Remove spurious exceptions.h inclusions
[binutils-gdb.git] / gdb / eval.c
1 /* Evaluate expressions for GDB.
2
3 Copyright (C) 1986-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "value.h"
24 #include "expression.h"
25 #include "target.h"
26 #include "frame.h"
27 #include "language.h" /* For CAST_IS_CONVERSION. */
28 #include "f-lang.h" /* For array bound stuff. */
29 #include "cp-abi.h"
30 #include "infcall.h"
31 #include "objc-lang.h"
32 #include "block.h"
33 #include "parser-defs.h"
34 #include "cp-support.h"
35 #include "ui-out.h"
36 #include "regcache.h"
37 #include "user-regs.h"
38 #include "valprint.h"
39 #include "gdb_obstack.h"
40 #include "objfiles.h"
41 #include <ctype.h>
42
43 /* This is defined in valops.c */
44 extern int overload_resolution;
45
46 /* Prototypes for local functions. */
47
48 static struct value *evaluate_subexp_for_sizeof (struct expression *, int *,
49 enum noside);
50
51 static struct value *evaluate_subexp_for_address (struct expression *,
52 int *, enum noside);
53
54 static struct value *evaluate_struct_tuple (struct value *,
55 struct expression *, int *,
56 enum noside, int);
57
58 static LONGEST init_array_element (struct value *, struct value *,
59 struct expression *, int *, enum noside,
60 LONGEST, LONGEST);
61
62 struct value *
63 evaluate_subexp (struct type *expect_type, struct expression *exp,
64 int *pos, enum noside noside)
65 {
66 return (*exp->language_defn->la_exp_desc->evaluate_exp)
67 (expect_type, exp, pos, noside);
68 }
69 \f
70 /* Parse the string EXP as a C expression, evaluate it,
71 and return the result as a number. */
72
73 CORE_ADDR
74 parse_and_eval_address (const char *exp)
75 {
76 struct expression *expr = parse_expression (exp);
77 CORE_ADDR addr;
78 struct cleanup *old_chain =
79 make_cleanup (free_current_contents, &expr);
80
81 addr = value_as_address (evaluate_expression (expr));
82 do_cleanups (old_chain);
83 return addr;
84 }
85
86 /* Like parse_and_eval_address, but treats the value of the expression
87 as an integer, not an address, returns a LONGEST, not a CORE_ADDR. */
88 LONGEST
89 parse_and_eval_long (const char *exp)
90 {
91 struct expression *expr = parse_expression (exp);
92 LONGEST retval;
93 struct cleanup *old_chain =
94 make_cleanup (free_current_contents, &expr);
95
96 retval = value_as_long (evaluate_expression (expr));
97 do_cleanups (old_chain);
98 return (retval);
99 }
100
101 struct value *
102 parse_and_eval (const char *exp)
103 {
104 struct expression *expr = parse_expression (exp);
105 struct value *val;
106 struct cleanup *old_chain =
107 make_cleanup (free_current_contents, &expr);
108
109 val = evaluate_expression (expr);
110 do_cleanups (old_chain);
111 return val;
112 }
113
114 /* Parse up to a comma (or to a closeparen)
115 in the string EXPP as an expression, evaluate it, and return the value.
116 EXPP is advanced to point to the comma. */
117
118 struct value *
119 parse_to_comma_and_eval (const char **expp)
120 {
121 struct expression *expr = parse_exp_1 (expp, 0, (struct block *) 0, 1);
122 struct value *val;
123 struct cleanup *old_chain =
124 make_cleanup (free_current_contents, &expr);
125
126 val = evaluate_expression (expr);
127 do_cleanups (old_chain);
128 return val;
129 }
130 \f
131 /* Evaluate an expression in internal prefix form
132 such as is constructed by parse.y.
133
134 See expression.h for info on the format of an expression. */
135
136 struct value *
137 evaluate_expression (struct expression *exp)
138 {
139 int pc = 0;
140
141 return evaluate_subexp (NULL_TYPE, exp, &pc, EVAL_NORMAL);
142 }
143
144 /* Evaluate an expression, avoiding all memory references
145 and getting a value whose type alone is correct. */
146
147 struct value *
148 evaluate_type (struct expression *exp)
149 {
150 int pc = 0;
151
152 return evaluate_subexp (NULL_TYPE, exp, &pc, EVAL_AVOID_SIDE_EFFECTS);
153 }
154
155 /* Evaluate a subexpression, avoiding all memory references and
156 getting a value whose type alone is correct. */
157
158 struct value *
159 evaluate_subexpression_type (struct expression *exp, int subexp)
160 {
161 return evaluate_subexp (NULL_TYPE, exp, &subexp, EVAL_AVOID_SIDE_EFFECTS);
162 }
163
164 /* Find the current value of a watchpoint on EXP. Return the value in
165 *VALP and *RESULTP and the chain of intermediate and final values
166 in *VAL_CHAIN. RESULTP and VAL_CHAIN may be NULL if the caller does
167 not need them.
168
169 If PRESERVE_ERRORS is true, then exceptions are passed through.
170 Otherwise, if PRESERVE_ERRORS is false, then if a memory error
171 occurs while evaluating the expression, *RESULTP will be set to
172 NULL. *RESULTP may be a lazy value, if the result could not be
173 read from memory. It is used to determine whether a value is
174 user-specified (we should watch the whole value) or intermediate
175 (we should watch only the bit used to locate the final value).
176
177 If the final value, or any intermediate value, could not be read
178 from memory, *VALP will be set to NULL. *VAL_CHAIN will still be
179 set to any referenced values. *VALP will never be a lazy value.
180 This is the value which we store in struct breakpoint.
181
182 If VAL_CHAIN is non-NULL, *VAL_CHAIN will be released from the
183 value chain. The caller must free the values individually. If
184 VAL_CHAIN is NULL, all generated values will be left on the value
185 chain. */
186
187 void
188 fetch_subexp_value (struct expression *exp, int *pc, struct value **valp,
189 struct value **resultp, struct value **val_chain,
190 int preserve_errors)
191 {
192 struct value *mark, *new_mark, *result;
193 volatile struct gdb_exception ex;
194
195 *valp = NULL;
196 if (resultp)
197 *resultp = NULL;
198 if (val_chain)
199 *val_chain = NULL;
200
201 /* Evaluate the expression. */
202 mark = value_mark ();
203 result = NULL;
204
205 TRY_CATCH (ex, RETURN_MASK_ALL)
206 {
207 result = evaluate_subexp (NULL_TYPE, exp, pc, EVAL_NORMAL);
208 }
209 if (ex.reason < 0)
210 {
211 /* Ignore memory errors if we want watchpoints pointing at
212 inaccessible memory to still be created; otherwise, throw the
213 error to some higher catcher. */
214 switch (ex.error)
215 {
216 case MEMORY_ERROR:
217 if (!preserve_errors)
218 break;
219 default:
220 throw_exception (ex);
221 break;
222 }
223 }
224
225 new_mark = value_mark ();
226 if (mark == new_mark)
227 return;
228 if (resultp)
229 *resultp = result;
230
231 /* Make sure it's not lazy, so that after the target stops again we
232 have a non-lazy previous value to compare with. */
233 if (result != NULL)
234 {
235 if (!value_lazy (result))
236 *valp = result;
237 else
238 {
239 volatile struct gdb_exception except;
240
241 TRY_CATCH (except, RETURN_MASK_ERROR)
242 {
243 value_fetch_lazy (result);
244 *valp = result;
245 }
246 }
247 }
248
249 if (val_chain)
250 {
251 /* Return the chain of intermediate values. We use this to
252 decide which addresses to watch. */
253 *val_chain = new_mark;
254 value_release_to_mark (mark);
255 }
256 }
257
258 /* Extract a field operation from an expression. If the subexpression
259 of EXP starting at *SUBEXP is not a structure dereference
260 operation, return NULL. Otherwise, return the name of the
261 dereferenced field, and advance *SUBEXP to point to the
262 subexpression of the left-hand-side of the dereference. This is
263 used when completing field names. */
264
265 char *
266 extract_field_op (struct expression *exp, int *subexp)
267 {
268 int tem;
269 char *result;
270
271 if (exp->elts[*subexp].opcode != STRUCTOP_STRUCT
272 && exp->elts[*subexp].opcode != STRUCTOP_PTR)
273 return NULL;
274 tem = longest_to_int (exp->elts[*subexp + 1].longconst);
275 result = &exp->elts[*subexp + 2].string;
276 (*subexp) += 1 + 3 + BYTES_TO_EXP_ELEM (tem + 1);
277 return result;
278 }
279
280 /* This function evaluates brace-initializers (in C/C++) for
281 structure types. */
282
283 static struct value *
284 evaluate_struct_tuple (struct value *struct_val,
285 struct expression *exp,
286 int *pos, enum noside noside, int nargs)
287 {
288 struct type *struct_type = check_typedef (value_type (struct_val));
289 struct type *field_type;
290 int fieldno = -1;
291
292 while (--nargs >= 0)
293 {
294 struct value *val = NULL;
295 int bitpos, bitsize;
296 bfd_byte *addr;
297
298 fieldno++;
299 /* Skip static fields. */
300 while (fieldno < TYPE_NFIELDS (struct_type)
301 && field_is_static (&TYPE_FIELD (struct_type,
302 fieldno)))
303 fieldno++;
304 if (fieldno >= TYPE_NFIELDS (struct_type))
305 error (_("too many initializers"));
306 field_type = TYPE_FIELD_TYPE (struct_type, fieldno);
307 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
308 && TYPE_FIELD_NAME (struct_type, fieldno)[0] == '0')
309 error (_("don't know which variant you want to set"));
310
311 /* Here, struct_type is the type of the inner struct,
312 while substruct_type is the type of the inner struct.
313 These are the same for normal structures, but a variant struct
314 contains anonymous union fields that contain substruct fields.
315 The value fieldno is the index of the top-level (normal or
316 anonymous union) field in struct_field, while the value
317 subfieldno is the index of the actual real (named inner) field
318 in substruct_type. */
319
320 field_type = TYPE_FIELD_TYPE (struct_type, fieldno);
321 if (val == 0)
322 val = evaluate_subexp (field_type, exp, pos, noside);
323
324 /* Now actually set the field in struct_val. */
325
326 /* Assign val to field fieldno. */
327 if (value_type (val) != field_type)
328 val = value_cast (field_type, val);
329
330 bitsize = TYPE_FIELD_BITSIZE (struct_type, fieldno);
331 bitpos = TYPE_FIELD_BITPOS (struct_type, fieldno);
332 addr = value_contents_writeable (struct_val) + bitpos / 8;
333 if (bitsize)
334 modify_field (struct_type, addr,
335 value_as_long (val), bitpos % 8, bitsize);
336 else
337 memcpy (addr, value_contents (val),
338 TYPE_LENGTH (value_type (val)));
339
340 }
341 return struct_val;
342 }
343
344 /* Recursive helper function for setting elements of array tuples.
345 The target is ARRAY (which has bounds LOW_BOUND to HIGH_BOUND); the
346 element value is ELEMENT; EXP, POS and NOSIDE are as usual.
