* NEWS: Mention pointer to member improvements.
[binutils-gdb.git] / gdb / eval.c
1 /* Evaluate expressions for GDB.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
4 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2005, 2006
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street, Fifth Floor,
22 Boston, MA 02110-1301, USA. */
23
24 #include "defs.h"
25 #include "gdb_string.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "value.h"
29 #include "expression.h"
30 #include "target.h"
31 #include "frame.h"
32 #include "language.h" /* For CAST_IS_CONVERSION */
33 #include "f-lang.h" /* for array bound stuff */
34 #include "cp-abi.h"
35 #include "infcall.h"
36 #include "objc-lang.h"
37 #include "block.h"
38 #include "parser-defs.h"
39 #include "cp-support.h"
40
41 #include "gdb_assert.h"
42
43 /* This is defined in valops.c */
44 extern int overload_resolution;
45
46 /* JYG: lookup rtti type of STRUCTOP_PTR when this is set to continue
47 on with successful lookup for member/method of the rtti type. */
48 extern int objectprint;
49
50 /* Prototypes for local functions. */
51
52 static struct value *evaluate_subexp_for_sizeof (struct expression *, int *);
53
54 static struct value *evaluate_subexp_for_address (struct expression *,
55 int *, enum noside);
56
57 static struct value *evaluate_subexp (struct type *, struct expression *,
58 int *, enum noside);
59
60 static char *get_label (struct expression *, int *);
61
62 static struct value *evaluate_struct_tuple (struct value *,
63 struct expression *, int *,
64 enum noside, int);
65
66 static LONGEST init_array_element (struct value *, struct value *,
67 struct expression *, int *, enum noside,
68 LONGEST, LONGEST);
69
70 static struct value *
71 evaluate_subexp (struct type *expect_type, struct expression *exp,
72 int *pos, enum noside noside)
73 {
74 return (*exp->language_defn->la_exp_desc->evaluate_exp)
75 (expect_type, exp, pos, noside);
76 }
77 \f
78 /* Parse the string EXP as a C expression, evaluate it,
79 and return the result as a number. */
80
81 CORE_ADDR
82 parse_and_eval_address (char *exp)
83 {
84 struct expression *expr = parse_expression (exp);
85 CORE_ADDR addr;
86 struct cleanup *old_chain =
87 make_cleanup (free_current_contents, &expr);
88
89 addr = value_as_address (evaluate_expression (expr));
90 do_cleanups (old_chain);
91 return addr;
92 }
93
94 /* Like parse_and_eval_address but takes a pointer to a char * variable
95 and advanced that variable across the characters parsed. */
96
97 CORE_ADDR
98 parse_and_eval_address_1 (char **expptr)
99 {
100 struct expression *expr = parse_exp_1 (expptr, (struct block *) 0, 0);
101 CORE_ADDR addr;
102 struct cleanup *old_chain =
103 make_cleanup (free_current_contents, &expr);
104
105 addr = value_as_address (evaluate_expression (expr));
106 do_cleanups (old_chain);
107 return addr;
108 }
109
110 /* Like parse_and_eval_address, but treats the value of the expression
111 as an integer, not an address, returns a LONGEST, not a CORE_ADDR */
112 LONGEST
113 parse_and_eval_long (char *exp)
114 {
115 struct expression *expr = parse_expression (exp);
116 LONGEST retval;
117 struct cleanup *old_chain =
118 make_cleanup (free_current_contents, &expr);
119
120 retval = value_as_long (evaluate_expression (expr));
121 do_cleanups (old_chain);
122 return (retval);
123 }
124
125 struct value *
126 parse_and_eval (char *exp)
127 {
128 struct expression *expr = parse_expression (exp);
129 struct value *val;
130 struct cleanup *old_chain =
131 make_cleanup (free_current_contents, &expr);
132
133 val = evaluate_expression (expr);
134 do_cleanups (old_chain);
135 return val;
136 }
137
138 /* Parse up to a comma (or to a closeparen)
139 in the string EXPP as an expression, evaluate it, and return the value.
140 EXPP is advanced to point to the comma. */
141
142 struct value *
143 parse_to_comma_and_eval (char **expp)
144 {
145 struct expression *expr = parse_exp_1 (expp, (struct block *) 0, 1);
146 struct value *val;
147 struct cleanup *old_chain =
148 make_cleanup (free_current_contents, &expr);
149
150 val = evaluate_expression (expr);
151 do_cleanups (old_chain);
152 return val;
153 }
154 \f
155 /* Evaluate an expression in internal prefix form
156 such as is constructed by parse.y.
157
158 See expression.h for info on the format of an expression. */
159
160 struct value *
161 evaluate_expression (struct expression *exp)
162 {
163 int pc = 0;
164 return evaluate_subexp (NULL_TYPE, exp, &pc, EVAL_NORMAL);
165 }
166
167 /* Evaluate an expression, avoiding all memory references
168 and getting a value whose type alone is correct. */
169
170 struct value *
171 evaluate_type (struct expression *exp)
172 {
173 int pc = 0;
174 return evaluate_subexp (NULL_TYPE, exp, &pc, EVAL_AVOID_SIDE_EFFECTS);
175 }
176
177 /* If the next expression is an OP_LABELED, skips past it,
178 returning the label. Otherwise, does nothing and returns NULL. */
179
180 static char *
181 get_label (struct expression *exp, int *pos)
182 {
183 if (exp->elts[*pos].opcode == OP_LABELED)
184 {
185 int pc = (*pos)++;
186 char *name = &exp->elts[pc + 2].string;
187 int tem = longest_to_int (exp->elts[pc + 1].longconst);
188 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
189 return name;
190 }
191 else
192 return NULL;
193 }
194
195 /* This function evaluates tuples (in (the deleted) Chill) or
196 brace-initializers (in C/C++) for structure types. */
197
198 static struct value *
199 evaluate_struct_tuple (struct value *struct_val,
200 struct expression *exp,
201 int *pos, enum noside noside, int nargs)
202 {
203 struct type *struct_type = check_typedef (value_type (struct_val));
204 struct type *substruct_type = struct_type;
205 struct type *field_type;
206 int fieldno = -1;
207 int variantno = -1;
208 int subfieldno = -1;
209 while (--nargs >= 0)
210 {
211 int pc = *pos;
212 struct value *val = NULL;
213 int nlabels = 0;
214 int bitpos, bitsize;
215 bfd_byte *addr;
216
217 /* Skip past the labels, and count them. */
218 while (get_label (exp, pos) != NULL)
219 nlabels++;
220
221 do
222 {
223 char *label = get_label (exp, &pc);
224 if (label)
225 {
226 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type);
227 fieldno++)
228 {
229 char *field_name = TYPE_FIELD_NAME (struct_type, fieldno);
230 if (field_name != NULL && strcmp (field_name, label) == 0)
231 {
232 variantno = -1;
233 subfieldno = fieldno;
234 substruct_type = struct_type;
235 goto found;
236 }
237 }
238 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type);
239 fieldno++)
240 {
241 char *field_name = TYPE_FIELD_NAME (struct_type, fieldno);
242 field_type = TYPE_FIELD_TYPE (struct_type, fieldno);
243 if ((field_name == 0 || *field_name == '\0')
244 && TYPE_CODE (field_type) == TYPE_CODE_UNION)
245 {
246 variantno = 0;
247 for (; variantno < TYPE_NFIELDS (field_type);
248 variantno++)
249 {
250 substruct_type
251 = TYPE_FIELD_TYPE (field_type, variantno);
252 if (TYPE_CODE (substruct_type) == TYPE_CODE_STRUCT)
253 {
254 for (subfieldno = 0;
255 subfieldno < TYPE_NFIELDS (substruct_type);
256 subfieldno++)
257 {
258 if (strcmp(TYPE_FIELD_NAME (substruct_type,
259 subfieldno),
260 label) == 0)
261 {
262 goto found;
263 }
264 }
265 }
266 }
267 }
268 }
269 error (_("there is no field named %s"), label);
270 found:
271 ;
272 }
273 else
274 {
275 /* Unlabelled tuple element - go to next field. */
276 if (variantno >= 0)
277 {
278 subfieldno++;
279 if (subfieldno >= TYPE_NFIELDS (substruct_type))
280 {
281 variantno = -1;
282 substruct_type = struct_type;
283 }
284 }
285 if (variantno < 0)
286 {
287 fieldno++;
288 /* Skip static fields. */
289 while (fieldno < TYPE_NFIELDS (struct_type)
290 && TYPE_FIELD_STATIC_KIND (struct_type, fieldno))
291 fieldno++;
292 subfieldno = fieldno;
293 if (fieldno >= TYPE_NFIELDS (struct_type))
294 error (_("too many initializers"));
295 field_type = TYPE_FIELD_TYPE (struct_type, fieldno);
296 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
297 && TYPE_FIELD_NAME (struct_type, fieldno)[0] == '0')
298 error (_("don't know which variant you want to set"));
299 }
300 }
301
302 /* Here, struct_type is the type of the inner struct,
303 while substruct_type is the type of the inner struct.
304 These are the same for normal structures, but a variant struct
305 contains anonymous union fields that contain substruct fields.
