Split out eval_op_binary
[binutils-gdb.git] / gdb / eval.c
1 /* Evaluate expressions for GDB.
2
3 Copyright (C) 1986-2021 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "value.h"
24 #include "expression.h"
25 #include "target.h"
26 #include "frame.h"
27 #include "gdbthread.h"
28 #include "language.h" /* For CAST_IS_CONVERSION. */
29 #include "cp-abi.h"
30 #include "infcall.h"
31 #include "objc-lang.h"
32 #include "block.h"
33 #include "parser-defs.h"
34 #include "cp-support.h"
35 #include "ui-out.h"
36 #include "regcache.h"
37 #include "user-regs.h"
38 #include "valprint.h"
39 #include "gdb_obstack.h"
40 #include "objfiles.h"
41 #include "typeprint.h"
42 #include <ctype.h>
43
44 /* Prototypes for local functions. */
45
46 static struct value *evaluate_subexp_for_sizeof (struct expression *, int *,
47 enum noside);
48
49 static struct value *evaluate_subexp_for_address (struct expression *,
50 int *, enum noside);
51
52 static value *evaluate_subexp_for_cast (expression *exp, int *pos,
53 enum noside noside,
54 struct type *type);
55
56 static struct value *evaluate_struct_tuple (struct value *,
57 struct expression *, int *,
58 enum noside, int);
59
60 struct value *
61 evaluate_subexp (struct type *expect_type, struct expression *exp,
62 int *pos, enum noside noside)
63 {
64 return ((*exp->language_defn->expression_ops ()->evaluate_exp)
65 (expect_type, exp, pos, noside));
66 }
67 \f
68 /* Parse the string EXP as a C expression, evaluate it,
69 and return the result as a number. */
70
71 CORE_ADDR
72 parse_and_eval_address (const char *exp)
73 {
74 expression_up expr = parse_expression (exp);
75
76 return value_as_address (evaluate_expression (expr.get ()));
77 }
78
79 /* Like parse_and_eval_address, but treats the value of the expression
80 as an integer, not an address, returns a LONGEST, not a CORE_ADDR. */
81 LONGEST
82 parse_and_eval_long (const char *exp)
83 {
84 expression_up expr = parse_expression (exp);
85
86 return value_as_long (evaluate_expression (expr.get ()));
87 }
88
89 struct value *
90 parse_and_eval (const char *exp)
91 {
92 expression_up expr = parse_expression (exp);
93
94 return evaluate_expression (expr.get ());
95 }
96
97 /* Parse up to a comma (or to a closeparen)
98 in the string EXPP as an expression, evaluate it, and return the value.
99 EXPP is advanced to point to the comma. */
100
101 struct value *
102 parse_to_comma_and_eval (const char **expp)
103 {
104 expression_up expr = parse_exp_1 (expp, 0, nullptr, 1);
105
106 return evaluate_expression (expr.get ());
107 }
108 \f
109
110 /* See expression.h. */
111
112 struct value *
113 expression::evaluate (struct type *expect_type, enum noside noside)
114 {
115 gdb::optional<enable_thread_stack_temporaries> stack_temporaries;
116 if (target_has_execution ()
117 && language_defn->la_language == language_cplus
118 && !thread_stack_temporaries_enabled_p (inferior_thread ()))
119 stack_temporaries.emplace (inferior_thread ());
120
121 int pos = 0;
122 struct value *retval = evaluate_subexp (expect_type, this, &pos, noside);
123
124 if (stack_temporaries.has_value ()
125 && value_in_thread_stack_temporaries (retval, inferior_thread ()))
126 retval = value_non_lval (retval);
127
128 return retval;
129 }
130
131 /* See value.h. */
132
133 struct value *
134 evaluate_expression (struct expression *exp, struct type *expect_type)
135 {
136 return exp->evaluate (expect_type, EVAL_NORMAL);
137 }
138
139 /* Evaluate an expression, avoiding all memory references
140 and getting a value whose type alone is correct. */
141
142 struct value *
143 evaluate_type (struct expression *exp)
144 {
145 return exp->evaluate (nullptr, EVAL_AVOID_SIDE_EFFECTS);
146 }
147
148 /* Evaluate a subexpression, avoiding all memory references and
149 getting a value whose type alone is correct. */
150
151 struct value *
152 evaluate_subexpression_type (struct expression *exp, int subexp)
153 {
154 return evaluate_subexp (nullptr, exp, &subexp, EVAL_AVOID_SIDE_EFFECTS);
155 }
156
157 /* Find the current value of a watchpoint on EXP. Return the value in
158 *VALP and *RESULTP and the chain of intermediate and final values
159 in *VAL_CHAIN. RESULTP and VAL_CHAIN may be NULL if the caller does
160 not need them.
161
162 If PRESERVE_ERRORS is true, then exceptions are passed through.
163 Otherwise, if PRESERVE_ERRORS is false, then if a memory error
164 occurs while evaluating the expression, *RESULTP will be set to
165 NULL. *RESULTP may be a lazy value, if the result could not be
166 read from memory. It is used to determine whether a value is
167 user-specified (we should watch the whole value) or intermediate
168 (we should watch only the bit used to locate the final value).
169
170 If the final value, or any intermediate value, could not be read
171 from memory, *VALP will be set to NULL. *VAL_CHAIN will still be
172 set to any referenced values. *VALP will never be a lazy value.
173 This is the value which we store in struct breakpoint.
174
175 If VAL_CHAIN is non-NULL, the values put into *VAL_CHAIN will be
176 released from the value chain. If VAL_CHAIN is NULL, all generated
177 values will be left on the value chain. */
178
179 void
180 fetch_subexp_value (struct expression *exp, int *pc, struct value **valp,
181 struct value **resultp,
182 std::vector<value_ref_ptr> *val_chain,
183 bool preserve_errors)
184 {
185 struct value *mark, *new_mark, *result;
186
187 *valp = NULL;
188 if (resultp)
189 *resultp = NULL;
190 if (val_chain)
191 val_chain->clear ();
192
193 /* Evaluate the expression. */
194 mark = value_mark ();
195 result = NULL;
196
197 try
198 {
199 result = evaluate_subexp (nullptr, exp, pc, EVAL_NORMAL);
200 }
201 catch (const gdb_exception &ex)
202 {
203 /* Ignore memory errors if we want watchpoints pointing at
204 inaccessible memory to still be created; otherwise, throw the
205 error to some higher catcher. */
206 switch (ex.error)
207 {
208 case MEMORY_ERROR:
209 if (!preserve_errors)
210 break;
211 /* Fall through. */
212 default:
213 throw;
214 break;
215 }
216 }
217
218 new_mark = value_mark ();
219 if (mark == new_mark)
220 return;
221 if (resultp)
222 *resultp = result;
223
224 /* Make sure it's not lazy, so that after the target stops again we
225 have a non-lazy previous value to compare with. */
226 if (result != NULL)
227 {
228 if (!value_lazy (result))
229 *valp = result;
230 else
231 {
232
233 try
234 {
235 value_fetch_lazy (result);
236 *valp = result;
237 }
238 catch (const gdb_exception_error &except)
239 {
240 }
241 }
242 }
243
244 if (val_chain)
245 {
246 /* Return the chain of intermediate values. We use this to
247 decide which addresses to watch. */
248 *val_chain = value_release_to_mark (mark);
249 }
250 }
251
252 /* Extract a field operation from an expression. If the subexpression
253 of EXP starting at *SUBEXP is not a structure dereference
254 operation, return NULL. Otherwise, return the name of the
255 dereferenced field, and advance *SUBEXP to point to the
256 subexpression of the left-hand-side of the dereference. This is
257 used when completing field names. */
258
259 const char *
260 extract_field_op (struct expression *exp, int *subexp)
261 {
262 int tem;
263 char *result;
264
265 if (exp->elts[*subexp].opcode != STRUCTOP_STRUCT
266 && exp->elts[*subexp].opcode != STRUCTOP_PTR)
267 return NULL;
268 tem = longest_to_int (exp->elts[*subexp + 1].longconst);
269 result = &exp->elts[*subexp + 2].string;
270 (*subexp) += 1 + 3 + BYTES_TO_EXP_ELEM (tem + 1);
271 return result;
272 }
273
274 /* This function evaluates brace-initializers (in C/C++) for
275 structure types. */
276
277 static struct value *
278 evaluate_struct_tuple (struct value *struct_val,
279 struct expression *exp,
280 int *pos, enum noside noside, int nargs)
281 {
282 struct type *struct_type = check_typedef (value_type (struct_val));
283 struct type *field_type;
284 int fieldno = -1;
285
286 while (--nargs >= 0)
287 {
288 struct value *val = NULL;
289 int bitpos, bitsize;
290 bfd_byte *addr;
291
292 fieldno++;
293 /* Skip static fields. */
294 while (fieldno < struct_type->num_fields ()
295 && field_is_static (&struct_type->field (fieldno)))
296 fieldno++;
297 if (fieldno >= struct_type->num_fields ())
298 error (_("too many initializers"));
299 field_type = struct_type->field (fieldno).type ();
300 if (field_type->code () == TYPE_CODE_UNION
301 && TYPE_FIELD_NAME (struct_type, fieldno)[0] == '0')
302 error (_("don't know which variant you want to set"));
303
304 /* Here, struct_type is the type of the inner struct,
305 while substruct_type is the type of the inner struct.
306 These are the same for normal structures, but a variant struct
307 contains anonymous union fields that contain substruct fields.
308 The value fieldno is the index of the top-level (normal or
309 anonymous union) field in struct_field, while the value
310 subfieldno is the index of the actual real (named inner) field
311 in substruct_type. */
312
313 field_type = struct_type->field (fieldno).type ();
314 if (val == 0)
315 val = evaluate_subexp (field_type, exp, pos, noside);
316
317 /* Now actually set the field in struct_val. */
318
319 /* Assign val to field fieldno. */
320 if (value_type (val) != field_type)
321 val = value_cast (field_type, val);
322
323 bitsize = TYPE_FIELD_BITSIZE (struct_type, fieldno);
324 bitpos = TYPE_FIELD_BITPOS (struct_type, fieldno);
325 addr = value_contents_writeable (struct_val) + bitpos / 8;
326 if (bitsize)
327 modify_field (struct_type, addr,
328 value_as_long (val), bitpos % 8, bitsize);
329 else
330 memcpy (addr, value_contents (val),
331 TYPE_LENGTH (value_type (val)));
332
333 }
334 return struct_val;
335 }
336
337 /* Promote value ARG1 as appropriate before performing a unary operation
338 on this argument.
339 If the result is not appropriate for any particular language then it
340 needs to patch this function. */
341
342 void
343 unop_promote (const struct language_defn *language, struct gdbarch *gdbarch,
344 struct value **arg1)
345 {
346 struct type *type1;
347
348 *arg1 = coerce_ref (*arg1);
349 type1 = check_typedef (value_type (*arg1));
350
351 if (is_integral_type (type1))
352 {
353 switch (language->la_language)
354 {
355 default:
356 /* Perform integral promotion for ANSI C/C++.
357 If not appropriate for any particular language
358 it needs to modify this function. */
359 {
360 struct type *builtin_int = builtin_type (gdbarch)->builtin_int;
361
362 if (TYPE_LENGTH (type1) < TYPE_LENGTH (builtin_int))
363 *arg1 = value_cast (builtin_int, *arg1);
364 }
365 break;
366 }
367 }
368 }
369
370 /* Promote values ARG1 and ARG2 as appropriate before performing a binary
371 operation on those two operands.
372 If the result is not appropriate for any particular language then it
373 needs to patch this function. */
374
375 void
376 binop_promote (const struct language_defn *language, struct gdbarch *gdbarch,
377 struct value **arg1, struct value **arg2)
378 {
379 struct type *promoted_type = NULL;
380 struct type *type1;
381 struct type *type2;
382
383 *arg1 = coerce_ref (*arg1);
384 *arg2 = coerce_ref (*arg2);
385
386 type1 = check_typedef (value_type (*arg1));
387 type2 = check_typedef (value_type (*arg2));
388
389 if ((type1->code () != TYPE_CODE_FLT
390 && type1->code () != TYPE_CODE_DECFLOAT
391 && !is_integral_type (type1))
392 || (type2->code () != TYPE_CODE_FLT
393 && type2->code () != TYPE_CODE_DECFLOAT
394 && !is_integral_type (type2)))
395 return;
396
397 if (is_fixed_point_type (type1) || is_fixed_point_type (type2))
398 return;
399
400 if (type1->code () == TYPE_CODE_DECFLOAT
401 || type2->code () == TYPE_CODE_DECFLOAT)
402 {
403 /* No promotion required. */
404 }
405 else if (type1->code () == TYPE_CODE_FLT
406 || type2->code () == TYPE_CODE_FLT)
407 {
408 switch (language->la_language)
409 {
410 case language_c:
411 case language_cplus:
412 case language_asm:
413 case language_objc:
414 case language_opencl:
415 /* No promotion required. */
416 break;
417
418 default:
419 /* For other languages the result type is unchanged from gdb
420 version 6.7 for backward compatibility.
