* symtab.h (enum address_class): Remove LOC_REGPARM and
[binutils-gdb.git] / gdb / eval.c
1 /* Evaluate expressions for GDB.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2005, 2006, 2007, 2008
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "gdb_string.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "value.h"
27 #include "expression.h"
28 #include "target.h"
29 #include "frame.h"
30 #include "language.h" /* For CAST_IS_CONVERSION */
31 #include "f-lang.h" /* for array bound stuff */
32 #include "cp-abi.h"
33 #include "infcall.h"
34 #include "objc-lang.h"
35 #include "block.h"
36 #include "parser-defs.h"
37 #include "cp-support.h"
38 #include "ui-out.h"
39 #include "exceptions.h"
40 #include "regcache.h"
41
42 #include "gdb_assert.h"
43
44 /* This is defined in valops.c */
45 extern int overload_resolution;
46
47 /* JYG: lookup rtti type of STRUCTOP_PTR when this is set to continue
48 on with successful lookup for member/method of the rtti type. */
49 extern int objectprint;
50
51 /* Prototypes for local functions. */
52
53 static struct value *evaluate_subexp_for_sizeof (struct expression *, int *);
54
55 static struct value *evaluate_subexp_for_address (struct expression *,
56 int *, enum noside);
57
58 static struct value *evaluate_subexp (struct type *, struct expression *,
59 int *, enum noside);
60
61 static char *get_label (struct expression *, int *);
62
63 static struct value *evaluate_struct_tuple (struct value *,
64 struct expression *, int *,
65 enum noside, int);
66
67 static LONGEST init_array_element (struct value *, struct value *,
68 struct expression *, int *, enum noside,
69 LONGEST, LONGEST);
70
71 static struct value *
72 evaluate_subexp (struct type *expect_type, struct expression *exp,
73 int *pos, enum noside noside)
74 {
75 return (*exp->language_defn->la_exp_desc->evaluate_exp)
76 (expect_type, exp, pos, noside);
77 }
78 \f
79 /* Parse the string EXP as a C expression, evaluate it,
80 and return the result as a number. */
81
82 CORE_ADDR
83 parse_and_eval_address (char *exp)
84 {
85 struct expression *expr = parse_expression (exp);
86 CORE_ADDR addr;
87 struct cleanup *old_chain =
88 make_cleanup (free_current_contents, &expr);
89
90 addr = value_as_address (evaluate_expression (expr));
91 do_cleanups (old_chain);
92 return addr;
93 }
94
95 /* Like parse_and_eval_address but takes a pointer to a char * variable
96 and advanced that variable across the characters parsed. */
97
98 CORE_ADDR
99 parse_and_eval_address_1 (char **expptr)
100 {
101 struct expression *expr = parse_exp_1 (expptr, (struct block *) 0, 0);
102 CORE_ADDR addr;
103 struct cleanup *old_chain =
104 make_cleanup (free_current_contents, &expr);
105
106 addr = value_as_address (evaluate_expression (expr));
107 do_cleanups (old_chain);
108 return addr;
109 }
110
111 /* Like parse_and_eval_address, but treats the value of the expression
112 as an integer, not an address, returns a LONGEST, not a CORE_ADDR */
113 LONGEST
114 parse_and_eval_long (char *exp)
115 {
116 struct expression *expr = parse_expression (exp);
117 LONGEST retval;
118 struct cleanup *old_chain =
119 make_cleanup (free_current_contents, &expr);
120
121 retval = value_as_long (evaluate_expression (expr));
122 do_cleanups (old_chain);
123 return (retval);
124 }
125
126 struct value *
127 parse_and_eval (char *exp)
128 {
129 struct expression *expr = parse_expression (exp);
130 struct value *val;
131 struct cleanup *old_chain =
132 make_cleanup (free_current_contents, &expr);
133
134 val = evaluate_expression (expr);
135 do_cleanups (old_chain);
136 return val;
137 }
138
139 /* Parse up to a comma (or to a closeparen)
140 in the string EXPP as an expression, evaluate it, and return the value.
141 EXPP is advanced to point to the comma. */
142
143 struct value *
144 parse_to_comma_and_eval (char **expp)
145 {
146 struct expression *expr = parse_exp_1 (expp, (struct block *) 0, 1);
147 struct value *val;
148 struct cleanup *old_chain =
149 make_cleanup (free_current_contents, &expr);
150
151 val = evaluate_expression (expr);
152 do_cleanups (old_chain);
153 return val;
154 }
155 \f
156 /* Evaluate an expression in internal prefix form
157 such as is constructed by parse.y.
158
159 See expression.h for info on the format of an expression. */
160
161 struct value *
162 evaluate_expression (struct expression *exp)
163 {
164 int pc = 0;
165 return evaluate_subexp (NULL_TYPE, exp, &pc, EVAL_NORMAL);
166 }
167
168 /* Evaluate an expression, avoiding all memory references
169 and getting a value whose type alone is correct. */
170
171 struct value *
172 evaluate_type (struct expression *exp)
173 {
174 int pc = 0;
175 return evaluate_subexp (NULL_TYPE, exp, &pc, EVAL_AVOID_SIDE_EFFECTS);
176 }
177
178 /* If the next expression is an OP_LABELED, skips past it,
179 returning the label. Otherwise, does nothing and returns NULL. */
180
181 static char *
182 get_label (struct expression *exp, int *pos)
183 {
184 if (exp->elts[*pos].opcode == OP_LABELED)
185 {
186 int pc = (*pos)++;
187 char *name = &exp->elts[pc + 2].string;
188 int tem = longest_to_int (exp->elts[pc + 1].longconst);
189 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
190 return name;
191 }
192 else
193 return NULL;
194 }
195
196 /* This function evaluates tuples (in (the deleted) Chill) or
197 brace-initializers (in C/C++) for structure types. */
198
199 static struct value *
200 evaluate_struct_tuple (struct value *struct_val,
201 struct expression *exp,
202 int *pos, enum noside noside, int nargs)
203 {
204 struct type *struct_type = check_typedef (value_type (struct_val));
205 struct type *substruct_type = struct_type;
206 struct type *field_type;
207 int fieldno = -1;
208 int variantno = -1;
209 int subfieldno = -1;
210 while (--nargs >= 0)
211 {
212 int pc = *pos;
213 struct value *val = NULL;
214 int nlabels = 0;
215 int bitpos, bitsize;
216 bfd_byte *addr;
217
218 /* Skip past the labels, and count them. */
219 while (get_label (exp, pos) != NULL)
220 nlabels++;
221
222 do
223 {
224 char *label = get_label (exp, &pc);
225 if (label)
226 {
227 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type);
228 fieldno++)
229 {
230 char *field_name = TYPE_FIELD_NAME (struct_type, fieldno);
231 if (field_name != NULL && strcmp (field_name, label) == 0)
232 {
233 variantno = -1;
234 subfieldno = fieldno;
235 substruct_type = struct_type;
236 goto found;
237 }
238 }
239 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type);
240 fieldno++)
241 {
242 char *field_name = TYPE_FIELD_NAME (struct_type, fieldno);
243 field_type = TYPE_FIELD_TYPE (struct_type, fieldno);
244 if ((field_name == 0 || *field_name == '\0')
245 && TYPE_CODE (field_type) == TYPE_CODE_UNION)
246 {
247 variantno = 0;
248 for (; variantno < TYPE_NFIELDS (field_type);
249 variantno++)
250 {
251 substruct_type
252 = TYPE_FIELD_TYPE (field_type, variantno);
253 if (TYPE_CODE (substruct_type) == TYPE_CODE_STRUCT)
254 {
255 for (subfieldno = 0;
256 subfieldno < TYPE_NFIELDS (substruct_type);
257 subfieldno++)
258 {
259 if (strcmp(TYPE_FIELD_NAME (substruct_type,
260 subfieldno),
261 label) == 0)
262 {
263 goto found;
264 }
265 }
266 }
267 }
268 }
269 }
270 error (_("there is no field named %s"), label);
271 found:
272 ;
273 }
274 else
275 {
276 /* Unlabelled tuple element - go to next field. */
277 if (variantno >= 0)
278 {
279 subfieldno++;
280 if (subfieldno >= TYPE_NFIELDS (substruct_type))
281 {
282 variantno = -1;
283 substruct_type = struct_type;
284 }
285 }
286 if (variantno < 0)
287 {
288 fieldno++;
289 /* Skip static fields. */
290 while (fieldno < TYPE_NFIELDS (struct_type)
291 && TYPE_FIELD_STATIC_KIND (struct_type, fieldno))
292 fieldno++;
293 subfieldno = fieldno;
294 if (fieldno >= TYPE_NFIELDS (struct_type))
295 error (_("too many initializers"));
296 field_type = TYPE_FIELD_TYPE (struct_type, fieldno);
297 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
298 && TYPE_FIELD_NAME (struct_type, fieldno)[0] == '0')
299 error (_("don't know which variant you want to set"));
300 }
301 }
302
303 /* Here, struct_type is the type of the inner struct,
304 while substruct_type is the type of the inner struct.
305 These are the same for normal structures, but a variant struct
306 contains anonymous union fields that contain substruct fields.