306 The value fieldno is the index of the top-level (normal or
307 anonymous union) field in struct_field, while the value
308 subfieldno is the index of the actual real (named inner) field
309 in substruct_type. */
310
311 field_type = TYPE_FIELD_TYPE (substruct_type, subfieldno);
312 if (val == 0)
313 val = evaluate_subexp (field_type, exp, pos, noside);
314
315 /* Now actually set the field in struct_val. */
316
317 /* Assign val to field fieldno. */
318 if (value_type (val) != field_type)
319 val = value_cast (field_type, val);
320
321 bitsize = TYPE_FIELD_BITSIZE (substruct_type, subfieldno);
322 bitpos = TYPE_FIELD_BITPOS (struct_type, fieldno);
323 if (variantno >= 0)
324 bitpos += TYPE_FIELD_BITPOS (substruct_type, subfieldno);
325 addr = value_contents_writeable (struct_val) + bitpos / 8;
326 if (bitsize)
327 modify_field (addr, value_as_long (val),
328 bitpos % 8, bitsize);
329 else
330 memcpy (addr, value_contents (val),
331 TYPE_LENGTH (value_type (val)));
332 }
333 while (--nlabels > 0);
334 }
335 return struct_val;
336 }
337
338 /* Recursive helper function for setting elements of array tuples for
339 (the deleted) Chill. The target is ARRAY (which has bounds
340 LOW_BOUND to HIGH_BOUND); the element value is ELEMENT; EXP, POS
341 and NOSIDE are as usual. Evaluates index expresions and sets the
342 specified element(s) of ARRAY to ELEMENT. Returns last index
343 value. */
344
345 static LONGEST
346 init_array_element (struct value *array, struct value *element,
347 struct expression *exp, int *pos,
348 enum noside noside, LONGEST low_bound, LONGEST high_bound)
349 {
350 LONGEST index;
351 int element_size = TYPE_LENGTH (value_type (element));
352 if (exp->elts[*pos].opcode == BINOP_COMMA)
353 {
354 (*pos)++;
355 init_array_element (array, element, exp, pos, noside,
356 low_bound, high_bound);
357 return init_array_element (array, element,
358 exp, pos, noside, low_bound, high_bound);
359 }
360 else if (exp->elts[*pos].opcode == BINOP_RANGE)
361 {
362 LONGEST low, high;
363 (*pos)++;
364 low = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
365 high = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
366 if (low < low_bound || high > high_bound)
367 error (_("tuple range index out of range"));
368 for (index = low; index <= high; index++)
369 {
370 memcpy (value_contents_raw (array)
371 + (index - low_bound) * element_size,
372 value_contents (element), element_size);
373 }
374 }
375 else
376 {
377 index = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
378 if (index < low_bound || index > high_bound)
379 error (_("tuple index out of range"));
380 memcpy (value_contents_raw (array) + (index - low_bound) * element_size,
381 value_contents (element), element_size);
382 }
383 return index;
384 }
385
386 struct value *
387 value_f90_subarray (struct value *array,
388 struct expression *exp, int *pos, enum noside noside)
389 {
390 int pc = (*pos) + 1;
391 LONGEST low_bound, high_bound;
392 struct type *range = check_typedef (TYPE_INDEX_TYPE (value_type (array)));
393 enum f90_range_type range_type = longest_to_int (exp->elts[pc].longconst);
394
395 *pos += 3;
396
397 if (range_type == LOW_BOUND_DEFAULT || range_type == BOTH_BOUND_DEFAULT)
398 low_bound = TYPE_LOW_BOUND (range);
399 else
400 low_bound = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
401
402 if (range_type == HIGH_BOUND_DEFAULT || range_type == BOTH_BOUND_DEFAULT)
403 high_bound = TYPE_HIGH_BOUND (range);
404 else
405 high_bound = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
406
407 return value_slice (array, low_bound, high_bound - low_bound + 1);
408 }
409
410 struct value *
411 evaluate_subexp_standard (struct type *expect_type,
412 struct expression *exp, int *pos,
413 enum noside noside)
414 {
415 enum exp_opcode op;
416 int tem, tem2, tem3;
417 int pc, pc2 = 0, oldpos;
418 struct value *arg1 = NULL;
419 struct value *arg2 = NULL;
420 struct value *arg3;
421 struct type *type;
422 int nargs;
423 struct value **argvec;
424 int upper, lower, retcode;
425 int code;
426 int ix;
427 long mem_offset;
428 struct type **arg_types;
429 int save_pos1;
430
431 pc = (*pos)++;
432 op = exp->elts[pc].opcode;
433
434 switch (op)
435 {
436 case OP_SCOPE:
437 tem = longest_to_int (exp->elts[pc + 2].longconst);
438 (*pos) += 4 + BYTES_TO_EXP_ELEM (tem + 1);
439 if (noside == EVAL_SKIP)
440 goto nosideret;
441 arg1 = value_aggregate_elt (exp->elts[pc + 1].type,
442 &exp->elts[pc + 3].string,
443 0, noside);
444 if (arg1 == NULL)
445 error (_("There is no field named %s"), &exp->elts[pc + 3].string);
446 return arg1;
447
448 case OP_LONG:
449 (*pos) += 3;
450 return value_from_longest (exp->elts[pc + 1].type,
451 exp->elts[pc + 2].longconst);
452
453 case OP_DOUBLE:
454 (*pos) += 3;
455 return value_from_double (exp->elts[pc + 1].type,
456 exp->elts[pc + 2].doubleconst);
457
458 case OP_VAR_VALUE:
459 (*pos) += 3;
460 if (noside == EVAL_SKIP)
461 goto nosideret;
462
463 /* JYG: We used to just return value_zero of the symbol type
464 if we're asked to avoid side effects. Otherwise we return
465 value_of_variable (...). However I'm not sure if
466 value_of_variable () has any side effect.
467 We need a full value object returned here for whatis_exp ()
468 to call evaluate_type () and then pass the full value to
469 value_rtti_target_type () if we are dealing with a pointer
470 or reference to a base class and print object is on. */
471
472 return value_of_variable (exp->elts[pc + 2].symbol,
473 exp->elts[pc + 1].block);
474
475 case OP_LAST:
476 (*pos) += 2;
477 return
478 access_value_history (longest_to_int (exp->elts[pc + 1].longconst));
479
480 case OP_REGISTER:
481 {
482 int regno = longest_to_int (exp->elts[pc + 1].longconst);
483 struct value *val = value_of_register (regno, get_selected_frame (NULL));
484 (*pos) += 2;
485 if (val == NULL)
486 error (_("Value of register %s not available."),
487 frame_map_regnum_to_name (get_selected_frame (NULL), regno));
488 else
489 return val;
490 }
491 case OP_BOOL:
492 (*pos) += 2;
493 return value_from_longest (LA_BOOL_TYPE,
494 exp->elts[pc + 1].longconst);
495
496 case OP_INTERNALVAR:
497 (*pos) += 2;
498 return value_of_internalvar (exp->elts[pc + 1].internalvar);
499
500 case OP_STRING:
501 tem = longest_to_int (exp->elts[pc + 1].longconst);
502 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
503 if (noside == EVAL_SKIP)
504 goto nosideret;
505 return value_string (&exp->elts[pc + 2].string, tem);
506
507 case OP_OBJC_NSSTRING: /* Objective C Foundation Class NSString constant. */
508 tem = longest_to_int (exp->elts[pc + 1].longconst);
509 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
510 if (noside == EVAL_SKIP)
511 {
512 goto nosideret;
513 }
514 return (struct value *) value_nsstring (&exp->elts[pc + 2].string, tem + 1);
515
516 case OP_BITSTRING:
517 tem = longest_to_int (exp->elts[pc + 1].longconst);
518 (*pos)
519 += 3 + BYTES_TO_EXP_ELEM ((tem + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT);
520 if (noside == EVAL_SKIP)
521 goto nosideret;
522 return value_bitstring (&exp->elts[pc + 2].string, tem);
523 break;
524
525 case OP_ARRAY:
526 (*pos) += 3;
527 tem2 = longest_to_int (exp->elts[pc + 1].longconst);
528 tem3 = longest_to_int (exp->elts[pc + 2].longconst);
529 nargs = tem3 - tem2 + 1;
530 type = expect_type ? check_typedef (expect_type) : NULL_TYPE;
531
532 if (expect_type != NULL_TYPE && noside != EVAL_SKIP
533 && TYPE_CODE (type) == TYPE_CODE_STRUCT)
534 {
535 struct value *rec = allocate_value (expect_type);
536 memset (value_contents_raw (rec), '\0', TYPE_LENGTH (type));
537 return evaluate_struct_tuple (rec, exp, pos, noside, nargs);
538 }
539
540 if (expect_type != NULL_TYPE && noside != EVAL_SKIP
541 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
542 {
543 struct type *range_type = TYPE_FIELD_TYPE (type, 0);
544 struct type *element_type = TYPE_TARGET_TYPE (type);
545 struct value *array = allocate_value (expect_type);
546 int element_size = TYPE_LENGTH (check_typedef (element_type));
547 LONGEST low_bound, high_bound, index;
548 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
549 {
550 low_bound = 0;
551 high_bound = (TYPE_LENGTH (type) / element_size) - 1;
552 }
553 index = low_bound;
554 memset (value_contents_raw (array), 0, TYPE_LENGTH (expect_type));
555 for (tem = nargs; --nargs >= 0;)
556 {
557 struct value *element;
558 int index_pc = 0;
559 if (exp->elts[*pos].opcode == BINOP_RANGE)
560 {
561 index_pc = ++(*pos);
562 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
563 }
564 element = evaluate_subexp (element_type, exp, pos, noside);
565 if (value_type (element) != element_type)
566 element = value_cast (element_type, element);
567 if (index_pc)
568 {
569 int continue_pc = *pos;
570 *pos = index_pc;
571 index = init_array_element (array, element, exp, pos, noside,
572 low_bound, high_bound);
573 *pos = continue_pc;
574 }
575 else
576 {
577 if (index > high_bound)
578 /* to avoid memory corruption */
579 error (_("Too many array elements"));
580 memcpy (value_contents_raw (array)
581 + (index - low_bound) * element_size,
582 value_contents (element),
583 element_size);
584 }
585 index++;
586 }
587 return array;
588 }
589
590 if (expect_type != NULL_TYPE && noside != EVAL_SKIP
591 && TYPE_CODE (type) == TYPE_CODE_SET)
592 {
593 struct value *set = allocate_value (expect_type);
594 gdb_byte *valaddr = value_contents_raw (set);
595 struct type *element_type = TYPE_INDEX_TYPE (type);
596 struct type *check_type = element_type;
597 LONGEST low_bound, high_bound;
598
599 /* get targettype of elementtype */
600 while (TYPE_CODE (check_type) == TYPE_CODE_RANGE ||
601 TYPE_CODE (check_type) == TYPE_CODE_TYPEDEF)
602 check_type = TYPE_TARGET_TYPE (check_type);
603
604 if (get_discrete_bounds (element_type, &low_bound, &high_bound) < 0)
605 error (_("(power)set type with unknown size"));
606 memset (valaddr, '\0', TYPE_LENGTH (type));
607 for (tem = 0; tem < nargs; tem++)
608 {
609 LONGEST range_low, range_high;
610 struct type *range_low_type, *range_high_type;
611 struct value *elem_val;
