minimal_symbol *msymbol = exp->elts[pc + 2].msymbol;
3002 value *mval = evaluate_var_msym_value (noside,
3003 exp->elts[pc + 1].objfile,
3004 msymbol);
3005
3006 type = value_type (mval);
3007 if (type->code () == TYPE_CODE_ERROR)
3008 error_unknown_type (msymbol->print_name ());
3009
3010 return value_from_longest (size_type, TYPE_LENGTH (type));
3011 }
3012 break;
3013
3014 /* Deal with the special case if NOSIDE is EVAL_NORMAL and the resulting
3015 type of the subscript is a variable length array type. In this case we
3016 must re-evaluate the right hand side of the subscription to allow
3017 side-effects. */
3018 case BINOP_SUBSCRIPT:
3019 if (noside == EVAL_NORMAL)
3020 {
3021 int npc = (*pos) + 1;
3022
3023 val = evaluate_subexp (nullptr, exp, &npc, EVAL_AVOID_SIDE_EFFECTS);
3024 type = check_typedef (value_type (val));
3025 if (type->code () == TYPE_CODE_ARRAY)
3026 {
3027 type = check_typedef (TYPE_TARGET_TYPE (type));
3028 if (type->code () == TYPE_CODE_ARRAY)
3029 {
3030 type = type->index_type ();
3031 /* Only re-evaluate the right hand side if the resulting type
3032 is a variable length type. */
3033 if (type->bounds ()->flag_bound_evaluated)
3034 {
3035 val = evaluate_subexp (nullptr, exp, pos, EVAL_NORMAL);
3036 return value_from_longest
3037 (size_type, (LONGEST) TYPE_LENGTH (value_type (val)));
3038 }
3039 }
3040 }
3041 }
3042
3043 /* Fall through. */
3044
3045 default:
3046 val = evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3047 type = value_type (val);
3048 break;
3049 }
3050
3051 /* $5.3.3/2 of the C++ Standard (n3290 draft) says of sizeof:
3052 "When applied to a reference or a reference type, the result is
3053 the size of the referenced type." */
3054 type = check_typedef (type);
3055 if (exp->language_defn->la_language == language_cplus
3056 && (TYPE_IS_REFERENCE (type)))
3057 type = check_typedef (TYPE_TARGET_TYPE (type));
3058 return value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
3059 }
3060
3061 /* Evaluate a subexpression of EXP, at index *POS, and return a value
3062 for that subexpression cast to TO_TYPE. Advance *POS over the
3063 subexpression. */
3064
3065 static value *
3066 evaluate_subexp_for_cast (expression *exp, int *pos,
3067 enum noside noside,
3068 struct type *to_type)
3069 {
3070 int pc = *pos;
3071
3072 /* Don't let symbols be evaluated with evaluate_subexp because that
3073 throws an "unknown type" error for no-debug data symbols.
3074 Instead, we want the cast to reinterpret the symbol. */
3075 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
3076 || exp->elts[pc].opcode == OP_VAR_VALUE)
3077 {
3078 (*pos) += 4;
3079
3080 value *val;
3081 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3082 {
3083 if (noside == EVAL_AVOID_SIDE_EFFECTS)
3084 return value_zero (to_type, not_lval);
3085
3086 val = evaluate_var_msym_value (noside,
3087 exp->elts[pc + 1].objfile,
3088 exp->elts[pc + 2].msymbol);
3089 }
3090 else
3091 val = evaluate_var_value (noside,
3092 exp->elts[pc + 1].block,
3093 exp->elts[pc + 2].symbol);
3094
3095 if (noside == EVAL_SKIP)
3096 return eval_skip_value (exp);
3097
3098 val = value_cast (to_type, val);
3099
3100 /* Don't allow e.g. '&(int)var_with_no_debug_info'. */
3101 if (VALUE_LVAL (val) == lval_memory)
3102 {
3103 if (value_lazy (val))
3104 value_fetch_lazy (val);
3105 VALUE_LVAL (val) = not_lval;
3106 }
3107 return val;
3108 }
3109
3110 value *val = evaluate_subexp (to_type, exp, pos, noside);
3111 if (noside == EVAL_SKIP)
3112 return eval_skip_value (exp);
3113 return value_cast (to_type, val);
3114 }
3115
3116 /* Parse a type expression in the string [P..P+LENGTH). */
3117
3118 struct type *
3119 parse_and_eval_type (const char *p, int length)
3120 {
3121 char *tmp = (char *) alloca (length + 4);
3122
3123 tmp[0] = '(';
3124 memcpy (tmp + 1, p, length);
3125 tmp[length + 1] = ')';
3126 tmp[length + 2] = '0';
3127 tmp[length + 3] = '\0';
3128 expression_up expr = parse_expression (tmp);
3129 if (expr->first_opcode () != UNOP_CAST)
3130 error (_("Internal error in eval_type."));
3131 return expr->elts[1].type;
3132 }