421 If either arg was long double, make sure that value is also long
422 double. Otherwise use double. */
423 if (TYPE_LENGTH (type1) * 8 > gdbarch_double_bit (gdbarch)
424 || TYPE_LENGTH (type2) * 8 > gdbarch_double_bit (gdbarch))
425 promoted_type = builtin_type (gdbarch)->builtin_long_double;
426 else
427 promoted_type = builtin_type (gdbarch)->builtin_double;
428 break;
429 }
430 }
431 else if (type1->code () == TYPE_CODE_BOOL
432 && type2->code () == TYPE_CODE_BOOL)
433 {
434 /* No promotion required. */
435 }
436 else
437 /* Integral operations here. */
438 /* FIXME: Also mixed integral/booleans, with result an integer. */
439 {
440 const struct builtin_type *builtin = builtin_type (gdbarch);
441 unsigned int promoted_len1 = TYPE_LENGTH (type1);
442 unsigned int promoted_len2 = TYPE_LENGTH (type2);
443 int is_unsigned1 = type1->is_unsigned ();
444 int is_unsigned2 = type2->is_unsigned ();
445 unsigned int result_len;
446 int unsigned_operation;
447
448 /* Determine type length and signedness after promotion for
449 both operands. */
450 if (promoted_len1 < TYPE_LENGTH (builtin->builtin_int))
451 {
452 is_unsigned1 = 0;
453 promoted_len1 = TYPE_LENGTH (builtin->builtin_int);
454 }
455 if (promoted_len2 < TYPE_LENGTH (builtin->builtin_int))
456 {
457 is_unsigned2 = 0;
458 promoted_len2 = TYPE_LENGTH (builtin->builtin_int);
459 }
460
461 if (promoted_len1 > promoted_len2)
462 {
463 unsigned_operation = is_unsigned1;
464 result_len = promoted_len1;
465 }
466 else if (promoted_len2 > promoted_len1)
467 {
468 unsigned_operation = is_unsigned2;
469 result_len = promoted_len2;
470 }
471 else
472 {
473 unsigned_operation = is_unsigned1 || is_unsigned2;
474 result_len = promoted_len1;
475 }
476
477 switch (language->la_language)
478 {
479 case language_c:
480 case language_cplus:
481 case language_asm:
482 case language_objc:
483 if (result_len <= TYPE_LENGTH (builtin->builtin_int))
484 {
485 promoted_type = (unsigned_operation
486 ? builtin->builtin_unsigned_int
487 : builtin->builtin_int);
488 }
489 else if (result_len <= TYPE_LENGTH (builtin->builtin_long))
490 {
491 promoted_type = (unsigned_operation
492 ? builtin->builtin_unsigned_long
493 : builtin->builtin_long);
494 }
495 else
496 {
497 promoted_type = (unsigned_operation
498 ? builtin->builtin_unsigned_long_long
499 : builtin->builtin_long_long);
500 }
501 break;
502 case language_opencl:
503 if (result_len <= TYPE_LENGTH (lookup_signed_typename
504 (language, "int")))
505 {
506 promoted_type =
507 (unsigned_operation
508 ? lookup_unsigned_typename (language, "int")
509 : lookup_signed_typename (language, "int"));
510 }
511 else if (result_len <= TYPE_LENGTH (lookup_signed_typename
512 (language, "long")))
513 {
514 promoted_type =
515 (unsigned_operation
516 ? lookup_unsigned_typename (language, "long")
517 : lookup_signed_typename (language,"long"));
518 }
519 break;
520 default:
521 /* For other languages the result type is unchanged from gdb
522 version 6.7 for backward compatibility.
523 If either arg was long long, make sure that value is also long
524 long. Otherwise use long. */
525 if (unsigned_operation)
526 {
527 if (result_len > gdbarch_long_bit (gdbarch) / HOST_CHAR_BIT)
528 promoted_type = builtin->builtin_unsigned_long_long;
529 else
530 promoted_type = builtin->builtin_unsigned_long;
531 }
532 else
533 {
534 if (result_len > gdbarch_long_bit (gdbarch) / HOST_CHAR_BIT)
535 promoted_type = builtin->builtin_long_long;
536 else
537 promoted_type = builtin->builtin_long;
538 }
539 break;
540 }
541 }
542
543 if (promoted_type)
544 {
545 /* Promote both operands to common type. */
546 *arg1 = value_cast (promoted_type, *arg1);
547 *arg2 = value_cast (promoted_type, *arg2);
548 }
549 }
550
551 static int
552 ptrmath_type_p (const struct language_defn *lang, struct type *type)
553 {
554 type = check_typedef (type);
555 if (TYPE_IS_REFERENCE (type))
556 type = TYPE_TARGET_TYPE (type);
557
558 switch (type->code ())
559 {
560 case TYPE_CODE_PTR:
561 case TYPE_CODE_FUNC:
562 return 1;
563
564 case TYPE_CODE_ARRAY:
565 return type->is_vector () ? 0 : lang->c_style_arrays_p ();
566
567 default:
568 return 0;
569 }
570 }
571
572 /* Represents a fake method with the given parameter types. This is
573 used by the parser to construct a temporary "expected" type for
574 method overload resolution. FLAGS is used as instance flags of the
575 new type, in order to be able to make the new type represent a
576 const/volatile overload. */
577
578 class fake_method
579 {
580 public:
581 fake_method (type_instance_flags flags,
582 int num_types, struct type **param_types);
583 ~fake_method ();
584
585 /* The constructed type. */
586 struct type *type () { return &m_type; }
587
588 private:
589 struct type m_type {};
590 main_type m_main_type {};
591 };
592
593 fake_method::fake_method (type_instance_flags flags,
594 int num_types, struct type **param_types)
595 {
596 struct type *type = &m_type;
597
598 TYPE_MAIN_TYPE (type) = &m_main_type;
599 TYPE_LENGTH (type) = 1;
600 type->set_code (TYPE_CODE_METHOD);
601 TYPE_CHAIN (type) = type;
602 type->set_instance_flags (flags);
603 if (num_types > 0)
604 {
605 if (param_types[num_types - 1] == NULL)
606 {
607 --num_types;
608 type->set_has_varargs (true);
609 }
610 else if (check_typedef (param_types[num_types - 1])->code ()
611 == TYPE_CODE_VOID)
612 {
613 --num_types;
614 /* Caller should have ensured this. */
615 gdb_assert (num_types == 0);
616 type->set_is_prototyped (true);
617 }
618 }
619
620 /* We don't use TYPE_ZALLOC here to allocate space as TYPE is owned by
621 neither an objfile nor a gdbarch. As a result we must manually
622 allocate memory for auxiliary fields, and free the memory ourselves
623 when we are done with it. */
624 type->set_num_fields (num_types);
625 type->set_fields
626 ((struct field *) xzalloc (sizeof (struct field) * num_types));
627
628 while (num_types-- > 0)
629 type->field (num_types).set_type (param_types[num_types]);
630 }
631
632 fake_method::~fake_method ()
633 {
634 xfree (m_type.fields ());
635 }
636
637 /* Helper for evaluating an OP_VAR_VALUE. */
638
639 value *
640 evaluate_var_value (enum noside noside, const block *blk, symbol *var)
641 {
642 /* JYG: We used to just return value_zero of the symbol type if
643 we're asked to avoid side effects. Otherwise we return
644 value_of_variable (...). However I'm not sure if
645 value_of_variable () has any side effect. We need a full value
646 object returned here for whatis_exp () to call evaluate_type ()
647 and then pass the full value to value_rtti_target_type () if we
648 are dealing with a pointer or reference to a base class and print
649 object is on. */
650
651 struct value *ret = NULL;
652
653 try
654 {
655 ret = value_of_variable (var, blk);
656 }
657
658 catch (const gdb_exception_error &except)
659 {
660 if (noside != EVAL_AVOID_SIDE_EFFECTS)
661 throw;
662
663 ret = value_zero (SYMBOL_TYPE (var), not_lval);
664 }
665
666 return ret;
667 }
668
669 /* Helper for evaluating an OP_VAR_MSYM_VALUE. */
670
671 value *
672 evaluate_var_msym_value (enum noside noside,
673 struct objfile *objfile, minimal_symbol *msymbol)
674 {
675 CORE_ADDR address;
676 type *the_type = find_minsym_type_and_address (msymbol, objfile, &address);
677
678 if (noside == EVAL_AVOID_SIDE_EFFECTS && !the_type->is_gnu_ifunc ())
679 return value_zero (the_type, not_lval);
680 else
681 return value_at_lazy (the_type, address);
682 }
683
684 /* Helper for returning a value when handling EVAL_SKIP. */
685
686 value *
687 eval_skip_value (expression *exp)
688 {
689 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
690 }
691
692 /* See expression.h. */
693
694 value *
695 evaluate_subexp_do_call (expression *exp, enum noside noside,
696 value *callee,
697 gdb::array_view<value *> argvec,
698 const char *function_name,
699 type *default_return_type)
700 {
701 if (callee == NULL)
702 error (_("Cannot evaluate function -- may be inlined"));
703 if (noside == EVAL_AVOID_SIDE_EFFECTS)
704 {
705 /* If the return type doesn't look like a function type,
706 call an error. This can happen if somebody tries to turn
707 a variable into a function call. */
708
709 type *ftype = value_type (callee);
710
711 if (ftype->code () == TYPE_CODE_INTERNAL_FUNCTION)
712 {
713 /* We don't know anything about what the internal
714 function might return, but we have to return
715 something. */
716 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
717 not_lval);
718 }
719 else if (ftype->code () == TYPE_CODE_XMETHOD)
720 {
721 type *return_type = result_type_of_xmethod (callee, argvec);
722
723 if (return_type == NULL)
724 error (_("Xmethod is missing return type."));
725 return value_zero (return_type, not_lval);
726 }
727 else if (ftype->code () == TYPE_CODE_FUNC
728 || ftype->code () == TYPE_CODE_METHOD)
729 {
730 if (ftype->is_gnu_ifunc ())
731 {
732 CORE_ADDR address = value_address (callee);
733 type *resolved_type = find_gnu_ifunc_target_type (address);
734
735 if (resolved_type != NULL)
736 ftype = resolved_type;
737 }
738
739 type *return_type = TYPE_TARGET_TYPE (ftype);
740
741 if (return_type == NULL)
742 return_type = default_return_type;
743
744 if (return_type == NULL)
745 error_call_unknown_return_type (function_name);
746
747 return allocate_value (return_type);
748 }
749 else
750 error (_("Expression of type other than "
751 "\"Function returning ...\" used as function"));
752 }
753 switch (value_type (callee)->code ())
754 {
755 case TYPE_CODE_INTERNAL_FUNCTION:
756 return call_internal_function (exp->gdbarch, exp->language_defn,
757 callee, argvec.size (), argvec.data ());
758 case TYPE_CODE_XMETHOD:
759 return call_xmethod (callee, argvec);
760 default:
761 return call_function_by_hand (callee, default_return_type, argvec);
762 }
763 }
764
765 /* Helper for evaluating an OP_FUNCALL. */
766
767 static value *
768 evaluate_funcall (type *expect_type, expression *exp, int *pos,
769 enum noside noside)
770 {
771 int tem;
772 int pc2 = 0;
773 value *arg1 = NULL;
774 value *arg2 = NULL;
775 int save_pos1;
776 symbol *function = NULL;
777 char *function_name = NULL;
778 const char *var_func_name = NULL;
779
780 int pc = (*pos);
781 (*pos) += 2;
782
783 exp_opcode op = exp->elts[*pos].opcode;
784 int nargs = longest_to_int (exp->elts[pc].longconst);
785 /* Allocate arg vector, including space for the function to be
786 called in argvec[0], a potential `this', and a terminating
787 NULL. */
788 value **argvec = (value **) alloca (sizeof (value *) * (nargs + 3));
789 if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR)
790 {
791 /* First, evaluate the structure into arg2. */
792 pc2 = (*pos)++;
793
794 if (op == STRUCTOP_MEMBER)
795 {
796 arg2 = evaluate_subexp_for_address (exp, pos, noside);
797 }
798 else
799 {
800 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
801 }
802
803 /* If the function is a virtual function, then the aggregate
804 value (providing the structure) plays its part by providing
805 the vtable. Otherwise, it is just along for the ride: call
806 the function directly. */
807
808 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
809
810 type *a1_type = check_typedef (value_type (arg1));
811 if (noside == EVAL_SKIP)
812 tem = 1; /* Set it to the right arg index so that all
813 arguments can also be skipped. */
814 else if (a1_type->code () == TYPE_CODE_METHODPTR)
815 {
816 if (noside == EVAL_AVOID_SIDE_EFFECTS)
817 arg1 = value_zero (TYPE_TARGET_TYPE (a1_type), not_lval);
818 else
819 arg1 = cplus_method_ptr_to_value (&arg2, arg1);
820
821 /* Now, say which argument to start evaluating from. */
822 nargs++;
823 tem = 2;
824 argvec[1] = arg2;
825 }
826 else if (a1_type->code () == TYPE_CODE_MEMBERPTR)
827 {
828 struct type *type_ptr
829 = lookup_pointer_type (TYPE_SELF_TYPE (a1_type));
830 struct type *target_type_ptr
831 = lookup_pointer_type (TYPE_TARGET_TYPE (a1_type));
832
833 /* Now, convert these values to an address. */
834 arg2 = value_cast (type_ptr, arg2);
835
836 long mem_offset = value_as_long (arg1);
837
838 arg1 = value_from_pointer (target_type_ptr,
839 value_as_long (arg2) + mem_offset);
840 arg1 = value_ind (arg1);
841 tem = 1;
842 }
843 else
844 error (_("Non-pointer-to-member value used in pointer-to-member "
845 "construct"));
846 }
847 else if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR)
848 {
849 /* Hair for method invocations. */
850 int tem2;
851
852 nargs++;
853 /* First, evaluate the structure into arg2. */
854 pc2 = (*pos)++;
855 tem2 = longest_to_int (exp->elts[pc2 + 1].longconst);
856 *pos += 3 + BYTES_TO_EXP_ELEM (tem2 + 1);
857
858 if (op == STRUCTOP_STRUCT)
859 {
860 /* If v is a variable in a register, and the user types
861 v.method (), this will produce an error, because v has no
862 address.
863
864 A possible way around this would be to allocate a copy of
865 the variable on the stack, copy in the contents, call the
866 function, and copy out the contents. I.e. convert this
867 from call by reference to call by copy-return (or
868 whatever it's called). However, this does not work
869 because it is not the same: the method being called could
870 stash a copy of the address, and then future uses through
871 that address (after the method returns) would be expected
872 to use the variable itself, not some copy of it. */
873 arg2 = evaluate_subexp_for_address (exp, pos, noside);
874 }
875 else
876 {
877 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
878
879 /* Check to see if the operator '->' has been overloaded.