612 if (exp->elts[*pos].opcode == BINOP_RANGE)
613 {
614 (*pos)++;
615 elem_val = evaluate_subexp (element_type, exp, pos, noside);
616 range_low_type = value_type (elem_val);
617 range_low = value_as_long (elem_val);
618 elem_val = evaluate_subexp (element_type, exp, pos, noside);
619 range_high_type = value_type (elem_val);
620 range_high = value_as_long (elem_val);
621 }
622 else
623 {
624 elem_val = evaluate_subexp (element_type, exp, pos, noside);
625 range_low_type = range_high_type = value_type (elem_val);
626 range_low = range_high = value_as_long (elem_val);
627 }
628 /* check types of elements to avoid mixture of elements from
629 different types. Also check if type of element is "compatible"
630 with element type of powerset */
631 if (TYPE_CODE (range_low_type) == TYPE_CODE_RANGE)
632 range_low_type = TYPE_TARGET_TYPE (range_low_type);
633 if (TYPE_CODE (range_high_type) == TYPE_CODE_RANGE)
634 range_high_type = TYPE_TARGET_TYPE (range_high_type);
635 if ((TYPE_CODE (range_low_type) != TYPE_CODE (range_high_type)) ||
636 (TYPE_CODE (range_low_type) == TYPE_CODE_ENUM &&
637 (range_low_type != range_high_type)))
638 /* different element modes */
639 error (_("POWERSET tuple elements of different mode"));
640 if ((TYPE_CODE (check_type) != TYPE_CODE (range_low_type)) ||
641 (TYPE_CODE (check_type) == TYPE_CODE_ENUM &&
642 range_low_type != check_type))
643 error (_("incompatible POWERSET tuple elements"));
644 if (range_low > range_high)
645 {
646 warning (_("empty POWERSET tuple range"));
647 continue;
648 }
649 if (range_low < low_bound || range_high > high_bound)
650 error (_("POWERSET tuple element out of range"));
651 range_low -= low_bound;
652 range_high -= low_bound;
653 for (; range_low <= range_high; range_low++)
654 {
655 int bit_index = (unsigned) range_low % TARGET_CHAR_BIT;
656 if (BITS_BIG_ENDIAN)
657 bit_index = TARGET_CHAR_BIT - 1 - bit_index;
658 valaddr[(unsigned) range_low / TARGET_CHAR_BIT]
659 |= 1 << bit_index;
660 }
661 }
662 return set;
663 }
664
665 argvec = (struct value **) alloca (sizeof (struct value *) * nargs);
666 for (tem = 0; tem < nargs; tem++)
667 {
668 /* Ensure that array expressions are coerced into pointer objects. */
669 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
670 }
671 if (noside == EVAL_SKIP)
672 goto nosideret;
673 return value_array (tem2, tem3, argvec);
674
675 case TERNOP_SLICE:
676 {
677 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
678 int lowbound
679 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
680 int upper
681 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
682 if (noside == EVAL_SKIP)
683 goto nosideret;
684 return value_slice (array, lowbound, upper - lowbound + 1);
685 }
686
687 case TERNOP_SLICE_COUNT:
688 {
689 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
690 int lowbound
691 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
692 int length
693 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
694 return value_slice (array, lowbound, length);
695 }
696
697 case TERNOP_COND:
698 /* Skip third and second args to evaluate the first one. */
699 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
700 if (value_logical_not (arg1))
701 {
702 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
703 return evaluate_subexp (NULL_TYPE, exp, pos, noside);
704 }
705 else
706 {
707 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
708 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
709 return arg2;
710 }
711
712 case OP_OBJC_SELECTOR:
713 { /* Objective C @selector operator. */
714 char *sel = &exp->elts[pc + 2].string;
715 int len = longest_to_int (exp->elts[pc + 1].longconst);
716
717 (*pos) += 3 + BYTES_TO_EXP_ELEM (len + 1);
718 if (noside == EVAL_SKIP)
719 goto nosideret;
720
721 if (sel[len] != 0)
722 sel[len] = 0; /* Make sure it's terminated. */
723 return value_from_longest (lookup_pointer_type (builtin_type_void),
724 lookup_child_selector (sel));
725 }
726
727 case OP_OBJC_MSGCALL:
728 { /* Objective C message (method) call. */
729
730 static CORE_ADDR responds_selector = 0;
731 static CORE_ADDR method_selector = 0;
732
733 CORE_ADDR selector = 0;
734
735 int using_gcc = 0;
736 int struct_return = 0;
737 int sub_no_side = 0;
738
739 static struct value *msg_send = NULL;
740 static struct value *msg_send_stret = NULL;
741 static int gnu_runtime = 0;
742
743 struct value *target = NULL;
744 struct value *method = NULL;
745 struct value *called_method = NULL;
746
747 struct type *selector_type = NULL;
748
749 struct value *ret = NULL;
750 CORE_ADDR addr = 0;
751
752 selector = exp->elts[pc + 1].longconst;
753 nargs = exp->elts[pc + 2].longconst;
754 argvec = (struct value **) alloca (sizeof (struct value *)
755 * (nargs + 5));
756
757 (*pos) += 3;
758
759 selector_type = lookup_pointer_type (builtin_type_void);
760 if (noside == EVAL_AVOID_SIDE_EFFECTS)
761 sub_no_side = EVAL_NORMAL;
762 else
763 sub_no_side = noside;
764
765 target = evaluate_subexp (selector_type, exp, pos, sub_no_side);
766
767 if (value_as_long (target) == 0)
768 return value_from_longest (builtin_type_long, 0);
769
770 if (lookup_minimal_symbol ("objc_msg_lookup", 0, 0))
771 gnu_runtime = 1;
772
773 /* Find the method dispatch (Apple runtime) or method lookup
774 (GNU runtime) function for Objective-C. These will be used
775 to lookup the symbol information for the method. If we
776 can't find any symbol information, then we'll use these to
777 call the method, otherwise we can call the method
778 directly. The msg_send_stret function is used in the special
779 case of a method that returns a structure (Apple runtime
780 only). */
781 if (gnu_runtime)
782 {
783 struct type *type;
784 type = lookup_pointer_type (builtin_type_void);
785 type = lookup_function_type (type);
786 type = lookup_pointer_type (type);
787 type = lookup_function_type (type);
788 type = lookup_pointer_type (type);
789
790 msg_send = find_function_in_inferior ("objc_msg_lookup");
791 msg_send_stret = find_function_in_inferior ("objc_msg_lookup");
792
793 msg_send = value_from_pointer (type, value_as_address (msg_send));
794 msg_send_stret = value_from_pointer (type,
795 value_as_address (msg_send_stret));
796 }
797 else
798 {
799 msg_send = find_function_in_inferior ("objc_msgSend");
800 /* Special dispatcher for methods returning structs */
801 msg_send_stret = find_function_in_inferior ("objc_msgSend_stret");
802 }
803
804 /* Verify the target object responds to this method. The
805 standard top-level 'Object' class uses a different name for
806 the verification method than the non-standard, but more
807 often used, 'NSObject' class. Make sure we check for both. */
808
809 responds_selector = lookup_child_selector ("respondsToSelector:");
810 if (responds_selector == 0)
811 responds_selector = lookup_child_selector ("respondsTo:");
812
813 if (responds_selector == 0)
814 error (_("no 'respondsTo:' or 'respondsToSelector:' method"));
815
816 method_selector = lookup_child_selector ("methodForSelector:");
817 if (method_selector == 0)
818 method_selector = lookup_child_selector ("methodFor:");
819
820 if (method_selector == 0)
821 error (_("no 'methodFor:' or 'methodForSelector:' method"));
822
823 /* Call the verification method, to make sure that the target
824 class implements the desired method. */
825
826 argvec[0] = msg_send;
827 argvec[1] = target;
828 argvec[2] = value_from_longest (builtin_type_long, responds_selector);
829 argvec[3] = value_from_longest (builtin_type_long, selector);
830 argvec[4] = 0;
831
832 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
833 if (gnu_runtime)
834 {
835 /* Function objc_msg_lookup returns a pointer. */
836 argvec[0] = ret;
837 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
838 }
839 if (value_as_long (ret) == 0)
840 error (_("Target does not respond to this message selector."));
841
842 /* Call "methodForSelector:" method, to get the address of a
843 function method that implements this selector for this
844 class. If we can find a symbol at that address, then we
845 know the return type, parameter types etc. (that's a good
846 thing). */
847
848 argvec[0] = msg_send;
849 argvec[1] = target;
850 argvec[2] = value_from_longest (builtin_type_long, method_selector);
851 argvec[3] = value_from_longest (builtin_type_long, selector);
852 argvec[4] = 0;
853
854 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
855 if (gnu_runtime)
856 {
857 argvec[0] = ret;
858 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
859 }
860
861 /* ret should now be the selector. */
862
863 addr = value_as_long (ret);
864 if (addr)
865 {
866 struct symbol *sym = NULL;
867 /* Is it a high_level symbol? */
868
869 sym = find_pc_function (addr);
870 if (sym != NULL)
871 method = value_of_variable (sym, 0);
872 }
873
874 /* If we found a method with symbol information, check to see
875 if it returns a struct. Otherwise assume it doesn't. */
876
877 if (method)
878 {
879 struct block *b;
880 CORE_ADDR funaddr;
881 struct type *value_type;
882
883 funaddr = find_function_addr (method, &value_type);
884
885 b = block_for_pc (funaddr);
886
887 /* If compiled without -g, assume GCC 2. */
888 using_gcc = (b == NULL ? 2 : BLOCK_GCC_COMPILED (b));
889
890 CHECK_TYPEDEF (value_type);
891
892 if ((value_type == NULL)
893 || (TYPE_CODE(value_type) == TYPE_CODE_ERROR))
894 {
895 if (expect_type != NULL)
896 value_type = expect_type;
897 }
898
899 struct_return = using_struct_return (value_type, using_gcc);
900 }
901 else if (expect_type != NULL)
902 {
903 struct_return = using_struct_return (check_typedef (expect_type), using_gcc);
904 }
905
906 /* Found a function symbol. Now we will substitute its
907 value in place of the message dispatcher (obj_msgSend),
908 so that we call the method directly instead of thru
909 the dispatcher. The main reason for doing this is that
910 we can now evaluate the return value and parameter values
911 according to their known data types, in case we need to
912 do things like promotion, dereferencing, special handling
913 of structs and doubles, etc.
