Add ADL support
[binutils-gdb.git] / gdb / eval.c
1 /* Evaluate expressions for GDB.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2005, 2006, 2007, 2008,
5 2009, 2010 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "gdb_string.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "value.h"
27 #include "expression.h"
28 #include "target.h"
29 #include "frame.h"
30 #include "language.h" /* For CAST_IS_CONVERSION */
31 #include "f-lang.h" /* for array bound stuff */
32 #include "cp-abi.h"
33 #include "infcall.h"
34 #include "objc-lang.h"
35 #include "block.h"
36 #include "parser-defs.h"
37 #include "cp-support.h"
38 #include "ui-out.h"
39 #include "exceptions.h"
40 #include "regcache.h"
41 #include "user-regs.h"
42 #include "valprint.h"
43 #include "gdb_obstack.h"
44 #include "objfiles.h"
45 #include "python/python.h"
46
47 #include "gdb_assert.h"
48
49 #include <ctype.h>
50
51 /* This is defined in valops.c */
52 extern int overload_resolution;
53
54 /* Prototypes for local functions. */
55
56 static struct value *evaluate_subexp_for_sizeof (struct expression *, int *);
57
58 static struct value *evaluate_subexp_for_address (struct expression *,
59 int *, enum noside);
60
61 static char *get_label (struct expression *, int *);
62
63 static struct value *evaluate_struct_tuple (struct value *,
64 struct expression *, int *,
65 enum noside, int);
66
67 static LONGEST init_array_element (struct value *, struct value *,
68 struct expression *, int *, enum noside,
69 LONGEST, LONGEST);
70
71 struct value *
72 evaluate_subexp (struct type *expect_type, struct expression *exp,
73 int *pos, enum noside noside)
74 {
75 return (*exp->language_defn->la_exp_desc->evaluate_exp)
76 (expect_type, exp, pos, noside);
77 }
78 \f
79 /* Parse the string EXP as a C expression, evaluate it,
80 and return the result as a number. */
81
82 CORE_ADDR
83 parse_and_eval_address (char *exp)
84 {
85 struct expression *expr = parse_expression (exp);
86 CORE_ADDR addr;
87 struct cleanup *old_chain =
88 make_cleanup (free_current_contents, &expr);
89
90 addr = value_as_address (evaluate_expression (expr));
91 do_cleanups (old_chain);
92 return addr;
93 }
94
95 /* Like parse_and_eval_address but takes a pointer to a char * variable
96 and advanced that variable across the characters parsed. */
97
98 CORE_ADDR
99 parse_and_eval_address_1 (char **expptr)
100 {
101 struct expression *expr = parse_exp_1 (expptr, (struct block *) 0, 0);
102 CORE_ADDR addr;
103 struct cleanup *old_chain =
104 make_cleanup (free_current_contents, &expr);
105
106 addr = value_as_address (evaluate_expression (expr));
107 do_cleanups (old_chain);
108 return addr;
109 }
110
111 /* Like parse_and_eval_address, but treats the value of the expression
112 as an integer, not an address, returns a LONGEST, not a CORE_ADDR */
113 LONGEST
114 parse_and_eval_long (char *exp)
115 {
116 struct expression *expr = parse_expression (exp);
117 LONGEST retval;
118 struct cleanup *old_chain =
119 make_cleanup (free_current_contents, &expr);
120
121 retval = value_as_long (evaluate_expression (expr));
122 do_cleanups (old_chain);
123 return (retval);
124 }
125
126 struct value *
127 parse_and_eval (char *exp)
128 {
129 struct expression *expr = parse_expression (exp);
130 struct value *val;
131 struct cleanup *old_chain =
132 make_cleanup (free_current_contents, &expr);
133
134 val = evaluate_expression (expr);
135 do_cleanups (old_chain);
136 return val;
137 }
138
139 /* Parse up to a comma (or to a closeparen)
140 in the string EXPP as an expression, evaluate it, and return the value.
141 EXPP is advanced to point to the comma. */
142
143 struct value *
144 parse_to_comma_and_eval (char **expp)
145 {
146 struct expression *expr = parse_exp_1 (expp, (struct block *) 0, 1);
147 struct value *val;
148 struct cleanup *old_chain =
149 make_cleanup (free_current_contents, &expr);
150
151 val = evaluate_expression (expr);
152 do_cleanups (old_chain);
153 return val;
154 }
155 \f
156 /* Evaluate an expression in internal prefix form
157 such as is constructed by parse.y.
158
159 See expression.h for info on the format of an expression. */
160
161 struct value *
162 evaluate_expression (struct expression *exp)
163 {
164 int pc = 0;
165 return evaluate_subexp (NULL_TYPE, exp, &pc, EVAL_NORMAL);
166 }
167
168 /* Evaluate an expression, avoiding all memory references
169 and getting a value whose type alone is correct. */
170
171 struct value *
172 evaluate_type (struct expression *exp)
173 {
174 int pc = 0;
175 return evaluate_subexp (NULL_TYPE, exp, &pc, EVAL_AVOID_SIDE_EFFECTS);
176 }
177
178 /* Evaluate a subexpression, avoiding all memory references and
179 getting a value whose type alone is correct. */
180
181 struct value *
182 evaluate_subexpression_type (struct expression *exp, int subexp)
183 {
184 return evaluate_subexp (NULL_TYPE, exp, &subexp, EVAL_AVOID_SIDE_EFFECTS);
185 }
186
187 /* Extract a field operation from an expression. If the subexpression
188 of EXP starting at *SUBEXP is not a structure dereference
189 operation, return NULL. Otherwise, return the name of the
190 dereferenced field, and advance *SUBEXP to point to the
191 subexpression of the left-hand-side of the dereference. This is
192 used when completing field names. */
193
194 char *
195 extract_field_op (struct expression *exp, int *subexp)
196 {
197 int tem;
198 char *result;
199 if (exp->elts[*subexp].opcode != STRUCTOP_STRUCT
200 && exp->elts[*subexp].opcode != STRUCTOP_PTR)
201 return NULL;
202 tem = longest_to_int (exp->elts[*subexp + 1].longconst);
203 result = &exp->elts[*subexp + 2].string;
204 (*subexp) += 1 + 3 + BYTES_TO_EXP_ELEM (tem + 1);
205 return result;
206 }
207
208 /* If the next expression is an OP_LABELED, skips past it,
209 returning the label. Otherwise, does nothing and returns NULL. */
210
211 static char *
212 get_label (struct expression *exp, int *pos)
213 {
214 if (exp->elts[*pos].opcode == OP_LABELED)
215 {
216 int pc = (*pos)++;
217 char *name = &exp->elts[pc + 2].string;
218 int tem = longest_to_int (exp->elts[pc + 1].longconst);
219 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
220 return name;
221 }
222 else
223 return NULL;
224 }
225
226 /* This function evaluates tuples (in (the deleted) Chill) or
227 brace-initializers (in C/C++) for structure types. */
228
229 static struct value *
230 evaluate_struct_tuple (struct value *struct_val,
231 struct expression *exp,
232 int *pos, enum noside noside, int nargs)
233 {
234 struct type *struct_type = check_typedef (value_type (struct_val));
235 struct type *substruct_type = struct_type;
236 struct type *field_type;
237 int fieldno = -1;
238 int variantno = -1;
239 int subfieldno = -1;
240 while (--nargs >= 0)
241 {
242 int pc = *pos;
243 struct value *val = NULL;
244 int nlabels = 0;
245 int bitpos, bitsize;
246 bfd_byte *addr;
247
248 /* Skip past the labels, and count them. */
249 while (get_label (exp, pos) != NULL)
250 nlabels++;
251
252 do
253 {
254 char *label = get_label (exp, &pc);
255 if (label)
256 {
257 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type);
258 fieldno++)
259 {
260 char *field_name = TYPE_FIELD_NAME (struct_type, fieldno);
261 if (field_name != NULL && strcmp (field_name, label) == 0)
262 {
263 variantno = -1;
264 subfieldno = fieldno;
265 substruct_type = struct_type;
266 goto found;
267 }
268 }
269 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type);
270 fieldno++)
271 {
272 char *field_name = TYPE_FIELD_NAME (struct_type, fieldno);
273 field_type = TYPE_FIELD_TYPE (struct_type, fieldno);
274 if ((field_name == 0 || *field_name == '\0')
275 && TYPE_CODE (field_type) == TYPE_CODE_UNION)
276 {
277 variantno = 0;
278 for (; variantno < TYPE_NFIELDS (field_type);
279 variantno++)
280 {
281 substruct_type
282 = TYPE_FIELD_TYPE (field_type, variantno);
283 if (TYPE_CODE (substruct_type) == TYPE_CODE_STRUCT)
284 {
285 for (subfieldno = 0;
286 subfieldno < TYPE_NFIELDS (substruct_type);
287 subfieldno++)
288 {
289 if (strcmp(TYPE_FIELD_NAME (substruct_type,
290 subfieldno),
291 label) == 0)
292 {
293 goto found;
294 }
295 }
296 }
297 }
298 }
299 }
300 error (_("there is no field named %s"), label);
301 found:
302 ;
303 }
304 else
305 {
306 /* Unlabelled tuple element - go to next field. */
307 if (variantno >= 0)
308 {
309 subfieldno++;
310 if (subfieldno >= TYPE_NFIELDS (substruct_type))
311 {
312 variantno = -1;
313 substruct_type = struct_type;
314 }
315 }
316 if (variantno < 0)
317 {
318 fieldno++;
319 /* Skip static fields. */
320 while (fieldno < TYPE_NFIELDS (struct_type)
321 && field_is_static (&TYPE_FIELD (struct_type,
322 fieldno)))
323 fieldno++;
324 subfieldno = fieldno;
325 if (fieldno >= TYPE_NFIELDS (struct_type))
326 error (_("too many initializers"));
327 field_type = TYPE_FIELD_TYPE (struct_type, fieldno);
328 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
329 && TYPE_FIELD_NAME (struct_type, fieldno)[0] == '0')
330 error (_("don't know which variant you want to set"));
331 }
332 }
333
334 /* Here, struct_type is the type of the inner struct,
335 while substruct_type is the type of the inner struct.
336 These are the same for normal structures, but a variant struct
337 contains anonymous union fields that contain substruct fields.
338 The value fieldno is the index of the top-level (normal or
339 anonymous union) field in struct_field, while the value
340 subfieldno is the index of the actual real (named inner) field
341 in substruct_type. */
342
343 field_type = TYPE_FIELD_TYPE (substruct_type, subfieldno);
344 if (val == 0)
345 val = evaluate_subexp (field_type, exp, pos, noside);
346
347 /* Now actually set the field in struct_val. */
348
349 /* Assign val to field fieldno. */
350 if (value_type (val) != field_type)
351 val = value_cast (field_type, val);
352
353 bitsize = TYPE_FIELD_BITSIZE (substruct_type, subfieldno);
354 bitpos = TYPE_FIELD_BITPOS (struct_type, fieldno);
355 if (variantno >= 0)
356 bitpos += TYPE_FIELD_BITPOS (substruct_type, subfieldno);
357 addr = value_contents_writeable (struct_val) + bitpos / 8;
358 if (bitsize)
359 modify_field (struct_type, addr,
360 value_as_long (val), bitpos % 8, bitsize);
361 else
362 memcpy (addr, value_contents (val),
363 TYPE_LENGTH (value_type (val)));
364 }
365 while (--nlabels > 0);
366 }
367 return struct_val;
368 }
369
370 /* Recursive helper function for setting elements of array tuples for
371 (the deleted) Chill. The target is ARRAY (which has bounds
372 LOW_BOUND to HIGH_BOUND); the element value is ELEMENT; EXP, POS
373 and NOSIDE are as usual. Evaluates index expresions and sets the
374 specified element(s) of ARRAY to ELEMENT. Returns last index
375 value. */
376
377 static LONGEST
378 init_array_element (struct value *array, struct value *element,
379 struct expression *exp, int *pos,
380 enum noside noside, LONGEST low_bound, LONGEST high_bound)
381 {
382 LONGEST index;
383 int element_size = TYPE_LENGTH (value_type (element));
384 if (exp->elts[*pos].opcode == BINOP_COMMA)
385 {
386 (*pos)++;
387 init_array_element (array, element, exp, pos, noside,
388 low_bound, high_bound);
389 return init_array_element (array, element,
390 exp, pos, noside, low_bound, high_bound);
391 }
392 else if (exp->elts[*pos].opcode == BINOP_RANGE)
393 {
394 LONGEST low, high;
395 (*pos)++;
396 low = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
397 high = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
398 if (low < low_bound || high > high_bound)
399 error (_("tuple range index out of range"));
400 for (index = low; index <= high; index++)
401 {
402 memcpy (value_contents_raw (array)
403 + (index - low_bound) * element_size,
404 value_contents (element), element_size);
405 }
406 }
407 else
408 {
409 index = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
410 if (index < low_bound || index > high_bound)
411 error (_("tuple index out of range"));
412 memcpy (value_contents_raw (array) + (index - low_bound) * element_size,
413 value_contents (element), element_size);
414 }
415 return index;
416 }
417
418 static struct value *
419 value_f90_subarray (struct value *array,
420 struct expression *exp, int *pos, enum noside noside)
421 {
422 int pc = (*pos) + 1;
423 LONGEST low_bound, high_bound;
424 struct type *range = check_typedef (TYPE_INDEX_TYPE (value_type (array)));
425 enum f90_range_type range_type = longest_to_int (exp->elts[pc].longconst);
426
427 *pos += 3;
428
429 if (range_type == LOW_BOUND_DEFAULT || range_type == BOTH_BOUND_DEFAULT)
430 low_bound = TYPE_LOW_BOUND (range);
431 else
432 low_bound = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
433
434 if (range_type == HIGH_BOUND_DEFAULT || range_type == BOTH_BOUND_DEFAULT)
435 high_bound = TYPE_HIGH_BOUND (range);
436 else
437 high_bound = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
438
439 return value_slice (array, low_bound, high_bound - low_bound + 1);
440 }
441
442
443 /* Promote value ARG1 as appropriate before performing a unary operation
444 on this argument.
