Split out eval_op_memval
[binutils-gdb.git] / gdb / eval.c
1 /* Evaluate expressions for GDB.
2
3 Copyright (C) 1986-2021 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "value.h"
24 #include "expression.h"
25 #include "target.h"
26 #include "frame.h"
27 #include "gdbthread.h"
28 #include "language.h" /* For CAST_IS_CONVERSION. */
29 #include "cp-abi.h"
30 #include "infcall.h"
31 #include "objc-lang.h"
32 #include "block.h"
33 #include "parser-defs.h"
34 #include "cp-support.h"
35 #include "ui-out.h"
36 #include "regcache.h"
37 #include "user-regs.h"
38 #include "valprint.h"
39 #include "gdb_obstack.h"
40 #include "objfiles.h"
41 #include "typeprint.h"
42 #include <ctype.h>
43
44 /* Prototypes for local functions. */
45
46 static struct value *evaluate_subexp_for_sizeof (struct expression *, int *,
47 enum noside);
48
49 static struct value *evaluate_subexp_for_address (struct expression *,
50 int *, enum noside);
51
52 static value *evaluate_subexp_for_cast (expression *exp, int *pos,
53 enum noside noside,
54 struct type *type);
55
56 static struct value *evaluate_struct_tuple (struct value *,
57 struct expression *, int *,
58 enum noside, int);
59
60 struct value *
61 evaluate_subexp (struct type *expect_type, struct expression *exp,
62 int *pos, enum noside noside)
63 {
64 return ((*exp->language_defn->expression_ops ()->evaluate_exp)
65 (expect_type, exp, pos, noside));
66 }
67 \f
68 /* Parse the string EXP as a C expression, evaluate it,
69 and return the result as a number. */
70
71 CORE_ADDR
72 parse_and_eval_address (const char *exp)
73 {
74 expression_up expr = parse_expression (exp);
75
76 return value_as_address (evaluate_expression (expr.get ()));
77 }
78
79 /* Like parse_and_eval_address, but treats the value of the expression
80 as an integer, not an address, returns a LONGEST, not a CORE_ADDR. */
81 LONGEST
82 parse_and_eval_long (const char *exp)
83 {
84 expression_up expr = parse_expression (exp);
85
86 return value_as_long (evaluate_expression (expr.get ()));
87 }
88
89 struct value *
90 parse_and_eval (const char *exp)
91 {
92 expression_up expr = parse_expression (exp);
93
94 return evaluate_expression (expr.get ());
95 }
96
97 /* Parse up to a comma (or to a closeparen)
98 in the string EXPP as an expression, evaluate it, and return the value.
99 EXPP is advanced to point to the comma. */
100
101 struct value *
102 parse_to_comma_and_eval (const char **expp)
103 {
104 expression_up expr = parse_exp_1 (expp, 0, nullptr, 1);
105
106 return evaluate_expression (expr.get ());
107 }
108 \f
109
110 /* See expression.h. */
111
112 struct value *
113 expression::evaluate (struct type *expect_type, enum noside noside)
114 {
115 gdb::optional<enable_thread_stack_temporaries> stack_temporaries;
116 if (target_has_execution ()
117 && language_defn->la_language == language_cplus
118 && !thread_stack_temporaries_enabled_p (inferior_thread ()))
119 stack_temporaries.emplace (inferior_thread ());
120
121 int pos = 0;
122 struct value *retval = evaluate_subexp (expect_type, this, &pos, noside);
123
124 if (stack_temporaries.has_value ()
125 && value_in_thread_stack_temporaries (retval, inferior_thread ()))
126 retval = value_non_lval (retval);
127
128 return retval;
129 }
130
131 /* See value.h. */
132
133 struct value *
134 evaluate_expression (struct expression *exp, struct type *expect_type)
135 {
136 return exp->evaluate (expect_type, EVAL_NORMAL);
137 }
138
139 /* Evaluate an expression, avoiding all memory references
140 and getting a value whose type alone is correct. */
141
142 struct value *
143 evaluate_type (struct expression *exp)
144 {
145 return exp->evaluate (nullptr, EVAL_AVOID_SIDE_EFFECTS);
146 }
147
148 /* Evaluate a subexpression, avoiding all memory references and
149 getting a value whose type alone is correct. */
150
151 struct value *
152 evaluate_subexpression_type (struct expression *exp, int subexp)
153 {
154 return evaluate_subexp (nullptr, exp, &subexp, EVAL_AVOID_SIDE_EFFECTS);
155 }
156
157 /* Find the current value of a watchpoint on EXP. Return the value in
158 *VALP and *RESULTP and the chain of intermediate and final values
159 in *VAL_CHAIN. RESULTP and VAL_CHAIN may be NULL if the caller does
160 not need them.
161
162 If PRESERVE_ERRORS is true, then exceptions are passed through.
163 Otherwise, if PRESERVE_ERRORS is false, then if a memory error
164 occurs while evaluating the expression, *RESULTP will be set to
165 NULL. *RESULTP may be a lazy value, if the result could not be
166 read from memory. It is used to determine whether a value is
167 user-specified (we should watch the whole value) or intermediate
168 (we should watch only the bit used to locate the final value).
169
170 If the final value, or any intermediate value, could not be read
171 from memory, *VALP will be set to NULL. *VAL_CHAIN will still be
172 set to any referenced values. *VALP will never be a lazy value.
173 This is the value which we store in struct breakpoint.
174
175 If VAL_CHAIN is non-NULL, the values put into *VAL_CHAIN will be
176 released from the value chain. If VAL_CHAIN is NULL, all generated
177 values will be left on the value chain. */
178
179 void
180 fetch_subexp_value (struct expression *exp, int *pc, struct value **valp,
181 struct value **resultp,
182 std::vector<value_ref_ptr> *val_chain,
183 bool preserve_errors)
184 {
185 struct value *mark, *new_mark, *result;
186
187 *valp = NULL;
188 if (resultp)
189 *resultp = NULL;
190 if (val_chain)
191 val_chain->clear ();
192
193 /* Evaluate the expression. */
194 mark = value_mark ();
195 result = NULL;
196
197 try
198 {
199 result = evaluate_subexp (nullptr, exp, pc, EVAL_NORMAL);
200 }
201 catch (const gdb_exception &ex)
202 {
203 /* Ignore memory errors if we want watchpoints pointing at
204 inaccessible memory to still be created; otherwise, throw the
205 error to some higher catcher. */
206 switch (ex.error)
207 {
208 case MEMORY_ERROR:
209 if (!preserve_errors)
210 break;
211 /* Fall through. */
212 default:
213 throw;
214 break;
215 }
216 }
217
218 new_mark = value_mark ();
219 if (mark == new_mark)
220 return;
221 if (resultp)
222 *resultp = result;
223
224 /* Make sure it's not lazy, so that after the target stops again we
225 have a non-lazy previous value to compare with. */
226 if (result != NULL)
227 {
228 if (!value_lazy (result))
229 *valp = result;
230 else
231 {
232
233 try
234 {
235 value_fetch_lazy (result);
236 *valp = result;
237 }
238 catch (const gdb_exception_error &except)
239 {
240 }
241 }
242 }
243
244 if (val_chain)
245 {
246 /* Return the chain of intermediate values. We use this to
247 decide which addresses to watch. */
248 *val_chain = value_release_to_mark (mark);
249 }
250 }
251
252 /* Extract a field operation from an expression. If the subexpression
253 of EXP starting at *SUBEXP is not a structure dereference
254 operation, return NULL. Otherwise, return the name of the
255 dereferenced field, and advance *SUBEXP to point to the
256 subexpression of the left-hand-side of the dereference. This is
257 used when completing field names. */
258
259 const char *
260 extract_field_op (struct expression *exp, int *subexp)
261 {
262 int tem;
263 char *result;
264
265 if (exp->elts[*subexp].opcode != STRUCTOP_STRUCT
266 && exp->elts[*subexp].opcode != STRUCTOP_PTR)
267 return NULL;
268 tem = longest_to_int (exp->elts[*subexp + 1].longconst);
269 result = &exp->elts[*subexp + 2].string;
270 (*subexp) += 1 + 3 + BYTES_TO_EXP_ELEM (tem + 1);
271 return result;
272 }
273
274 /* This function evaluates brace-initializers (in C/C++) for
275 structure types. */
276
277 static struct value *
278 evaluate_struct_tuple (struct value *struct_val,
279 struct expression *exp,
280 int *pos, enum noside noside, int nargs)
281 {
282 struct type *struct_type = check_typedef (value_type (struct_val));
283 struct type *field_type;
284 int fieldno = -1;
285
286 while (--nargs >= 0)
287 {
288 struct value *val = NULL;
289 int bitpos, bitsize;
290 bfd_byte *addr;
291
292 fieldno++;
293 /* Skip static fields. */
294 while (fieldno < struct_type->num_fields ()
295 && field_is_static (&struct_type->field (fieldno)))
296 fieldno++;
297 if (fieldno >= struct_type->num_fields ())
298 error (_("too many initializers"));
299 field_type = struct_type->field (fieldno).type ();
300 if (field_type->code () == TYPE_CODE_UNION
301 && TYPE_FIELD_NAME (struct_type, fieldno)[0] == '0')
302 error (_("don't know which variant you want to set"));
303
304 /* Here, struct_type is the type of the inner struct,
305 while substruct_type is the type of the inner struct.
306 These are the same for normal structures, but a variant struct
307 contains anonymous union fields that contain substruct fields.
308 The value fieldno is the index of the top-level (normal or
309 anonymous union) field in struct_field, while the value
310 subfieldno is the index of the actual real (named inner) field
311 in substruct_type. */
312
313 field_type = struct_type->field (fieldno).type ();
314 if (val == 0)
315 val = evaluate_subexp (field_type, exp, pos, noside);
316
317 /* Now actually set the field in struct_val. */
318
319 /* Assign val to field fieldno. */
320 if (value_type (val) != field_type)
321 val = value_cast (field_type, val);
322
323 bitsize = TYPE_FIELD_BITSIZE (struct_type, fieldno);
324 bitpos = TYPE_FIELD_BITPOS (struct_type, fieldno);
325 addr = value_contents_writeable (struct_val) + bitpos / 8;
326 if (bitsize)
327 modify_field (struct_type, addr,
328 value_as_long (val), bitpos % 8, bitsize);
329 else
330 memcpy (addr, value_contents (val),
331 TYPE_LENGTH (value_type (val)));
332
333 }
334 return struct_val;
335 }
336
337 /* Promote value ARG1 as appropriate before performing a unary operation
338 on this argument.
339 If the result is not appropriate for any particular language then it
340 needs to patch this function. */
341
342 void
343 unop_promote (const struct language_defn *language, struct gdbarch *gdbarch,
344 struct value **arg1)
345 {
346 struct type *type1;
347
348 *arg1 = coerce_ref (*arg1);
349 type1 = check_typedef (value_type (*arg1));
350
351 if (is_integral_type (type1))
352 {
353 switch (language->la_language)
354 {
355 default:
356 /* Perform integral promotion for ANSI C/C++.
357 If not appropriate for any particular language
358 it needs to modify this function. */
359 {
360 struct type *builtin_int = builtin_type (gdbarch)->builtin_int;
361
362 if (TYPE_LENGTH (type1) < TYPE_LENGTH (builtin_int))
363 *arg1 = value_cast (builtin_int, *arg1);
364 }
365 break;
366 }
367 }
368 }
369
370 /* Promote values ARG1 and ARG2 as appropriate before performing a binary
371 operation on those two operands.
372 If the result is not appropriate for any particular language then it
373 needs to patch this function. */
374
375 void
376 binop_promote (const struct language_defn *language, struct gdbarch *gdbarch,
377 struct value **arg1, struct value **arg2)
378 {
379 struct type *promoted_type = NULL;
380 struct type *type1;
381 struct type *type2;
382
383 *arg1 = coerce_ref (*arg1);
384 *arg2 = coerce_ref (*arg2);
385
386 type1 = check_typedef (value_type (*arg1));
387 type2 = check_typedef (value_type (*arg2));
388
389 if ((type1->code () != TYPE_CODE_FLT
390 && type1->code () != TYPE_CODE_DECFLOAT
391 && !is_integral_type (type1))
392 || (type2->code () != TYPE_CODE_FLT
393 && type2->code () != TYPE_CODE_DECFLOAT
394 && !is_integral_type (type2)))
395 return;
396
397 if (is_fixed_point_type (type1) || is_fixed_point_type (type2))
398 return;
399
400 if (type1->code () == TYPE_CODE_DECFLOAT
401 || type2->code () == TYPE_CODE_DECFLOAT)
402 {
403 /* No promotion required. */
404 }
405 else if (type1->code () == TYPE_CODE_FLT
406 || type2->code () == TYPE_CODE_FLT)
407 {
408 switch (language->la_language)
409 {
410 case language_c:
411 case language_cplus:
412 case language_asm:
413 case language_objc:
414 case language_opencl:
415 /* No promotion required. */
416 break;
417
418 default:
419 /* For other languages the result type is unchanged from gdb
420 version 6.7 for backward compatibility.