914
915 We want to use the type signature of 'method', but still
916 jump to objc_msgSend() or objc_msgSend_stret() to better
917 mimic the behavior of the runtime. */
918
919 if (method)
920 {
921 if (TYPE_CODE (value_type (method)) != TYPE_CODE_FUNC)
922 error (_("method address has symbol information with non-function type; skipping"));
923 if (struct_return)
924 VALUE_ADDRESS (method) = value_as_address (msg_send_stret);
925 else
926 VALUE_ADDRESS (method) = value_as_address (msg_send);
927 called_method = method;
928 }
929 else
930 {
931 if (struct_return)
932 called_method = msg_send_stret;
933 else
934 called_method = msg_send;
935 }
936
937 if (noside == EVAL_SKIP)
938 goto nosideret;
939
940 if (noside == EVAL_AVOID_SIDE_EFFECTS)
941 {
942 /* If the return type doesn't look like a function type,
943 call an error. This can happen if somebody tries to
944 turn a variable into a function call. This is here
945 because people often want to call, eg, strcmp, which
946 gdb doesn't know is a function. If gdb isn't asked for
947 it's opinion (ie. through "whatis"), it won't offer
948 it. */
949
950 struct type *type = value_type (called_method);
951 if (type && TYPE_CODE (type) == TYPE_CODE_PTR)
952 type = TYPE_TARGET_TYPE (type);
953 type = TYPE_TARGET_TYPE (type);
954
955 if (type)
956 {
957 if ((TYPE_CODE (type) == TYPE_CODE_ERROR) && expect_type)
958 return allocate_value (expect_type);
959 else
960 return allocate_value (type);
961 }
962 else
963 error (_("Expression of type other than \"method returning ...\" used as a method"));
964 }
965
966 /* Now depending on whether we found a symbol for the method,
967 we will either call the runtime dispatcher or the method
968 directly. */
969
970 argvec[0] = called_method;
971 argvec[1] = target;
972 argvec[2] = value_from_longest (builtin_type_long, selector);
973 /* User-supplied arguments. */
974 for (tem = 0; tem < nargs; tem++)
975 argvec[tem + 3] = evaluate_subexp_with_coercion (exp, pos, noside);
976 argvec[tem + 3] = 0;
977
978 if (gnu_runtime && (method != NULL))
979 {
980 /* Function objc_msg_lookup returns a pointer. */
981 deprecated_set_value_type (argvec[0],
982 lookup_function_type (lookup_pointer_type (value_type (argvec[0]))));
983 argvec[0] = call_function_by_hand (argvec[0], nargs + 2, argvec + 1);
984 }
985
986 ret = call_function_by_hand (argvec[0], nargs + 2, argvec + 1);
987 return ret;
988 }
989 break;
990
991 case OP_FUNCALL:
992 (*pos) += 2;
993 op = exp->elts[*pos].opcode;
994 nargs = longest_to_int (exp->elts[pc + 1].longconst);
995 /* Allocate arg vector, including space for the function to be
996 called in argvec[0] and a terminating NULL */
997 argvec = (struct value **) alloca (sizeof (struct value *) * (nargs + 3));
998 if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR)
999 {
1000 /* 1997-08-01 Currently we do not support function invocation
1001 via pointers-to-methods with HP aCC. Pointer does not point
1002 to the function, but possibly to some thunk. */
1003 if (deprecated_hp_som_som_object_present)
1004 {
1005 error (_("Not implemented: function invocation through pointer to method with HP aCC"));
1006 }
1007
1008 nargs++;
1009 /* First, evaluate the structure into arg2 */
1010 pc2 = (*pos)++;
1011
1012 if (noside == EVAL_SKIP)
1013 goto nosideret;
1014
1015 if (op == STRUCTOP_MEMBER)
1016 {
1017 arg2 = evaluate_subexp_for_address (exp, pos, noside);
1018 }
1019 else
1020 {
1021 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1022 }
1023
1024 /* If the function is a virtual function, then the
1025 aggregate value (providing the structure) plays
1026 its part by providing the vtable. Otherwise,
1027 it is just along for the ride: call the function
1028 directly. */
1029
1030 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1031
1032 if (TYPE_CODE (check_typedef (value_type (arg1)))
1033 != TYPE_CODE_METHODPTR)
1034 error (_("Non-pointer-to-member value used in pointer-to-member "
1035 "construct"));
1036
1037 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1038 {
1039 struct type *method_type = check_typedef (value_type (arg1));
1040 arg1 = value_zero (method_type, not_lval);
1041 }
1042 else
1043 arg1 = cplus_method_ptr_to_value (&arg2, arg1);
1044
1045 /* Now, say which argument to start evaluating from */
1046 tem = 2;
1047 }
1048 else if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR)
1049 {
1050 /* Hair for method invocations */
1051 int tem2;
1052
1053 nargs++;
1054 /* First, evaluate the structure into arg2 */
1055 pc2 = (*pos)++;
1056 tem2 = longest_to_int (exp->elts[pc2 + 1].longconst);
1057 *pos += 3 + BYTES_TO_EXP_ELEM (tem2 + 1);
1058 if (noside == EVAL_SKIP)
1059 goto nosideret;
1060
1061 if (op == STRUCTOP_STRUCT)
1062 {
1063 /* If v is a variable in a register, and the user types
1064 v.method (), this will produce an error, because v has
1065 no address.
1066
1067 A possible way around this would be to allocate a
1068 copy of the variable on the stack, copy in the
1069 contents, call the function, and copy out the
1070 contents. I.e. convert this from call by reference
1071 to call by copy-return (or whatever it's called).
1072 However, this does not work because it is not the
1073 same: the method being called could stash a copy of
1074 the address, and then future uses through that address
1075 (after the method returns) would be expected to
1076 use the variable itself, not some copy of it. */
1077 arg2 = evaluate_subexp_for_address (exp, pos, noside);
1078 }
1079 else
1080 {
1081 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1082 }
1083 /* Now, say which argument to start evaluating from */
1084 tem = 2;
1085 }
1086 else
1087 {
1088 /* Non-method function call */
1089 save_pos1 = *pos;
1090 argvec[0] = evaluate_subexp_with_coercion (exp, pos, noside);
1091 tem = 1;
1092 type = value_type (argvec[0]);
1093 if (type && TYPE_CODE (type) == TYPE_CODE_PTR)
1094 type = TYPE_TARGET_TYPE (type);
1095 if (type && TYPE_CODE (type) == TYPE_CODE_FUNC)
1096 {
1097 for (; tem <= nargs && tem <= TYPE_NFIELDS (type); tem++)
1098 {
1099 /* pai: FIXME This seems to be coercing arguments before
1100 * overload resolution has been done! */
1101 argvec[tem] = evaluate_subexp (TYPE_FIELD_TYPE (type, tem - 1),
1102 exp, pos, noside);
1103 }
1104 }
1105 }
1106
1107 /* Evaluate arguments */
1108 for (; tem <= nargs; tem++)
1109 {
1110 /* Ensure that array expressions are coerced into pointer objects. */
1111 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1112 }
1113
1114 /* signal end of arglist */
1115 argvec[tem] = 0;
1116
1117 if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR)
1118 {
1119 int static_memfuncp;
1120 char tstr[256];
1121
1122 /* Method invocation : stuff "this" as first parameter */
1123 argvec[1] = arg2;
1124 /* Name of method from expression */
1125 strcpy (tstr, &exp->elts[pc2 + 2].string);
1126
1127 if (overload_resolution && (exp->language_defn->la_language == language_cplus))
1128 {
1129 /* Language is C++, do some overload resolution before evaluation */
1130 struct value *valp = NULL;
1131
1132 /* Prepare list of argument types for overload resolution */
1133 arg_types = (struct type **) alloca (nargs * (sizeof (struct type *)));
1134 for (ix = 1; ix <= nargs; ix++)
1135 arg_types[ix - 1] = value_type (argvec[ix]);
1136
1137 (void) find_overload_match (arg_types, nargs, tstr,
1138 1 /* method */ , 0 /* strict match */ ,
1139 &arg2 /* the object */ , NULL,
1140 &valp, NULL, &static_memfuncp);
1141
1142
1143 argvec[1] = arg2; /* the ``this'' pointer */
1144 argvec[0] = valp; /* use the method found after overload resolution */
1145 }
1146 else
1147 /* Non-C++ case -- or no overload resolution */
1148 {
1149 struct value *temp = arg2;
1150 argvec[0] = value_struct_elt (&temp, argvec + 1, tstr,
1151 &static_memfuncp,
1152 op == STRUCTOP_STRUCT
1153 ? "structure" : "structure pointer");
1154 /* value_struct_elt updates temp with the correct value
1155 of the ``this'' pointer if necessary, so modify argvec[1] to
1156 reflect any ``this'' changes. */
1157 arg2 = value_from_longest (lookup_pointer_type(value_type (temp)),
1158 VALUE_ADDRESS (temp) + value_offset (temp)
1159 + value_embedded_offset (temp));
1160 argvec[1] = arg2; /* the ``this'' pointer */
1161 }
1162
1163 if (static_memfuncp)
1164 {
1165 argvec[1] = argvec[0];
1166 nargs--;
1167 argvec++;
1168 }
1169 }
1170 else if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR)
1171 {
1172 argvec[1] = arg2;
1173 argvec[0] = arg1;
1174 }
1175 else if (op == OP_VAR_VALUE)
1176 {
1177 /* Non-member function being called */
1178 /* fn: This can only be done for C++ functions. A C-style function
1179 in a C++ program, for instance, does not have the fields that
1180 are expected here */
1181
1182 if (overload_resolution && (exp->language_defn->la_language == language_cplus))
1183 {
1184 /* Language is C++, do some overload resolution before evaluation */
1185 struct symbol *symp;
1186
1187 /* Prepare list of argument types for overload resolution */
1188 arg_types = (struct type **) alloca (nargs * (sizeof (struct type *)));
1189 for (ix = 1; ix <= nargs; ix++)
1190 arg_types[ix - 1] = value_type (argvec[ix]);
1191
1192 (void) find_overload_match (arg_types, nargs, NULL /* no need for name */ ,
1193 0 /* not method */ , 0 /* strict match */ ,
1194 NULL, exp->elts[save_pos1+2].symbol /* the function */ ,
1195 NULL, &symp, NULL);
1196
1197 /* Now fix the expression being evaluated */
1198 exp->elts[save_pos1+2].symbol = symp;
1199 argvec[0] = evaluate_subexp_with_coercion (exp, &save_pos1, noside);
1200 }
1201 else
1202 {
1203 /* Not C++, or no overload resolution allowed */
1204 /* nothing to be done; argvec already correctly set up */