307 The value fieldno is the index of the top-level (normal or
308 anonymous union) field in struct_field, while the value
309 subfieldno is the index of the actual real (named inner) field
310 in substruct_type. */
311
312 field_type = TYPE_FIELD_TYPE (substruct_type, subfieldno);
313 if (val == 0)
314 val = evaluate_subexp (field_type, exp, pos, noside);
315
316 /* Now actually set the field in struct_val. */
317
318 /* Assign val to field fieldno. */
319 if (value_type (val) != field_type)
320 val = value_cast (field_type, val);
321
322 bitsize = TYPE_FIELD_BITSIZE (substruct_type, subfieldno);
323 bitpos = TYPE_FIELD_BITPOS (struct_type, fieldno);
324 if (variantno >= 0)
325 bitpos += TYPE_FIELD_BITPOS (substruct_type, subfieldno);
326 addr = value_contents_writeable (struct_val) + bitpos / 8;
327 if (bitsize)
328 modify_field (addr, value_as_long (val),
329 bitpos % 8, bitsize);
330 else
331 memcpy (addr, value_contents (val),
332 TYPE_LENGTH (value_type (val)));
333 }
334 while (--nlabels > 0);
335 }
336 return struct_val;
337 }
338
339 /* Recursive helper function for setting elements of array tuples for
340 (the deleted) Chill. The target is ARRAY (which has bounds
341 LOW_BOUND to HIGH_BOUND); the element value is ELEMENT; EXP, POS
342 and NOSIDE are as usual. Evaluates index expresions and sets the
343 specified element(s) of ARRAY to ELEMENT. Returns last index
344 value. */
345
346 static LONGEST
347 init_array_element (struct value *array, struct value *element,
348 struct expression *exp, int *pos,
349 enum noside noside, LONGEST low_bound, LONGEST high_bound)
350 {
351 LONGEST index;
352 int element_size = TYPE_LENGTH (value_type (element));
353 if (exp->elts[*pos].opcode == BINOP_COMMA)
354 {
355 (*pos)++;
356 init_array_element (array, element, exp, pos, noside,
357 low_bound, high_bound);
358 return init_array_element (array, element,
359 exp, pos, noside, low_bound, high_bound);
360 }
361 else if (exp->elts[*pos].opcode == BINOP_RANGE)
362 {
363 LONGEST low, high;
364 (*pos)++;
365 low = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
366 high = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
367 if (low < low_bound || high > high_bound)
368 error (_("tuple range index out of range"));
369 for (index = low; index <= high; index++)
370 {
371 memcpy (value_contents_raw (array)
372 + (index - low_bound) * element_size,
373 value_contents (element), element_size);
374 }
375 }
376 else
377 {
378 index = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
379 if (index < low_bound || index > high_bound)
380 error (_("tuple index out of range"));
381 memcpy (value_contents_raw (array) + (index - low_bound) * element_size,
382 value_contents (element), element_size);
383 }
384 return index;
385 }
386
387 struct value *
388 value_f90_subarray (struct value *array,
389 struct expression *exp, int *pos, enum noside noside)
390 {
391 int pc = (*pos) + 1;
392 LONGEST low_bound, high_bound;
393 struct type *range = check_typedef (TYPE_INDEX_TYPE (value_type (array)));
394 enum f90_range_type range_type = longest_to_int (exp->elts[pc].longconst);
395
396 *pos += 3;
397
398 if (range_type == LOW_BOUND_DEFAULT || range_type == BOTH_BOUND_DEFAULT)
399 low_bound = TYPE_LOW_BOUND (range);
400 else
401 low_bound = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
402
403 if (range_type == HIGH_BOUND_DEFAULT || range_type == BOTH_BOUND_DEFAULT)
404 high_bound = TYPE_HIGH_BOUND (range);
405 else
406 high_bound = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
407
408 return value_slice (array, low_bound, high_bound - low_bound + 1);
409 }
410
411 struct value *
412 evaluate_subexp_standard (struct type *expect_type,
413 struct expression *exp, int *pos,
414 enum noside noside)
415 {
416 enum exp_opcode op;
417 int tem, tem2, tem3;
418 int pc, pc2 = 0, oldpos;
419 struct value *arg1 = NULL;
420 struct value *arg2 = NULL;
421 struct value *arg3;
422 struct type *type;
423 int nargs;
424 struct value **argvec;
425 int upper, lower, retcode;
426 int code;
427 int ix;
428 long mem_offset;
429 struct type **arg_types;
430 int save_pos1;
431
432 pc = (*pos)++;
433 op = exp->elts[pc].opcode;
434
435 switch (op)
436 {
437 case OP_SCOPE:
438 tem = longest_to_int (exp->elts[pc + 2].longconst);
439 (*pos) += 4 + BYTES_TO_EXP_ELEM (tem + 1);
440 if (noside == EVAL_SKIP)
441 goto nosideret;
442 arg1 = value_aggregate_elt (exp->elts[pc + 1].type,
443 &exp->elts[pc + 3].string,
444 0, noside);
445 if (arg1 == NULL)
446 error (_("There is no field named %s"), &exp->elts[pc + 3].string);
447 return arg1;
448
449 case OP_LONG:
450 (*pos) += 3;
451 return value_from_longest (exp->elts[pc + 1].type,
452 exp->elts[pc + 2].longconst);
453
454 case OP_DOUBLE:
455 (*pos) += 3;
456 return value_from_double (exp->elts[pc + 1].type,
457 exp->elts[pc + 2].doubleconst);
458
459 case OP_DECFLOAT:
460 (*pos) += 3;
461 return value_from_decfloat (exp->elts[pc + 1].type,
462 exp->elts[pc + 2].decfloatconst);
463
464 case OP_VAR_VALUE:
465 (*pos) += 3;
466 if (noside == EVAL_SKIP)
467 goto nosideret;
468
469 /* JYG: We used to just return value_zero of the symbol type
470 if we're asked to avoid side effects. Otherwise we return
471 value_of_variable (...). However I'm not sure if
472 value_of_variable () has any side effect.
473 We need a full value object returned here for whatis_exp ()
474 to call evaluate_type () and then pass the full value to
475 value_rtti_target_type () if we are dealing with a pointer
476 or reference to a base class and print object is on. */
477
478 {
479 volatile struct gdb_exception except;
480 struct value *ret = NULL;
481
482 TRY_CATCH (except, RETURN_MASK_ERROR)
483 {
484 ret = value_of_variable (exp->elts[pc + 2].symbol,
485 exp->elts[pc + 1].block);
486 }
487
488 if (except.reason < 0)
489 {
490 if (noside == EVAL_AVOID_SIDE_EFFECTS)
491 ret = value_zero (SYMBOL_TYPE (exp->elts[pc + 2].symbol), not_lval);
492 else
493 throw_exception (except);
494 }
495
496 return ret;
497 }
498
499 case OP_LAST:
500 (*pos) += 2;
501 return
502 access_value_history (longest_to_int (exp->elts[pc + 1].longconst));
503
504 case OP_REGISTER:
505 {
506 const char *name = &exp->elts[pc + 2].string;
507 int regno;
508 struct value *val;
509
510 (*pos) += 3 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
511 regno = frame_map_name_to_regnum (deprecated_safe_get_selected_frame (),
512 name, strlen (name));
513 if (regno == -1)
514 error (_("Register $%s not available."), name);
515
516 /* In EVAL_AVOID_SIDE_EFFECTS mode, we only need to return
517 a value with the appropriate register type. Unfortunately,
518 we don't have easy access to the type of user registers.
519 So for these registers, we fetch the register value regardless
520 of the evaluation mode. */
521 if (noside == EVAL_AVOID_SIDE_EFFECTS
522 && regno < gdbarch_num_regs (current_gdbarch)
523 + gdbarch_num_pseudo_regs (current_gdbarch))
524 val = value_zero (register_type (current_gdbarch, regno), not_lval);
525 else
526 val = value_of_register (regno, get_selected_frame (NULL));
527 if (val == NULL)
528 error (_("Value of register %s not available."), name);
529 else
530 return val;
531 }
532 case OP_BOOL:
533 (*pos) += 2;
534 return value_from_longest (LA_BOOL_TYPE,
535 exp->elts[pc + 1].longconst);
536
537 case OP_INTERNALVAR:
538 (*pos) += 2;
539 return value_of_internalvar (exp->elts[pc + 1].internalvar);
540
541 case OP_STRING:
542 tem = longest_to_int (exp->elts[pc + 1].longconst);
543 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
544 if (noside == EVAL_SKIP)
545 goto nosideret;
546 return value_string (&exp->elts[pc + 2].string, tem);
547
548 case OP_OBJC_NSSTRING: /* Objective C Foundation Class NSString constant. */
549 tem = longest_to_int (exp->elts[pc + 1].longconst);
550 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
551 if (noside == EVAL_SKIP)
552 {
553 goto nosideret;
554 }
555 return (struct value *) value_nsstring (&exp->elts[pc + 2].string, tem + 1);
556
557 case OP_BITSTRING:
558 tem = longest_to_int (exp->elts[pc + 1].longconst);
559 (*pos)
560 += 3 + BYTES_TO_EXP_ELEM ((tem + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT);
561 if (noside == EVAL_SKIP)
562 goto nosideret;
563 return value_bitstring (&exp->elts[pc + 2].string, tem);
564 break;
565
566 case OP_ARRAY:
567 (*pos) += 3;
568 tem2 = longest_to_int (exp->elts[pc + 1].longconst);
569 tem3 = longest_to_int (exp->elts[pc + 2].longconst);
570 nargs = tem3 - tem2 + 1;
571 type = expect_type ? check_typedef (expect_type) : NULL_TYPE;
572
573 if (expect_type != NULL_TYPE && noside != EVAL_SKIP
574 && TYPE_CODE (type) == TYPE_CODE_STRUCT)
575 {
576 struct value *rec = allocate_value (expect_type);
577 memset (value_contents_raw (rec), '\0', TYPE_LENGTH (type));
578 return evaluate_struct_tuple (rec, exp, pos, noside, nargs);
579 }
580
581 if (expect_type != NULL_TYPE && noside != EVAL_SKIP
582 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
583 {
584 struct type *range_type = TYPE_FIELD_TYPE (type, 0);
585 struct type *element_type = TYPE_TARGET_TYPE (type);
586 struct value *array = allocate_value (expect_type);
587 int element_size = TYPE_LENGTH (check_typedef (element_type));
588 LONGEST low_bound, high_bound, index;
589 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
590 {
591 low_bound = 0;
592 high_bound = (TYPE_LENGTH (type) / element_size) - 1;
593 }
594 index = low_bound;
595 memset (value_contents_raw (array), 0, TYPE_LENGTH (expect_type));
596 for (tem = nargs; --nargs >= 0;)
597 {
598 struct value *element;
599 int index_pc = 0;
600 if (exp->elts[*pos].opcode == BINOP_RANGE)
601 {
602 index_pc = ++(*pos);
603 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
604 }
605 element = evaluate_subexp (element_type, exp, pos, noside);
606 if (value_type (element) != element_type)
607 element = value_cast (element_type, element);
608 if (index_pc)
609 {
610 int continue_pc = *pos;
611 *pos = index_pc;
612 index = init_array_element (array, element, exp, pos, noside,
613 low_bound, high_bound);
614 *pos = continue_pc;
615 }
616 else
617 {
618 if (index > high_bound)
619 /* to avoid memory corruption */
620 error (_("Too many array elements"));
621 memcpy (value_contents_raw (array)
622 + (index - low_bound) * element_size,
623 value_contents (element),
624 element_size);
625 }
626 index++;
627 }
628 return array;
629 }
630
631 if (expect_type != NULL_TYPE && noside != EVAL_SKIP
632 && TYPE_CODE (type) == TYPE_CODE_SET)
633 {
634 struct value *set = allocate_value (expect_type);
635 gdb_byte *valaddr = value_contents_raw (set);