421 If either arg was long double, make sure that value is also long
422 double. Otherwise use double. */
423 if (TYPE_LENGTH (type1) * 8 > gdbarch_double_bit (gdbarch)
424 || TYPE_LENGTH (type2) * 8 > gdbarch_double_bit (gdbarch))
425 promoted_type = builtin_type (gdbarch)->builtin_long_double;
426 else
427 promoted_type = builtin_type (gdbarch)->builtin_double;
428 break;
429 }
430 }
431 else if (type1->code () == TYPE_CODE_BOOL
432 && type2->code () == TYPE_CODE_BOOL)
433 {
434 /* No promotion required. */
435 }
436 else
437 /* Integral operations here. */
438 /* FIXME: Also mixed integral/booleans, with result an integer. */
439 {
440 const struct builtin_type *builtin = builtin_type (gdbarch);
441 unsigned int promoted_len1 = TYPE_LENGTH (type1);
442 unsigned int promoted_len2 = TYPE_LENGTH (type2);
443 int is_unsigned1 = type1->is_unsigned ();
444 int is_unsigned2 = type2->is_unsigned ();
445 unsigned int result_len;
446 int unsigned_operation;
447
448 /* Determine type length and signedness after promotion for
449 both operands. */
450 if (promoted_len1 < TYPE_LENGTH (builtin->builtin_int))
451 {
452 is_unsigned1 = 0;
453 promoted_len1 = TYPE_LENGTH (builtin->builtin_int);
454 }
455 if (promoted_len2 < TYPE_LENGTH (builtin->builtin_int))
456 {
457 is_unsigned2 = 0;
458 promoted_len2 = TYPE_LENGTH (builtin->builtin_int);
459 }
460
461 if (promoted_len1 > promoted_len2)
462 {
463 unsigned_operation = is_unsigned1;
464 result_len = promoted_len1;
465 }
466 else if (promoted_len2 > promoted_len1)
467 {
468 unsigned_operation = is_unsigned2;
469 result_len = promoted_len2;
470 }
471 else
472 {
473 unsigned_operation = is_unsigned1 || is_unsigned2;
474 result_len = promoted_len1;
475 }
476
477 switch (language->la_language)
478 {
479 case language_c:
480 case language_cplus:
481 case language_asm:
482 case language_objc:
483 if (result_len <= TYPE_LENGTH (builtin->builtin_int))
484 {
485 promoted_type = (unsigned_operation
486 ? builtin->builtin_unsigned_int
487 : builtin->builtin_int);
488 }
489 else if (result_len <= TYPE_LENGTH (builtin->builtin_long))
490 {
491 promoted_type = (unsigned_operation
492 ? builtin->builtin_unsigned_long
493 : builtin->builtin_long);
494 }
495 else
496 {
497 promoted_type = (unsigned_operation
498 ? builtin->builtin_unsigned_long_long
499 : builtin->builtin_long_long);
500 }
501 break;
502 case language_opencl:
503 if (result_len <= TYPE_LENGTH (lookup_signed_typename
504 (language, "int")))
505 {
506 promoted_type =
507 (unsigned_operation
508 ? lookup_unsigned_typename (language, "int")
509 : lookup_signed_typename (language, "int"));
510 }
511 else if (result_len <= TYPE_LENGTH (lookup_signed_typename
512 (language, "long")))
513 {
514 promoted_type =
515 (unsigned_operation
516 ? lookup_unsigned_typename (language, "long")
517 : lookup_signed_typename (language,"long"));
518 }
519 break;
520 default:
521 /* For other languages the result type is unchanged from gdb
522 version 6.7 for backward compatibility.
523 If either arg was long long, make sure that value is also long
524 long. Otherwise use long. */
525 if (unsigned_operation)
526 {
527 if (result_len > gdbarch_long_bit (gdbarch) / HOST_CHAR_BIT)
528 promoted_type = builtin->builtin_unsigned_long_long;
529 else
530 promoted_type = builtin->builtin_unsigned_long;
531 }
532 else
533 {
534 if (result_len > gdbarch_long_bit (gdbarch) / HOST_CHAR_BIT)
535 promoted_type = builtin->builtin_long_long;
536 else
537 promoted_type = builtin->builtin_long;
538 }
539 break;
540 }
541 }
542
543 if (promoted_type)
544 {
545 /* Promote both operands to common type. */
546 *arg1 = value_cast (promoted_type, *arg1);
547 *arg2 = value_cast (promoted_type, *arg2);
548 }
549 }
550
551 static int
552 ptrmath_type_p (const struct language_defn *lang, struct type *type)
553 {
554 type = check_typedef (type);
555 if (TYPE_IS_REFERENCE (type))
556 type = TYPE_TARGET_TYPE (type);
557
558 switch (type->code ())
559 {
560 case TYPE_CODE_PTR:
561 case TYPE_CODE_FUNC:
562 return 1;
563
564 case TYPE_CODE_ARRAY:
565 return type->is_vector () ? 0 : lang->c_style_arrays_p ();
566
567 default:
568 return 0;
569 }
570 }
571
572 /* Represents a fake method with the given parameter types. This is
573 used by the parser to construct a temporary "expected" type for
574 method overload resolution. FLAGS is used as instance flags of the
575 new type, in order to be able to make the new type represent a
576 const/volatile overload. */
577
578 class fake_method
579 {
580 public:
581 fake_method (type_instance_flags flags,
582 int num_types, struct type **param_types);
583 ~fake_method ();
584
585 /* The constructed type. */
586 struct type *type () { return &m_type; }
587
588 private:
589 struct type m_type {};
590 main_type m_main_type {};
591 };
592
593 fake_method::fake_method (type_instance_flags flags,
594 int num_types, struct type **param_types)
595 {
596 struct type *type = &m_type;
597
598 TYPE_MAIN_TYPE (type) = &m_main_type;
599 TYPE_LENGTH (type) = 1;
600 type->set_code (TYPE_CODE_METHOD);
601 TYPE_CHAIN (type) = type;
602 type->set_instance_flags (flags);
603 if (num_types > 0)
604 {
605 if (param_types[num_types - 1] == NULL)
606 {
607 --num_types;
608 type->set_has_varargs (true);
609 }
610 else if (check_typedef (param_types[num_types - 1])->code ()
611 == TYPE_CODE_VOID)
612 {
613 --num_types;
614 /* Caller should have ensured this. */
615 gdb_assert (num_types == 0);
616 type->set_is_prototyped (true);
617 }
618 }
619
620 /* We don't use TYPE_ZALLOC here to allocate space as TYPE is owned by
621 neither an objfile nor a gdbarch. As a result we must manually
622 allocate memory for auxiliary fields, and free the memory ourselves
623 when we are done with it. */
624 type->set_num_fields (num_types);
625 type->set_fields
626 ((struct field *) xzalloc (sizeof (struct field) * num_types));
627
628 while (num_types-- > 0)
629 type->field (num_types).set_type (param_types[num_types]);
630 }
631
632 fake_method::~fake_method ()
633 {
634 xfree (m_type.fields ());
635 }
636
637 /* Helper for evaluating an OP_VAR_VALUE. */
638
639 value *
640 evaluate_var_value (enum noside noside, const block *blk, symbol *var)
641 {
642 /* JYG: We used to just return value_zero of the symbol type if
643 we're asked to avoid side effects. Otherwise we return
644 value_of_variable (...). However I'm not sure if
645 value_of_variable () has any side effect. We need a full value
646 object returned here for whatis_exp () to call evaluate_type ()
647 and then pass the full value to value_rtti_target_type () if we
648 are dealing with a pointer or reference to a base class and print
649 object is on. */
650
651 struct value *ret = NULL;
652
653 try
654 {
655 ret = value_of_variable (var, blk);
656 }
657
658 catch (const gdb_exception_error &except)
659 {
660 if (noside != EVAL_AVOID_SIDE_EFFECTS)
661 throw;
662
663 ret = value_zero (SYMBOL_TYPE (var), not_lval);
664 }
665
666 return ret;
667 }
668
669 /* Helper for evaluating an OP_VAR_MSYM_VALUE. */
670
671 value *
672 evaluate_var_msym_value (enum noside noside,
673 struct objfile *objfile, minimal_symbol *msymbol)
674 {
675 CORE_ADDR address;
676 type *the_type = find_minsym_type_and_address (msymbol, objfile, &address);
677
678 if (noside == EVAL_AVOID_SIDE_EFFECTS && !the_type->is_gnu_ifunc ())
679 return value_zero (the_type, not_lval);
680 else
681 return value_at_lazy (the_type, address);
682 }
683
684 /* Helper for returning a value when handling EVAL_SKIP. */
685
686 value *
687 eval_skip_value (expression *exp)
688 {
689 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
690 }
691
692 /* See expression.h. */
693
694 value *
695 evaluate_subexp_do_call (expression *exp, enum noside noside,
696 value *callee,
697 gdb::array_view<value *> argvec,
698 const char *function_name,
699 type *default_return_type)
700 {
701 if (callee == NULL)
702 error (_("Cannot evaluate function -- may be inlined"));
703 if (noside == EVAL_AVOID_SIDE_EFFECTS)
704 {
705 /* If the return type doesn't look like a function type,
706 call an error. This can happen if somebody tries to turn
707 a variable into a function call. */
708
709 type *ftype = value_type (callee);
710
711 if (ftype->code () == TYPE_CODE_INTERNAL_FUNCTION)
712 {
713 /* We don't know anything about what the internal
714 function might return, but we have to return
715 something. */
716 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
717 not_lval);
718 }
719 else if (ftype->code () == TYPE_CODE_XMETHOD)
720 {
721 type *return_type = result_type_of_xmethod (callee, argvec);
722
723 if (return_type == NULL)
724 error (_("Xmethod is missing return type."));
725 return value_zero (return_type, not_lval);
726 }
727 else if (ftype->code () == TYPE_CODE_FUNC
728 || ftype->code () == TYPE_CODE_METHOD)
729 {
730 if (ftype->is_gnu_ifunc ())
731 {
732 CORE_ADDR address = value_address (callee);
733 type *resolved_type = find_gnu_ifunc_target_type (address);
734
735 if (resolved_type != NULL)
736 ftype = resolved_type;
737 }
738
739 type *return_type = TYPE_TARGET_TYPE (ftype);
740
741 if (return_type == NULL)
742 return_type = default_return_type;
743
744 if (return_type == NULL)
745 error_call_unknown_return_type (function_name);
746
747 return allocate_value (return_type);
748 }
749 else
750 error (_("Expression of type other than "
751 "\"Function returning ...\" used as function"));
752 }
753 switch (value_type (callee)->code ())
754 {
755 case TYPE_CODE_INTERNAL_FUNCTION:
756 return call_internal_function (exp->gdbarch, exp->language_defn,
757 callee, argvec.size (), argvec.data ());
758 case TYPE_CODE_XMETHOD:
759 return call_xmethod (callee, argvec);
760 default:
761 return call_function_by_hand (callee, default_return_type, argvec);
762 }
763 }
764
765 /* Helper for evaluating an OP_FUNCALL. */
766
767 static value *
768 evaluate_funcall (type *expect_type, expression *exp, int *pos,
769 enum noside noside)
770 {
771 int tem;
772 int pc2 = 0;
773 value *arg1 = NULL;
774 value *arg2 = NULL;
775 int save_pos1;
776 symbol *function = NULL;
777 char *function_name = NULL;
778 const char *var_func_name = NULL;
779
780 int pc = (*pos);
781 (*pos) += 2;
782
783 exp_opcode op = exp->elts[*pos].opcode;
784 int nargs = longest_to_int (exp->elts[pc].longconst);
785 /* Allocate arg vector, including space for the function to be
786 called in argvec[0], a potential `this', and a terminating
787 NULL. */
788 value **argvec = (value **) alloca (sizeof (value *) * (nargs + 3));
789 if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR)
790 {
791 /* First, evaluate the structure into arg2. */
792 pc2 = (*pos)++;
793
794 if (op == STRUCTOP_MEMBER)
795 {
796 arg2 = evaluate_subexp_for_address (exp, pos, noside);
797 }
798 else
799 {
800 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
801 }
802
803 /* If the function is a virtual function, then the aggregate
804 value (providing the structure) plays its part by providing
805 the vtable. Otherwise, it is just along for the ride: call
806 the function directly. */
807
808 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
809
810 type *a1_type = check_typedef (value_type (arg1));
811 if (noside == EVAL_SKIP)
812 tem = 1; /* Set it to the right arg index so that all
813 arguments can also be skipped. */
814 else if (a1_type->code () == TYPE_CODE_METHODPTR)
815 {
816 if (noside == EVAL_AVOID_SIDE_EFFECTS)
817 arg1 = value_zero (TYPE_TARGET_TYPE (a1_type), not_lval);
818 else
819 arg1 = cplus_method_ptr_to_value (&arg2, arg1);
820
821 /* Now, say which argument to start evaluating from. */
822 nargs++;
823 tem = 2;
824 argvec[1] = arg2;
825 }
826 else if (a1_type->code () == TYPE_CODE_MEMBERPTR)
827 {
828 struct type *type_ptr
829 = lookup_pointer_type (TYPE_SELF_TYPE (a1_type));
830 struct type *target_type_ptr
831 = lookup_pointer_type (TYPE_TARGET_TYPE (a1_type));
832
833 /* Now, convert these values to an address. */
834 arg2 = value_cast (type_ptr, arg2);
835
836 long mem_offset = value_as_long (arg1);
837
838 arg1 = value_from_pointer (target_type_ptr,
839 value_as_long (arg2) + mem_offset);
840 arg1 = value_ind (arg1);
841 tem = 1;
842 }
843 else
844 error (_("Non-pointer-to-member value used in pointer-to-member "
845 "construct"));
846 }
847 else if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR)
848 {
849 /* Hair for method invocations. */
850 int tem2;
851
852 nargs++;
853 /* First, evaluate the structure into arg2. */
854 pc2 = (*pos)++;
855 tem2 = longest_to_int (exp->elts[pc2 + 1].longconst);
856 *pos += 3 + BYTES_TO_EXP_ELEM (tem2 + 1);
857
858 if (op == STRUCTOP_STRUCT)
859 {
860 /* If v is a variable in a register, and the user types
861 v.method (), this will produce an error, because v has no
862 address.
863
864 A possible way around this would be to allocate a copy of
865 the variable on the stack, copy in the contents, call the
866 function, and copy out the contents. I.e. convert this
867 from call by reference to call by copy-return (or
868 whatever it's called). However, this does not work
869 because it is not the same: the method being called could
870 stash a copy of the address, and then future uses through
871 that address (after the method returns) would be expected
872 to use the variable itself, not some copy of it. */
873 arg2 = evaluate_subexp_for_address (exp, pos, noside);
874 }
875 else
876 {
877 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
878
879 /* Check to see if the operator '->' has been overloaded.