1205 }
1206 }
1207 else
1208 {
1209 /* It is probably a C-style function */
1210 /* nothing to be done; argvec already correctly set up */
1211 }
1212
1213 do_call_it:
1214
1215 if (noside == EVAL_SKIP)
1216 goto nosideret;
1217 if (argvec[0] == NULL)
1218 error (_("Cannot evaluate function -- may be inlined"));
1219 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1220 {
1221 /* If the return type doesn't look like a function type, call an
1222 error. This can happen if somebody tries to turn a variable into
1223 a function call. This is here because people often want to
1224 call, eg, strcmp, which gdb doesn't know is a function. If
1225 gdb isn't asked for it's opinion (ie. through "whatis"),
1226 it won't offer it. */
1227
1228 struct type *ftype =
1229 TYPE_TARGET_TYPE (value_type (argvec[0]));
1230
1231 if (ftype)
1232 return allocate_value (TYPE_TARGET_TYPE (value_type (argvec[0])));
1233 else
1234 error (_("Expression of type other than \"Function returning ...\" used as function"));
1235 }
1236 return call_function_by_hand (argvec[0], nargs, argvec + 1);
1237 /* pai: FIXME save value from call_function_by_hand, then adjust pc by adjust_fn_pc if +ve */
1238
1239 case OP_F77_UNDETERMINED_ARGLIST:
1240
1241 /* Remember that in F77, functions, substring ops and
1242 array subscript operations cannot be disambiguated
1243 at parse time. We have made all array subscript operations,
1244 substring operations as well as function calls come here
1245 and we now have to discover what the heck this thing actually was.
1246 If it is a function, we process just as if we got an OP_FUNCALL. */
1247
1248 nargs = longest_to_int (exp->elts[pc + 1].longconst);
1249 (*pos) += 2;
1250
1251 /* First determine the type code we are dealing with. */
1252 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1253 type = check_typedef (value_type (arg1));
1254 code = TYPE_CODE (type);
1255
1256 if (code == TYPE_CODE_PTR)
1257 {
1258 /* Fortran always passes variable to subroutines as pointer.
1259 So we need to look into its target type to see if it is
1260 array, string or function. If it is, we need to switch
1261 to the target value the original one points to. */
1262 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1263
1264 if (TYPE_CODE (target_type) == TYPE_CODE_ARRAY
1265 || TYPE_CODE (target_type) == TYPE_CODE_STRING
1266 || TYPE_CODE (target_type) == TYPE_CODE_FUNC)
1267 {
1268 arg1 = value_ind (arg1);
1269 type = check_typedef (value_type (arg1));
1270 code = TYPE_CODE (type);
1271 }
1272 }
1273
1274 switch (code)
1275 {
1276 case TYPE_CODE_ARRAY:
1277 if (exp->elts[*pos].opcode == OP_F90_RANGE)
1278 return value_f90_subarray (arg1, exp, pos, noside);
1279 else
1280 goto multi_f77_subscript;
1281
1282 case TYPE_CODE_STRING:
1283 if (exp->elts[*pos].opcode == OP_F90_RANGE)
1284 return value_f90_subarray (arg1, exp, pos, noside);
1285 else
1286 {
1287 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1288 return value_subscript (arg1, arg2);
1289 }
1290
1291 case TYPE_CODE_PTR:
1292 case TYPE_CODE_FUNC:
1293 /* It's a function call. */
1294 /* Allocate arg vector, including space for the function to be
1295 called in argvec[0] and a terminating NULL */
1296 argvec = (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
1297 argvec[0] = arg1;
1298 tem = 1;
1299 for (; tem <= nargs; tem++)
1300 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1301 argvec[tem] = 0; /* signal end of arglist */
1302 goto do_call_it;
1303
1304 default:
1305 error (_("Cannot perform substring on this type"));
1306 }
1307
1308 case OP_COMPLEX:
1309 /* We have a complex number, There should be 2 floating
1310 point numbers that compose it */
1311 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1312 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1313
1314 return value_literal_complex (arg1, arg2, builtin_type_f_complex_s16);
1315
1316 case STRUCTOP_STRUCT:
1317 tem = longest_to_int (exp->elts[pc + 1].longconst);
1318 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
1319 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1320 if (noside == EVAL_SKIP)
1321 goto nosideret;
1322 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1323 return value_zero (lookup_struct_elt_type (value_type (arg1),
1324 &exp->elts[pc + 2].string,
1325 0),
1326 lval_memory);
1327 else
1328 {
1329 struct value *temp = arg1;
1330 return value_struct_elt (&temp, NULL, &exp->elts[pc + 2].string,
1331 NULL, "structure");
1332 }
1333
1334 case STRUCTOP_PTR:
1335 tem = longest_to_int (exp->elts[pc + 1].longconst);
1336 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
1337 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1338 if (noside == EVAL_SKIP)
1339 goto nosideret;
1340
1341 /* JYG: if print object is on we need to replace the base type
1342 with rtti type in order to continue on with successful
1343 lookup of member / method only available in the rtti type. */
1344 {
1345 struct type *type = value_type (arg1);
1346 struct type *real_type;
1347 int full, top, using_enc;
1348
1349 if (objectprint && TYPE_TARGET_TYPE(type) &&
1350 (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_CLASS))
1351 {
1352 real_type = value_rtti_target_type (arg1, &full, &top, &using_enc);
1353 if (real_type)
1354 {
1355 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1356 real_type = lookup_pointer_type (real_type);
1357 else
1358 real_type = lookup_reference_type (real_type);
1359
1360 arg1 = value_cast (real_type, arg1);
1361 }
1362 }
1363 }
1364
1365 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1366 return value_zero (lookup_struct_elt_type (value_type (arg1),
1367 &exp->elts[pc + 2].string,
1368 0),
1369 lval_memory);
1370 else
1371 {
1372 struct value *temp = arg1;
1373 return value_struct_elt (&temp, NULL, &exp->elts[pc + 2].string,
1374 NULL, "structure pointer");
1375 }
1376
1377 case STRUCTOP_MEMBER:
1378 case STRUCTOP_MPTR:
1379 if (op == STRUCTOP_MEMBER)
1380 arg1 = evaluate_subexp_for_address (exp, pos, noside);
1381 else
1382 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1383
1384 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1385
1386 if (noside == EVAL_SKIP)
1387 goto nosideret;
1388
1389 type = check_typedef (value_type (arg2));
1390 switch (TYPE_CODE (type))
1391 {
1392 case TYPE_CODE_METHODPTR:
1393 if (deprecated_hp_som_som_object_present)
1394 {
1395 /* With HP aCC, pointers to methods do not point to the
1396 function code. */
1397 /* 1997-08-19 */
1398 error (_("Pointers to methods not supported with HP aCC"));
1399 }
1400
1401 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1402 return value_zero (TYPE_TARGET_TYPE (type), not_lval);
1403 else
1404 {
1405 arg2 = cplus_method_ptr_to_value (&arg1, arg2);
1406 gdb_assert (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR);
1407 return value_ind (arg2);
1408 }
1409
1410 case TYPE_CODE_MEMBERPTR:
1411 /* Now, convert these values to an address. */
1412 arg1 = value_cast (lookup_pointer_type (TYPE_DOMAIN_TYPE (type)),
1413 arg1);
1414
1415 mem_offset = value_as_long (arg2);
1416 if (deprecated_hp_som_som_object_present)
1417 {
1418 /* HP aCC generates offsets that have bit #29 set; turn it off to get
1419 a real offset to the member. */
1420 if (!mem_offset) /* no bias -> really null */
1421 error (_("Attempted dereference of null pointer-to-member"));
1422 mem_offset &= ~0x20000000;
1423 }
1424
1425 arg3 = value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
1426 value_as_long (arg1) + mem_offset);
1427 return value_ind (arg3);
1428
1429 default:
1430 error (_("non-pointer-to-member value used in pointer-to-member construct"));
1431 }
1432
1433 case BINOP_CONCAT:
1434 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
1435 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1436 if (noside == EVAL_SKIP)
1437 goto nosideret;
1438 if (binop_user_defined_p (op, arg1, arg2))
1439 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1440 else
1441 return value_concat (arg1, arg2);
1442
1443 case BINOP_ASSIGN:
1444 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1445 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
1446
1447 /* Do special stuff for HP aCC pointers to members */
1448 if (deprecated_hp_som_som_object_present)
1449 {
1450 /* 1997-08-19 Can't assign HP aCC pointers to methods. No details of
1451 the implementation yet; but the pointer appears to point to a code
1452 sequence (thunk) in memory -- in any case it is *not* the address
1453 of the function as it would be in a naive implementation. */
1454 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_METHODPTR)
1455 error (_("Assignment to pointers to methods not implemented with HP aCC"));
1456
1457 /* HP aCC pointers to data members require a constant bias. */
1458 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_MEMBERPTR)
1459 {
1460 unsigned int *ptr = (unsigned int *) value_contents (arg2); /* forces evaluation */
1461 *ptr |= 0x20000000; /* set 29th bit */
1462 }
1463 }
1464
1465 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
1466 return arg1;
1467 if (binop_user_defined_p (op, arg1, arg2))
1468 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1469 else
1470 return value_assign (arg1, arg2);
1471
1472 case BINOP_ASSIGN_MODIFY:
1473 (*pos) += 2;
1474 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1475 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
1476 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
1477 return arg1;
1478 op = exp->elts[pc + 1].opcode;
1479 if (binop_user_defined_p (op, arg1, arg2))
1480 return value_x_binop (arg1, arg2, BINOP_ASSIGN_MODIFY, op, noside);
1481 else if (op == BINOP_ADD)