636 struct type *element_type = TYPE_INDEX_TYPE (type);
637 struct type *check_type = element_type;
638 LONGEST low_bound, high_bound;
639
640 /* get targettype of elementtype */
641 while (TYPE_CODE (check_type) == TYPE_CODE_RANGE ||
642 TYPE_CODE (check_type) == TYPE_CODE_TYPEDEF)
643 check_type = TYPE_TARGET_TYPE (check_type);
644
645 if (get_discrete_bounds (element_type, &low_bound, &high_bound) < 0)
646 error (_("(power)set type with unknown size"));
647 memset (valaddr, '\0', TYPE_LENGTH (type));
648 for (tem = 0; tem < nargs; tem++)
649 {
650 LONGEST range_low, range_high;
651 struct type *range_low_type, *range_high_type;
652 struct value *elem_val;
653 if (exp->elts[*pos].opcode == BINOP_RANGE)
654 {
655 (*pos)++;
656 elem_val = evaluate_subexp (element_type, exp, pos, noside);
657 range_low_type = value_type (elem_val);
658 range_low = value_as_long (elem_val);
659 elem_val = evaluate_subexp (element_type, exp, pos, noside);
660 range_high_type = value_type (elem_val);
661 range_high = value_as_long (elem_val);
662 }
663 else
664 {
665 elem_val = evaluate_subexp (element_type, exp, pos, noside);
666 range_low_type = range_high_type = value_type (elem_val);
667 range_low = range_high = value_as_long (elem_val);
668 }
669 /* check types of elements to avoid mixture of elements from
670 different types. Also check if type of element is "compatible"
671 with element type of powerset */
672 if (TYPE_CODE (range_low_type) == TYPE_CODE_RANGE)
673 range_low_type = TYPE_TARGET_TYPE (range_low_type);
674 if (TYPE_CODE (range_high_type) == TYPE_CODE_RANGE)
675 range_high_type = TYPE_TARGET_TYPE (range_high_type);
676 if ((TYPE_CODE (range_low_type) != TYPE_CODE (range_high_type)) ||
677 (TYPE_CODE (range_low_type) == TYPE_CODE_ENUM &&
678 (range_low_type != range_high_type)))
679 /* different element modes */
680 error (_("POWERSET tuple elements of different mode"));
681 if ((TYPE_CODE (check_type) != TYPE_CODE (range_low_type)) ||
682 (TYPE_CODE (check_type) == TYPE_CODE_ENUM &&
683 range_low_type != check_type))
684 error (_("incompatible POWERSET tuple elements"));
685 if (range_low > range_high)
686 {
687 warning (_("empty POWERSET tuple range"));
688 continue;
689 }
690 if (range_low < low_bound || range_high > high_bound)
691 error (_("POWERSET tuple element out of range"));
692 range_low -= low_bound;
693 range_high -= low_bound;
694 for (; range_low <= range_high; range_low++)
695 {
696 int bit_index = (unsigned) range_low % TARGET_CHAR_BIT;
697 if (gdbarch_bits_big_endian (current_gdbarch))
698 bit_index = TARGET_CHAR_BIT - 1 - bit_index;
699 valaddr[(unsigned) range_low / TARGET_CHAR_BIT]
700 |= 1 << bit_index;
701 }
702 }
703 return set;
704 }
705
706 argvec = (struct value **) alloca (sizeof (struct value *) * nargs);
707 for (tem = 0; tem < nargs; tem++)
708 {
709 /* Ensure that array expressions are coerced into pointer objects. */
710 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
711 }
712 if (noside == EVAL_SKIP)
713 goto nosideret;
714 return value_array (tem2, tem3, argvec);
715
716 case TERNOP_SLICE:
717 {
718 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
719 int lowbound
720 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
721 int upper
722 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
723 if (noside == EVAL_SKIP)
724 goto nosideret;
725 return value_slice (array, lowbound, upper - lowbound + 1);
726 }
727
728 case TERNOP_SLICE_COUNT:
729 {
730 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
731 int lowbound
732 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
733 int length
734 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
735 return value_slice (array, lowbound, length);
736 }
737
738 case TERNOP_COND:
739 /* Skip third and second args to evaluate the first one. */
740 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
741 if (value_logical_not (arg1))
742 {
743 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
744 return evaluate_subexp (NULL_TYPE, exp, pos, noside);
745 }
746 else
747 {
748 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
749 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
750 return arg2;
751 }
752
753 case OP_OBJC_SELECTOR:
754 { /* Objective C @selector operator. */
755 char *sel = &exp->elts[pc + 2].string;
756 int len = longest_to_int (exp->elts[pc + 1].longconst);
757
758 (*pos) += 3 + BYTES_TO_EXP_ELEM (len + 1);
759 if (noside == EVAL_SKIP)
760 goto nosideret;
761
762 if (sel[len] != 0)
763 sel[len] = 0; /* Make sure it's terminated. */
764 return value_from_longest (lookup_pointer_type (builtin_type_void),
765 lookup_child_selector (sel));
766 }
767
768 case OP_OBJC_MSGCALL:
769 { /* Objective C message (method) call. */
770
771 static CORE_ADDR responds_selector = 0;
772 static CORE_ADDR method_selector = 0;
773
774 CORE_ADDR selector = 0;
775
776 int struct_return = 0;
777 int sub_no_side = 0;
778
779 static struct value *msg_send = NULL;
780 static struct value *msg_send_stret = NULL;
781 static int gnu_runtime = 0;
782
783 struct value *target = NULL;
784 struct value *method = NULL;
785 struct value *called_method = NULL;
786
787 struct type *selector_type = NULL;
788
789 struct value *ret = NULL;
790 CORE_ADDR addr = 0;
791
792 selector = exp->elts[pc + 1].longconst;
793 nargs = exp->elts[pc + 2].longconst;
794 argvec = (struct value **) alloca (sizeof (struct value *)
795 * (nargs + 5));
796
797 (*pos) += 3;
798
799 selector_type = lookup_pointer_type (builtin_type_void);
800 if (noside == EVAL_AVOID_SIDE_EFFECTS)
801 sub_no_side = EVAL_NORMAL;
802 else
803 sub_no_side = noside;
804
805 target = evaluate_subexp (selector_type, exp, pos, sub_no_side);
806
807 if (value_as_long (target) == 0)
808 return value_from_longest (builtin_type_long, 0);
809
810 if (lookup_minimal_symbol ("objc_msg_lookup", 0, 0))
811 gnu_runtime = 1;
812
813 /* Find the method dispatch (Apple runtime) or method lookup
814 (GNU runtime) function for Objective-C. These will be used
815 to lookup the symbol information for the method. If we
816 can't find any symbol information, then we'll use these to
817 call the method, otherwise we can call the method
818 directly. The msg_send_stret function is used in the special
819 case of a method that returns a structure (Apple runtime
820 only). */
821 if (gnu_runtime)
822 {
823 struct type *type;
824 type = lookup_pointer_type (builtin_type_void);
825 type = lookup_function_type (type);
826 type = lookup_pointer_type (type);
827 type = lookup_function_type (type);
828 type = lookup_pointer_type (type);
829
830 msg_send = find_function_in_inferior ("objc_msg_lookup");
831 msg_send_stret = find_function_in_inferior ("objc_msg_lookup");
832
833 msg_send = value_from_pointer (type, value_as_address (msg_send));
834 msg_send_stret = value_from_pointer (type,
835 value_as_address (msg_send_stret));
836 }
837 else
838 {
839 msg_send = find_function_in_inferior ("objc_msgSend");
840 /* Special dispatcher for methods returning structs */
841 msg_send_stret = find_function_in_inferior ("objc_msgSend_stret");
842 }
843
844 /* Verify the target object responds to this method. The
845 standard top-level 'Object' class uses a different name for
846 the verification method than the non-standard, but more
847 often used, 'NSObject' class. Make sure we check for both. */
848
849 responds_selector = lookup_child_selector ("respondsToSelector:");
850 if (responds_selector == 0)
851 responds_selector = lookup_child_selector ("respondsTo:");
852
853 if (responds_selector == 0)
854 error (_("no 'respondsTo:' or 'respondsToSelector:' method"));
855
856 method_selector = lookup_child_selector ("methodForSelector:");
857 if (method_selector == 0)
858 method_selector = lookup_child_selector ("methodFor:");
859
860 if (method_selector == 0)
861 error (_("no 'methodFor:' or 'methodForSelector:' method"));
862
863 /* Call the verification method, to make sure that the target
864 class implements the desired method. */
865
866 argvec[0] = msg_send;
867 argvec[1] = target;
868 argvec[2] = value_from_longest (builtin_type_long, responds_selector);
869 argvec[3] = value_from_longest (builtin_type_long, selector);
870 argvec[4] = 0;
871
872 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
873 if (gnu_runtime)
874 {
875 /* Function objc_msg_lookup returns a pointer. */
876 argvec[0] = ret;
877 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
878 }
879 if (value_as_long (ret) == 0)
880 error (_("Target does not respond to this message selector."));
881
882 /* Call "methodForSelector:" method, to get the address of a
883 function method that implements this selector for this
884 class. If we can find a symbol at that address, then we
885 know the return type, parameter types etc. (that's a good
886 thing). */
887
888 argvec[0] = msg_send;
889 argvec[1] = target;
890 argvec[2] = value_from_longest (builtin_type_long, method_selector);
891 argvec[3] = value_from_longest (builtin_type_long, selector);
892 argvec[4] = 0;
893
894 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
895 if (gnu_runtime)
896 {
897 argvec[0] = ret;
898 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
899 }
900
901 /* ret should now be the selector. */
902
903 addr = value_as_long (ret);
904 if (addr)
905 {
906 struct symbol *sym = NULL;
907 /* Is it a high_level symbol? */
908
909 sym = find_pc_function (addr);
910 if (sym != NULL)
911 method = value_of_variable (sym, 0);
912 }
913
914 /* If we found a method with symbol information, check to see
915 if it returns a struct. Otherwise assume it doesn't. */
916
917 if (method)
918 {
919 struct block *b;
920 CORE_ADDR funaddr;
921 struct type *val_type;
922
923 funaddr = find_function_addr (method, &val_type);
924
925 b = block_for_pc (funaddr);
926
927 CHECK_TYPEDEF (val_type);
928
929 if ((val_type == NULL)
930 || (TYPE_CODE(val_type) == TYPE_CODE_ERROR))
931 {
932 if (expect_type != NULL)
933 val_type = expect_type;
934 }
935
936 struct_return = using_struct_return (value_type (method), val_type);
937 }
938 else if (expect_type != NULL)
939 {
940 struct_return = using_struct_return (NULL,
941 check_typedef (expect_type));
942 }
943
944 /* Found a function symbol. Now we will substitute its
945 value in place of the message dispatcher (obj_msgSend),
946 so that we call the method directly instead of thru
947 the dispatcher. The main reason for doing this is that
948 we can now evaluate the return value and parameter values
949 according to their known data types, in case we need to
950 do things like promotion, dereferencing, special handling
951 of structs and doubles, etc.