880 If the operator has been overloaded replace arg2 with the
881 value returned by the custom operator and continue
882 evaluation. */
883 while (unop_user_defined_p (op, arg2))
884 {
885 struct value *value = NULL;
886 try
887 {
888 value = value_x_unop (arg2, op, noside);
889 }
890
891 catch (const gdb_exception_error &except)
892 {
893 if (except.error == NOT_FOUND_ERROR)
894 break;
895 else
896 throw;
897 }
898
899 arg2 = value;
900 }
901 }
902 /* Now, say which argument to start evaluating from. */
903 tem = 2;
904 }
905 else if (op == OP_SCOPE
906 && overload_resolution
907 && (exp->language_defn->la_language == language_cplus))
908 {
909 /* Unpack it locally so we can properly handle overload
910 resolution. */
911 char *name;
912 int local_tem;
913
914 pc2 = (*pos)++;
915 local_tem = longest_to_int (exp->elts[pc2 + 2].longconst);
916 (*pos) += 4 + BYTES_TO_EXP_ELEM (local_tem + 1);
917 struct type *type = exp->elts[pc2 + 1].type;
918 name = &exp->elts[pc2 + 3].string;
919
920 function = NULL;
921 function_name = NULL;
922 if (type->code () == TYPE_CODE_NAMESPACE)
923 {
924 function = cp_lookup_symbol_namespace (type->name (),
925 name,
926 get_selected_block (0),
927 VAR_DOMAIN).symbol;
928 if (function == NULL)
929 error (_("No symbol \"%s\" in namespace \"%s\"."),
930 name, type->name ());
931
932 tem = 1;
933 /* arg2 is left as NULL on purpose. */
934 }
935 else
936 {
937 gdb_assert (type->code () == TYPE_CODE_STRUCT
938 || type->code () == TYPE_CODE_UNION);
939 function_name = name;
940
941 /* We need a properly typed value for method lookup. For
942 static methods arg2 is otherwise unused. */
943 arg2 = value_zero (type, lval_memory);
944 ++nargs;
945 tem = 2;
946 }
947 }
948 else if (op == OP_ADL_FUNC)
949 {
950 /* Save the function position and move pos so that the arguments
951 can be evaluated. */
952 int func_name_len;
953
954 save_pos1 = *pos;
955 tem = 1;
956
957 func_name_len = longest_to_int (exp->elts[save_pos1 + 3].longconst);
958 (*pos) += 6 + BYTES_TO_EXP_ELEM (func_name_len + 1);
959 }
960 else
961 {
962 /* Non-method function call. */
963 save_pos1 = *pos;
964 tem = 1;
965
966 /* If this is a C++ function wait until overload resolution. */
967 if (op == OP_VAR_VALUE
968 && overload_resolution
969 && (exp->language_defn->la_language == language_cplus))
970 {
971 (*pos) += 4; /* Skip the evaluation of the symbol. */
972 argvec[0] = NULL;
973 }
974 else
975 {
976 if (op == OP_VAR_MSYM_VALUE)
977 {
978 minimal_symbol *msym = exp->elts[*pos + 2].msymbol;
979 var_func_name = msym->print_name ();
980 }
981 else if (op == OP_VAR_VALUE)
982 {
983 symbol *sym = exp->elts[*pos + 2].symbol;
984 var_func_name = sym->print_name ();
985 }
986
987 argvec[0] = evaluate_subexp_with_coercion (exp, pos, noside);
988 type *type = value_type (argvec[0]);
989 if (type && type->code () == TYPE_CODE_PTR)
990 type = TYPE_TARGET_TYPE (type);
991 if (type && type->code () == TYPE_CODE_FUNC)
992 {
993 for (; tem <= nargs && tem <= type->num_fields (); tem++)
994 {
995 argvec[tem] = evaluate_subexp (type->field (tem - 1).type (),
996 exp, pos, noside);
997 }
998 }
999 }
1000 }
1001
1002 /* Evaluate arguments (if not already done, e.g., namespace::func()
1003 and overload-resolution is off). */
1004 for (; tem <= nargs; tem++)
1005 {
1006 /* Ensure that array expressions are coerced into pointer
1007 objects. */
1008 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1009 }
1010
1011 /* Signal end of arglist. */
1012 argvec[tem] = 0;
1013
1014 if (noside == EVAL_SKIP)
1015 return eval_skip_value (exp);
1016
1017 if (op == OP_ADL_FUNC)
1018 {
1019 struct symbol *symp;
1020 char *func_name;
1021 int name_len;
1022 int string_pc = save_pos1 + 3;
1023
1024 /* Extract the function name. */
1025 name_len = longest_to_int (exp->elts[string_pc].longconst);
1026 func_name = (char *) alloca (name_len + 1);
1027 strcpy (func_name, &exp->elts[string_pc + 1].string);
1028
1029 find_overload_match (gdb::make_array_view (&argvec[1], nargs),
1030 func_name,
1031 NON_METHOD, /* not method */
1032 NULL, NULL, /* pass NULL symbol since
1033 symbol is unknown */
1034 NULL, &symp, NULL, 0, noside);
1035
1036 /* Now fix the expression being evaluated. */
1037 exp->elts[save_pos1 + 2].symbol = symp;
1038 argvec[0] = evaluate_subexp_with_coercion (exp, &save_pos1, noside);
1039 }
1040
1041 if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR
1042 || (op == OP_SCOPE && function_name != NULL))
1043 {
1044 int static_memfuncp;
1045 char *tstr;
1046
1047 /* Method invocation: stuff "this" as first parameter. If the
1048 method turns out to be static we undo this below. */
1049 argvec[1] = arg2;
1050
1051 if (op != OP_SCOPE)
1052 {
1053 /* Name of method from expression. */
1054 tstr = &exp->elts[pc2 + 2].string;
1055 }
1056 else
1057 tstr = function_name;
1058
1059 if (overload_resolution && (exp->language_defn->la_language
1060 == language_cplus))
1061 {
1062 /* Language is C++, do some overload resolution before
1063 evaluation. */
1064 struct value *valp = NULL;
1065
1066 (void) find_overload_match (gdb::make_array_view (&argvec[1], nargs),
1067 tstr,
1068 METHOD, /* method */
1069 &arg2, /* the object */
1070 NULL, &valp, NULL,
1071 &static_memfuncp, 0, noside);
1072
1073 if (op == OP_SCOPE && !static_memfuncp)
1074 {
1075 /* For the time being, we don't handle this. */
1076 error (_("Call to overloaded function %s requires "
1077 "`this' pointer"),
1078 function_name);
1079 }
1080 argvec[1] = arg2; /* the ``this'' pointer */
1081 argvec[0] = valp; /* Use the method found after overload
1082 resolution. */
1083 }
1084 else
1085 /* Non-C++ case -- or no overload resolution. */
1086 {
1087 struct value *temp = arg2;
1088
1089 argvec[0] = value_struct_elt (&temp, argvec + 1, tstr,
1090 &static_memfuncp,
1091 op == STRUCTOP_STRUCT
1092 ? "structure" : "structure pointer");
1093 /* value_struct_elt updates temp with the correct value of
1094 the ``this'' pointer if necessary, so modify argvec[1] to
1095 reflect any ``this'' changes. */
1096 arg2
1097 = value_from_longest (lookup_pointer_type(value_type (temp)),
1098 value_address (temp)
1099 + value_embedded_offset (temp));
1100 argvec[1] = arg2; /* the ``this'' pointer */
1101 }
1102
1103 /* Take out `this' if needed. */
1104 if (static_memfuncp)
1105 {
1106 argvec[1] = argvec[0];
1107 nargs--;
1108 argvec++;
1109 }
1110 }
1111 else if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR)
1112 {
1113 /* Pointer to member. argvec[1] is already set up. */
1114 argvec[0] = arg1;
1115 }
1116 else if (op == OP_VAR_VALUE || (op == OP_SCOPE && function != NULL))
1117 {
1118 /* Non-member function being called. */
1119 /* fn: This can only be done for C++ functions. A C-style
1120 function in a C++ program, for instance, does not have the
1121 fields that are expected here. */
1122
1123 if (overload_resolution && (exp->language_defn->la_language
1124 == language_cplus))
1125 {
1126 /* Language is C++, do some overload resolution before
1127 evaluation. */
1128 struct symbol *symp;
1129 int no_adl = 0;
1130
1131 /* If a scope has been specified disable ADL. */
1132 if (op == OP_SCOPE)
1133 no_adl = 1;
1134
1135 if (op == OP_VAR_VALUE)
1136 function = exp->elts[save_pos1+2].symbol;
1137
1138 (void) find_overload_match (gdb::make_array_view (&argvec[1], nargs),
1139 NULL, /* no need for name */
1140 NON_METHOD, /* not method */
1141 NULL, function, /* the function */
1142 NULL, &symp, NULL, no_adl, noside);
1143
1144 if (op == OP_VAR_VALUE)
1145 {
1146 /* Now fix the expression being evaluated. */
1147 exp->elts[save_pos1+2].symbol = symp;
1148 argvec[0] = evaluate_subexp_with_coercion (exp, &save_pos1,
1149 noside);
1150 }
1151 else
1152 argvec[0] = value_of_variable (symp, get_selected_block (0));
1153 }
1154 else
1155 {
1156 /* Not C++, or no overload resolution allowed. */
1157 /* Nothing to be done; argvec already correctly set up. */
1158 }
1159 }
1160 else
1161 {
1162 /* It is probably a C-style function. */
1163 /* Nothing to be done; argvec already correctly set up. */
1164 }
1165
1166 return evaluate_subexp_do_call (exp, noside, argvec[0],
1167 gdb::make_array_view (argvec + 1, nargs),
1168 var_func_name, expect_type);
1169 }
1170
1171 /* Return true if type is integral or reference to integral */
1172
1173 static bool
1174 is_integral_or_integral_reference (struct type *type)
1175 {
1176 if (is_integral_type (type))
1177 return true;
1178
1179 type = check_typedef (type);
1180 return (type != nullptr
1181 && TYPE_IS_REFERENCE (type)
1182 && is_integral_type (TYPE_TARGET_TYPE (type)));
1183 }
1184
1185 /* Helper function that implements the body of OP_SCOPE. */
1186
1187 static struct value *
1188 eval_op_scope (struct type *expect_type, struct expression *exp,
1189 enum noside noside,
1190 struct type *type, const char *string)
1191 {
1192 if (noside == EVAL_SKIP)
1193 return eval_skip_value (exp);
1194 struct value *arg1 = value_aggregate_elt (type, string, expect_type,
1195 0, noside);
1196 if (arg1 == NULL)
1197 error (_("There is no field named %s"), string);
1198 return arg1;
1199 }
1200
1201 /* Helper function that implements the body of OP_VAR_ENTRY_VALUE. */
1202
1203 static struct value *
1204 eval_op_var_entry_value (struct type *expect_type, struct expression *exp,
1205 enum noside noside, symbol *sym)
1206 {
1207 if (noside == EVAL_SKIP)
1208 return eval_skip_value (exp);
1209 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1210 return value_zero (SYMBOL_TYPE (sym), not_lval);
1211
1212 if (SYMBOL_COMPUTED_OPS (sym) == NULL
1213 || SYMBOL_COMPUTED_OPS (sym)->read_variable_at_entry == NULL)
1214 error (_("Symbol \"%s\" does not have any specific entry value"),
1215 sym->print_name ());
1216
1217 struct frame_info *frame = get_selected_frame (NULL);
1218 return SYMBOL_COMPUTED_OPS (sym)->read_variable_at_entry (sym, frame);
1219 }
1220
1221 /* Helper function that implements the body of OP_VAR_MSYM_VALUE. */
1222
1223 static struct value *
1224 eval_op_var_msym_value (struct type *expect_type, struct expression *exp,
1225 enum noside noside, bool outermost_p,
1226 minimal_symbol *msymbol, struct objfile *objfile)
1227 {
1228 value *val = evaluate_var_msym_value (noside, objfile, msymbol);
1229
1230 struct type *type = value_type (val);
1231 if (type->code () == TYPE_CODE_ERROR
1232 && (noside != EVAL_AVOID_SIDE_EFFECTS || !outermost_p))
1233 error_unknown_type (msymbol->print_name ());
1234 return val;
1235 }
1236
1237 /* Helper function that implements the body of OP_FUNC_STATIC_VAR. */
1238
1239 static struct value *
1240 eval_op_func_static_var (struct type *expect_type, struct expression *exp,
1241 enum noside noside,
1242 value *func, const char *var)
1243 {
1244 if (noside == EVAL_SKIP)
1245 return eval_skip_value (exp);
1246 CORE_ADDR addr = value_address (func);
1247 const block *blk = block_for_pc (addr);
1248 struct block_symbol sym = lookup_symbol (var, blk, VAR_DOMAIN, NULL);
1249 if (sym.symbol == NULL)
1250 error (_("No symbol \"%s\" in specified context."), var);
1251 return evaluate_var_value (noside, sym.block, sym.symbol);
1252 }
1253
1254 /* Helper function that implements the body of OP_REGISTER. */
1255
1256 static struct value *
1257 eval_op_register (struct type *expect_type, struct expression *exp,
1258 enum noside noside, const char *name)
1259 {
1260 int regno;
1261 struct value *val;
1262
1263 regno = user_reg_map_name_to_regnum (exp->gdbarch,
1264 name, strlen (name));
1265 if (regno == -1)
1266 error (_("Register $%s not available."), name);
1267
1268 /* In EVAL_AVOID_SIDE_EFFECTS mode, we only need to return
1269 a value with the appropriate register type. Unfortunately,
1270 we don't have easy access to the type of user registers.
