Split out eval_op_leq
[binutils-gdb.git] / gdb / eval.c
1 /* Evaluate expressions for GDB.
2
3 Copyright (C) 1986-2021 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "value.h"
24 #include "expression.h"
25 #include "target.h"
26 #include "frame.h"
27 #include "gdbthread.h"
28 #include "language.h" /* For CAST_IS_CONVERSION. */
29 #include "cp-abi.h"
30 #include "infcall.h"
31 #include "objc-lang.h"
32 #include "block.h"
33 #include "parser-defs.h"
34 #include "cp-support.h"
35 #include "ui-out.h"
36 #include "regcache.h"
37 #include "user-regs.h"
38 #include "valprint.h"
39 #include "gdb_obstack.h"
40 #include "objfiles.h"
41 #include "typeprint.h"
42 #include <ctype.h>
43
44 /* Prototypes for local functions. */
45
46 static struct value *evaluate_subexp_for_sizeof (struct expression *, int *,
47 enum noside);
48
49 static struct value *evaluate_subexp_for_address (struct expression *,
50 int *, enum noside);
51
52 static value *evaluate_subexp_for_cast (expression *exp, int *pos,
53 enum noside noside,
54 struct type *type);
55
56 static struct value *evaluate_struct_tuple (struct value *,
57 struct expression *, int *,
58 enum noside, int);
59
60 struct value *
61 evaluate_subexp (struct type *expect_type, struct expression *exp,
62 int *pos, enum noside noside)
63 {
64 return ((*exp->language_defn->expression_ops ()->evaluate_exp)
65 (expect_type, exp, pos, noside));
66 }
67 \f
68 /* Parse the string EXP as a C expression, evaluate it,
69 and return the result as a number. */
70
71 CORE_ADDR
72 parse_and_eval_address (const char *exp)
73 {
74 expression_up expr = parse_expression (exp);
75
76 return value_as_address (evaluate_expression (expr.get ()));
77 }
78
79 /* Like parse_and_eval_address, but treats the value of the expression
80 as an integer, not an address, returns a LONGEST, not a CORE_ADDR. */
81 LONGEST
82 parse_and_eval_long (const char *exp)
83 {
84 expression_up expr = parse_expression (exp);
85
86 return value_as_long (evaluate_expression (expr.get ()));
87 }
88
89 struct value *
90 parse_and_eval (const char *exp)
91 {
92 expression_up expr = parse_expression (exp);
93
94 return evaluate_expression (expr.get ());
95 }
96
97 /* Parse up to a comma (or to a closeparen)
98 in the string EXPP as an expression, evaluate it, and return the value.
99 EXPP is advanced to point to the comma. */
100
101 struct value *
102 parse_to_comma_and_eval (const char **expp)
103 {
104 expression_up expr = parse_exp_1 (expp, 0, nullptr, 1);
105
106 return evaluate_expression (expr.get ());
107 }
108 \f
109
110 /* See expression.h. */
111
112 struct value *
113 expression::evaluate (struct type *expect_type, enum noside noside)
114 {
115 gdb::optional<enable_thread_stack_temporaries> stack_temporaries;
116 if (target_has_execution ()
117 && language_defn->la_language == language_cplus
118 && !thread_stack_temporaries_enabled_p (inferior_thread ()))
119 stack_temporaries.emplace (inferior_thread ());
120
121 int pos = 0;
122 struct value *retval = evaluate_subexp (expect_type, this, &pos, noside);
123
124 if (stack_temporaries.has_value ()
125 && value_in_thread_stack_temporaries (retval, inferior_thread ()))
126 retval = value_non_lval (retval);
127
128 return retval;
129 }
130
131 /* See value.h. */
132
133 struct value *
134 evaluate_expression (struct expression *exp, struct type *expect_type)
135 {
136 return exp->evaluate (expect_type, EVAL_NORMAL);
137 }
138
139 /* Evaluate an expression, avoiding all memory references
140 and getting a value whose type alone is correct. */
141
142 struct value *
143 evaluate_type (struct expression *exp)
144 {
145 return exp->evaluate (nullptr, EVAL_AVOID_SIDE_EFFECTS);
146 }
147
148 /* Evaluate a subexpression, avoiding all memory references and
149 getting a value whose type alone is correct. */
150
151 struct value *
152 evaluate_subexpression_type (struct expression *exp, int subexp)
153 {
154 return evaluate_subexp (nullptr, exp, &subexp, EVAL_AVOID_SIDE_EFFECTS);
155 }
156
157 /* Find the current value of a watchpoint on EXP. Return the value in
158 *VALP and *RESULTP and the chain of intermediate and final values
159 in *VAL_CHAIN. RESULTP and VAL_CHAIN may be NULL if the caller does
160 not need them.
161
162 If PRESERVE_ERRORS is true, then exceptions are passed through.
163 Otherwise, if PRESERVE_ERRORS is false, then if a memory error
164 occurs while evaluating the expression, *RESULTP will be set to
165 NULL. *RESULTP may be a lazy value, if the result could not be
166 read from memory. It is used to determine whether a value is
167 user-specified (we should watch the whole value) or intermediate
168 (we should watch only the bit used to locate the final value).
169
170 If the final value, or any intermediate value, could not be read
171 from memory, *VALP will be set to NULL. *VAL_CHAIN will still be
172 set to any referenced values. *VALP will never be a lazy value.
173 This is the value which we store in struct breakpoint.
174
175 If VAL_CHAIN is non-NULL, the values put into *VAL_CHAIN will be
176 released from the value chain. If VAL_CHAIN is NULL, all generated
177 values will be left on the value chain. */
178
179 void
180 fetch_subexp_value (struct expression *exp, int *pc, struct value **valp,
181 struct value **resultp,
182 std::vector<value_ref_ptr> *val_chain,
183 bool preserve_errors)
184 {
185 struct value *mark, *new_mark, *result;
186
187 *valp = NULL;
188 if (resultp)
189 *resultp = NULL;
190 if (val_chain)
191 val_chain->clear ();
192
193 /* Evaluate the expression. */
194 mark = value_mark ();
195 result = NULL;
196
197 try
198 {
199 result = evaluate_subexp (nullptr, exp, pc, EVAL_NORMAL);
200 }
201 catch (const gdb_exception &ex)
202 {
203 /* Ignore memory errors if we want watchpoints pointing at
204 inaccessible memory to still be created; otherwise, throw the
205 error to some higher catcher. */
206 switch (ex.error)
207 {
208 case MEMORY_ERROR:
209 if (!preserve_errors)
210 break;
211 /* Fall through. */
212 default:
213 throw;
214 break;
215 }
216 }
217
218 new_mark = value_mark ();
219 if (mark == new_mark)
220 return;
221 if (resultp)
222 *resultp = result;
223
224 /* Make sure it's not lazy, so that after the target stops again we
225 have a non-lazy previous value to compare with. */
226 if (result != NULL)
227 {
228 if (!value_lazy (result))
229 *valp = result;
230 else
231 {
232
233 try
234 {
235 value_fetch_lazy (result);
236 *valp = result;
237 }
238 catch (const gdb_exception_error &except)
239 {
240 }
241 }
242 }
243
244 if (val_chain)
245 {
246 /* Return the chain of intermediate values. We use this to
247 decide which addresses to watch. */
248 *val_chain = value_release_to_mark (mark);
249 }
250 }
251
252 /* Extract a field operation from an expression. If the subexpression
253 of EXP starting at *SUBEXP is not a structure dereference
254 operation, return NULL. Otherwise, return the name of the
255 dereferenced field, and advance *SUBEXP to point to the
256 subexpression of the left-hand-side of the dereference. This is
257 used when completing field names. */
258
259 const char *
260 extract_field_op (struct expression *exp, int *subexp)
261 {
262 int tem;
263 char *result;
264
265 if (exp->elts[*subexp].opcode != STRUCTOP_STRUCT
266 && exp->elts[*subexp].opcode != STRUCTOP_PTR)
267 return NULL;
268 tem = longest_to_int (exp->elts[*subexp + 1].longconst);
269 result = &exp->elts[*subexp + 2].string;
270 (*subexp) += 1 + 3 + BYTES_TO_EXP_ELEM (tem + 1);
271 return result;
272 }
273
274 /* This function evaluates brace-initializers (in C/C++) for
275 structure types. */
276
277 static struct value *
278 evaluate_struct_tuple (struct value *struct_val,
279 struct expression *exp,
280 int *pos, enum noside noside, int nargs)
281 {
282 struct type *struct_type = check_typedef (value_type (struct_val));
283 struct type *field_type;
284 int fieldno = -1;
285
286 while (--nargs >= 0)
287 {
288 struct value *val = NULL;
289 int bitpos, bitsize;
290 bfd_byte *addr;
291
292 fieldno++;
293 /* Skip static fields. */
294 while (fieldno < struct_type->num_fields ()
295 && field_is_static (&struct_type->field (fieldno)))
296 fieldno++;
297 if (fieldno >= struct_type->num_fields ())
298 error (_("too many initializers"));
299 field_type = struct_type->field (fieldno).type ();
300 if (field_type->code () == TYPE_CODE_UNION
301 && TYPE_FIELD_NAME (struct_type, fieldno)[0] == '0')
302 error (_("don't know which variant you want to set"));
303
304 /* Here, struct_type is the type of the inner struct,
305 while substruct_type is the type of the inner struct.
306 These are the same for normal structures, but a variant struct
307 contains anonymous union fields that contain substruct fields.
308 The value fieldno is the index of the top-level (normal or
309 anonymous union) field in struct_field, while the value
310 subfieldno is the index of the actual real (named inner) field
311 in substruct_type. */
312
313 field_type = struct_type->field (fieldno).type ();
314 if (val == 0)
315 val = evaluate_subexp (field_type, exp, pos, noside);
316
317 /* Now actually set the field in struct_val. */
318
319 /* Assign val to field fieldno. */
320 if (value_type (val) != field_type)
321 val = value_cast (field_type, val);
322
323 bitsize = TYPE_FIELD_BITSIZE (struct_type, fieldno);
324 bitpos = TYPE_FIELD_BITPOS (struct_type, fieldno);
325 addr = value_contents_writeable (struct_val) + bitpos / 8;
326 if (bitsize)
327 modify_field (struct_type, addr,
328 value_as_long (val), bitpos % 8, bitsize);
329 else
330 memcpy (addr, value_contents (val),
331 TYPE_LENGTH (value_type (val)));
332
333 }
334 return struct_val;
335 }
336
337 /* Promote value ARG1 as appropriate before performing a unary operation
338 on this argument.
339 If the result is not appropriate for any particular language then it
340 needs to patch this function. */
341
342 void
343 unop_promote (const struct language_defn *language, struct gdbarch *gdbarch,
344 struct value **arg1)
345 {
346 struct type *type1;
347
348 *arg1 = coerce_ref (*arg1);
349 type1 = check_typedef (value_type (*arg1));
350
351 if (is_integral_type (type1))
352 {
353 switch (language->la_language)
354 {
355 default:
356 /* Perform integral promotion for ANSI C/C++.
357 If not appropriate for any particular language
358 it needs to modify this function. */
359 {
360 struct type *builtin_int = builtin_type (gdbarch)->builtin_int;
361
362 if (TYPE_LENGTH (type1) < TYPE_LENGTH (builtin_int))
363 *arg1 = value_cast (builtin_int, *arg1);
364 }
365 break;
366 }
367 }
368 }
369
370 /* Promote values ARG1 and ARG2 as appropriate before performing a binary
371 operation on those two operands.
372 If the result is not appropriate for any particular language then it
373 needs to patch this function. */
374
375 void
376 binop_promote (const struct language_defn *language, struct gdbarch *gdbarch,
377 struct value **arg1, struct value **arg2)
378 {
379 struct type *promoted_type = NULL;
380 struct type *type1;
381 struct type *type2;
382
383 *arg1 = coerce_ref (*arg1);
384 *arg2 = coerce_ref (*arg2);
385
386 type1 = check_typedef (value_type (*arg1));
387 type2 = check_typedef (value_type (*arg2));
388
389 if ((type1->code () != TYPE_CODE_FLT
390 && type1->code () != TYPE_CODE_DECFLOAT
391 && !is_integral_type (type1))
392 || (type2->code () != TYPE_CODE_FLT
393 && type2->code () != TYPE_CODE_DECFLOAT
394 && !is_integral_type (type2)))
395 return;
396
397 if (is_fixed_point_type (type1) || is_fixed_point_type (type2))
398 return;
399
400 if (type1->code () == TYPE_CODE_DECFLOAT
401 || type2->code () == TYPE_CODE_DECFLOAT)
402 {
403 /* No promotion required. */
404 }
405 else if (type1->code () == TYPE_CODE_FLT
406 || type2->code () == TYPE_CODE_FLT)
407 {
408 switch (language->la_language)
409 {
410 case language_c:
411 case language_cplus:
412 case language_asm:
413 case language_objc:
414 case language_opencl:
415 /* No promotion required. */
416 break;
417
418 default:
419 /* For other languages the result type is unchanged from gdb
420 version 6.7 for backward compatibility.