952
953 We want to use the type signature of 'method', but still
954 jump to objc_msgSend() or objc_msgSend_stret() to better
955 mimic the behavior of the runtime. */
956
957 if (method)
958 {
959 if (TYPE_CODE (value_type (method)) != TYPE_CODE_FUNC)
960 error (_("method address has symbol information with non-function type; skipping"));
961 if (struct_return)
962 VALUE_ADDRESS (method) = value_as_address (msg_send_stret);
963 else
964 VALUE_ADDRESS (method) = value_as_address (msg_send);
965 called_method = method;
966 }
967 else
968 {
969 if (struct_return)
970 called_method = msg_send_stret;
971 else
972 called_method = msg_send;
973 }
974
975 if (noside == EVAL_SKIP)
976 goto nosideret;
977
978 if (noside == EVAL_AVOID_SIDE_EFFECTS)
979 {
980 /* If the return type doesn't look like a function type,
981 call an error. This can happen if somebody tries to
982 turn a variable into a function call. This is here
983 because people often want to call, eg, strcmp, which
984 gdb doesn't know is a function. If gdb isn't asked for
985 it's opinion (ie. through "whatis"), it won't offer
986 it. */
987
988 struct type *type = value_type (called_method);
989 if (type && TYPE_CODE (type) == TYPE_CODE_PTR)
990 type = TYPE_TARGET_TYPE (type);
991 type = TYPE_TARGET_TYPE (type);
992
993 if (type)
994 {
995 if ((TYPE_CODE (type) == TYPE_CODE_ERROR) && expect_type)
996 return allocate_value (expect_type);
997 else
998 return allocate_value (type);
999 }
1000 else
1001 error (_("Expression of type other than \"method returning ...\" used as a method"));
1002 }
1003
1004 /* Now depending on whether we found a symbol for the method,
1005 we will either call the runtime dispatcher or the method
1006 directly. */
1007
1008 argvec[0] = called_method;
1009 argvec[1] = target;
1010 argvec[2] = value_from_longest (builtin_type_long, selector);
1011 /* User-supplied arguments. */
1012 for (tem = 0; tem < nargs; tem++)
1013 argvec[tem + 3] = evaluate_subexp_with_coercion (exp, pos, noside);
1014 argvec[tem + 3] = 0;
1015
1016 if (gnu_runtime && (method != NULL))
1017 {
1018 /* Function objc_msg_lookup returns a pointer. */
1019 deprecated_set_value_type (argvec[0],
1020 lookup_function_type (lookup_pointer_type (value_type (argvec[0]))));
1021 argvec[0] = call_function_by_hand (argvec[0], nargs + 2, argvec + 1);
1022 }
1023
1024 ret = call_function_by_hand (argvec[0], nargs + 2, argvec + 1);
1025 return ret;
1026 }
1027 break;
1028
1029 case OP_FUNCALL:
1030 (*pos) += 2;
1031 op = exp->elts[*pos].opcode;
1032 nargs = longest_to_int (exp->elts[pc + 1].longconst);
1033 /* Allocate arg vector, including space for the function to be
1034 called in argvec[0] and a terminating NULL */
1035 argvec = (struct value **) alloca (sizeof (struct value *) * (nargs + 3));
1036 if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR)
1037 {
1038 nargs++;
1039 /* First, evaluate the structure into arg2 */
1040 pc2 = (*pos)++;
1041
1042 if (noside == EVAL_SKIP)
1043 goto nosideret;
1044
1045 if (op == STRUCTOP_MEMBER)
1046 {
1047 arg2 = evaluate_subexp_for_address (exp, pos, noside);
1048 }
1049 else
1050 {
1051 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1052 }
1053
1054 /* If the function is a virtual function, then the
1055 aggregate value (providing the structure) plays
1056 its part by providing the vtable. Otherwise,
1057 it is just along for the ride: call the function
1058 directly. */
1059
1060 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1061
1062 if (TYPE_CODE (check_typedef (value_type (arg1)))
1063 != TYPE_CODE_METHODPTR)
1064 error (_("Non-pointer-to-member value used in pointer-to-member "
1065 "construct"));
1066
1067 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1068 {
1069 struct type *method_type = check_typedef (value_type (arg1));
1070 arg1 = value_zero (method_type, not_lval);
1071 }
1072 else
1073 arg1 = cplus_method_ptr_to_value (&arg2, arg1);
1074
1075 /* Now, say which argument to start evaluating from */
1076 tem = 2;
1077 }
1078 else if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR)
1079 {
1080 /* Hair for method invocations */
1081 int tem2;
1082
1083 nargs++;
1084 /* First, evaluate the structure into arg2 */
1085 pc2 = (*pos)++;
1086 tem2 = longest_to_int (exp->elts[pc2 + 1].longconst);
1087 *pos += 3 + BYTES_TO_EXP_ELEM (tem2 + 1);
1088 if (noside == EVAL_SKIP)
1089 goto nosideret;
1090
1091 if (op == STRUCTOP_STRUCT)
1092 {
1093 /* If v is a variable in a register, and the user types
1094 v.method (), this will produce an error, because v has
1095 no address.
1096
1097 A possible way around this would be to allocate a
1098 copy of the variable on the stack, copy in the
1099 contents, call the function, and copy out the
1100 contents. I.e. convert this from call by reference
1101 to call by copy-return (or whatever it's called).