880 If the operator has been overloaded replace arg2 with the
881 value returned by the custom operator and continue
882 evaluation. */
883 while (unop_user_defined_p (op, arg2))
884 {
885 struct value *value = NULL;
886 try
887 {
888 value = value_x_unop (arg2, op, noside);
889 }
890
891 catch (const gdb_exception_error &except)
892 {
893 if (except.error == NOT_FOUND_ERROR)
894 break;
895 else
896 throw;
897 }
898
899 arg2 = value;
900 }
901 }
902 /* Now, say which argument to start evaluating from. */
903 tem = 2;
904 }
905 else if (op == OP_SCOPE
906 && overload_resolution
907 && (exp->language_defn->la_language == language_cplus))
908 {
909 /* Unpack it locally so we can properly handle overload
910 resolution. */
911 char *name;
912 int local_tem;
913
914 pc2 = (*pos)++;
915 local_tem = longest_to_int (exp->elts[pc2 + 2].longconst);
916 (*pos) += 4 + BYTES_TO_EXP_ELEM (local_tem + 1);
917 struct type *type = exp->elts[pc2 + 1].type;
918 name = &exp->elts[pc2 + 3].string;
919
920 function = NULL;
921 function_name = NULL;
922 if (type->code () == TYPE_CODE_NAMESPACE)
923 {
924 function = cp_lookup_symbol_namespace (type->name (),
925 name,
926 get_selected_block (0),
927 VAR_DOMAIN).symbol;
928 if (function == NULL)
929 error (_("No symbol \"%s\" in namespace \"%s\"."),
930 name, type->name ());
931
932 tem = 1;
933 /* arg2 is left as NULL on purpose. */
934 }
935 else
936 {
937 gdb_assert (type->code () == TYPE_CODE_STRUCT
938 || type->code () == TYPE_CODE_UNION);
939 function_name = name;
940
941 /* We need a properly typed value for method lookup. For
942 static methods arg2 is otherwise unused. */
943 arg2 = value_zero (type, lval_memory);
944 ++nargs;
945 tem = 2;
946 }
947 }
948 else if (op == OP_ADL_FUNC)
949 {
950 /* Save the function position and move pos so that the arguments
951 can be evaluated. */
952 int func_name_len;
953
954 save_pos1 = *pos;
955 tem = 1;
956
957 func_name_len = longest_to_int (exp->elts[save_pos1 + 3].longconst);
958 (*pos) += 6 + BYTES_TO_EXP_ELEM (func_name_len + 1);
959 }
960 else
961 {
962 /* Non-method function call. */
963 save_pos1 = *pos;
964 tem = 1;
965
966 /* If this is a C++ function wait until overload resolution. */
967 if (op == OP_VAR_VALUE
968 && overload_resolution
969 && (exp->language_defn->la_language == language_cplus))
970 {
971 (*pos) += 4; /* Skip the evaluation of the symbol. */
972 argvec[0] = NULL;
973 }
974 else
975 {
976 if (op == OP_VAR_MSYM_VALUE)
977 {
978 minimal_symbol *msym = exp->elts[*pos + 2].msymbol;
979 var_func_name = msym->print_name ();
980 }
981 else if (op == OP_VAR_VALUE)
982 {
983 symbol *sym = exp->elts[*pos + 2].symbol;
984 var_func_name = sym->print_name ();
985 }
986
987 argvec[0] = evaluate_subexp_with_coercion (exp, pos, noside);
988 type *type = value_type (argvec[0]);
989 if (type && type->code () == TYPE_CODE_PTR)
990 type = TYPE_TARGET_TYPE (type);
991 if (type && type->code () == TYPE_CODE_FUNC)
992 {
993 for (; tem <= nargs && tem <= type->num_fields (); tem++)
994 {
995 argvec[tem] = evaluate_subexp (type->field (tem - 1).type (),
996 exp, pos, noside);
997 }
998 }
999 }
1000 }
1001
1002 /* Evaluate arguments (if not already done, e.g., namespace::func()
1003 and overload-resolution is off). */
1004 for (; tem <= nargs; tem++)
1005 {
1006 /* Ensure that array expressions are coerced into pointer
1007 objects. */
1008 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1009 }
1010
1011 /* Signal end of arglist. */
1012 argvec[tem] = 0;
1013
1014 if (noside == EVAL_SKIP)
1015 return eval_skip_value (exp);
1016
1017 if (op == OP_ADL_FUNC)
1018 {
1019 struct symbol *symp;
1020 char *func_name;
1021 int name_len;
1022 int string_pc = save_pos1 + 3;
1023
1024 /* Extract the function name. */
1025 name_len = longest_to_int (exp->elts[string_pc].longconst);
1026 func_name = (char *) alloca (name_len + 1);
1027 strcpy (func_name, &exp->elts[string_pc + 1].string);
1028
1029 find_overload_match (gdb::make_array_view (&argvec[1], nargs),
1030 func_name,
1031 NON_METHOD, /* not method */
1032 NULL, NULL, /* pass NULL symbol since
1033 symbol is unknown */
1034 NULL, &symp, NULL, 0, noside);
1035
1036 /* Now fix the expression being evaluated. */
1037 exp->elts[save_pos1 + 2].symbol = symp;
1038 argvec[0] = evaluate_subexp_with_coercion (exp, &save_pos1, noside);
1039 }
1040
1041 if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR
1042 || (op == OP_SCOPE && function_name != NULL))
1043 {
1044 int static_memfuncp;
1045 char *tstr;
1046
1047 /* Method invocation: stuff "this" as first parameter. If the
1048 method turns out to be static we undo this below. */
1049 argvec[1] = arg2;
1050
1051 if (op != OP_SCOPE)
1052 {
1053 /* Name of method from expression. */
1054 tstr = &exp->elts[pc2 + 2].string;
1055 }
1056 else
1057 tstr = function_name;
1058
1059 if (overload_resolution && (exp->language_defn->la_language
1060 == language_cplus))
1061 {
1062 /* Language is C++, do some overload resolution before
1063 evaluation. */
1064 struct value *valp = NULL;
1065
1066 (void) find_overload_match (gdb::make_array_view (&argvec[1], nargs),
1067 tstr,
1068 METHOD, /* method */
1069 &arg2, /* the object */
1070 NULL, &valp, NULL,
1071 &static_memfuncp, 0, noside);
1072
1073 if (op == OP_SCOPE && !static_memfuncp)
1074 {
1075 /* For the time being, we don't handle this. */
1076 error (_("Call to overloaded function %s requires "
1077 "`this' pointer"),
1078 function_name);
1079 }
1080 argvec[1] = arg2; /* the ``this'' pointer */
1081 argvec[0] = valp; /* Use the method found after overload
1082 resolution. */
1083 }
1084 else
1085 /* Non-C++ case -- or no overload resolution. */
1086 {
1087 struct value *temp = arg2;
1088
1089 argvec[0] = value_struct_elt (&temp, argvec + 1, tstr,
1090 &static_memfuncp,
1091 op == STRUCTOP_STRUCT
1092 ? "structure" : "structure pointer");
1093 /* value_struct_elt updates temp with the correct value of
1094 the ``this'' pointer if necessary, so modify argvec[1] to
1095 reflect any ``this'' changes. */
1096 arg2
1097 = value_from_longest (lookup_pointer_type(value_type (temp)),
1098 value_address (temp)
1099 + value_embedded_offset (temp));
1100 argvec[1] = arg2; /* the ``this'' pointer */
1101 }
1102
1103 /* Take out `this' if needed. */
1104 if (static_memfuncp)
1105 {
1106 argvec[1] = argvec[0];
1107 nargs--;
1108 argvec++;
1109 }
1110 }
1111 else if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR)
1112 {
1113 /* Pointer to member. argvec[1] is already set up. */
1114 argvec[0] = arg1;
1115 }
1116 else if (op == OP_VAR_VALUE || (op == OP_SCOPE && function != NULL))
1117 {
1118 /* Non-member function being called. */
1119 /* fn: This can only be done for C++ functions. A C-style
1120 function in a C++ program, for instance, does not have the
1121 fields that are expected here. */
1122
1123 if (overload_resolution && (exp->language_defn->la_language
1124 == language_cplus))
1125 {
1126 /* Language is C++, do some overload resolution before
1127 evaluation. */
1128 struct symbol *symp;
1129 int no_adl = 0;
1130
1131 /* If a scope has been specified disable ADL. */
1132 if (op == OP_SCOPE)
1133 no_adl = 1;
1134
1135 if (op == OP_VAR_VALUE)
1136 function = exp->elts[save_pos1+2].symbol;
1137
1138 (void) find_overload_match (gdb::make_array_view (&argvec[1], nargs),
1139 NULL, /* no need for name */
1140 NON_METHOD, /* not method */
1141 NULL, function, /* the function */
1142 NULL, &symp, NULL, no_adl, noside);
1143
1144 if (op == OP_VAR_VALUE)
1145 {
1146 /* Now fix the expression being evaluated. */
1147 exp->elts[save_pos1+2].symbol = symp;
1148 argvec[0] = evaluate_subexp_with_coercion (exp, &save_pos1,
1149 noside);
1150 }
1151 else
1152 argvec[0] = value_of_variable (symp, get_selected_block (0));
1153 }
1154 else
1155 {
1156 /* Not C++, or no overload resolution allowed. */
1157 /* Nothing to be done; argvec already correctly set up. */
1158 }
1159 }
1160 else
1161 {
1162 /* It is probably a C-style function. */
1163 /* Nothing to be done; argvec already correctly set up. */
1164 }
1165
1166 return evaluate_subexp_do_call (exp, noside, argvec[0],
1167 gdb::make_array_view (argvec + 1, nargs),
1168 var_func_name, expect_type);
1169 }
1170
1171 /* Return true if type is integral or reference to integral */
1172
1173 static bool
1174 is_integral_or_integral_reference (struct type *type)
1175 {
1176 if (is_integral_type (type))
1177 return true;
1178
1179 type = check_typedef (type);
1180 return (type != nullptr
1181 && TYPE_IS_REFERENCE (type)
1182 && is_integral_type (TYPE_TARGET_TYPE (type)));
1183 }
1184
1185 /* Helper function that implements the body of OP_SCOPE. */
1186
1187 static struct value *
1188 eval_op_scope (struct type *expect_type, struct expression *exp,
1189 enum noside noside,
1190 struct type *type, const char *string)
1191 {
1192 if (noside == EVAL_SKIP)
1193 return eval_skip_value (exp);
1194 struct value *arg1 = value_aggregate_elt (type, string, expect_type,
1195 0, noside);
1196 if (arg1 == NULL)
1197 error (_("There is no field named %s"), string);
1198 return arg1;
1199 }
1200
1201 /* Helper function that implements the body of OP_VAR_ENTRY_VALUE. */
1202
1203 static struct value *
1204 eval_op_var_entry_value (struct type *expect_type, struct expression *exp,
1205 enum noside noside, symbol *sym)
1206 {
1207 if (noside == EVAL_SKIP)
1208 return eval_skip_value (exp);
1209 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1210 return value_zero (SYMBOL_TYPE (sym), not_lval);
1211
1212 if (SYMBOL_COMPUTED_OPS (sym) == NULL
1213 || SYMBOL_COMPUTED_OPS (sym)->read_variable_at_entry == NULL)
1214 error (_("Symbol \"%s\" does not have any specific entry value"),
1215 sym->print_name ());
1216
1217 struct frame_info *frame = get_selected_frame (NULL);
1218 return SYMBOL_COMPUTED_OPS (sym)->read_variable_at_entry (sym, frame);
1219 }
1220
1221 /* Helper function that implements the body of OP_VAR_MSYM_VALUE. */
1222
1223 static struct value *
1224 eval_op_var_msym_value (struct type *expect_type, struct expression *exp,
1225 enum noside noside, bool outermost_p,
1226 minimal_symbol *msymbol, struct objfile *objfile)
1227 {
1228 value *val = evaluate_var_msym_value (noside, objfile, msymbol);
1229
1230 struct type *type = value_type (val);
1231 if (type->code () == TYPE_CODE_ERROR
1232 && (noside != EVAL_AVOID_SIDE_EFFECTS || !outermost_p))
1233 error_unknown_type (msymbol->print_name ());
1234 return val;
1235 }
1236
1237 /* Helper function that implements the body of OP_FUNC_STATIC_VAR. */
1238
1239 static struct value *
1240 eval_op_func_static_var (struct type *expect_type, struct expression *exp,
1241 enum noside noside,
1242 value *func, const char *var)
1243 {
1244 if (noside == EVAL_SKIP)
1245 return eval_skip_value (exp);
1246 CORE_ADDR addr = value_address (func);
1247 const block *blk = block_for_pc (addr);
1248 struct block_symbol sym = lookup_symbol (var, blk, VAR_DOMAIN, NULL);
1249 if (sym.symbol == NULL)
1250 error (_("No symbol \"%s\" in specified context."), var);
1251 return evaluate_var_value (noside, sym.block, sym.symbol);
1252 }
1253
1254 /* Helper function that implements the body of OP_REGISTER. */
1255
1256 static struct value *
1257 eval_op_register (struct type *expect_type, struct expression *exp,
1258 enum noside noside, const char *name)
1259 {
1260 int regno;
1261 struct value *val;
1262
1263 regno = user_reg_map_name_to_regnum (exp->gdbarch,
1264 name, strlen (name));
1265 if (regno == -1)
1266 error (_("Register $%s not available."), name);
1267
1268 /* In EVAL_AVOID_SIDE_EFFECTS mode, we only need to return
1269 a value with the appropriate register type. Unfortunately,
1270 we don't have easy access to the type of user registers.