421 If either arg was long double, make sure that value is also long
422 double. Otherwise use double. */
423 if (TYPE_LENGTH (type1) * 8 > gdbarch_double_bit (gdbarch)
424 || TYPE_LENGTH (type2) * 8 > gdbarch_double_bit (gdbarch))
425 promoted_type = builtin_type (gdbarch)->builtin_long_double;
426 else
427 promoted_type = builtin_type (gdbarch)->builtin_double;
428 break;
429 }
430 }
431 else if (type1->code () == TYPE_CODE_BOOL
432 && type2->code () == TYPE_CODE_BOOL)
433 {
434 /* No promotion required. */
435 }
436 else
437 /* Integral operations here. */
438 /* FIXME: Also mixed integral/booleans, with result an integer. */
439 {
440 const struct builtin_type *builtin = builtin_type (gdbarch);
441 unsigned int promoted_len1 = TYPE_LENGTH (type1);
442 unsigned int promoted_len2 = TYPE_LENGTH (type2);
443 int is_unsigned1 = type1->is_unsigned ();
444 int is_unsigned2 = type2->is_unsigned ();
445 unsigned int result_len;
446 int unsigned_operation;
447
448 /* Determine type length and signedness after promotion for
449 both operands. */
450 if (promoted_len1 < TYPE_LENGTH (builtin->builtin_int))
451 {
452 is_unsigned1 = 0;
453 promoted_len1 = TYPE_LENGTH (builtin->builtin_int);
454 }
455 if (promoted_len2 < TYPE_LENGTH (builtin->builtin_int))
456 {
457 is_unsigned2 = 0;
458 promoted_len2 = TYPE_LENGTH (builtin->builtin_int);
459 }
460
461 if (promoted_len1 > promoted_len2)
462 {
463 unsigned_operation = is_unsigned1;
464 result_len = promoted_len1;
465 }
466 else if (promoted_len2 > promoted_len1)
467 {
468 unsigned_operation = is_unsigned2;
469 result_len = promoted_len2;
470 }
471 else
472 {
473 unsigned_operation = is_unsigned1 || is_unsigned2;
474 result_len = promoted_len1;
475 }
476
477 switch (language->la_language)
478 {
479 case language_c:
480 case language_cplus:
481 case language_asm:
482 case language_objc:
483 if (result_len <= TYPE_LENGTH (builtin->builtin_int))
484 {
485 promoted_type = (unsigned_operation
486 ? builtin->builtin_unsigned_int
487 : builtin->builtin_int);
488 }
489 else if (result_len <= TYPE_LENGTH (builtin->builtin_long))
490 {
491 promoted_type = (unsigned_operation
492 ? builtin->builtin_unsigned_long
493 : builtin->builtin_long);
494 }
495 else
496 {
497 promoted_type = (unsigned_operation
498 ? builtin->builtin_unsigned_long_long
499 : builtin->builtin_long_long);
500 }
501 break;
502 case language_opencl:
503 if (result_len <= TYPE_LENGTH (lookup_signed_typename
504 (language, "int")))
505 {
506 promoted_type =
507 (unsigned_operation
508 ? lookup_unsigned_typename (language, "int")
509 : lookup_signed_typename (language, "int"));
510 }
511 else if (result_len <= TYPE_LENGTH (lookup_signed_typename
512 (language, "long")))
513 {
514 promoted_type =
515 (unsigned_operation
516 ? lookup_unsigned_typename (language, "long")
517 : lookup_signed_typename (language,"long"));
518 }
519 break;
520 default:
521 /* For other languages the result type is unchanged from gdb
522 version 6.7 for backward compatibility.
523 If either arg was long long, make sure that value is also long
524 long. Otherwise use long. */
525 if (unsigned_operation)
526 {
527 if (result_len > gdbarch_long_bit (gdbarch) / HOST_CHAR_BIT)
528 promoted_type = builtin->builtin_unsigned_long_long;
529 else
530 promoted_type = builtin->builtin_unsigned_long;
531 }
532 else
533 {
534 if (result_len > gdbarch_long_bit (gdbarch) / HOST_CHAR_BIT)
535 promoted_type = builtin->builtin_long_long;
536 else
537 promoted_type = builtin->builtin_long;
538 }
539 break;
540 }
541 }
542
543 if (promoted_type)
544 {
545 /* Promote both operands to common type. */
546 *arg1 = value_cast (promoted_type, *arg1);
547 *arg2 = value_cast (promoted_type, *arg2);
548 }
549 }
550
551 static int
552 ptrmath_type_p (const struct language_defn *lang, struct type *type)
553 {
554 type = check_typedef (type);
555 if (TYPE_IS_REFERENCE (type))
556 type = TYPE_TARGET_TYPE (type);
557
558 switch (type->code ())
559 {
560 case TYPE_CODE_PTR:
561 case TYPE_CODE_FUNC:
562 return 1;
563
564 case TYPE_CODE_ARRAY:
565 return type->is_vector () ? 0 : lang->c_style_arrays_p ();
566
567 default:
568 return 0;
569 }
570 }
571
572 /* Represents a fake method with the given parameter types. This is
573 used by the parser to construct a temporary "expected" type for
574 method overload resolution. FLAGS is used as instance flags of the
575 new type, in order to be able to make the new type represent a
576 const/volatile overload. */
577
578 class fake_method
579 {
580 public:
581 fake_method (type_instance_flags flags,
582 int num_types, struct type **param_types);
583 ~fake_method ();
584
585 /* The constructed type. */
586 struct type *type () { return &m_type; }
587
588 private:
589 struct type m_type {};
590 main_type m_main_type {};
591 };
592
593 fake_method::fake_method (type_instance_flags flags,
594 int num_types, struct type **param_types)
595 {
596 struct type *type = &m_type;
597
598 TYPE_MAIN_TYPE (type) = &m_main_type;
599 TYPE_LENGTH (type) = 1;
600 type->set_code (TYPE_CODE_METHOD);
601 TYPE_CHAIN (type) = type;
602 type->set_instance_flags (flags);
603 if (num_types > 0)
604 {
605 if (param_types[num_types - 1] == NULL)
606 {
607 --num_types;
608 type->set_has_varargs (true);
609 }
610 else if (check_typedef (param_types[num_types - 1])->code ()
611 == TYPE_CODE_VOID)
612 {
613 --num_types;
614 /* Caller should have ensured this. */
615 gdb_assert (num_types == 0);
616 type->set_is_prototyped (true);
617 }
618 }
619
620 /* We don't use TYPE_ZALLOC here to allocate space as TYPE is owned by
621 neither an objfile nor a gdbarch. As a result we must manually
622 allocate memory for auxiliary fields, and free the memory ourselves
623 when we are done with it. */
624 type->set_num_fields (num_types);
625 type->set_fields
626 ((struct field *) xzalloc (sizeof (struct field) * num_types));
627
628 while (num_types-- > 0)
629 type->field (num_types).set_type (param_types[num_types]);
630 }
631
632 fake_method::~fake_method ()
633 {
634 xfree (m_type.fields ());
635 }
636
637 /* Helper for evaluating an OP_VAR_VALUE. */
638
639 value *
640 evaluate_var_value (enum noside noside, const block *blk, symbol *var)
641 {
642 /* JYG: We used to just return value_zero of the symbol type if
643 we're asked to avoid side effects. Otherwise we return
644 value_of_variable (...). However I'm not sure if
645 value_of_variable () has any side effect. We need a full value
646 object returned here for whatis_exp () to call evaluate_type ()
647 and then pass the full value to value_rtti_target_type () if we
648 are dealing with a pointer or reference to a base class and print
649 object is on. */
650
651 struct value *ret = NULL;
652
653 try
654 {
655 ret = value_of_variable (var, blk);
656 }
657
658 catch (const gdb_exception_error &except)
659 {
660 if (noside != EVAL_AVOID_SIDE_EFFECTS)
661 throw;
662
663 ret = value_zero (SYMBOL_TYPE (var), not_lval);
664 }
665
666 return ret;
667 }
668
669 /* Helper for evaluating an OP_VAR_MSYM_VALUE. */
670
671 value *
672 evaluate_var_msym_value (enum noside noside,
673 struct objfile *objfile, minimal_symbol *msymbol)
674 {
675 CORE_ADDR address;
676 type *the_type = find_minsym_type_and_address (msymbol, objfile, &address);
677
678 if (noside == EVAL_AVOID_SIDE_EFFECTS && !the_type->is_gnu_ifunc ())
679 return value_zero (the_type, not_lval);
680 else
681 return value_at_lazy (the_type, address);
682 }
683
684 /* Helper for returning a value when handling EVAL_SKIP. */
685
686 value *
687 eval_skip_value (expression *exp)
688 {
689 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
690 }
691
692 /* See expression.h. */
693
694 value *
695 evaluate_subexp_do_call (expression *exp, enum noside noside,
696 value *callee,
697 gdb::array_view<value *> argvec,
698 const char *function_name,
699 type *default_return_type)
700 {
701 if (callee == NULL)
702 error (_("Cannot evaluate function -- may be inlined"));
703 if (noside == EVAL_AVOID_SIDE_EFFECTS)
704 {
705 /* If the return type doesn't look like a function type,
706 call an error. This can happen if somebody tries to turn
707 a variable into a function call. */
708
709 type *ftype = value_type (callee);
710
711 if (ftype->code () == TYPE_CODE_INTERNAL_FUNCTION)
712 {
713 /* We don't know anything about what the internal
714 function might return, but we have to return
715 something. */
716 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
717 not_lval);
718 }
719 else if (ftype->code () == TYPE_CODE_XMETHOD)
720 {
721 type *return_type = result_type_of_xmethod (callee, argvec);
722
723 if (return_type == NULL)
724 error (_("Xmethod is missing return type."));
725 return value_zero (return_type, not_lval);
726 }
727 else if (ftype->code () == TYPE_CODE_FUNC
728 || ftype->code () == TYPE_CODE_METHOD)
729 {
730 if (ftype->is_gnu_ifunc ())
731 {
732 CORE_ADDR address = value_address (callee);
733 type *resolved_type = find_gnu_ifunc_target_type (address);
734
735 if (resolved_type != NULL)
736 ftype = resolved_type;
737 }
738
739 type *return_type = TYPE_TARGET_TYPE (ftype);
740
741 if (return_type == NULL)
742 return_type = default_return_type;
743
744 if (return_type == NULL)
745 error_call_unknown_return_type (function_name);
746
747 return allocate_value (return_type);
748 }
749 else
750 error (_("Expression of type other than "
751 "\"Function returning ...\" used as function"));
752 }
753 switch (value_type (callee)->code ())
754 {
755 case TYPE_CODE_INTERNAL_FUNCTION:
756 return call_internal_function (exp->gdbarch, exp->language_defn,
757 callee, argvec.size (), argvec.data ());
758 case TYPE_CODE_XMETHOD:
759 return call_xmethod (callee, argvec);
760 default:
761 return call_function_by_hand (callee, default_return_type, argvec);
762 }
763 }
764
765 /* Helper for evaluating an OP_FUNCALL. */
766
767 static value *
768 evaluate_funcall (type *expect_type, expression *exp, int *pos,
769 enum noside noside)
770 {
771 int tem;
772 int pc2 = 0;
773 value *arg1 = NULL;
774 value *arg2 = NULL;
775 int save_pos1;
776 symbol *function = NULL;
777 char *function_name = NULL;
778 const char *var_func_name = NULL;
779
780 int pc = (*pos);
781 (*pos) += 2;
782
783 exp_opcode op = exp->elts[*pos].opcode;
784 int nargs = longest_to_int (exp->elts[pc].longconst);
785 /* Allocate arg vector, including space for the function to be
786 called in argvec[0], a potential `this', and a terminating
787 NULL. */
788 value **argvec = (value **) alloca (sizeof (value *) * (nargs + 3));
789 if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR)
790 {
791 /* First, evaluate the structure into arg2. */
792 pc2 = (*pos)++;
793
794 if (op == STRUCTOP_MEMBER)
795 {
796 arg2 = evaluate_subexp_for_address (exp, pos, noside);
797 }
798 else
799 {
800 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
801 }
802
803 /* If the function is a virtual function, then the aggregate
804 value (providing the structure) plays its part by providing
805 the vtable. Otherwise, it is just along for the ride: call
806 the function directly. */
807
808 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
809
810 type *a1_type = check_typedef (value_type (arg1));
811 if (noside == EVAL_SKIP)
812 tem = 1; /* Set it to the right arg index so that all
813 arguments can also be skipped. */
814 else if (a1_type->code () == TYPE_CODE_METHODPTR)
815 {
816 if (noside == EVAL_AVOID_SIDE_EFFECTS)
817 arg1 = value_zero (TYPE_TARGET_TYPE (a1_type), not_lval);
818 else
819 arg1 = cplus_method_ptr_to_value (&arg2, arg1);
820
821 /* Now, say which argument to start evaluating from. */
822 nargs++;
823 tem = 2;
824 argvec[1] = arg2;
825 }
826 else if (a1_type->code () == TYPE_CODE_MEMBERPTR)
827 {
828 struct type *type_ptr
829 = lookup_pointer_type (TYPE_SELF_TYPE (a1_type));
830 struct type *target_type_ptr
831 = lookup_pointer_type (TYPE_TARGET_TYPE (a1_type));
832
833 /* Now, convert these values to an address. */
834 arg2 = value_cast (type_ptr, arg2);
835
836 long mem_offset = value_as_long (arg1);
837
838 arg1 = value_from_pointer (target_type_ptr,
839 value_as_long (arg2) + mem_offset);
840 arg1 = value_ind (arg1);
841 tem = 1;
842 }
843 else
844 error (_("Non-pointer-to-member value used in pointer-to-member "
845 "construct"));
846 }
847 else if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR)
848 {
849 /* Hair for method invocations. */
850 int tem2;
851
852 nargs++;
853 /* First, evaluate the structure into arg2. */
854 pc2 = (*pos)++;
855 tem2 = longest_to_int (exp->elts[pc2 + 1].longconst);
856 *pos += 3 + BYTES_TO_EXP_ELEM (tem2 + 1);
857
858 if (op == STRUCTOP_STRUCT)
859 {
860 /* If v is a variable in a register, and the user types
861 v.method (), this will produce an error, because v has no
862 address.
863
864 A possible way around this would be to allocate a copy of
865 the variable on the stack, copy in the contents, call the
866 function, and copy out the contents. I.e. convert this
867 from call by reference to call by copy-return (or
868 whatever it's called). However, this does not work
869 because it is not the same: the method being called could
870 stash a copy of the address, and then future uses through
871 that address (after the method returns) would be expected
872 to use the variable itself, not some copy of it. */
873 arg2 = evaluate_subexp_for_address (exp, pos, noside);
874 }
875 else
876 {
877 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
878
879 /* Check to see if the operator '->' has been overloaded.