1102 However, this does not work because it is not the
1103 same: the method being called could stash a copy of
1104 the address, and then future uses through that address
1105 (after the method returns) would be expected to
1106 use the variable itself, not some copy of it. */
1107 arg2 = evaluate_subexp_for_address (exp, pos, noside);
1108 }
1109 else
1110 {
1111 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1112 }
1113 /* Now, say which argument to start evaluating from */
1114 tem = 2;
1115 }
1116 else
1117 {
1118 /* Non-method function call */
1119 save_pos1 = *pos;
1120 argvec[0] = evaluate_subexp_with_coercion (exp, pos, noside);
1121 tem = 1;
1122 type = value_type (argvec[0]);
1123 if (type && TYPE_CODE (type) == TYPE_CODE_PTR)
1124 type = TYPE_TARGET_TYPE (type);
1125 if (type && TYPE_CODE (type) == TYPE_CODE_FUNC)
1126 {
1127 for (; tem <= nargs && tem <= TYPE_NFIELDS (type); tem++)
1128 {
1129 /* pai: FIXME This seems to be coercing arguments before
1130 * overload resolution has been done! */
1131 argvec[tem] = evaluate_subexp (TYPE_FIELD_TYPE (type, tem - 1),
1132 exp, pos, noside);
1133 }
1134 }
1135 }
1136
1137 /* Evaluate arguments */
1138 for (; tem <= nargs; tem++)
1139 {
1140 /* Ensure that array expressions are coerced into pointer objects. */
1141 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1142 }
1143
1144 /* signal end of arglist */
1145 argvec[tem] = 0;
1146
1147 if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR)
1148 {
1149 int static_memfuncp;
1150 char tstr[256];
1151
1152 /* Method invocation : stuff "this" as first parameter */
1153 argvec[1] = arg2;
1154 /* Name of method from expression */
1155 strcpy (tstr, &exp->elts[pc2 + 2].string);
1156
1157 if (overload_resolution && (exp->language_defn->la_language == language_cplus))
1158 {
1159 /* Language is C++, do some overload resolution before evaluation */
1160 struct value *valp = NULL;
1161
1162 /* Prepare list of argument types for overload resolution */
1163 arg_types = (struct type **) alloca (nargs * (sizeof (struct type *)));
1164 for (ix = 1; ix <= nargs; ix++)
1165 arg_types[ix - 1] = value_type (argvec[ix]);
1166
1167 (void) find_overload_match (arg_types, nargs, tstr,
1168 1 /* method */ , 0 /* strict match */ ,
1169 &arg2 /* the object */ , NULL,
1170 &valp, NULL, &static_memfuncp);
1171
1172
1173 argvec[1] = arg2; /* the ``this'' pointer */
1174 argvec[0] = valp; /* use the method found after overload resolution */
1175 }
1176 else
1177 /* Non-C++ case -- or no overload resolution */
1178 {
1179 struct value *temp = arg2;
1180 argvec[0] = value_struct_elt (&temp, argvec + 1, tstr,
1181 &static_memfuncp,
1182 op == STRUCTOP_STRUCT
1183 ? "structure" : "structure pointer");
1184 /* value_struct_elt updates temp with the correct value
1185 of the ``this'' pointer if necessary, so modify argvec[1] to
1186 reflect any ``this'' changes. */
1187 arg2 = value_from_longest (lookup_pointer_type(value_type (temp)),
1188 VALUE_ADDRESS (temp) + value_offset (temp)
1189 + value_embedded_offset (temp));
1190 argvec[1] = arg2; /* the ``this'' pointer */
1191 }
1192
1193 if (static_memfuncp)
1194 {
1195 argvec[1] = argvec[0];
1196 nargs--;
1197 argvec++;
1198 }
1199 }
1200 else if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR)
1201 {
1202 argvec[1] = arg2;
1203 argvec[0] = arg1;
1204 }
1205 else if (op == OP_VAR_VALUE)
1206 {
1207 /* Non-member function being called */
1208 /* fn: This can only be done for C++ functions. A C-style function
1209 in a C++ program, for instance, does not have the fields that
1210 are expected here */
1211
1212 if (overload_resolution && (exp->language_defn->la_language == language_cplus))
1213 {
1214 /* Language is C++, do some overload resolution before evaluation */
1215 struct symbol *symp;
1216
1217 /* Prepare list of argument types for overload resolution */
1218 arg_types = (struct type **) alloca (nargs * (sizeof (struct type *)));
1219 for (ix = 1; ix <= nargs; ix++)
1220 arg_types[ix - 1] = value_type (argvec[ix]);
1221
1222 (void) find_overload_match (arg_types, nargs, NULL /* no need for name */ ,
1223 0 /* not method */ , 0 /* strict match */ ,
1224 NULL, exp->elts[save_pos1+2].symbol /* the function */ ,
1225 NULL, &symp, NULL);
1226
1227 /* Now fix the expression being evaluated */
1228 exp->elts[save_pos1+2].symbol = symp;
1229 argvec[0] = evaluate_subexp_with_coercion (exp, &save_pos1, noside);
1230 }
1231 else
1232 {
1233 /* Not C++, or no overload resolution allowed */
1234 /* nothing to be done; argvec already correctly set up */
1235 }
1236 }
1237 else
1238 {
1239 /* It is probably a C-style function */
1240 /* nothing to be done; argvec already correctly set up */
1241 }
1242
1243 do_call_it:
1244
1245 if (noside == EVAL_SKIP)
1246 goto nosideret;
1247 if (argvec[0] == NULL)
1248 error (_("Cannot evaluate function -- may be inlined"));
1249 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1250 {
1251 /* If the return type doesn't look like a function type, call an
1252 error. This can happen if somebody tries to turn a variable into
1253 a function call. This is here because people often want to
1254 call, eg, strcmp, which gdb doesn't know is a function. If
1255 gdb isn't asked for it's opinion (ie. through "whatis"),
1256 it won't offer it. */
1257
1258 struct type *ftype =
1259 TYPE_TARGET_TYPE (value_type (argvec[0]));
1260
1261 if (ftype)
1262 return allocate_value (TYPE_TARGET_TYPE (value_type (argvec[0])));
1263 else
1264 error (_("Expression of type other than \"Function returning ...\" used as function"));
1265 }
1266 return call_function_by_hand (argvec[0], nargs, argvec + 1);
1267 /* pai: FIXME save value from call_function_by_hand, then adjust pc by adjust_fn_pc if +ve */
1268
1269 case OP_F77_UNDETERMINED_ARGLIST:
1270
1271 /* Remember that in F77, functions, substring ops and
1272 array subscript operations cannot be disambiguated
1273 at parse time. We have made all array subscript operations,
1274 substring operations as well as function calls come here
1275 and we now have to discover what the heck this thing actually was.
1276 If it is a function, we process just as if we got an OP_FUNCALL. */
1277
1278 nargs = longest_to_int (exp->elts[pc + 1].longconst);
1279 (*pos) += 2;
1280
1281 /* First determine the type code we are dealing with. */
1282 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1283 type = check_typedef (value_type (arg1));
1284 code = TYPE_CODE (type);
1285
1286 if (code == TYPE_CODE_PTR)
1287 {
1288 /* Fortran always passes variable to subroutines as pointer.
1289 So we need to look into its target type to see if it is
1290 array, string or function. If it is, we need to switch
1291 to the target value the original one points to. */
1292 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1293
1294 if (TYPE_CODE (target_type) == TYPE_CODE_ARRAY
1295 || TYPE_CODE (target_type) == TYPE_CODE_STRING
1296 || TYPE_CODE (target_type) == TYPE_CODE_FUNC)
1297 {
1298 arg1 = value_ind (arg1);
1299 type = check_typedef (value_type (arg1));
1300 code = TYPE_CODE (type);
1301 }
1302 }
1303
1304 switch (code)
1305 {
1306 case TYPE_CODE_ARRAY:
1307 if (exp->elts[*pos].opcode == OP_F90_RANGE)
1308 return value_f90_subarray (arg1, exp, pos, noside);
1309 else
1310 goto multi_f77_subscript;
1311
1312 case TYPE_CODE_STRING:
1313 if (exp->elts[*pos].opcode == OP_F90_RANGE)
1314 return value_f90_subarray (arg1, exp, pos, noside);
1315 else
1316 {
1317 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1318 return value_subscript (arg1, arg2);
1319 }
1320
1321 case TYPE_CODE_PTR:
1322 case TYPE_CODE_FUNC:
1323 /* It's a function call. */
1324 /* Allocate arg vector, including space for the function to be
1325 called in argvec[0] and a terminating NULL */
1326 argvec = (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
1327 argvec[0] = arg1;
1328 tem = 1;
1329 for (; tem <= nargs; tem++)
1330 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1331 argvec[tem] = 0; /* signal end of arglist */
1332 goto do_call_it;
1333
1334 default:
1335 error (_("Cannot perform substring on this type"));
1336 }
1337
1338 case OP_COMPLEX:
1339 /* We have a complex number, There should be 2 floating
1340 point numbers that compose it */
1341 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1342 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1343
1344 return value_literal_complex (arg1, arg2, builtin_type_f_complex_s16);
1345
1346 case STRUCTOP_STRUCT:
1347 tem = longest_to_int (exp->elts[pc + 1].longconst);
1348 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
1349 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1350 if (noside == EVAL_SKIP)
1351 goto nosideret;
1352 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1353 return value_zero (lookup_struct_elt_type (value_type (arg1),
1354 &exp->elts[pc + 2].string,
1355 0),
1356 lval_memory);
1357 else
1358 {
1359 struct value *temp = arg1;
1360 return value_struct_elt (&temp, NULL, &exp->elts[pc + 2].string,
1361 NULL, "structure");
1362 }
1363
1364 case STRUCTOP_PTR:
1365 tem = longest_to_int (exp->elts[pc + 1].longconst);
1366 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
1367 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1368 if (noside == EVAL_SKIP)
1369 goto nosideret;
1370
1371 /* JYG: if print object is on we need to replace the base type
1372 with rtti type in order to continue on with successful
1373 lookup of member / method only available in the rtti type. */
1374 {
1375 struct type *type = value_type (arg1);
1376 struct type *real_type;
1377 int full, top, using_enc;
1378
1379 if (objectprint && TYPE_TARGET_TYPE(type) &&
1380 (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_CLASS))
1381 {
1382 real_type = value_rtti_target_type (arg1, &full, &top, &using_enc);
1383 if (real_type)
1384 {
1385 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1386 real_type = lookup_pointer_type (real_type);
1387 else
1388 real_type = lookup_reference_type (real_type);
1389
1390 arg1 = value_cast (real_type, arg1);
1391 }
1392 }
1393 }
1394
1395 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1396 return value_zero (lookup_struct_elt_type (value_type (arg1),
1397 &exp->elts[pc + 2].string,
1398 0),
1399 lval_memory);
1400 else
1401 {
1402 struct value *temp = arg1;
1403 return value_struct_elt (&temp, NULL, &exp->elts[pc + 2].string,
1404 NULL, "structure pointer");
1405 }
1406
1407 case STRUCTOP_MEMBER:
1408 case STRUCTOP_MPTR:
1409 if (op == STRUCTOP_MEMBER)
1410 arg1 = evaluate_subexp_for_address (exp, pos, noside);
1411 else
1412 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1413
1414 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1415
1416 if (noside == EVAL_SKIP)
1417 goto nosideret;
1418
1419 type = check_typedef (value_type (arg2));
1420 switch (TYPE_CODE (type))
1421 {
1422 case TYPE_CODE_METHODPTR:
1423 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1424 return value_zero (TYPE_TARGET_TYPE (type), not_lval);
1425 else
1426 {
1427 arg2 = cplus_method_ptr_to_value (&arg1, arg2);
1428 gdb_assert (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR);
1429 return value_ind (arg2);
1430 }
1431
1432 case TYPE_CODE_MEMBERPTR:
1433 /* Now, convert these values to an address. */
1434 arg1 = value_cast (lookup_pointer_type (TYPE_DOMAIN_TYPE (type)),
1435 arg1);
1436
1437 mem_offset = value_as_long (arg2);
1438
1439 arg3 = value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
1440 value_as_long (arg1) + mem_offset);
1441 return value_ind (arg3);
1442
1443 default:
1444 error (_("non-pointer-to-member value used in pointer-to-member construct"));
1445 }
1446
1447 case BINOP_CONCAT:
1448 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
1449 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1450 if (noside == EVAL_SKIP)
1451 goto nosideret;
1452 if (binop_user_defined_p (op, arg1, arg2))
1453 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1454 else
1455 return value_concat (arg1, arg2);
1456
1457 case BINOP_ASSIGN:
1458 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1459 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
1460
1461 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
1462 return arg1;
1463 if (binop_user_defined_p (op, arg1, arg2))
1464 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1465 else
1466 return value_assign (arg1, arg2);
1467
1468 case BINOP_ASSIGN_MODIFY:
1469 (*pos) += 2;
1470 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1471 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
1472 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
1473 return arg1;
1474 op = exp->elts[pc + 1].opcode;
1475 if (binop_user_defined_p (op, arg1, arg2))
1476 return value_x_binop (arg1, arg2, BINOP_ASSIGN_MODIFY, op, noside);
1477 else if (op == BINOP_ADD)
1478 arg2 = value_add (arg1, arg2);
1479 else if (op == BINOP_SUB)
1480 arg2 = value_sub (arg1, arg2);
1481 else
1482 arg2 = value_binop (arg1, arg2, op);
1483 return value_assign (arg1, arg2);
1484
1485 case BINOP_ADD:
1486 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
1487 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1488 if (noside == EVAL_SKIP)
1489 goto nosideret;
1490 if (binop_user_defined_p (op, arg1, arg2))
1491 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1492 else
1493 return value_add (arg1, arg2);
1494
1495 case BINOP_SUB:
1496 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
1497 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1498 if (noside == EVAL_SKIP)
1499 goto nosideret;
1500 if (binop_user_defined_p (op, arg1, arg2))
1501 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1502 else
1503 return value_sub (arg1, arg2);
1504
1505 case BINOP_EXP:
1506 case BINOP_MUL:
1507 case BINOP_DIV:
1508 case BINOP_INTDIV:
1509 case BINOP_REM:
1510 case BINOP_MOD:
1511 case BINOP_LSH:
1512 case BINOP_RSH:
1513 case BINOP_BITWISE_AND:
1514 case BINOP_BITWISE_IOR:
1515 case BINOP_BITWISE_XOR:
1516 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1517 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1518 if (noside == EVAL_SKIP)
1519 goto nosideret;
1520 if (binop_user_defined_p (op, arg1, arg2))
1521 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1522 else
1523 {
1524 /* If EVAL_AVOID_SIDE_EFFECTS and we're dividing by zero,
1525 fudge arg2 to avoid division-by-zero, the caller is
1526 (theoretically) only looking for the type of the result. */
1527 if (noside == EVAL_AVOID_SIDE_EFFECTS
1528 /* ??? Do we really want to test for BINOP_MOD here?