1482 arg2 = value_add (arg1, arg2);
1483 else if (op == BINOP_SUB)
1484 arg2 = value_sub (arg1, arg2);
1485 else
1486 arg2 = value_binop (arg1, arg2, op);
1487 return value_assign (arg1, arg2);
1488
1489 case BINOP_ADD:
1490 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
1491 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1492 if (noside == EVAL_SKIP)
1493 goto nosideret;
1494 if (binop_user_defined_p (op, arg1, arg2))
1495 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1496 else
1497 return value_add (arg1, arg2);
1498
1499 case BINOP_SUB:
1500 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
1501 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1502 if (noside == EVAL_SKIP)
1503 goto nosideret;
1504 if (binop_user_defined_p (op, arg1, arg2))
1505 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1506 else
1507 return value_sub (arg1, arg2);
1508
1509 case BINOP_EXP:
1510 case BINOP_MUL:
1511 case BINOP_DIV:
1512 case BINOP_REM:
1513 case BINOP_MOD:
1514 case BINOP_LSH:
1515 case BINOP_RSH:
1516 case BINOP_BITWISE_AND:
1517 case BINOP_BITWISE_IOR:
1518 case BINOP_BITWISE_XOR:
1519 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1520 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1521 if (noside == EVAL_SKIP)
1522 goto nosideret;
1523 if (binop_user_defined_p (op, arg1, arg2))
1524 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1525 else if (noside == EVAL_AVOID_SIDE_EFFECTS
1526 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
1527 return value_zero (value_type (arg1), not_lval);
1528 else
1529 return value_binop (arg1, arg2, op);
1530
1531 case BINOP_RANGE:
1532 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1533 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1534 if (noside == EVAL_SKIP)
1535 goto nosideret;
1536 error (_("':' operator used in invalid context"));
1537
1538 case BINOP_SUBSCRIPT:
1539 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
1540 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1541 if (noside == EVAL_SKIP)
1542 goto nosideret;
1543 if (binop_user_defined_p (op, arg1, arg2))
1544 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1545 else
1546 {
1547 /* If the user attempts to subscript something that is not an
1548 array or pointer type (like a plain int variable for example),
1549 then report this as an error. */
1550
1551 arg1 = coerce_ref (arg1);
1552 type = check_typedef (value_type (arg1));
1553 if (TYPE_CODE (type) != TYPE_CODE_ARRAY
1554 && TYPE_CODE (type) != TYPE_CODE_PTR)
1555 {
1556 if (TYPE_NAME (type))
1557 error (_("cannot subscript something of type `%s'"),
1558 TYPE_NAME (type));
1559 else
1560 error (_("cannot subscript requested type"));
1561 }
1562
1563 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1564 return value_zero (TYPE_TARGET_TYPE (type), VALUE_LVAL (arg1));
1565 else
1566 return value_subscript (arg1, arg2);
1567 }
1568
1569 case BINOP_IN:
1570 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
1571 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1572 if (noside == EVAL_SKIP)
1573 goto nosideret;
1574 return value_in (arg1, arg2);
1575
1576 case MULTI_SUBSCRIPT:
1577 (*pos) += 2;
1578 nargs = longest_to_int (exp->elts[pc + 1].longconst);
1579 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
1580 while (nargs-- > 0)
1581 {
1582 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1583 /* FIXME: EVAL_SKIP handling may not be correct. */
1584 if (noside == EVAL_SKIP)
1585 {
1586 if (nargs > 0)
1587 {
1588 continue;
1589 }
1590 else
1591 {
1592 goto nosideret;
1593 }
1594 }
1595 /* FIXME: EVAL_AVOID_SIDE_EFFECTS handling may not be correct. */
1596 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1597 {
1598 /* If the user attempts to subscript something that has no target
1599 type (like a plain int variable for example), then report this
1600 as an error. */
1601
1602 type = TYPE_TARGET_TYPE (check_typedef (value_type (arg1)));
1603 if (type != NULL)
1604 {
1605 arg1 = value_zero (type, VALUE_LVAL (arg1));
1606 noside = EVAL_SKIP;
1607 continue;
1608 }
1609 else
1610 {
1611 error (_("cannot subscript something of type `%s'"),
1612 TYPE_NAME (value_type (arg1)));
1613 }
1614 }
1615
1616 if (binop_user_defined_p (op, arg1, arg2))
1617 {
1618 arg1 = value_x_binop (arg1, arg2, op, OP_NULL, noside);
1619 }
1620 else
1621 {
1622 arg1 = value_subscript (arg1, arg2);
1623 }
1624 }
1625 return (arg1);
1626
1627 multi_f77_subscript:
1628 {
1629 int subscript_array[MAX_FORTRAN_DIMS];
1630 int array_size_array[MAX_FORTRAN_DIMS];
1631 int ndimensions = 1, i;
1632 struct type *tmp_type;
1633 int offset_item; /* The array offset where the item lives */
1634
1635 if (nargs > MAX_FORTRAN_DIMS)
1636 error (_("Too many subscripts for F77 (%d Max)"), MAX_FORTRAN_DIMS);
1637
1638 tmp_type = check_typedef (value_type (arg1));
1639 ndimensions = calc_f77_array_dims (type);
1640
1641 if (nargs != ndimensions)
1642 error (_("Wrong number of subscripts"));
1643
1644 /* Now that we know we have a legal array subscript expression
1645 let us actually find out where this element exists in the array. */
1646
1647 offset_item = 0;
1648 /* Take array indices left to right */
1649 for (i = 0; i < nargs; i++)
1650 {
1651 /* Evaluate each subscript, It must be a legal integer in F77 */
1652 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1653
1654 /* Fill in the subscript and array size arrays */
1655
1656 subscript_array[i] = value_as_long (arg2);
1657 }
1658
1659 /* Internal type of array is arranged right to left */
1660 for (i = 0; i < nargs; i++)
1661 {
1662 retcode = f77_get_dynamic_upperbound (tmp_type, &upper);
1663 if (retcode == BOUND_FETCH_ERROR)
1664 error (_("Cannot obtain dynamic upper bound"));
1665
1666 retcode = f77_get_dynamic_lowerbound (tmp_type, &lower);
1667 if (retcode == BOUND_FETCH_ERROR)
1668 error (_("Cannot obtain dynamic lower bound"));
1669
1670 array_size_array[nargs - i - 1] = upper - lower + 1;
1671
1672 /* Zero-normalize subscripts so that offsetting will work. */
1673
1674 subscript_array[nargs - i - 1] -= lower;
1675
1676 /* If we are at the bottom of a multidimensional
1677 array type then keep a ptr to the last ARRAY
1678 type around for use when calling value_subscript()
1679 below. This is done because we pretend to value_subscript
1680 that we actually have a one-dimensional array
1681 of base element type that we apply a simple
1682 offset to. */
1683
1684 if (i < nargs - 1)
1685 tmp_type = check_typedef (TYPE_TARGET_TYPE (tmp_type));
1686 }
1687
1688 /* Now let us calculate the offset for this item */
1689
1690 offset_item = subscript_array[ndimensions - 1];
1691
1692 for (i = ndimensions - 1; i > 0; --i)
1693 offset_item =
1694 array_size_array[i - 1] * offset_item + subscript_array[i - 1];
1695
1696 /* Construct a value node with the value of the offset */
1697
1698 arg2 = value_from_longest (builtin_type_f_integer, offset_item);
1699
1700 /* Let us now play a dirty trick: we will take arg1
1701 which is a value node pointing to the topmost level
1702 of the multidimensional array-set and pretend
1703 that it is actually a array of the final element
1704 type, this will ensure that value_subscript()
1705 returns the correct type value */
1706
1707 deprecated_set_value_type (arg1, tmp_type);
1708 return value_ind (value_add (value_coerce_array (arg1), arg2));
1709 }
1710
1711 case BINOP_LOGICAL_AND:
1712 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1713 if (noside == EVAL_SKIP)
1714 {
1715 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1716 goto nosideret;
1717 }
1718
1719 oldpos = *pos;
1720 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
1721 *pos = oldpos;
1722
1723 if (binop_user_defined_p (op, arg1, arg2))
1724 {
1725 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1726 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1727 }
1728 else
1729 {
1730 tem = value_logical_not (arg1);
1731 arg2 = evaluate_subexp (NULL_TYPE, exp, pos,
1732 (tem ? EVAL_SKIP : noside));
1733 return value_from_longest (LA_BOOL_TYPE,
1734 (LONGEST) (!tem && !value_logical_not (arg2)));
1735 }
1736
1737 case BINOP_LOGICAL_OR:
1738 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1739 if (noside == EVAL_SKIP)
1740 {
1741 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1742 goto nosideret;
1743 }
1744
1745 oldpos = *pos;
1746 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
1747 *pos = oldpos;
1748
1749 if (binop_user_defined_p (op, arg1, arg2))
1750 {
1751 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1752 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1753 }
1754 else
1755 {
1756 tem = value_logical_not (arg1);
1757 arg2 = evaluate_subexp (NULL_TYPE, exp, pos,
1758 (!tem ? EVAL_SKIP : noside));
1759 return value_from_longest (LA_BOOL_TYPE,
1760 (LONGEST) (!tem || !value_logical_not (arg2)));
1761 }
1762
1763 case BINOP_EQUAL:
1764 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1765 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
1766 if (noside == EVAL_SKIP)
1767 goto nosideret;
1768 if (binop_user_defined_p (op, arg1, arg2))
1769 {
1770 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1771 }
1772 else
1773 {
1774 tem = value_equal (arg1, arg2);
1775 return value_from_longest (LA_BOOL_TYPE, (LONGEST) tem);
1776 }
1777
1778 case BINOP_NOTEQUAL:
1779 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1780 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
1781 if (noside == EVAL_SKIP)
1782 goto nosideret;
1783 if (binop_user_defined_p (op, arg1, arg2))
1784 {
1785 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1786 }
1787 else
1788 {
1789 tem = value_equal (arg1, arg2);