880 If the operator has been overloaded replace arg2 with the
881 value returned by the custom operator and continue
882 evaluation. */
883 while (unop_user_defined_p (op, arg2))
884 {
885 struct value *value = NULL;
886 try
887 {
888 value = value_x_unop (arg2, op, noside);
889 }
890
891 catch (const gdb_exception_error &except)
892 {
893 if (except.error == NOT_FOUND_ERROR)
894 break;
895 else
896 throw;
897 }
898
899 arg2 = value;
900 }
901 }
902 /* Now, say which argument to start evaluating from. */
903 tem = 2;
904 }
905 else if (op == OP_SCOPE
906 && overload_resolution
907 && (exp->language_defn->la_language == language_cplus))
908 {
909 /* Unpack it locally so we can properly handle overload
910 resolution. */
911 char *name;
912 int local_tem;
913
914 pc2 = (*pos)++;
915 local_tem = longest_to_int (exp->elts[pc2 + 2].longconst);
916 (*pos) += 4 + BYTES_TO_EXP_ELEM (local_tem + 1);
917 struct type *type = exp->elts[pc2 + 1].type;
918 name = &exp->elts[pc2 + 3].string;
919
920 function = NULL;
921 function_name = NULL;
922 if (type->code () == TYPE_CODE_NAMESPACE)
923 {
924 function = cp_lookup_symbol_namespace (type->name (),
925 name,
926 get_selected_block (0),
927 VAR_DOMAIN).symbol;
928 if (function == NULL)
929 error (_("No symbol \"%s\" in namespace \"%s\"."),
930 name, type->name ());
931
932 tem = 1;
933 /* arg2 is left as NULL on purpose. */
934 }
935 else
936 {
937 gdb_assert (type->code () == TYPE_CODE_STRUCT
938 || type->code () == TYPE_CODE_UNION);
939 function_name = name;
940
941 /* We need a properly typed value for method lookup. For
942 static methods arg2 is otherwise unused. */
943 arg2 = value_zero (type, lval_memory);
944 ++nargs;
945 tem = 2;
946 }
947 }
948 else if (op == OP_ADL_FUNC)
949 {
950 /* Save the function position and move pos so that the arguments
951 can be evaluated. */
952 int func_name_len;
953
954 save_pos1 = *pos;
955 tem = 1;
956
957 func_name_len = longest_to_int (exp->elts[save_pos1 + 3].longconst);
958 (*pos) += 6 + BYTES_TO_EXP_ELEM (func_name_len + 1);
959 }
960 else
961 {
962 /* Non-method function call. */
963 save_pos1 = *pos;
964 tem = 1;
965
966 /* If this is a C++ function wait until overload resolution. */
967 if (op == OP_VAR_VALUE
968 && overload_resolution
969 && (exp->language_defn->la_language == language_cplus))
970 {
971 (*pos) += 4; /* Skip the evaluation of the symbol. */
972 argvec[0] = NULL;
973 }
974 else
975 {
976 if (op == OP_VAR_MSYM_VALUE)
977 {
978 minimal_symbol *msym = exp->elts[*pos + 2].msymbol;
979 var_func_name = msym->print_name ();
980 }
981 else if (op == OP_VAR_VALUE)
982 {
983 symbol *sym = exp->elts[*pos + 2].symbol;
984 var_func_name = sym->print_name ();
985 }
986
987 argvec[0] = evaluate_subexp_with_coercion (exp, pos, noside);
988 type *type = value_type (argvec[0]);
989 if (type && type->code () == TYPE_CODE_PTR)
990 type = TYPE_TARGET_TYPE (type);
991 if (type && type->code () == TYPE_CODE_FUNC)
992 {
993 for (; tem <= nargs && tem <= type->num_fields (); tem++)
994 {
995 argvec[tem] = evaluate_subexp (type->field (tem - 1).type (),
996 exp, pos, noside);
997 }
998 }
999 }
1000 }
1001
1002 /* Evaluate arguments (if not already done, e.g., namespace::func()
1003 and overload-resolution is off). */
1004 for (; tem <= nargs; tem++)
1005 {
1006 /* Ensure that array expressions are coerced into pointer
1007 objects. */
1008 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1009 }
1010
1011 /* Signal end of arglist. */
1012 argvec[tem] = 0;
1013
1014 if (noside == EVAL_SKIP)
1015 return eval_skip_value (exp);
1016
1017 if (op == OP_ADL_FUNC)
1018 {
1019 struct symbol *symp;
1020 char *func_name;
1021 int name_len;
1022 int string_pc = save_pos1 + 3;
1023
1024 /* Extract the function name. */
1025 name_len = longest_to_int (exp->elts[string_pc].longconst);
1026 func_name = (char *) alloca (name_len + 1);
1027 strcpy (func_name, &exp->elts[string_pc + 1].string);
1028
1029 find_overload_match (gdb::make_array_view (&argvec[1], nargs),
1030 func_name,
1031 NON_METHOD, /* not method */
1032 NULL, NULL, /* pass NULL symbol since
1033 symbol is unknown */
1034 NULL, &symp, NULL, 0, noside);
1035
1036 /* Now fix the expression being evaluated. */
1037 exp->elts[save_pos1 + 2].symbol = symp;
1038 argvec[0] = evaluate_subexp_with_coercion (exp, &save_pos1, noside);
1039 }
1040
1041 if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR
1042 || (op == OP_SCOPE && function_name != NULL))
1043 {
1044 int static_memfuncp;
1045 char *tstr;
1046
1047 /* Method invocation: stuff "this" as first parameter. If the
1048 method turns out to be static we undo this below. */
1049 argvec[1] = arg2;
1050
1051 if (op != OP_SCOPE)
1052 {
1053 /* Name of method from expression. */
1054 tstr = &exp->elts[pc2 + 2].string;
1055 }
1056 else
1057 tstr = function_name;
1058
1059 if (overload_resolution && (exp->language_defn->la_language
1060 == language_cplus))
1061 {
1062 /* Language is C++, do some overload resolution before
1063 evaluation. */
1064 struct value *valp = NULL;
1065
1066 (void) find_overload_match (gdb::make_array_view (&argvec[1], nargs),
1067 tstr,
1068 METHOD, /* method */
1069 &arg2, /* the object */
1070 NULL, &valp, NULL,
1071 &static_memfuncp, 0, noside);
1072
1073 if (op == OP_SCOPE && !static_memfuncp)
1074 {
1075 /* For the time being, we don't handle this. */
1076 error (_("Call to overloaded function %s requires "
1077 "`this' pointer"),
1078 function_name);
1079 }
1080 argvec[1] = arg2; /* the ``this'' pointer */
1081 argvec[0] = valp; /* Use the method found after overload
1082 resolution. */
1083 }
1084 else
1085 /* Non-C++ case -- or no overload resolution. */
1086 {
1087 struct value *temp = arg2;
1088
1089 argvec[0] = value_struct_elt (&temp, argvec + 1, tstr,
1090 &static_memfuncp,
1091 op == STRUCTOP_STRUCT
1092 ? "structure" : "structure pointer");
1093 /* value_struct_elt updates temp with the correct value of
1094 the ``this'' pointer if necessary, so modify argvec[1] to
1095 reflect any ``this'' changes. */
1096 arg2
1097 = value_from_longest (lookup_pointer_type(value_type (temp)),
1098 value_address (temp)
1099 + value_embedded_offset (temp));
1100 argvec[1] = arg2; /* the ``this'' pointer */
1101 }
1102
1103 /* Take out `this' if needed. */
1104 if (static_memfuncp)
1105 {
1106 argvec[1] = argvec[0];
1107 nargs--;
1108 argvec++;
1109 }
1110 }
1111 else if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR)
1112 {
1113 /* Pointer to member. argvec[1] is already set up. */
1114 argvec[0] = arg1;
1115 }
1116 else if (op == OP_VAR_VALUE || (op == OP_SCOPE && function != NULL))
1117 {
1118 /* Non-member function being called. */
1119 /* fn: This can only be done for C++ functions. A C-style
1120 function in a C++ program, for instance, does not have the
1121 fields that are expected here. */
1122
1123 if (overload_resolution && (exp->language_defn->la_language
1124 == language_cplus))
1125 {
1126 /* Language is C++, do some overload resolution before
1127 evaluation. */
1128 struct symbol *symp;
1129 int no_adl = 0;
1130
1131 /* If a scope has been specified disable ADL. */
1132 if (op == OP_SCOPE)
1133 no_adl = 1;
1134
1135 if (op == OP_VAR_VALUE)
1136 function = exp->elts[save_pos1+2].symbol;
1137
1138 (void) find_overload_match (gdb::make_array_view (&argvec[1], nargs),
1139 NULL, /* no need for name */
1140 NON_METHOD, /* not method */
1141 NULL, function, /* the function */
1142 NULL, &symp, NULL, no_adl, noside);
1143
1144 if (op == OP_VAR_VALUE)
1145 {
1146 /* Now fix the expression being evaluated. */
1147 exp->elts[save_pos1+2].symbol = symp;
1148 argvec[0] = evaluate_subexp_with_coercion (exp, &save_pos1,
1149 noside);
1150 }
1151 else
1152 argvec[0] = value_of_variable (symp, get_selected_block (0));
1153 }
1154 else
1155 {
1156 /* Not C++, or no overload resolution allowed. */
1157 /* Nothing to be done; argvec already correctly set up. */
1158 }
1159 }
1160 else
1161 {
1162 /* It is probably a C-style function. */
1163 /* Nothing to be done; argvec already correctly set up. */
1164 }
1165
1166 return evaluate_subexp_do_call (exp, noside, argvec[0],
1167 gdb::make_array_view (argvec + 1, nargs),
1168 var_func_name, expect_type);
1169 }
1170
1171 /* Return true if type is integral or reference to integral */
1172
1173 static bool
1174 is_integral_or_integral_reference (struct type *type)
1175 {
1176 if (is_integral_type (type))
1177 return true;
1178
1179 type = check_typedef (type);
1180 return (type != nullptr
1181 && TYPE_IS_REFERENCE (type)
1182 && is_integral_type (TYPE_TARGET_TYPE (type)));
1183 }
1184
1185 /* Helper function that implements the body of OP_SCOPE. */
1186
1187 static struct value *
1188 eval_op_scope (struct type *expect_type, struct expression *exp,
1189 enum noside noside,
1190 struct type *type, const char *string)
1191 {
1192 if (noside == EVAL_SKIP)
1193 return eval_skip_value (exp);
1194 struct value *arg1 = value_aggregate_elt (type, string, expect_type,
1195 0, noside);
1196 if (arg1 == NULL)
1197 error (_("There is no field named %s"), string);
1198 return arg1;
1199 }
1200
1201 /* Helper function that implements the body of OP_VAR_ENTRY_VALUE. */
1202
1203 static struct value *
1204 eval_op_var_entry_value (struct type *expect_type, struct expression *exp,
1205 enum noside noside, symbol *sym)
1206 {
1207 if (noside == EVAL_SKIP)
1208 return eval_skip_value (exp);
1209 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1210 return value_zero (SYMBOL_TYPE (sym), not_lval);
1211
1212 if (SYMBOL_COMPUTED_OPS (sym) == NULL
1213 || SYMBOL_COMPUTED_OPS (sym)->read_variable_at_entry == NULL)
1214 error (_("Symbol \"%s\" does not have any specific entry value"),
1215 sym->print_name ());
1216
1217 struct frame_info *frame = get_selected_frame (NULL);
1218 return SYMBOL_COMPUTED_OPS (sym)->read_variable_at_entry (sym, frame);
1219 }
1220
1221 /* Helper function that implements the body of OP_VAR_MSYM_VALUE. */
1222
1223 static struct value *
1224 eval_op_var_msym_value (struct type *expect_type, struct expression *exp,
1225 enum noside noside, bool outermost_p,
1226 minimal_symbol *msymbol, struct objfile *objfile)
1227 {
1228 value *val = evaluate_var_msym_value (noside, objfile, msymbol);
1229
1230 struct type *type = value_type (val);
1231 if (type->code () == TYPE_CODE_ERROR
1232 && (noside != EVAL_AVOID_SIDE_EFFECTS || !outermost_p))
1233 error_unknown_type (msymbol->print_name ());
1234 return val;
1235 }
1236
1237 /* Helper function that implements the body of OP_FUNC_STATIC_VAR. */
1238
1239 static struct value *
1240 eval_op_func_static_var (struct type *expect_type, struct expression *exp,
1241 enum noside noside,
1242 value *func, const char *var)
1243 {
1244 if (noside == EVAL_SKIP)
1245 return eval_skip_value (exp);
1246 CORE_ADDR addr = value_address (func);
1247 const block *blk = block_for_pc (addr);
1248 struct block_symbol sym = lookup_symbol (var, blk, VAR_DOMAIN, NULL);
1249 if (sym.symbol == NULL)
1250 error (_("No symbol \"%s\" in specified context."), var);
1251 return evaluate_var_value (noside, sym.block, sym.symbol);
1252 }
1253
1254 /* Helper function that implements the body of OP_REGISTER. */
1255
1256 static struct value *
1257 eval_op_register (struct type *expect_type, struct expression *exp,
1258 enum noside noside, const char *name)
1259 {
1260 int regno;
1261 struct value *val;
1262
1263 regno = user_reg_map_name_to_regnum (exp->gdbarch,
1264 name, strlen (name));
1265 if (regno == -1)
1266 error (_("Register $%s not available."), name);
1267
1268 /* In EVAL_AVOID_SIDE_EFFECTS mode, we only need to return
1269 a value with the appropriate register type. Unfortunately,
1270 we don't have easy access to the type of user registers.