347 Evaluates index expresions and sets the specified element(s) of
348 ARRAY to ELEMENT. Returns last index value. */
349
350 static LONGEST
351 init_array_element (struct value *array, struct value *element,
352 struct expression *exp, int *pos,
353 enum noside noside, LONGEST low_bound, LONGEST high_bound)
354 {
355 LONGEST index;
356 int element_size = TYPE_LENGTH (value_type (element));
357
358 if (exp->elts[*pos].opcode == BINOP_COMMA)
359 {
360 (*pos)++;
361 init_array_element (array, element, exp, pos, noside,
362 low_bound, high_bound);
363 return init_array_element (array, element,
364 exp, pos, noside, low_bound, high_bound);
365 }
366 else
367 {
368 index = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
369 if (index < low_bound || index > high_bound)
370 error (_("tuple index out of range"));
371 memcpy (value_contents_raw (array) + (index - low_bound) * element_size,
372 value_contents (element), element_size);
373 }
374 return index;
375 }
376
377 static struct value *
378 value_f90_subarray (struct value *array,
379 struct expression *exp, int *pos, enum noside noside)
380 {
381 int pc = (*pos) + 1;
382 LONGEST low_bound, high_bound;
383 struct type *range = check_typedef (TYPE_INDEX_TYPE (value_type (array)));
384 enum f90_range_type range_type = longest_to_int (exp->elts[pc].longconst);
385
386 *pos += 3;
387
388 if (range_type == LOW_BOUND_DEFAULT || range_type == BOTH_BOUND_DEFAULT)
389 low_bound = TYPE_LOW_BOUND (range);
390 else
391 low_bound = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
392
393 if (range_type == HIGH_BOUND_DEFAULT || range_type == BOTH_BOUND_DEFAULT)
394 high_bound = TYPE_HIGH_BOUND (range);
395 else
396 high_bound = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
397
398 return value_slice (array, low_bound, high_bound - low_bound + 1);
399 }
400
401
402 /* Promote value ARG1 as appropriate before performing a unary operation
403 on this argument.
404 If the result is not appropriate for any particular language then it
405 needs to patch this function. */
406
407 void
408 unop_promote (const struct language_defn *language, struct gdbarch *gdbarch,
409 struct value **arg1)
410 {
411 struct type *type1;
412
413 *arg1 = coerce_ref (*arg1);
414 type1 = check_typedef (value_type (*arg1));
415
416 if (is_integral_type (type1))
417 {
418 switch (language->la_language)
419 {
420 default:
421 /* Perform integral promotion for ANSI C/C++.
422 If not appropropriate for any particular language
423 it needs to modify this function. */
424 {
425 struct type *builtin_int = builtin_type (gdbarch)->builtin_int;
426
427 if (TYPE_LENGTH (type1) < TYPE_LENGTH (builtin_int))
428 *arg1 = value_cast (builtin_int, *arg1);
429 }
430 break;
431 }
432 }
433 }
434
435 /* Promote values ARG1 and ARG2 as appropriate before performing a binary
436 operation on those two operands.
437 If the result is not appropriate for any particular language then it
438 needs to patch this function. */
439
440 void
441 binop_promote (const struct language_defn *language, struct gdbarch *gdbarch,
442 struct value **arg1, struct value **arg2)
443 {
444 struct type *promoted_type = NULL;
445 struct type *type1;
446 struct type *type2;
447
448 *arg1 = coerce_ref (*arg1);
449 *arg2 = coerce_ref (*arg2);
450
451 type1 = check_typedef (value_type (*arg1));
452 type2 = check_typedef (value_type (*arg2));
453
454 if ((TYPE_CODE (type1) != TYPE_CODE_FLT
455 && TYPE_CODE (type1) != TYPE_CODE_DECFLOAT
456 && !is_integral_type (type1))
457 || (TYPE_CODE (type2) != TYPE_CODE_FLT
458 && TYPE_CODE (type2) != TYPE_CODE_DECFLOAT
459 && !is_integral_type (type2)))
460 return;
461
462 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT
463 || TYPE_CODE (type2) == TYPE_CODE_DECFLOAT)
464 {
465 /* No promotion required. */
466 }
467 else if (TYPE_CODE (type1) == TYPE_CODE_FLT
468 || TYPE_CODE (type2) == TYPE_CODE_FLT)
469 {
470 switch (language->la_language)
471 {
472 case language_c:
473 case language_cplus:
474 case language_asm:
475 case language_objc:
476 case language_opencl:
477 /* No promotion required. */
478 break;
479
480 default:
481 /* For other languages the result type is unchanged from gdb
482 version 6.7 for backward compatibility.
483 If either arg was long double, make sure that value is also long
484 double. Otherwise use double. */
485 if (TYPE_LENGTH (type1) * 8 > gdbarch_double_bit (gdbarch)
486 || TYPE_LENGTH (type2) * 8 > gdbarch_double_bit (gdbarch))
487 promoted_type = builtin_type (gdbarch)->builtin_long_double;
488 else
489 promoted_type = builtin_type (gdbarch)->builtin_double;
490 break;
491 }
492 }
493 else if (TYPE_CODE (type1) == TYPE_CODE_BOOL
494 && TYPE_CODE (type2) == TYPE_CODE_BOOL)
495 {
496 /* No promotion required. */
497 }
498 else
499 /* Integral operations here. */
500 /* FIXME: Also mixed integral/booleans, with result an integer. */
501 {
502 const struct builtin_type *builtin = builtin_type (gdbarch);
503 unsigned int promoted_len1 = TYPE_LENGTH (type1);
504 unsigned int promoted_len2 = TYPE_LENGTH (type2);
505 int is_unsigned1 = TYPE_UNSIGNED (type1);
506 int is_unsigned2 = TYPE_UNSIGNED (type2);
507 unsigned int result_len;
508 int unsigned_operation;
509
510 /* Determine type length and signedness after promotion for
511 both operands. */
512 if (promoted_len1 < TYPE_LENGTH (builtin->builtin_int))
513 {
514 is_unsigned1 = 0;
515 promoted_len1 = TYPE_LENGTH (builtin->builtin_int);
516 }
517 if (promoted_len2 < TYPE_LENGTH (builtin->builtin_int))
518 {
519 is_unsigned2 = 0;
520 promoted_len2 = TYPE_LENGTH (builtin->builtin_int);
521 }
522
523 if (promoted_len1 > promoted_len2)
524 {
525 unsigned_operation = is_unsigned1;
526 result_len = promoted_len1;
527 }
528 else if (promoted_len2 > promoted_len1)
529 {
530 unsigned_operation = is_unsigned2;
531 result_len = promoted_len2;
532 }
533 else
534 {
535 unsigned_operation = is_unsigned1 || is_unsigned2;
536 result_len = promoted_len1;
537 }
538
539 switch (language->la_language)
540 {
541 case language_c:
542 case language_cplus:
543 case language_asm:
544 case language_objc:
545 if (result_len <= TYPE_LENGTH (builtin->builtin_int))
546 {
547 promoted_type = (unsigned_operation
548 ? builtin->builtin_unsigned_int
549 : builtin->builtin_int);
550 }
551 else if (result_len <= TYPE_LENGTH (builtin->builtin_long))
552 {
553 promoted_type = (unsigned_operation
554 ? builtin->builtin_unsigned_long
555 : builtin->builtin_long);
556 }
557 else
558 {
559 promoted_type = (unsigned_operation
560 ? builtin->builtin_unsigned_long_long
561 : builtin->builtin_long_long);
562 }
563 break;
564 case language_opencl:
565 if (result_len <= TYPE_LENGTH (lookup_signed_typename
566 (language, gdbarch, "int")))
567 {
568 promoted_type =
569 (unsigned_operation
570 ? lookup_unsigned_typename (language, gdbarch, "int")
571 : lookup_signed_typename (language, gdbarch, "int"));
572 }
573 else if (result_len <= TYPE_LENGTH (lookup_signed_typename
574 (language, gdbarch, "long")))
575 {
576 promoted_type =
577 (unsigned_operation
578 ? lookup_unsigned_typename (language, gdbarch, "long")
579 : lookup_signed_typename (language, gdbarch,"long"));
580 }
581 break;
582 default:
583 /* For other languages the result type is unchanged from gdb
584 version 6.7 for backward compatibility.
585 If either arg was long long, make sure that value is also long
586 long. Otherwise use long. */
587 if (unsigned_operation)
588 {
589 if (result_len > gdbarch_long_bit (gdbarch) / HOST_CHAR_BIT)
590 promoted_type = builtin->builtin_unsigned_long_long;
591 else
592 promoted_type = builtin->builtin_unsigned_long;
593 }
594 else
595 {
596 if (result_len > gdbarch_long_bit (gdbarch) / HOST_CHAR_BIT)
597 promoted_type = builtin->builtin_long_long;
598 else
599 promoted_type = builtin->builtin_long;
600 }
601 break;
602 }
603 }
604
605 if (promoted_type)
606 {
607 /* Promote both operands to common type. */
608 *arg1 = value_cast (promoted_type, *arg1);
609 *arg2 = value_cast (promoted_type, *arg2);
610 }
611 }
612
613 static int
614 ptrmath_type_p (const struct language_defn *lang, struct type *type)
615 {
616 type = check_typedef (type);
617 if (TYPE_CODE (type) == TYPE_CODE_REF)
618 type = TYPE_TARGET_TYPE (type);
619
620 switch (TYPE_CODE (type))
621 {
622 case TYPE_CODE_PTR:
623 case TYPE_CODE_FUNC:
624 return 1;
625
626 case TYPE_CODE_ARRAY:
627 return TYPE_VECTOR (type) ? 0 : lang->c_style_arrays;
628
629 default:
630 return 0;
631 }
632 }
633
634 /* Constructs a fake method with the given parameter types.