1271 So for these registers, we fetch the register value regardless
1272 of the evaluation mode. */
1273 if (noside == EVAL_AVOID_SIDE_EFFECTS
1274 && regno < gdbarch_num_cooked_regs (exp->gdbarch))
1275 val = value_zero (register_type (exp->gdbarch, regno), not_lval);
1276 else
1277 val = value_of_register (regno, get_selected_frame (NULL));
1278 if (val == NULL)
1279 error (_("Value of register %s not available."), name);
1280 else
1281 return val;
1282 }
1283
1284 /* Helper function that implements the body of OP_STRING. */
1285
1286 static struct value *
1287 eval_op_string (struct type *expect_type, struct expression *exp,
1288 enum noside noside, int len, const char *string)
1289 {
1290 if (noside == EVAL_SKIP)
1291 return eval_skip_value (exp);
1292 struct type *type = language_string_char_type (exp->language_defn,
1293 exp->gdbarch);
1294 return value_string (string, len, type);
1295 }
1296
1297 /* Helper function that implements the body of OP_OBJC_SELECTOR. */
1298
1299 static struct value *
1300 eval_op_objc_selector (struct type *expect_type, struct expression *exp,
1301 enum noside noside,
1302 const char *sel)
1303 {
1304 if (noside == EVAL_SKIP)
1305 return eval_skip_value (exp);
1306
1307 struct type *selector_type = builtin_type (exp->gdbarch)->builtin_data_ptr;
1308 return value_from_longest (selector_type,
1309 lookup_child_selector (exp->gdbarch, sel));
1310 }
1311
1312 /* Helper function that implements the body of BINOP_CONCAT. */
1313
1314 static struct value *
1315 eval_op_concat (struct type *expect_type, struct expression *exp,
1316 enum noside noside,
1317 enum exp_opcode op, struct value *arg1, struct value *arg2)
1318 {
1319 if (noside == EVAL_SKIP)
1320 return eval_skip_value (exp);
1321 if (binop_user_defined_p (op, arg1, arg2))
1322 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1323 else
1324 return value_concat (arg1, arg2);
1325 }
1326
1327 /* A helper function for TERNOP_SLICE. */
1328
1329 static struct value *
1330 eval_op_ternop (struct type *expect_type, struct expression *exp,
1331 enum noside noside,
1332 struct value *array, struct value *low, struct value *upper)
1333 {
1334 if (noside == EVAL_SKIP)
1335 return eval_skip_value (exp);
1336 int lowbound = value_as_long (low);
1337 int upperbound = value_as_long (upper);
1338 return value_slice (array, lowbound, upperbound - lowbound + 1);
1339 }
1340
1341 /* A helper function for STRUCTOP_STRUCT. */
1342
1343 static struct value *
1344 eval_op_structop_struct (struct type *expect_type, struct expression *exp,
1345 enum noside noside,
1346 struct value *arg1, const char *string)
1347 {
1348 if (noside == EVAL_SKIP)
1349 return eval_skip_value (exp);
1350 struct value *arg3 = value_struct_elt (&arg1, NULL, string,
1351 NULL, "structure");
1352 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1353 arg3 = value_zero (value_type (arg3), VALUE_LVAL (arg3));
1354 return arg3;
1355 }
1356
1357 /* A helper function for STRUCTOP_PTR. */
1358
1359 static struct value *
1360 eval_op_structop_ptr (struct type *expect_type, struct expression *exp,
1361 enum noside noside, enum exp_opcode op,
1362 struct value *arg1, const char *string)
1363 {
1364 if (noside == EVAL_SKIP)
1365 return eval_skip_value (exp);
1366
1367 /* Check to see if operator '->' has been overloaded. If so replace
1368 arg1 with the value returned by evaluating operator->(). */
1369 while (unop_user_defined_p (op, arg1))
1370 {
1371 struct value *value = NULL;
1372 try
1373 {
1374 value = value_x_unop (arg1, op, noside);
1375 }
1376
1377 catch (const gdb_exception_error &except)
1378 {
1379 if (except.error == NOT_FOUND_ERROR)
1380 break;
1381 else
1382 throw;
1383 }
1384
1385 arg1 = value;
1386 }
1387
1388 /* JYG: if print object is on we need to replace the base type
1389 with rtti type in order to continue on with successful
1390 lookup of member / method only available in the rtti type. */
1391 {
1392 struct type *arg_type = value_type (arg1);
1393 struct type *real_type;
1394 int full, using_enc;
1395 LONGEST top;
1396 struct value_print_options opts;
1397
1398 get_user_print_options (&opts);
1399 if (opts.objectprint && TYPE_TARGET_TYPE (arg_type)
1400 && (TYPE_TARGET_TYPE (arg_type)->code () == TYPE_CODE_STRUCT))
1401 {
1402 real_type = value_rtti_indirect_type (arg1, &full, &top,
1403 &using_enc);
1404 if (real_type)
1405 arg1 = value_cast (real_type, arg1);
1406 }
1407 }
1408
1409 struct value *arg3 = value_struct_elt (&arg1, NULL, string,
1410 NULL, "structure pointer");
1411 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1412 arg3 = value_zero (value_type (arg3), VALUE_LVAL (arg3));
1413 return arg3;
1414 }
1415
1416 /* A helper function for STRUCTOP_MEMBER. */
1417
1418 static struct value *
1419 eval_op_member (struct type *expect_type, struct expression *exp,
1420 enum noside noside,
1421 struct value *arg1, struct value *arg2)
1422 {
1423 long mem_offset;
1424
1425 if (noside == EVAL_SKIP)
1426 return eval_skip_value (exp);
1427
1428 struct value *arg3;
1429 struct type *type = check_typedef (value_type (arg2));
1430 switch (type->code ())
1431 {
1432 case TYPE_CODE_METHODPTR:
1433 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1434 return value_zero (TYPE_TARGET_TYPE (type), not_lval);
1435 else
1436 {
1437 arg2 = cplus_method_ptr_to_value (&arg1, arg2);
1438 gdb_assert (value_type (arg2)->code () == TYPE_CODE_PTR);
1439 return value_ind (arg2);
1440 }
1441
1442 case TYPE_CODE_MEMBERPTR:
1443 /* Now, convert these values to an address. */
1444 arg1 = value_cast_pointers (lookup_pointer_type (TYPE_SELF_TYPE (type)),
1445 arg1, 1);
1446
1447 mem_offset = value_as_long (arg2);
1448
1449 arg3 = value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
1450 value_as_long (arg1) + mem_offset);
1451 return value_ind (arg3);
1452
1453 default:
1454 error (_("non-pointer-to-member value used "
1455 "in pointer-to-member construct"));
1456 }
1457 }
1458
1459 /* A helper function for BINOP_ADD. */
1460
1461 static struct value *
1462 eval_op_add (struct type *expect_type, struct expression *exp,
1463 enum noside noside, enum exp_opcode op,
1464 struct value *arg1, struct value *arg2)
1465 {
1466 if (noside == EVAL_SKIP)
1467 return eval_skip_value (exp);
1468 if (binop_user_defined_p (op, arg1, arg2))
1469 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1470 else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
1471 && is_integral_or_integral_reference (value_type (arg2)))
1472 return value_ptradd (arg1, value_as_long (arg2));
1473 else if (ptrmath_type_p (exp->language_defn, value_type (arg2))
1474 && is_integral_or_integral_reference (value_type (arg1)))
1475 return value_ptradd (arg2, value_as_long (arg1));
1476 else
1477 {
1478 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1479 return value_binop (arg1, arg2, BINOP_ADD);
1480 }
1481 }
1482
1483 /* A helper function for BINOP_SUB. */
1484
1485 static struct value *
1486 eval_op_sub (struct type *expect_type, struct expression *exp,
1487 enum noside noside, enum exp_opcode op,
1488 struct value *arg1, struct value *arg2)
1489 {
1490 if (noside == EVAL_SKIP)
1491 return eval_skip_value (exp);
1492 if (binop_user_defined_p (op, arg1, arg2))
1493 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1494 else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
1495 && ptrmath_type_p (exp->language_defn, value_type (arg2)))
1496 {
1497 /* FIXME -- should be ptrdiff_t */
1498 struct type *type = builtin_type (exp->gdbarch)->builtin_long;
1499 return value_from_longest (type, value_ptrdiff (arg1, arg2));
1500 }
1501 else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
1502 && is_integral_or_integral_reference (value_type (arg2)))
1503 return value_ptradd (arg1, - value_as_long (arg2));
1504 else
1505 {
1506 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1507 return value_binop (arg1, arg2, BINOP_SUB);
1508 }
1509 }
1510
1511 /* Helper function for several different binary operations. */
1512
1513 static struct value *
1514 eval_op_binary (struct type *expect_type, struct expression *exp,
1515 enum noside noside, enum exp_opcode op,
1516 struct value *arg1, struct value *arg2)
1517 {
1518 if (noside == EVAL_SKIP)
1519 return eval_skip_value (exp);
1520 if (binop_user_defined_p (op, arg1, arg2))
1521 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1522 else
1523 {
1524 /* If EVAL_AVOID_SIDE_EFFECTS and we're dividing by zero,
1525 fudge arg2 to avoid division-by-zero, the caller is
1526 (theoretically) only looking for the type of the result. */
1527 if (noside == EVAL_AVOID_SIDE_EFFECTS
1528 /* ??? Do we really want to test for BINOP_MOD here?
1529 The implementation of value_binop gives it a well-defined
1530 value. */
1531 && (op == BINOP_DIV
1532 || op == BINOP_INTDIV
1533 || op == BINOP_REM
1534 || op == BINOP_MOD)
1535 && value_logical_not (arg2))
1536 {
1537 struct value *v_one;
1538
1539 v_one = value_one (value_type (arg2));
1540 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &v_one);
1541 return value_binop (arg1, v_one, op);
1542 }
1543 else
1544 {
1545 /* For shift and integer exponentiation operations,
1546 only promote the first argument. */
1547 if ((op == BINOP_LSH || op == BINOP_RSH || op == BINOP_EXP)
1548 && is_integral_type (value_type (arg2)))
1549 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
1550 else
1551 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1552
1553 return value_binop (arg1, arg2, op);
1554 }
1555 }
1556 }
1557
1558 struct value *
1559 evaluate_subexp_standard (struct type *expect_type,
1560 struct expression *exp, int *pos,
1561 enum noside noside)
1562 {
1563 enum exp_opcode op;
1564 int tem, tem2, tem3;
1565 int pc, oldpos;
1566 struct value *arg1 = NULL;
1567 struct value *arg2 = NULL;
1568 struct value *arg3;
1569 struct type *type;
1570 int nargs;
1571 struct value **argvec;
1572 int ix;
1573 struct type **arg_types;
1574
1575 pc = (*pos)++;
1576 op = exp->elts[pc].opcode;
1577
1578 switch (op)
1579 {
1580 case OP_SCOPE:
1581 tem = longest_to_int (exp->elts[pc + 2].longconst);
1582 (*pos) += 4 + BYTES_TO_EXP_ELEM (tem + 1);
1583 return eval_op_scope (expect_type, exp, noside,
1584 exp->elts[pc + 1].type,
1585 &exp->elts[pc + 3].string);
1586
1587 case OP_LONG:
1588 (*pos) += 3;
1589 return value_from_longest (exp->elts[pc + 1].type,
1590 exp->elts[pc + 2].longconst);
1591
1592 case OP_FLOAT:
1593 (*pos) += 3;
1594 return value_from_contents (exp->elts[pc + 1].type,
1595 exp->elts[pc + 2].floatconst);
1596
1597 case OP_ADL_FUNC:
1598 case OP_VAR_VALUE:
1599 {
1600 (*pos) += 3;
1601 symbol *var = exp->elts[pc + 2].symbol;
1602 if (SYMBOL_TYPE (var)->code () == TYPE_CODE_ERROR)
1603 error_unknown_type (var->print_name ());
1604 if (noside != EVAL_SKIP)
1605 return evaluate_var_value (noside, exp->elts[pc + 1].block, var);
1606 else
1607 {
1608 /* Return a dummy value of the correct type when skipping, so
1609 that parent functions know what is to be skipped. */
1610 return allocate_value (SYMBOL_TYPE (var));
1611 }
1612 }
1613
1614 case OP_VAR_MSYM_VALUE:
1615 {
1616 (*pos) += 3;
1617
1618 minimal_symbol *msymbol = exp->elts[pc + 2].msymbol;
1619 return eval_op_var_msym_value (expect_type, exp, noside,
1620 pc == 0, msymbol,
1621 exp->elts[pc + 1].objfile);
1622 }
1623
1624 case OP_VAR_ENTRY_VALUE:
1625 (*pos) += 2;
1626
1627 {
1628 struct symbol *sym = exp->elts[pc + 1].symbol;
1629
1630 return eval_op_var_entry_value (expect_type, exp, noside, sym);
1631 }
1632
1633 case OP_FUNC_STATIC_VAR:
1634 tem = longest_to_int (exp->elts[pc + 1].longconst);
1635 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
1636 if (noside == EVAL_SKIP)
1637 return eval_skip_value (exp);
1638
1639 {
1640 value *func = evaluate_subexp_standard (NULL, exp, pos, noside);
1641
1642 return eval_op_func_static_var (expect_type, exp, noside, func,
1643 &exp->elts[pc + 2].string);
1644 }
1645
1646 case OP_LAST:
1647 (*pos) += 2;
1648 return
1649 access_value_history (longest_to_int (exp->elts[pc + 1].longconst));
1650
1651 case OP_REGISTER:
1652 {
1653 const char *name = &exp->elts[pc + 2].string;
1654
1655 (*pos) += 3 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
1656 return eval_op_register (expect_type, exp, noside, name);
1657 }
1658 case OP_BOOL:
1659 (*pos) += 2;
1660 type = language_bool_type (exp->language_defn, exp->gdbarch);
1661 return value_from_longest (type, exp->elts[pc + 1].longconst);
1662
1663 case OP_INTERNALVAR:
1664 (*pos) += 2;
1665 return value_of_internalvar (exp->gdbarch,
1666 exp->elts[pc + 1].internalvar);
1667
1668 case OP_STRING:
1669 tem = longest_to_int (exp->elts[pc + 1].longconst);
1670 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
1671 return eval_op_string (expect_type, exp, noside, tem,