1271 So for these registers, we fetch the register value regardless
1272 of the evaluation mode. */
1273 if (noside == EVAL_AVOID_SIDE_EFFECTS
1274 && regno < gdbarch_num_cooked_regs (exp->gdbarch))
1275 val = value_zero (register_type (exp->gdbarch, regno), not_lval);
1276 else
1277 val = value_of_register (regno, get_selected_frame (NULL));
1278 if (val == NULL)
1279 error (_("Value of register %s not available."), name);
1280 else
1281 return val;
1282 }
1283
1284 /* Helper function that implements the body of OP_STRING. */
1285
1286 static struct value *
1287 eval_op_string (struct type *expect_type, struct expression *exp,
1288 enum noside noside, int len, const char *string)
1289 {
1290 if (noside == EVAL_SKIP)
1291 return eval_skip_value (exp);
1292 struct type *type = language_string_char_type (exp->language_defn,
1293 exp->gdbarch);
1294 return value_string (string, len, type);
1295 }
1296
1297 /* Helper function that implements the body of OP_OBJC_SELECTOR. */
1298
1299 static struct value *
1300 eval_op_objc_selector (struct type *expect_type, struct expression *exp,
1301 enum noside noside,
1302 const char *sel)
1303 {
1304 if (noside == EVAL_SKIP)
1305 return eval_skip_value (exp);
1306
1307 struct type *selector_type = builtin_type (exp->gdbarch)->builtin_data_ptr;
1308 return value_from_longest (selector_type,
1309 lookup_child_selector (exp->gdbarch, sel));
1310 }
1311
1312 /* Helper function that implements the body of BINOP_CONCAT. */
1313
1314 static struct value *
1315 eval_op_concat (struct type *expect_type, struct expression *exp,
1316 enum noside noside,
1317 enum exp_opcode op, struct value *arg1, struct value *arg2)
1318 {
1319 if (noside == EVAL_SKIP)
1320 return eval_skip_value (exp);
1321 if (binop_user_defined_p (op, arg1, arg2))
1322 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1323 else
1324 return value_concat (arg1, arg2);
1325 }
1326
1327 /* A helper function for TERNOP_SLICE. */
1328
1329 static struct value *
1330 eval_op_ternop (struct type *expect_type, struct expression *exp,
1331 enum noside noside,
1332 struct value *array, struct value *low, struct value *upper)
1333 {
1334 if (noside == EVAL_SKIP)
1335 return eval_skip_value (exp);
1336 int lowbound = value_as_long (low);
1337 int upperbound = value_as_long (upper);
1338 return value_slice (array, lowbound, upperbound - lowbound + 1);
1339 }
1340
1341 /* A helper function for STRUCTOP_STRUCT. */
1342
1343 static struct value *
1344 eval_op_structop_struct (struct type *expect_type, struct expression *exp,
1345 enum noside noside,
1346 struct value *arg1, const char *string)
1347 {
1348 if (noside == EVAL_SKIP)
1349 return eval_skip_value (exp);
1350 struct value *arg3 = value_struct_elt (&arg1, NULL, string,
1351 NULL, "structure");
1352 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1353 arg3 = value_zero (value_type (arg3), VALUE_LVAL (arg3));
1354 return arg3;
1355 }
1356
1357 /* A helper function for STRUCTOP_PTR. */
1358
1359 static struct value *
1360 eval_op_structop_ptr (struct type *expect_type, struct expression *exp,
1361 enum noside noside, enum exp_opcode op,
1362 struct value *arg1, const char *string)
1363 {
1364 if (noside == EVAL_SKIP)
1365 return eval_skip_value (exp);
1366
1367 /* Check to see if operator '->' has been overloaded. If so replace
1368 arg1 with the value returned by evaluating operator->(). */
1369 while (unop_user_defined_p (op, arg1))
1370 {
1371 struct value *value = NULL;
1372 try
1373 {
1374 value = value_x_unop (arg1, op, noside);
1375 }
1376
1377 catch (const gdb_exception_error &except)
1378 {
1379 if (except.error == NOT_FOUND_ERROR)
1380 break;
1381 else
1382 throw;
1383 }
1384
1385 arg1 = value;
1386 }
1387
1388 /* JYG: if print object is on we need to replace the base type
1389 with rtti type in order to continue on with successful
1390 lookup of member / method only available in the rtti type. */
1391 {
1392 struct type *arg_type = value_type (arg1);
1393 struct type *real_type;
1394 int full, using_enc;
1395 LONGEST top;
1396 struct value_print_options opts;
1397
1398 get_user_print_options (&opts);
1399 if (opts.objectprint && TYPE_TARGET_TYPE (arg_type)
1400 && (TYPE_TARGET_TYPE (arg_type)->code () == TYPE_CODE_STRUCT))
1401 {
1402 real_type = value_rtti_indirect_type (arg1, &full, &top,
1403 &using_enc);
1404 if (real_type)
1405 arg1 = value_cast (real_type, arg1);
1406 }
1407 }
1408
1409 struct value *arg3 = value_struct_elt (&arg1, NULL, string,
1410 NULL, "structure pointer");
1411 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1412 arg3 = value_zero (value_type (arg3), VALUE_LVAL (arg3));
1413 return arg3;
1414 }
1415
1416 /* A helper function for STRUCTOP_MEMBER. */
1417
1418 static struct value *
1419 eval_op_member (struct type *expect_type, struct expression *exp,
1420 enum noside noside,
1421 struct value *arg1, struct value *arg2)
1422 {
1423 long mem_offset;
1424
1425 if (noside == EVAL_SKIP)
1426 return eval_skip_value (exp);
1427
1428 struct value *arg3;
1429 struct type *type = check_typedef (value_type (arg2));
1430 switch (type->code ())
1431 {
1432 case TYPE_CODE_METHODPTR:
1433 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1434 return value_zero (TYPE_TARGET_TYPE (type), not_lval);
1435 else
1436 {
1437 arg2 = cplus_method_ptr_to_value (&arg1, arg2);
1438 gdb_assert (value_type (arg2)->code () == TYPE_CODE_PTR);
1439 return value_ind (arg2);
1440 }
1441
1442 case TYPE_CODE_MEMBERPTR:
1443 /* Now, convert these values to an address. */
1444 arg1 = value_cast_pointers (lookup_pointer_type (TYPE_SELF_TYPE (type)),
1445 arg1, 1);
1446
1447 mem_offset = value_as_long (arg2);
1448
1449 arg3 = value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
1450 value_as_long (arg1) + mem_offset);
1451 return value_ind (arg3);
1452
1453 default:
1454 error (_("non-pointer-to-member value used "
1455 "in pointer-to-member construct"));
1456 }
1457 }
1458
1459 /* A helper function for BINOP_ADD. */
1460
1461 static struct value *
1462 eval_op_add (struct type *expect_type, struct expression *exp,
1463 enum noside noside, enum exp_opcode op,
1464 struct value *arg1, struct value *arg2)
1465 {
1466 if (noside == EVAL_SKIP)
1467 return eval_skip_value (exp);
1468 if (binop_user_defined_p (op, arg1, arg2))
1469 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1470 else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
1471 && is_integral_or_integral_reference (value_type (arg2)))
1472 return value_ptradd (arg1, value_as_long (arg2));
1473 else if (ptrmath_type_p (exp->language_defn, value_type (arg2))
1474 && is_integral_or_integral_reference (value_type (arg1)))
1475 return value_ptradd (arg2, value_as_long (arg1));
1476 else
1477 {
1478 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1479 return value_binop (arg1, arg2, BINOP_ADD);
1480 }
1481 }
1482
1483 /* A helper function for BINOP_SUB. */
1484
1485 static struct value *
1486 eval_op_sub (struct type *expect_type, struct expression *exp,
1487 enum noside noside, enum exp_opcode op,
1488 struct value *arg1, struct value *arg2)
1489 {
1490 if (noside == EVAL_SKIP)
1491 return eval_skip_value (exp);
1492 if (binop_user_defined_p (op, arg1, arg2))
1493 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1494 else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
1495 && ptrmath_type_p (exp->language_defn, value_type (arg2)))
1496 {
1497 /* FIXME -- should be ptrdiff_t */
1498 struct type *type = builtin_type (exp->gdbarch)->builtin_long;
1499 return value_from_longest (type, value_ptrdiff (arg1, arg2));
1500 }
1501 else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
1502 && is_integral_or_integral_reference (value_type (arg2)))
1503 return value_ptradd (arg1, - value_as_long (arg2));
1504 else
1505 {
1506 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1507 return value_binop (arg1, arg2, BINOP_SUB);
1508 }
1509 }
1510
1511 /* Helper function for several different binary operations. */
1512
1513 static struct value *
1514 eval_op_binary (struct type *expect_type, struct expression *exp,
1515 enum noside noside, enum exp_opcode op,
1516 struct value *arg1, struct value *arg2)
1517 {
1518 if (noside == EVAL_SKIP)
1519 return eval_skip_value (exp);
1520 if (binop_user_defined_p (op, arg1, arg2))
1521 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1522 else
1523 {
1524 /* If EVAL_AVOID_SIDE_EFFECTS and we're dividing by zero,
1525 fudge arg2 to avoid division-by-zero, the caller is
1526 (theoretically) only looking for the type of the result. */
1527 if (noside == EVAL_AVOID_SIDE_EFFECTS
1528 /* ??? Do we really want to test for BINOP_MOD here?
1529 The implementation of value_binop gives it a well-defined
1530 value. */
1531 && (op == BINOP_DIV
1532 || op == BINOP_INTDIV
1533 || op == BINOP_REM
1534 || op == BINOP_MOD)
1535 && value_logical_not (arg2))
1536 {
1537 struct value *v_one;
1538
1539 v_one = value_one (value_type (arg2));
1540 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &v_one);
1541 return value_binop (arg1, v_one, op);
1542 }
1543 else
1544 {
1545 /* For shift and integer exponentiation operations,
1546 only promote the first argument. */
1547 if ((op == BINOP_LSH || op == BINOP_RSH || op == BINOP_EXP)
1548 && is_integral_type (value_type (arg2)))
1549 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
1550 else
1551 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1552
1553 return value_binop (arg1, arg2, op);
1554 }
1555 }
1556 }
1557
1558 /* A helper function for BINOP_SUBSCRIPT. */
1559
1560 static struct value *
1561 eval_op_subscript (struct type *expect_type, struct expression *exp,
1562 enum noside noside, enum exp_opcode op,
1563 struct value *arg1, struct value *arg2)
1564 {
1565 if (noside == EVAL_SKIP)
1566 return eval_skip_value (exp);
1567 if (binop_user_defined_p (op, arg1, arg2))
1568 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1569 else
1570 {
1571 /* If the user attempts to subscript something that is not an
1572 array or pointer type (like a plain int variable for example),
1573 then report this as an error. */
1574
1575 arg1 = coerce_ref (arg1);
1576 struct type *type = check_typedef (value_type (arg1));
1577 if (type->code () != TYPE_CODE_ARRAY
1578 && type->code () != TYPE_CODE_PTR)
1579 {
1580 if (type->name ())
1581 error (_("cannot subscript something of type `%s'"),
1582 type->name ());
1583 else
1584 error (_("cannot subscript requested type"));
1585 }
1586
1587 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1588 return value_zero (TYPE_TARGET_TYPE (type), VALUE_LVAL (arg1));
1589 else
1590 return value_subscript (arg1, value_as_long (arg2));
1591 }
1592 }
1593
1594 /* A helper function for BINOP_EQUAL. */
1595
1596 static struct value *
1597 eval_op_equal (struct type *expect_type, struct expression *exp,
1598 enum noside noside, enum exp_opcode op,
1599 struct value *arg1, struct value *arg2)
1600 {
1601 if (noside == EVAL_SKIP)
1602 return eval_skip_value (exp);
1603 if (binop_user_defined_p (op, arg1, arg2))
1604 {
1605 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1606 }
1607 else
1608 {
1609 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1610 int tem = value_equal (arg1, arg2);
1611 struct type *type = language_bool_type (exp->language_defn,
1612 exp->gdbarch);
1613 return value_from_longest (type, (LONGEST) tem);
1614 }
1615 }
1616
1617 /* A helper function for BINOP_NOTEQUAL. */
1618
1619 static struct value *
1620 eval_op_notequal (struct type *expect_type, struct expression *exp,
1621 enum noside noside, enum exp_opcode op,
1622 struct value *arg1, struct value *arg2)
1623 {
1624 if (noside == EVAL_SKIP)
1625 return eval_skip_value (exp);
1626 if (binop_user_defined_p (op, arg1, arg2))
1627 {
1628 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1629 }
1630 else
1631 {
1632 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1633 int tem = value_equal (arg1, arg2);
1634 struct type *type = language_bool_type (exp->language_defn,
1635 exp->gdbarch);
1636 return value_from_longest (type, (LONGEST) ! tem);
1637 }
1638 }
1639
1640 /* A helper function for BINOP_LESS. */
1641
1642 static struct value *
1643 eval_op_less (struct type *expect_type, struct expression *exp,
1644 enum noside noside, enum exp_opcode op,
1645 struct value *arg1, struct value *arg2)
1646 {
1647 if (noside == EVAL_SKIP)
1648 return eval_skip_value (exp);
1649 if (binop_user_defined_p (op, arg1, arg2))
1650 {
1651 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1652 }
1653 else
1654 {
1655 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1656 int tem = value_less (arg1, arg2);
1657 struct type *type = language_bool_type (exp->language_defn,
1658 exp->gdbarch);
1659 return value_from_longest (type, (LONGEST) tem);
1660 }
1661 }
1662
1663 /* A helper function for BINOP_GTR. */
1664
1665 static struct value *
1666 eval_op_gtr (struct type *expect_type, struct expression *exp,
1667 enum noside noside, enum exp_opcode op,
1668 struct value *arg1, struct value *arg2)
1669 {
1670 if (noside == EVAL_SKIP)
1671 return eval_skip_value (exp);
1672 if (binop_user_defined_p (op, arg1, arg2))
1673 {
1674 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1675 }
1676 else
1677 {
1678 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1679 int tem = value_less (arg2, arg1);
1680 struct type *type = language_bool_type (exp->language_defn,
1681 exp->gdbarch);
1682 return value_from_longest (type, (LONGEST) tem);
1683 }
1684 }
1685
1686 /* A helper function for BINOP_GEQ. */
1687
1688 static struct value *
1689 eval_op_geq (struct type *expect_type, struct expression *exp,
1690 enum noside noside, enum exp_opcode op,
1691 struct value *arg1, struct value *arg2)
1692 {
1693 if (noside == EVAL_SKIP)
1694 return eval_skip_value (exp);
1695 if (binop_user_defined_p (op, arg1, arg2))