635 This function is used by the parser to construct an "expected"
636 type for method overload resolution. */
637
638 static struct type *
639 make_params (int num_types, struct type **param_types)
640 {
641 struct type *type = XCNEW (struct type);
642 TYPE_MAIN_TYPE (type) = XCNEW (struct main_type);
643 TYPE_LENGTH (type) = 1;
644 TYPE_CODE (type) = TYPE_CODE_METHOD;
645 TYPE_VPTR_FIELDNO (type) = -1;
646 TYPE_CHAIN (type) = type;
647 if (num_types > 0)
648 {
649 if (param_types[num_types - 1] == NULL)
650 {
651 --num_types;
652 TYPE_VARARGS (type) = 1;
653 }
654 else if (TYPE_CODE (check_typedef (param_types[num_types - 1]))
655 == TYPE_CODE_VOID)
656 {
657 --num_types;
658 /* Caller should have ensured this. */
659 gdb_assert (num_types == 0);
660 TYPE_PROTOTYPED (type) = 1;
661 }
662 }
663
664 TYPE_NFIELDS (type) = num_types;
665 TYPE_FIELDS (type) = (struct field *)
666 TYPE_ZALLOC (type, sizeof (struct field) * num_types);
667
668 while (num_types-- > 0)
669 TYPE_FIELD_TYPE (type, num_types) = param_types[num_types];
670
671 return type;
672 }
673
674 struct value *
675 evaluate_subexp_standard (struct type *expect_type,
676 struct expression *exp, int *pos,
677 enum noside noside)
678 {
679 enum exp_opcode op;
680 int tem, tem2, tem3;
681 int pc, pc2 = 0, oldpos;
682 struct value *arg1 = NULL;
683 struct value *arg2 = NULL;
684 struct value *arg3;
685 struct type *type;
686 int nargs;
687 struct value **argvec;
688 int code;
689 int ix;
690 long mem_offset;
691 struct type **arg_types;
692 int save_pos1;
693 struct symbol *function = NULL;
694 char *function_name = NULL;
695
696 pc = (*pos)++;
697 op = exp->elts[pc].opcode;
698
699 switch (op)
700 {
701 case OP_SCOPE:
702 tem = longest_to_int (exp->elts[pc + 2].longconst);
703 (*pos) += 4 + BYTES_TO_EXP_ELEM (tem + 1);
704 if (noside == EVAL_SKIP)
705 goto nosideret;
706 arg1 = value_aggregate_elt (exp->elts[pc + 1].type,
707 &exp->elts[pc + 3].string,
708 expect_type, 0, noside);
709 if (arg1 == NULL)
710 error (_("There is no field named %s"), &exp->elts[pc + 3].string);
711 return arg1;
712
713 case OP_LONG:
714 (*pos) += 3;
715 return value_from_longest (exp->elts[pc + 1].type,
716 exp->elts[pc + 2].longconst);
717
718 case OP_DOUBLE:
719 (*pos) += 3;
720 return value_from_double (exp->elts[pc + 1].type,
721 exp->elts[pc + 2].doubleconst);
722
723 case OP_DECFLOAT:
724 (*pos) += 3;
725 return value_from_decfloat (exp->elts[pc + 1].type,
726 exp->elts[pc + 2].decfloatconst);
727
728 case OP_ADL_FUNC:
729 case OP_VAR_VALUE:
730 (*pos) += 3;
731 if (noside == EVAL_SKIP)
732 goto nosideret;
733
734 /* JYG: We used to just return value_zero of the symbol type
735 if we're asked to avoid side effects. Otherwise we return
736 value_of_variable (...). However I'm not sure if
737 value_of_variable () has any side effect.
738 We need a full value object returned here for whatis_exp ()
739 to call evaluate_type () and then pass the full value to
740 value_rtti_target_type () if we are dealing with a pointer
741 or reference to a base class and print object is on. */
742
743 {
744 volatile struct gdb_exception except;
745 struct value *ret = NULL;
746
747 TRY_CATCH (except, RETURN_MASK_ERROR)
748 {
749 ret = value_of_variable (exp->elts[pc + 2].symbol,
750 exp->elts[pc + 1].block);
751 }
752
753 if (except.reason < 0)
754 {
755 if (noside == EVAL_AVOID_SIDE_EFFECTS)
756 ret = value_zero (SYMBOL_TYPE (exp->elts[pc + 2].symbol),
757 not_lval);
758 else
759 throw_exception (except);
760 }
761
762 return ret;
763 }
764
765 case OP_VAR_ENTRY_VALUE:
766 (*pos) += 2;
767 if (noside == EVAL_SKIP)
768 goto nosideret;
769
770 {
771 struct symbol *sym = exp->elts[pc + 1].symbol;
772 struct frame_info *frame;
773
774 if (noside == EVAL_AVOID_SIDE_EFFECTS)
775 return value_zero (SYMBOL_TYPE (sym), not_lval);
776
777 if (SYMBOL_COMPUTED_OPS (sym) == NULL
778 || SYMBOL_COMPUTED_OPS (sym)->read_variable_at_entry == NULL)
779 error (_("Symbol \"%s\" does not have any specific entry value"),
780 SYMBOL_PRINT_NAME (sym));
781
782 frame = get_selected_frame (NULL);
783 return SYMBOL_COMPUTED_OPS (sym)->read_variable_at_entry (sym, frame);
784 }
785
786 case OP_LAST:
787 (*pos) += 2;
788 return
789 access_value_history (longest_to_int (exp->elts[pc + 1].longconst));
790
791 case OP_REGISTER:
792 {
793 const char *name = &exp->elts[pc + 2].string;
794 int regno;
795 struct value *val;
796
797 (*pos) += 3 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
798 regno = user_reg_map_name_to_regnum (exp->gdbarch,
799 name, strlen (name));
800 if (regno == -1)
801 error (_("Register $%s not available."), name);
802
803 /* In EVAL_AVOID_SIDE_EFFECTS mode, we only need to return
804 a value with the appropriate register type. Unfortunately,
805 we don't have easy access to the type of user registers.
806 So for these registers, we fetch the register value regardless
807 of the evaluation mode. */
808 if (noside == EVAL_AVOID_SIDE_EFFECTS
809 && regno < gdbarch_num_regs (exp->gdbarch)
810 + gdbarch_num_pseudo_regs (exp->gdbarch))
811 val = value_zero (register_type (exp->gdbarch, regno), not_lval);
812 else
813 val = value_of_register (regno, get_selected_frame (NULL));
814 if (val == NULL)
815 error (_("Value of register %s not available."), name);
816 else
817 return val;
818 }
819 case OP_BOOL:
820 (*pos) += 2;
821 type = language_bool_type (exp->language_defn, exp->gdbarch);
822 return value_from_longest (type, exp->elts[pc + 1].longconst);
823
824 case OP_INTERNALVAR:
825 (*pos) += 2;
826 return value_of_internalvar (exp->gdbarch,
827 exp->elts[pc + 1].internalvar);
828
829 case OP_STRING:
830 tem = longest_to_int (exp->elts[pc + 1].longconst);
831 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
832 if (noside == EVAL_SKIP)
833 goto nosideret;
834 type = language_string_char_type (exp->language_defn, exp->gdbarch);
835 return value_string (&exp->elts[pc + 2].string, tem, type);
836
837 case OP_OBJC_NSSTRING: /* Objective C Foundation Class
838 NSString constant. */
839 tem = longest_to_int (exp->elts[pc + 1].longconst);
840 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
841 if (noside == EVAL_SKIP)
842 {
843 goto nosideret;
844 }
845 return value_nsstring (exp->gdbarch, &exp->elts[pc + 2].string, tem + 1);
846
847 case OP_ARRAY:
848 (*pos) += 3;
849 tem2 = longest_to_int (exp->elts[pc + 1].longconst);
850 tem3 = longest_to_int (exp->elts[pc + 2].longconst);
851 nargs = tem3 - tem2 + 1;
852 type = expect_type ? check_typedef (expect_type) : NULL_TYPE;
853
854 if (expect_type != NULL_TYPE && noside != EVAL_SKIP
855 && TYPE_CODE (type) == TYPE_CODE_STRUCT)
856 {
857 struct value *rec = allocate_value (expect_type);
858
859 memset (value_contents_raw (rec), '\0', TYPE_LENGTH (type));
860 return evaluate_struct_tuple (rec, exp, pos, noside, nargs);
861 }
862
863 if (expect_type != NULL_TYPE && noside != EVAL_SKIP
864 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
865 {
866 struct type *range_type = TYPE_INDEX_TYPE (type);
867 struct type *element_type = TYPE_TARGET_TYPE (type);
868 struct value *array = allocate_value (expect_type);
869 int element_size = TYPE_LENGTH (check_typedef (element_type));
870 LONGEST low_bound, high_bound, index;
871
872 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
873 {
874 low_bound = 0;
875 high_bound = (TYPE_LENGTH (type) / element_size) - 1;
876 }
877 index = low_bound;
878 memset (value_contents_raw (array), 0, TYPE_LENGTH (expect_type));
879 for (tem = nargs; --nargs >= 0;)
880 {
881 struct value *element;
882 int index_pc = 0;
883
884 element = evaluate_subexp (element_type, exp, pos, noside);
885 if (value_type (element) != element_type)
886 element = value_cast (element_type, element);
887 if (index_pc)
888 {
889 int continue_pc = *pos;
890
891 *pos = index_pc;
892 index = init_array_element (array, element, exp, pos, noside,
893 low_bound, high_bound);
894 *pos = continue_pc;
895 }
896 else
897 {
898 if (index > high_bound)
899 /* To avoid memory corruption. */
900 error (_("Too many array elements"));
901 memcpy (value_contents_raw (array)
902 + (index - low_bound) * element_size,
903 value_contents (element),
904 element_size);
905 }
906 index++;
907 }
908 return array;
909 }
910
911 if (expect_type != NULL_TYPE && noside != EVAL_SKIP
912 && TYPE_CODE (type) == TYPE_CODE_SET)
913 {
914 struct value *set = allocate_value (expect_type);
915 gdb_byte *valaddr = value_contents_raw (set);
916 struct type *element_type = TYPE_INDEX_TYPE (type);
917 struct type *check_type = element_type;
918 LONGEST low_bound, high_bound;
919
920 /* Get targettype of elementtype. */
921 while (TYPE_CODE (check_type) == TYPE_CODE_RANGE
922 || TYPE_CODE (check_type) == TYPE_CODE_TYPEDEF)
923 check_type = TYPE_TARGET_TYPE (check_type);
924
925 if (get_discrete_bounds (element_type, &low_bound, &high_bound) < 0)
926 error (_("(power)set type with unknown size"));
927 memset (valaddr, '\0', TYPE_LENGTH (type));
928 for (tem = 0; tem < nargs; tem++)
929 {
930 LONGEST range_low, range_high;
931 struct type *range_low_type, *range_high_type;
932 struct value *elem_val;
933
934 elem_val = evaluate_subexp (element_type, exp, pos, noside);
935 range_low_type = range_high_type = value_type (elem_val);
936 range_low = range_high = value_as_long (elem_val);
937
938 /* Check types of elements to avoid mixture of elements from
939 different types. Also check if type of element is "compatible"
940 with element type of powerset. */
941 if (TYPE_CODE (range_low_type) == TYPE_CODE_RANGE)