1672 &exp->elts[pc + 2].string);
1673
1674 case OP_OBJC_NSSTRING: /* Objective C Foundation Class
1675 NSString constant. */
1676 tem = longest_to_int (exp->elts[pc + 1].longconst);
1677 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
1678 if (noside == EVAL_SKIP)
1679 return eval_skip_value (exp);
1680 return value_nsstring (exp->gdbarch, &exp->elts[pc + 2].string, tem + 1);
1681
1682 case OP_ARRAY:
1683 (*pos) += 3;
1684 tem2 = longest_to_int (exp->elts[pc + 1].longconst);
1685 tem3 = longest_to_int (exp->elts[pc + 2].longconst);
1686 nargs = tem3 - tem2 + 1;
1687 type = expect_type ? check_typedef (expect_type) : nullptr;
1688
1689 if (expect_type != nullptr && noside != EVAL_SKIP
1690 && type->code () == TYPE_CODE_STRUCT)
1691 {
1692 struct value *rec = allocate_value (expect_type);
1693
1694 memset (value_contents_raw (rec), '\0', TYPE_LENGTH (type));
1695 return evaluate_struct_tuple (rec, exp, pos, noside, nargs);
1696 }
1697
1698 if (expect_type != nullptr && noside != EVAL_SKIP
1699 && type->code () == TYPE_CODE_ARRAY)
1700 {
1701 struct type *range_type = type->index_type ();
1702 struct type *element_type = TYPE_TARGET_TYPE (type);
1703 struct value *array = allocate_value (expect_type);
1704 int element_size = TYPE_LENGTH (check_typedef (element_type));
1705 LONGEST low_bound, high_bound, index;
1706
1707 if (!get_discrete_bounds (range_type, &low_bound, &high_bound))
1708 {
1709 low_bound = 0;
1710 high_bound = (TYPE_LENGTH (type) / element_size) - 1;
1711 }
1712 index = low_bound;
1713 memset (value_contents_raw (array), 0, TYPE_LENGTH (expect_type));
1714 for (tem = nargs; --nargs >= 0;)
1715 {
1716 struct value *element;
1717
1718 element = evaluate_subexp (element_type, exp, pos, noside);
1719 if (value_type (element) != element_type)
1720 element = value_cast (element_type, element);
1721 if (index > high_bound)
1722 /* To avoid memory corruption. */
1723 error (_("Too many array elements"));
1724 memcpy (value_contents_raw (array)
1725 + (index - low_bound) * element_size,
1726 value_contents (element),
1727 element_size);
1728 index++;
1729 }
1730 return array;
1731 }
1732
1733 if (expect_type != nullptr && noside != EVAL_SKIP
1734 && type->code () == TYPE_CODE_SET)
1735 {
1736 struct value *set = allocate_value (expect_type);
1737 gdb_byte *valaddr = value_contents_raw (set);
1738 struct type *element_type = type->index_type ();
1739 struct type *check_type = element_type;
1740 LONGEST low_bound, high_bound;
1741
1742 /* Get targettype of elementtype. */
1743 while (check_type->code () == TYPE_CODE_RANGE
1744 || check_type->code () == TYPE_CODE_TYPEDEF)
1745 check_type = TYPE_TARGET_TYPE (check_type);
1746
1747 if (!get_discrete_bounds (element_type, &low_bound, &high_bound))
1748 error (_("(power)set type with unknown size"));
1749 memset (valaddr, '\0', TYPE_LENGTH (type));
1750 for (tem = 0; tem < nargs; tem++)
1751 {
1752 LONGEST range_low, range_high;
1753 struct type *range_low_type, *range_high_type;
1754 struct value *elem_val;
1755
1756 elem_val = evaluate_subexp (element_type, exp, pos, noside);
1757 range_low_type = range_high_type = value_type (elem_val);
1758 range_low = range_high = value_as_long (elem_val);
1759
1760 /* Check types of elements to avoid mixture of elements from
1761 different types. Also check if type of element is "compatible"
1762 with element type of powerset. */
1763 if (range_low_type->code () == TYPE_CODE_RANGE)
1764 range_low_type = TYPE_TARGET_TYPE (range_low_type);
1765 if (range_high_type->code () == TYPE_CODE_RANGE)
1766 range_high_type = TYPE_TARGET_TYPE (range_high_type);
1767 if ((range_low_type->code () != range_high_type->code ())
1768 || (range_low_type->code () == TYPE_CODE_ENUM
1769 && (range_low_type != range_high_type)))
1770 /* different element modes. */
1771 error (_("POWERSET tuple elements of different mode"));
1772 if ((check_type->code () != range_low_type->code ())
1773 || (check_type->code () == TYPE_CODE_ENUM
1774 && range_low_type != check_type))
1775 error (_("incompatible POWERSET tuple elements"));
1776 if (range_low > range_high)
1777 {
1778 warning (_("empty POWERSET tuple range"));
1779 continue;
1780 }
1781 if (range_low < low_bound || range_high > high_bound)
1782 error (_("POWERSET tuple element out of range"));
1783 range_low -= low_bound;
1784 range_high -= low_bound;
1785 for (; range_low <= range_high; range_low++)
1786 {
1787 int bit_index = (unsigned) range_low % TARGET_CHAR_BIT;
1788
1789 if (gdbarch_byte_order (exp->gdbarch) == BFD_ENDIAN_BIG)
1790 bit_index = TARGET_CHAR_BIT - 1 - bit_index;
1791 valaddr[(unsigned) range_low / TARGET_CHAR_BIT]
1792 |= 1 << bit_index;
1793 }
1794 }
1795 return set;
1796 }
1797
1798 argvec = XALLOCAVEC (struct value *, nargs);
1799 for (tem = 0; tem < nargs; tem++)
1800 {
1801 /* Ensure that array expressions are coerced into pointer
1802 objects. */
1803 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1804 }
1805 if (noside == EVAL_SKIP)
1806 return eval_skip_value (exp);
1807 return value_array (tem2, tem3, argvec);
1808
1809 case TERNOP_SLICE:
1810 {
1811 struct value *array = evaluate_subexp (nullptr, exp, pos, noside);
1812 struct value *low = evaluate_subexp (nullptr, exp, pos, noside);
1813 struct value *upper = evaluate_subexp (nullptr, exp, pos, noside);
1814 return eval_op_ternop (expect_type, exp, noside, array, low, upper);
1815 }
1816
1817 case TERNOP_COND:
1818 /* Skip third and second args to evaluate the first one. */
1819 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
1820 if (value_logical_not (arg1))
1821 {
1822 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
1823 return evaluate_subexp (nullptr, exp, pos, noside);
1824 }
1825 else
1826 {
1827 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
1828 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
1829 return arg2;
1830 }
1831
1832 case OP_OBJC_SELECTOR:
1833 { /* Objective C @selector operator. */
1834 char *sel = &exp->elts[pc + 2].string;
1835 int len = longest_to_int (exp->elts[pc + 1].longconst);
1836
1837 (*pos) += 3 + BYTES_TO_EXP_ELEM (len + 1);
1838 if (sel[len] != 0)
1839 sel[len] = 0; /* Make sure it's terminated. */
1840
1841 return eval_op_objc_selector (expect_type, exp, noside, sel);
1842 }
1843
1844 case OP_OBJC_MSGCALL:
1845 { /* Objective C message (method) call. */
1846
1847 CORE_ADDR responds_selector = 0;
1848 CORE_ADDR method_selector = 0;
1849
1850 CORE_ADDR selector = 0;
1851
1852 int struct_return = 0;
1853 enum noside sub_no_side = EVAL_NORMAL;
1854
1855 struct value *msg_send = NULL;
1856 struct value *msg_send_stret = NULL;
1857 int gnu_runtime = 0;
1858
1859 struct value *target = NULL;
1860 struct value *method = NULL;
1861 struct value *called_method = NULL;
1862
1863 struct type *selector_type = NULL;
1864 struct type *long_type;
1865
1866 struct value *ret = NULL;
1867 CORE_ADDR addr = 0;
1868
1869 selector = exp->elts[pc + 1].longconst;
1870 nargs = exp->elts[pc + 2].longconst;
1871 argvec = XALLOCAVEC (struct value *, nargs + 5);
1872
1873 (*pos) += 3;
1874
1875 long_type = builtin_type (exp->gdbarch)->builtin_long;
1876 selector_type = builtin_type (exp->gdbarch)->builtin_data_ptr;
1877
1878 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1879 sub_no_side = EVAL_NORMAL;
1880 else
1881 sub_no_side = noside;
1882
1883 target = evaluate_subexp (selector_type, exp, pos, sub_no_side);
1884
1885 if (value_as_long (target) == 0)
1886 return value_from_longest (long_type, 0);
1887
1888 if (lookup_minimal_symbol ("objc_msg_lookup", 0, 0).minsym)
1889 gnu_runtime = 1;
1890
1891 /* Find the method dispatch (Apple runtime) or method lookup
1892 (GNU runtime) function for Objective-C. These will be used
1893 to lookup the symbol information for the method. If we
1894 can't find any symbol information, then we'll use these to
1895 call the method, otherwise we can call the method
1896 directly. The msg_send_stret function is used in the special
1897 case of a method that returns a structure (Apple runtime
1898 only). */
1899 if (gnu_runtime)
1900 {
1901 type = selector_type;
1902
1903 type = lookup_function_type (type);
1904 type = lookup_pointer_type (type);
1905 type = lookup_function_type (type);
1906 type = lookup_pointer_type (type);
1907
1908 msg_send = find_function_in_inferior ("objc_msg_lookup", NULL);
1909 msg_send_stret
1910 = find_function_in_inferior ("objc_msg_lookup", NULL);
1911
1912 msg_send = value_from_pointer (type, value_as_address (msg_send));
1913 msg_send_stret = value_from_pointer (type,
1914 value_as_address (msg_send_stret));
1915 }
1916 else
1917 {
1918 msg_send = find_function_in_inferior ("objc_msgSend", NULL);
1919 /* Special dispatcher for methods returning structs. */
1920 msg_send_stret
1921 = find_function_in_inferior ("objc_msgSend_stret", NULL);
1922 }
1923
1924 /* Verify the target object responds to this method. The
1925 standard top-level 'Object' class uses a different name for
1926 the verification method than the non-standard, but more
1927 often used, 'NSObject' class. Make sure we check for both. */
1928
1929 responds_selector
1930 = lookup_child_selector (exp->gdbarch, "respondsToSelector:");
1931 if (responds_selector == 0)
1932 responds_selector
1933 = lookup_child_selector (exp->gdbarch, "respondsTo:");
1934
1935 if (responds_selector == 0)
1936 error (_("no 'respondsTo:' or 'respondsToSelector:' method"));
1937
1938 method_selector
1939 = lookup_child_selector (exp->gdbarch, "methodForSelector:");
1940 if (method_selector == 0)
1941 method_selector
1942 = lookup_child_selector (exp->gdbarch, "methodFor:");
1943
1944 if (method_selector == 0)
1945 error (_("no 'methodFor:' or 'methodForSelector:' method"));
1946
1947 /* Call the verification method, to make sure that the target
1948 class implements the desired method. */
1949
1950 argvec[0] = msg_send;
1951 argvec[1] = target;
1952 argvec[2] = value_from_longest (long_type, responds_selector);
1953 argvec[3] = value_from_longest (long_type, selector);
1954 argvec[4] = 0;
1955
1956 ret = call_function_by_hand (argvec[0], NULL, {argvec + 1, 3});
1957 if (gnu_runtime)
1958 {
1959 /* Function objc_msg_lookup returns a pointer. */
1960 argvec[0] = ret;
1961 ret = call_function_by_hand (argvec[0], NULL, {argvec + 1, 3});
1962 }
1963 if (value_as_long (ret) == 0)
1964 error (_("Target does not respond to this message selector."));
1965
1966 /* Call "methodForSelector:" method, to get the address of a
1967 function method that implements this selector for this
1968 class. If we can find a symbol at that address, then we
1969 know the return type, parameter types etc. (that's a good
1970 thing). */
1971
1972 argvec[0] = msg_send;
1973 argvec[1] = target;
1974 argvec[2] = value_from_longest (long_type, method_selector);
1975 argvec[3] = value_from_longest (long_type, selector);
1976 argvec[4] = 0;
1977
1978 ret = call_function_by_hand (argvec[0], NULL, {argvec + 1, 3});
1979 if (gnu_runtime)
1980 {
1981 argvec[0] = ret;
1982 ret = call_function_by_hand (argvec[0], NULL, {argvec + 1, 3});
1983 }
1984
1985 /* ret should now be the selector. */
1986
1987 addr = value_as_long (ret);
1988 if (addr)
1989 {
1990 struct symbol *sym = NULL;
1991
1992 /* The address might point to a function descriptor;
1993 resolve it to the actual code address instead. */
1994 addr = gdbarch_convert_from_func_ptr_addr (exp->gdbarch, addr,
1995 current_top_target ());
1996
1997 /* Is it a high_level symbol? */
1998 sym = find_pc_function (addr);
1999 if (sym != NULL)
2000 method = value_of_variable (sym, 0);
2001 }
2002
2003 /* If we found a method with symbol information, check to see
2004 if it returns a struct. Otherwise assume it doesn't. */
2005
2006 if (method)
2007 {
2008 CORE_ADDR funaddr;
2009 struct type *val_type;
2010
2011 funaddr = find_function_addr (method, &val_type);
2012
2013 block_for_pc (funaddr);
2014
2015 val_type = check_typedef (val_type);
2016
2017 if ((val_type == NULL)
2018 || (val_type->code () == TYPE_CODE_ERROR))
2019 {
2020 if (expect_type != NULL)
2021 val_type = expect_type;
2022 }
2023
2024 struct_return = using_struct_return (exp->gdbarch, method,
2025 val_type);
2026 }
2027 else if (expect_type != NULL)
2028 {
2029 struct_return = using_struct_return (exp->gdbarch, NULL,
2030 check_typedef (expect_type));
2031 }
2032
2033 /* Found a function symbol. Now we will substitute its
2034 value in place of the message dispatcher (obj_msgSend),
2035 so that we call the method directly instead of thru
2036 the dispatcher. The main reason for doing this is that
2037 we can now evaluate the return value and parameter values
2038 according to their known data types, in case we need to
2039 do things like promotion, dereferencing, special handling
2040 of structs and doubles, etc.