1271 So for these registers, we fetch the register value regardless
1272 of the evaluation mode. */
1273 if (noside == EVAL_AVOID_SIDE_EFFECTS
1274 && regno < gdbarch_num_cooked_regs (exp->gdbarch))
1275 val = value_zero (register_type (exp->gdbarch, regno), not_lval);
1276 else
1277 val = value_of_register (regno, get_selected_frame (NULL));
1278 if (val == NULL)
1279 error (_("Value of register %s not available."), name);
1280 else
1281 return val;
1282 }
1283
1284 /* Helper function that implements the body of OP_STRING. */
1285
1286 static struct value *
1287 eval_op_string (struct type *expect_type, struct expression *exp,
1288 enum noside noside, int len, const char *string)
1289 {
1290 if (noside == EVAL_SKIP)
1291 return eval_skip_value (exp);
1292 struct type *type = language_string_char_type (exp->language_defn,
1293 exp->gdbarch);
1294 return value_string (string, len, type);
1295 }
1296
1297 /* Helper function that implements the body of OP_OBJC_SELECTOR. */
1298
1299 static struct value *
1300 eval_op_objc_selector (struct type *expect_type, struct expression *exp,
1301 enum noside noside,
1302 const char *sel)
1303 {
1304 if (noside == EVAL_SKIP)
1305 return eval_skip_value (exp);
1306
1307 struct type *selector_type = builtin_type (exp->gdbarch)->builtin_data_ptr;
1308 return value_from_longest (selector_type,
1309 lookup_child_selector (exp->gdbarch, sel));
1310 }
1311
1312 /* Helper function that implements the body of BINOP_CONCAT. */
1313
1314 static struct value *
1315 eval_op_concat (struct type *expect_type, struct expression *exp,
1316 enum noside noside,
1317 enum exp_opcode op, struct value *arg1, struct value *arg2)
1318 {
1319 if (noside == EVAL_SKIP)
1320 return eval_skip_value (exp);
1321 if (binop_user_defined_p (op, arg1, arg2))
1322 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1323 else
1324 return value_concat (arg1, arg2);
1325 }
1326
1327 /* A helper function for TERNOP_SLICE. */
1328
1329 static struct value *
1330 eval_op_ternop (struct type *expect_type, struct expression *exp,
1331 enum noside noside,
1332 struct value *array, struct value *low, struct value *upper)
1333 {
1334 if (noside == EVAL_SKIP)
1335 return eval_skip_value (exp);
1336 int lowbound = value_as_long (low);
1337 int upperbound = value_as_long (upper);
1338 return value_slice (array, lowbound, upperbound - lowbound + 1);
1339 }
1340
1341 /* A helper function for STRUCTOP_STRUCT. */
1342
1343 static struct value *
1344 eval_op_structop_struct (struct type *expect_type, struct expression *exp,
1345 enum noside noside,
1346 struct value *arg1, const char *string)
1347 {
1348 if (noside == EVAL_SKIP)
1349 return eval_skip_value (exp);
1350 struct value *arg3 = value_struct_elt (&arg1, NULL, string,
1351 NULL, "structure");
1352 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1353 arg3 = value_zero (value_type (arg3), VALUE_LVAL (arg3));
1354 return arg3;
1355 }
1356
1357 /* A helper function for STRUCTOP_PTR. */
1358
1359 static struct value *
1360 eval_op_structop_ptr (struct type *expect_type, struct expression *exp,
1361 enum noside noside, enum exp_opcode op,
1362 struct value *arg1, const char *string)
1363 {
1364 if (noside == EVAL_SKIP)
1365 return eval_skip_value (exp);
1366
1367 /* Check to see if operator '->' has been overloaded. If so replace
1368 arg1 with the value returned by evaluating operator->(). */
1369 while (unop_user_defined_p (op, arg1))
1370 {
1371 struct value *value = NULL;
1372 try
1373 {
1374 value = value_x_unop (arg1, op, noside);
1375 }
1376
1377 catch (const gdb_exception_error &except)
1378 {
1379 if (except.error == NOT_FOUND_ERROR)
1380 break;
1381 else
1382 throw;
1383 }
1384
1385 arg1 = value;
1386 }
1387
1388 /* JYG: if print object is on we need to replace the base type
1389 with rtti type in order to continue on with successful
1390 lookup of member / method only available in the rtti type. */
1391 {
1392 struct type *arg_type = value_type (arg1);
1393 struct type *real_type;
1394 int full, using_enc;
1395 LONGEST top;
1396 struct value_print_options opts;
1397
1398 get_user_print_options (&opts);
1399 if (opts.objectprint && TYPE_TARGET_TYPE (arg_type)
1400 && (TYPE_TARGET_TYPE (arg_type)->code () == TYPE_CODE_STRUCT))
1401 {
1402 real_type = value_rtti_indirect_type (arg1, &full, &top,
1403 &using_enc);
1404 if (real_type)
1405 arg1 = value_cast (real_type, arg1);
1406 }
1407 }
1408
1409 struct value *arg3 = value_struct_elt (&arg1, NULL, string,
1410 NULL, "structure pointer");
1411 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1412 arg3 = value_zero (value_type (arg3), VALUE_LVAL (arg3));
1413 return arg3;
1414 }
1415
1416 /* A helper function for STRUCTOP_MEMBER. */
1417
1418 static struct value *
1419 eval_op_member (struct type *expect_type, struct expression *exp,
1420 enum noside noside,
1421 struct value *arg1, struct value *arg2)
1422 {
1423 long mem_offset;
1424
1425 if (noside == EVAL_SKIP)
1426 return eval_skip_value (exp);
1427
1428 struct value *arg3;
1429 struct type *type = check_typedef (value_type (arg2));
1430 switch (type->code ())
1431 {
1432 case TYPE_CODE_METHODPTR:
1433 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1434 return value_zero (TYPE_TARGET_TYPE (type), not_lval);
1435 else
1436 {
1437 arg2 = cplus_method_ptr_to_value (&arg1, arg2);
1438 gdb_assert (value_type (arg2)->code () == TYPE_CODE_PTR);
1439 return value_ind (arg2);
1440 }
1441
1442 case TYPE_CODE_MEMBERPTR:
1443 /* Now, convert these values to an address. */
1444 arg1 = value_cast_pointers (lookup_pointer_type (TYPE_SELF_TYPE (type)),
1445 arg1, 1);
1446
1447 mem_offset = value_as_long (arg2);
1448
1449 arg3 = value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
1450 value_as_long (arg1) + mem_offset);
1451 return value_ind (arg3);
1452
1453 default:
1454 error (_("non-pointer-to-member value used "
1455 "in pointer-to-member construct"));
1456 }
1457 }
1458
1459 /* A helper function for BINOP_ADD. */
1460
1461 static struct value *
1462 eval_op_add (struct type *expect_type, struct expression *exp,
1463 enum noside noside, enum exp_opcode op,
1464 struct value *arg1, struct value *arg2)
1465 {
1466 if (noside == EVAL_SKIP)
1467 return eval_skip_value (exp);
1468 if (binop_user_defined_p (op, arg1, arg2))
1469 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1470 else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
1471 && is_integral_or_integral_reference (value_type (arg2)))
1472 return value_ptradd (arg1, value_as_long (arg2));
1473 else if (ptrmath_type_p (exp->language_defn, value_type (arg2))
1474 && is_integral_or_integral_reference (value_type (arg1)))
1475 return value_ptradd (arg2, value_as_long (arg1));
1476 else
1477 {
1478 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1479 return value_binop (arg1, arg2, BINOP_ADD);
1480 }
1481 }
1482
1483 /* A helper function for BINOP_SUB. */
1484
1485 static struct value *
1486 eval_op_sub (struct type *expect_type, struct expression *exp,
1487 enum noside noside, enum exp_opcode op,
1488 struct value *arg1, struct value *arg2)
1489 {
1490 if (noside == EVAL_SKIP)
1491 return eval_skip_value (exp);
1492 if (binop_user_defined_p (op, arg1, arg2))
1493 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1494 else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
1495 && ptrmath_type_p (exp->language_defn, value_type (arg2)))
1496 {
1497 /* FIXME -- should be ptrdiff_t */
1498 struct type *type = builtin_type (exp->gdbarch)->builtin_long;
1499 return value_from_longest (type, value_ptrdiff (arg1, arg2));
1500 }
1501 else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
1502 && is_integral_or_integral_reference (value_type (arg2)))
1503 return value_ptradd (arg1, - value_as_long (arg2));
1504 else
1505 {
1506 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1507 return value_binop (arg1, arg2, BINOP_SUB);
1508 }
1509 }
1510
1511 /* Helper function for several different binary operations. */
1512
1513 static struct value *
1514 eval_op_binary (struct type *expect_type, struct expression *exp,
1515 enum noside noside, enum exp_opcode op,
1516 struct value *arg1, struct value *arg2)
1517 {
1518 if (noside == EVAL_SKIP)
1519 return eval_skip_value (exp);
1520 if (binop_user_defined_p (op, arg1, arg2))
1521 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1522 else
1523 {
1524 /* If EVAL_AVOID_SIDE_EFFECTS and we're dividing by zero,
1525 fudge arg2 to avoid division-by-zero, the caller is
1526 (theoretically) only looking for the type of the result. */
1527 if (noside == EVAL_AVOID_SIDE_EFFECTS
1528 /* ??? Do we really want to test for BINOP_MOD here?
1529 The implementation of value_binop gives it a well-defined
1530 value. */
1531 && (op == BINOP_DIV
1532 || op == BINOP_INTDIV
1533 || op == BINOP_REM
1534 || op == BINOP_MOD)
1535 && value_logical_not (arg2))
1536 {
1537 struct value *v_one;
1538
1539 v_one = value_one (value_type (arg2));
1540 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &v_one);
1541 return value_binop (arg1, v_one, op);
1542 }
1543 else
1544 {
1545 /* For shift and integer exponentiation operations,
1546 only promote the first argument. */
1547 if ((op == BINOP_LSH || op == BINOP_RSH || op == BINOP_EXP)
1548 && is_integral_type (value_type (arg2)))
1549 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
1550 else
1551 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1552
1553 return value_binop (arg1, arg2, op);
1554 }
1555 }
1556 }
1557
1558 /* A helper function for BINOP_SUBSCRIPT. */
1559
1560 static struct value *
1561 eval_op_subscript (struct type *expect_type, struct expression *exp,
1562 enum noside noside, enum exp_opcode op,
1563 struct value *arg1, struct value *arg2)
1564 {
1565 if (noside == EVAL_SKIP)
1566 return eval_skip_value (exp);
1567 if (binop_user_defined_p (op, arg1, arg2))
1568 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1569 else
1570 {
1571 /* If the user attempts to subscript something that is not an
1572 array or pointer type (like a plain int variable for example),
1573 then report this as an error. */
1574
1575 arg1 = coerce_ref (arg1);
1576 struct type *type = check_typedef (value_type (arg1));
1577 if (type->code () != TYPE_CODE_ARRAY
1578 && type->code () != TYPE_CODE_PTR)
1579 {
1580 if (type->name ())
1581 error (_("cannot subscript something of type `%s'"),
1582 type->name ());
1583 else
1584 error (_("cannot subscript requested type"));
1585 }
1586
1587 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1588 return value_zero (TYPE_TARGET_TYPE (type), VALUE_LVAL (arg1));
1589 else
1590 return value_subscript (arg1, value_as_long (arg2));
1591 }
1592 }
1593
1594 /* A helper function for BINOP_EQUAL. */
1595
1596 static struct value *
1597 eval_op_equal (struct type *expect_type, struct expression *exp,
1598 enum noside noside, enum exp_opcode op,
1599 struct value *arg1, struct value *arg2)
1600 {
1601 if (noside == EVAL_SKIP)
1602 return eval_skip_value (exp);
1603 if (binop_user_defined_p (op, arg1, arg2))
1604 {
1605 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1606 }
1607 else
1608 {
1609 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1610 int tem = value_equal (arg1, arg2);
1611 struct type *type = language_bool_type (exp->language_defn,
1612 exp->gdbarch);
1613 return value_from_longest (type, (LONGEST) tem);
1614 }
1615 }
1616
1617 /* A helper function for BINOP_NOTEQUAL. */
1618
1619 static struct value *
1620 eval_op_notequal (struct type *expect_type, struct expression *exp,
1621 enum noside noside, enum exp_opcode op,
1622 struct value *arg1, struct value *arg2)
1623 {
1624 if (noside == EVAL_SKIP)
1625 return eval_skip_value (exp);
1626 if (binop_user_defined_p (op, arg1, arg2))
1627 {
1628 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1629 }
1630 else
1631 {
1632 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1633 int tem = value_equal (arg1, arg2);
1634 struct type *type = language_bool_type (exp->language_defn,
1635 exp->gdbarch);
1636 return value_from_longest (type, (LONGEST) ! tem);
1637 }
1638 }
1639
1640 /* A helper function for BINOP_LESS. */
1641
1642 static struct value *
1643 eval_op_less (struct type *expect_type, struct expression *exp,
1644 enum noside noside, enum exp_opcode op,
1645 struct value *arg1, struct value *arg2)
1646 {
1647 if (noside == EVAL_SKIP)
1648 return eval_skip_value (exp);
1649 if (binop_user_defined_p (op, arg1, arg2))
1650 {
1651 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1652 }
1653 else
1654 {
1655 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1656 int tem = value_less (arg1, arg2);
1657 struct type *type = language_bool_type (exp->language_defn,
1658 exp->gdbarch);
1659 return value_from_longest (type, (LONGEST) tem);
1660 }
1661 }
1662
1663 /* A helper function for BINOP_GTR. */
1664
1665 static struct value *
1666 eval_op_gtr (struct type *expect_type, struct expression *exp,
1667 enum noside noside, enum exp_opcode op,
1668 struct value *arg1, struct value *arg2)
1669 {
1670 if (noside == EVAL_SKIP)
1671 return eval_skip_value (exp);
1672 if (binop_user_defined_p (op, arg1, arg2))
1673 {
1674 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1675 }
1676 else
1677 {
1678 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1679 int tem = value_less (arg2, arg1);
1680 struct type *type = language_bool_type (exp->language_defn,
1681 exp->gdbarch);
1682 return value_from_longest (type, (LONGEST) tem);
1683 }
1684 }
1685
1686 /* A helper function for BINOP_GEQ. */
1687
1688 static struct value *
1689 eval_op_geq (struct type *expect_type, struct expression *exp,
1690 enum noside noside, enum exp_opcode op,
1691 struct value *arg1, struct value *arg2)
1692 {
1693 if (noside == EVAL_SKIP)
1694 return eval_skip_value (exp);
1695 if (binop_user_defined_p (op, arg1, arg2))
1696 {
1697 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1698 }
1699 else
1700 {
1701 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1702 int tem = value_less (arg2, arg1) || value_equal (arg1, arg2);
1703 struct type *type = language_bool_type (exp->language_defn,
1704 exp->gdbarch);
1705 return value_from_longest (type, (LONGEST) tem);
1706 }
1707 }
1708
1709 /* A helper function for BINOP_LEQ. */
1710
1711 static struct value *
1712 eval_op_leq (struct type *expect_type, struct expression *exp,
1713 enum noside noside, enum exp_opcode op,
1714 struct value *arg1, struct value *arg2)
1715 {
1716 if (noside == EVAL_SKIP)
1717 return eval_skip_value (exp);
1718 if (binop_user_defined_p (op, arg1, arg2))
1719 {
1720 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1721 }
1722 else
1723 {
1724 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1725 int tem = value_less (arg1, arg2) || value_equal (arg1, arg2);
1726 struct type *type = language_bool_type (exp->language_defn,
1727 exp->gdbarch);
1728 return value_from_longest (type, (LONGEST) tem);
1729 }
1730 }
1731
1732 /* A helper function for BINOP_REPEAT. */
1733
1734 static struct value *
1735 eval_op_repeat (struct type *expect_type, struct expression *exp,
1736 enum noside noside,
1737 struct value *arg1, struct value *arg2)
1738 {
1739 if (noside == EVAL_SKIP)
1740 return eval_skip_value (exp);
1741 struct type *type = check_typedef (value_type (arg2));
1742 if (type->code () != TYPE_CODE_INT
1743 && type->code () != TYPE_CODE_ENUM)
1744 error (_("Non-integral right operand for \"@\" operator."));
1745 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1746 {
1747 return allocate_repeat_value (value_type (arg1),
1748 longest_to_int (value_as_long (arg2)));
1749 }
1750 else
1751 return value_repeat (arg1, longest_to_int (value_as_long (arg2)));
1752 }
1753
1754 /* A helper function for UNOP_PLUS. */
1755
1756 static struct value *
1757 eval_op_plus (struct type *expect_type, struct expression *exp,
1758 enum noside noside, enum exp_opcode op,
1759 struct value *arg1)
1760 {
1761 if (noside == EVAL_SKIP)
1762 return eval_skip_value (exp);
1763 if (unop_user_defined_p (op, arg1))
1764 return value_x_unop (arg1, op, noside);
1765 else
1766 {
1767 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
1768 return value_pos (arg1);
1769 }
1770 }
1771
1772 /* A helper function for UNOP_NEG. */
1773
1774 static struct value *
1775 eval_op_neg (struct type *expect_type, struct expression *exp,
1776 enum noside noside, enum exp_opcode op,
1777 struct value *arg1)
1778 {
1779 if (noside == EVAL_SKIP)
1780 return eval_skip_value (exp);
1781 if (unop_user_defined_p (op, arg1))
1782 return value_x_unop (arg1, op, noside);
1783 else
1784 {
1785 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
1786 return value_neg (arg1);
1787 }
1788 }
1789
1790 /* A helper function for UNOP_COMPLEMENT. */
1791
1792 static struct value *
1793 eval_op_complement (struct type *expect_type, struct expression *exp,
1794 enum noside noside, enum exp_opcode op,
1795 struct value *arg1)
1796 {
1797 if (noside == EVAL_SKIP)
1798 return eval_skip_value (exp);
1799 if (unop_user_defined_p (UNOP_COMPLEMENT, arg1))
1800 return value_x_unop (arg1, UNOP_COMPLEMENT, noside);
1801 else
1802 {
1803 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
1804 return value_complement (arg1);
1805 }
1806 }
1807
1808 /* A helper function for UNOP_LOGICAL_NOT. */
1809
1810 static struct value *
1811 eval_op_lognot (struct type *expect_type, struct expression *exp,
1812 enum noside noside, enum exp_opcode op,
1813 struct value *arg1)
1814 {
1815 if (noside == EVAL_SKIP)
1816 return eval_skip_value (exp);
1817 if (unop_user_defined_p (op, arg1))
1818 return value_x_unop (arg1, op, noside);
1819 else
1820 {
1821 struct type *type = language_bool_type (exp->language_defn,
1822 exp->gdbarch);
1823 return value_from_longest (type, (LONGEST) value_logical_not (arg1));
1824 }
1825 }
1826
1827 /* A helper function for UNOP_IND. */
1828
1829 static struct value *
1830 eval_op_ind (struct type *expect_type, struct expression *exp,
1831 enum noside noside, enum exp_opcode op,
1832 struct value *arg1)
1833 {
1834 struct type *type = check_typedef (value_type (arg1));
1835 if (type->code () == TYPE_CODE_METHODPTR
1836 || type->code () == TYPE_CODE_MEMBERPTR)
1837 error (_("Attempt to dereference pointer "
1838 "to member without an object"));
1839 if (noside == EVAL_SKIP)
1840 return eval_skip_value (exp);
1841 if (unop_user_defined_p (op, arg1))
1842 return value_x_unop (arg1, op, noside);
1843 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
1844 {
1845 type = check_typedef (value_type (arg1));
1846
1847 /* If the type pointed to is dynamic then in order to resolve the
1848 dynamic properties we must actually dereference the pointer.