445 If the result is not appropriate for any particular language then it
446 needs to patch this function. */
447
448 void
449 unop_promote (const struct language_defn *language, struct gdbarch *gdbarch,
450 struct value **arg1)
451 {
452 struct type *type1;
453
454 *arg1 = coerce_ref (*arg1);
455 type1 = check_typedef (value_type (*arg1));
456
457 if (is_integral_type (type1))
458 {
459 switch (language->la_language)
460 {
461 default:
462 /* Perform integral promotion for ANSI C/C++.
463 If not appropropriate for any particular language
464 it needs to modify this function. */
465 {
466 struct type *builtin_int = builtin_type (gdbarch)->builtin_int;
467 if (TYPE_LENGTH (type1) < TYPE_LENGTH (builtin_int))
468 *arg1 = value_cast (builtin_int, *arg1);
469 }
470 break;
471 }
472 }
473 }
474
475 /* Promote values ARG1 and ARG2 as appropriate before performing a binary
476 operation on those two operands.
477 If the result is not appropriate for any particular language then it
478 needs to patch this function. */
479
480 void
481 binop_promote (const struct language_defn *language, struct gdbarch *gdbarch,
482 struct value **arg1, struct value **arg2)
483 {
484 struct type *promoted_type = NULL;
485 struct type *type1;
486 struct type *type2;
487
488 *arg1 = coerce_ref (*arg1);
489 *arg2 = coerce_ref (*arg2);
490
491 type1 = check_typedef (value_type (*arg1));
492 type2 = check_typedef (value_type (*arg2));
493
494 if ((TYPE_CODE (type1) != TYPE_CODE_FLT
495 && TYPE_CODE (type1) != TYPE_CODE_DECFLOAT
496 && !is_integral_type (type1))
497 || (TYPE_CODE (type2) != TYPE_CODE_FLT
498 && TYPE_CODE (type2) != TYPE_CODE_DECFLOAT
499 && !is_integral_type (type2)))
500 return;
501
502 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT
503 || TYPE_CODE (type2) == TYPE_CODE_DECFLOAT)
504 {
505 /* No promotion required. */
506 }
507 else if (TYPE_CODE (type1) == TYPE_CODE_FLT
508 || TYPE_CODE (type2) == TYPE_CODE_FLT)
509 {
510 switch (language->la_language)
511 {
512 case language_c:
513 case language_cplus:
514 case language_asm:
515 case language_objc:
516 /* No promotion required. */
517 break;
518
519 default:
520 /* For other languages the result type is unchanged from gdb
521 version 6.7 for backward compatibility.
522 If either arg was long double, make sure that value is also long
523 double. Otherwise use double. */
524 if (TYPE_LENGTH (type1) * 8 > gdbarch_double_bit (gdbarch)
525 || TYPE_LENGTH (type2) * 8 > gdbarch_double_bit (gdbarch))
526 promoted_type = builtin_type (gdbarch)->builtin_long_double;
527 else
528 promoted_type = builtin_type (gdbarch)->builtin_double;
529 break;
530 }
531 }
532 else if (TYPE_CODE (type1) == TYPE_CODE_BOOL
533 && TYPE_CODE (type2) == TYPE_CODE_BOOL)
534 {
535 /* No promotion required. */
536 }
537 else
538 /* Integral operations here. */
539 /* FIXME: Also mixed integral/booleans, with result an integer. */
540 {
541 const struct builtin_type *builtin = builtin_type (gdbarch);
542 unsigned int promoted_len1 = TYPE_LENGTH (type1);
543 unsigned int promoted_len2 = TYPE_LENGTH (type2);
544 int is_unsigned1 = TYPE_UNSIGNED (type1);
545 int is_unsigned2 = TYPE_UNSIGNED (type2);
546 unsigned int result_len;
547 int unsigned_operation;
548
549 /* Determine type length and signedness after promotion for
550 both operands. */
551 if (promoted_len1 < TYPE_LENGTH (builtin->builtin_int))
552 {
553 is_unsigned1 = 0;
554 promoted_len1 = TYPE_LENGTH (builtin->builtin_int);
555 }
556 if (promoted_len2 < TYPE_LENGTH (builtin->builtin_int))
557 {
558 is_unsigned2 = 0;
559 promoted_len2 = TYPE_LENGTH (builtin->builtin_int);
560 }
561
562 if (promoted_len1 > promoted_len2)
563 {
564 unsigned_operation = is_unsigned1;
565 result_len = promoted_len1;
566 }
567 else if (promoted_len2 > promoted_len1)
568 {
569 unsigned_operation = is_unsigned2;
570 result_len = promoted_len2;
571 }
572 else
573 {
574 unsigned_operation = is_unsigned1 || is_unsigned2;
575 result_len = promoted_len1;
576 }
577
578 switch (language->la_language)
579 {
580 case language_c:
581 case language_cplus:
582 case language_asm:
583 case language_objc:
584 if (result_len <= TYPE_LENGTH (builtin->builtin_int))
585 {
586 promoted_type = (unsigned_operation
587 ? builtin->builtin_unsigned_int
588 : builtin->builtin_int);
589 }
590 else if (result_len <= TYPE_LENGTH (builtin->builtin_long))
591 {
592 promoted_type = (unsigned_operation
593 ? builtin->builtin_unsigned_long
594 : builtin->builtin_long);
595 }
596 else
597 {
598 promoted_type = (unsigned_operation
599 ? builtin->builtin_unsigned_long_long
600 : builtin->builtin_long_long);
601 }
602 break;
603
604 default:
605 /* For other languages the result type is unchanged from gdb
606 version 6.7 for backward compatibility.
607 If either arg was long long, make sure that value is also long
608 long. Otherwise use long. */
609 if (unsigned_operation)
610 {
611 if (result_len > gdbarch_long_bit (gdbarch) / HOST_CHAR_BIT)
612 promoted_type = builtin->builtin_unsigned_long_long;
613 else
614 promoted_type = builtin->builtin_unsigned_long;
615 }
616 else
617 {
618 if (result_len > gdbarch_long_bit (gdbarch) / HOST_CHAR_BIT)
619 promoted_type = builtin->builtin_long_long;
620 else
621 promoted_type = builtin->builtin_long;
622 }
623 break;
624 }
625 }
626
627 if (promoted_type)
628 {
629 /* Promote both operands to common type. */
630 *arg1 = value_cast (promoted_type, *arg1);
631 *arg2 = value_cast (promoted_type, *arg2);
632 }
633 }
634
635 static int
636 ptrmath_type_p (struct type *type)
637 {
638 type = check_typedef (type);
639 if (TYPE_CODE (type) == TYPE_CODE_REF)
640 type = TYPE_TARGET_TYPE (type);
641
642 switch (TYPE_CODE (type))
643 {
644 case TYPE_CODE_PTR:
645 case TYPE_CODE_FUNC:
646 return 1;
647
648 case TYPE_CODE_ARRAY:
649 return current_language->c_style_arrays;
650
651 default:
652 return 0;
653 }
654 }
655
656 /* Constructs a fake method with the given parameter types.
657 This function is used by the parser to construct an "expected"
658 type for method overload resolution. */
659
660 static struct type *
661 make_params (int num_types, struct type **param_types)
662 {
663 struct type *type = XZALLOC (struct type);
664 TYPE_MAIN_TYPE (type) = XZALLOC (struct main_type);
665 TYPE_LENGTH (type) = 1;
666 TYPE_CODE (type) = TYPE_CODE_METHOD;
667 TYPE_VPTR_FIELDNO (type) = -1;
668 TYPE_CHAIN (type) = type;
669 TYPE_NFIELDS (type) = num_types;
670 TYPE_FIELDS (type) = (struct field *)
671 TYPE_ZALLOC (type, sizeof (struct field) * num_types);
672
673 while (num_types-- > 0)
674 TYPE_FIELD_TYPE (type, num_types) = param_types[num_types];
675
676 return type;
677 }
678
679 struct value *
680 evaluate_subexp_standard (struct type *expect_type,
681 struct expression *exp, int *pos,
682 enum noside noside)
683 {
684 enum exp_opcode op;
685 int tem, tem2, tem3;
686 int pc, pc2 = 0, oldpos;
687 struct value *arg1 = NULL;
688 struct value *arg2 = NULL;
689 struct value *arg3;
690 struct type *type;
691 int nargs;
692 struct value **argvec;
693 int upper, lower;
694 int code;
695 int ix;
696 long mem_offset;
697 struct type **arg_types;
698 int save_pos1;
699 struct symbol *function = NULL;
700 char *function_name = NULL;
701
702 pc = (*pos)++;
703 op = exp->elts[pc].opcode;
704
705 switch (op)
706 {
707 case OP_SCOPE:
708 tem = longest_to_int (exp->elts[pc + 2].longconst);
709 (*pos) += 4 + BYTES_TO_EXP_ELEM (tem + 1);
710 if (noside == EVAL_SKIP)
711 goto nosideret;
712 arg1 = value_aggregate_elt (exp->elts[pc + 1].type,
713 &exp->elts[pc + 3].string,
714 expect_type, 0, noside);
715 if (arg1 == NULL)
716 error (_("There is no field named %s"), &exp->elts[pc + 3].string);
717 return arg1;
718
719 case OP_LONG:
720 (*pos) += 3;
721 return value_from_longest (exp->elts[pc + 1].type,
722 exp->elts[pc + 2].longconst);
723
724 case OP_DOUBLE:
725 (*pos) += 3;
726 return value_from_double (exp->elts[pc + 1].type,
727 exp->elts[pc + 2].doubleconst);
728
729 case OP_DECFLOAT:
730 (*pos) += 3;
731 return value_from_decfloat (exp->elts[pc + 1].type,
732 exp->elts[pc + 2].decfloatconst);
733
734 case OP_ADL_FUNC:
735 case OP_VAR_VALUE:
736 (*pos) += 3;
737 if (noside == EVAL_SKIP)
738 goto nosideret;
739
740 /* JYG: We used to just return value_zero of the symbol type
741 if we're asked to avoid side effects. Otherwise we return
742 value_of_variable (...). However I'm not sure if
743 value_of_variable () has any side effect.
744 We need a full value object returned here for whatis_exp ()
745 to call evaluate_type () and then pass the full value to
746 value_rtti_target_type () if we are dealing with a pointer
747 or reference to a base class and print object is on. */
748
749 {
750 volatile struct gdb_exception except;
751 struct value *ret = NULL;
752
753 TRY_CATCH (except, RETURN_MASK_ERROR)
754 {
755 ret = value_of_variable (exp->elts[pc + 2].symbol,
756 exp->elts[pc + 1].block);
757 }
758
759 if (except.reason < 0)
760 {
761 if (noside == EVAL_AVOID_SIDE_EFFECTS)
762 ret = value_zero (SYMBOL_TYPE (exp->elts[pc + 2].symbol), not_lval);
763 else
764 throw_exception (except);
765 }
766
767 return ret;
768 }
769
770 case OP_LAST:
771 (*pos) += 2;
772 return
773 access_value_history (longest_to_int (exp->elts[pc + 1].longconst));
774
775 case OP_REGISTER:
776 {
777 const char *name = &exp->elts[pc + 2].string;
778 int regno;
779 struct value *val;
780
781 (*pos) += 3 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
782 regno = user_reg_map_name_to_regnum (exp->gdbarch,
783 name, strlen (name));
784 if (regno == -1)
785 error (_("Register $%s not available."), name);
786
787 /* In EVAL_AVOID_SIDE_EFFECTS mode, we only need to return
788 a value with the appropriate register type. Unfortunately,
789 we don't have easy access to the type of user registers.