942 range_low_type = TYPE_TARGET_TYPE (range_low_type);
943 if (TYPE_CODE (range_high_type) == TYPE_CODE_RANGE)
944 range_high_type = TYPE_TARGET_TYPE (range_high_type);
945 if ((TYPE_CODE (range_low_type) != TYPE_CODE (range_high_type))
946 || (TYPE_CODE (range_low_type) == TYPE_CODE_ENUM
947 && (range_low_type != range_high_type)))
948 /* different element modes. */
949 error (_("POWERSET tuple elements of different mode"));
950 if ((TYPE_CODE (check_type) != TYPE_CODE (range_low_type))
951 || (TYPE_CODE (check_type) == TYPE_CODE_ENUM
952 && range_low_type != check_type))
953 error (_("incompatible POWERSET tuple elements"));
954 if (range_low > range_high)
955 {
956 warning (_("empty POWERSET tuple range"));
957 continue;
958 }
959 if (range_low < low_bound || range_high > high_bound)
960 error (_("POWERSET tuple element out of range"));
961 range_low -= low_bound;
962 range_high -= low_bound;
963 for (; range_low <= range_high; range_low++)
964 {
965 int bit_index = (unsigned) range_low % TARGET_CHAR_BIT;
966
967 if (gdbarch_bits_big_endian (exp->gdbarch))
968 bit_index = TARGET_CHAR_BIT - 1 - bit_index;
969 valaddr[(unsigned) range_low / TARGET_CHAR_BIT]
970 |= 1 << bit_index;
971 }
972 }
973 return set;
974 }
975
976 argvec = (struct value **) alloca (sizeof (struct value *) * nargs);
977 for (tem = 0; tem < nargs; tem++)
978 {
979 /* Ensure that array expressions are coerced into pointer
980 objects. */
981 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
982 }
983 if (noside == EVAL_SKIP)
984 goto nosideret;
985 return value_array (tem2, tem3, argvec);
986
987 case TERNOP_SLICE:
988 {
989 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
990 int lowbound
991 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
992 int upper
993 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
994
995 if (noside == EVAL_SKIP)
996 goto nosideret;
997 return value_slice (array, lowbound, upper - lowbound + 1);
998 }
999
1000 case TERNOP_COND:
1001 /* Skip third and second args to evaluate the first one. */
1002 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1003 if (value_logical_not (arg1))
1004 {
1005 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
1006 return evaluate_subexp (NULL_TYPE, exp, pos, noside);
1007 }
1008 else
1009 {
1010 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1011 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
1012 return arg2;
1013 }
1014
1015 case OP_OBJC_SELECTOR:
1016 { /* Objective C @selector operator. */
1017 char *sel = &exp->elts[pc + 2].string;
1018 int len = longest_to_int (exp->elts[pc + 1].longconst);
1019 struct type *selector_type;
1020
1021 (*pos) += 3 + BYTES_TO_EXP_ELEM (len + 1);
1022 if (noside == EVAL_SKIP)
1023 goto nosideret;
1024
1025 if (sel[len] != 0)
1026 sel[len] = 0; /* Make sure it's terminated. */
1027
1028 selector_type = builtin_type (exp->gdbarch)->builtin_data_ptr;
1029 return value_from_longest (selector_type,
1030 lookup_child_selector (exp->gdbarch, sel));
1031 }
1032
1033 case OP_OBJC_MSGCALL:
1034 { /* Objective C message (method) call. */
1035
1036 CORE_ADDR responds_selector = 0;
1037 CORE_ADDR method_selector = 0;
1038
1039 CORE_ADDR selector = 0;
1040
1041 int struct_return = 0;
1042 int sub_no_side = 0;
1043
1044 struct value *msg_send = NULL;
1045 struct value *msg_send_stret = NULL;
1046 int gnu_runtime = 0;
1047
1048 struct value *target = NULL;
1049 struct value *method = NULL;
1050 struct value *called_method = NULL;
1051
1052 struct type *selector_type = NULL;
1053 struct type *long_type;
1054
1055 struct value *ret = NULL;
1056 CORE_ADDR addr = 0;
1057
1058 selector = exp->elts[pc + 1].longconst;
1059 nargs = exp->elts[pc + 2].longconst;
1060 argvec = (struct value **) alloca (sizeof (struct value *)
1061 * (nargs + 5));
1062
1063 (*pos) += 3;
1064
1065 long_type = builtin_type (exp->gdbarch)->builtin_long;
1066 selector_type = builtin_type (exp->gdbarch)->builtin_data_ptr;
1067
1068 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1069 sub_no_side = EVAL_NORMAL;
1070 else
1071 sub_no_side = noside;
1072
1073 target = evaluate_subexp (selector_type, exp, pos, sub_no_side);
1074
1075 if (value_as_long (target) == 0)
1076 return value_from_longest (long_type, 0);
1077
1078 if (lookup_minimal_symbol ("objc_msg_lookup", 0, 0).minsym)
1079 gnu_runtime = 1;
1080
1081 /* Find the method dispatch (Apple runtime) or method lookup
1082 (GNU runtime) function for Objective-C. These will be used
1083 to lookup the symbol information for the method. If we
1084 can't find any symbol information, then we'll use these to
1085 call the method, otherwise we can call the method
1086 directly. The msg_send_stret function is used in the special
1087 case of a method that returns a structure (Apple runtime
1088 only). */
1089 if (gnu_runtime)
1090 {
1091 struct type *type = selector_type;
1092
1093 type = lookup_function_type (type);
1094 type = lookup_pointer_type (type);
1095 type = lookup_function_type (type);
1096 type = lookup_pointer_type (type);
1097
1098 msg_send = find_function_in_inferior ("objc_msg_lookup", NULL);
1099 msg_send_stret
1100 = find_function_in_inferior ("objc_msg_lookup", NULL);
1101
1102 msg_send = value_from_pointer (type, value_as_address (msg_send));
1103 msg_send_stret = value_from_pointer (type,
1104 value_as_address (msg_send_stret));
1105 }
1106 else
1107 {
1108 msg_send = find_function_in_inferior ("objc_msgSend", NULL);
1109 /* Special dispatcher for methods returning structs. */
1110 msg_send_stret
1111 = find_function_in_inferior ("objc_msgSend_stret", NULL);
1112 }
1113
1114 /* Verify the target object responds to this method. The
1115 standard top-level 'Object' class uses a different name for
1116 the verification method than the non-standard, but more
1117 often used, 'NSObject' class. Make sure we check for both. */
1118
1119 responds_selector
1120 = lookup_child_selector (exp->gdbarch, "respondsToSelector:");
1121 if (responds_selector == 0)
1122 responds_selector
1123 = lookup_child_selector (exp->gdbarch, "respondsTo:");
1124
1125 if (responds_selector == 0)
1126 error (_("no 'respondsTo:' or 'respondsToSelector:' method"));
1127
1128 method_selector
1129 = lookup_child_selector (exp->gdbarch, "methodForSelector:");
1130 if (method_selector == 0)
1131 method_selector
1132 = lookup_child_selector (exp->gdbarch, "methodFor:");
1133
1134 if (method_selector == 0)
1135 error (_("no 'methodFor:' or 'methodForSelector:' method"));
1136
1137 /* Call the verification method, to make sure that the target
1138 class implements the desired method. */
1139
1140 argvec[0] = msg_send;
1141 argvec[1] = target;
1142 argvec[2] = value_from_longest (long_type, responds_selector);
1143 argvec[3] = value_from_longest (long_type, selector);
1144 argvec[4] = 0;
1145
1146 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
1147 if (gnu_runtime)
1148 {
1149 /* Function objc_msg_lookup returns a pointer. */
1150 argvec[0] = ret;
1151 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
1152 }
1153 if (value_as_long (ret) == 0)
1154 error (_("Target does not respond to this message selector."));
1155
1156 /* Call "methodForSelector:" method, to get the address of a
1157 function method that implements this selector for this
1158 class. If we can find a symbol at that address, then we
1159 know the return type, parameter types etc. (that's a good
1160 thing). */
1161
1162 argvec[0] = msg_send;
1163 argvec[1] = target;
1164 argvec[2] = value_from_longest (long_type, method_selector);
1165 argvec[3] = value_from_longest (long_type, selector);
1166 argvec[4] = 0;
1167
1168 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
1169 if (gnu_runtime)
1170 {
1171 argvec[0] = ret;
1172 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
1173 }
1174
1175 /* ret should now be the selector. */
1176
1177 addr = value_as_long (ret);
1178 if (addr)
1179 {
1180 struct symbol *sym = NULL;
1181
1182 /* The address might point to a function descriptor;
1183 resolve it to the actual code address instead. */
1184 addr = gdbarch_convert_from_func_ptr_addr (exp->gdbarch, addr,
1185 &current_target);
1186
1187 /* Is it a high_level symbol? */
1188 sym = find_pc_function (addr);
1189 if (sym != NULL)
1190 method = value_of_variable (sym, 0);
1191 }
1192
1193 /* If we found a method with symbol information, check to see
1194 if it returns a struct. Otherwise assume it doesn't. */
1195
1196 if (method)
1197 {
1198 CORE_ADDR funaddr;
1199 struct type *val_type;
1200
1201 funaddr = find_function_addr (method, &val_type);
1202
1203 block_for_pc (funaddr);
1204
1205 CHECK_TYPEDEF (val_type);
1206
1207 if ((val_type == NULL)
1208 || (TYPE_CODE(val_type) == TYPE_CODE_ERROR))
1209 {
1210 if (expect_type != NULL)
1211 val_type = expect_type;
1212 }
1213
1214 struct_return = using_struct_return (exp->gdbarch, method,
1215 val_type);
1216 }
1217 else if (expect_type != NULL)
1218 {
1219 struct_return = using_struct_return (exp->gdbarch, NULL,
1220 check_typedef (expect_type));
1221 }
1222
1223 /* Found a function symbol. Now we will substitute its
1224 value in place of the message dispatcher (obj_msgSend),
1225 so that we call the method directly instead of thru
1226 the dispatcher. The main reason for doing this is that
1227 we can now evaluate the return value and parameter values
1228 according to their known data types, in case we need to
1229 do things like promotion, dereferencing, special handling
1230 of structs and doubles, etc.