1849 There is a risk that this dereference will have side-effects
1850 in the inferior, but being able to print accurate type
1851 information seems worth the risk. */
1852 if ((type->code () != TYPE_CODE_PTR
1853 && !TYPE_IS_REFERENCE (type))
1854 || !is_dynamic_type (TYPE_TARGET_TYPE (type)))
1855 {
1856 if (type->code () == TYPE_CODE_PTR
1857 || TYPE_IS_REFERENCE (type)
1858 /* In C you can dereference an array to get the 1st elt. */
1859 || type->code () == TYPE_CODE_ARRAY)
1860 return value_zero (TYPE_TARGET_TYPE (type),
1861 lval_memory);
1862 else if (type->code () == TYPE_CODE_INT)
1863 /* GDB allows dereferencing an int. */
1864 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
1865 lval_memory);
1866 else
1867 error (_("Attempt to take contents of a non-pointer value."));
1868 }
1869 }
1870
1871 /* Allow * on an integer so we can cast it to whatever we want.
1872 This returns an int, which seems like the most C-like thing to
1873 do. "long long" variables are rare enough that
1874 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
1875 if (type->code () == TYPE_CODE_INT)
1876 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
1877 (CORE_ADDR) value_as_address (arg1));
1878 return value_ind (arg1);
1879 }
1880
1881 /* A helper function for UNOP_ALIGNOF. */
1882
1883 static struct value *
1884 eval_op_alignof (struct type *expect_type, struct expression *exp,
1885 enum noside noside,
1886 struct value *arg1)
1887 {
1888 struct type *type = value_type (arg1);
1889 /* FIXME: This should be size_t. */
1890 struct type *size_type = builtin_type (exp->gdbarch)->builtin_int;
1891 ULONGEST align = type_align (type);
1892 if (align == 0)
1893 error (_("could not determine alignment of type"));
1894 return value_from_longest (size_type, align);
1895 }
1896
1897 /* A helper function for UNOP_MEMVAL. */
1898
1899 static struct value *
1900 eval_op_memval (struct type *expect_type, struct expression *exp,
1901 enum noside noside,
1902 struct value *arg1, struct type *type)
1903 {
1904 if (noside == EVAL_SKIP)
1905 return eval_skip_value (exp);
1906 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1907 return value_zero (type, lval_memory);
1908 else
1909 return value_at_lazy (type, value_as_address (arg1));
1910 }
1911
1912 struct value *
1913 evaluate_subexp_standard (struct type *expect_type,
1914 struct expression *exp, int *pos,
1915 enum noside noside)
1916 {
1917 enum exp_opcode op;
1918 int tem, tem2, tem3;
1919 int pc, oldpos;
1920 struct value *arg1 = NULL;
1921 struct value *arg2 = NULL;
1922 struct value *arg3;
1923 struct type *type;
1924 int nargs;
1925 struct value **argvec;
1926 int ix;
1927 struct type **arg_types;
1928
1929 pc = (*pos)++;
1930 op = exp->elts[pc].opcode;
1931
1932 switch (op)
1933 {
1934 case OP_SCOPE:
1935 tem = longest_to_int (exp->elts[pc + 2].longconst);
1936 (*pos) += 4 + BYTES_TO_EXP_ELEM (tem + 1);
1937 return eval_op_scope (expect_type, exp, noside,
1938 exp->elts[pc + 1].type,
1939 &exp->elts[pc + 3].string);
1940
1941 case OP_LONG:
1942 (*pos) += 3;
1943 return value_from_longest (exp->elts[pc + 1].type,
1944 exp->elts[pc + 2].longconst);
1945
1946 case OP_FLOAT:
1947 (*pos) += 3;
1948 return value_from_contents (exp->elts[pc + 1].type,
1949 exp->elts[pc + 2].floatconst);
1950
1951 case OP_ADL_FUNC:
1952 case OP_VAR_VALUE:
1953 {
1954 (*pos) += 3;
1955 symbol *var = exp->elts[pc + 2].symbol;
1956 if (SYMBOL_TYPE (var)->code () == TYPE_CODE_ERROR)
1957 error_unknown_type (var->print_name ());
1958 if (noside != EVAL_SKIP)
1959 return evaluate_var_value (noside, exp->elts[pc + 1].block, var);
1960 else
1961 {
1962 /* Return a dummy value of the correct type when skipping, so
1963 that parent functions know what is to be skipped. */
1964 return allocate_value (SYMBOL_TYPE (var));
1965 }
1966 }
1967
1968 case OP_VAR_MSYM_VALUE:
1969 {
1970 (*pos) += 3;
1971
1972 minimal_symbol *msymbol = exp->elts[pc + 2].msymbol;
1973 return eval_op_var_msym_value (expect_type, exp, noside,
1974 pc == 0, msymbol,
1975 exp->elts[pc + 1].objfile);
1976 }
1977
1978 case OP_VAR_ENTRY_VALUE:
1979 (*pos) += 2;
1980
1981 {
1982 struct symbol *sym = exp->elts[pc + 1].symbol;
1983
1984 return eval_op_var_entry_value (expect_type, exp, noside, sym);
1985 }
1986
1987 case OP_FUNC_STATIC_VAR:
1988 tem = longest_to_int (exp->elts[pc + 1].longconst);
1989 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
1990 if (noside == EVAL_SKIP)
1991 return eval_skip_value (exp);
1992
1993 {
1994 value *func = evaluate_subexp_standard (NULL, exp, pos, noside);
1995
1996 return eval_op_func_static_var (expect_type, exp, noside, func,
1997 &exp->elts[pc + 2].string);
1998 }
1999
2000 case OP_LAST:
2001 (*pos) += 2;
2002 return
2003 access_value_history (longest_to_int (exp->elts[pc + 1].longconst));
2004
2005 case OP_REGISTER:
2006 {
2007 const char *name = &exp->elts[pc + 2].string;
2008
2009 (*pos) += 3 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2010 return eval_op_register (expect_type, exp, noside, name);
2011 }
2012 case OP_BOOL:
2013 (*pos) += 2;
2014 type = language_bool_type (exp->language_defn, exp->gdbarch);
2015 return value_from_longest (type, exp->elts[pc + 1].longconst);
2016
2017 case OP_INTERNALVAR:
2018 (*pos) += 2;
2019 return value_of_internalvar (exp->gdbarch,
2020 exp->elts[pc + 1].internalvar);
2021
2022 case OP_STRING:
2023 tem = longest_to_int (exp->elts[pc + 1].longconst);
2024 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
2025 return eval_op_string (expect_type, exp, noside, tem,
2026 &exp->elts[pc + 2].string);
2027
2028 case OP_OBJC_NSSTRING: /* Objective C Foundation Class
2029 NSString constant. */
2030 tem = longest_to_int (exp->elts[pc + 1].longconst);
2031 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
2032 if (noside == EVAL_SKIP)
2033 return eval_skip_value (exp);
2034 return value_nsstring (exp->gdbarch, &exp->elts[pc + 2].string, tem + 1);
2035
2036 case OP_ARRAY:
2037 (*pos) += 3;
2038 tem2 = longest_to_int (exp->elts[pc + 1].longconst);
2039 tem3 = longest_to_int (exp->elts[pc + 2].longconst);
2040 nargs = tem3 - tem2 + 1;
2041 type = expect_type ? check_typedef (expect_type) : nullptr;
2042
2043 if (expect_type != nullptr && noside != EVAL_SKIP
2044 && type->code () == TYPE_CODE_STRUCT)
2045 {
2046 struct value *rec = allocate_value (expect_type);
2047
2048 memset (value_contents_raw (rec), '\0', TYPE_LENGTH (type));
2049 return evaluate_struct_tuple (rec, exp, pos, noside, nargs);
2050 }
2051
2052 if (expect_type != nullptr && noside != EVAL_SKIP
2053 && type->code () == TYPE_CODE_ARRAY)
2054 {
2055 struct type *range_type = type->index_type ();
2056 struct type *element_type = TYPE_TARGET_TYPE (type);
2057 struct value *array = allocate_value (expect_type);
2058 int element_size = TYPE_LENGTH (check_typedef (element_type));
2059 LONGEST low_bound, high_bound, index;
2060
2061 if (!get_discrete_bounds (range_type, &low_bound, &high_bound))
2062 {
2063 low_bound = 0;
2064 high_bound = (TYPE_LENGTH (type) / element_size) - 1;
2065 }
2066 index = low_bound;
2067 memset (value_contents_raw (array), 0, TYPE_LENGTH (expect_type));
2068 for (tem = nargs; --nargs >= 0;)
2069 {
2070 struct value *element;
2071
2072 element = evaluate_subexp (element_type, exp, pos, noside);
2073 if (value_type (element) != element_type)
2074 element = value_cast (element_type, element);
2075 if (index > high_bound)
2076 /* To avoid memory corruption. */
2077 error (_("Too many array elements"));
2078 memcpy (value_contents_raw (array)
2079 + (index - low_bound) * element_size,
2080 value_contents (element),
2081 element_size);
2082 index++;
2083 }
2084 return array;
2085 }
2086
2087 if (expect_type != nullptr && noside != EVAL_SKIP
2088 && type->code () == TYPE_CODE_SET)
2089 {
2090 struct value *set = allocate_value (expect_type);
2091 gdb_byte *valaddr = value_contents_raw (set);
2092 struct type *element_type = type->index_type ();
2093 struct type *check_type = element_type;
2094 LONGEST low_bound, high_bound;
2095
2096 /* Get targettype of elementtype. */
2097 while (check_type->code () == TYPE_CODE_RANGE
2098 || check_type->code () == TYPE_CODE_TYPEDEF)
2099 check_type = TYPE_TARGET_TYPE (check_type);
2100
2101 if (!get_discrete_bounds (element_type, &low_bound, &high_bound))
2102 error (_("(power)set type with unknown size"));
2103 memset (valaddr, '\0', TYPE_LENGTH (type));
2104 for (tem = 0; tem < nargs; tem++)
2105 {
2106 LONGEST range_low, range_high;
2107 struct type *range_low_type, *range_high_type;
2108 struct value *elem_val;
2109
2110 elem_val = evaluate_subexp (element_type, exp, pos, noside);
2111 range_low_type = range_high_type = value_type (elem_val);
2112 range_low = range_high = value_as_long (elem_val);
2113
2114 /* Check types of elements to avoid mixture of elements from
2115 different types. Also check if type of element is "compatible"
2116 with element type of powerset. */
2117 if (range_low_type->code () == TYPE_CODE_RANGE)
2118 range_low_type = TYPE_TARGET_TYPE (range_low_type);
2119 if (range_high_type->code () == TYPE_CODE_RANGE)
2120 range_high_type = TYPE_TARGET_TYPE (range_high_type);
2121 if ((range_low_type->code () != range_high_type->code ())
2122 || (range_low_type->code () == TYPE_CODE_ENUM
2123 && (range_low_type != range_high_type)))
2124 /* different element modes. */
2125 error (_("POWERSET tuple elements of different mode"));
2126 if ((check_type->code () != range_low_type->code ())
2127 || (check_type->code () == TYPE_CODE_ENUM
2128 && range_low_type != check_type))
2129 error (_("incompatible POWERSET tuple elements"));
2130 if (range_low > range_high)
2131 {
2132 warning (_("empty POWERSET tuple range"));
2133 continue;
2134 }
2135 if (range_low < low_bound || range_high > high_bound)
2136 error (_("POWERSET tuple element out of range"));
2137 range_low -= low_bound;
2138 range_high -= low_bound;
2139 for (; range_low <= range_high; range_low++)
2140 {
2141 int bit_index = (unsigned) range_low % TARGET_CHAR_BIT;
2142
2143 if (gdbarch_byte_order (exp->gdbarch) == BFD_ENDIAN_BIG)
2144 bit_index = TARGET_CHAR_BIT - 1 - bit_index;
2145 valaddr[(unsigned) range_low / TARGET_CHAR_BIT]
2146 |= 1 << bit_index;
2147 }
2148 }
2149 return set;
2150 }
2151
2152 argvec = XALLOCAVEC (struct value *, nargs);
2153 for (tem = 0; tem < nargs; tem++)
2154 {
2155 /* Ensure that array expressions are coerced into pointer
2156 objects. */
2157 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
2158 }
2159 if (noside == EVAL_SKIP)
2160 return eval_skip_value (exp);
2161 return value_array (tem2, tem3, argvec);
2162
2163 case TERNOP_SLICE:
2164 {
2165 struct value *array = evaluate_subexp (nullptr, exp, pos, noside);
2166 struct value *low = evaluate_subexp (nullptr, exp, pos, noside);
2167 struct value *upper = evaluate_subexp (nullptr, exp, pos, noside);
2168 return eval_op_ternop (expect_type, exp, noside, array, low, upper);
2169 }
2170
2171 case TERNOP_COND:
2172 /* Skip third and second args to evaluate the first one. */
2173 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2174 if (value_logical_not (arg1))
2175 {
2176 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
2177 return evaluate_subexp (nullptr, exp, pos, noside);
2178 }
2179 else
2180 {
2181 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
2182 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
2183 return arg2;
2184 }
2185
2186 case OP_OBJC_SELECTOR:
2187 { /* Objective C @selector operator. */
2188 char *sel = &exp->elts[pc + 2].string;
2189 int len = longest_to_int (exp->elts[pc + 1].longconst);
2190
2191 (*pos) += 3 + BYTES_TO_EXP_ELEM (len + 1);
2192 if (sel[len] != 0)
2193 sel[len] = 0; /* Make sure it's terminated. */
2194
2195 return eval_op_objc_selector (expect_type, exp, noside, sel);
2196 }
2197
2198 case OP_OBJC_MSGCALL:
2199 { /* Objective C message (method) call. */
2200
2201 CORE_ADDR responds_selector = 0;
2202 CORE_ADDR method_selector = 0;
2203
2204 CORE_ADDR selector = 0;
2205
2206 int struct_return = 0;
2207 enum noside sub_no_side = EVAL_NORMAL;
2208
2209 struct value *msg_send = NULL;
2210 struct value *msg_send_stret = NULL;
2211 int gnu_runtime = 0;
2212
2213 struct value *target = NULL;
2214 struct value *method = NULL;
2215 struct value *called_method = NULL;
2216
2217 struct type *selector_type = NULL;
2218 struct type *long_type;
2219
2220 struct value *ret = NULL;
2221 CORE_ADDR addr = 0;
2222
2223 selector = exp->elts[pc + 1].longconst;
2224 nargs = exp->elts[pc + 2].longconst;
2225 argvec = XALLOCAVEC (struct value *, nargs + 5);
2226
2227 (*pos) += 3;
2228
2229 long_type = builtin_type (exp->gdbarch)->builtin_long;
2230 selector_type = builtin_type (exp->gdbarch)->builtin_data_ptr;
2231
2232 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2233 sub_no_side = EVAL_NORMAL;
2234 else
2235 sub_no_side = noside;
2236
2237 target = evaluate_subexp (selector_type, exp, pos, sub_no_side);
2238
2239 if (value_as_long (target) == 0)