790 So for these registers, we fetch the register value regardless
791 of the evaluation mode. */
792 if (noside == EVAL_AVOID_SIDE_EFFECTS
793 && regno < gdbarch_num_regs (exp->gdbarch)
794 + gdbarch_num_pseudo_regs (exp->gdbarch))
795 val = value_zero (register_type (exp->gdbarch, regno), not_lval);
796 else
797 val = value_of_register (regno, get_selected_frame (NULL));
798 if (val == NULL)
799 error (_("Value of register %s not available."), name);
800 else
801 return val;
802 }
803 case OP_BOOL:
804 (*pos) += 2;
805 type = language_bool_type (exp->language_defn, exp->gdbarch);
806 return value_from_longest (type, exp->elts[pc + 1].longconst);
807
808 case OP_INTERNALVAR:
809 (*pos) += 2;
810 return value_of_internalvar (exp->gdbarch,
811 exp->elts[pc + 1].internalvar);
812
813 case OP_STRING:
814 tem = longest_to_int (exp->elts[pc + 1].longconst);
815 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
816 if (noside == EVAL_SKIP)
817 goto nosideret;
818 type = language_string_char_type (exp->language_defn, exp->gdbarch);
819 return value_string (&exp->elts[pc + 2].string, tem, type);
820
821 case OP_OBJC_NSSTRING: /* Objective C Foundation Class NSString constant. */
822 tem = longest_to_int (exp->elts[pc + 1].longconst);
823 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
824 if (noside == EVAL_SKIP)
825 {
826 goto nosideret;
827 }
828 return value_nsstring (exp->gdbarch, &exp->elts[pc + 2].string, tem + 1);
829
830 case OP_BITSTRING:
831 tem = longest_to_int (exp->elts[pc + 1].longconst);
832 (*pos)
833 += 3 + BYTES_TO_EXP_ELEM ((tem + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT);
834 if (noside == EVAL_SKIP)
835 goto nosideret;
836 return value_bitstring (&exp->elts[pc + 2].string, tem,
837 builtin_type (exp->gdbarch)->builtin_int);
838 break;
839
840 case OP_ARRAY:
841 (*pos) += 3;
842 tem2 = longest_to_int (exp->elts[pc + 1].longconst);
843 tem3 = longest_to_int (exp->elts[pc + 2].longconst);
844 nargs = tem3 - tem2 + 1;
845 type = expect_type ? check_typedef (expect_type) : NULL_TYPE;
846
847 if (expect_type != NULL_TYPE && noside != EVAL_SKIP
848 && TYPE_CODE (type) == TYPE_CODE_STRUCT)
849 {
850 struct value *rec = allocate_value (expect_type);
851 memset (value_contents_raw (rec), '\0', TYPE_LENGTH (type));
852 return evaluate_struct_tuple (rec, exp, pos, noside, nargs);
853 }
854
855 if (expect_type != NULL_TYPE && noside != EVAL_SKIP
856 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
857 {
858 struct type *range_type = TYPE_INDEX_TYPE (type);
859 struct type *element_type = TYPE_TARGET_TYPE (type);
860 struct value *array = allocate_value (expect_type);
861 int element_size = TYPE_LENGTH (check_typedef (element_type));
862 LONGEST low_bound, high_bound, index;
863 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
864 {
865 low_bound = 0;
866 high_bound = (TYPE_LENGTH (type) / element_size) - 1;
867 }
868 index = low_bound;
869 memset (value_contents_raw (array), 0, TYPE_LENGTH (expect_type));
870 for (tem = nargs; --nargs >= 0;)
871 {
872 struct value *element;
873 int index_pc = 0;
874 if (exp->elts[*pos].opcode == BINOP_RANGE)
875 {
876 index_pc = ++(*pos);
877 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
878 }
879 element = evaluate_subexp (element_type, exp, pos, noside);
880 if (value_type (element) != element_type)
881 element = value_cast (element_type, element);
882 if (index_pc)
883 {
884 int continue_pc = *pos;
885 *pos = index_pc;
886 index = init_array_element (array, element, exp, pos, noside,
887 low_bound, high_bound);
888 *pos = continue_pc;
889 }
890 else
891 {
892 if (index > high_bound)
893 /* to avoid memory corruption */
894 error (_("Too many array elements"));
895 memcpy (value_contents_raw (array)
896 + (index - low_bound) * element_size,
897 value_contents (element),
898 element_size);
899 }
900 index++;
901 }
902 return array;
903 }
904
905 if (expect_type != NULL_TYPE && noside != EVAL_SKIP
906 && TYPE_CODE (type) == TYPE_CODE_SET)
907 {
908 struct value *set = allocate_value (expect_type);
909 gdb_byte *valaddr = value_contents_raw (set);
910 struct type *element_type = TYPE_INDEX_TYPE (type);
911 struct type *check_type = element_type;
912 LONGEST low_bound, high_bound;
913
914 /* get targettype of elementtype */
915 while (TYPE_CODE (check_type) == TYPE_CODE_RANGE
916 || TYPE_CODE (check_type) == TYPE_CODE_TYPEDEF)
917 check_type = TYPE_TARGET_TYPE (check_type);
918
919 if (get_discrete_bounds (element_type, &low_bound, &high_bound) < 0)
920 error (_("(power)set type with unknown size"));
921 memset (valaddr, '\0', TYPE_LENGTH (type));
922 for (tem = 0; tem < nargs; tem++)
923 {
924 LONGEST range_low, range_high;
925 struct type *range_low_type, *range_high_type;
926 struct value *elem_val;
927 if (exp->elts[*pos].opcode == BINOP_RANGE)
928 {
929 (*pos)++;
930 elem_val = evaluate_subexp (element_type, exp, pos, noside);
931 range_low_type = value_type (elem_val);
932 range_low = value_as_long (elem_val);
933 elem_val = evaluate_subexp (element_type, exp, pos, noside);
934 range_high_type = value_type (elem_val);
935 range_high = value_as_long (elem_val);
936 }
937 else
938 {
939 elem_val = evaluate_subexp (element_type, exp, pos, noside);
940 range_low_type = range_high_type = value_type (elem_val);
941 range_low = range_high = value_as_long (elem_val);
942 }
943 /* check types of elements to avoid mixture of elements from
944 different types. Also check if type of element is "compatible"
945 with element type of powerset */
946 if (TYPE_CODE (range_low_type) == TYPE_CODE_RANGE)
947 range_low_type = TYPE_TARGET_TYPE (range_low_type);
948 if (TYPE_CODE (range_high_type) == TYPE_CODE_RANGE)
949 range_high_type = TYPE_TARGET_TYPE (range_high_type);
950 if ((TYPE_CODE (range_low_type) != TYPE_CODE (range_high_type))
951 || (TYPE_CODE (range_low_type) == TYPE_CODE_ENUM
952 && (range_low_type != range_high_type)))
953 /* different element modes */
954 error (_("POWERSET tuple elements of different mode"));
955 if ((TYPE_CODE (check_type) != TYPE_CODE (range_low_type))
956 || (TYPE_CODE (check_type) == TYPE_CODE_ENUM
957 && range_low_type != check_type))
958 error (_("incompatible POWERSET tuple elements"));
959 if (range_low > range_high)
960 {
961 warning (_("empty POWERSET tuple range"));
962 continue;
963 }
964 if (range_low < low_bound || range_high > high_bound)
965 error (_("POWERSET tuple element out of range"));
966 range_low -= low_bound;
967 range_high -= low_bound;
968 for (; range_low <= range_high; range_low++)
969 {
970 int bit_index = (unsigned) range_low % TARGET_CHAR_BIT;
971 if (gdbarch_bits_big_endian (exp->gdbarch))
972 bit_index = TARGET_CHAR_BIT - 1 - bit_index;
973 valaddr[(unsigned) range_low / TARGET_CHAR_BIT]
974 |= 1 << bit_index;
975 }
976 }
977 return set;
978 }
979
980 argvec = (struct value **) alloca (sizeof (struct value *) * nargs);
981 for (tem = 0; tem < nargs; tem++)
982 {
983 /* Ensure that array expressions are coerced into pointer objects. */
984 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
985 }
986 if (noside == EVAL_SKIP)
987 goto nosideret;
988 return value_array (tem2, tem3, argvec);
989
990 case TERNOP_SLICE:
991 {
992 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
993 int lowbound
994 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
995 int upper
996 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
997 if (noside == EVAL_SKIP)
998 goto nosideret;
999 return value_slice (array, lowbound, upper - lowbound + 1);
1000 }
1001
1002 case TERNOP_SLICE_COUNT:
1003 {
1004 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1005 int lowbound
1006 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
1007 int length
1008 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
1009 return value_slice (array, lowbound, length);
1010 }
1011
1012 case TERNOP_COND:
1013 /* Skip third and second args to evaluate the first one. */
1014 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1015 if (value_logical_not (arg1))
1016 {
1017 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
1018 return evaluate_subexp (NULL_TYPE, exp, pos, noside);
1019 }
1020 else
1021 {
1022 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1023 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
1024 return arg2;
1025 }
1026
1027 case OP_OBJC_SELECTOR:
1028 { /* Objective C @selector operator. */
1029 char *sel = &exp->elts[pc + 2].string;
1030 int len = longest_to_int (exp->elts[pc + 1].longconst);
1031 struct type *selector_type;
1032
1033 (*pos) += 3 + BYTES_TO_EXP_ELEM (len + 1);
1034 if (noside == EVAL_SKIP)
1035 goto nosideret;
1036
1037 if (sel[len] != 0)
1038 sel[len] = 0; /* Make sure it's terminated. */
1039
1040 selector_type = builtin_type (exp->gdbarch)->builtin_data_ptr;
1041 return value_from_longest (selector_type,
1042 lookup_child_selector (exp->gdbarch, sel));
1043 }
1044
1045 case OP_OBJC_MSGCALL:
1046 { /* Objective C message (method) call. */
1047
1048 CORE_ADDR responds_selector = 0;
1049 CORE_ADDR method_selector = 0;
1050
1051 CORE_ADDR selector = 0;
1052
1053 int struct_return = 0;
1054 int sub_no_side = 0;
1055
1056 struct value *msg_send = NULL;
1057 struct value *msg_send_stret = NULL;
1058 int gnu_runtime = 0;
1059
1060 struct value *target = NULL;
1061 struct value *method = NULL;
1062 struct value *called_method = NULL;
1063
1064 struct type *selector_type = NULL;
1065 struct type *long_type;
1066
1067 struct value *ret = NULL;
1068 CORE_ADDR addr = 0;
1069
1070 selector = exp->elts[pc + 1].longconst;
1071 nargs = exp->elts[pc + 2].longconst;
1072 argvec = (struct value **) alloca (sizeof (struct value *)
1073 * (nargs + 5));
1074
1075 (*pos) += 3;
1076
1077 long_type = builtin_type (exp->gdbarch)->builtin_long;
1078 selector_type = builtin_type (exp->gdbarch)->builtin_data_ptr;
1079
1080 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1081 sub_no_side = EVAL_NORMAL;
1082 else
1083 sub_no_side = noside;
1084
1085 target = evaluate_subexp (selector_type, exp, pos, sub_no_side);
1086
1087 if (value_as_long (target) == 0)
1088 return value_from_longest (long_type, 0);
1089
1090 if (lookup_minimal_symbol ("objc_msg_lookup", 0, 0))
1091 gnu_runtime = 1;
1092
1093 /* Find the method dispatch (Apple runtime) or method lookup
1094 (GNU runtime) function for Objective-C. These will be used