1696 {
1697 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1698 }
1699 else
1700 {
1701 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1702 int tem = value_less (arg2, arg1) || value_equal (arg1, arg2);
1703 struct type *type = language_bool_type (exp->language_defn,
1704 exp->gdbarch);
1705 return value_from_longest (type, (LONGEST) tem);
1706 }
1707 }
1708
1709 /* A helper function for BINOP_LEQ. */
1710
1711 static struct value *
1712 eval_op_leq (struct type *expect_type, struct expression *exp,
1713 enum noside noside, enum exp_opcode op,
1714 struct value *arg1, struct value *arg2)
1715 {
1716 if (noside == EVAL_SKIP)
1717 return eval_skip_value (exp);
1718 if (binop_user_defined_p (op, arg1, arg2))
1719 {
1720 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1721 }
1722 else
1723 {
1724 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1725 int tem = value_less (arg1, arg2) || value_equal (arg1, arg2);
1726 struct type *type = language_bool_type (exp->language_defn,
1727 exp->gdbarch);
1728 return value_from_longest (type, (LONGEST) tem);
1729 }
1730 }
1731
1732 struct value *
1733 evaluate_subexp_standard (struct type *expect_type,
1734 struct expression *exp, int *pos,
1735 enum noside noside)
1736 {
1737 enum exp_opcode op;
1738 int tem, tem2, tem3;
1739 int pc, oldpos;
1740 struct value *arg1 = NULL;
1741 struct value *arg2 = NULL;
1742 struct value *arg3;
1743 struct type *type;
1744 int nargs;
1745 struct value **argvec;
1746 int ix;
1747 struct type **arg_types;
1748
1749 pc = (*pos)++;
1750 op = exp->elts[pc].opcode;
1751
1752 switch (op)
1753 {
1754 case OP_SCOPE:
1755 tem = longest_to_int (exp->elts[pc + 2].longconst);
1756 (*pos) += 4 + BYTES_TO_EXP_ELEM (tem + 1);
1757 return eval_op_scope (expect_type, exp, noside,
1758 exp->elts[pc + 1].type,
1759 &exp->elts[pc + 3].string);
1760
1761 case OP_LONG:
1762 (*pos) += 3;
1763 return value_from_longest (exp->elts[pc + 1].type,
1764 exp->elts[pc + 2].longconst);
1765
1766 case OP_FLOAT:
1767 (*pos) += 3;
1768 return value_from_contents (exp->elts[pc + 1].type,
1769 exp->elts[pc + 2].floatconst);
1770
1771 case OP_ADL_FUNC:
1772 case OP_VAR_VALUE:
1773 {
1774 (*pos) += 3;
1775 symbol *var = exp->elts[pc + 2].symbol;
1776 if (SYMBOL_TYPE (var)->code () == TYPE_CODE_ERROR)
1777 error_unknown_type (var->print_name ());
1778 if (noside != EVAL_SKIP)
1779 return evaluate_var_value (noside, exp->elts[pc + 1].block, var);
1780 else
1781 {
1782 /* Return a dummy value of the correct type when skipping, so
1783 that parent functions know what is to be skipped. */
1784 return allocate_value (SYMBOL_TYPE (var));
1785 }
1786 }
1787
1788 case OP_VAR_MSYM_VALUE:
1789 {
1790 (*pos) += 3;
1791
1792 minimal_symbol *msymbol = exp->elts[pc + 2].msymbol;
1793 return eval_op_var_msym_value (expect_type, exp, noside,
1794 pc == 0, msymbol,
1795 exp->elts[pc + 1].objfile);
1796 }
1797
1798 case OP_VAR_ENTRY_VALUE:
1799 (*pos) += 2;
1800
1801 {
1802 struct symbol *sym = exp->elts[pc + 1].symbol;
1803
1804 return eval_op_var_entry_value (expect_type, exp, noside, sym);
1805 }
1806
1807 case OP_FUNC_STATIC_VAR:
1808 tem = longest_to_int (exp->elts[pc + 1].longconst);
1809 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
1810 if (noside == EVAL_SKIP)
1811 return eval_skip_value (exp);
1812
1813 {
1814 value *func = evaluate_subexp_standard (NULL, exp, pos, noside);
1815
1816 return eval_op_func_static_var (expect_type, exp, noside, func,
1817 &exp->elts[pc + 2].string);
1818 }
1819
1820 case OP_LAST:
1821 (*pos) += 2;
1822 return
1823 access_value_history (longest_to_int (exp->elts[pc + 1].longconst));
1824
1825 case OP_REGISTER:
1826 {
1827 const char *name = &exp->elts[pc + 2].string;
1828
1829 (*pos) += 3 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
1830 return eval_op_register (expect_type, exp, noside, name);
1831 }
1832 case OP_BOOL:
1833 (*pos) += 2;
1834 type = language_bool_type (exp->language_defn, exp->gdbarch);
1835 return value_from_longest (type, exp->elts[pc + 1].longconst);
1836
1837 case OP_INTERNALVAR:
1838 (*pos) += 2;
1839 return value_of_internalvar (exp->gdbarch,
1840 exp->elts[pc + 1].internalvar);
1841
1842 case OP_STRING:
1843 tem = longest_to_int (exp->elts[pc + 1].longconst);
1844 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
1845 return eval_op_string (expect_type, exp, noside, tem,
1846 &exp->elts[pc + 2].string);
1847
1848 case OP_OBJC_NSSTRING: /* Objective C Foundation Class
1849 NSString constant. */
1850 tem = longest_to_int (exp->elts[pc + 1].longconst);
1851 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
1852 if (noside == EVAL_SKIP)
1853 return eval_skip_value (exp);
1854 return value_nsstring (exp->gdbarch, &exp->elts[pc + 2].string, tem + 1);
1855
1856 case OP_ARRAY:
1857 (*pos) += 3;
1858 tem2 = longest_to_int (exp->elts[pc + 1].longconst);
1859 tem3 = longest_to_int (exp->elts[pc + 2].longconst);
1860 nargs = tem3 - tem2 + 1;
1861 type = expect_type ? check_typedef (expect_type) : nullptr;
1862
1863 if (expect_type != nullptr && noside != EVAL_SKIP
1864 && type->code () == TYPE_CODE_STRUCT)
1865 {
1866 struct value *rec = allocate_value (expect_type);
1867
1868 memset (value_contents_raw (rec), '\0', TYPE_LENGTH (type));
1869 return evaluate_struct_tuple (rec, exp, pos, noside, nargs);
1870 }
1871
1872 if (expect_type != nullptr && noside != EVAL_SKIP
1873 && type->code () == TYPE_CODE_ARRAY)
1874 {
1875 struct type *range_type = type->index_type ();
1876 struct type *element_type = TYPE_TARGET_TYPE (type);
1877 struct value *array = allocate_value (expect_type);
1878 int element_size = TYPE_LENGTH (check_typedef (element_type));
1879 LONGEST low_bound, high_bound, index;
1880
1881 if (!get_discrete_bounds (range_type, &low_bound, &high_bound))
1882 {
1883 low_bound = 0;
1884 high_bound = (TYPE_LENGTH (type) / element_size) - 1;
1885 }
1886 index = low_bound;
1887 memset (value_contents_raw (array), 0, TYPE_LENGTH (expect_type));
1888 for (tem = nargs; --nargs >= 0;)
1889 {
1890 struct value *element;
1891
1892 element = evaluate_subexp (element_type, exp, pos, noside);
1893 if (value_type (element) != element_type)
1894 element = value_cast (element_type, element);
1895 if (index > high_bound)
1896 /* To avoid memory corruption. */
1897 error (_("Too many array elements"));
1898 memcpy (value_contents_raw (array)
1899 + (index - low_bound) * element_size,
1900 value_contents (element),
1901 element_size);
1902 index++;
1903 }
1904 return array;
1905 }
1906
1907 if (expect_type != nullptr && noside != EVAL_SKIP
1908 && type->code () == TYPE_CODE_SET)
1909 {
1910 struct value *set = allocate_value (expect_type);
1911 gdb_byte *valaddr = value_contents_raw (set);
1912 struct type *element_type = type->index_type ();
1913 struct type *check_type = element_type;
1914 LONGEST low_bound, high_bound;
1915
1916 /* Get targettype of elementtype. */
1917 while (check_type->code () == TYPE_CODE_RANGE
1918 || check_type->code () == TYPE_CODE_TYPEDEF)
1919 check_type = TYPE_TARGET_TYPE (check_type);
1920
1921 if (!get_discrete_bounds (element_type, &low_bound, &high_bound))
1922 error (_("(power)set type with unknown size"));
1923 memset (valaddr, '\0', TYPE_LENGTH (type));
1924 for (tem = 0; tem < nargs; tem++)
1925 {
1926 LONGEST range_low, range_high;
1927 struct type *range_low_type, *range_high_type;
1928 struct value *elem_val;
1929
1930 elem_val = evaluate_subexp (element_type, exp, pos, noside);
1931 range_low_type = range_high_type = value_type (elem_val);
1932 range_low = range_high = value_as_long (elem_val);
1933
1934 /* Check types of elements to avoid mixture of elements from
1935 different types. Also check if type of element is "compatible"
1936 with element type of powerset. */
1937 if (range_low_type->code () == TYPE_CODE_RANGE)
1938 range_low_type = TYPE_TARGET_TYPE (range_low_type);
1939 if (range_high_type->code () == TYPE_CODE_RANGE)
1940 range_high_type = TYPE_TARGET_TYPE (range_high_type);
1941 if ((range_low_type->code () != range_high_type->code ())
1942 || (range_low_type->code () == TYPE_CODE_ENUM
1943 && (range_low_type != range_high_type)))
1944 /* different element modes. */
1945 error (_("POWERSET tuple elements of different mode"));
1946 if ((check_type->code () != range_low_type->code ())
1947 || (check_type->code () == TYPE_CODE_ENUM
1948 && range_low_type != check_type))
1949 error (_("incompatible POWERSET tuple elements"));
1950 if (range_low > range_high)
1951 {
1952 warning (_("empty POWERSET tuple range"));
1953 continue;
1954 }
1955 if (range_low < low_bound || range_high > high_bound)
1956 error (_("POWERSET tuple element out of range"));
1957 range_low -= low_bound;
1958 range_high -= low_bound;
1959 for (; range_low <= range_high; range_low++)
1960 {
1961 int bit_index = (unsigned) range_low % TARGET_CHAR_BIT;
1962
1963 if (gdbarch_byte_order (exp->gdbarch) == BFD_ENDIAN_BIG)
1964 bit_index = TARGET_CHAR_BIT - 1 - bit_index;
1965 valaddr[(unsigned) range_low / TARGET_CHAR_BIT]
1966 |= 1 << bit_index;
1967 }
1968 }
1969 return set;
1970 }
1971
1972 argvec = XALLOCAVEC (struct value *, nargs);
1973 for (tem = 0; tem < nargs; tem++)
1974 {
1975 /* Ensure that array expressions are coerced into pointer
1976 objects. */
1977 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1978 }
1979 if (noside == EVAL_SKIP)
1980 return eval_skip_value (exp);
1981 return value_array (tem2, tem3, argvec);
1982
1983 case TERNOP_SLICE:
1984 {
1985 struct value *array = evaluate_subexp (nullptr, exp, pos, noside);
1986 struct value *low = evaluate_subexp (nullptr, exp, pos, noside);
1987 struct value *upper = evaluate_subexp (nullptr, exp, pos, noside);
1988 return eval_op_ternop (expect_type, exp, noside, array, low, upper);
1989 }
1990
1991 case TERNOP_COND:
1992 /* Skip third and second args to evaluate the first one. */
1993 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
1994 if (value_logical_not (arg1))
1995 {
1996 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
1997 return evaluate_subexp (nullptr, exp, pos, noside);
1998 }
1999 else
2000 {
2001 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
2002 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
2003 return arg2;
2004 }
2005
2006 case OP_OBJC_SELECTOR:
2007 { /* Objective C @selector operator. */
2008 char *sel = &exp->elts[pc + 2].string;
2009 int len = longest_to_int (exp->elts[pc + 1].longconst);
2010
2011 (*pos) += 3 + BYTES_TO_EXP_ELEM (len + 1);
2012 if (sel[len] != 0)
2013 sel[len] = 0; /* Make sure it's terminated. */
2014
2015 return eval_op_objc_selector (expect_type, exp, noside, sel);
2016 }
2017
2018 case OP_OBJC_MSGCALL:
2019 { /* Objective C message (method) call. */
2020
2021 CORE_ADDR responds_selector = 0;
2022 CORE_ADDR method_selector = 0;
2023
2024 CORE_ADDR selector = 0;
2025
2026 int struct_return = 0;
2027 enum noside sub_no_side = EVAL_NORMAL;
2028
2029 struct value *msg_send = NULL;
2030 struct value *msg_send_stret = NULL;
2031 int gnu_runtime = 0;
2032
2033 struct value *target = NULL;
2034 struct value *method = NULL;
2035 struct value *called_method = NULL;
2036
2037 struct type *selector_type = NULL;
2038 struct type *long_type;
2039
2040 struct value *ret = NULL;
2041 CORE_ADDR addr = 0;
2042
2043 selector = exp->elts[pc + 1].longconst;
2044 nargs = exp->elts[pc + 2].longconst;
2045 argvec = XALLOCAVEC (struct value *, nargs + 5);
2046
2047 (*pos) += 3;
2048
2049 long_type = builtin_type (exp->gdbarch)->builtin_long;
2050 selector_type = builtin_type (exp->gdbarch)->builtin_data_ptr;
2051
2052 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2053 sub_no_side = EVAL_NORMAL;
2054 else
2055 sub_no_side = noside;
2056
2057 target = evaluate_subexp (selector_type, exp, pos, sub_no_side);
2058
2059 if (value_as_long (target) == 0)
2060 return value_from_longest (long_type, 0);
2061
2062 if (lookup_minimal_symbol ("objc_msg_lookup", 0, 0).minsym)
2063 gnu_runtime = 1;
2064
2065 /* Find the method dispatch (Apple runtime) or method lookup
2066 (GNU runtime) function for Objective-C. These will be used
2067 to lookup the symbol information for the method. If we
2068 can't find any symbol information, then we'll use these to
2069 call the method, otherwise we can call the method
2070 directly. The msg_send_stret function is used in the special
2071 case of a method that returns a structure (Apple runtime
2072 only). */
2073 if (gnu_runtime)
2074 {
2075 type = selector_type;
2076
2077 type = lookup_function_type (type);
2078 type = lookup_pointer_type (type);
2079 type = lookup_function_type (type);
2080 type = lookup_pointer_type (type);
2081
2082 msg_send = find_function_in_inferior ("objc_msg_lookup", NULL);
2083 msg_send_stret
2084 = find_function_in_inferior ("objc_msg_lookup", NULL);
2085
2086 msg_send = value_from_pointer (type, value_as_address (msg_send));
2087 msg_send_stret = value_from_pointer (type,
2088 value_as_address (msg_send_stret));
2089 }
2090 else
2091 {
2092 msg_send = find_function_in_inferior ("objc_msgSend", NULL);
2093 /* Special dispatcher for methods returning structs. */
2094 msg_send_stret
2095 = find_function_in_inferior ("objc_msgSend_stret", NULL);
2096 }
2097
2098 /* Verify the target object responds to this method. The
2099 standard top-level 'Object' class uses a different name for
2100 the verification method than the non-standard, but more
2101 often used, 'NSObject' class. Make sure we check for both. */
2102
2103 responds_selector
2104 = lookup_child_selector (exp->gdbarch, "respondsToSelector:");
2105 if (responds_selector == 0)
2106 responds_selector
2107 = lookup_child_selector (exp->gdbarch, "respondsTo:");
2108
2109 if (responds_selector == 0)
2110 error (_("no 'respondsTo:' or 'respondsToSelector:' method"));
2111
2112 method_selector
2113 = lookup_child_selector (exp->gdbarch, "methodForSelector:");