1790 return value_from_longest (LA_BOOL_TYPE, (LONGEST) ! tem);
1791 }
1792
1793 case BINOP_LESS:
1794 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1795 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
1796 if (noside == EVAL_SKIP)
1797 goto nosideret;
1798 if (binop_user_defined_p (op, arg1, arg2))
1799 {
1800 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1801 }
1802 else
1803 {
1804 tem = value_less (arg1, arg2);
1805 return value_from_longest (LA_BOOL_TYPE, (LONGEST) tem);
1806 }
1807
1808 case BINOP_GTR:
1809 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1810 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
1811 if (noside == EVAL_SKIP)
1812 goto nosideret;
1813 if (binop_user_defined_p (op, arg1, arg2))
1814 {
1815 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1816 }
1817 else
1818 {
1819 tem = value_less (arg2, arg1);
1820 return value_from_longest (LA_BOOL_TYPE, (LONGEST) tem);
1821 }
1822
1823 case BINOP_GEQ:
1824 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1825 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
1826 if (noside == EVAL_SKIP)
1827 goto nosideret;
1828 if (binop_user_defined_p (op, arg1, arg2))
1829 {
1830 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1831 }
1832 else
1833 {
1834 tem = value_less (arg2, arg1) || value_equal (arg1, arg2);
1835 return value_from_longest (LA_BOOL_TYPE, (LONGEST) tem);
1836 }
1837
1838 case BINOP_LEQ:
1839 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1840 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
1841 if (noside == EVAL_SKIP)
1842 goto nosideret;
1843 if (binop_user_defined_p (op, arg1, arg2))
1844 {
1845 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1846 }
1847 else
1848 {
1849 tem = value_less (arg1, arg2) || value_equal (arg1, arg2);
1850 return value_from_longest (LA_BOOL_TYPE, (LONGEST) tem);
1851 }
1852
1853 case BINOP_REPEAT:
1854 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1855 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1856 if (noside == EVAL_SKIP)
1857 goto nosideret;
1858 type = check_typedef (value_type (arg2));
1859 if (TYPE_CODE (type) != TYPE_CODE_INT)
1860 error (_("Non-integral right operand for \"@\" operator."));
1861 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1862 {
1863 return allocate_repeat_value (value_type (arg1),
1864 longest_to_int (value_as_long (arg2)));
1865 }
1866 else
1867 return value_repeat (arg1, longest_to_int (value_as_long (arg2)));
1868
1869 case BINOP_COMMA:
1870 evaluate_subexp (NULL_TYPE, exp, pos, noside);
1871 return evaluate_subexp (NULL_TYPE, exp, pos, noside);
1872
1873 case UNOP_PLUS:
1874 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1875 if (noside == EVAL_SKIP)
1876 goto nosideret;
1877 if (unop_user_defined_p (op, arg1))
1878 return value_x_unop (arg1, op, noside);
1879 else
1880 return value_pos (arg1);
1881
1882 case UNOP_NEG:
1883 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1884 if (noside == EVAL_SKIP)
1885 goto nosideret;
1886 if (unop_user_defined_p (op, arg1))
1887 return value_x_unop (arg1, op, noside);
1888 else
1889 return value_neg (arg1);
1890
1891 case UNOP_COMPLEMENT:
1892 /* C++: check for and handle destructor names. */
1893 op = exp->elts[*pos].opcode;
1894
1895 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1896 if (noside == EVAL_SKIP)
1897 goto nosideret;
1898 if (unop_user_defined_p (UNOP_COMPLEMENT, arg1))
1899 return value_x_unop (arg1, UNOP_COMPLEMENT, noside);
1900 else
1901 return value_complement (arg1);
1902
1903 case UNOP_LOGICAL_NOT:
1904 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1905 if (noside == EVAL_SKIP)
1906 goto nosideret;
1907 if (unop_user_defined_p (op, arg1))
1908 return value_x_unop (arg1, op, noside);
1909 else
1910 return value_from_longest (LA_BOOL_TYPE,
1911 (LONGEST) value_logical_not (arg1));
1912
1913 case UNOP_IND:
1914 if (expect_type && TYPE_CODE (expect_type) == TYPE_CODE_PTR)
1915 expect_type = TYPE_TARGET_TYPE (check_typedef (expect_type));
1916 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
1917 type = check_typedef (value_type (arg1));
1918 if (TYPE_CODE (type) == TYPE_CODE_METHODPTR
1919 || TYPE_CODE (type) == TYPE_CODE_MEMBERPTR)
1920 error (_("Attempt to dereference pointer to member without an object"));
1921 if (noside == EVAL_SKIP)
1922 goto nosideret;
1923 if (unop_user_defined_p (op, arg1))
1924 return value_x_unop (arg1, op, noside);
1925 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
1926 {
1927 type = check_typedef (value_type (arg1));
1928 if (TYPE_CODE (type) == TYPE_CODE_PTR
1929 || TYPE_CODE (type) == TYPE_CODE_REF
1930 /* In C you can dereference an array to get the 1st elt. */
1931 || TYPE_CODE (type) == TYPE_CODE_ARRAY
1932 )
1933 return value_zero (TYPE_TARGET_TYPE (type),
1934 lval_memory);
1935 else if (TYPE_CODE (type) == TYPE_CODE_INT)
1936 /* GDB allows dereferencing an int. */
1937 return value_zero (builtin_type_int, lval_memory);
1938 else
1939 error (_("Attempt to take contents of a non-pointer value."));
1940 }
1941 return value_ind (arg1);
1942
1943 case UNOP_ADDR:
1944 /* C++: check for and handle pointer to members. */
1945
1946 op = exp->elts[*pos].opcode;
1947
1948 if (noside == EVAL_SKIP)
1949 {
1950 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
1951 goto nosideret;
1952 }
1953 else
1954 {
1955 struct value *retvalp = evaluate_subexp_for_address (exp, pos, noside);
1956 /* If HP aCC object, use bias for pointers to members */
1957 if (deprecated_hp_som_som_object_present
1958 && TYPE_CODE (value_type (retvalp)) == TYPE_CODE_MEMBERPTR)
1959 {
1960 unsigned int *ptr = (unsigned int *) value_contents (retvalp); /* forces evaluation */
1961 *ptr |= 0x20000000; /* set 29th bit */
1962 }
1963 return retvalp;
1964 }
1965
1966 case UNOP_SIZEOF:
1967 if (noside == EVAL_SKIP)
1968 {
1969 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
1970 goto nosideret;
1971 }
1972 return evaluate_subexp_for_sizeof (exp, pos);
1973
1974 case UNOP_CAST:
1975 (*pos) += 2;
1976 type = exp->elts[pc + 1].type;
1977 arg1 = evaluate_subexp (type, exp, pos, noside);
1978 if (noside == EVAL_SKIP)
1979 goto nosideret;
1980 if (type != value_type (arg1))
1981 arg1 = value_cast (type, arg1);
1982 return arg1;
1983
1984 case UNOP_MEMVAL:
1985 (*pos) += 2;
1986 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
1987 if (noside == EVAL_SKIP)
1988 goto nosideret;
1989 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1990 return value_zero (exp->elts[pc + 1].type, lval_memory);
1991 else
1992 return value_at_lazy (exp->elts[pc + 1].type,
1993 value_as_address (arg1));
1994
1995 case UNOP_MEMVAL_TLS:
1996 (*pos) += 3;
1997 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
1998 if (noside == EVAL_SKIP)
1999 goto nosideret;
2000 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2001 return value_zero (exp->elts[pc + 2].type, lval_memory);
2002 else
2003 {
2004 CORE_ADDR tls_addr;
2005 tls_addr = target_translate_tls_address (exp->elts[pc + 1].objfile,
2006 value_as_address (arg1));
2007 return value_at_lazy (exp->elts[pc + 2].type, tls_addr);
2008 }
2009
2010 case UNOP_PREINCREMENT:
2011 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2012 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2013 return arg1;
2014 else if (unop_user_defined_p (op, arg1))
2015 {
2016 return value_x_unop (arg1, op, noside);
2017 }
2018 else
2019 {
2020 arg2 = value_add (arg1, value_from_longest (builtin_type_char,
2021 (LONGEST) 1));
2022 return value_assign (arg1, arg2);
2023 }
2024
2025 case UNOP_PREDECREMENT:
2026 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2027 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2028 return arg1;
2029 else if (unop_user_defined_p (op, arg1))
2030 {
2031 return value_x_unop (arg1, op, noside);
2032 }
2033 else
2034 {
2035 arg2 = value_sub (arg1, value_from_longest (builtin_type_char,
2036 (LONGEST) 1));
2037 return value_assign (arg1, arg2);
2038 }
2039
2040 case UNOP_POSTINCREMENT:
2041 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2042 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2043 return arg1;
2044 else if (unop_user_defined_p (op, arg1))
2045 {
2046 return value_x_unop (arg1, op, noside);
2047 }
2048 else
2049 {
2050 arg2 = value_add (arg1, value_from_longest (builtin_type_char,
2051 (LONGEST) 1));
2052 value_assign (arg1, arg2);
2053 return arg1;
2054 }
2055
2056 case UNOP_POSTDECREMENT:
2057 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2058 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2059 return arg1;
2060 else if (unop_user_defined_p (op, arg1))
2061 {
2062 return value_x_unop (arg1, op, noside);
2063 }
2064 else
2065 {
2066 arg2 = value_sub (arg1, value_from_longest (builtin_type_char,
2067 (LONGEST) 1));
2068 value_assign (arg1, arg2);
2069 return arg1;
2070 }
2071
2072 case OP_THIS:
2073 (*pos) += 1;
2074 return value_of_this (1);
2075
2076 case OP_OBJC_SELF:
2077 (*pos) += 1;
2078 return value_of_local ("self", 1);
2079
2080 case OP_TYPE:
2081 /* The value is not supposed to be used. This is here to make it
2082 easier to accommodate expressions that contain types. */
2083 (*pos) += 2;
2084 if (noside == EVAL_SKIP)
2085 goto nosideret;
2086 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2087 return allocate_value (exp->elts[pc + 1].type);
2088 else
2089 error (_("Attempt to use a type name as an expression"));
2090
2091 default:
2092 /* Removing this case and compiling with gcc -Wall reveals that
2093 a lot of cases are hitting this case. Some of these should
2094 probably be removed from expression.h; others are legitimate
2095 expressions which are (apparently) not fully implemented.