1095 to lookup the symbol information for the method. If we
1096 can't find any symbol information, then we'll use these to
1097 call the method, otherwise we can call the method
1098 directly. The msg_send_stret function is used in the special
1099 case of a method that returns a structure (Apple runtime
1100 only). */
1101 if (gnu_runtime)
1102 {
1103 struct type *type = selector_type;
1104 type = lookup_function_type (type);
1105 type = lookup_pointer_type (type);
1106 type = lookup_function_type (type);
1107 type = lookup_pointer_type (type);
1108
1109 msg_send = find_function_in_inferior ("objc_msg_lookup", NULL);
1110 msg_send_stret
1111 = find_function_in_inferior ("objc_msg_lookup", NULL);
1112
1113 msg_send = value_from_pointer (type, value_as_address (msg_send));
1114 msg_send_stret = value_from_pointer (type,
1115 value_as_address (msg_send_stret));
1116 }
1117 else
1118 {
1119 msg_send = find_function_in_inferior ("objc_msgSend", NULL);
1120 /* Special dispatcher for methods returning structs */
1121 msg_send_stret
1122 = find_function_in_inferior ("objc_msgSend_stret", NULL);
1123 }
1124
1125 /* Verify the target object responds to this method. The
1126 standard top-level 'Object' class uses a different name for
1127 the verification method than the non-standard, but more
1128 often used, 'NSObject' class. Make sure we check for both. */
1129
1130 responds_selector
1131 = lookup_child_selector (exp->gdbarch, "respondsToSelector:");
1132 if (responds_selector == 0)
1133 responds_selector
1134 = lookup_child_selector (exp->gdbarch, "respondsTo:");
1135
1136 if (responds_selector == 0)
1137 error (_("no 'respondsTo:' or 'respondsToSelector:' method"));
1138
1139 method_selector
1140 = lookup_child_selector (exp->gdbarch, "methodForSelector:");
1141 if (method_selector == 0)
1142 method_selector
1143 = lookup_child_selector (exp->gdbarch, "methodFor:");
1144
1145 if (method_selector == 0)
1146 error (_("no 'methodFor:' or 'methodForSelector:' method"));
1147
1148 /* Call the verification method, to make sure that the target
1149 class implements the desired method. */
1150
1151 argvec[0] = msg_send;
1152 argvec[1] = target;
1153 argvec[2] = value_from_longest (long_type, responds_selector);
1154 argvec[3] = value_from_longest (long_type, selector);
1155 argvec[4] = 0;
1156
1157 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
1158 if (gnu_runtime)
1159 {
1160 /* Function objc_msg_lookup returns a pointer. */
1161 argvec[0] = ret;
1162 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
1163 }
1164 if (value_as_long (ret) == 0)
1165 error (_("Target does not respond to this message selector."));
1166
1167 /* Call "methodForSelector:" method, to get the address of a
1168 function method that implements this selector for this
1169 class. If we can find a symbol at that address, then we
1170 know the return type, parameter types etc. (that's a good
1171 thing). */
1172
1173 argvec[0] = msg_send;
1174 argvec[1] = target;
1175 argvec[2] = value_from_longest (long_type, method_selector);
1176 argvec[3] = value_from_longest (long_type, selector);
1177 argvec[4] = 0;
1178
1179 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
1180 if (gnu_runtime)
1181 {
1182 argvec[0] = ret;
1183 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
1184 }
1185
1186 /* ret should now be the selector. */
1187
1188 addr = value_as_long (ret);
1189 if (addr)
1190 {
1191 struct symbol *sym = NULL;
1192
1193 /* The address might point to a function descriptor;
1194 resolve it to the actual code address instead. */
1195 addr = gdbarch_convert_from_func_ptr_addr (exp->gdbarch, addr,
1196 &current_target);
1197
1198 /* Is it a high_level symbol? */
1199 sym = find_pc_function (addr);
1200 if (sym != NULL)
1201 method = value_of_variable (sym, 0);
1202 }
1203
1204 /* If we found a method with symbol information, check to see
1205 if it returns a struct. Otherwise assume it doesn't. */
1206
1207 if (method)
1208 {
1209 struct block *b;
1210 CORE_ADDR funaddr;
1211 struct type *val_type;
1212
1213 funaddr = find_function_addr (method, &val_type);
1214
1215 b = block_for_pc (funaddr);
1216
1217 CHECK_TYPEDEF (val_type);
1218
1219 if ((val_type == NULL)
1220 || (TYPE_CODE(val_type) == TYPE_CODE_ERROR))
1221 {
1222 if (expect_type != NULL)
1223 val_type = expect_type;
1224 }
1225
1226 struct_return = using_struct_return (exp->gdbarch,
1227 value_type (method), val_type);
1228 }
1229 else if (expect_type != NULL)
1230 {
1231 struct_return = using_struct_return (exp->gdbarch, NULL,
1232 check_typedef (expect_type));
1233 }
1234
1235 /* Found a function symbol. Now we will substitute its
1236 value in place of the message dispatcher (obj_msgSend),
1237 so that we call the method directly instead of thru
1238 the dispatcher. The main reason for doing this is that
1239 we can now evaluate the return value and parameter values
1240 according to their known data types, in case we need to
1241 do things like promotion, dereferencing, special handling
1242 of structs and doubles, etc.
1243
1244 We want to use the type signature of 'method', but still
1245 jump to objc_msgSend() or objc_msgSend_stret() to better
1246 mimic the behavior of the runtime. */
1247
1248 if (method)
1249 {
1250 if (TYPE_CODE (value_type (method)) != TYPE_CODE_FUNC)
1251 error (_("method address has symbol information with non-function type; skipping"));
1252
1253 /* Create a function pointer of the appropriate type, and replace
1254 its value with the value of msg_send or msg_send_stret. We must
1255 use a pointer here, as msg_send and msg_send_stret are of pointer
1256 type, and the representation may be different on systems that use
1257 function descriptors. */
1258 if (struct_return)
1259 called_method
1260 = value_from_pointer (lookup_pointer_type (value_type (method)),
1261 value_as_address (msg_send_stret));
1262 else
1263 called_method
1264 = value_from_pointer (lookup_pointer_type (value_type (method)),
1265 value_as_address (msg_send));
1266 }
1267 else
1268 {
1269 if (struct_return)
1270 called_method = msg_send_stret;
1271 else
1272 called_method = msg_send;
1273 }
1274
1275 if (noside == EVAL_SKIP)
1276 goto nosideret;
1277
1278 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1279 {
1280 /* If the return type doesn't look like a function type,
1281 call an error. This can happen if somebody tries to
1282 turn a variable into a function call. This is here
1283 because people often want to call, eg, strcmp, which
1284 gdb doesn't know is a function. If gdb isn't asked for
1285 it's opinion (ie. through "whatis"), it won't offer
1286 it. */
1287
1288 struct type *type = value_type (called_method);
1289 if (type && TYPE_CODE (type) == TYPE_CODE_PTR)
1290 type = TYPE_TARGET_TYPE (type);
1291 type = TYPE_TARGET_TYPE (type);
1292
1293 if (type)
1294 {
1295 if ((TYPE_CODE (type) == TYPE_CODE_ERROR) && expect_type)
1296 return allocate_value (expect_type);
1297 else
1298 return allocate_value (type);
1299 }
1300 else
1301 error (_("Expression of type other than \"method returning ...\" used as a method"));
1302 }
1303
1304 /* Now depending on whether we found a symbol for the method,
1305 we will either call the runtime dispatcher or the method
1306 directly. */
1307
1308 argvec[0] = called_method;
1309 argvec[1] = target;
1310 argvec[2] = value_from_longest (long_type, selector);
1311 /* User-supplied arguments. */
1312 for (tem = 0; tem < nargs; tem++)
1313 argvec[tem + 3] = evaluate_subexp_with_coercion (exp, pos, noside);
1314 argvec[tem + 3] = 0;
1315
1316 if (gnu_runtime && (method != NULL))
1317 {
1318 /* Function objc_msg_lookup returns a pointer. */
1319 deprecated_set_value_type (argvec[0],
1320 lookup_pointer_type (lookup_function_type (value_type (argvec[0]))));
1321 argvec[0] = call_function_by_hand (argvec[0], nargs + 2, argvec + 1);
1322 }
1323
1324 ret = call_function_by_hand (argvec[0], nargs + 2, argvec + 1);
1325 return ret;
1326 }
1327 break;
1328
1329 case OP_FUNCALL:
1330 (*pos) += 2;
1331 op = exp->elts[*pos].opcode;
1332 nargs = longest_to_int (exp->elts[pc + 1].longconst);
1333 /* Allocate arg vector, including space for the function to be
1334 called in argvec[0] and a terminating NULL */
1335 argvec = (struct value **) alloca (sizeof (struct value *) * (nargs + 3));
1336 if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR)
1337 {
1338 nargs++;
1339 /* First, evaluate the structure into arg2 */
1340 pc2 = (*pos)++;
1341
1342 if (noside == EVAL_SKIP)
1343 goto nosideret;
1344
1345 if (op == STRUCTOP_MEMBER)
1346 {
1347 arg2 = evaluate_subexp_for_address (exp, pos, noside);
1348 }
1349 else
1350 {
1351 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1352 }
1353
1354 /* If the function is a virtual function, then the
1355 aggregate value (providing the structure) plays
1356 its part by providing the vtable. Otherwise,
1357 it is just along for the ride: call the function
1358 directly. */
1359
1360 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1361
1362 if (TYPE_CODE (check_typedef (value_type (arg1)))
1363 != TYPE_CODE_METHODPTR)
1364 error (_("Non-pointer-to-member value used in pointer-to-member "
1365 "construct"));
1366
1367 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1368 {
1369 struct type *method_type = check_typedef (value_type (arg1));
1370 arg1 = value_zero (method_type, not_lval);
1371 }
1372 else
1373 arg1 = cplus_method_ptr_to_value (&arg2, arg1);
1374
1375 /* Now, say which argument to start evaluating from */
1376 tem = 2;
1377 }
1378 else if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR)
1379 {
1380 /* Hair for method invocations */
1381 int tem2;
1382
1383 nargs++;
1384 /* First, evaluate the structure into arg2 */
1385 pc2 = (*pos)++;
1386 tem2 = longest_to_int (exp->elts[pc2 + 1].longconst);
1387 *pos += 3 + BYTES_TO_EXP_ELEM (tem2 + 1);
1388 if (noside == EVAL_SKIP)
1389 goto nosideret;
1390
1391 if (op == STRUCTOP_STRUCT)
1392 {
1393 /* If v is a variable in a register, and the user types
1394 v.method (), this will produce an error, because v has
1395 no address.
1396
1397 A possible way around this would be to allocate a
1398 copy of the variable on the stack, copy in the
1399 contents, call the function, and copy out the
1400 contents. I.e. convert this from call by reference
1401 to call by copy-return (or whatever it's called).