2240 return value_from_longest (long_type, 0);
2241
2242 if (lookup_minimal_symbol ("objc_msg_lookup", 0, 0).minsym)
2243 gnu_runtime = 1;
2244
2245 /* Find the method dispatch (Apple runtime) or method lookup
2246 (GNU runtime) function for Objective-C. These will be used
2247 to lookup the symbol information for the method. If we
2248 can't find any symbol information, then we'll use these to
2249 call the method, otherwise we can call the method
2250 directly. The msg_send_stret function is used in the special
2251 case of a method that returns a structure (Apple runtime
2252 only). */
2253 if (gnu_runtime)
2254 {
2255 type = selector_type;
2256
2257 type = lookup_function_type (type);
2258 type = lookup_pointer_type (type);
2259 type = lookup_function_type (type);
2260 type = lookup_pointer_type (type);
2261
2262 msg_send = find_function_in_inferior ("objc_msg_lookup", NULL);
2263 msg_send_stret
2264 = find_function_in_inferior ("objc_msg_lookup", NULL);
2265
2266 msg_send = value_from_pointer (type, value_as_address (msg_send));
2267 msg_send_stret = value_from_pointer (type,
2268 value_as_address (msg_send_stret));
2269 }
2270 else
2271 {
2272 msg_send = find_function_in_inferior ("objc_msgSend", NULL);
2273 /* Special dispatcher for methods returning structs. */
2274 msg_send_stret
2275 = find_function_in_inferior ("objc_msgSend_stret", NULL);
2276 }
2277
2278 /* Verify the target object responds to this method. The
2279 standard top-level 'Object' class uses a different name for
2280 the verification method than the non-standard, but more
2281 often used, 'NSObject' class. Make sure we check for both. */
2282
2283 responds_selector
2284 = lookup_child_selector (exp->gdbarch, "respondsToSelector:");
2285 if (responds_selector == 0)
2286 responds_selector
2287 = lookup_child_selector (exp->gdbarch, "respondsTo:");
2288
2289 if (responds_selector == 0)
2290 error (_("no 'respondsTo:' or 'respondsToSelector:' method"));
2291
2292 method_selector
2293 = lookup_child_selector (exp->gdbarch, "methodForSelector:");
2294 if (method_selector == 0)
2295 method_selector
2296 = lookup_child_selector (exp->gdbarch, "methodFor:");
2297
2298 if (method_selector == 0)
2299 error (_("no 'methodFor:' or 'methodForSelector:' method"));
2300
2301 /* Call the verification method, to make sure that the target
2302 class implements the desired method. */
2303
2304 argvec[0] = msg_send;
2305 argvec[1] = target;
2306 argvec[2] = value_from_longest (long_type, responds_selector);
2307 argvec[3] = value_from_longest (long_type, selector);
2308 argvec[4] = 0;
2309
2310 ret = call_function_by_hand (argvec[0], NULL, {argvec + 1, 3});
2311 if (gnu_runtime)
2312 {
2313 /* Function objc_msg_lookup returns a pointer. */
2314 argvec[0] = ret;
2315 ret = call_function_by_hand (argvec[0], NULL, {argvec + 1, 3});
2316 }
2317 if (value_as_long (ret) == 0)
2318 error (_("Target does not respond to this message selector."));
2319
2320 /* Call "methodForSelector:" method, to get the address of a
2321 function method that implements this selector for this
2322 class. If we can find a symbol at that address, then we
2323 know the return type, parameter types etc. (that's a good
2324 thing). */
2325
2326 argvec[0] = msg_send;
2327 argvec[1] = target;
2328 argvec[2] = value_from_longest (long_type, method_selector);
2329 argvec[3] = value_from_longest (long_type, selector);
2330 argvec[4] = 0;
2331
2332 ret = call_function_by_hand (argvec[0], NULL, {argvec + 1, 3});
2333 if (gnu_runtime)
2334 {
2335 argvec[0] = ret;
2336 ret = call_function_by_hand (argvec[0], NULL, {argvec + 1, 3});
2337 }
2338
2339 /* ret should now be the selector. */
2340
2341 addr = value_as_long (ret);
2342 if (addr)
2343 {
2344 struct symbol *sym = NULL;
2345
2346 /* The address might point to a function descriptor;
2347 resolve it to the actual code address instead. */
2348 addr = gdbarch_convert_from_func_ptr_addr (exp->gdbarch, addr,
2349 current_top_target ());
2350
2351 /* Is it a high_level symbol? */
2352 sym = find_pc_function (addr);
2353 if (sym != NULL)
2354 method = value_of_variable (sym, 0);
2355 }
2356
2357 /* If we found a method with symbol information, check to see
2358 if it returns a struct. Otherwise assume it doesn't. */
2359
2360 if (method)
2361 {
2362 CORE_ADDR funaddr;
2363 struct type *val_type;
2364
2365 funaddr = find_function_addr (method, &val_type);
2366
2367 block_for_pc (funaddr);
2368
2369 val_type = check_typedef (val_type);
2370
2371 if ((val_type == NULL)
2372 || (val_type->code () == TYPE_CODE_ERROR))
2373 {
2374 if (expect_type != NULL)
2375 val_type = expect_type;
2376 }
2377
2378 struct_return = using_struct_return (exp->gdbarch, method,
2379 val_type);
2380 }
2381 else if (expect_type != NULL)
2382 {
2383 struct_return = using_struct_return (exp->gdbarch, NULL,
2384 check_typedef (expect_type));
2385 }
2386
2387 /* Found a function symbol. Now we will substitute its
2388 value in place of the message dispatcher (obj_msgSend),
2389 so that we call the method directly instead of thru
2390 the dispatcher. The main reason for doing this is that
2391 we can now evaluate the return value and parameter values
2392 according to their known data types, in case we need to
2393 do things like promotion, dereferencing, special handling
2394 of structs and doubles, etc.
2395
2396 We want to use the type signature of 'method', but still
2397 jump to objc_msgSend() or objc_msgSend_stret() to better
2398 mimic the behavior of the runtime. */
2399
2400 if (method)
2401 {
2402 if (value_type (method)->code () != TYPE_CODE_FUNC)
2403 error (_("method address has symbol information "
2404 "with non-function type; skipping"));
2405
2406 /* Create a function pointer of the appropriate type, and
2407 replace its value with the value of msg_send or
2408 msg_send_stret. We must use a pointer here, as
2409 msg_send and msg_send_stret are of pointer type, and
2410 the representation may be different on systems that use
2411 function descriptors. */
2412 if (struct_return)
2413 called_method
2414 = value_from_pointer (lookup_pointer_type (value_type (method)),
2415 value_as_address (msg_send_stret));
2416 else
2417 called_method
2418 = value_from_pointer (lookup_pointer_type (value_type (method)),
2419 value_as_address (msg_send));
2420 }
2421 else
2422 {
2423 if (struct_return)
2424 called_method = msg_send_stret;
2425 else
2426 called_method = msg_send;
2427 }
2428
2429 if (noside == EVAL_SKIP)
2430 return eval_skip_value (exp);
2431
2432 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2433 {
2434 /* If the return type doesn't look like a function type,
2435 call an error. This can happen if somebody tries to
2436 turn a variable into a function call. This is here
2437 because people often want to call, eg, strcmp, which
2438 gdb doesn't know is a function. If gdb isn't asked for
2439 it's opinion (ie. through "whatis"), it won't offer
2440 it. */
2441
2442 struct type *callee_type = value_type (called_method);
2443
2444 if (callee_type && callee_type->code () == TYPE_CODE_PTR)
2445 callee_type = TYPE_TARGET_TYPE (callee_type);
2446 callee_type = TYPE_TARGET_TYPE (callee_type);
2447
2448 if (callee_type)
2449 {
2450 if ((callee_type->code () == TYPE_CODE_ERROR) && expect_type)
2451 return allocate_value (expect_type);
2452 else
2453 return allocate_value (callee_type);
2454 }
2455 else
2456 error (_("Expression of type other than "
2457 "\"method returning ...\" used as a method"));
2458 }
2459
2460 /* Now depending on whether we found a symbol for the method,
2461 we will either call the runtime dispatcher or the method
2462 directly. */
2463
2464 argvec[0] = called_method;
2465 argvec[1] = target;
2466 argvec[2] = value_from_longest (long_type, selector);
2467 /* User-supplied arguments. */
2468 for (tem = 0; tem < nargs; tem++)
2469 argvec[tem + 3] = evaluate_subexp_with_coercion (exp, pos, noside);
2470 argvec[tem + 3] = 0;
2471
2472 auto call_args = gdb::make_array_view (argvec + 1, nargs + 2);
2473
2474 if (gnu_runtime && (method != NULL))
2475 {
2476 /* Function objc_msg_lookup returns a pointer. */
2477 deprecated_set_value_type (argvec[0],
2478 lookup_pointer_type (lookup_function_type (value_type (argvec[0]))));
2479 argvec[0] = call_function_by_hand (argvec[0], NULL, call_args);
2480 }
2481
2482 return call_function_by_hand (argvec[0], NULL, call_args);
2483 }
2484 break;
2485
2486 case OP_FUNCALL:
2487 return evaluate_funcall (expect_type, exp, pos, noside);
2488
2489 case OP_COMPLEX:
2490 /* We have a complex number, There should be 2 floating
2491 point numbers that compose it. */
2492 (*pos) += 2;
2493 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2494 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
2495
2496 return value_literal_complex (arg1, arg2, exp->elts[pc + 1].type);
2497
2498 case STRUCTOP_STRUCT:
2499 tem = longest_to_int (exp->elts[pc + 1].longconst);
2500 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
2501 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2502 return eval_op_structop_struct (expect_type, exp, noside, arg1,
2503 &exp->elts[pc + 2].string);
2504
2505 case STRUCTOP_PTR:
2506 tem = longest_to_int (exp->elts[pc + 1].longconst);
2507 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
2508 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2509 return eval_op_structop_ptr (expect_type, exp, noside, op, arg1,
2510 &exp->elts[pc + 2].string);
2511
2512 case STRUCTOP_MEMBER:
2513 case STRUCTOP_MPTR:
2514 if (op == STRUCTOP_MEMBER)
2515 arg1 = evaluate_subexp_for_address (exp, pos, noside);
2516 else
2517 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2518
2519 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
2520
2521 return eval_op_member (expect_type, exp, noside, arg1, arg2);
2522
2523 case TYPE_INSTANCE:
2524 {
2525 type_instance_flags flags
2526 = (type_instance_flag_value) longest_to_int (exp->elts[pc + 1].longconst);
2527 nargs = longest_to_int (exp->elts[pc + 2].longconst);
2528 arg_types = (struct type **) alloca (nargs * sizeof (struct type *));
2529 for (ix = 0; ix < nargs; ++ix)
2530 arg_types[ix] = exp->elts[pc + 2 + ix + 1].type;
2531
2532 fake_method fake_expect_type (flags, nargs, arg_types);
2533 *(pos) += 4 + nargs;
2534 return evaluate_subexp_standard (fake_expect_type.type (), exp, pos,
2535 noside);
2536 }
2537
2538 case BINOP_CONCAT:
2539 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2540 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2541 return eval_op_concat (expect_type, exp, noside, op, arg1, arg2);
2542
2543 case BINOP_ASSIGN:
2544 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2545 /* Special-case assignments where the left-hand-side is a
2546 convenience variable -- in these, don't bother setting an
2547 expected type. This avoids a weird case where re-assigning a
2548 string or array to an internal variable could error with "Too
2549 many array elements". */
2550 arg2 = evaluate_subexp (VALUE_LVAL (arg1) == lval_internalvar
2551 ? nullptr
2552 : value_type (arg1),
2553 exp, pos, noside);
2554
2555 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2556 return arg1;
2557 if (binop_user_defined_p (op, arg1, arg2))
2558 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2559 else
2560 return value_assign (arg1, arg2);
2561
2562 case BINOP_ASSIGN_MODIFY:
2563 (*pos) += 2;
2564 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2565 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2566 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2567 return arg1;
2568 op = exp->elts[pc + 1].opcode;
2569 if (binop_user_defined_p (op, arg1, arg2))
2570 return value_x_binop (arg1, arg2, BINOP_ASSIGN_MODIFY, op, noside);
2571 else if (op == BINOP_ADD && ptrmath_type_p (exp->language_defn,
2572 value_type (arg1))
2573 && is_integral_type (value_type (arg2)))
2574 arg2 = value_ptradd (arg1, value_as_long (arg2));
2575 else if (op == BINOP_SUB && ptrmath_type_p (exp->language_defn,
2576 value_type (arg1))
2577 && is_integral_type (value_type (arg2)))
2578 arg2 = value_ptradd (arg1, - value_as_long (arg2));
2579 else
2580 {
2581 struct value *tmp = arg1;
2582
2583 /* For shift and integer exponentiation operations,
2584 only promote the first argument. */
2585 if ((op == BINOP_LSH || op == BINOP_RSH || op == BINOP_EXP)
2586 && is_integral_type (value_type (arg2)))
2587 unop_promote (exp->language_defn, exp->gdbarch, &tmp);
2588 else
2589 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2590
2591 arg2 = value_binop (tmp, arg2, op);
2592 }
2593 return value_assign (arg1, arg2);
2594
2595 case BINOP_ADD:
2596 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2597 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2598 return eval_op_add (expect_type, exp, noside, op, arg1, arg2);
2599
2600 case BINOP_SUB:
2601 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2602 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2603 return eval_op_sub (expect_type, exp, noside, op, arg1, arg2);