1529 The implementation of value_binop gives it a well-defined
1530 value. */
1531 && (op == BINOP_DIV
1532 || op == BINOP_INTDIV
1533 || op == BINOP_REM
1534 || op == BINOP_MOD)
1535 && value_logical_not (arg2))
1536 {
1537 struct value *v_one, *retval;
1538
1539 v_one = value_one (value_type (arg2), not_lval);
1540 retval = value_binop (arg1, v_one, op);
1541 return retval;
1542 }
1543 else
1544 return value_binop (arg1, arg2, op);
1545 }
1546
1547 case BINOP_RANGE:
1548 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1549 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1550 if (noside == EVAL_SKIP)
1551 goto nosideret;
1552 error (_("':' operator used in invalid context"));
1553
1554 case BINOP_SUBSCRIPT:
1555 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
1556 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1557 if (noside == EVAL_SKIP)
1558 goto nosideret;
1559 if (binop_user_defined_p (op, arg1, arg2))
1560 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1561 else
1562 {
1563 /* If the user attempts to subscript something that is not an
1564 array or pointer type (like a plain int variable for example),
1565 then report this as an error. */
1566
1567 arg1 = coerce_ref (arg1);
1568 type = check_typedef (value_type (arg1));
1569 if (TYPE_CODE (type) != TYPE_CODE_ARRAY
1570 && TYPE_CODE (type) != TYPE_CODE_PTR)
1571 {
1572 if (TYPE_NAME (type))
1573 error (_("cannot subscript something of type `%s'"),
1574 TYPE_NAME (type));
1575 else
1576 error (_("cannot subscript requested type"));
1577 }
1578
1579 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1580 return value_zero (TYPE_TARGET_TYPE (type), VALUE_LVAL (arg1));
1581 else
1582 return value_subscript (arg1, arg2);
1583 }
1584
1585 case BINOP_IN:
1586 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
1587 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1588 if (noside == EVAL_SKIP)
1589 goto nosideret;
1590 return value_in (arg1, arg2);
1591
1592 case MULTI_SUBSCRIPT:
1593 (*pos) += 2;
1594 nargs = longest_to_int (exp->elts[pc + 1].longconst);
1595 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
1596 while (nargs-- > 0)
1597 {
1598 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1599 /* FIXME: EVAL_SKIP handling may not be correct. */
1600 if (noside == EVAL_SKIP)
1601 {
1602 if (nargs > 0)
1603 {
1604 continue;
1605 }
1606 else
1607 {
1608 goto nosideret;
1609 }
1610 }
1611 /* FIXME: EVAL_AVOID_SIDE_EFFECTS handling may not be correct. */
1612 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1613 {
1614 /* If the user attempts to subscript something that has no target
1615 type (like a plain int variable for example), then report this
1616 as an error. */
1617
1618 type = TYPE_TARGET_TYPE (check_typedef (value_type (arg1)));
1619 if (type != NULL)
1620 {
1621 arg1 = value_zero (type, VALUE_LVAL (arg1));
1622 noside = EVAL_SKIP;
1623 continue;
1624 }
1625 else
1626 {
1627 error (_("cannot subscript something of type `%s'"),
1628 TYPE_NAME (value_type (arg1)));
1629 }
1630 }
1631
1632 if (binop_user_defined_p (op, arg1, arg2))
1633 {
1634 arg1 = value_x_binop (arg1, arg2, op, OP_NULL, noside);
1635 }
1636 else
1637 {
1638 arg1 = value_subscript (arg1, arg2);
1639 }
1640 }
1641 return (arg1);
1642
1643 multi_f77_subscript:
1644 {
1645 int subscript_array[MAX_FORTRAN_DIMS];
1646 int array_size_array[MAX_FORTRAN_DIMS];
1647 int ndimensions = 1, i;
1648 struct type *tmp_type;
1649 int offset_item; /* The array offset where the item lives */
1650
1651 if (nargs > MAX_FORTRAN_DIMS)
1652 error (_("Too many subscripts for F77 (%d Max)"), MAX_FORTRAN_DIMS);
1653
1654 tmp_type = check_typedef (value_type (arg1));
1655 ndimensions = calc_f77_array_dims (type);
1656
1657 if (nargs != ndimensions)
1658 error (_("Wrong number of subscripts"));
1659
1660 /* Now that we know we have a legal array subscript expression
1661 let us actually find out where this element exists in the array. */
1662
1663 offset_item = 0;
1664 /* Take array indices left to right */
1665 for (i = 0; i < nargs; i++)
1666 {
1667 /* Evaluate each subscript, It must be a legal integer in F77 */
1668 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1669
1670 /* Fill in the subscript and array size arrays */
1671
1672 subscript_array[i] = value_as_long (arg2);
1673 }
1674
1675 /* Internal type of array is arranged right to left */
1676 for (i = 0; i < nargs; i++)
1677 {
1678 retcode = f77_get_dynamic_upperbound (tmp_type, &upper);
1679 if (retcode == BOUND_FETCH_ERROR)
1680 error (_("Cannot obtain dynamic upper bound"));
1681
1682 retcode = f77_get_dynamic_lowerbound (tmp_type, &lower);
1683 if (retcode == BOUND_FETCH_ERROR)
1684 error (_("Cannot obtain dynamic lower bound"));
1685
1686 array_size_array[nargs - i - 1] = upper - lower + 1;
1687
1688 /* Zero-normalize subscripts so that offsetting will work. */
1689
1690 subscript_array[nargs - i - 1] -= lower;
1691
1692 /* If we are at the bottom of a multidimensional
1693 array type then keep a ptr to the last ARRAY
1694 type around for use when calling value_subscript()
1695 below. This is done because we pretend to value_subscript
1696 that we actually have a one-dimensional array
1697 of base element type that we apply a simple
1698 offset to. */
1699
1700 if (i < nargs - 1)
1701 tmp_type = check_typedef (TYPE_TARGET_TYPE (tmp_type));
1702 }
1703
1704 /* Now let us calculate the offset for this item */
1705
1706 offset_item = subscript_array[ndimensions - 1];
1707
1708 for (i = ndimensions - 1; i > 0; --i)
1709 offset_item =
1710 array_size_array[i - 1] * offset_item + subscript_array[i - 1];
1711
1712 /* Construct a value node with the value of the offset */
1713
1714 arg2 = value_from_longest (builtin_type_f_integer, offset_item);
1715
1716 /* Let us now play a dirty trick: we will take arg1
1717 which is a value node pointing to the topmost level
1718 of the multidimensional array-set and pretend
1719 that it is actually a array of the final element
1720 type, this will ensure that value_subscript()
1721 returns the correct type value */
1722
1723 deprecated_set_value_type (arg1, tmp_type);
1724 return value_subscripted_rvalue (arg1, arg2, 0);
1725 }
1726
1727 case BINOP_LOGICAL_AND:
1728 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1729 if (noside == EVAL_SKIP)
1730 {
1731 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1732 goto nosideret;
1733 }
1734
1735 oldpos = *pos;
1736 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
1737 *pos = oldpos;
1738
1739 if (binop_user_defined_p (op, arg1, arg2))
1740 {
1741 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1742 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1743 }
1744 else
1745 {
1746 tem = value_logical_not (arg1);
1747 arg2 = evaluate_subexp (NULL_TYPE, exp, pos,
1748 (tem ? EVAL_SKIP : noside));
1749 return value_from_longest (LA_BOOL_TYPE,
1750 (LONGEST) (!tem && !value_logical_not (arg2)));
1751 }
1752
1753 case BINOP_LOGICAL_OR:
1754 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1755 if (noside == EVAL_SKIP)
1756 {
1757 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1758 goto nosideret;
1759 }
1760
1761 oldpos = *pos;
1762 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
1763 *pos = oldpos;
1764
1765 if (binop_user_defined_p (op, arg1, arg2))
1766 {
1767 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1768 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1769 }
1770 else
1771 {
1772 tem = value_logical_not (arg1);
1773 arg2 = evaluate_subexp (NULL_TYPE, exp, pos,
1774 (!tem ? EVAL_SKIP : noside));
1775 return value_from_longest (LA_BOOL_TYPE,
1776 (LONGEST) (!tem || !value_logical_not (arg2)));
1777 }
1778
1779 case BINOP_EQUAL:
1780 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1781 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
1782 if (noside == EVAL_SKIP)
1783 goto nosideret;
1784 if (binop_user_defined_p (op, arg1, arg2))
1785 {
1786 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1787 }
1788 else
1789 {
1790 tem = value_equal (arg1, arg2);
1791 return value_from_longest (LA_BOOL_TYPE, (LONGEST) tem);
1792 }
1793
1794 case BINOP_NOTEQUAL:
1795 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1796 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
1797 if (noside == EVAL_SKIP)
1798 goto nosideret;
1799 if (binop_user_defined_p (op, arg1, arg2))
1800 {
1801 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1802 }
1803 else
1804 {
1805 tem = value_equal (arg1, arg2);
1806 return value_from_longest (LA_BOOL_TYPE, (LONGEST) ! tem);
1807 }
1808
1809 case BINOP_LESS:
1810 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1811 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
1812 if (noside == EVAL_SKIP)
1813 goto nosideret;
1814 if (binop_user_defined_p (op, arg1, arg2))
1815 {
1816 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1817 }
1818 else
1819 {
1820 tem = value_less (arg1, arg2);