1402 However, this does not work because it is not the
1403 same: the method being called could stash a copy of
1404 the address, and then future uses through that address
1405 (after the method returns) would be expected to
1406 use the variable itself, not some copy of it. */
1407 arg2 = evaluate_subexp_for_address (exp, pos, noside);
1408 }
1409 else
1410 {
1411 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1412 }
1413 /* Now, say which argument to start evaluating from */
1414 tem = 2;
1415 }
1416 else if (op == OP_SCOPE
1417 && overload_resolution
1418 && (exp->language_defn->la_language == language_cplus))
1419 {
1420 /* Unpack it locally so we can properly handle overload
1421 resolution. */
1422 char *name;
1423 int local_tem;
1424
1425 pc2 = (*pos)++;
1426 local_tem = longest_to_int (exp->elts[pc2 + 2].longconst);
1427 (*pos) += 4 + BYTES_TO_EXP_ELEM (local_tem + 1);
1428 type = exp->elts[pc2 + 1].type;
1429 name = &exp->elts[pc2 + 3].string;
1430
1431 function = NULL;
1432 function_name = NULL;
1433 if (TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
1434 {
1435 function = cp_lookup_symbol_namespace (TYPE_TAG_NAME (type),
1436 name,
1437 get_selected_block (0),
1438 VAR_DOMAIN);
1439 if (function == NULL)
1440 error (_("No symbol \"%s\" in namespace \"%s\"."),
1441 name, TYPE_TAG_NAME (type));
1442
1443 tem = 1;
1444 }
1445 else
1446 {
1447 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1448 || TYPE_CODE (type) == TYPE_CODE_UNION);
1449 function_name = name;
1450
1451 arg2 = value_zero (type, lval_memory);
1452 ++nargs;
1453 tem = 2;
1454 }
1455 }
1456 else if (op == OP_ADL_FUNC)
1457 {
1458 /* Save the function position and move pos so that the arguments
1459 can be evaluated. */
1460 int func_name_len;
1461 save_pos1 = *pos;
1462 tem = 1;
1463
1464 func_name_len = longest_to_int (exp->elts[save_pos1 + 3].longconst);
1465 (*pos) += 6 + BYTES_TO_EXP_ELEM (func_name_len + 1);
1466 }
1467 else
1468 {
1469 /* Non-method function call */
1470 save_pos1 = *pos;
1471 argvec[0] = evaluate_subexp_with_coercion (exp, pos, noside);
1472 tem = 1;
1473 type = value_type (argvec[0]);
1474 if (type && TYPE_CODE (type) == TYPE_CODE_PTR)
1475 type = TYPE_TARGET_TYPE (type);
1476 if (type && TYPE_CODE (type) == TYPE_CODE_FUNC)
1477 {
1478 for (; tem <= nargs && tem <= TYPE_NFIELDS (type); tem++)
1479 {
1480 /* pai: FIXME This seems to be coercing arguments before
1481 * overload resolution has been done! */
1482 argvec[tem] = evaluate_subexp (TYPE_FIELD_TYPE (type, tem - 1),
1483 exp, pos, noside);
1484 }
1485 }
1486 }
1487
1488 /* Evaluate arguments */
1489 for (; tem <= nargs; tem++)
1490 {
1491 /* Ensure that array expressions are coerced into pointer objects. */
1492 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1493 }
1494
1495 /* signal end of arglist */
1496 argvec[tem] = 0;
1497 if (op == OP_ADL_FUNC)
1498 {
1499 struct symbol *symp;
1500 char *func_name;
1501 int name_len;
1502 int string_pc = save_pos1 + 3;
1503
1504 /* Extract the function name. */
1505 name_len = longest_to_int (exp->elts[string_pc].longconst);
1506 func_name = (char *) alloca (name_len + 1);
1507 strcpy (func_name, &exp->elts[string_pc + 1].string);
1508
1509 /* Prepare list of argument types for overload resolution */
1510 arg_types = (struct type **) alloca (nargs * (sizeof (struct type *)));
1511 for (ix = 1; ix <= nargs; ix++)
1512 arg_types[ix - 1] = value_type (argvec[ix]);
1513
1514 find_overload_match (arg_types, nargs, func_name,
1515 0 /* not method */ , 0 /* strict match */ ,
1516 NULL, NULL /* pass NULL symbol since symbol is unknown */ ,
1517 NULL, &symp, NULL, 0);
1518
1519 /* Now fix the expression being evaluated. */
1520 exp->elts[save_pos1 + 2].symbol = symp;
1521 argvec[0] = evaluate_subexp_with_coercion (exp, &save_pos1, noside);
1522 }
1523
1524 if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR
1525 || (op == OP_SCOPE && function_name != NULL))
1526 {
1527 int static_memfuncp;
1528 char *tstr;
1529
1530 /* Method invocation : stuff "this" as first parameter */
1531 argvec[1] = arg2;
1532
1533 if (op != OP_SCOPE)
1534 {
1535 /* Name of method from expression */
1536 tstr = &exp->elts[pc2 + 2].string;
1537 }
1538 else
1539 tstr = function_name;
1540
1541 if (overload_resolution && (exp->language_defn->la_language == language_cplus))
1542 {
1543 /* Language is C++, do some overload resolution before evaluation */
1544 struct value *valp = NULL;
1545
1546 /* Prepare list of argument types for overload resolution */
1547 arg_types = (struct type **) alloca (nargs * (sizeof (struct type *)));
1548 for (ix = 1; ix <= nargs; ix++)
1549 arg_types[ix - 1] = value_type (argvec[ix]);
1550
1551 (void) find_overload_match (arg_types, nargs, tstr,
1552 1 /* method */ , 0 /* strict match */ ,
1553 &arg2 /* the object */ , NULL,
1554 &valp, NULL, &static_memfuncp, 0);
1555
1556 if (op == OP_SCOPE && !static_memfuncp)
1557 {
1558 /* For the time being, we don't handle this. */
1559 error (_("Call to overloaded function %s requires "
1560 "`this' pointer"),
1561 function_name);
1562 }
1563 argvec[1] = arg2; /* the ``this'' pointer */
1564 argvec[0] = valp; /* use the method found after overload resolution */
1565 }
1566 else
1567 /* Non-C++ case -- or no overload resolution */
1568 {
1569 struct value *temp = arg2;
1570 argvec[0] = value_struct_elt (&temp, argvec + 1, tstr,
1571 &static_memfuncp,
1572 op == STRUCTOP_STRUCT
1573 ? "structure" : "structure pointer");
1574 /* value_struct_elt updates temp with the correct value
1575 of the ``this'' pointer if necessary, so modify argvec[1] to
1576 reflect any ``this'' changes. */
1577 arg2 = value_from_longest (lookup_pointer_type(value_type (temp)),
1578 value_address (temp)
1579 + value_embedded_offset (temp));
1580 argvec[1] = arg2; /* the ``this'' pointer */
1581 }
1582
1583 if (static_memfuncp)
1584 {
1585 argvec[1] = argvec[0];
1586 nargs--;
1587 argvec++;
1588 }
1589 }
1590 else if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR)
1591 {
1592 argvec[1] = arg2;
1593 argvec[0] = arg1;
1594 }
1595 else if (op == OP_VAR_VALUE || (op == OP_SCOPE && function != NULL))
1596 {
1597 /* Non-member function being called */
1598 /* fn: This can only be done for C++ functions. A C-style function
1599 in a C++ program, for instance, does not have the fields that
1600 are expected here */
1601
1602 if (overload_resolution && (exp->language_defn->la_language == language_cplus))
1603 {
1604 /* Language is C++, do some overload resolution before evaluation */
1605 struct symbol *symp;
1606 int no_adl = 0;
1607
1608 /* If a scope has been specified disable ADL. */
1609 if (op == OP_SCOPE)
1610 no_adl = 1;
1611
1612 if (op == OP_VAR_VALUE)
1613 function = exp->elts[save_pos1+2].symbol;
1614
1615 /* Prepare list of argument types for overload resolution */
1616 arg_types = (struct type **) alloca (nargs * (sizeof (struct type *)));
1617 for (ix = 1; ix <= nargs; ix++)
1618 arg_types[ix - 1] = value_type (argvec[ix]);
1619
1620 (void) find_overload_match (arg_types, nargs, NULL /* no need for name */ ,
1621 0 /* not method */ , 0 /* strict match */ ,
1622 NULL, function /* the function */ ,
1623 NULL, &symp, NULL, no_adl);
1624
1625 if (op == OP_VAR_VALUE)
1626 {
1627 /* Now fix the expression being evaluated */
1628 exp->elts[save_pos1+2].symbol = symp;
1629 argvec[0] = evaluate_subexp_with_coercion (exp, &save_pos1,
1630 noside);
1631 }
1632 else
1633 argvec[0] = value_of_variable (symp, get_selected_block (0));
1634 }
1635 else
1636 {
1637 /* Not C++, or no overload resolution allowed */
1638 /* nothing to be done; argvec already correctly set up */
1639 }
1640 }
1641 else
1642 {
1643 /* It is probably a C-style function */
1644 /* nothing to be done; argvec already correctly set up */
1645 }
1646
1647 do_call_it:
1648
1649 if (noside == EVAL_SKIP)
1650 goto nosideret;
1651 if (argvec[0] == NULL)
1652 error (_("Cannot evaluate function -- may be inlined"));
1653 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1654 {
1655 /* If the return type doesn't look like a function type, call an
1656 error. This can happen if somebody tries to turn a variable into
1657 a function call. This is here because people often want to
1658 call, eg, strcmp, which gdb doesn't know is a function. If
1659 gdb isn't asked for it's opinion (ie. through "whatis"),
1660 it won't offer it. */
1661
1662 struct type *ftype = value_type (argvec[0]);
1663
1664 if (TYPE_CODE (ftype) == TYPE_CODE_INTERNAL_FUNCTION)
1665 {
1666 /* We don't know anything about what the internal
1667 function might return, but we have to return
1668 something. */
1669 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
1670 not_lval);
1671 }
1672 else if (TYPE_TARGET_TYPE (ftype))
1673 return allocate_value (TYPE_TARGET_TYPE (ftype));
1674 else
1675 error (_("Expression of type other than \"Function returning ...\" used as function"));
1676 }
1677 if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_INTERNAL_FUNCTION)
1678 return call_internal_function (exp->gdbarch, exp->language_defn,
1679 argvec[0], nargs, argvec + 1);
1680
1681 return call_function_by_hand (argvec[0], nargs, argvec + 1);
1682 /* pai: FIXME save value from call_function_by_hand, then adjust pc by adjust_fn_pc if +ve */
1683
1684 case OP_F77_UNDETERMINED_ARGLIST:
1685
1686 /* Remember that in F77, functions, substring ops and
1687 array subscript operations cannot be disambiguated
1688 at parse time. We have made all array subscript operations,
1689 substring operations as well as function calls come here
1690 and we now have to discover what the heck this thing actually was.
1691 If it is a function, we process just as if we got an OP_FUNCALL. */
1692
1693 nargs = longest_to_int (exp->elts[pc + 1].longconst);
1694 (*pos) += 2;
1695
1696 /* First determine the type code we are dealing with. */
1697 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1698 type = check_typedef (value_type (arg1));
1699 code = TYPE_CODE (type);
1700
1701 if (code == TYPE_CODE_PTR)
1702 {
1703 /* Fortran always passes variable to subroutines as pointer.