2114 if (method_selector == 0)
2115 method_selector
2116 = lookup_child_selector (exp->gdbarch, "methodFor:");
2117
2118 if (method_selector == 0)
2119 error (_("no 'methodFor:' or 'methodForSelector:' method"));
2120
2121 /* Call the verification method, to make sure that the target
2122 class implements the desired method. */
2123
2124 argvec[0] = msg_send;
2125 argvec[1] = target;
2126 argvec[2] = value_from_longest (long_type, responds_selector);
2127 argvec[3] = value_from_longest (long_type, selector);
2128 argvec[4] = 0;
2129
2130 ret = call_function_by_hand (argvec[0], NULL, {argvec + 1, 3});
2131 if (gnu_runtime)
2132 {
2133 /* Function objc_msg_lookup returns a pointer. */
2134 argvec[0] = ret;
2135 ret = call_function_by_hand (argvec[0], NULL, {argvec + 1, 3});
2136 }
2137 if (value_as_long (ret) == 0)
2138 error (_("Target does not respond to this message selector."));
2139
2140 /* Call "methodForSelector:" method, to get the address of a
2141 function method that implements this selector for this
2142 class. If we can find a symbol at that address, then we
2143 know the return type, parameter types etc. (that's a good
2144 thing). */
2145
2146 argvec[0] = msg_send;
2147 argvec[1] = target;
2148 argvec[2] = value_from_longest (long_type, method_selector);
2149 argvec[3] = value_from_longest (long_type, selector);
2150 argvec[4] = 0;
2151
2152 ret = call_function_by_hand (argvec[0], NULL, {argvec + 1, 3});
2153 if (gnu_runtime)
2154 {
2155 argvec[0] = ret;
2156 ret = call_function_by_hand (argvec[0], NULL, {argvec + 1, 3});
2157 }
2158
2159 /* ret should now be the selector. */
2160
2161 addr = value_as_long (ret);
2162 if (addr)
2163 {
2164 struct symbol *sym = NULL;
2165
2166 /* The address might point to a function descriptor;
2167 resolve it to the actual code address instead. */
2168 addr = gdbarch_convert_from_func_ptr_addr (exp->gdbarch, addr,
2169 current_top_target ());
2170
2171 /* Is it a high_level symbol? */
2172 sym = find_pc_function (addr);
2173 if (sym != NULL)
2174 method = value_of_variable (sym, 0);
2175 }
2176
2177 /* If we found a method with symbol information, check to see
2178 if it returns a struct. Otherwise assume it doesn't. */
2179
2180 if (method)
2181 {
2182 CORE_ADDR funaddr;
2183 struct type *val_type;
2184
2185 funaddr = find_function_addr (method, &val_type);
2186
2187 block_for_pc (funaddr);
2188
2189 val_type = check_typedef (val_type);
2190
2191 if ((val_type == NULL)
2192 || (val_type->code () == TYPE_CODE_ERROR))
2193 {
2194 if (expect_type != NULL)
2195 val_type = expect_type;
2196 }
2197
2198 struct_return = using_struct_return (exp->gdbarch, method,
2199 val_type);
2200 }
2201 else if (expect_type != NULL)
2202 {
2203 struct_return = using_struct_return (exp->gdbarch, NULL,
2204 check_typedef (expect_type));
2205 }
2206
2207 /* Found a function symbol. Now we will substitute its
2208 value in place of the message dispatcher (obj_msgSend),
2209 so that we call the method directly instead of thru
2210 the dispatcher. The main reason for doing this is that
2211 we can now evaluate the return value and parameter values
2212 according to their known data types, in case we need to
2213 do things like promotion, dereferencing, special handling
2214 of structs and doubles, etc.
2215
2216 We want to use the type signature of 'method', but still
2217 jump to objc_msgSend() or objc_msgSend_stret() to better
2218 mimic the behavior of the runtime. */
2219
2220 if (method)
2221 {
2222 if (value_type (method)->code () != TYPE_CODE_FUNC)
2223 error (_("method address has symbol information "
2224 "with non-function type; skipping"));
2225
2226 /* Create a function pointer of the appropriate type, and
2227 replace its value with the value of msg_send or
2228 msg_send_stret. We must use a pointer here, as
2229 msg_send and msg_send_stret are of pointer type, and
2230 the representation may be different on systems that use
2231 function descriptors. */
2232 if (struct_return)
2233 called_method
2234 = value_from_pointer (lookup_pointer_type (value_type (method)),
2235 value_as_address (msg_send_stret));
2236 else
2237 called_method
2238 = value_from_pointer (lookup_pointer_type (value_type (method)),
2239 value_as_address (msg_send));
2240 }
2241 else
2242 {
2243 if (struct_return)
2244 called_method = msg_send_stret;
2245 else
2246 called_method = msg_send;
2247 }
2248
2249 if (noside == EVAL_SKIP)
2250 return eval_skip_value (exp);
2251
2252 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2253 {
2254 /* If the return type doesn't look like a function type,
2255 call an error. This can happen if somebody tries to
2256 turn a variable into a function call. This is here
2257 because people often want to call, eg, strcmp, which
2258 gdb doesn't know is a function. If gdb isn't asked for
2259 it's opinion (ie. through "whatis"), it won't offer
2260 it. */
2261
2262 struct type *callee_type = value_type (called_method);
2263
2264 if (callee_type && callee_type->code () == TYPE_CODE_PTR)
2265 callee_type = TYPE_TARGET_TYPE (callee_type);
2266 callee_type = TYPE_TARGET_TYPE (callee_type);
2267
2268 if (callee_type)
2269 {
2270 if ((callee_type->code () == TYPE_CODE_ERROR) && expect_type)
2271 return allocate_value (expect_type);
2272 else
2273 return allocate_value (callee_type);
2274 }
2275 else
2276 error (_("Expression of type other than "
2277 "\"method returning ...\" used as a method"));
2278 }
2279
2280 /* Now depending on whether we found a symbol for the method,
2281 we will either call the runtime dispatcher or the method
2282 directly. */
2283
2284 argvec[0] = called_method;
2285 argvec[1] = target;
2286 argvec[2] = value_from_longest (long_type, selector);
2287 /* User-supplied arguments. */
2288 for (tem = 0; tem < nargs; tem++)
2289 argvec[tem + 3] = evaluate_subexp_with_coercion (exp, pos, noside);
2290 argvec[tem + 3] = 0;
2291
2292 auto call_args = gdb::make_array_view (argvec + 1, nargs + 2);
2293
2294 if (gnu_runtime && (method != NULL))
2295 {
2296 /* Function objc_msg_lookup returns a pointer. */
2297 deprecated_set_value_type (argvec[0],
2298 lookup_pointer_type (lookup_function_type (value_type (argvec[0]))));
2299 argvec[0] = call_function_by_hand (argvec[0], NULL, call_args);
2300 }
2301
2302 return call_function_by_hand (argvec[0], NULL, call_args);
2303 }
2304 break;
2305
2306 case OP_FUNCALL:
2307 return evaluate_funcall (expect_type, exp, pos, noside);
2308
2309 case OP_COMPLEX:
2310 /* We have a complex number, There should be 2 floating
2311 point numbers that compose it. */
2312 (*pos) += 2;
2313 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2314 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
2315
2316 return value_literal_complex (arg1, arg2, exp->elts[pc + 1].type);
2317
2318 case STRUCTOP_STRUCT:
2319 tem = longest_to_int (exp->elts[pc + 1].longconst);
2320 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
2321 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2322 return eval_op_structop_struct (expect_type, exp, noside, arg1,
2323 &exp->elts[pc + 2].string);
2324
2325 case STRUCTOP_PTR:
2326 tem = longest_to_int (exp->elts[pc + 1].longconst);
2327 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
2328 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2329 return eval_op_structop_ptr (expect_type, exp, noside, op, arg1,
2330 &exp->elts[pc + 2].string);
2331
2332 case STRUCTOP_MEMBER:
2333 case STRUCTOP_MPTR:
2334 if (op == STRUCTOP_MEMBER)
2335 arg1 = evaluate_subexp_for_address (exp, pos, noside);
2336 else
2337 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2338
2339 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
2340
2341 return eval_op_member (expect_type, exp, noside, arg1, arg2);
2342
2343 case TYPE_INSTANCE:
2344 {
2345 type_instance_flags flags
2346 = (type_instance_flag_value) longest_to_int (exp->elts[pc + 1].longconst);
2347 nargs = longest_to_int (exp->elts[pc + 2].longconst);
2348 arg_types = (struct type **) alloca (nargs * sizeof (struct type *));
2349 for (ix = 0; ix < nargs; ++ix)
2350 arg_types[ix] = exp->elts[pc + 2 + ix + 1].type;
2351
2352 fake_method fake_expect_type (flags, nargs, arg_types);
2353 *(pos) += 4 + nargs;
2354 return evaluate_subexp_standard (fake_expect_type.type (), exp, pos,
2355 noside);
2356 }
2357
2358 case BINOP_CONCAT:
2359 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2360 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2361 return eval_op_concat (expect_type, exp, noside, op, arg1, arg2);
2362
2363 case BINOP_ASSIGN:
2364 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2365 /* Special-case assignments where the left-hand-side is a
2366 convenience variable -- in these, don't bother setting an
2367 expected type. This avoids a weird case where re-assigning a
2368 string or array to an internal variable could error with "Too
2369 many array elements". */
2370 arg2 = evaluate_subexp (VALUE_LVAL (arg1) == lval_internalvar
2371 ? nullptr
2372 : value_type (arg1),
2373 exp, pos, noside);
2374
2375 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2376 return arg1;
2377 if (binop_user_defined_p (op, arg1, arg2))
2378 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2379 else
2380 return value_assign (arg1, arg2);
2381
2382 case BINOP_ASSIGN_MODIFY:
2383 (*pos) += 2;
2384 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2385 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2386 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2387 return arg1;
2388 op = exp->elts[pc + 1].opcode;
2389 if (binop_user_defined_p (op, arg1, arg2))
2390 return value_x_binop (arg1, arg2, BINOP_ASSIGN_MODIFY, op, noside);
2391 else if (op == BINOP_ADD && ptrmath_type_p (exp->language_defn,
2392 value_type (arg1))
2393 && is_integral_type (value_type (arg2)))
2394 arg2 = value_ptradd (arg1, value_as_long (arg2));
2395 else if (op == BINOP_SUB && ptrmath_type_p (exp->language_defn,
2396 value_type (arg1))
2397 && is_integral_type (value_type (arg2)))
2398 arg2 = value_ptradd (arg1, - value_as_long (arg2));
2399 else
2400 {
2401 struct value *tmp = arg1;
2402
2403 /* For shift and integer exponentiation operations,
2404 only promote the first argument. */
2405 if ((op == BINOP_LSH || op == BINOP_RSH || op == BINOP_EXP)
2406 && is_integral_type (value_type (arg2)))
2407 unop_promote (exp->language_defn, exp->gdbarch, &tmp);
2408 else
2409 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2410
2411 arg2 = value_binop (tmp, arg2, op);
2412 }
2413 return value_assign (arg1, arg2);
2414
2415 case BINOP_ADD:
2416 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2417 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2418 return eval_op_add (expect_type, exp, noside, op, arg1, arg2);
2419
2420 case BINOP_SUB:
2421 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2422 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2423 return eval_op_sub (expect_type, exp, noside, op, arg1, arg2);
2424
2425 case BINOP_EXP:
2426 case BINOP_MUL:
2427 case BINOP_DIV:
2428 case BINOP_INTDIV:
2429 case BINOP_REM:
2430 case BINOP_MOD:
2431 case BINOP_LSH:
2432 case BINOP_RSH:
2433 case BINOP_BITWISE_AND:
2434 case BINOP_BITWISE_IOR:
2435 case BINOP_BITWISE_XOR:
2436 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2437 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
2438 return eval_op_binary (expect_type, exp, noside, op, arg1, arg2);
2439
2440 case BINOP_SUBSCRIPT:
2441 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2442 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
2443 return eval_op_subscript (expect_type, exp, noside, op, arg1, arg2);
2444
2445 case MULTI_SUBSCRIPT:
2446 (*pos) += 2;
2447 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2448 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2449 argvec = XALLOCAVEC (struct value *, nargs);
2450 for (ix = 0; ix < nargs; ++ix)
2451 argvec[ix] = evaluate_subexp_with_coercion (exp, pos, noside);
2452 if (noside == EVAL_SKIP)
2453 return arg1;
2454 for (ix = 0; ix < nargs; ++ix)
2455 {
2456 arg2 = argvec[ix];
2457
2458 if (binop_user_defined_p (op, arg1, arg2))
2459 {
2460 arg1 = value_x_binop (arg1, arg2, op, OP_NULL, noside);
2461 }
2462 else
2463 {
2464 arg1 = coerce_ref (arg1);
2465 type = check_typedef (value_type (arg1));
2466
2467 switch (type->code ())
2468 {
2469 case TYPE_CODE_PTR:
2470 case TYPE_CODE_ARRAY:
2471 case TYPE_CODE_STRING:
2472 arg1 = value_subscript (arg1, value_as_long (arg2));
2473 break;
2474
2475 default:
2476 if (type->name ())
2477 error (_("cannot subscript something of type `%s'"),
2478 type->name ());
2479 else
2480 error (_("cannot subscript requested type"));
2481 }
2482 }
2483 }
2484 return (arg1);
2485
2486 case BINOP_LOGICAL_AND:
2487 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2488 if (noside == EVAL_SKIP)
2489 {
2490 evaluate_subexp (nullptr, exp, pos, noside);
2491 return eval_skip_value (exp);
2492 }
2493
2494 oldpos = *pos;
2495 arg2 = evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2496 *pos = oldpos;
2497
2498 if (binop_user_defined_p (op, arg1, arg2))
2499 {
2500 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
2501 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2502 }
2503 else
2504 {
2505 tem = value_logical_not (arg1);
2506 arg2
2507 = evaluate_subexp (nullptr, exp, pos, (tem ? EVAL_SKIP : noside));
2508 type = language_bool_type (exp->language_defn, exp->gdbarch);
2509 return value_from_longest (type,
2510 (LONGEST) (!tem && !value_logical_not (arg2)));
2511 }
2512
2513 case BINOP_LOGICAL_OR:
2514 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2515 if (noside == EVAL_SKIP)
2516 {
2517 evaluate_subexp (nullptr, exp, pos, noside);
2518 return eval_skip_value (exp);
2519 }
2520
2521 oldpos = *pos;
2522 arg2 = evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2523 *pos = oldpos;