2041
2042 We want to use the type signature of 'method', but still
2043 jump to objc_msgSend() or objc_msgSend_stret() to better
2044 mimic the behavior of the runtime. */
2045
2046 if (method)
2047 {
2048 if (value_type (method)->code () != TYPE_CODE_FUNC)
2049 error (_("method address has symbol information "
2050 "with non-function type; skipping"));
2051
2052 /* Create a function pointer of the appropriate type, and
2053 replace its value with the value of msg_send or
2054 msg_send_stret. We must use a pointer here, as
2055 msg_send and msg_send_stret are of pointer type, and
2056 the representation may be different on systems that use
2057 function descriptors. */
2058 if (struct_return)
2059 called_method
2060 = value_from_pointer (lookup_pointer_type (value_type (method)),
2061 value_as_address (msg_send_stret));
2062 else
2063 called_method
2064 = value_from_pointer (lookup_pointer_type (value_type (method)),
2065 value_as_address (msg_send));
2066 }
2067 else
2068 {
2069 if (struct_return)
2070 called_method = msg_send_stret;
2071 else
2072 called_method = msg_send;
2073 }
2074
2075 if (noside == EVAL_SKIP)
2076 return eval_skip_value (exp);
2077
2078 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2079 {
2080 /* If the return type doesn't look like a function type,
2081 call an error. This can happen if somebody tries to
2082 turn a variable into a function call. This is here
2083 because people often want to call, eg, strcmp, which
2084 gdb doesn't know is a function. If gdb isn't asked for
2085 it's opinion (ie. through "whatis"), it won't offer
2086 it. */
2087
2088 struct type *callee_type = value_type (called_method);
2089
2090 if (callee_type && callee_type->code () == TYPE_CODE_PTR)
2091 callee_type = TYPE_TARGET_TYPE (callee_type);
2092 callee_type = TYPE_TARGET_TYPE (callee_type);
2093
2094 if (callee_type)
2095 {
2096 if ((callee_type->code () == TYPE_CODE_ERROR) && expect_type)
2097 return allocate_value (expect_type);
2098 else
2099 return allocate_value (callee_type);
2100 }
2101 else
2102 error (_("Expression of type other than "
2103 "\"method returning ...\" used as a method"));
2104 }
2105
2106 /* Now depending on whether we found a symbol for the method,
2107 we will either call the runtime dispatcher or the method
2108 directly. */
2109
2110 argvec[0] = called_method;
2111 argvec[1] = target;
2112 argvec[2] = value_from_longest (long_type, selector);
2113 /* User-supplied arguments. */
2114 for (tem = 0; tem < nargs; tem++)
2115 argvec[tem + 3] = evaluate_subexp_with_coercion (exp, pos, noside);
2116 argvec[tem + 3] = 0;
2117
2118 auto call_args = gdb::make_array_view (argvec + 1, nargs + 2);
2119
2120 if (gnu_runtime && (method != NULL))
2121 {
2122 /* Function objc_msg_lookup returns a pointer. */
2123 deprecated_set_value_type (argvec[0],
2124 lookup_pointer_type (lookup_function_type (value_type (argvec[0]))));
2125 argvec[0] = call_function_by_hand (argvec[0], NULL, call_args);
2126 }
2127
2128 return call_function_by_hand (argvec[0], NULL, call_args);
2129 }
2130 break;
2131
2132 case OP_FUNCALL:
2133 return evaluate_funcall (expect_type, exp, pos, noside);
2134
2135 case OP_COMPLEX:
2136 /* We have a complex number, There should be 2 floating
2137 point numbers that compose it. */
2138 (*pos) += 2;
2139 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2140 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
2141
2142 return value_literal_complex (arg1, arg2, exp->elts[pc + 1].type);
2143
2144 case STRUCTOP_STRUCT:
2145 tem = longest_to_int (exp->elts[pc + 1].longconst);
2146 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
2147 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2148 return eval_op_structop_struct (expect_type, exp, noside, arg1,
2149 &exp->elts[pc + 2].string);
2150
2151 case STRUCTOP_PTR:
2152 tem = longest_to_int (exp->elts[pc + 1].longconst);
2153 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
2154 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2155 return eval_op_structop_ptr (expect_type, exp, noside, op, arg1,
2156 &exp->elts[pc + 2].string);
2157
2158 case STRUCTOP_MEMBER:
2159 case STRUCTOP_MPTR:
2160 if (op == STRUCTOP_MEMBER)
2161 arg1 = evaluate_subexp_for_address (exp, pos, noside);
2162 else
2163 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2164
2165 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
2166
2167 return eval_op_member (expect_type, exp, noside, arg1, arg2);
2168
2169 case TYPE_INSTANCE:
2170 {
2171 type_instance_flags flags
2172 = (type_instance_flag_value) longest_to_int (exp->elts[pc + 1].longconst);
2173 nargs = longest_to_int (exp->elts[pc + 2].longconst);
2174 arg_types = (struct type **) alloca (nargs * sizeof (struct type *));
2175 for (ix = 0; ix < nargs; ++ix)
2176 arg_types[ix] = exp->elts[pc + 2 + ix + 1].type;
2177
2178 fake_method fake_expect_type (flags, nargs, arg_types);
2179 *(pos) += 4 + nargs;
2180 return evaluate_subexp_standard (fake_expect_type.type (), exp, pos,
2181 noside);
2182 }
2183
2184 case BINOP_CONCAT:
2185 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2186 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2187 return eval_op_concat (expect_type, exp, noside, op, arg1, arg2);
2188
2189 case BINOP_ASSIGN:
2190 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2191 /* Special-case assignments where the left-hand-side is a
2192 convenience variable -- in these, don't bother setting an
2193 expected type. This avoids a weird case where re-assigning a
2194 string or array to an internal variable could error with "Too
2195 many array elements". */
2196 arg2 = evaluate_subexp (VALUE_LVAL (arg1) == lval_internalvar
2197 ? nullptr
2198 : value_type (arg1),
2199 exp, pos, noside);
2200
2201 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2202 return arg1;
2203 if (binop_user_defined_p (op, arg1, arg2))
2204 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2205 else
2206 return value_assign (arg1, arg2);
2207
2208 case BINOP_ASSIGN_MODIFY:
2209 (*pos) += 2;
2210 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2211 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2212 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2213 return arg1;
2214 op = exp->elts[pc + 1].opcode;
2215 if (binop_user_defined_p (op, arg1, arg2))
2216 return value_x_binop (arg1, arg2, BINOP_ASSIGN_MODIFY, op, noside);
2217 else if (op == BINOP_ADD && ptrmath_type_p (exp->language_defn,
2218 value_type (arg1))
2219 && is_integral_type (value_type (arg2)))
2220 arg2 = value_ptradd (arg1, value_as_long (arg2));
2221 else if (op == BINOP_SUB && ptrmath_type_p (exp->language_defn,
2222 value_type (arg1))
2223 && is_integral_type (value_type (arg2)))
2224 arg2 = value_ptradd (arg1, - value_as_long (arg2));
2225 else
2226 {
2227 struct value *tmp = arg1;
2228
2229 /* For shift and integer exponentiation operations,
2230 only promote the first argument. */
2231 if ((op == BINOP_LSH || op == BINOP_RSH || op == BINOP_EXP)
2232 && is_integral_type (value_type (arg2)))
2233 unop_promote (exp->language_defn, exp->gdbarch, &tmp);
2234 else
2235 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2236
2237 arg2 = value_binop (tmp, arg2, op);
2238 }
2239 return value_assign (arg1, arg2);
2240
2241 case BINOP_ADD:
2242 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2243 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2244 return eval_op_add (expect_type, exp, noside, op, arg1, arg2);
2245
2246 case BINOP_SUB:
2247 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2248 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2249 return eval_op_sub (expect_type, exp, noside, op, arg1, arg2);
2250
2251 case BINOP_EXP:
2252 case BINOP_MUL:
2253 case BINOP_DIV:
2254 case BINOP_INTDIV:
2255 case BINOP_REM:
2256 case BINOP_MOD:
2257 case BINOP_LSH:
2258 case BINOP_RSH:
2259 case BINOP_BITWISE_AND:
2260 case BINOP_BITWISE_IOR:
2261 case BINOP_BITWISE_XOR:
2262 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2263 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
2264 return eval_op_binary (expect_type, exp, noside, op, arg1, arg2);
2265
2266 case BINOP_SUBSCRIPT:
2267 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2268 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
2269 if (noside == EVAL_SKIP)
2270 return eval_skip_value (exp);
2271 if (binop_user_defined_p (op, arg1, arg2))
2272 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2273 else
2274 {
2275 /* If the user attempts to subscript something that is not an
2276 array or pointer type (like a plain int variable for example),
2277 then report this as an error. */
2278
2279 arg1 = coerce_ref (arg1);
2280 type = check_typedef (value_type (arg1));
2281 if (type->code () != TYPE_CODE_ARRAY
2282 && type->code () != TYPE_CODE_PTR)
2283 {
2284 if (type->name ())
2285 error (_("cannot subscript something of type `%s'"),
2286 type->name ());
2287 else
2288 error (_("cannot subscript requested type"));
2289 }
2290
2291 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2292 return value_zero (TYPE_TARGET_TYPE (type), VALUE_LVAL (arg1));
2293 else
2294 return value_subscript (arg1, value_as_long (arg2));
2295 }
2296 case MULTI_SUBSCRIPT:
2297 (*pos) += 2;
2298 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2299 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2300 argvec = XALLOCAVEC (struct value *, nargs);
2301 for (ix = 0; ix < nargs; ++ix)
2302 argvec[ix] = evaluate_subexp_with_coercion (exp, pos, noside);
2303 if (noside == EVAL_SKIP)
2304 return arg1;
2305 for (ix = 0; ix < nargs; ++ix)
2306 {
2307 arg2 = argvec[ix];
2308
2309 if (binop_user_defined_p (op, arg1, arg2))
2310 {
2311 arg1 = value_x_binop (arg1, arg2, op, OP_NULL, noside);
2312 }
2313 else
2314 {
2315 arg1 = coerce_ref (arg1);
2316 type = check_typedef (value_type (arg1));
2317
2318 switch (type->code ())
2319 {
2320 case TYPE_CODE_PTR:
2321 case TYPE_CODE_ARRAY:
2322 case TYPE_CODE_STRING:
2323 arg1 = value_subscript (arg1, value_as_long (arg2));
2324 break;
2325
2326 default:
2327 if (type->name ())
2328 error (_("cannot subscript something of type `%s'"),
2329 type->name ());
2330 else
2331 error (_("cannot subscript requested type"));
2332 }
2333 }
2334 }
2335 return (arg1);
2336
2337 case BINOP_LOGICAL_AND:
2338 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2339 if (noside == EVAL_SKIP)
2340 {
2341 evaluate_subexp (nullptr, exp, pos, noside);
2342 return eval_skip_value (exp);
2343 }
2344
2345 oldpos = *pos;
2346 arg2 = evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2347 *pos = oldpos;
2348
2349 if (binop_user_defined_p (op, arg1, arg2))
2350 {
2351 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
2352 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2353 }
2354 else
2355 {
2356 tem = value_logical_not (arg1);
2357 arg2
2358 = evaluate_subexp (nullptr, exp, pos, (tem ? EVAL_SKIP : noside));
2359 type = language_bool_type (exp->language_defn, exp->gdbarch);
2360 return value_from_longest (type,
2361 (LONGEST) (!tem && !value_logical_not (arg2)));
2362 }
2363
2364 case BINOP_LOGICAL_OR:
2365 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2366 if (noside == EVAL_SKIP)
2367 {
2368 evaluate_subexp (nullptr, exp, pos, noside);
2369 return eval_skip_value (exp);
2370 }
2371
2372 oldpos = *pos;
2373 arg2 = evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2374 *pos = oldpos;
2375
2376 if (binop_user_defined_p (op, arg1, arg2))
2377 {
2378 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
2379 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2380 }
2381 else
2382 {
2383 tem = value_logical_not (arg1);
2384 arg2
2385 = evaluate_subexp (nullptr, exp, pos, (!tem ? EVAL_SKIP : noside));
2386 type = language_bool_type (exp->language_defn, exp->gdbarch);
2387 return value_from_longest (type,
2388 (LONGEST) (!tem || !value_logical_not (arg2)));
2389 }
2390
2391 case BINOP_EQUAL:
2392 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2393 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2394 if (noside == EVAL_SKIP)
2395 return eval_skip_value (exp);
2396 if (binop_user_defined_p (op, arg1, arg2))
2397 {
2398 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2399 }
2400 else
2401 {
2402 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2403 tem = value_equal (arg1, arg2);
2404 type = language_bool_type (exp->language_defn, exp->gdbarch);
2405 return value_from_longest (type, (LONGEST) tem);
2406 }
2407
2408 case BINOP_NOTEQUAL:
2409 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2410 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2411 if (noside == EVAL_SKIP)
2412 return eval_skip_value (exp);
2413 if (binop_user_defined_p (op, arg1, arg2))
2414 {
2415 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2416 }
2417 else
2418 {
2419 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2420 tem = value_equal (arg1, arg2);
2421 type = language_bool_type (exp->language_defn, exp->gdbarch);
2422 return value_from_longest (type, (LONGEST) ! tem);
2423 }
2424
2425 case BINOP_LESS:
2426 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2427 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2428 if (noside == EVAL_SKIP)
2429 return eval_skip_value (exp);
2430 if (binop_user_defined_p (op, arg1, arg2))
2431 {
2432 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2433 }
2434 else
2435 {
2436 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2437 tem = value_less (arg1, arg2);
2438 type = language_bool_type (exp->language_defn, exp->gdbarch);
2439 return value_from_longest (type, (LONGEST) tem);
2440 }
2441
2442 case BINOP_GTR:
2443 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2444 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2445 if (noside == EVAL_SKIP)