1704 So we need to look into its target type to see if it is
1705 array, string or function. If it is, we need to switch
1706 to the target value the original one points to. */
1707 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1708
1709 if (TYPE_CODE (target_type) == TYPE_CODE_ARRAY
1710 || TYPE_CODE (target_type) == TYPE_CODE_STRING
1711 || TYPE_CODE (target_type) == TYPE_CODE_FUNC)
1712 {
1713 arg1 = value_ind (arg1);
1714 type = check_typedef (value_type (arg1));
1715 code = TYPE_CODE (type);
1716 }
1717 }
1718
1719 switch (code)
1720 {
1721 case TYPE_CODE_ARRAY:
1722 if (exp->elts[*pos].opcode == OP_F90_RANGE)
1723 return value_f90_subarray (arg1, exp, pos, noside);
1724 else
1725 goto multi_f77_subscript;
1726
1727 case TYPE_CODE_STRING:
1728 if (exp->elts[*pos].opcode == OP_F90_RANGE)
1729 return value_f90_subarray (arg1, exp, pos, noside);
1730 else
1731 {
1732 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1733 return value_subscript (arg1, value_as_long (arg2));
1734 }
1735
1736 case TYPE_CODE_PTR:
1737 case TYPE_CODE_FUNC:
1738 /* It's a function call. */
1739 /* Allocate arg vector, including space for the function to be
1740 called in argvec[0] and a terminating NULL */
1741 argvec = (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
1742 argvec[0] = arg1;
1743 tem = 1;
1744 for (; tem <= nargs; tem++)
1745 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1746 argvec[tem] = 0; /* signal end of arglist */
1747 goto do_call_it;
1748
1749 default:
1750 error (_("Cannot perform substring on this type"));
1751 }
1752
1753 case OP_COMPLEX:
1754 /* We have a complex number, There should be 2 floating
1755 point numbers that compose it */
1756 (*pos) += 2;
1757 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1758 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1759
1760 return value_literal_complex (arg1, arg2, exp->elts[pc + 1].type);
1761
1762 case STRUCTOP_STRUCT:
1763 tem = longest_to_int (exp->elts[pc + 1].longconst);
1764 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
1765 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1766 if (noside == EVAL_SKIP)
1767 goto nosideret;
1768 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1769 return value_zero (lookup_struct_elt_type (value_type (arg1),
1770 &exp->elts[pc + 2].string,
1771 0),
1772 lval_memory);
1773 else
1774 {
1775 struct value *temp = arg1;
1776 return value_struct_elt (&temp, NULL, &exp->elts[pc + 2].string,
1777 NULL, "structure");
1778 }
1779
1780 case STRUCTOP_PTR:
1781 tem = longest_to_int (exp->elts[pc + 1].longconst);
1782 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
1783 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1784 if (noside == EVAL_SKIP)
1785 goto nosideret;
1786
1787 /* JYG: if print object is on we need to replace the base type
1788 with rtti type in order to continue on with successful
1789 lookup of member / method only available in the rtti type. */
1790 {
1791 struct type *type = value_type (arg1);
1792 struct type *real_type;
1793 int full, top, using_enc;
1794 struct value_print_options opts;
1795
1796 get_user_print_options (&opts);
1797 if (opts.objectprint && TYPE_TARGET_TYPE(type)
1798 && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_CLASS))
1799 {
1800 real_type = value_rtti_target_type (arg1, &full, &top, &using_enc);
1801 if (real_type)
1802 {
1803 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1804 real_type = lookup_pointer_type (real_type);
1805 else
1806 real_type = lookup_reference_type (real_type);
1807
1808 arg1 = value_cast (real_type, arg1);
1809 }
1810 }
1811 }
1812
1813 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1814 return value_zero (lookup_struct_elt_type (value_type (arg1),
1815 &exp->elts[pc + 2].string,
1816 0),
1817 lval_memory);
1818 else
1819 {
1820 struct value *temp = arg1;
1821 return value_struct_elt (&temp, NULL, &exp->elts[pc + 2].string,
1822 NULL, "structure pointer");
1823 }
1824
1825 case STRUCTOP_MEMBER:
1826 case STRUCTOP_MPTR:
1827 if (op == STRUCTOP_MEMBER)
1828 arg1 = evaluate_subexp_for_address (exp, pos, noside);
1829 else
1830 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1831
1832 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1833
1834 if (noside == EVAL_SKIP)
1835 goto nosideret;
1836
1837 type = check_typedef (value_type (arg2));
1838 switch (TYPE_CODE (type))
1839 {
1840 case TYPE_CODE_METHODPTR:
1841 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1842 return value_zero (TYPE_TARGET_TYPE (type), not_lval);
1843 else
1844 {
1845 arg2 = cplus_method_ptr_to_value (&arg1, arg2);
1846 gdb_assert (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR);
1847 return value_ind (arg2);
1848 }
1849
1850 case TYPE_CODE_MEMBERPTR:
1851 /* Now, convert these values to an address. */
1852 arg1 = value_cast (lookup_pointer_type (TYPE_DOMAIN_TYPE (type)),
1853 arg1);
1854
1855 mem_offset = value_as_long (arg2);
1856
1857 arg3 = value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
1858 value_as_long (arg1) + mem_offset);
1859 return value_ind (arg3);
1860
1861 default:
1862 error (_("non-pointer-to-member value used in pointer-to-member construct"));
1863 }
1864
1865 case TYPE_INSTANCE:
1866 nargs = longest_to_int (exp->elts[pc + 1].longconst);
1867 arg_types = (struct type **) alloca (nargs * sizeof (struct type *));
1868 for (ix = 0; ix < nargs; ++ix)
1869 arg_types[ix] = exp->elts[pc + 1 + ix + 1].type;
1870
1871 expect_type = make_params (nargs, arg_types);
1872 *(pos) += 3 + nargs;
1873 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
1874 xfree (TYPE_FIELDS (expect_type));
1875 xfree (TYPE_MAIN_TYPE (expect_type));
1876 xfree (expect_type);
1877 return arg1;
1878
1879 case BINOP_CONCAT:
1880 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
1881 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1882 if (noside == EVAL_SKIP)
1883 goto nosideret;
1884 if (binop_user_defined_p (op, arg1, arg2))
1885 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1886 else
1887 return value_concat (arg1, arg2);
1888
1889 case BINOP_ASSIGN:
1890 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1891 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
1892
1893 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
1894 return arg1;
1895 if (binop_user_defined_p (op, arg1, arg2))
1896 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1897 else
1898 return value_assign (arg1, arg2);
1899
1900 case BINOP_ASSIGN_MODIFY:
1901 (*pos) += 2;
1902 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1903 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
1904 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
1905 return arg1;
1906 op = exp->elts[pc + 1].opcode;
1907 if (binop_user_defined_p (op, arg1, arg2))
1908 return value_x_binop (arg1, arg2, BINOP_ASSIGN_MODIFY, op, noside);
1909 else if (op == BINOP_ADD && ptrmath_type_p (value_type (arg1))
1910 && is_integral_type (value_type (arg2)))
1911 arg2 = value_ptradd (arg1, value_as_long (arg2));
1912 else if (op == BINOP_SUB && ptrmath_type_p (value_type (arg1))
1913 && is_integral_type (value_type (arg2)))
1914 arg2 = value_ptradd (arg1, - value_as_long (arg2));
1915 else
1916 {
1917 struct value *tmp = arg1;
1918
1919 /* For shift and integer exponentiation operations,
1920 only promote the first argument. */
1921 if ((op == BINOP_LSH || op == BINOP_RSH || op == BINOP_EXP)
1922 && is_integral_type (value_type (arg2)))
1923 unop_promote (exp->language_defn, exp->gdbarch, &tmp);
1924 else
1925 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
1926
1927 arg2 = value_binop (tmp, arg2, op);
1928 }
1929 return value_assign (arg1, arg2);
1930
1931 case BINOP_ADD:
1932 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
1933 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1934 if (noside == EVAL_SKIP)
1935 goto nosideret;
1936 if (binop_user_defined_p (op, arg1, arg2))
1937 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1938 else if (ptrmath_type_p (value_type (arg1))
1939 && is_integral_type (value_type (arg2)))
1940 return value_ptradd (arg1, value_as_long (arg2));
1941 else if (ptrmath_type_p (value_type (arg2))
1942 && is_integral_type (value_type (arg1)))
1943 return value_ptradd (arg2, value_as_long (arg1));
1944 else
1945 {
1946 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1947 return value_binop (arg1, arg2, BINOP_ADD);
1948 }
1949
1950 case BINOP_SUB:
1951 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
1952 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1953 if (noside == EVAL_SKIP)
1954 goto nosideret;
1955 if (binop_user_defined_p (op, arg1, arg2))
1956 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1957 else if (ptrmath_type_p (value_type (arg1))
1958 && ptrmath_type_p (value_type (arg2)))
1959 {
1960 /* FIXME -- should be ptrdiff_t */
1961 type = builtin_type (exp->gdbarch)->builtin_long;
1962 return value_from_longest (type, value_ptrdiff (arg1, arg2));
1963 }
1964 else if (ptrmath_type_p (value_type (arg1))
1965 && is_integral_type (value_type (arg2)))
1966 return value_ptradd (arg1, - value_as_long (arg2));
1967 else
1968 {
1969 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1970 return value_binop (arg1, arg2, BINOP_SUB);
1971 }
1972
1973 case BINOP_EXP:
1974 case BINOP_MUL:
1975 case BINOP_DIV:
1976 case BINOP_INTDIV:
1977 case BINOP_REM:
1978 case BINOP_MOD:
1979 case BINOP_LSH:
1980 case BINOP_RSH:
1981 case BINOP_BITWISE_AND:
1982 case BINOP_BITWISE_IOR:
1983 case BINOP_BITWISE_XOR:
1984 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1985 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1986 if (noside == EVAL_SKIP)
1987 goto nosideret;
1988 if (binop_user_defined_p (op, arg1, arg2))
1989 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1990 else
1991 {
1992 /* If EVAL_AVOID_SIDE_EFFECTS and we're dividing by zero,
1993 fudge arg2 to avoid division-by-zero, the caller is
1994 (theoretically) only looking for the type of the result. */
1995 if (noside == EVAL_AVOID_SIDE_EFFECTS
1996 /* ??? Do we really want to test for BINOP_MOD here?
1997 The implementation of value_binop gives it a well-defined
1998 value. */
1999 && (op == BINOP_DIV
2000 || op == BINOP_INTDIV
2001 || op == BINOP_REM
2002 || op == BINOP_MOD)
2003 && value_logical_not (arg2))
2004 {
2005 struct value *v_one, *retval;
2006
2007 v_one = value_one (value_type (arg2), not_lval);
2008 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &v_one);
2009 retval = value_binop (arg1, v_one, op);
2010 return retval;
2011 }
2012 else
2013 {
2014 /* For shift and integer exponentiation operations,
2015 only promote the first argument. */
2016 if ((op == BINOP_LSH || op == BINOP_RSH || op == BINOP_EXP)
2017 && is_integral_type (value_type (arg2)))
2018 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2019 else
2020 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2021
2022 return value_binop (arg1, arg2, op);
2023 }
2024 }
2025
2026 case BINOP_RANGE:
2027 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2028 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2029 if (noside == EVAL_SKIP)
2030 goto nosideret;
2031 error (_("':' operator used in invalid context"));
2032
2033 case BINOP_SUBSCRIPT:
2034 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2035 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2036 if (noside == EVAL_SKIP)
2037 goto nosideret;
2038 if (binop_user_defined_p (op, arg1, arg2))
2039 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2040 else
2041 {
2042 /* If the user attempts to subscript something that is not an
2043 array or pointer type (like a plain int variable for example),
2044 then report this as an error. */
2045
2046 arg1 = coerce_ref (arg1);
2047 type = check_typedef (value_type (arg1));
2048 if (TYPE_CODE (type) != TYPE_CODE_ARRAY
2049 && TYPE_CODE (type) != TYPE_CODE_PTR)
2050 {
2051 if (TYPE_NAME (type))
2052 error (_("cannot subscript something of type `%s'"),
2053 TYPE_NAME (type));
2054 else
2055 error (_("cannot subscript requested type"));
2056 }
2057
2058 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2059 return value_zero (TYPE_TARGET_TYPE (type), VALUE_LVAL (arg1));
2060 else
2061 return value_subscript (arg1, value_as_long (arg2));
2062 }
2063
2064 case BINOP_IN:
2065 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2066 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2067 if (noside == EVAL_SKIP)
2068 goto nosideret;
2069 type = language_bool_type (exp->language_defn, exp->gdbarch);
2070 return value_from_longest (type, (LONGEST) value_in (arg1, arg2));
2071
2072 case MULTI_SUBSCRIPT:
2073 (*pos) += 2;
2074 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2075 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2076 while (nargs-- > 0)
2077 {