2604
2605 case BINOP_EXP:
2606 case BINOP_MUL:
2607 case BINOP_DIV:
2608 case BINOP_INTDIV:
2609 case BINOP_REM:
2610 case BINOP_MOD:
2611 case BINOP_LSH:
2612 case BINOP_RSH:
2613 case BINOP_BITWISE_AND:
2614 case BINOP_BITWISE_IOR:
2615 case BINOP_BITWISE_XOR:
2616 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2617 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
2618 return eval_op_binary (expect_type, exp, noside, op, arg1, arg2);
2619
2620 case BINOP_SUBSCRIPT:
2621 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2622 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
2623 return eval_op_subscript (expect_type, exp, noside, op, arg1, arg2);
2624
2625 case MULTI_SUBSCRIPT:
2626 (*pos) += 2;
2627 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2628 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2629 argvec = XALLOCAVEC (struct value *, nargs);
2630 for (ix = 0; ix < nargs; ++ix)
2631 argvec[ix] = evaluate_subexp_with_coercion (exp, pos, noside);
2632 if (noside == EVAL_SKIP)
2633 return arg1;
2634 for (ix = 0; ix < nargs; ++ix)
2635 {
2636 arg2 = argvec[ix];
2637
2638 if (binop_user_defined_p (op, arg1, arg2))
2639 {
2640 arg1 = value_x_binop (arg1, arg2, op, OP_NULL, noside);
2641 }
2642 else
2643 {
2644 arg1 = coerce_ref (arg1);
2645 type = check_typedef (value_type (arg1));
2646
2647 switch (type->code ())
2648 {
2649 case TYPE_CODE_PTR:
2650 case TYPE_CODE_ARRAY:
2651 case TYPE_CODE_STRING:
2652 arg1 = value_subscript (arg1, value_as_long (arg2));
2653 break;
2654
2655 default:
2656 if (type->name ())
2657 error (_("cannot subscript something of type `%s'"),
2658 type->name ());
2659 else
2660 error (_("cannot subscript requested type"));
2661 }
2662 }
2663 }
2664 return (arg1);
2665
2666 case BINOP_LOGICAL_AND:
2667 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2668 if (noside == EVAL_SKIP)
2669 {
2670 evaluate_subexp (nullptr, exp, pos, noside);
2671 return eval_skip_value (exp);
2672 }
2673
2674 oldpos = *pos;
2675 arg2 = evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2676 *pos = oldpos;
2677
2678 if (binop_user_defined_p (op, arg1, arg2))
2679 {
2680 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
2681 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2682 }
2683 else
2684 {
2685 tem = value_logical_not (arg1);
2686 arg2
2687 = evaluate_subexp (nullptr, exp, pos, (tem ? EVAL_SKIP : noside));
2688 type = language_bool_type (exp->language_defn, exp->gdbarch);
2689 return value_from_longest (type,
2690 (LONGEST) (!tem && !value_logical_not (arg2)));
2691 }
2692
2693 case BINOP_LOGICAL_OR:
2694 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2695 if (noside == EVAL_SKIP)
2696 {
2697 evaluate_subexp (nullptr, exp, pos, noside);
2698 return eval_skip_value (exp);
2699 }
2700
2701 oldpos = *pos;
2702 arg2 = evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2703 *pos = oldpos;
2704
2705 if (binop_user_defined_p (op, arg1, arg2))
2706 {
2707 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
2708 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2709 }
2710 else
2711 {
2712 tem = value_logical_not (arg1);
2713 arg2
2714 = evaluate_subexp (nullptr, exp, pos, (!tem ? EVAL_SKIP : noside));
2715 type = language_bool_type (exp->language_defn, exp->gdbarch);
2716 return value_from_longest (type,
2717 (LONGEST) (!tem || !value_logical_not (arg2)));
2718 }
2719
2720 case BINOP_EQUAL:
2721 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2722 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2723 return eval_op_equal (expect_type, exp, noside, op, arg1, arg2);
2724
2725 case BINOP_NOTEQUAL:
2726 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2727 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2728 return eval_op_notequal (expect_type, exp, noside, op, arg1, arg2);
2729
2730 case BINOP_LESS:
2731 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2732 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2733 return eval_op_less (expect_type, exp, noside, op, arg1, arg2);
2734
2735 case BINOP_GTR:
2736 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2737 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2738 return eval_op_gtr (expect_type, exp, noside, op, arg1, arg2);
2739
2740 case BINOP_GEQ:
2741 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2742 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2743 return eval_op_geq (expect_type, exp, noside, op, arg1, arg2);
2744
2745 case BINOP_LEQ:
2746 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2747 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2748 return eval_op_leq (expect_type, exp, noside, op, arg1, arg2);
2749
2750 case BINOP_REPEAT:
2751 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2752 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
2753 return eval_op_repeat (expect_type, exp, noside, arg1, arg2);
2754
2755 case BINOP_COMMA:
2756 evaluate_subexp (nullptr, exp, pos, noside);
2757 return evaluate_subexp (nullptr, exp, pos, noside);
2758
2759 case UNOP_PLUS:
2760 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2761 return eval_op_plus (expect_type, exp, noside, op, arg1);
2762
2763 case UNOP_NEG:
2764 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2765 return eval_op_neg (expect_type, exp, noside, op, arg1);
2766
2767 case UNOP_COMPLEMENT:
2768 /* C++: check for and handle destructor names. */
2769
2770 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2771 return eval_op_complement (expect_type, exp, noside, op, arg1);
2772
2773 case UNOP_LOGICAL_NOT:
2774 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2775 return eval_op_lognot (expect_type, exp, noside, op, arg1);
2776
2777 case UNOP_IND:
2778 if (expect_type && expect_type->code () == TYPE_CODE_PTR)
2779 expect_type = TYPE_TARGET_TYPE (check_typedef (expect_type));
2780 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2781 return eval_op_ind (expect_type, exp, noside, op, arg1);
2782
2783 case UNOP_ADDR:
2784 /* C++: check for and handle pointer to members. */
2785
2786 if (noside == EVAL_SKIP)
2787 {
2788 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
2789 return eval_skip_value (exp);
2790 }
2791 else
2792 return evaluate_subexp_for_address (exp, pos, noside);
2793
2794 case UNOP_SIZEOF:
2795 if (noside == EVAL_SKIP)
2796 {
2797 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
2798 return eval_skip_value (exp);
2799 }
2800 return evaluate_subexp_for_sizeof (exp, pos, noside);
2801
2802 case UNOP_ALIGNOF:
2803 arg1 = evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2804 return eval_op_alignof (expect_type, exp, noside, arg1);
2805
2806 case UNOP_CAST:
2807 (*pos) += 2;
2808 type = exp->elts[pc + 1].type;
2809 return evaluate_subexp_for_cast (exp, pos, noside, type);
2810
2811 case UNOP_CAST_TYPE:
2812 arg1 = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2813 type = value_type (arg1);
2814 return evaluate_subexp_for_cast (exp, pos, noside, type);
2815
2816 case UNOP_DYNAMIC_CAST:
2817 arg1 = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2818 type = value_type (arg1);
2819 arg1 = evaluate_subexp (type, exp, pos, noside);
2820 if (noside == EVAL_SKIP)
2821 return eval_skip_value (exp);
2822 return value_dynamic_cast (type, arg1);
2823
2824 case UNOP_REINTERPRET_CAST:
2825 arg1 = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2826 type = value_type (arg1);
2827 arg1 = evaluate_subexp (type, exp, pos, noside);
2828 if (noside == EVAL_SKIP)
2829 return eval_skip_value (exp);
2830 return value_reinterpret_cast (type, arg1);
2831
2832 case UNOP_MEMVAL:
2833 (*pos) += 2;
2834 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2835 return eval_op_memval (expect_type, exp, noside, arg1,
2836 exp->elts[pc + 1].type);
2837
2838 case UNOP_MEMVAL_TYPE:
2839 arg1 = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2840 type = value_type (arg1);
2841 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2842 return eval_op_memval (expect_type, exp, noside, arg1, type);
2843
2844 case UNOP_PREINCREMENT:
2845 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2846 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2847 return arg1;
2848 else if (unop_user_defined_p (op, arg1))
2849 {
2850 return value_x_unop (arg1, op, noside);
2851 }
2852 else
2853 {
2854 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2855 arg2 = value_ptradd (arg1, 1);
2856 else
2857 {
2858 struct value *tmp = arg1;
2859
2860 arg2 = value_one (value_type (arg1));
2861 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2862 arg2 = value_binop (tmp, arg2, BINOP_ADD);
2863 }
2864
2865 return value_assign (arg1, arg2);
2866 }
2867
2868 case UNOP_PREDECREMENT:
2869 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2870 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2871 return arg1;
2872 else if (unop_user_defined_p (op, arg1))
2873 {
2874 return value_x_unop (arg1, op, noside);
2875 }
2876 else
2877 {
2878 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2879 arg2 = value_ptradd (arg1, -1);
2880 else
2881 {
2882 struct value *tmp = arg1;
2883
2884 arg2 = value_one (value_type (arg1));
2885 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2886 arg2 = value_binop (tmp, arg2, BINOP_SUB);
2887 }
2888
2889 return value_assign (arg1, arg2);
2890 }
2891
2892 case UNOP_POSTINCREMENT:
2893 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2894 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2895 return arg1;
2896 else if (unop_user_defined_p (op, arg1))
2897 {
2898 return value_x_unop (arg1, op, noside);
2899 }
2900 else
2901 {
2902 arg3 = value_non_lval (arg1);
2903
2904 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2905 arg2 = value_ptradd (arg1, 1);
2906 else
2907 {
2908 struct value *tmp = arg1;
2909
2910 arg2 = value_one (value_type (arg1));
2911 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2912 arg2 = value_binop (tmp, arg2, BINOP_ADD);
2913 }
2914
2915 value_assign (arg1, arg2);
2916 return arg3;
2917 }
2918
2919 case UNOP_POSTDECREMENT:
2920 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2921 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2922 return arg1;
2923 else if (unop_user_defined_p (op, arg1))
2924 {
2925 return value_x_unop (arg1, op, noside);
2926 }
2927 else
2928 {
2929 arg3 = value_non_lval (arg1);
2930
2931 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2932 arg2 = value_ptradd (arg1, -1);
2933 else
2934 {
2935 struct value *tmp = arg1;
2936
2937 arg2 = value_one (value_type (arg1));
2938 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2939 arg2 = value_binop (tmp, arg2, BINOP_SUB);
2940 }
2941
2942 value_assign (arg1, arg2);
2943 return arg3;
2944 }
2945
2946 case OP_THIS:
2947 (*pos) += 1;
2948 return value_of_this (exp->language_defn);
2949
2950 case OP_TYPE:
2951 /* The value is not supposed to be used. This is here to make it
2952 easier to accommodate expressions that contain types. */
2953 (*pos) += 2;
2954 if (noside == EVAL_SKIP)
2955 return eval_skip_value (exp);
2956 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2957 return allocate_value (exp->elts[pc + 1].type);
2958 else
2959 error (_("Attempt to use a type name as an expression"));
2960
2961 case OP_TYPEOF:
2962 case OP_DECLTYPE:
2963 if (noside == EVAL_SKIP)
2964 {
2965 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
2966 return eval_skip_value (exp);
2967 }
2968 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2969 {
2970 enum exp_opcode sub_op = exp->elts[*pos].opcode;
2971 struct value *result;
2972
2973 result = evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2974
2975 /* 'decltype' has special semantics for lvalues. */
2976 if (op == OP_DECLTYPE
2977 && (sub_op == BINOP_SUBSCRIPT
2978 || sub_op == STRUCTOP_MEMBER
2979 || sub_op == STRUCTOP_MPTR
2980 || sub_op == UNOP_IND
2981 || sub_op == STRUCTOP_STRUCT
2982 || sub_op == STRUCTOP_PTR
2983 || sub_op == OP_SCOPE))
2984 {
2985 type = value_type (result);
2986
2987 if (!TYPE_IS_REFERENCE (type))
2988 {
2989 type = lookup_lvalue_reference_type (type);
2990 result = allocate_value (type);
2991 }
2992 }
2993
2994 return result;
2995 }
2996 else
2997 error (_("Attempt to use a type as an expression"));
2998
2999 case OP_TYPEID:
3000 {
3001 struct value *result;
3002 enum exp_opcode sub_op = exp->elts[*pos].opcode;
3003
3004 if (sub_op == OP_TYPE || sub_op == OP_DECLTYPE || sub_op == OP_TYPEOF)
3005 result = evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3006 else
3007 result = evaluate_subexp (nullptr, exp, pos, noside);
3008
3009 if (noside != EVAL_NORMAL)
3010 return allocate_value (cplus_typeid_type (exp->gdbarch));
3011
3012 return cplus_typeid (result);
3013 }
3014
3015 default:
3016 /* Removing this case and compiling with gcc -Wall reveals that
3017 a lot of cases are hitting this case. Some of these should
3018 probably be removed from expression.h; others are legitimate
3019 expressions which are (apparently) not fully implemented.