2446 return eval_skip_value (exp);
2447 if (binop_user_defined_p (op, arg1, arg2))
2448 {
2449 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2450 }
2451 else
2452 {
2453 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2454 tem = value_less (arg2, arg1);
2455 type = language_bool_type (exp->language_defn, exp->gdbarch);
2456 return value_from_longest (type, (LONGEST) tem);
2457 }
2458
2459 case BINOP_GEQ:
2460 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2461 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2462 if (noside == EVAL_SKIP)
2463 return eval_skip_value (exp);
2464 if (binop_user_defined_p (op, arg1, arg2))
2465 {
2466 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2467 }
2468 else
2469 {
2470 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2471 tem = value_less (arg2, arg1) || value_equal (arg1, arg2);
2472 type = language_bool_type (exp->language_defn, exp->gdbarch);
2473 return value_from_longest (type, (LONGEST) tem);
2474 }
2475
2476 case BINOP_LEQ:
2477 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2478 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2479 if (noside == EVAL_SKIP)
2480 return eval_skip_value (exp);
2481 if (binop_user_defined_p (op, arg1, arg2))
2482 {
2483 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2484 }
2485 else
2486 {
2487 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2488 tem = value_less (arg1, arg2) || value_equal (arg1, arg2);
2489 type = language_bool_type (exp->language_defn, exp->gdbarch);
2490 return value_from_longest (type, (LONGEST) tem);
2491 }
2492
2493 case BINOP_REPEAT:
2494 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2495 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
2496 if (noside == EVAL_SKIP)
2497 return eval_skip_value (exp);
2498 type = check_typedef (value_type (arg2));
2499 if (type->code () != TYPE_CODE_INT
2500 && type->code () != TYPE_CODE_ENUM)
2501 error (_("Non-integral right operand for \"@\" operator."));
2502 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2503 {
2504 return allocate_repeat_value (value_type (arg1),
2505 longest_to_int (value_as_long (arg2)));
2506 }
2507 else
2508 return value_repeat (arg1, longest_to_int (value_as_long (arg2)));
2509
2510 case BINOP_COMMA:
2511 evaluate_subexp (nullptr, exp, pos, noside);
2512 return evaluate_subexp (nullptr, exp, pos, noside);
2513
2514 case UNOP_PLUS:
2515 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2516 if (noside == EVAL_SKIP)
2517 return eval_skip_value (exp);
2518 if (unop_user_defined_p (op, arg1))
2519 return value_x_unop (arg1, op, noside);
2520 else
2521 {
2522 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2523 return value_pos (arg1);
2524 }
2525
2526 case UNOP_NEG:
2527 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2528 if (noside == EVAL_SKIP)
2529 return eval_skip_value (exp);
2530 if (unop_user_defined_p (op, arg1))
2531 return value_x_unop (arg1, op, noside);
2532 else
2533 {
2534 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2535 return value_neg (arg1);
2536 }
2537
2538 case UNOP_COMPLEMENT:
2539 /* C++: check for and handle destructor names. */
2540
2541 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2542 if (noside == EVAL_SKIP)
2543 return eval_skip_value (exp);
2544 if (unop_user_defined_p (UNOP_COMPLEMENT, arg1))
2545 return value_x_unop (arg1, UNOP_COMPLEMENT, noside);
2546 else
2547 {
2548 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2549 return value_complement (arg1);
2550 }
2551
2552 case UNOP_LOGICAL_NOT:
2553 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2554 if (noside == EVAL_SKIP)
2555 return eval_skip_value (exp);
2556 if (unop_user_defined_p (op, arg1))
2557 return value_x_unop (arg1, op, noside);
2558 else
2559 {
2560 type = language_bool_type (exp->language_defn, exp->gdbarch);
2561 return value_from_longest (type, (LONGEST) value_logical_not (arg1));
2562 }
2563
2564 case UNOP_IND:
2565 if (expect_type && expect_type->code () == TYPE_CODE_PTR)
2566 expect_type = TYPE_TARGET_TYPE (check_typedef (expect_type));
2567 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2568 type = check_typedef (value_type (arg1));
2569 if (type->code () == TYPE_CODE_METHODPTR
2570 || type->code () == TYPE_CODE_MEMBERPTR)
2571 error (_("Attempt to dereference pointer "
2572 "to member without an object"));
2573 if (noside == EVAL_SKIP)
2574 return eval_skip_value (exp);
2575 if (unop_user_defined_p (op, arg1))
2576 return value_x_unop (arg1, op, noside);
2577 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2578 {
2579 type = check_typedef (value_type (arg1));
2580
2581 /* If the type pointed to is dynamic then in order to resolve the
2582 dynamic properties we must actually dereference the pointer.
2583 There is a risk that this dereference will have side-effects
2584 in the inferior, but being able to print accurate type
2585 information seems worth the risk. */
2586 if ((type->code () != TYPE_CODE_PTR
2587 && !TYPE_IS_REFERENCE (type))
2588 || !is_dynamic_type (TYPE_TARGET_TYPE (type)))
2589 {
2590 if (type->code () == TYPE_CODE_PTR
2591 || TYPE_IS_REFERENCE (type)
2592 /* In C you can dereference an array to get the 1st elt. */
2593 || type->code () == TYPE_CODE_ARRAY)
2594 return value_zero (TYPE_TARGET_TYPE (type),
2595 lval_memory);
2596 else if (type->code () == TYPE_CODE_INT)
2597 /* GDB allows dereferencing an int. */
2598 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
2599 lval_memory);
2600 else
2601 error (_("Attempt to take contents of a non-pointer value."));
2602 }
2603 }
2604
2605 /* Allow * on an integer so we can cast it to whatever we want.
2606 This returns an int, which seems like the most C-like thing to
2607 do. "long long" variables are rare enough that
2608 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
2609 if (type->code () == TYPE_CODE_INT)
2610 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
2611 (CORE_ADDR) value_as_address (arg1));
2612 return value_ind (arg1);
2613
2614 case UNOP_ADDR:
2615 /* C++: check for and handle pointer to members. */
2616
2617 if (noside == EVAL_SKIP)
2618 {
2619 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
2620 return eval_skip_value (exp);
2621 }
2622 else
2623 return evaluate_subexp_for_address (exp, pos, noside);
2624
2625 case UNOP_SIZEOF:
2626 if (noside == EVAL_SKIP)
2627 {
2628 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
2629 return eval_skip_value (exp);
2630 }
2631 return evaluate_subexp_for_sizeof (exp, pos, noside);
2632
2633 case UNOP_ALIGNOF:
2634 {
2635 type = value_type (
2636 evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS));
2637 /* FIXME: This should be size_t. */
2638 struct type *size_type = builtin_type (exp->gdbarch)->builtin_int;
2639 ULONGEST align = type_align (type);
2640 if (align == 0)
2641 error (_("could not determine alignment of type"));
2642 return value_from_longest (size_type, align);
2643 }
2644
2645 case UNOP_CAST:
2646 (*pos) += 2;
2647 type = exp->elts[pc + 1].type;
2648 return evaluate_subexp_for_cast (exp, pos, noside, type);
2649
2650 case UNOP_CAST_TYPE:
2651 arg1 = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2652 type = value_type (arg1);
2653 return evaluate_subexp_for_cast (exp, pos, noside, type);
2654
2655 case UNOP_DYNAMIC_CAST:
2656 arg1 = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2657 type = value_type (arg1);
2658 arg1 = evaluate_subexp (type, exp, pos, noside);
2659 if (noside == EVAL_SKIP)
2660 return eval_skip_value (exp);
2661 return value_dynamic_cast (type, arg1);
2662
2663 case UNOP_REINTERPRET_CAST:
2664 arg1 = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2665 type = value_type (arg1);
2666 arg1 = evaluate_subexp (type, exp, pos, noside);
2667 if (noside == EVAL_SKIP)
2668 return eval_skip_value (exp);
2669 return value_reinterpret_cast (type, arg1);
2670
2671 case UNOP_MEMVAL:
2672 (*pos) += 2;
2673 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2674 if (noside == EVAL_SKIP)
2675 return eval_skip_value (exp);
2676 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2677 return value_zero (exp->elts[pc + 1].type, lval_memory);
2678 else
2679 return value_at_lazy (exp->elts[pc + 1].type,
2680 value_as_address (arg1));
2681
2682 case UNOP_MEMVAL_TYPE:
2683 arg1 = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2684 type = value_type (arg1);
2685 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2686 if (noside == EVAL_SKIP)
2687 return eval_skip_value (exp);
2688 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2689 return value_zero (type, lval_memory);
2690 else
2691 return value_at_lazy (type, value_as_address (arg1));
2692
2693 case UNOP_PREINCREMENT:
2694 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2695 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2696 return arg1;
2697 else if (unop_user_defined_p (op, arg1))
2698 {
2699 return value_x_unop (arg1, op, noside);
2700 }
2701 else
2702 {
2703 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2704 arg2 = value_ptradd (arg1, 1);
2705 else
2706 {
2707 struct value *tmp = arg1;
2708
2709 arg2 = value_one (value_type (arg1));
2710 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2711 arg2 = value_binop (tmp, arg2, BINOP_ADD);
2712 }
2713
2714 return value_assign (arg1, arg2);
2715 }
2716
2717 case UNOP_PREDECREMENT:
2718 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2719 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2720 return arg1;
2721 else if (unop_user_defined_p (op, arg1))
2722 {
2723 return value_x_unop (arg1, op, noside);
2724 }
2725 else
2726 {
2727 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2728 arg2 = value_ptradd (arg1, -1);
2729 else
2730 {
2731 struct value *tmp = arg1;
2732
2733 arg2 = value_one (value_type (arg1));
2734 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2735 arg2 = value_binop (tmp, arg2, BINOP_SUB);
2736 }
2737
2738 return value_assign (arg1, arg2);
2739 }
2740
2741 case UNOP_POSTINCREMENT:
2742 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2743 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2744 return arg1;
2745 else if (unop_user_defined_p (op, arg1))
2746 {
2747 return value_x_unop (arg1, op, noside);
2748 }
2749 else
2750 {
2751 arg3 = value_non_lval (arg1);
2752
2753 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2754 arg2 = value_ptradd (arg1, 1);
2755 else
2756 {
2757 struct value *tmp = arg1;
2758
2759 arg2 = value_one (value_type (arg1));
2760 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2761 arg2 = value_binop (tmp, arg2, BINOP_ADD);
2762 }
2763
2764 value_assign (arg1, arg2);
2765 return arg3;
2766 }
2767
2768 case UNOP_POSTDECREMENT:
2769 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2770 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2771 return arg1;
2772 else if (unop_user_defined_p (op, arg1))
2773 {
2774 return value_x_unop (arg1, op, noside);
2775 }
2776 else
2777 {
2778 arg3 = value_non_lval (arg1);
2779
2780 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2781 arg2 = value_ptradd (arg1, -1);
2782 else
2783 {
2784 struct value *tmp = arg1;
2785
2786 arg2 = value_one (value_type (arg1));
2787 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2788 arg2 = value_binop (tmp, arg2, BINOP_SUB);
2789 }
2790
2791 value_assign (arg1, arg2);
2792 return arg3;
2793 }
2794
2795 case OP_THIS:
2796 (*pos) += 1;
2797 return value_of_this (exp->language_defn);
2798
2799 case OP_TYPE:
2800 /* The value is not supposed to be used. This is here to make it
2801 easier to accommodate expressions that contain types. */
2802 (*pos) += 2;
2803 if (noside == EVAL_SKIP)
2804 return eval_skip_value (exp);
2805 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2806 return allocate_value (exp->elts[pc + 1].type);
2807 else
2808 error (_("Attempt to use a type name as an expression"));
2809
2810 case OP_TYPEOF:
2811 case OP_DECLTYPE:
2812 if (noside == EVAL_SKIP)
2813 {
2814 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
2815 return eval_skip_value (exp);
2816 }
2817 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2818 {
2819 enum exp_opcode sub_op = exp->elts[*pos].opcode;
2820 struct value *result;
2821
2822 result = evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2823
2824 /* 'decltype' has special semantics for lvalues. */
2825 if (op == OP_DECLTYPE
2826 && (sub_op == BINOP_SUBSCRIPT
2827 || sub_op == STRUCTOP_MEMBER
2828 || sub_op == STRUCTOP_MPTR
2829 || sub_op == UNOP_IND
2830 || sub_op == STRUCTOP_STRUCT
2831 || sub_op == STRUCTOP_PTR
2832 || sub_op == OP_SCOPE))
2833 {
2834 type = value_type (result);
2835
2836 if (!TYPE_IS_REFERENCE (type))
2837 {
2838 type = lookup_lvalue_reference_type (type);
2839 result = allocate_value (type);
2840 }
2841 }
2842
2843 return result;
2844 }
2845 else
2846 error (_("Attempt to use a type as an expression"));
2847
2848 case OP_TYPEID:
2849 {
2850 struct value *result;
2851 enum exp_opcode sub_op = exp->elts[*pos].opcode;
2852
2853 if (sub_op == OP_TYPE || sub_op == OP_DECLTYPE || sub_op == OP_TYPEOF)
2854 result = evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2855 else
2856 result = evaluate_subexp (nullptr, exp, pos, noside);
2857
2858 if (noside != EVAL_NORMAL)
2859 return allocate_value (cplus_typeid_type (exp->gdbarch));
2860
2861 return cplus_typeid (result);
2862 }
2863
2864 default:
2865 /* Removing this case and compiling with gcc -Wall reveals that
2866 a lot of cases are hitting this case. Some of these should
2867 probably be removed from expression.h; others are legitimate
2868 expressions which are (apparently) not fully implemented.