2078 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2079 /* FIXME: EVAL_SKIP handling may not be correct. */
2080 if (noside == EVAL_SKIP)
2081 {
2082 if (nargs > 0)
2083 {
2084 continue;
2085 }
2086 else
2087 {
2088 goto nosideret;
2089 }
2090 }
2091 /* FIXME: EVAL_AVOID_SIDE_EFFECTS handling may not be correct. */
2092 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2093 {
2094 /* If the user attempts to subscript something that has no target
2095 type (like a plain int variable for example), then report this
2096 as an error. */
2097
2098 type = TYPE_TARGET_TYPE (check_typedef (value_type (arg1)));
2099 if (type != NULL)
2100 {
2101 arg1 = value_zero (type, VALUE_LVAL (arg1));
2102 noside = EVAL_SKIP;
2103 continue;
2104 }
2105 else
2106 {
2107 error (_("cannot subscript something of type `%s'"),
2108 TYPE_NAME (value_type (arg1)));
2109 }
2110 }
2111
2112 if (binop_user_defined_p (op, arg1, arg2))
2113 {
2114 arg1 = value_x_binop (arg1, arg2, op, OP_NULL, noside);
2115 }
2116 else
2117 {
2118 arg1 = coerce_ref (arg1);
2119 type = check_typedef (value_type (arg1));
2120
2121 switch (TYPE_CODE (type))
2122 {
2123 case TYPE_CODE_PTR:
2124 case TYPE_CODE_ARRAY:
2125 case TYPE_CODE_STRING:
2126 arg1 = value_subscript (arg1, value_as_long (arg2));
2127 break;
2128
2129 case TYPE_CODE_BITSTRING:
2130 type = language_bool_type (exp->language_defn, exp->gdbarch);
2131 arg1 = value_bitstring_subscript (type, arg1,
2132 value_as_long (arg2));
2133 break;
2134
2135 default:
2136 if (TYPE_NAME (type))
2137 error (_("cannot subscript something of type `%s'"),
2138 TYPE_NAME (type));
2139 else
2140 error (_("cannot subscript requested type"));
2141 }
2142 }
2143 }
2144 return (arg1);
2145
2146 multi_f77_subscript:
2147 {
2148 int subscript_array[MAX_FORTRAN_DIMS];
2149 int array_size_array[MAX_FORTRAN_DIMS];
2150 int ndimensions = 1, i;
2151 struct type *tmp_type;
2152 int offset_item; /* The array offset where the item lives */
2153
2154 if (nargs > MAX_FORTRAN_DIMS)
2155 error (_("Too many subscripts for F77 (%d Max)"), MAX_FORTRAN_DIMS);
2156
2157 tmp_type = check_typedef (value_type (arg1));
2158 ndimensions = calc_f77_array_dims (type);
2159
2160 if (nargs != ndimensions)
2161 error (_("Wrong number of subscripts"));
2162
2163 gdb_assert (nargs > 0);
2164
2165 /* Now that we know we have a legal array subscript expression
2166 let us actually find out where this element exists in the array. */
2167
2168 offset_item = 0;
2169 /* Take array indices left to right */
2170 for (i = 0; i < nargs; i++)
2171 {
2172 /* Evaluate each subscript, It must be a legal integer in F77 */
2173 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2174
2175 /* Fill in the subscript and array size arrays */
2176
2177 subscript_array[i] = value_as_long (arg2);
2178 }
2179
2180 /* Internal type of array is arranged right to left */
2181 for (i = 0; i < nargs; i++)
2182 {
2183 upper = f77_get_upperbound (tmp_type);
2184 lower = f77_get_lowerbound (tmp_type);
2185
2186 array_size_array[nargs - i - 1] = upper - lower + 1;
2187
2188 /* Zero-normalize subscripts so that offsetting will work. */
2189
2190 subscript_array[nargs - i - 1] -= lower;
2191
2192 /* If we are at the bottom of a multidimensional
2193 array type then keep a ptr to the last ARRAY
2194 type around for use when calling value_subscript()
2195 below. This is done because we pretend to value_subscript
2196 that we actually have a one-dimensional array
2197 of base element type that we apply a simple
2198 offset to. */
2199
2200 if (i < nargs - 1)
2201 tmp_type = check_typedef (TYPE_TARGET_TYPE (tmp_type));
2202 }
2203
2204 /* Now let us calculate the offset for this item */
2205
2206 offset_item = subscript_array[ndimensions - 1];
2207
2208 for (i = ndimensions - 1; i > 0; --i)
2209 offset_item =
2210 array_size_array[i - 1] * offset_item + subscript_array[i - 1];
2211
2212 /* Let us now play a dirty trick: we will take arg1
2213 which is a value node pointing to the topmost level
2214 of the multidimensional array-set and pretend
2215 that it is actually a array of the final element
2216 type, this will ensure that value_subscript()
2217 returns the correct type value */
2218
2219 deprecated_set_value_type (arg1, tmp_type);
2220 return value_subscripted_rvalue (arg1, offset_item, 0);
2221 }
2222
2223 case BINOP_LOGICAL_AND:
2224 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2225 if (noside == EVAL_SKIP)
2226 {
2227 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2228 goto nosideret;
2229 }
2230
2231 oldpos = *pos;
2232 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2233 *pos = oldpos;
2234
2235 if (binop_user_defined_p (op, arg1, arg2))
2236 {
2237 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2238 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2239 }
2240 else
2241 {
2242 tem = value_logical_not (arg1);
2243 arg2 = evaluate_subexp (NULL_TYPE, exp, pos,
2244 (tem ? EVAL_SKIP : noside));
2245 type = language_bool_type (exp->language_defn, exp->gdbarch);
2246 return value_from_longest (type,
2247 (LONGEST) (!tem && !value_logical_not (arg2)));
2248 }
2249
2250 case BINOP_LOGICAL_OR:
2251 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2252 if (noside == EVAL_SKIP)
2253 {
2254 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2255 goto nosideret;
2256 }
2257
2258 oldpos = *pos;
2259 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2260 *pos = oldpos;
2261
2262 if (binop_user_defined_p (op, arg1, arg2))
2263 {
2264 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2265 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2266 }
2267 else
2268 {
2269 tem = value_logical_not (arg1);
2270 arg2 = evaluate_subexp (NULL_TYPE, exp, pos,
2271 (!tem ? EVAL_SKIP : noside));
2272 type = language_bool_type (exp->language_defn, exp->gdbarch);
2273 return value_from_longest (type,
2274 (LONGEST) (!tem || !value_logical_not (arg2)));
2275 }
2276
2277 case BINOP_EQUAL:
2278 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2279 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2280 if (noside == EVAL_SKIP)
2281 goto nosideret;
2282 if (binop_user_defined_p (op, arg1, arg2))
2283 {
2284 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2285 }
2286 else
2287 {
2288 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2289 tem = value_equal (arg1, arg2);
2290 type = language_bool_type (exp->language_defn, exp->gdbarch);
2291 return value_from_longest (type, (LONGEST) tem);
2292 }
2293
2294 case BINOP_NOTEQUAL:
2295 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2296 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2297 if (noside == EVAL_SKIP)
2298 goto nosideret;
2299 if (binop_user_defined_p (op, arg1, arg2))
2300 {
2301 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2302 }
2303 else
2304 {
2305 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2306 tem = value_equal (arg1, arg2);
2307 type = language_bool_type (exp->language_defn, exp->gdbarch);
2308 return value_from_longest (type, (LONGEST) ! tem);
2309 }
2310
2311 case BINOP_LESS:
2312 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2313 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2314 if (noside == EVAL_SKIP)
2315 goto nosideret;
2316 if (binop_user_defined_p (op, arg1, arg2))
2317 {
2318 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2319 }
2320 else
2321 {
2322 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2323 tem = value_less (arg1, arg2);
2324 type = language_bool_type (exp->language_defn, exp->gdbarch);
2325 return value_from_longest (type, (LONGEST) tem);
2326 }
2327
2328 case BINOP_GTR:
2329 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2330 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2331 if (noside == EVAL_SKIP)
2332 goto nosideret;
2333 if (binop_user_defined_p (op, arg1, arg2))
2334 {
2335 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2336 }
2337 else
2338 {
2339 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2340 tem = value_less (arg2, arg1);
2341 type = language_bool_type (exp->language_defn, exp->gdbarch);
2342 return value_from_longest (type, (LONGEST) tem);
2343 }
2344
2345 case BINOP_GEQ:
2346 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2347 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2348 if (noside == EVAL_SKIP)
2349 goto nosideret;
2350 if (binop_user_defined_p (op, arg1, arg2))
2351 {
2352 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2353 }
2354 else
2355 {
2356 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2357 tem = value_less (arg2, arg1) || value_equal (arg1, arg2);
2358 type = language_bool_type (exp->language_defn, exp->gdbarch);
2359 return value_from_longest (type, (LONGEST) tem);
2360 }
2361
2362 case BINOP_LEQ:
2363 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2364 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2365 if (noside == EVAL_SKIP)
2366 goto nosideret;
2367 if (binop_user_defined_p (op, arg1, arg2))
2368 {
2369 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2370 }
2371 else
2372 {
2373 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2374 tem = value_less (arg1, arg2) || value_equal (arg1, arg2);
2375 type = language_bool_type (exp->language_defn, exp->gdbarch);
2376 return value_from_longest (type, (LONGEST) tem);
2377 }
2378
2379 case BINOP_REPEAT:
2380 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2381 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2382 if (noside == EVAL_SKIP)
2383 goto nosideret;
2384 type = check_typedef (value_type (arg2));
2385 if (TYPE_CODE (type) != TYPE_CODE_INT)
2386 error (_("Non-integral right operand for \"@\" operator."));
2387 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2388 {
2389 return allocate_repeat_value (value_type (arg1),
2390 longest_to_int (value_as_long (arg2)));
2391 }
2392 else
2393 return value_repeat (arg1, longest_to_int (value_as_long (arg2)));
2394
2395 case BINOP_COMMA:
2396 evaluate_subexp (NULL_TYPE, exp, pos, noside);
2397 return evaluate_subexp (NULL_TYPE, exp, pos, noside);
2398
2399 case UNOP_PLUS:
2400 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2401 if (noside == EVAL_SKIP)
2402 goto nosideret;
2403 if (unop_user_defined_p (op, arg1))
2404 return value_x_unop (arg1, op, noside);
2405 else
2406 {
2407 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2408 return value_pos (arg1);
2409 }
2410
2411 case UNOP_NEG:
2412 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2413 if (noside == EVAL_SKIP)
2414 goto nosideret;
2415 if (unop_user_defined_p (op, arg1))
2416 return value_x_unop (arg1, op, noside);
2417 else
2418 {
2419 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2420 return value_neg (arg1);
2421 }
2422
2423 case UNOP_COMPLEMENT:
2424 /* C++: check for and handle destructor names. */
2425 op = exp->elts[*pos].opcode;
2426
2427 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2428 if (noside == EVAL_SKIP)
2429 goto nosideret;
2430 if (unop_user_defined_p (UNOP_COMPLEMENT, arg1))
2431 return value_x_unop (arg1, UNOP_COMPLEMENT, noside);
2432 else
2433 {
2434 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2435 return value_complement (arg1);
2436 }
2437
2438 case UNOP_LOGICAL_NOT:
2439 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2440 if (noside == EVAL_SKIP)
2441 goto nosideret;
2442 if (unop_user_defined_p (op, arg1))
2443 return value_x_unop (arg1, op, noside);
2444 else
2445 {
2446 type = language_bool_type (exp->language_defn, exp->gdbarch);
2447 return value_from_longest (type, (LONGEST) value_logical_not (arg1));
2448 }
2449
2450 case UNOP_IND:
2451 if (expect_type && TYPE_CODE (expect_type) == TYPE_CODE_PTR)
2452 expect_type = TYPE_TARGET_TYPE (check_typedef (expect_type));
2453 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2454 type = check_typedef (value_type (arg1));
2455 if (TYPE_CODE (type) == TYPE_CODE_METHODPTR
2456 || TYPE_CODE (type) == TYPE_CODE_MEMBERPTR)
2457 error (_("Attempt to dereference pointer to member without an object"));
2458 if (noside == EVAL_SKIP)
2459 goto nosideret;
2460 if (unop_user_defined_p (op, arg1))
2461 return value_x_unop (arg1, op, noside);
2462 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2463 {
2464 type = check_typedef (value_type (arg1));
2465 if (TYPE_CODE (type) == TYPE_CODE_PTR
2466 || TYPE_CODE (type) == TYPE_CODE_REF
2467 /* In C you can dereference an array to get the 1st elt. */
2468 || TYPE_CODE (type) == TYPE_CODE_ARRAY
2469 )
2470 return value_zero (TYPE_TARGET_TYPE (type),
2471 lval_memory);
2472 else if (TYPE_CODE (type) == TYPE_CODE_INT)
2473 /* GDB allows dereferencing an int. */
2474 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
2475 lval_memory);
2476 else
2477 error (_("Attempt to take contents of a non-pointer value."));
2478 }
2479
2480 /* Allow * on an integer so we can cast it to whatever we want.