2524
2525 if (binop_user_defined_p (op, arg1, arg2))
2526 {
2527 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
2528 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2529 }
2530 else
2531 {
2532 tem = value_logical_not (arg1);
2533 arg2
2534 = evaluate_subexp (nullptr, exp, pos, (!tem ? EVAL_SKIP : noside));
2535 type = language_bool_type (exp->language_defn, exp->gdbarch);
2536 return value_from_longest (type,
2537 (LONGEST) (!tem || !value_logical_not (arg2)));
2538 }
2539
2540 case BINOP_EQUAL:
2541 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2542 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2543 return eval_op_equal (expect_type, exp, noside, op, arg1, arg2);
2544
2545 case BINOP_NOTEQUAL:
2546 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2547 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2548 return eval_op_notequal (expect_type, exp, noside, op, arg1, arg2);
2549
2550 case BINOP_LESS:
2551 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2552 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2553 return eval_op_less (expect_type, exp, noside, op, arg1, arg2);
2554
2555 case BINOP_GTR:
2556 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2557 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2558 return eval_op_gtr (expect_type, exp, noside, op, arg1, arg2);
2559
2560 case BINOP_GEQ:
2561 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2562 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2563 return eval_op_geq (expect_type, exp, noside, op, arg1, arg2);
2564
2565 case BINOP_LEQ:
2566 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2567 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2568 return eval_op_leq (expect_type, exp, noside, op, arg1, arg2);
2569
2570 case BINOP_REPEAT:
2571 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2572 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
2573 if (noside == EVAL_SKIP)
2574 return eval_skip_value (exp);
2575 type = check_typedef (value_type (arg2));
2576 if (type->code () != TYPE_CODE_INT
2577 && type->code () != TYPE_CODE_ENUM)
2578 error (_("Non-integral right operand for \"@\" operator."));
2579 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2580 {
2581 return allocate_repeat_value (value_type (arg1),
2582 longest_to_int (value_as_long (arg2)));
2583 }
2584 else
2585 return value_repeat (arg1, longest_to_int (value_as_long (arg2)));
2586
2587 case BINOP_COMMA:
2588 evaluate_subexp (nullptr, exp, pos, noside);
2589 return evaluate_subexp (nullptr, exp, pos, noside);
2590
2591 case UNOP_PLUS:
2592 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2593 if (noside == EVAL_SKIP)
2594 return eval_skip_value (exp);
2595 if (unop_user_defined_p (op, arg1))
2596 return value_x_unop (arg1, op, noside);
2597 else
2598 {
2599 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2600 return value_pos (arg1);
2601 }
2602
2603 case UNOP_NEG:
2604 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2605 if (noside == EVAL_SKIP)
2606 return eval_skip_value (exp);
2607 if (unop_user_defined_p (op, arg1))
2608 return value_x_unop (arg1, op, noside);
2609 else
2610 {
2611 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2612 return value_neg (arg1);
2613 }
2614
2615 case UNOP_COMPLEMENT:
2616 /* C++: check for and handle destructor names. */
2617
2618 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2619 if (noside == EVAL_SKIP)
2620 return eval_skip_value (exp);
2621 if (unop_user_defined_p (UNOP_COMPLEMENT, arg1))
2622 return value_x_unop (arg1, UNOP_COMPLEMENT, noside);
2623 else
2624 {
2625 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2626 return value_complement (arg1);
2627 }
2628
2629 case UNOP_LOGICAL_NOT:
2630 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2631 if (noside == EVAL_SKIP)
2632 return eval_skip_value (exp);
2633 if (unop_user_defined_p (op, arg1))
2634 return value_x_unop (arg1, op, noside);
2635 else
2636 {
2637 type = language_bool_type (exp->language_defn, exp->gdbarch);
2638 return value_from_longest (type, (LONGEST) value_logical_not (arg1));
2639 }
2640
2641 case UNOP_IND:
2642 if (expect_type && expect_type->code () == TYPE_CODE_PTR)
2643 expect_type = TYPE_TARGET_TYPE (check_typedef (expect_type));
2644 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2645 type = check_typedef (value_type (arg1));
2646 if (type->code () == TYPE_CODE_METHODPTR
2647 || type->code () == TYPE_CODE_MEMBERPTR)
2648 error (_("Attempt to dereference pointer "
2649 "to member without an object"));
2650 if (noside == EVAL_SKIP)
2651 return eval_skip_value (exp);
2652 if (unop_user_defined_p (op, arg1))
2653 return value_x_unop (arg1, op, noside);
2654 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2655 {
2656 type = check_typedef (value_type (arg1));
2657
2658 /* If the type pointed to is dynamic then in order to resolve the
2659 dynamic properties we must actually dereference the pointer.
2660 There is a risk that this dereference will have side-effects
2661 in the inferior, but being able to print accurate type
2662 information seems worth the risk. */
2663 if ((type->code () != TYPE_CODE_PTR
2664 && !TYPE_IS_REFERENCE (type))
2665 || !is_dynamic_type (TYPE_TARGET_TYPE (type)))
2666 {
2667 if (type->code () == TYPE_CODE_PTR
2668 || TYPE_IS_REFERENCE (type)
2669 /* In C you can dereference an array to get the 1st elt. */
2670 || type->code () == TYPE_CODE_ARRAY)
2671 return value_zero (TYPE_TARGET_TYPE (type),
2672 lval_memory);
2673 else if (type->code () == TYPE_CODE_INT)
2674 /* GDB allows dereferencing an int. */
2675 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
2676 lval_memory);
2677 else
2678 error (_("Attempt to take contents of a non-pointer value."));
2679 }
2680 }
2681
2682 /* Allow * on an integer so we can cast it to whatever we want.
2683 This returns an int, which seems like the most C-like thing to
2684 do. "long long" variables are rare enough that
2685 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
2686 if (type->code () == TYPE_CODE_INT)
2687 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
2688 (CORE_ADDR) value_as_address (arg1));
2689 return value_ind (arg1);
2690
2691 case UNOP_ADDR:
2692 /* C++: check for and handle pointer to members. */
2693
2694 if (noside == EVAL_SKIP)
2695 {
2696 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
2697 return eval_skip_value (exp);
2698 }
2699 else
2700 return evaluate_subexp_for_address (exp, pos, noside);
2701
2702 case UNOP_SIZEOF:
2703 if (noside == EVAL_SKIP)
2704 {
2705 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
2706 return eval_skip_value (exp);
2707 }
2708 return evaluate_subexp_for_sizeof (exp, pos, noside);
2709
2710 case UNOP_ALIGNOF:
2711 {
2712 type = value_type (
2713 evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS));
2714 /* FIXME: This should be size_t. */
2715 struct type *size_type = builtin_type (exp->gdbarch)->builtin_int;
2716 ULONGEST align = type_align (type);
2717 if (align == 0)
2718 error (_("could not determine alignment of type"));
2719 return value_from_longest (size_type, align);
2720 }
2721
2722 case UNOP_CAST:
2723 (*pos) += 2;
2724 type = exp->elts[pc + 1].type;
2725 return evaluate_subexp_for_cast (exp, pos, noside, type);
2726
2727 case UNOP_CAST_TYPE:
2728 arg1 = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2729 type = value_type (arg1);
2730 return evaluate_subexp_for_cast (exp, pos, noside, type);
2731
2732 case UNOP_DYNAMIC_CAST:
2733 arg1 = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2734 type = value_type (arg1);
2735 arg1 = evaluate_subexp (type, exp, pos, noside);
2736 if (noside == EVAL_SKIP)
2737 return eval_skip_value (exp);
2738 return value_dynamic_cast (type, arg1);
2739
2740 case UNOP_REINTERPRET_CAST:
2741 arg1 = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2742 type = value_type (arg1);
2743 arg1 = evaluate_subexp (type, exp, pos, noside);
2744 if (noside == EVAL_SKIP)
2745 return eval_skip_value (exp);
2746 return value_reinterpret_cast (type, arg1);
2747
2748 case UNOP_MEMVAL:
2749 (*pos) += 2;
2750 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2751 if (noside == EVAL_SKIP)
2752 return eval_skip_value (exp);
2753 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2754 return value_zero (exp->elts[pc + 1].type, lval_memory);
2755 else
2756 return value_at_lazy (exp->elts[pc + 1].type,
2757 value_as_address (arg1));
2758
2759 case UNOP_MEMVAL_TYPE:
2760 arg1 = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2761 type = value_type (arg1);
2762 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2763 if (noside == EVAL_SKIP)
2764 return eval_skip_value (exp);
2765 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2766 return value_zero (type, lval_memory);
2767 else
2768 return value_at_lazy (type, value_as_address (arg1));
2769
2770 case UNOP_PREINCREMENT:
2771 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2772 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2773 return arg1;
2774 else if (unop_user_defined_p (op, arg1))
2775 {
2776 return value_x_unop (arg1, op, noside);
2777 }
2778 else
2779 {
2780 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2781 arg2 = value_ptradd (arg1, 1);
2782 else
2783 {
2784 struct value *tmp = arg1;
2785
2786 arg2 = value_one (value_type (arg1));
2787 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2788 arg2 = value_binop (tmp, arg2, BINOP_ADD);
2789 }
2790
2791 return value_assign (arg1, arg2);
2792 }
2793
2794 case UNOP_PREDECREMENT:
2795 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2796 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2797 return arg1;
2798 else if (unop_user_defined_p (op, arg1))
2799 {
2800 return value_x_unop (arg1, op, noside);
2801 }
2802 else
2803 {
2804 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2805 arg2 = value_ptradd (arg1, -1);
2806 else
2807 {
2808 struct value *tmp = arg1;
2809
2810 arg2 = value_one (value_type (arg1));
2811 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2812 arg2 = value_binop (tmp, arg2, BINOP_SUB);
2813 }
2814
2815 return value_assign (arg1, arg2);
2816 }
2817
2818 case UNOP_POSTINCREMENT:
2819 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2820 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2821 return arg1;
2822 else if (unop_user_defined_p (op, arg1))
2823 {
2824 return value_x_unop (arg1, op, noside);
2825 }
2826 else
2827 {
2828 arg3 = value_non_lval (arg1);
2829
2830 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2831 arg2 = value_ptradd (arg1, 1);
2832 else
2833 {
2834 struct value *tmp = arg1;
2835
2836 arg2 = value_one (value_type (arg1));
2837 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2838 arg2 = value_binop (tmp, arg2, BINOP_ADD);
2839 }
2840
2841 value_assign (arg1, arg2);
2842 return arg3;
2843 }
2844
2845 case UNOP_POSTDECREMENT:
2846 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2847 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2848 return arg1;
2849 else if (unop_user_defined_p (op, arg1))
2850 {
2851 return value_x_unop (arg1, op, noside);
2852 }
2853 else
2854 {
2855 arg3 = value_non_lval (arg1);
2856
2857 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2858 arg2 = value_ptradd (arg1, -1);
2859 else
2860 {
2861 struct value *tmp = arg1;
2862
2863 arg2 = value_one (value_type (arg1));
2864 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2865 arg2 = value_binop (tmp, arg2, BINOP_SUB);
2866 }
2867
2868 value_assign (arg1, arg2);
2869 return arg3;
2870 }
2871
2872 case OP_THIS:
2873 (*pos) += 1;
2874 return value_of_this (exp->language_defn);
2875
2876 case OP_TYPE:
2877 /* The value is not supposed to be used. This is here to make it
2878 easier to accommodate expressions that contain types. */
2879 (*pos) += 2;
2880 if (noside == EVAL_SKIP)
2881 return eval_skip_value (exp);
2882 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2883 return allocate_value (exp->elts[pc + 1].type);
2884 else
2885 error (_("Attempt to use a type name as an expression"));
2886
2887 case OP_TYPEOF:
2888 case OP_DECLTYPE:
2889 if (noside == EVAL_SKIP)
2890 {
2891 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
2892 return eval_skip_value (exp);
2893 }
2894 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2895 {
2896 enum exp_opcode sub_op = exp->elts[*pos].opcode;
2897 struct value *result;
2898
2899 result = evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2900
2901 /* 'decltype' has special semantics for lvalues. */
2902 if (op == OP_DECLTYPE
2903 && (sub_op == BINOP_SUBSCRIPT
2904 || sub_op == STRUCTOP_MEMBER
2905 || sub_op == STRUCTOP_MPTR
2906 || sub_op == UNOP_IND
2907 || sub_op == STRUCTOP_STRUCT
2908 || sub_op == STRUCTOP_PTR
2909 || sub_op == OP_SCOPE))
2910 {
2911 type = value_type (result);
2912
2913 if (!TYPE_IS_REFERENCE (type))
2914 {
2915 type = lookup_lvalue_reference_type (type);
2916 result = allocate_value (type);
2917 }
2918 }
2919
2920 return result;
2921 }
2922 else
2923 error (_("Attempt to use a type as an expression"));
2924
2925 case OP_TYPEID:
2926 {
2927 struct value *result;
2928 enum exp_opcode sub_op = exp->elts[*pos].opcode;
2929
2930 if (sub_op == OP_TYPE || sub_op == OP_DECLTYPE || sub_op == OP_TYPEOF)
2931 result = evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2932 else
2933 result = evaluate_subexp (nullptr, exp, pos, noside);
2934
2935 if (noside != EVAL_NORMAL)
2936 return allocate_value (cplus_typeid_type (exp->gdbarch));
2937
2938 return cplus_typeid (result);
2939 }
2940
2941 default:
2942 /* Removing this case and compiling with gcc -Wall reveals that
2943 a lot of cases are hitting this case. Some of these should
2944 probably be removed from expression.h; others are legitimate
2945 expressions which are (apparently) not fully implemented.