2869
2870 If there are any cases landing here which mean a user error,
2871 then they should be separate cases, with more descriptive
2872 error messages. */
2873
2874 error (_("GDB does not (yet) know how to "
2875 "evaluate that kind of expression"));
2876 }
2877
2878 gdb_assert_not_reached ("missed return?");
2879 }
2880 \f
2881 /* Evaluate a subexpression of EXP, at index *POS,
2882 and return the address of that subexpression.
2883 Advance *POS over the subexpression.
2884 If the subexpression isn't an lvalue, get an error.
2885 NOSIDE may be EVAL_AVOID_SIDE_EFFECTS;
2886 then only the type of the result need be correct. */
2887
2888 static struct value *
2889 evaluate_subexp_for_address (struct expression *exp, int *pos,
2890 enum noside noside)
2891 {
2892 enum exp_opcode op;
2893 int pc;
2894 struct symbol *var;
2895 struct value *x;
2896 int tem;
2897
2898 pc = (*pos);
2899 op = exp->elts[pc].opcode;
2900
2901 switch (op)
2902 {
2903 case UNOP_IND:
2904 (*pos)++;
2905 x = evaluate_subexp (nullptr, exp, pos, noside);
2906
2907 /* We can't optimize out "&*" if there's a user-defined operator*. */
2908 if (unop_user_defined_p (op, x))
2909 {
2910 x = value_x_unop (x, op, noside);
2911 goto default_case_after_eval;
2912 }
2913
2914 return coerce_array (x);
2915
2916 case UNOP_MEMVAL:
2917 (*pos) += 3;
2918 return value_cast (lookup_pointer_type (exp->elts[pc + 1].type),
2919 evaluate_subexp (nullptr, exp, pos, noside));
2920
2921 case UNOP_MEMVAL_TYPE:
2922 {
2923 struct type *type;
2924
2925 (*pos) += 1;
2926 x = evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2927 type = value_type (x);
2928 return value_cast (lookup_pointer_type (type),
2929 evaluate_subexp (nullptr, exp, pos, noside));
2930 }
2931
2932 case OP_VAR_VALUE:
2933 var = exp->elts[pc + 2].symbol;
2934
2935 /* C++: The "address" of a reference should yield the address
2936 * of the object pointed to. Let value_addr() deal with it. */
2937 if (TYPE_IS_REFERENCE (SYMBOL_TYPE (var)))
2938 goto default_case;
2939
2940 (*pos) += 4;
2941 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2942 {
2943 struct type *type =
2944 lookup_pointer_type (SYMBOL_TYPE (var));
2945 enum address_class sym_class = SYMBOL_CLASS (var);
2946
2947 if (sym_class == LOC_CONST
2948 || sym_class == LOC_CONST_BYTES
2949 || sym_class == LOC_REGISTER)
2950 error (_("Attempt to take address of register or constant."));
2951
2952 return
2953 value_zero (type, not_lval);
2954 }
2955 else
2956 return address_of_variable (var, exp->elts[pc + 1].block);
2957
2958 case OP_VAR_MSYM_VALUE:
2959 {
2960 (*pos) += 4;
2961
2962 value *val = evaluate_var_msym_value (noside,
2963 exp->elts[pc + 1].objfile,
2964 exp->elts[pc + 2].msymbol);
2965 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2966 {
2967 struct type *type = lookup_pointer_type (value_type (val));
2968 return value_zero (type, not_lval);
2969 }
2970 else
2971 return value_addr (val);
2972 }
2973
2974 case OP_SCOPE:
2975 tem = longest_to_int (exp->elts[pc + 2].longconst);
2976 (*pos) += 5 + BYTES_TO_EXP_ELEM (tem + 1);
2977 x = value_aggregate_elt (exp->elts[pc + 1].type,
2978 &exp->elts[pc + 3].string,
2979 NULL, 1, noside);
2980 if (x == NULL)
2981 error (_("There is no field named %s"), &exp->elts[pc + 3].string);
2982 return x;
2983
2984 default:
2985 default_case:
2986 x = evaluate_subexp (nullptr, exp, pos, noside);
2987 default_case_after_eval:
2988 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2989 {
2990 struct type *type = check_typedef (value_type (x));
2991
2992 if (TYPE_IS_REFERENCE (type))
2993 return value_zero (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2994 not_lval);
2995 else if (VALUE_LVAL (x) == lval_memory || value_must_coerce_to_target (x))
2996 return value_zero (lookup_pointer_type (value_type (x)),
2997 not_lval);
2998 else
2999 error (_("Attempt to take address of "
3000 "value not located in memory."));
3001 }
3002 return value_addr (x);
3003 }
3004 }
3005
3006 /* Evaluate like `evaluate_subexp' except coercing arrays to pointers.
3007 When used in contexts where arrays will be coerced anyway, this is
3008 equivalent to `evaluate_subexp' but much faster because it avoids
3009 actually fetching array contents (perhaps obsolete now that we have
3010 value_lazy()).
3011
3012 Note that we currently only do the coercion for C expressions, where
3013 arrays are zero based and the coercion is correct. For other languages,
3014 with nonzero based arrays, coercion loses. Use CAST_IS_CONVERSION
3015 to decide if coercion is appropriate. */
3016
3017 struct value *
3018 evaluate_subexp_with_coercion (struct expression *exp,
3019 int *pos, enum noside noside)
3020 {
3021 enum exp_opcode op;
3022 int pc;
3023 struct value *val;
3024 struct symbol *var;
3025 struct type *type;
3026
3027 pc = (*pos);
3028 op = exp->elts[pc].opcode;
3029
3030 switch (op)
3031 {
3032 case OP_VAR_VALUE:
3033 var = exp->elts[pc + 2].symbol;
3034 type = check_typedef (SYMBOL_TYPE (var));
3035 if (type->code () == TYPE_CODE_ARRAY
3036 && !type->is_vector ()
3037 && CAST_IS_CONVERSION (exp->language_defn))
3038 {
3039 (*pos) += 4;
3040 val = address_of_variable (var, exp->elts[pc + 1].block);
3041 return value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
3042 val);
3043 }
3044 /* FALLTHROUGH */
3045
3046 default:
3047 return evaluate_subexp (nullptr, exp, pos, noside);
3048 }
3049 }
3050
3051 /* Evaluate a subexpression of EXP, at index *POS,
3052 and return a value for the size of that subexpression.
3053 Advance *POS over the subexpression. If NOSIDE is EVAL_NORMAL
3054 we allow side-effects on the operand if its type is a variable
3055 length array. */
3056
3057 static struct value *
3058 evaluate_subexp_for_sizeof (struct expression *exp, int *pos,
3059 enum noside noside)
3060 {
3061 /* FIXME: This should be size_t. */
3062 struct type *size_type = builtin_type (exp->gdbarch)->builtin_int;
3063 enum exp_opcode op;
3064 int pc;
3065 struct type *type;
3066 struct value *val;
3067
3068 pc = (*pos);
3069 op = exp->elts[pc].opcode;
3070
3071 switch (op)
3072 {
3073 /* This case is handled specially
3074 so that we avoid creating a value for the result type.
3075 If the result type is very big, it's desirable not to
3076 create a value unnecessarily. */
3077 case UNOP_IND:
3078 (*pos)++;
3079 val = evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3080 type = check_typedef (value_type (val));
3081 if (type->code () != TYPE_CODE_PTR
3082 && !TYPE_IS_REFERENCE (type)
3083 && type->code () != TYPE_CODE_ARRAY)
3084 error (_("Attempt to take contents of a non-pointer value."));
3085 type = TYPE_TARGET_TYPE (type);
3086 if (is_dynamic_type (type))
3087 type = value_type (value_ind (val));
3088 return value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
3089
3090 case UNOP_MEMVAL:
3091 (*pos) += 3;
3092 type = exp->elts[pc + 1].type;
3093 break;
3094
3095 case UNOP_MEMVAL_TYPE:
3096 (*pos) += 1;
3097 val = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3098 type = value_type (val);
3099 break;
3100
3101 case OP_VAR_VALUE:
3102 type = SYMBOL_TYPE (exp->elts[pc + 2].symbol);
3103 if (is_dynamic_type (type))
3104 {
3105 val = evaluate_subexp (nullptr, exp, pos, EVAL_NORMAL);
3106 type = value_type (val);
3107 if (type->code () == TYPE_CODE_ARRAY)
3108 {
3109 if (type_not_allocated (type) || type_not_associated (type))
3110 return value_zero (size_type, not_lval);
3111 else if (is_dynamic_type (type->index_type ())
3112 && type->bounds ()->high.kind () == PROP_UNDEFINED)
3113 return allocate_optimized_out_value (size_type);
3114 }
3115 }
3116 else
3117 (*pos) += 4;
3118 break;
3119
3120 case OP_VAR_MSYM_VALUE:
3121 {
3122 (*pos) += 4;
3123
3124 minimal_symbol *msymbol = exp->elts[pc + 2].msymbol;
3125 value *mval = evaluate_var_msym_value (noside,
3126 exp->elts[pc + 1].objfile,
3127 msymbol);
3128
3129 type = value_type (mval);
3130 if (type->code () == TYPE_CODE_ERROR)
3131 error_unknown_type (msymbol->print_name ());
3132
3133 return value_from_longest (size_type, TYPE_LENGTH (type));
3134 }
3135 break;
3136
3137 /* Deal with the special case if NOSIDE is EVAL_NORMAL and the resulting
3138 type of the subscript is a variable length array type. In this case we
3139 must re-evaluate the right hand side of the subscription to allow
3140 side-effects. */
3141 case BINOP_SUBSCRIPT:
3142 if (noside == EVAL_NORMAL)
3143 {
3144 int npc = (*pos) + 1;
3145
3146 val = evaluate_subexp (nullptr, exp, &npc, EVAL_AVOID_SIDE_EFFECTS);
3147 type = check_typedef (value_type (val));
3148 if (type->code () == TYPE_CODE_ARRAY)
3149 {
3150 type = check_typedef (TYPE_TARGET_TYPE (type));
3151 if (type->code () == TYPE_CODE_ARRAY)
3152 {
3153 type = type->index_type ();
3154 /* Only re-evaluate the right hand side if the resulting type
3155 is a variable length type. */
3156 if (type->bounds ()->flag_bound_evaluated)
3157 {
3158 val = evaluate_subexp (nullptr, exp, pos, EVAL_NORMAL);
3159 return value_from_longest
3160 (size_type, (LONGEST) TYPE_LENGTH (value_type (val)));
3161 }
3162 }
3163 }
3164 }
3165
3166 /* Fall through. */
3167
3168 default:
3169 val = evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3170 type = value_type (val);
3171 break;
3172 }
3173
3174 /* $5.3.3/2 of the C++ Standard (n3290 draft) says of sizeof:
3175 "When applied to a reference or a reference type, the result is
3176 the size of the referenced type." */
3177 type = check_typedef (type);
3178 if (exp->language_defn->la_language == language_cplus
3179 && (TYPE_IS_REFERENCE (type)))
3180 type = check_typedef (TYPE_TARGET_TYPE (type));
3181 return value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
3182 }
3183
3184 /* Evaluate a subexpression of EXP, at index *POS, and return a value
3185 for that subexpression cast to TO_TYPE. Advance *POS over the
3186 subexpression. */
3187
3188 static value *
3189 evaluate_subexp_for_cast (expression *exp, int *pos,
3190 enum noside noside,
3191 struct type *to_type)
3192 {
3193 int pc = *pos;
3194
3195 /* Don't let symbols be evaluated with evaluate_subexp because that
3196 throws an "unknown type" error for no-debug data symbols.
3197 Instead, we want the cast to reinterpret the symbol. */
3198 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
3199 || exp->elts[pc].opcode == OP_VAR_VALUE)
3200 {
3201 (*pos) += 4;
3202
3203 value *val;
3204 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3205 {
3206 if (noside == EVAL_AVOID_SIDE_EFFECTS)
3207 return value_zero (to_type, not_lval);
3208
3209 val = evaluate_var_msym_value (noside,
3210 exp->elts[pc + 1].objfile,
3211 exp->elts[pc + 2].msymbol);
3212 }
3213 else
3214 val = evaluate_var_value (noside,
3215 exp->elts[pc + 1].block,
3216 exp->elts[pc + 2].symbol);
3217
3218 if (noside == EVAL_SKIP)
3219 return eval_skip_value (exp);
3220
3221 val = value_cast (to_type, val);
3222
3223 /* Don't allow e.g. '&(int)var_with_no_debug_info'. */
3224 if (VALUE_LVAL (val) == lval_memory)
3225 {
3226 if (value_lazy (val))
3227 value_fetch_lazy (val);
3228 VALUE_LVAL (val) = not_lval;
3229 }
3230 return val;
3231 }
3232
3233 value *val = evaluate_subexp (to_type, exp, pos, noside);
3234 if (noside == EVAL_SKIP)
3235 return eval_skip_value (exp);
3236 return value_cast (to_type, val);
3237 }
3238
3239 /* Parse a type expression in the string [P..P+LENGTH). */
3240
3241 struct type *
3242 parse_and_eval_type (const char *p, int length)
3243 {
3244 char *tmp = (char *) alloca (length + 4);
3245
3246 tmp[0] = '(';
3247 memcpy (tmp + 1, p, length);
3248 tmp[length + 1] = ')';
3249 tmp[length + 2] = '0';
3250 tmp[length + 3] = '\0';
3251 expression_up expr = parse_expression (tmp);
3252 if (expr->first_opcode () != UNOP_CAST)
3253 error (_("Internal error in eval_type."));
3254 return expr->elts[1].type;
3255 }