2481 This returns an int, which seems like the most C-like thing to
2482 do. "long long" variables are rare enough that
2483 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
2484 if (TYPE_CODE (type) == TYPE_CODE_INT)
2485 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
2486 (CORE_ADDR) value_as_address (arg1));
2487 return value_ind (arg1);
2488
2489 case UNOP_ADDR:
2490 /* C++: check for and handle pointer to members. */
2491
2492 op = exp->elts[*pos].opcode;
2493
2494 if (noside == EVAL_SKIP)
2495 {
2496 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
2497 goto nosideret;
2498 }
2499 else
2500 {
2501 struct value *retvalp = evaluate_subexp_for_address (exp, pos, noside);
2502 return retvalp;
2503 }
2504
2505 case UNOP_SIZEOF:
2506 if (noside == EVAL_SKIP)
2507 {
2508 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
2509 goto nosideret;
2510 }
2511 return evaluate_subexp_for_sizeof (exp, pos);
2512
2513 case UNOP_CAST:
2514 (*pos) += 2;
2515 type = exp->elts[pc + 1].type;
2516 arg1 = evaluate_subexp (type, exp, pos, noside);
2517 if (noside == EVAL_SKIP)
2518 goto nosideret;
2519 if (type != value_type (arg1))
2520 arg1 = value_cast (type, arg1);
2521 return arg1;
2522
2523 case UNOP_DYNAMIC_CAST:
2524 (*pos) += 2;
2525 type = exp->elts[pc + 1].type;
2526 arg1 = evaluate_subexp (type, exp, pos, noside);
2527 if (noside == EVAL_SKIP)
2528 goto nosideret;
2529 return value_dynamic_cast (type, arg1);
2530
2531 case UNOP_REINTERPRET_CAST:
2532 (*pos) += 2;
2533 type = exp->elts[pc + 1].type;
2534 arg1 = evaluate_subexp (type, exp, pos, noside);
2535 if (noside == EVAL_SKIP)
2536 goto nosideret;
2537 return value_reinterpret_cast (type, arg1);
2538
2539 case UNOP_MEMVAL:
2540 (*pos) += 2;
2541 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2542 if (noside == EVAL_SKIP)
2543 goto nosideret;
2544 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2545 return value_zero (exp->elts[pc + 1].type, lval_memory);
2546 else
2547 return value_at_lazy (exp->elts[pc + 1].type,
2548 value_as_address (arg1));
2549
2550 case UNOP_MEMVAL_TLS:
2551 (*pos) += 3;
2552 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2553 if (noside == EVAL_SKIP)
2554 goto nosideret;
2555 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2556 return value_zero (exp->elts[pc + 2].type, lval_memory);
2557 else
2558 {
2559 CORE_ADDR tls_addr;
2560 tls_addr = target_translate_tls_address (exp->elts[pc + 1].objfile,
2561 value_as_address (arg1));
2562 return value_at_lazy (exp->elts[pc + 2].type, tls_addr);
2563 }
2564
2565 case UNOP_PREINCREMENT:
2566 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2567 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2568 return arg1;
2569 else if (unop_user_defined_p (op, arg1))
2570 {
2571 return value_x_unop (arg1, op, noside);
2572 }
2573 else
2574 {
2575 if (ptrmath_type_p (value_type (arg1)))
2576 arg2 = value_ptradd (arg1, 1);
2577 else
2578 {
2579 struct value *tmp = arg1;
2580 arg2 = value_one (value_type (arg1), not_lval);
2581 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2582 arg2 = value_binop (tmp, arg2, BINOP_ADD);
2583 }
2584
2585 return value_assign (arg1, arg2);
2586 }
2587
2588 case UNOP_PREDECREMENT:
2589 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2590 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2591 return arg1;
2592 else if (unop_user_defined_p (op, arg1))
2593 {
2594 return value_x_unop (arg1, op, noside);
2595 }
2596 else
2597 {
2598 if (ptrmath_type_p (value_type (arg1)))
2599 arg2 = value_ptradd (arg1, -1);
2600 else
2601 {
2602 struct value *tmp = arg1;
2603 arg2 = value_one (value_type (arg1), not_lval);
2604 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2605 arg2 = value_binop (tmp, arg2, BINOP_SUB);
2606 }
2607
2608 return value_assign (arg1, arg2);
2609 }
2610
2611 case UNOP_POSTINCREMENT:
2612 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2613 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2614 return arg1;
2615 else if (unop_user_defined_p (op, arg1))
2616 {
2617 return value_x_unop (arg1, op, noside);
2618 }
2619 else
2620 {
2621 if (ptrmath_type_p (value_type (arg1)))
2622 arg2 = value_ptradd (arg1, 1);
2623 else
2624 {
2625 struct value *tmp = arg1;
2626 arg2 = value_one (value_type (arg1), not_lval);
2627 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2628 arg2 = value_binop (tmp, arg2, BINOP_ADD);
2629 }
2630
2631 value_assign (arg1, arg2);
2632 return arg1;
2633 }
2634
2635 case UNOP_POSTDECREMENT:
2636 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2637 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2638 return arg1;
2639 else if (unop_user_defined_p (op, arg1))
2640 {
2641 return value_x_unop (arg1, op, noside);
2642 }
2643 else
2644 {
2645 if (ptrmath_type_p (value_type (arg1)))
2646 arg2 = value_ptradd (arg1, -1);
2647 else
2648 {
2649 struct value *tmp = arg1;
2650 arg2 = value_one (value_type (arg1), not_lval);
2651 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2652 arg2 = value_binop (tmp, arg2, BINOP_SUB);
2653 }
2654
2655 value_assign (arg1, arg2);
2656 return arg1;
2657 }
2658
2659 case OP_THIS:
2660 (*pos) += 1;
2661 return value_of_this (1);
2662
2663 case OP_OBJC_SELF:
2664 (*pos) += 1;
2665 return value_of_local ("self", 1);
2666
2667 case OP_TYPE:
2668 /* The value is not supposed to be used. This is here to make it
2669 easier to accommodate expressions that contain types. */
2670 (*pos) += 2;
2671 if (noside == EVAL_SKIP)
2672 goto nosideret;
2673 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2674 {
2675 struct type *type = exp->elts[pc + 1].type;
2676 /* If this is a typedef, then find its immediate target. We
2677 use check_typedef to resolve stubs, but we ignore its
2678 result because we do not want to dig past all
2679 typedefs. */
2680 check_typedef (type);
2681 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2682 type = TYPE_TARGET_TYPE (type);
2683 return allocate_value (type);
2684 }
2685 else
2686 error (_("Attempt to use a type name as an expression"));
2687
2688 default:
2689 /* Removing this case and compiling with gcc -Wall reveals that
2690 a lot of cases are hitting this case. Some of these should
2691 probably be removed from expression.h; others are legitimate
2692 expressions which are (apparently) not fully implemented.
2693
2694 If there are any cases landing here which mean a user error,
2695 then they should be separate cases, with more descriptive
2696 error messages. */
2697
2698 error (_("\
2699 GDB does not (yet) know how to evaluate that kind of expression"));
2700 }
2701
2702 nosideret:
2703 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
2704 }
2705 \f
2706 /* Evaluate a subexpression of EXP, at index *POS,
2707 and return the address of that subexpression.
2708 Advance *POS over the subexpression.
2709 If the subexpression isn't an lvalue, get an error.
2710 NOSIDE may be EVAL_AVOID_SIDE_EFFECTS;
2711 then only the type of the result need be correct. */
2712
2713 static struct value *
2714 evaluate_subexp_for_address (struct expression *exp, int *pos,
2715 enum noside noside)
2716 {
2717 enum exp_opcode op;
2718 int pc;
2719 struct symbol *var;
2720 struct value *x;
2721 int tem;
2722
2723 pc = (*pos);
2724 op = exp->elts[pc].opcode;
2725
2726 switch (op)
2727 {
2728 case UNOP_IND:
2729 (*pos)++;
2730 x = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2731
2732 /* We can't optimize out "&*" if there's a user-defined operator*. */
2733 if (unop_user_defined_p (op, x))
2734 {
2735 x = value_x_unop (x, op, noside);
2736 goto default_case_after_eval;
2737 }
2738
2739 return coerce_array (x);
2740
2741 case UNOP_MEMVAL:
2742 (*pos) += 3;
2743 return value_cast (lookup_pointer_type (exp->elts[pc + 1].type),
2744 evaluate_subexp (NULL_TYPE, exp, pos, noside));
2745
2746 case OP_VAR_VALUE:
2747 var = exp->elts[pc + 2].symbol;
2748
2749 /* C++: The "address" of a reference should yield the address
2750 * of the object pointed to. Let value_addr() deal with it. */
2751 if (TYPE_CODE (SYMBOL_TYPE (var)) == TYPE_CODE_REF)
2752 goto default_case;
2753
2754 (*pos) += 4;
2755 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2756 {
2757 struct type *type =
2758 lookup_pointer_type (SYMBOL_TYPE (var));
2759 enum address_class sym_class = SYMBOL_CLASS (var);
2760
2761 if (sym_class == LOC_CONST
2762 || sym_class == LOC_CONST_BYTES
2763 || sym_class == LOC_REGISTER)
2764 error (_("Attempt to take address of register or constant."));
2765
2766 return
2767 value_zero (type, not_lval);
2768 }
2769 else
2770 return address_of_variable (var, exp->elts[pc + 1].block);
2771
2772 case OP_SCOPE:
2773 tem = longest_to_int (exp->elts[pc + 2].longconst);
2774 (*pos) += 5 + BYTES_TO_EXP_ELEM (tem + 1);
2775 x = value_aggregate_elt (exp->elts[pc + 1].type,
2776 &exp->elts[pc + 3].string,
2777 NULL, 1, noside);
2778 if (x == NULL)
2779 error (_("There is no field named %s"), &exp->elts[pc + 3].string);
2780 return x;
2781
2782 default:
2783 default_case:
2784 x = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2785 default_case_after_eval:
2786 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2787 {
2788 struct type *type = check_typedef (value_type (x));
2789
2790 if (VALUE_LVAL (x) == lval_memory || value_must_coerce_to_target (x))
2791 return value_zero (lookup_pointer_type (value_type (x)),
2792 not_lval);
2793 else if (TYPE_CODE (type) == TYPE_CODE_REF)
2794 return value_zero (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2795 not_lval);
2796 else
2797 error (_("Attempt to take address of value not located in memory."));
2798 }
2799 return value_addr (x);
2800 }
2801 }
2802
2803 /* Evaluate like `evaluate_subexp' except coercing arrays to pointers.
2804 When used in contexts where arrays will be coerced anyway, this is
2805 equivalent to `evaluate_subexp' but much faster because it avoids
2806 actually fetching array contents (perhaps obsolete now that we have
2807 value_lazy()).
2808
2809 Note that we currently only do the coercion for C expressions, where
2810 arrays are zero based and the coercion is correct. For other languages,
2811 with nonzero based arrays, coercion loses. Use CAST_IS_CONVERSION
2812 to decide if coercion is appropriate.
2813
2814 */
2815
2816 struct value *
2817 evaluate_subexp_with_coercion (struct expression *exp,
2818 int *pos, enum noside noside)
2819 {
2820 enum exp_opcode op;
2821 int pc;
2822 struct value *val;
2823 struct symbol *var;
2824 struct type *type;
2825
2826 pc = (*pos);
2827 op = exp->elts[pc].opcode;
2828
2829 switch (op)
2830 {
2831 case OP_VAR_VALUE:
2832 var = exp->elts[pc + 2].symbol;
2833 type = check_typedef (SYMBOL_TYPE (var));
2834 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2835 && CAST_IS_CONVERSION)
2836 {
2837 (*pos) += 4;
2838 val = address_of_variable (var, exp->elts[pc + 1].block);
2839 return value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2840 val);
2841 }
2842 /* FALLTHROUGH */
2843
2844 default:
2845 return evaluate_subexp (NULL_TYPE, exp, pos, noside);
2846 }
2847 }
2848
2849 /* Evaluate a subexpression of EXP, at index *POS,
2850 and return a value for the size of that subexpression.
2851 Advance *POS over the subexpression. */
2852
2853 static struct value *
2854 evaluate_subexp_for_sizeof (struct expression *exp, int *pos)
2855 {
2856 /* FIXME: This should be size_t. */
2857 struct type *size_type = builtin_type (exp->gdbarch)->builtin_int;
2858 enum exp_opcode op;
2859 int pc;
2860 struct type *type;
2861 struct value *val;
2862
2863 pc = (*pos);
2864 op = exp->elts[pc].opcode;
2865
2866 switch (op)
2867 {
2868 /* This case is handled specially
2869 so that we avoid creating a value for the result type.
2870 If the result type is very big, it's desirable not to
2871 create a value unnecessarily. */
2872 case UNOP_IND:
2873 (*pos)++;
2874 val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2875 type = check_typedef (value_type (val));
2876 if (TYPE_CODE (type) != TYPE_CODE_PTR
2877 && TYPE_CODE (type) != TYPE_CODE_REF
2878 && TYPE_CODE (type) != TYPE_CODE_ARRAY)
2879 error (_("Attempt to take contents of a non-pointer value."));
2880 type = check_typedef (TYPE_TARGET_TYPE (type));
2881 return value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
2882
2883 case UNOP_MEMVAL:
2884 (*pos) += 3;
2885 type = check_typedef (exp->elts[pc + 1].type);
2886 return value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
2887
2888 case OP_VAR_VALUE:
2889 (*pos) += 4;
2890 type = check_typedef (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
2891 return
2892 value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
2893
2894 default:
2895 val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2896 return value_from_longest (size_type,
2897 (LONGEST) TYPE_LENGTH (value_type (val)));
2898 }
2899 }
2900
2901 /* Parse a type expression in the string [P..P+LENGTH). */
2902
2903 struct type *
2904 parse_and_eval_type (char *p, int length)
2905 {
2906 char *tmp = (char *) alloca (length + 4);
2907 struct expression *expr;
2908 tmp[0] = '(';
2909 memcpy (tmp + 1, p, length);
2910 tmp[length + 1] = ')';
2911 tmp[length + 2] = '0';
2912 tmp[length + 3] = '\0';
2913 expr = parse_expression (tmp);
2914 if (expr->elts[0].opcode != UNOP_CAST)
2915 error (_("Internal error in eval_type."));
2916 return expr->elts[1].type;
2917 }
2918
2919 int
2920 calc_f77_array_dims (struct type *array_type)
2921 {
2922 int ndimen = 1;
2923 struct type *tmp_type;
2924
2925 if ((TYPE_CODE (array_type) != TYPE_CODE_ARRAY))
2926 error (_("Can't get dimensions for a non-array type"));
2927
2928 tmp_type = array_type;
2929
2930 while ((tmp_type = TYPE_TARGET_TYPE (tmp_type)))
2931 {
2932 if (TYPE_CODE (tmp_type) == TYPE_CODE_ARRAY)
2933 ++ndimen;
2934 }
2935 return ndimen;
2936 }