1231
1232 We want to use the type signature of 'method', but still
1233 jump to objc_msgSend() or objc_msgSend_stret() to better
1234 mimic the behavior of the runtime. */
1235
1236 if (method)
1237 {
1238 if (TYPE_CODE (value_type (method)) != TYPE_CODE_FUNC)
1239 error (_("method address has symbol information "
1240 "with non-function type; skipping"));
1241
1242 /* Create a function pointer of the appropriate type, and
1243 replace its value with the value of msg_send or
1244 msg_send_stret. We must use a pointer here, as
1245 msg_send and msg_send_stret are of pointer type, and
1246 the representation may be different on systems that use
1247 function descriptors. */
1248 if (struct_return)
1249 called_method
1250 = value_from_pointer (lookup_pointer_type (value_type (method)),
1251 value_as_address (msg_send_stret));
1252 else
1253 called_method
1254 = value_from_pointer (lookup_pointer_type (value_type (method)),
1255 value_as_address (msg_send));
1256 }
1257 else
1258 {
1259 if (struct_return)
1260 called_method = msg_send_stret;
1261 else
1262 called_method = msg_send;
1263 }
1264
1265 if (noside == EVAL_SKIP)
1266 goto nosideret;
1267
1268 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1269 {
1270 /* If the return type doesn't look like a function type,
1271 call an error. This can happen if somebody tries to
1272 turn a variable into a function call. This is here
1273 because people often want to call, eg, strcmp, which
1274 gdb doesn't know is a function. If gdb isn't asked for
1275 it's opinion (ie. through "whatis"), it won't offer
1276 it. */
1277
1278 struct type *type = value_type (called_method);
1279
1280 if (type && TYPE_CODE (type) == TYPE_CODE_PTR)
1281 type = TYPE_TARGET_TYPE (type);
1282 type = TYPE_TARGET_TYPE (type);
1283
1284 if (type)
1285 {
1286 if ((TYPE_CODE (type) == TYPE_CODE_ERROR) && expect_type)
1287 return allocate_value (expect_type);
1288 else
1289 return allocate_value (type);
1290 }
1291 else
1292 error (_("Expression of type other than "
1293 "\"method returning ...\" used as a method"));
1294 }
1295
1296 /* Now depending on whether we found a symbol for the method,
1297 we will either call the runtime dispatcher or the method
1298 directly. */
1299
1300 argvec[0] = called_method;
1301 argvec[1] = target;
1302 argvec[2] = value_from_longest (long_type, selector);
1303 /* User-supplied arguments. */
1304 for (tem = 0; tem < nargs; tem++)
1305 argvec[tem + 3] = evaluate_subexp_with_coercion (exp, pos, noside);
1306 argvec[tem + 3] = 0;
1307
1308 if (gnu_runtime && (method != NULL))
1309 {
1310 /* Function objc_msg_lookup returns a pointer. */
1311 deprecated_set_value_type (argvec[0],
1312 lookup_pointer_type (lookup_function_type (value_type (argvec[0]))));
1313 argvec[0]
1314 = call_function_by_hand (argvec[0], nargs + 2, argvec + 1);
1315 }
1316
1317 ret = call_function_by_hand (argvec[0], nargs + 2, argvec + 1);
1318 return ret;
1319 }
1320 break;
1321
1322 case OP_FUNCALL:
1323 (*pos) += 2;
1324 op = exp->elts[*pos].opcode;
1325 nargs = longest_to_int (exp->elts[pc + 1].longconst);
1326 /* Allocate arg vector, including space for the function to be
1327 called in argvec[0], a potential `this', and a terminating NULL. */
1328 argvec = (struct value **)
1329 alloca (sizeof (struct value *) * (nargs + 3));
1330 if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR)
1331 {
1332 /* First, evaluate the structure into arg2. */
1333 pc2 = (*pos)++;
1334
1335 if (noside == EVAL_SKIP)
1336 goto nosideret;
1337
1338 if (op == STRUCTOP_MEMBER)
1339 {
1340 arg2 = evaluate_subexp_for_address (exp, pos, noside);
1341 }
1342 else
1343 {
1344 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1345 }
1346
1347 /* If the function is a virtual function, then the
1348 aggregate value (providing the structure) plays
1349 its part by providing the vtable. Otherwise,
1350 it is just along for the ride: call the function
1351 directly. */
1352
1353 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1354
1355 type = check_typedef (value_type (arg1));
1356 if (TYPE_CODE (type) == TYPE_CODE_METHODPTR)
1357 {
1358 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1359 arg1 = value_zero (TYPE_TARGET_TYPE (type), not_lval);
1360 else
1361 arg1 = cplus_method_ptr_to_value (&arg2, arg1);
1362
1363 /* Now, say which argument to start evaluating from. */
1364 nargs++;
1365 tem = 2;
1366 argvec[1] = arg2;
1367 }
1368 else if (TYPE_CODE (type) == TYPE_CODE_MEMBERPTR)
1369 {
1370 struct type *type_ptr
1371 = lookup_pointer_type (TYPE_DOMAIN_TYPE (type));
1372 struct type *target_type_ptr
1373 = lookup_pointer_type (TYPE_TARGET_TYPE (type));
1374
1375 /* Now, convert these values to an address. */
1376 arg2 = value_cast (type_ptr, arg2);
1377
1378 mem_offset = value_as_long (arg1);
1379
1380 arg1 = value_from_pointer (target_type_ptr,
1381 value_as_long (arg2) + mem_offset);
1382 arg1 = value_ind (arg1);
1383 tem = 1;
1384 }
1385 else
1386 error (_("Non-pointer-to-member value used in pointer-to-member "
1387 "construct"));
1388 }
1389 else if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR)
1390 {
1391 /* Hair for method invocations. */
1392 int tem2;
1393
1394 nargs++;
1395 /* First, evaluate the structure into arg2. */
1396 pc2 = (*pos)++;
1397 tem2 = longest_to_int (exp->elts[pc2 + 1].longconst);
1398 *pos += 3 + BYTES_TO_EXP_ELEM (tem2 + 1);
1399 if (noside == EVAL_SKIP)
1400 goto nosideret;
1401
1402 if (op == STRUCTOP_STRUCT)
1403 {
1404 /* If v is a variable in a register, and the user types
1405 v.method (), this will produce an error, because v has
1406 no address.
1407
1408 A possible way around this would be to allocate a
1409 copy of the variable on the stack, copy in the
1410 contents, call the function, and copy out the
1411 contents. I.e. convert this from call by reference
1412 to call by copy-return (or whatever it's called).
1413 However, this does not work because it is not the
1414 same: the method being called could stash a copy of
1415 the address, and then future uses through that address
1416 (after the method returns) would be expected to
1417 use the variable itself, not some copy of it. */
1418 arg2 = evaluate_subexp_for_address (exp, pos, noside);
1419 }
1420 else
1421 {
1422 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1423
1424 /* Check to see if the operator '->' has been
1425 overloaded. If the operator has been overloaded
1426 replace arg2 with the value returned by the custom
1427 operator and continue evaluation. */
1428 while (unop_user_defined_p (op, arg2))
1429 {
1430 volatile struct gdb_exception except;
1431 struct value *value = NULL;
1432 TRY_CATCH (except, RETURN_MASK_ERROR)
1433 {
1434 value = value_x_unop (arg2, op, noside);
1435 }
1436
1437 if (except.reason < 0)
1438 {
1439 if (except.error == NOT_FOUND_ERROR)
1440 break;
1441 else
1442 throw_exception (except);
1443 }
1444 arg2 = value;
1445 }
1446 }
1447 /* Now, say which argument to start evaluating from. */
1448 tem = 2;
1449 }
1450 else if (op == OP_SCOPE
1451 && overload_resolution
1452 && (exp->language_defn->la_language == language_cplus))
1453 {
1454 /* Unpack it locally so we can properly handle overload
1455 resolution. */
1456 char *name;
1457 int local_tem;
1458
1459 pc2 = (*pos)++;
1460 local_tem = longest_to_int (exp->elts[pc2 + 2].longconst);
1461 (*pos) += 4 + BYTES_TO_EXP_ELEM (local_tem + 1);
1462 type = exp->elts[pc2 + 1].type;
1463 name = &exp->elts[pc2 + 3].string;
1464
1465 function = NULL;
1466 function_name = NULL;
1467 if (TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
1468 {
1469 function = cp_lookup_symbol_namespace (TYPE_TAG_NAME (type),
1470 name,
1471 get_selected_block (0),
1472 VAR_DOMAIN);
1473 if (function == NULL)
1474 error (_("No symbol \"%s\" in namespace \"%s\"."),
1475 name, TYPE_TAG_NAME (type));
1476
1477 tem = 1;
1478 /* arg2 is left as NULL on purpose. */
1479 }
1480 else
1481 {
1482 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1483 || TYPE_CODE (type) == TYPE_CODE_UNION);
1484 function_name = name;
1485
1486 /* We need a properly typed value for method lookup. For
1487 static methods arg2 is otherwise unused. */
1488 arg2 = value_zero (type, lval_memory);
1489 ++nargs;
1490 tem = 2;
1491 }
1492 }
1493 else if (op == OP_ADL_FUNC)
1494 {
1495 /* Save the function position and move pos so that the arguments
1496 can be evaluated. */
1497 int func_name_len;
1498
1499 save_pos1 = *pos;
1500 tem = 1;
1501
1502 func_name_len = longest_to_int (exp->elts[save_pos1 + 3].longconst);
1503 (*pos) += 6 + BYTES_TO_EXP_ELEM (func_name_len + 1);
1504 }
1505 else
1506 {
1507 /* Non-method function call. */
1508 save_pos1 = *pos;
1509 tem = 1;
1510
1511 /* If this is a C++ function wait until overload resolution. */
1512 if (op == OP_VAR_VALUE
1513 && overload_resolution
1514 && (exp->language_defn->la_language == language_cplus))
1515 {
1516 (*pos) += 4; /* Skip the evaluation of the symbol. */
1517 argvec[0] = NULL;
1518 }
1519 else
1520 {
1521 argvec[0] = evaluate_subexp_with_coercion (exp, pos, noside);
1522 type = value_type (argvec[0]);
1523 if (type && TYPE_CODE (type) == TYPE_CODE_PTR)
1524 type = TYPE_TARGET_TYPE (type);
1525 if (type && TYPE_CODE (type) == TYPE_CODE_FUNC)
1526 {
1527 for (; tem <= nargs && tem <= TYPE_NFIELDS (type); tem++)
1528 {
1529 argvec[tem] = evaluate_subexp (TYPE_FIELD_TYPE (type,
1530 tem - 1),
1531 exp, pos, noside);
1532 }
1533 }
1534 }
1535 }
1536
1537 /* Evaluate arguments (if not already done, e.g., namespace::func()
1538 and overload-resolution is off). */
1539 for (; tem <= nargs; tem++)
1540 {
1541 /* Ensure that array expressions are coerced into pointer
1542 objects. */
1543 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1544 }
1545
1546 /* Signal end of arglist. */
1547 argvec[tem] = 0;
1548
1549 if (op == OP_ADL_FUNC)
1550 {
1551 struct symbol *symp;
1552 char *func_name;
1553 int name_len;
1554 int string_pc = save_pos1 + 3;
1555
1556 /* Extract the function name. */
1557 name_len = longest_to_int (exp->elts[string_pc].longconst);
1558 func_name = (char *) alloca (name_len + 1);
1559 strcpy (func_name, &exp->elts[string_pc + 1].string);
1560
1561 find_overload_match (&argvec[1], nargs, func_name,
1562 NON_METHOD, /* not method */
1563 NULL, NULL, /* pass NULL symbol since
1564 symbol is unknown */
1565 NULL, &symp, NULL, 0, noside);
1566
1567 /* Now fix the expression being evaluated. */
1568 exp->elts[save_pos1 + 2].symbol = symp;
1569 argvec[0] = evaluate_subexp_with_coercion (exp, &save_pos1, noside);
1570 }
1571
1572 if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR
1573 || (op == OP_SCOPE && function_name != NULL))
1574 {
1575 int static_memfuncp;
1576 char *tstr;
1577
1578 /* Method invocation: stuff "this" as first parameter.