2946
2947 If there are any cases landing here which mean a user error,
2948 then they should be separate cases, with more descriptive
2949 error messages. */
2950
2951 error (_("GDB does not (yet) know how to "
2952 "evaluate that kind of expression"));
2953 }
2954
2955 gdb_assert_not_reached ("missed return?");
2956 }
2957 \f
2958 /* Evaluate a subexpression of EXP, at index *POS,
2959 and return the address of that subexpression.
2960 Advance *POS over the subexpression.
2961 If the subexpression isn't an lvalue, get an error.
2962 NOSIDE may be EVAL_AVOID_SIDE_EFFECTS;
2963 then only the type of the result need be correct. */
2964
2965 static struct value *
2966 evaluate_subexp_for_address (struct expression *exp, int *pos,
2967 enum noside noside)
2968 {
2969 enum exp_opcode op;
2970 int pc;
2971 struct symbol *var;
2972 struct value *x;
2973 int tem;
2974
2975 pc = (*pos);
2976 op = exp->elts[pc].opcode;
2977
2978 switch (op)
2979 {
2980 case UNOP_IND:
2981 (*pos)++;
2982 x = evaluate_subexp (nullptr, exp, pos, noside);
2983
2984 /* We can't optimize out "&*" if there's a user-defined operator*. */
2985 if (unop_user_defined_p (op, x))
2986 {
2987 x = value_x_unop (x, op, noside);
2988 goto default_case_after_eval;
2989 }
2990
2991 return coerce_array (x);
2992
2993 case UNOP_MEMVAL:
2994 (*pos) += 3;
2995 return value_cast (lookup_pointer_type (exp->elts[pc + 1].type),
2996 evaluate_subexp (nullptr, exp, pos, noside));
2997
2998 case UNOP_MEMVAL_TYPE:
2999 {
3000 struct type *type;
3001
3002 (*pos) += 1;
3003 x = evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3004 type = value_type (x);
3005 return value_cast (lookup_pointer_type (type),
3006 evaluate_subexp (nullptr, exp, pos, noside));
3007 }
3008
3009 case OP_VAR_VALUE:
3010 var = exp->elts[pc + 2].symbol;
3011
3012 /* C++: The "address" of a reference should yield the address
3013 * of the object pointed to. Let value_addr() deal with it. */
3014 if (TYPE_IS_REFERENCE (SYMBOL_TYPE (var)))
3015 goto default_case;
3016
3017 (*pos) += 4;
3018 if (noside == EVAL_AVOID_SIDE_EFFECTS)
3019 {
3020 struct type *type =
3021 lookup_pointer_type (SYMBOL_TYPE (var));
3022 enum address_class sym_class = SYMBOL_CLASS (var);
3023
3024 if (sym_class == LOC_CONST
3025 || sym_class == LOC_CONST_BYTES
3026 || sym_class == LOC_REGISTER)
3027 error (_("Attempt to take address of register or constant."));
3028
3029 return
3030 value_zero (type, not_lval);
3031 }
3032 else
3033 return address_of_variable (var, exp->elts[pc + 1].block);
3034
3035 case OP_VAR_MSYM_VALUE:
3036 {
3037 (*pos) += 4;
3038
3039 value *val = evaluate_var_msym_value (noside,
3040 exp->elts[pc + 1].objfile,
3041 exp->elts[pc + 2].msymbol);
3042 if (noside == EVAL_AVOID_SIDE_EFFECTS)
3043 {
3044 struct type *type = lookup_pointer_type (value_type (val));
3045 return value_zero (type, not_lval);
3046 }
3047 else
3048 return value_addr (val);
3049 }
3050
3051 case OP_SCOPE:
3052 tem = longest_to_int (exp->elts[pc + 2].longconst);
3053 (*pos) += 5 + BYTES_TO_EXP_ELEM (tem + 1);
3054 x = value_aggregate_elt (exp->elts[pc + 1].type,
3055 &exp->elts[pc + 3].string,
3056 NULL, 1, noside);
3057 if (x == NULL)
3058 error (_("There is no field named %s"), &exp->elts[pc + 3].string);
3059 return x;
3060
3061 default:
3062 default_case:
3063 x = evaluate_subexp (nullptr, exp, pos, noside);
3064 default_case_after_eval:
3065 if (noside == EVAL_AVOID_SIDE_EFFECTS)
3066 {
3067 struct type *type = check_typedef (value_type (x));
3068
3069 if (TYPE_IS_REFERENCE (type))
3070 return value_zero (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
3071 not_lval);
3072 else if (VALUE_LVAL (x) == lval_memory || value_must_coerce_to_target (x))
3073 return value_zero (lookup_pointer_type (value_type (x)),
3074 not_lval);
3075 else
3076 error (_("Attempt to take address of "
3077 "value not located in memory."));
3078 }
3079 return value_addr (x);
3080 }
3081 }
3082
3083 /* Evaluate like `evaluate_subexp' except coercing arrays to pointers.
3084 When used in contexts where arrays will be coerced anyway, this is
3085 equivalent to `evaluate_subexp' but much faster because it avoids
3086 actually fetching array contents (perhaps obsolete now that we have
3087 value_lazy()).
3088
3089 Note that we currently only do the coercion for C expressions, where
3090 arrays are zero based and the coercion is correct. For other languages,
3091 with nonzero based arrays, coercion loses. Use CAST_IS_CONVERSION
3092 to decide if coercion is appropriate. */
3093
3094 struct value *
3095 evaluate_subexp_with_coercion (struct expression *exp,
3096 int *pos, enum noside noside)
3097 {
3098 enum exp_opcode op;
3099 int pc;
3100 struct value *val;
3101 struct symbol *var;
3102 struct type *type;
3103
3104 pc = (*pos);
3105 op = exp->elts[pc].opcode;
3106
3107 switch (op)
3108 {
3109 case OP_VAR_VALUE:
3110 var = exp->elts[pc + 2].symbol;
3111 type = check_typedef (SYMBOL_TYPE (var));
3112 if (type->code () == TYPE_CODE_ARRAY
3113 && !type->is_vector ()
3114 && CAST_IS_CONVERSION (exp->language_defn))
3115 {
3116 (*pos) += 4;
3117 val = address_of_variable (var, exp->elts[pc + 1].block);
3118 return value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
3119 val);
3120 }
3121 /* FALLTHROUGH */
3122
3123 default:
3124 return evaluate_subexp (nullptr, exp, pos, noside);
3125 }
3126 }
3127
3128 /* Evaluate a subexpression of EXP, at index *POS,
3129 and return a value for the size of that subexpression.
3130 Advance *POS over the subexpression. If NOSIDE is EVAL_NORMAL
3131 we allow side-effects on the operand if its type is a variable
3132 length array. */
3133
3134 static struct value *
3135 evaluate_subexp_for_sizeof (struct expression *exp, int *pos,
3136 enum noside noside)
3137 {
3138 /* FIXME: This should be size_t. */
3139 struct type *size_type = builtin_type (exp->gdbarch)->builtin_int;
3140 enum exp_opcode op;
3141 int pc;
3142 struct type *type;
3143 struct value *val;
3144
3145 pc = (*pos);
3146 op = exp->elts[pc].opcode;
3147
3148 switch (op)
3149 {
3150 /* This case is handled specially
3151 so that we avoid creating a value for the result type.
3152 If the result type is very big, it's desirable not to
3153 create a value unnecessarily. */
3154 case UNOP_IND:
3155 (*pos)++;
3156 val = evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3157 type = check_typedef (value_type (val));
3158 if (type->code () != TYPE_CODE_PTR
3159 && !TYPE_IS_REFERENCE (type)
3160 && type->code () != TYPE_CODE_ARRAY)
3161 error (_("Attempt to take contents of a non-pointer value."));
3162 type = TYPE_TARGET_TYPE (type);
3163 if (is_dynamic_type (type))
3164 type = value_type (value_ind (val));
3165 return value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
3166
3167 case UNOP_MEMVAL:
3168 (*pos) += 3;
3169 type = exp->elts[pc + 1].type;
3170 break;
3171
3172 case UNOP_MEMVAL_TYPE:
3173 (*pos) += 1;
3174 val = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3175 type = value_type (val);
3176 break;
3177
3178 case OP_VAR_VALUE:
3179 type = SYMBOL_TYPE (exp->elts[pc + 2].symbol);
3180 if (is_dynamic_type (type))
3181 {
3182 val = evaluate_subexp (nullptr, exp, pos, EVAL_NORMAL);
3183 type = value_type (val);
3184 if (type->code () == TYPE_CODE_ARRAY)
3185 {
3186 if (type_not_allocated (type) || type_not_associated (type))
3187 return value_zero (size_type, not_lval);
3188 else if (is_dynamic_type (type->index_type ())
3189 && type->bounds ()->high.kind () == PROP_UNDEFINED)
3190 return allocate_optimized_out_value (size_type);
3191 }
3192 }
3193 else
3194 (*pos) += 4;
3195 break;
3196
3197 case OP_VAR_MSYM_VALUE:
3198 {
3199 (*pos) += 4;
3200
3201 minimal_symbol *msymbol = exp->elts[pc + 2].msymbol;
3202 value *mval = evaluate_var_msym_value (noside,
3203 exp->elts[pc + 1].objfile,
3204 msymbol);
3205
3206 type = value_type (mval);
3207 if (type->code () == TYPE_CODE_ERROR)
3208 error_unknown_type (msymbol->print_name ());
3209
3210 return value_from_longest (size_type, TYPE_LENGTH (type));
3211 }
3212 break;
3213
3214 /* Deal with the special case if NOSIDE is EVAL_NORMAL and the resulting
3215 type of the subscript is a variable length array type. In this case we
3216 must re-evaluate the right hand side of the subscription to allow
3217 side-effects. */
3218 case BINOP_SUBSCRIPT:
3219 if (noside == EVAL_NORMAL)
3220 {
3221 int npc = (*pos) + 1;
3222
3223 val = evaluate_subexp (nullptr, exp, &npc, EVAL_AVOID_SIDE_EFFECTS);
3224 type = check_typedef (value_type (val));
3225 if (type->code () == TYPE_CODE_ARRAY)
3226 {
3227 type = check_typedef (TYPE_TARGET_TYPE (type));
3228 if (type->code () == TYPE_CODE_ARRAY)
3229 {
3230 type = type->index_type ();
3231 /* Only re-evaluate the right hand side if the resulting type
3232 is a variable length type. */
3233 if (type->bounds ()->flag_bound_evaluated)
3234 {
3235 val = evaluate_subexp (nullptr, exp, pos, EVAL_NORMAL);
3236 return value_from_longest
3237 (size_type, (LONGEST) TYPE_LENGTH (value_type (val)));
3238 }
3239 }
3240 }
3241 }
3242
3243 /* Fall through. */
3244
3245 default:
3246 val = evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3247 type = value_type (val);
3248 break;
3249 }
3250
3251 /* $5.3.3/2 of the C++ Standard (n3290 draft) says of sizeof:
3252 "When applied to a reference or a reference type, the result is
3253 the size of the referenced type." */
3254 type = check_typedef (type);
3255 if (exp->language_defn->la_language == language_cplus
3256 && (TYPE_IS_REFERENCE (type)))
3257 type = check_typedef (TYPE_TARGET_TYPE (type));
3258 return value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
3259 }
3260
3261 /* Evaluate a subexpression of EXP, at index *POS, and return a value
3262 for that subexpression cast to TO_TYPE. Advance *POS over the
3263 subexpression. */
3264
3265 static value *
3266 evaluate_subexp_for_cast (expression *exp, int *pos,
3267 enum noside noside,
3268 struct type *to_type)
3269 {
3270 int pc = *pos;
3271
3272 /* Don't let symbols be evaluated with evaluate_subexp because that
3273 throws an "unknown type" error for no-debug data symbols.
3274 Instead, we want the cast to reinterpret the symbol. */
3275 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
3276 || exp->elts[pc].opcode == OP_VAR_VALUE)
3277 {
3278 (*pos) += 4;
3279
3280 value *val;
3281 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3282 {
3283 if (noside == EVAL_AVOID_SIDE_EFFECTS)
3284 return value_zero (to_type, not_lval);
3285
3286 val = evaluate_var_msym_value (noside,
3287 exp->elts[pc + 1].objfile,
3288 exp->elts[pc + 2].msymbol);
3289 }
3290 else
3291 val = evaluate_var_value (noside,
3292 exp->elts[pc + 1].block,
3293 exp->elts[pc + 2].symbol);
3294
3295 if (noside == EVAL_SKIP)
3296 return eval_skip_value (exp);
3297
3298 val = value_cast (to_type, val);
3299
3300 /* Don't allow e.g. '&(int)var_with_no_debug_info'. */
3301 if (VALUE_LVAL (val) == lval_memory)
3302 {
3303 if (value_lazy (val))
3304 value_fetch_lazy (val);
3305 VALUE_LVAL (val) = not_lval;
3306 }
3307 return val;
3308 }
3309
3310 value *val = evaluate_subexp (to_type, exp, pos, noside);
3311 if (noside == EVAL_SKIP)
3312 return eval_skip_value (exp);
3313 return value_cast (to_type, val);
3314 }
3315
3316 /* Parse a type expression in the string [P..P+LENGTH). */
3317
3318 struct type *
3319 parse_and_eval_type (const char *p, int length)
3320 {
3321 char *tmp = (char *) alloca (length + 4);
3322
3323 tmp[0] = '(';
3324 memcpy (tmp + 1, p, length);
3325 tmp[length + 1] = ')';
3326 tmp[length + 2] = '0';
3327 tmp[length + 3] = '\0';
3328 expression_up expr = parse_expression (tmp);
3329 if (expr->first_opcode () != UNOP_CAST)
3330 error (_("Internal error in eval_type."));
3331 return expr->elts[1].type;
3332 }