1821 return value_from_longest (LA_BOOL_TYPE, (LONGEST) tem);
1822 }
1823
1824 case BINOP_GTR:
1825 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1826 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
1827 if (noside == EVAL_SKIP)
1828 goto nosideret;
1829 if (binop_user_defined_p (op, arg1, arg2))
1830 {
1831 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1832 }
1833 else
1834 {
1835 tem = value_less (arg2, arg1);
1836 return value_from_longest (LA_BOOL_TYPE, (LONGEST) tem);
1837 }
1838
1839 case BINOP_GEQ:
1840 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1841 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
1842 if (noside == EVAL_SKIP)
1843 goto nosideret;
1844 if (binop_user_defined_p (op, arg1, arg2))
1845 {
1846 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1847 }
1848 else
1849 {
1850 tem = value_less (arg2, arg1) || value_equal (arg1, arg2);
1851 return value_from_longest (LA_BOOL_TYPE, (LONGEST) tem);
1852 }
1853
1854 case BINOP_LEQ:
1855 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1856 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
1857 if (noside == EVAL_SKIP)
1858 goto nosideret;
1859 if (binop_user_defined_p (op, arg1, arg2))
1860 {
1861 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1862 }
1863 else
1864 {
1865 tem = value_less (arg1, arg2) || value_equal (arg1, arg2);
1866 return value_from_longest (LA_BOOL_TYPE, (LONGEST) tem);
1867 }
1868
1869 case BINOP_REPEAT:
1870 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1871 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1872 if (noside == EVAL_SKIP)
1873 goto nosideret;
1874 type = check_typedef (value_type (arg2));
1875 if (TYPE_CODE (type) != TYPE_CODE_INT)
1876 error (_("Non-integral right operand for \"@\" operator."));
1877 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1878 {
1879 return allocate_repeat_value (value_type (arg1),
1880 longest_to_int (value_as_long (arg2)));
1881 }
1882 else
1883 return value_repeat (arg1, longest_to_int (value_as_long (arg2)));
1884
1885 case BINOP_COMMA:
1886 evaluate_subexp (NULL_TYPE, exp, pos, noside);
1887 return evaluate_subexp (NULL_TYPE, exp, pos, noside);
1888
1889 case UNOP_PLUS:
1890 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1891 if (noside == EVAL_SKIP)
1892 goto nosideret;
1893 if (unop_user_defined_p (op, arg1))
1894 return value_x_unop (arg1, op, noside);
1895 else
1896 return value_pos (arg1);
1897
1898 case UNOP_NEG:
1899 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1900 if (noside == EVAL_SKIP)
1901 goto nosideret;
1902 if (unop_user_defined_p (op, arg1))
1903 return value_x_unop (arg1, op, noside);
1904 else
1905 return value_neg (arg1);
1906
1907 case UNOP_COMPLEMENT:
1908 /* C++: check for and handle destructor names. */
1909 op = exp->elts[*pos].opcode;
1910
1911 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1912 if (noside == EVAL_SKIP)
1913 goto nosideret;
1914 if (unop_user_defined_p (UNOP_COMPLEMENT, arg1))
1915 return value_x_unop (arg1, UNOP_COMPLEMENT, noside);
1916 else
1917 return value_complement (arg1);
1918
1919 case UNOP_LOGICAL_NOT:
1920 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1921 if (noside == EVAL_SKIP)
1922 goto nosideret;
1923 if (unop_user_defined_p (op, arg1))
1924 return value_x_unop (arg1, op, noside);
1925 else
1926 return value_from_longest (LA_BOOL_TYPE,
1927 (LONGEST) value_logical_not (arg1));
1928
1929 case UNOP_IND:
1930 if (expect_type && TYPE_CODE (expect_type) == TYPE_CODE_PTR)
1931 expect_type = TYPE_TARGET_TYPE (check_typedef (expect_type));
1932 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
1933 type = check_typedef (value_type (arg1));
1934 if (TYPE_CODE (type) == TYPE_CODE_METHODPTR
1935 || TYPE_CODE (type) == TYPE_CODE_MEMBERPTR)
1936 error (_("Attempt to dereference pointer to member without an object"));
1937 if (noside == EVAL_SKIP)
1938 goto nosideret;
1939 if (unop_user_defined_p (op, arg1))
1940 return value_x_unop (arg1, op, noside);
1941 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
1942 {
1943 type = check_typedef (value_type (arg1));
1944 if (TYPE_CODE (type) == TYPE_CODE_PTR
1945 || TYPE_CODE (type) == TYPE_CODE_REF
1946 /* In C you can dereference an array to get the 1st elt. */
1947 || TYPE_CODE (type) == TYPE_CODE_ARRAY
1948 )
1949 return value_zero (TYPE_TARGET_TYPE (type),
1950 lval_memory);
1951 else if (TYPE_CODE (type) == TYPE_CODE_INT)
1952 /* GDB allows dereferencing an int. */
1953 return value_zero (builtin_type_int, lval_memory);
1954 else
1955 error (_("Attempt to take contents of a non-pointer value."));
1956 }
1957 return value_ind (arg1);
1958
1959 case UNOP_ADDR:
1960 /* C++: check for and handle pointer to members. */
1961
1962 op = exp->elts[*pos].opcode;
1963
1964 if (noside == EVAL_SKIP)
1965 {
1966 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
1967 goto nosideret;
1968 }
1969 else
1970 {
1971 struct value *retvalp = evaluate_subexp_for_address (exp, pos, noside);
1972 return retvalp;
1973 }
1974
1975 case UNOP_SIZEOF:
1976 if (noside == EVAL_SKIP)
1977 {
1978 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
1979 goto nosideret;
1980 }
1981 return evaluate_subexp_for_sizeof (exp, pos);
1982
1983 case UNOP_CAST:
1984 (*pos) += 2;
1985 type = exp->elts[pc + 1].type;
1986 arg1 = evaluate_subexp (type, exp, pos, noside);
1987 if (noside == EVAL_SKIP)
1988 goto nosideret;
1989 if (type != value_type (arg1))
1990 arg1 = value_cast (type, arg1);
1991 return arg1;
1992
1993 case UNOP_MEMVAL:
1994 (*pos) += 2;
1995 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
1996 if (noside == EVAL_SKIP)
1997 goto nosideret;
1998 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1999 return value_zero (exp->elts[pc + 1].type, lval_memory);
2000 else
2001 return value_at_lazy (exp->elts[pc + 1].type,
2002 value_as_address (arg1));
2003
2004 case UNOP_MEMVAL_TLS:
2005 (*pos) += 3;
2006 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2007 if (noside == EVAL_SKIP)
2008 goto nosideret;
2009 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2010 return value_zero (exp->elts[pc + 2].type, lval_memory);
2011 else
2012 {
2013 CORE_ADDR tls_addr;
2014 tls_addr = target_translate_tls_address (exp->elts[pc + 1].objfile,
2015 value_as_address (arg1));
2016 return value_at_lazy (exp->elts[pc + 2].type, tls_addr);
2017 }
2018
2019 case UNOP_PREINCREMENT:
2020 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2021 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2022 return arg1;
2023 else if (unop_user_defined_p (op, arg1))
2024 {
2025 return value_x_unop (arg1, op, noside);
2026 }
2027 else
2028 {
2029 arg2 = value_add (arg1, value_from_longest (builtin_type_char,
2030 (LONGEST) 1));
2031 return value_assign (arg1, arg2);
2032 }
2033
2034 case UNOP_PREDECREMENT:
2035 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2036 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2037 return arg1;
2038 else if (unop_user_defined_p (op, arg1))
2039 {
2040 return value_x_unop (arg1, op, noside);
2041 }
2042 else
2043 {
2044 arg2 = value_sub (arg1, value_from_longest (builtin_type_char,
2045 (LONGEST) 1));
2046 return value_assign (arg1, arg2);
2047 }
2048
2049 case UNOP_POSTINCREMENT:
2050 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2051 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2052 return arg1;
2053 else if (unop_user_defined_p (op, arg1))
2054 {
2055 return value_x_unop (arg1, op, noside);
2056 }
2057 else
2058 {
2059 arg2 = value_add (arg1, value_from_longest (builtin_type_char,
2060 (LONGEST) 1));
2061 value_assign (arg1, arg2);
2062 return arg1;
2063 }
2064
2065 case UNOP_POSTDECREMENT:
2066 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2067 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2068 return arg1;
2069 else if (unop_user_defined_p (op, arg1))
2070 {
2071 return value_x_unop (arg1, op, noside);
2072 }
2073 else
2074 {
2075 arg2 = value_sub (arg1, value_from_longest (builtin_type_char,
2076 (LONGEST) 1));
2077 value_assign (arg1, arg2);
2078 return arg1;
2079 }
2080
2081 case OP_THIS:
2082 (*pos) += 1;
2083 return value_of_this (1);
2084
2085 case OP_OBJC_SELF:
2086 (*pos) += 1;
2087 return value_of_local ("self", 1);
2088
2089 case OP_TYPE:
2090 /* The value is not supposed to be used. This is here to make it
2091 easier to accommodate expressions that contain types. */
2092 (*pos) += 2;
2093 if (noside == EVAL_SKIP)
2094 goto nosideret;
2095 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2096 return allocate_value (exp->elts[pc + 1].type);
2097 else
2098 error (_("Attempt to use a type name as an expression"));
2099
2100 default:
2101 /* Removing this case and compiling with gcc -Wall reveals that
2102 a lot of cases are hitting this case. Some of these should
2103 probably be removed from expression.h; others are legitimate
2104 expressions which are (apparently) not fully implemented.