1579 If the method turns out to be static we undo this below. */
1580 argvec[1] = arg2;
1581
1582 if (op != OP_SCOPE)
1583 {
1584 /* Name of method from expression. */
1585 tstr = &exp->elts[pc2 + 2].string;
1586 }
1587 else
1588 tstr = function_name;
1589
1590 if (overload_resolution && (exp->language_defn->la_language
1591 == language_cplus))
1592 {
1593 /* Language is C++, do some overload resolution before
1594 evaluation. */
1595 struct value *valp = NULL;
1596
1597 (void) find_overload_match (&argvec[1], nargs, tstr,
1598 METHOD, /* method */
1599 &arg2, /* the object */
1600 NULL, &valp, NULL,
1601 &static_memfuncp, 0, noside);
1602
1603 if (op == OP_SCOPE && !static_memfuncp)
1604 {
1605 /* For the time being, we don't handle this. */
1606 error (_("Call to overloaded function %s requires "
1607 "`this' pointer"),
1608 function_name);
1609 }
1610 argvec[1] = arg2; /* the ``this'' pointer */
1611 argvec[0] = valp; /* Use the method found after overload
1612 resolution. */
1613 }
1614 else
1615 /* Non-C++ case -- or no overload resolution. */
1616 {
1617 struct value *temp = arg2;
1618
1619 argvec[0] = value_struct_elt (&temp, argvec + 1, tstr,
1620 &static_memfuncp,
1621 op == STRUCTOP_STRUCT
1622 ? "structure" : "structure pointer");
1623 /* value_struct_elt updates temp with the correct value
1624 of the ``this'' pointer if necessary, so modify argvec[1] to
1625 reflect any ``this'' changes. */
1626 arg2
1627 = value_from_longest (lookup_pointer_type(value_type (temp)),
1628 value_address (temp)
1629 + value_embedded_offset (temp));
1630 argvec[1] = arg2; /* the ``this'' pointer */
1631 }
1632
1633 /* Take out `this' if needed. */
1634 if (static_memfuncp)
1635 {
1636 argvec[1] = argvec[0];
1637 nargs--;
1638 argvec++;
1639 }
1640 }
1641 else if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR)
1642 {
1643 /* Pointer to member. argvec[1] is already set up. */
1644 argvec[0] = arg1;
1645 }
1646 else if (op == OP_VAR_VALUE || (op == OP_SCOPE && function != NULL))
1647 {
1648 /* Non-member function being called. */
1649 /* fn: This can only be done for C++ functions. A C-style function
1650 in a C++ program, for instance, does not have the fields that
1651 are expected here. */
1652
1653 if (overload_resolution && (exp->language_defn->la_language
1654 == language_cplus))
1655 {
1656 /* Language is C++, do some overload resolution before
1657 evaluation. */
1658 struct symbol *symp;
1659 int no_adl = 0;
1660
1661 /* If a scope has been specified disable ADL. */
1662 if (op == OP_SCOPE)
1663 no_adl = 1;
1664
1665 if (op == OP_VAR_VALUE)
1666 function = exp->elts[save_pos1+2].symbol;
1667
1668 (void) find_overload_match (&argvec[1], nargs,
1669 NULL, /* no need for name */
1670 NON_METHOD, /* not method */
1671 NULL, function, /* the function */
1672 NULL, &symp, NULL, no_adl, noside);
1673
1674 if (op == OP_VAR_VALUE)
1675 {
1676 /* Now fix the expression being evaluated. */
1677 exp->elts[save_pos1+2].symbol = symp;
1678 argvec[0] = evaluate_subexp_with_coercion (exp, &save_pos1,
1679 noside);
1680 }
1681 else
1682 argvec[0] = value_of_variable (symp, get_selected_block (0));
1683 }
1684 else
1685 {
1686 /* Not C++, or no overload resolution allowed. */
1687 /* Nothing to be done; argvec already correctly set up. */
1688 }
1689 }
1690 else
1691 {
1692 /* It is probably a C-style function. */
1693 /* Nothing to be done; argvec already correctly set up. */
1694 }
1695
1696 do_call_it:
1697
1698 if (noside == EVAL_SKIP)
1699 goto nosideret;
1700 if (argvec[0] == NULL)
1701 error (_("Cannot evaluate function -- may be inlined"));
1702 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1703 {
1704 /* If the return type doesn't look like a function type, call an
1705 error. This can happen if somebody tries to turn a variable into
1706 a function call. This is here because people often want to
1707 call, eg, strcmp, which gdb doesn't know is a function. If
1708 gdb isn't asked for it's opinion (ie. through "whatis"),
1709 it won't offer it. */
1710
1711 struct type *ftype = value_type (argvec[0]);
1712
1713 if (TYPE_CODE (ftype) == TYPE_CODE_INTERNAL_FUNCTION)
1714 {
1715 /* We don't know anything about what the internal
1716 function might return, but we have to return
1717 something. */
1718 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
1719 not_lval);
1720 }
1721 else if (TYPE_GNU_IFUNC (ftype))
1722 return allocate_value (TYPE_TARGET_TYPE (TYPE_TARGET_TYPE (ftype)));
1723 else if (TYPE_TARGET_TYPE (ftype))
1724 return allocate_value (TYPE_TARGET_TYPE (ftype));
1725 else
1726 error (_("Expression of type other than "
1727 "\"Function returning ...\" used as function"));
1728 }
1729 switch (TYPE_CODE (value_type (argvec[0])))
1730 {
1731 case TYPE_CODE_INTERNAL_FUNCTION:
1732 return call_internal_function (exp->gdbarch, exp->language_defn,
1733 argvec[0], nargs, argvec + 1);
1734 case TYPE_CODE_XMETHOD:
1735 return call_xmethod (argvec[0], nargs, argvec + 1);
1736 default:
1737 return call_function_by_hand (argvec[0], nargs, argvec + 1);
1738 }
1739 /* pai: FIXME save value from call_function_by_hand, then adjust
1740 pc by adjust_fn_pc if +ve. */
1741
1742 case OP_F77_UNDETERMINED_ARGLIST:
1743
1744 /* Remember that in F77, functions, substring ops and
1745 array subscript operations cannot be disambiguated
1746 at parse time. We have made all array subscript operations,
1747 substring operations as well as function calls come here
1748 and we now have to discover what the heck this thing actually was.
1749 If it is a function, we process just as if we got an OP_FUNCALL. */
1750
1751 nargs = longest_to_int (exp->elts[pc + 1].longconst);
1752 (*pos) += 2;
1753
1754 /* First determine the type code we are dealing with. */
1755 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1756 type = check_typedef (value_type (arg1));
1757 code = TYPE_CODE (type);
1758
1759 if (code == TYPE_CODE_PTR)
1760 {
1761 /* Fortran always passes variable to subroutines as pointer.
1762 So we need to look into its target type to see if it is
1763 array, string or function. If it is, we need to switch
1764 to the target value the original one points to. */
1765 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1766
1767 if (TYPE_CODE (target_type) == TYPE_CODE_ARRAY
1768 || TYPE_CODE (target_type) == TYPE_CODE_STRING
1769 || TYPE_CODE (target_type) == TYPE_CODE_FUNC)
1770 {
1771 arg1 = value_ind (arg1);
1772 type = check_typedef (value_type (arg1));
1773 code = TYPE_CODE (type);
1774 }
1775 }
1776
1777 switch (code)
1778 {
1779 case TYPE_CODE_ARRAY:
1780 if (exp->elts[*pos].opcode == OP_F90_RANGE)
1781 return value_f90_subarray (arg1, exp, pos, noside);
1782 else
1783 goto multi_f77_subscript;
1784
1785 case TYPE_CODE_STRING:
1786 if (exp->elts[*pos].opcode == OP_F90_RANGE)
1787 return value_f90_subarray (arg1, exp, pos, noside);
1788 else
1789 {
1790 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1791 return value_subscript (arg1, value_as_long (arg2));
1792 }
1793
1794 case TYPE_CODE_PTR:
1795 case TYPE_CODE_FUNC:
1796 /* It's a function call. */
1797 /* Allocate arg vector, including space for the function to be
1798 called in argvec[0] and a terminating NULL. */
1799 argvec = (struct value **)
1800 alloca (sizeof (struct value *) * (nargs + 2));
1801 argvec[0] = arg1;
1802 tem = 1;
1803 for (; tem <= nargs; tem++)
1804 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1805 argvec[tem] = 0; /* signal end of arglist */
1806 goto do_call_it;
1807
1808 default:
1809 error (_("Cannot perform substring on this type"));
1810 }
1811
1812 case OP_COMPLEX:
1813 /* We have a complex number, There should be 2 floating
1814 point numbers that compose it. */
1815 (*pos) += 2;
1816 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1817 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1818
1819 return value_literal_complex (arg1, arg2, exp->elts[pc + 1].type);
1820
1821 case STRUCTOP_STRUCT:
1822 tem = longest_to_int (exp->elts[pc + 1].longconst);
1823 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
1824 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1825 if (noside == EVAL_SKIP)
1826 goto nosideret;
1827 arg3 = value_struct_elt (&arg1, NULL, &exp->elts[pc + 2].string,
1828 NULL, "structure");
1829 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1830 arg3 = value_zero (value_type (arg3), not_lval);
1831 return arg3;
1832
1833 case STRUCTOP_PTR:
1834 tem = longest_to_int (exp->elts[pc + 1].longconst);
1835 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
1836 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1837 if (noside == EVAL_SKIP)
1838 goto nosideret;
1839
1840 /* Check to see if operator '->' has been overloaded. If so replace
1841 arg1 with the value returned by evaluating operator->(). */
1842 while (unop_user_defined_p (op, arg1))
1843 {
1844 volatile struct gdb_exception except;
1845 struct value *value = NULL;
1846 TRY_CATCH (except, RETURN_MASK_ERROR)
1847 {
1848 value = value_x_unop (arg1, op, noside);
1849 }
1850
1851 if (except.reason < 0)
1852 {
1853 if (except.error == NOT_FOUND_ERROR)
1854 break;
1855 else
1856 throw_exception (except);
1857 }
1858 arg1 = value;
1859 }
1860
1861 /* JYG: if print object is on we need to replace the base type
1862 with rtti type in order to continue on with successful
1863 lookup of member / method only available in the rtti type. */
1864 {
1865 struct type *type = value_type (arg1);
1866 struct type *real_type;
1867 int full, top, using_enc;
1868 struct value_print_options opts;
1869
1870 get_user_print_options (&opts);
1871 if (opts.objectprint && TYPE_TARGET_TYPE(type)
1872 && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_CLASS))
1873 {
1874 real_type = value_rtti_indirect_type (arg1, &full, &top,
1875 &using_enc);
1876 if (real_type)
1877 arg1 = value_cast (real_type, arg1);
1878 }
1879 }
1880
1881 arg3 = value_struct_elt (&arg1, NULL, &exp->elts[pc + 2].string,
1882 NULL, "structure pointer");
1883 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1884 arg3 = value_zero (value_type (arg3), not_lval);
1885 return arg3;
1886
1887 case STRUCTOP_MEMBER:
1888 case STRUCTOP_MPTR:
1889 if (op == STRUCTOP_MEMBER)
1890 arg1 = evaluate_subexp_for_address (exp, pos, noside);
1891 else
1892 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1893
1894 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1895
1896 if (noside == EVAL_SKIP)
1897 goto nosideret;
1898
1899 type = check_typedef (value_type (arg2));
1900 switch (TYPE_CODE (type))
1901 {
1902 case TYPE_CODE_METHODPTR:
1903 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1904 return value_zero (TYPE_TARGET_TYPE (type), not_lval);
1905 else
1906 {
1907 arg2 = cplus_method_ptr_to_value (&arg1, arg2);
1908 gdb_assert (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR);
1909 return value_ind (arg2);
1910 }
1911
1912 case TYPE_CODE_MEMBERPTR:
1913 /* Now, convert these values to an address. */
1914 arg1 = value_cast_pointers (lookup_pointer_type (TYPE_DOMAIN_TYPE (type)),
1915 arg1, 1);
1916
1917 mem_offset = value_as_long (arg2);
1918
1919 arg3 = value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
1920 value_as_long (arg1) + mem_offset);
1921 return value_ind (arg3);
1922
1923 default:
1924 error (_("non-pointer-to-member value used "
1925 "in pointer-to-member construct"));
1926 }