2096
2097 If there are any cases landing here which mean a user error,
2098 then they should be separate cases, with more descriptive
2099 error messages. */
2100
2101 error (_("\
2102 GDB does not (yet) know how to evaluate that kind of expression"));
2103 }
2104
2105 nosideret:
2106 return value_from_longest (builtin_type_long, (LONGEST) 1);
2107 }
2108 \f
2109 /* Evaluate a subexpression of EXP, at index *POS,
2110 and return the address of that subexpression.
2111 Advance *POS over the subexpression.
2112 If the subexpression isn't an lvalue, get an error.
2113 NOSIDE may be EVAL_AVOID_SIDE_EFFECTS;
2114 then only the type of the result need be correct. */
2115
2116 static struct value *
2117 evaluate_subexp_for_address (struct expression *exp, int *pos,
2118 enum noside noside)
2119 {
2120 enum exp_opcode op;
2121 int pc;
2122 struct symbol *var;
2123 struct value *x;
2124 int tem;
2125
2126 pc = (*pos);
2127 op = exp->elts[pc].opcode;
2128
2129 switch (op)
2130 {
2131 case UNOP_IND:
2132 (*pos)++;
2133 x = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2134
2135 /* We can't optimize out "&*" if there's a user-defined operator*. */
2136 if (unop_user_defined_p (op, x))
2137 {
2138 x = value_x_unop (x, op, noside);
2139 goto default_case_after_eval;
2140 }
2141
2142 return x;
2143
2144 case UNOP_MEMVAL:
2145 (*pos) += 3;
2146 return value_cast (lookup_pointer_type (exp->elts[pc + 1].type),
2147 evaluate_subexp (NULL_TYPE, exp, pos, noside));
2148
2149 case OP_VAR_VALUE:
2150 var = exp->elts[pc + 2].symbol;
2151
2152 /* C++: The "address" of a reference should yield the address
2153 * of the object pointed to. Let value_addr() deal with it. */
2154 if (TYPE_CODE (SYMBOL_TYPE (var)) == TYPE_CODE_REF)
2155 goto default_case;
2156
2157 (*pos) += 4;
2158 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2159 {
2160 struct type *type =
2161 lookup_pointer_type (SYMBOL_TYPE (var));
2162 enum address_class sym_class = SYMBOL_CLASS (var);
2163
2164 if (sym_class == LOC_CONST
2165 || sym_class == LOC_CONST_BYTES
2166 || sym_class == LOC_REGISTER
2167 || sym_class == LOC_REGPARM)
2168 error (_("Attempt to take address of register or constant."));
2169
2170 return
2171 value_zero (type, not_lval);
2172 }
2173 else
2174 return
2175 locate_var_value
2176 (var,
2177 block_innermost_frame (exp->elts[pc + 1].block));
2178
2179 case OP_SCOPE:
2180 tem = longest_to_int (exp->elts[pc + 2].longconst);
2181 (*pos) += 5 + BYTES_TO_EXP_ELEM (tem + 1);
2182 x = value_aggregate_elt (exp->elts[pc + 1].type,
2183 &exp->elts[pc + 3].string,
2184 1, noside);
2185 if (x == NULL)
2186 error (_("There is no field named %s"), &exp->elts[pc + 3].string);
2187 return x;
2188
2189 default:
2190 default_case:
2191 x = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2192 default_case_after_eval:
2193 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2194 {
2195 struct type *type = check_typedef (value_type (x));
2196
2197 if (VALUE_LVAL (x) == lval_memory)
2198 return value_zero (lookup_pointer_type (value_type (x)),
2199 not_lval);
2200 else if (TYPE_CODE (type) == TYPE_CODE_REF)
2201 return value_zero (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2202 not_lval);
2203 else
2204 error (_("Attempt to take address of non-lval"));
2205 }
2206 return value_addr (x);
2207 }
2208 }
2209
2210 /* Evaluate like `evaluate_subexp' except coercing arrays to pointers.
2211 When used in contexts where arrays will be coerced anyway, this is
2212 equivalent to `evaluate_subexp' but much faster because it avoids
2213 actually fetching array contents (perhaps obsolete now that we have
2214 value_lazy()).
2215
2216 Note that we currently only do the coercion for C expressions, where
2217 arrays are zero based and the coercion is correct. For other languages,
2218 with nonzero based arrays, coercion loses. Use CAST_IS_CONVERSION
2219 to decide if coercion is appropriate.
2220
2221 */
2222
2223 struct value *
2224 evaluate_subexp_with_coercion (struct expression *exp,
2225 int *pos, enum noside noside)
2226 {
2227 enum exp_opcode op;
2228 int pc;
2229 struct value *val;
2230 struct symbol *var;
2231
2232 pc = (*pos);
2233 op = exp->elts[pc].opcode;
2234
2235 switch (op)
2236 {
2237 case OP_VAR_VALUE:
2238 var = exp->elts[pc + 2].symbol;
2239 if (TYPE_CODE (check_typedef (SYMBOL_TYPE (var))) == TYPE_CODE_ARRAY
2240 && CAST_IS_CONVERSION)
2241 {
2242 (*pos) += 4;
2243 val =
2244 locate_var_value
2245 (var, block_innermost_frame (exp->elts[pc + 1].block));
2246 return value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (check_typedef (SYMBOL_TYPE (var)))),
2247 val);
2248 }
2249 /* FALLTHROUGH */
2250
2251 default:
2252 return evaluate_subexp (NULL_TYPE, exp, pos, noside);
2253 }
2254 }
2255
2256 /* Evaluate a subexpression of EXP, at index *POS,
2257 and return a value for the size of that subexpression.
2258 Advance *POS over the subexpression. */
2259
2260 static struct value *
2261 evaluate_subexp_for_sizeof (struct expression *exp, int *pos)
2262 {
2263 enum exp_opcode op;
2264 int pc;
2265 struct type *type;
2266 struct value *val;
2267
2268 pc = (*pos);
2269 op = exp->elts[pc].opcode;
2270
2271 switch (op)
2272 {
2273 /* This case is handled specially
2274 so that we avoid creating a value for the result type.
2275 If the result type is very big, it's desirable not to
2276 create a value unnecessarily. */
2277 case UNOP_IND:
2278 (*pos)++;
2279 val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2280 type = check_typedef (value_type (val));
2281 if (TYPE_CODE (type) != TYPE_CODE_PTR
2282 && TYPE_CODE (type) != TYPE_CODE_REF
2283 && TYPE_CODE (type) != TYPE_CODE_ARRAY)
2284 error (_("Attempt to take contents of a non-pointer value."));
2285 type = check_typedef (TYPE_TARGET_TYPE (type));
2286 return value_from_longest (builtin_type_int, (LONGEST)
2287 TYPE_LENGTH (type));
2288
2289 case UNOP_MEMVAL:
2290 (*pos) += 3;
2291 type = check_typedef (exp->elts[pc + 1].type);
2292 return value_from_longest (builtin_type_int,
2293 (LONGEST) TYPE_LENGTH (type));
2294
2295 case OP_VAR_VALUE:
2296 (*pos) += 4;
2297 type = check_typedef (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
2298 return
2299 value_from_longest (builtin_type_int, (LONGEST) TYPE_LENGTH (type));
2300
2301 default:
2302 val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2303 return value_from_longest (builtin_type_int,
2304 (LONGEST) TYPE_LENGTH (value_type (val)));
2305 }
2306 }
2307
2308 /* Parse a type expression in the string [P..P+LENGTH). */
2309
2310 struct type *
2311 parse_and_eval_type (char *p, int length)
2312 {
2313 char *tmp = (char *) alloca (length + 4);
2314 struct expression *expr;
2315 tmp[0] = '(';
2316 memcpy (tmp + 1, p, length);
2317 tmp[length + 1] = ')';
2318 tmp[length + 2] = '0';
2319 tmp[length + 3] = '\0';
2320 expr = parse_expression (tmp);
2321 if (expr->elts[0].opcode != UNOP_CAST)
2322 error (_("Internal error in eval_type."));
2323 return expr->elts[1].type;
2324 }
2325
2326 int
2327 calc_f77_array_dims (struct type *array_type)
2328 {
2329 int ndimen = 1;
2330 struct type *tmp_type;
2331
2332 if ((TYPE_CODE (array_type) != TYPE_CODE_ARRAY))
2333 error (_("Can't get dimensions for a non-array type"));
2334
2335 tmp_type = array_type;
2336
2337 while ((tmp_type = TYPE_TARGET_TYPE (tmp_type)))
2338 {
2339 if (TYPE_CODE (tmp_type) == TYPE_CODE_ARRAY)
2340 ++ndimen;
2341 }
2342 return ndimen;
2343 }