2105
2106 If there are any cases landing here which mean a user error,
2107 then they should be separate cases, with more descriptive
2108 error messages. */
2109
2110 error (_("\
2111 GDB does not (yet) know how to evaluate that kind of expression"));
2112 }
2113
2114 nosideret:
2115 return value_from_longest (builtin_type_long, (LONGEST) 1);
2116 }
2117 \f
2118 /* Evaluate a subexpression of EXP, at index *POS,
2119 and return the address of that subexpression.
2120 Advance *POS over the subexpression.
2121 If the subexpression isn't an lvalue, get an error.
2122 NOSIDE may be EVAL_AVOID_SIDE_EFFECTS;
2123 then only the type of the result need be correct. */
2124
2125 static struct value *
2126 evaluate_subexp_for_address (struct expression *exp, int *pos,
2127 enum noside noside)
2128 {
2129 enum exp_opcode op;
2130 int pc;
2131 struct symbol *var;
2132 struct value *x;
2133 int tem;
2134
2135 pc = (*pos);
2136 op = exp->elts[pc].opcode;
2137
2138 switch (op)
2139 {
2140 case UNOP_IND:
2141 (*pos)++;
2142 x = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2143
2144 /* We can't optimize out "&*" if there's a user-defined operator*. */
2145 if (unop_user_defined_p (op, x))
2146 {
2147 x = value_x_unop (x, op, noside);
2148 goto default_case_after_eval;
2149 }
2150
2151 return x;
2152
2153 case UNOP_MEMVAL:
2154 (*pos) += 3;
2155 return value_cast (lookup_pointer_type (exp->elts[pc + 1].type),
2156 evaluate_subexp (NULL_TYPE, exp, pos, noside));
2157
2158 case OP_VAR_VALUE:
2159 var = exp->elts[pc + 2].symbol;
2160
2161 /* C++: The "address" of a reference should yield the address
2162 * of the object pointed to. Let value_addr() deal with it. */
2163 if (TYPE_CODE (SYMBOL_TYPE (var)) == TYPE_CODE_REF)
2164 goto default_case;
2165
2166 (*pos) += 4;
2167 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2168 {
2169 struct type *type =
2170 lookup_pointer_type (SYMBOL_TYPE (var));
2171 enum address_class sym_class = SYMBOL_CLASS (var);
2172
2173 if (sym_class == LOC_CONST
2174 || sym_class == LOC_CONST_BYTES
2175 || sym_class == LOC_REGISTER)
2176 error (_("Attempt to take address of register or constant."));
2177
2178 return
2179 value_zero (type, not_lval);
2180 }
2181 else if (symbol_read_needs_frame (var))
2182 return
2183 locate_var_value
2184 (var,
2185 block_innermost_frame (exp->elts[pc + 1].block));
2186 else
2187 return locate_var_value (var, NULL);
2188
2189 case OP_SCOPE:
2190 tem = longest_to_int (exp->elts[pc + 2].longconst);
2191 (*pos) += 5 + BYTES_TO_EXP_ELEM (tem + 1);
2192 x = value_aggregate_elt (exp->elts[pc + 1].type,
2193 &exp->elts[pc + 3].string,
2194 1, noside);
2195 if (x == NULL)
2196 error (_("There is no field named %s"), &exp->elts[pc + 3].string);
2197 return x;
2198
2199 default:
2200 default_case:
2201 x = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2202 default_case_after_eval:
2203 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2204 {
2205 struct type *type = check_typedef (value_type (x));
2206
2207 if (VALUE_LVAL (x) == lval_memory || value_must_coerce_to_target (x))
2208 return value_zero (lookup_pointer_type (value_type (x)),
2209 not_lval);
2210 else if (TYPE_CODE (type) == TYPE_CODE_REF)
2211 return value_zero (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2212 not_lval);
2213 else
2214 error (_("Attempt to take address of value not located in memory."));
2215 }
2216 return value_addr (x);
2217 }
2218 }
2219
2220 /* Evaluate like `evaluate_subexp' except coercing arrays to pointers.
2221 When used in contexts where arrays will be coerced anyway, this is
2222 equivalent to `evaluate_subexp' but much faster because it avoids
2223 actually fetching array contents (perhaps obsolete now that we have
2224 value_lazy()).
2225
2226 Note that we currently only do the coercion for C expressions, where
2227 arrays are zero based and the coercion is correct. For other languages,
2228 with nonzero based arrays, coercion loses. Use CAST_IS_CONVERSION
2229 to decide if coercion is appropriate.
2230
2231 */
2232
2233 struct value *
2234 evaluate_subexp_with_coercion (struct expression *exp,
2235 int *pos, enum noside noside)
2236 {
2237 enum exp_opcode op;
2238 int pc;
2239 struct value *val;
2240 struct symbol *var;
2241
2242 pc = (*pos);
2243 op = exp->elts[pc].opcode;
2244
2245 switch (op)
2246 {
2247 case OP_VAR_VALUE:
2248 var = exp->elts[pc + 2].symbol;
2249 if (TYPE_CODE (check_typedef (SYMBOL_TYPE (var))) == TYPE_CODE_ARRAY
2250 && CAST_IS_CONVERSION)
2251 {
2252 (*pos) += 4;
2253 val =
2254 locate_var_value
2255 (var, block_innermost_frame (exp->elts[pc + 1].block));
2256 return value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (check_typedef (SYMBOL_TYPE (var)))),
2257 val);
2258 }
2259 /* FALLTHROUGH */
2260
2261 default:
2262 return evaluate_subexp (NULL_TYPE, exp, pos, noside);
2263 }
2264 }
2265
2266 /* Evaluate a subexpression of EXP, at index *POS,
2267 and return a value for the size of that subexpression.
2268 Advance *POS over the subexpression. */
2269
2270 static struct value *
2271 evaluate_subexp_for_sizeof (struct expression *exp, int *pos)
2272 {
2273 enum exp_opcode op;
2274 int pc;
2275 struct type *type;
2276 struct value *val;
2277
2278 pc = (*pos);
2279 op = exp->elts[pc].opcode;
2280
2281 switch (op)
2282 {
2283 /* This case is handled specially
2284 so that we avoid creating a value for the result type.
2285 If the result type is very big, it's desirable not to
2286 create a value unnecessarily. */
2287 case UNOP_IND:
2288 (*pos)++;
2289 val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2290 type = check_typedef (value_type (val));
2291 if (TYPE_CODE (type) != TYPE_CODE_PTR
2292 && TYPE_CODE (type) != TYPE_CODE_REF
2293 && TYPE_CODE (type) != TYPE_CODE_ARRAY)
2294 error (_("Attempt to take contents of a non-pointer value."));
2295 type = check_typedef (TYPE_TARGET_TYPE (type));
2296 return value_from_longest (builtin_type_int, (LONGEST)
2297 TYPE_LENGTH (type));
2298
2299 case UNOP_MEMVAL:
2300 (*pos) += 3;
2301 type = check_typedef (exp->elts[pc + 1].type);
2302 return value_from_longest (builtin_type_int,
2303 (LONGEST) TYPE_LENGTH (type));
2304
2305 case OP_VAR_VALUE:
2306 (*pos) += 4;
2307 type = check_typedef (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
2308 return
2309 value_from_longest (builtin_type_int, (LONGEST) TYPE_LENGTH (type));
2310
2311 default:
2312 val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2313 return value_from_longest (builtin_type_int,
2314 (LONGEST) TYPE_LENGTH (value_type (val)));
2315 }
2316 }
2317
2318 /* Parse a type expression in the string [P..P+LENGTH). */
2319
2320 struct type *
2321 parse_and_eval_type (char *p, int length)
2322 {
2323 char *tmp = (char *) alloca (length + 4);
2324 struct expression *expr;
2325 tmp[0] = '(';
2326 memcpy (tmp + 1, p, length);
2327 tmp[length + 1] = ')';
2328 tmp[length + 2] = '0';
2329 tmp[length + 3] = '\0';
2330 expr = parse_expression (tmp);
2331 if (expr->elts[0].opcode != UNOP_CAST)
2332 error (_("Internal error in eval_type."));
2333 return expr->elts[1].type;
2334 }
2335
2336 int
2337 calc_f77_array_dims (struct type *array_type)
2338 {
2339 int ndimen = 1;
2340 struct type *tmp_type;
2341
2342 if ((TYPE_CODE (array_type) != TYPE_CODE_ARRAY))
2343 error (_("Can't get dimensions for a non-array type"));
2344
2345 tmp_type = array_type;
2346
2347 while ((tmp_type = TYPE_TARGET_TYPE (tmp_type)))
2348 {
2349 if (TYPE_CODE (tmp_type) == TYPE_CODE_ARRAY)
2350 ++ndimen;
2351 }
2352 return ndimen;
2353 }