1927
1928 case TYPE_INSTANCE:
1929 nargs = longest_to_int (exp->elts[pc + 1].longconst);
1930 arg_types = (struct type **) alloca (nargs * sizeof (struct type *));
1931 for (ix = 0; ix < nargs; ++ix)
1932 arg_types[ix] = exp->elts[pc + 1 + ix + 1].type;
1933
1934 expect_type = make_params (nargs, arg_types);
1935 *(pos) += 3 + nargs;
1936 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
1937 xfree (TYPE_FIELDS (expect_type));
1938 xfree (TYPE_MAIN_TYPE (expect_type));
1939 xfree (expect_type);
1940 return arg1;
1941
1942 case BINOP_CONCAT:
1943 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
1944 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1945 if (noside == EVAL_SKIP)
1946 goto nosideret;
1947 if (binop_user_defined_p (op, arg1, arg2))
1948 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1949 else
1950 return value_concat (arg1, arg2);
1951
1952 case BINOP_ASSIGN:
1953 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1954 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
1955
1956 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
1957 return arg1;
1958 if (binop_user_defined_p (op, arg1, arg2))
1959 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1960 else
1961 return value_assign (arg1, arg2);
1962
1963 case BINOP_ASSIGN_MODIFY:
1964 (*pos) += 2;
1965 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1966 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
1967 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
1968 return arg1;
1969 op = exp->elts[pc + 1].opcode;
1970 if (binop_user_defined_p (op, arg1, arg2))
1971 return value_x_binop (arg1, arg2, BINOP_ASSIGN_MODIFY, op, noside);
1972 else if (op == BINOP_ADD && ptrmath_type_p (exp->language_defn,
1973 value_type (arg1))
1974 && is_integral_type (value_type (arg2)))
1975 arg2 = value_ptradd (arg1, value_as_long (arg2));
1976 else if (op == BINOP_SUB && ptrmath_type_p (exp->language_defn,
1977 value_type (arg1))
1978 && is_integral_type (value_type (arg2)))
1979 arg2 = value_ptradd (arg1, - value_as_long (arg2));
1980 else
1981 {
1982 struct value *tmp = arg1;
1983
1984 /* For shift and integer exponentiation operations,
1985 only promote the first argument. */
1986 if ((op == BINOP_LSH || op == BINOP_RSH || op == BINOP_EXP)
1987 && is_integral_type (value_type (arg2)))
1988 unop_promote (exp->language_defn, exp->gdbarch, &tmp);
1989 else
1990 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
1991
1992 arg2 = value_binop (tmp, arg2, op);
1993 }
1994 return value_assign (arg1, arg2);
1995
1996 case BINOP_ADD:
1997 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
1998 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1999 if (noside == EVAL_SKIP)
2000 goto nosideret;
2001 if (binop_user_defined_p (op, arg1, arg2))
2002 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2003 else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
2004 && is_integral_type (value_type (arg2)))
2005 return value_ptradd (arg1, value_as_long (arg2));
2006 else if (ptrmath_type_p (exp->language_defn, value_type (arg2))
2007 && is_integral_type (value_type (arg1)))
2008 return value_ptradd (arg2, value_as_long (arg1));
2009 else
2010 {
2011 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2012 return value_binop (arg1, arg2, BINOP_ADD);
2013 }
2014
2015 case BINOP_SUB:
2016 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2017 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2018 if (noside == EVAL_SKIP)
2019 goto nosideret;
2020 if (binop_user_defined_p (op, arg1, arg2))
2021 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2022 else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
2023 && ptrmath_type_p (exp->language_defn, value_type (arg2)))
2024 {
2025 /* FIXME -- should be ptrdiff_t */
2026 type = builtin_type (exp->gdbarch)->builtin_long;
2027 return value_from_longest (type, value_ptrdiff (arg1, arg2));
2028 }
2029 else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
2030 && is_integral_type (value_type (arg2)))
2031 return value_ptradd (arg1, - value_as_long (arg2));
2032 else
2033 {
2034 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2035 return value_binop (arg1, arg2, BINOP_SUB);
2036 }
2037
2038 case BINOP_EXP:
2039 case BINOP_MUL:
2040 case BINOP_DIV:
2041 case BINOP_INTDIV:
2042 case BINOP_REM:
2043 case BINOP_MOD:
2044 case BINOP_LSH:
2045 case BINOP_RSH:
2046 case BINOP_BITWISE_AND:
2047 case BINOP_BITWISE_IOR:
2048 case BINOP_BITWISE_XOR:
2049 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2050 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2051 if (noside == EVAL_SKIP)
2052 goto nosideret;
2053 if (binop_user_defined_p (op, arg1, arg2))
2054 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2055 else
2056 {
2057 /* If EVAL_AVOID_SIDE_EFFECTS and we're dividing by zero,
2058 fudge arg2 to avoid division-by-zero, the caller is
2059 (theoretically) only looking for the type of the result. */
2060 if (noside == EVAL_AVOID_SIDE_EFFECTS
2061 /* ??? Do we really want to test for BINOP_MOD here?
2062 The implementation of value_binop gives it a well-defined
2063 value. */
2064 && (op == BINOP_DIV
2065 || op == BINOP_INTDIV
2066 || op == BINOP_REM
2067 || op == BINOP_MOD)
2068 && value_logical_not (arg2))
2069 {
2070 struct value *v_one, *retval;
2071
2072 v_one = value_one (value_type (arg2));
2073 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &v_one);
2074 retval = value_binop (arg1, v_one, op);
2075 return retval;
2076 }
2077 else
2078 {
2079 /* For shift and integer exponentiation operations,
2080 only promote the first argument. */
2081 if ((op == BINOP_LSH || op == BINOP_RSH || op == BINOP_EXP)
2082 && is_integral_type (value_type (arg2)))
2083 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2084 else
2085 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2086
2087 return value_binop (arg1, arg2, op);
2088 }
2089 }
2090
2091 case BINOP_SUBSCRIPT:
2092 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2093 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2094 if (noside == EVAL_SKIP)
2095 goto nosideret;
2096 if (binop_user_defined_p (op, arg1, arg2))
2097 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2098 else
2099 {
2100 /* If the user attempts to subscript something that is not an
2101 array or pointer type (like a plain int variable for example),
2102 then report this as an error. */
2103
2104 arg1 = coerce_ref (arg1);
2105 type = check_typedef (value_type (arg1));
2106 if (TYPE_CODE (type) != TYPE_CODE_ARRAY
2107 && TYPE_CODE (type) != TYPE_CODE_PTR)
2108 {
2109 if (TYPE_NAME (type))
2110 error (_("cannot subscript something of type `%s'"),
2111 TYPE_NAME (type));
2112 else
2113 error (_("cannot subscript requested type"));
2114 }
2115
2116 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2117 return value_zero (TYPE_TARGET_TYPE (type), VALUE_LVAL (arg1));
2118 else
2119 return value_subscript (arg1, value_as_long (arg2));
2120 }
2121 case MULTI_SUBSCRIPT:
2122 (*pos) += 2;
2123 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2124 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2125 while (nargs-- > 0)
2126 {
2127 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2128 /* FIXME: EVAL_SKIP handling may not be correct. */
2129 if (noside == EVAL_SKIP)
2130 {
2131 if (nargs > 0)
2132 {
2133 continue;
2134 }
2135 else
2136 {
2137 goto nosideret;
2138 }
2139 }
2140 /* FIXME: EVAL_AVOID_SIDE_EFFECTS handling may not be correct. */
2141 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2142 {
2143 /* If the user attempts to subscript something that has no target
2144 type (like a plain int variable for example), then report this
2145 as an error. */
2146
2147 type = TYPE_TARGET_TYPE (check_typedef (value_type (arg1)));
2148 if (type != NULL)
2149 {
2150 arg1 = value_zero (type, VALUE_LVAL (arg1));
2151 noside = EVAL_SKIP;
2152 continue;
2153 }
2154 else
2155 {
2156 error (_("cannot subscript something of type `%s'"),
2157 TYPE_NAME (value_type (arg1)));
2158 }
2159 }
2160
2161 if (binop_user_defined_p (op, arg1, arg2))
2162 {
2163 arg1 = value_x_binop (arg1, arg2, op, OP_NULL, noside);
2164 }
2165 else
2166 {
2167 arg1 = coerce_ref (arg1);
2168 type = check_typedef (value_type (arg1));
2169
2170 switch (TYPE_CODE (type))
2171 {
2172 case TYPE_CODE_PTR:
2173 case TYPE_CODE_ARRAY:
2174 case TYPE_CODE_STRING:
2175 arg1 = value_subscript (arg1, value_as_long (arg2));
2176 break;
2177
2178 default:
2179 if (TYPE_NAME (type))
2180 error (_("cannot subscript something of type `%s'"),
2181 TYPE_NAME (type));
2182 else
2183 error (_("cannot subscript requested type"));
2184 }
2185 }
2186 }
2187 return (arg1);
2188
2189 multi_f77_subscript:
2190 {
2191 LONGEST subscript_array[MAX_FORTRAN_DIMS];
2192 int ndimensions = 1, i;
2193 struct value *array = arg1;
2194
2195 if (nargs > MAX_FORTRAN_DIMS)
2196 error (_("Too many subscripts for F77 (%d Max)"), MAX_FORTRAN_DIMS);
2197
2198 ndimensions = calc_f77_array_dims (type);
2199
2200 if (nargs != ndimensions)
2201 error (_("Wrong number of subscripts"));
2202
2203 gdb_assert (nargs > 0);
2204
2205 /* Now that we know we have a legal array subscript expression
2206 let us actually find out where this element exists in the array. */
2207
2208 /* Take array indices left to right. */
2209 for (i = 0; i < nargs; i++)
2210 {
2211 /* Evaluate each subscript; it must be a legal integer in F77. */
2212 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2213
2214 /* Fill in the subscript array. */
2215
2216 subscript_array[i] = value_as_long (arg2);
2217 }
2218
2219 /* Internal type of array is arranged right to left. */
2220 for (i = nargs; i > 0; i--)
2221 {
2222 struct type *array_type = check_typedef (value_type (array));
2223 LONGEST index = subscript_array[i - 1];
2224
2225 array = value_subscripted_rvalue (array, index,
2226 f77_get_lowerbound (array_type));
2227 }
2228
2229 return array;
2230 }
2231
2232 case BINOP_LOGICAL_AND:
2233 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2234 if (noside == EVAL_SKIP)
2235 {
2236 evaluate_subexp (NULL_TYPE, exp, pos, noside);
2237 goto nosideret;
2238 }
2239
2240 oldpos = *pos;
2241 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2242 *pos = oldpos;
2243
2244 if (binop_user_defined_p (op, arg1, arg2))
2245 {
2246 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2247 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2248 }
2249 else
2250 {
2251 tem = value_logical_not (arg1);
2252 arg2 = evaluate_subexp (NULL_TYPE, exp, pos,
2253 (tem ? EVAL_SKIP : noside));
2254 type = language_bool_type (exp->language_defn, exp->gdbarch);
2255 return value_from_longest (type,
2256 (LONGEST) (!tem && !value_logical_not (arg2)));
2257 }
2258
2259 case BINOP_LOGICAL_OR:
2260 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2261 if (noside == EVAL_SKIP)
2262 {
2263 evaluate_subexp (NULL_TYPE, exp, pos, noside);
2264 goto nosideret;
2265 }
2266
2267 oldpos = *pos;
2268 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2269 *pos = oldpos;
2270
2271 if (binop_user_defined_p (op, arg1, arg2))
2272 {
2273 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2274 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2275 }
2276 else
2277 {
2278 tem = value_logical_not (arg1);
2279 arg2 = evaluate_subexp (NULL_TYPE, exp, pos,
2280 (!tem ? EVAL_SKIP : noside));