3020
3021 If there are any cases landing here which mean a user error,
3022 then they should be separate cases, with more descriptive
3023 error messages. */
3024
3025 error (_("GDB does not (yet) know how to "
3026 "evaluate that kind of expression"));
3027 }
3028
3029 gdb_assert_not_reached ("missed return?");
3030 }
3031 \f
3032 /* Evaluate a subexpression of EXP, at index *POS,
3033 and return the address of that subexpression.
3034 Advance *POS over the subexpression.
3035 If the subexpression isn't an lvalue, get an error.
3036 NOSIDE may be EVAL_AVOID_SIDE_EFFECTS;
3037 then only the type of the result need be correct. */
3038
3039 static struct value *
3040 evaluate_subexp_for_address (struct expression *exp, int *pos,
3041 enum noside noside)
3042 {
3043 enum exp_opcode op;
3044 int pc;
3045 struct symbol *var;
3046 struct value *x;
3047 int tem;
3048
3049 pc = (*pos);
3050 op = exp->elts[pc].opcode;
3051
3052 switch (op)
3053 {
3054 case UNOP_IND:
3055 (*pos)++;
3056 x = evaluate_subexp (nullptr, exp, pos, noside);
3057
3058 /* We can't optimize out "&*" if there's a user-defined operator*. */
3059 if (unop_user_defined_p (op, x))
3060 {
3061 x = value_x_unop (x, op, noside);
3062 goto default_case_after_eval;
3063 }
3064
3065 return coerce_array (x);
3066
3067 case UNOP_MEMVAL:
3068 (*pos) += 3;
3069 return value_cast (lookup_pointer_type (exp->elts[pc + 1].type),
3070 evaluate_subexp (nullptr, exp, pos, noside));
3071
3072 case UNOP_MEMVAL_TYPE:
3073 {
3074 struct type *type;
3075
3076 (*pos) += 1;
3077 x = evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3078 type = value_type (x);
3079 return value_cast (lookup_pointer_type (type),
3080 evaluate_subexp (nullptr, exp, pos, noside));
3081 }
3082
3083 case OP_VAR_VALUE:
3084 var = exp->elts[pc + 2].symbol;
3085
3086 /* C++: The "address" of a reference should yield the address
3087 * of the object pointed to. Let value_addr() deal with it. */
3088 if (TYPE_IS_REFERENCE (SYMBOL_TYPE (var)))
3089 goto default_case;
3090
3091 (*pos) += 4;
3092 if (noside == EVAL_AVOID_SIDE_EFFECTS)
3093 {
3094 struct type *type =
3095 lookup_pointer_type (SYMBOL_TYPE (var));
3096 enum address_class sym_class = SYMBOL_CLASS (var);
3097
3098 if (sym_class == LOC_CONST
3099 || sym_class == LOC_CONST_BYTES
3100 || sym_class == LOC_REGISTER)
3101 error (_("Attempt to take address of register or constant."));
3102
3103 return
3104 value_zero (type, not_lval);
3105 }
3106 else
3107 return address_of_variable (var, exp->elts[pc + 1].block);
3108
3109 case OP_VAR_MSYM_VALUE:
3110 {
3111 (*pos) += 4;
3112
3113 value *val = evaluate_var_msym_value (noside,
3114 exp->elts[pc + 1].objfile,
3115 exp->elts[pc + 2].msymbol);
3116 if (noside == EVAL_AVOID_SIDE_EFFECTS)
3117 {
3118 struct type *type = lookup_pointer_type (value_type (val));
3119 return value_zero (type, not_lval);
3120 }
3121 else
3122 return value_addr (val);
3123 }
3124
3125 case OP_SCOPE:
3126 tem = longest_to_int (exp->elts[pc + 2].longconst);
3127 (*pos) += 5 + BYTES_TO_EXP_ELEM (tem + 1);
3128 x = value_aggregate_elt (exp->elts[pc + 1].type,
3129 &exp->elts[pc + 3].string,
3130 NULL, 1, noside);
3131 if (x == NULL)
3132 error (_("There is no field named %s"), &exp->elts[pc + 3].string);
3133 return x;
3134
3135 default:
3136 default_case:
3137 x = evaluate_subexp (nullptr, exp, pos, noside);
3138 default_case_after_eval:
3139 if (noside == EVAL_AVOID_SIDE_EFFECTS)
3140 {
3141 struct type *type = check_typedef (value_type (x));
3142
3143 if (TYPE_IS_REFERENCE (type))
3144 return value_zero (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
3145 not_lval);
3146 else if (VALUE_LVAL (x) == lval_memory || value_must_coerce_to_target (x))
3147 return value_zero (lookup_pointer_type (value_type (x)),
3148 not_lval);
3149 else
3150 error (_("Attempt to take address of "
3151 "value not located in memory."));
3152 }
3153 return value_addr (x);
3154 }
3155 }
3156
3157 /* Evaluate like `evaluate_subexp' except coercing arrays to pointers.
3158 When used in contexts where arrays will be coerced anyway, this is
3159 equivalent to `evaluate_subexp' but much faster because it avoids
3160 actually fetching array contents (perhaps obsolete now that we have
3161 value_lazy()).
3162
3163 Note that we currently only do the coercion for C expressions, where
3164 arrays are zero based and the coercion is correct. For other languages,
3165 with nonzero based arrays, coercion loses. Use CAST_IS_CONVERSION
3166 to decide if coercion is appropriate. */
3167
3168 struct value *
3169 evaluate_subexp_with_coercion (struct expression *exp,
3170 int *pos, enum noside noside)
3171 {
3172 enum exp_opcode op;
3173 int pc;
3174 struct value *val;
3175 struct symbol *var;
3176 struct type *type;
3177
3178 pc = (*pos);
3179 op = exp->elts[pc].opcode;
3180
3181 switch (op)
3182 {
3183 case OP_VAR_VALUE:
3184 var = exp->elts[pc + 2].symbol;
3185 type = check_typedef (SYMBOL_TYPE (var));
3186 if (type->code () == TYPE_CODE_ARRAY
3187 && !type->is_vector ()
3188 && CAST_IS_CONVERSION (exp->language_defn))
3189 {
3190 (*pos) += 4;
3191 val = address_of_variable (var, exp->elts[pc + 1].block);
3192 return value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
3193 val);
3194 }
3195 /* FALLTHROUGH */
3196
3197 default:
3198 return evaluate_subexp (nullptr, exp, pos, noside);
3199 }
3200 }
3201
3202 /* Evaluate a subexpression of EXP, at index *POS,
3203 and return a value for the size of that subexpression.
3204 Advance *POS over the subexpression. If NOSIDE is EVAL_NORMAL
3205 we allow side-effects on the operand if its type is a variable
3206 length array. */
3207
3208 static struct value *
3209 evaluate_subexp_for_sizeof (struct expression *exp, int *pos,
3210 enum noside noside)
3211 {
3212 /* FIXME: This should be size_t. */
3213 struct type *size_type = builtin_type (exp->gdbarch)->builtin_int;
3214 enum exp_opcode op;
3215 int pc;
3216 struct type *type;
3217 struct value *val;
3218
3219 pc = (*pos);
3220 op = exp->elts[pc].opcode;
3221
3222 switch (op)
3223 {
3224 /* This case is handled specially
3225 so that we avoid creating a value for the result type.
3226 If the result type is very big, it's desirable not to
3227 create a value unnecessarily. */
3228 case UNOP_IND:
3229 (*pos)++;
3230 val = evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3231 type = check_typedef (value_type (val));
3232 if (type->code () != TYPE_CODE_PTR
3233 && !TYPE_IS_REFERENCE (type)
3234 && type->code () != TYPE_CODE_ARRAY)
3235 error (_("Attempt to take contents of a non-pointer value."));
3236 type = TYPE_TARGET_TYPE (type);
3237 if (is_dynamic_type (type))
3238 type = value_type (value_ind (val));
3239 return value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
3240
3241 case UNOP_MEMVAL:
3242 (*pos) += 3;
3243 type = exp->elts[pc + 1].type;
3244 break;
3245
3246 case UNOP_MEMVAL_TYPE:
3247 (*pos) += 1;
3248 val = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3249 type = value_type (val);
3250 break;
3251
3252 case OP_VAR_VALUE:
3253 type = SYMBOL_TYPE (exp->elts[pc + 2].symbol);
3254 if (is_dynamic_type (type))
3255 {
3256 val = evaluate_subexp (nullptr, exp, pos, EVAL_NORMAL);
3257 type = value_type (val);
3258 if (type->code () == TYPE_CODE_ARRAY)
3259 {
3260 if (type_not_allocated (type) || type_not_associated (type))
3261 return value_zero (size_type, not_lval);
3262 else if (is_dynamic_type (type->index_type ())
3263 && type->bounds ()->high.kind () == PROP_UNDEFINED)
3264 return allocate_optimized_out_value (size_type);
3265 }
3266 }
3267 else
3268 (*pos) += 4;
3269 break;
3270
3271 case OP_VAR_MSYM_VALUE:
3272 {
3273 (*pos) += 4;
3274
3275 minimal_symbol *msymbol = exp->elts[pc + 2].msymbol;
3276 value *mval = evaluate_var_msym_value (noside,
3277 exp->elts[pc + 1].objfile,
3278 msymbol);
3279
3280 type = value_type (mval);
3281 if (type->code () == TYPE_CODE_ERROR)
3282 error_unknown_type (msymbol->print_name ());
3283
3284 return value_from_longest (size_type, TYPE_LENGTH (type));
3285 }
3286 break;
3287
3288 /* Deal with the special case if NOSIDE is EVAL_NORMAL and the resulting
3289 type of the subscript is a variable length array type. In this case we
3290 must re-evaluate the right hand side of the subscription to allow
3291 side-effects. */
3292 case BINOP_SUBSCRIPT:
3293 if (noside == EVAL_NORMAL)
3294 {
3295 int npc = (*pos) + 1;
3296
3297 val = evaluate_subexp (nullptr, exp, &npc, EVAL_AVOID_SIDE_EFFECTS);
3298 type = check_typedef (value_type (val));
3299 if (type->code () == TYPE_CODE_ARRAY)
3300 {
3301 type = check_typedef (TYPE_TARGET_TYPE (type));
3302 if (type->code () == TYPE_CODE_ARRAY)
3303 {
3304 type = type->index_type ();
3305 /* Only re-evaluate the right hand side if the resulting type
3306 is a variable length type. */
3307 if (type->bounds ()->flag_bound_evaluated)
3308 {
3309 val = evaluate_subexp (nullptr, exp, pos, EVAL_NORMAL);
3310 return value_from_longest
3311 (size_type, (LONGEST) TYPE_LENGTH (value_type (val)));
3312 }
3313 }
3314 }
3315 }
3316
3317 /* Fall through. */
3318
3319 default:
3320 val = evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3321 type = value_type (val);
3322 break;
3323 }
3324
3325 /* $5.3.3/2 of the C++ Standard (n3290 draft) says of sizeof:
3326 "When applied to a reference or a reference type, the result is
3327 the size of the referenced type." */
3328 type = check_typedef (type);
3329 if (exp->language_defn->la_language == language_cplus
3330 && (TYPE_IS_REFERENCE (type)))
3331 type = check_typedef (TYPE_TARGET_TYPE (type));
3332 return value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
3333 }
3334
3335 /* Evaluate a subexpression of EXP, at index *POS, and return a value
3336 for that subexpression cast to TO_TYPE. Advance *POS over the
3337 subexpression. */
3338
3339 static value *
3340 evaluate_subexp_for_cast (expression *exp, int *pos,
3341 enum noside noside,
3342 struct type *to_type)
3343 {
3344 int pc = *pos;
3345
3346 /* Don't let symbols be evaluated with evaluate_subexp because that
3347 throws an "unknown type" error for no-debug data symbols.
3348 Instead, we want the cast to reinterpret the symbol. */
3349 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
3350 || exp->elts[pc].opcode == OP_VAR_VALUE)
3351 {
3352 (*pos) += 4;
3353
3354 value *val;
3355 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3356 {
3357 if (noside == EVAL_AVOID_SIDE_EFFECTS)
3358 return value_zero (to_type, not_lval);
3359
3360 val = evaluate_var_msym_value (noside,
3361 exp->elts[pc + 1].objfile,
3362 exp->elts[pc + 2].msymbol);
3363 }
3364 else
3365 val = evaluate_var_value (noside,
3366 exp->elts[pc + 1].block,
3367 exp->elts[pc + 2].symbol);
3368
3369 if (noside == EVAL_SKIP)
3370 return eval_skip_value (exp);
3371
3372 val = value_cast (to_type, val);
3373
3374 /* Don't allow e.g. '&(int)var_with_no_debug_info'. */
3375 if (VALUE_LVAL (val) == lval_memory)
3376 {
3377 if (value_lazy (val))
3378 value_fetch_lazy (val);
3379 VALUE_LVAL (val) = not_lval;
3380 }
3381 return val;
3382 }
3383
3384 value *val = evaluate_subexp (to_type, exp, pos, noside);
3385 if (noside == EVAL_SKIP)
3386 return eval_skip_value (exp);
3387 return value_cast (to_type, val);
3388 }
3389
3390 /* Parse a type expression in the string [P..P+LENGTH). */
3391
3392 struct type *
3393 parse_and_eval_type (const char *p, int length)
3394 {
3395 char *tmp = (char *) alloca (length + 4);
3396
3397 tmp[0] = '(';
3398 memcpy (tmp + 1, p, length);
3399 tmp[length + 1] = ')';
3400 tmp[length + 2] = '0';
3401 tmp[length + 3] = '\0';
3402 expression_up expr = parse_expression (tmp);
3403 if (expr->first_opcode () != UNOP_CAST)
3404 error (_("Internal error in eval_type."));
3405 return expr->elts[1].type;
3406 }