2281 type = language_bool_type (exp->language_defn, exp->gdbarch);
2282 return value_from_longest (type,
2283 (LONGEST) (!tem || !value_logical_not (arg2)));
2284 }
2285
2286 case BINOP_EQUAL:
2287 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2288 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2289 if (noside == EVAL_SKIP)
2290 goto nosideret;
2291 if (binop_user_defined_p (op, arg1, arg2))
2292 {
2293 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2294 }
2295 else
2296 {
2297 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2298 tem = value_equal (arg1, arg2);
2299 type = language_bool_type (exp->language_defn, exp->gdbarch);
2300 return value_from_longest (type, (LONGEST) tem);
2301 }
2302
2303 case BINOP_NOTEQUAL:
2304 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2305 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2306 if (noside == EVAL_SKIP)
2307 goto nosideret;
2308 if (binop_user_defined_p (op, arg1, arg2))
2309 {
2310 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2311 }
2312 else
2313 {
2314 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2315 tem = value_equal (arg1, arg2);
2316 type = language_bool_type (exp->language_defn, exp->gdbarch);
2317 return value_from_longest (type, (LONGEST) ! tem);
2318 }
2319
2320 case BINOP_LESS:
2321 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2322 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2323 if (noside == EVAL_SKIP)
2324 goto nosideret;
2325 if (binop_user_defined_p (op, arg1, arg2))
2326 {
2327 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2328 }
2329 else
2330 {
2331 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2332 tem = value_less (arg1, arg2);
2333 type = language_bool_type (exp->language_defn, exp->gdbarch);
2334 return value_from_longest (type, (LONGEST) tem);
2335 }
2336
2337 case BINOP_GTR:
2338 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2339 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2340 if (noside == EVAL_SKIP)
2341 goto nosideret;
2342 if (binop_user_defined_p (op, arg1, arg2))
2343 {
2344 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2345 }
2346 else
2347 {
2348 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2349 tem = value_less (arg2, arg1);
2350 type = language_bool_type (exp->language_defn, exp->gdbarch);
2351 return value_from_longest (type, (LONGEST) tem);
2352 }
2353
2354 case BINOP_GEQ:
2355 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2356 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2357 if (noside == EVAL_SKIP)
2358 goto nosideret;
2359 if (binop_user_defined_p (op, arg1, arg2))
2360 {
2361 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2362 }
2363 else
2364 {
2365 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2366 tem = value_less (arg2, arg1) || value_equal (arg1, arg2);
2367 type = language_bool_type (exp->language_defn, exp->gdbarch);
2368 return value_from_longest (type, (LONGEST) tem);
2369 }
2370
2371 case BINOP_LEQ:
2372 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2373 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2374 if (noside == EVAL_SKIP)
2375 goto nosideret;
2376 if (binop_user_defined_p (op, arg1, arg2))
2377 {
2378 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2379 }
2380 else
2381 {
2382 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2383 tem = value_less (arg1, arg2) || value_equal (arg1, arg2);
2384 type = language_bool_type (exp->language_defn, exp->gdbarch);
2385 return value_from_longest (type, (LONGEST) tem);
2386 }
2387
2388 case BINOP_REPEAT:
2389 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2390 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2391 if (noside == EVAL_SKIP)
2392 goto nosideret;
2393 type = check_typedef (value_type (arg2));
2394 if (TYPE_CODE (type) != TYPE_CODE_INT)
2395 error (_("Non-integral right operand for \"@\" operator."));
2396 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2397 {
2398 return allocate_repeat_value (value_type (arg1),
2399 longest_to_int (value_as_long (arg2)));
2400 }
2401 else
2402 return value_repeat (arg1, longest_to_int (value_as_long (arg2)));
2403
2404 case BINOP_COMMA:
2405 evaluate_subexp (NULL_TYPE, exp, pos, noside);
2406 return evaluate_subexp (NULL_TYPE, exp, pos, noside);
2407
2408 case UNOP_PLUS:
2409 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2410 if (noside == EVAL_SKIP)
2411 goto nosideret;
2412 if (unop_user_defined_p (op, arg1))
2413 return value_x_unop (arg1, op, noside);
2414 else
2415 {
2416 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2417 return value_pos (arg1);
2418 }
2419
2420 case UNOP_NEG:
2421 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2422 if (noside == EVAL_SKIP)
2423 goto nosideret;
2424 if (unop_user_defined_p (op, arg1))
2425 return value_x_unop (arg1, op, noside);
2426 else
2427 {
2428 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2429 return value_neg (arg1);
2430 }
2431
2432 case UNOP_COMPLEMENT:
2433 /* C++: check for and handle destructor names. */
2434 op = exp->elts[*pos].opcode;
2435
2436 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2437 if (noside == EVAL_SKIP)
2438 goto nosideret;
2439 if (unop_user_defined_p (UNOP_COMPLEMENT, arg1))
2440 return value_x_unop (arg1, UNOP_COMPLEMENT, noside);
2441 else
2442 {
2443 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2444 return value_complement (arg1);
2445 }
2446
2447 case UNOP_LOGICAL_NOT:
2448 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2449 if (noside == EVAL_SKIP)
2450 goto nosideret;
2451 if (unop_user_defined_p (op, arg1))
2452 return value_x_unop (arg1, op, noside);
2453 else
2454 {
2455 type = language_bool_type (exp->language_defn, exp->gdbarch);
2456 return value_from_longest (type, (LONGEST) value_logical_not (arg1));
2457 }
2458
2459 case UNOP_IND:
2460 if (expect_type && TYPE_CODE (expect_type) == TYPE_CODE_PTR)
2461 expect_type = TYPE_TARGET_TYPE (check_typedef (expect_type));
2462 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2463 type = check_typedef (value_type (arg1));
2464 if (TYPE_CODE (type) == TYPE_CODE_METHODPTR
2465 || TYPE_CODE (type) == TYPE_CODE_MEMBERPTR)
2466 error (_("Attempt to dereference pointer "
2467 "to member without an object"));
2468 if (noside == EVAL_SKIP)
2469 goto nosideret;
2470 if (unop_user_defined_p (op, arg1))
2471 return value_x_unop (arg1, op, noside);
2472 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2473 {
2474 type = check_typedef (value_type (arg1));
2475 if (TYPE_CODE (type) == TYPE_CODE_PTR
2476 || TYPE_CODE (type) == TYPE_CODE_REF
2477 /* In C you can dereference an array to get the 1st elt. */
2478 || TYPE_CODE (type) == TYPE_CODE_ARRAY
2479 )
2480 return value_zero (TYPE_TARGET_TYPE (type),
2481 lval_memory);
2482 else if (TYPE_CODE (type) == TYPE_CODE_INT)
2483 /* GDB allows dereferencing an int. */
2484 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
2485 lval_memory);
2486 else
2487 error (_("Attempt to take contents of a non-pointer value."));
2488 }
2489
2490 /* Allow * on an integer so we can cast it to whatever we want.
2491 This returns an int, which seems like the most C-like thing to
2492 do. "long long" variables are rare enough that
2493 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
2494 if (TYPE_CODE (type) == TYPE_CODE_INT)
2495 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
2496 (CORE_ADDR) value_as_address (arg1));
2497 return value_ind (arg1);
2498
2499 case UNOP_ADDR:
2500 /* C++: check for and handle pointer to members. */
2501
2502 op = exp->elts[*pos].opcode;
2503
2504 if (noside == EVAL_SKIP)
2505 {
2506 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
2507 goto nosideret;
2508 }
2509 else
2510 {
2511 struct value *retvalp = evaluate_subexp_for_address (exp, pos,
2512 noside);
2513
2514 return retvalp;
2515 }
2516
2517 case UNOP_SIZEOF:
2518 if (noside == EVAL_SKIP)
2519 {
2520 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
2521 goto nosideret;
2522 }
2523 return evaluate_subexp_for_sizeof (exp, pos, noside);
2524
2525 case UNOP_CAST:
2526 (*pos) += 2;
2527 type = exp->elts[pc + 1].type;
2528 arg1 = evaluate_subexp (type, exp, pos, noside);
2529 if (noside == EVAL_SKIP)
2530 goto nosideret;
2531 if (type != value_type (arg1))
2532 arg1 = value_cast (type, arg1);
2533 return arg1;
2534
2535 case UNOP_CAST_TYPE:
2536 arg1 = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2537 type = value_type (arg1);
2538 arg1 = evaluate_subexp (type, exp, pos, noside);
2539 if (noside == EVAL_SKIP)
2540 goto nosideret;
2541 if (type != value_type (arg1))
2542 arg1 = value_cast (type, arg1);
2543 return arg1;
2544
2545 case UNOP_DYNAMIC_CAST:
2546 arg1 = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2547 type = value_type (arg1);
2548 arg1 = evaluate_subexp (type, exp, pos, noside);
2549 if (noside == EVAL_SKIP)
2550 goto nosideret;
2551 return value_dynamic_cast (type, arg1);
2552
2553 case UNOP_REINTERPRET_CAST:
2554 arg1 = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2555 type = value_type (arg1);
2556 arg1 = evaluate_subexp (type, exp, pos, noside);
2557 if (noside == EVAL_SKIP)
2558 goto nosideret;
2559 return value_reinterpret_cast (type, arg1);
2560
2561 case UNOP_MEMVAL:
2562 (*pos) += 2;
2563 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2564 if (noside == EVAL_SKIP)
2565 goto nosideret;
2566 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2567 return value_zero (exp->elts[pc + 1].type, lval_memory);
2568 else
2569 return value_at_lazy (exp->elts[pc + 1].type,
2570 value_as_address (arg1));
2571
2572 case UNOP_MEMVAL_TYPE:
2573 arg1 = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2574 type = value_type (arg1);
2575 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2576 if (noside == EVAL_SKIP)
2577 goto nosideret;
2578 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2579 return value_zero (type, lval_memory);
2580 else
2581 return value_at_lazy (type, value_as_address (arg1));
2582
2583 case UNOP_MEMVAL_TLS:
2584 (*pos) += 3;
2585 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2586 if (noside == EVAL_SKIP)
2587 goto nosideret;
2588 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2589 return value_zero (exp->elts[pc + 2].type, lval_memory);
2590 else
2591 {
2592 CORE_ADDR tls_addr;
2593
2594 tls_addr = target_translate_tls_address (exp->elts[pc + 1].objfile,
2595 value_as_address (arg1));
2596 return value_at_lazy (exp->elts[pc + 2].type, tls_addr);
2597 }
2598
2599 case UNOP_PREINCREMENT:
2600 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2601 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2602 return arg1;
2603 else if (unop_user_defined_p (op, arg1))
2604 {
2605 return value_x_unop (arg1, op, noside);
2606 }
2607 else
2608 {
2609 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2610 arg2 = value_ptradd (arg1, 1);
2611 else
2612 {
2613 struct value *tmp = arg1;
2614
2615 arg2 = value_one (value_type (arg1));
2616 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2617 arg2 = value_binop (tmp, arg2, BINOP_ADD);
2618 }
2619
2620 return value_assign (arg1, arg2);
2621 }
2622
2623 case UNOP_PREDECREMENT:
2624 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2625 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2626 return arg1;
2627 else if (unop_user_defined_p (op, arg1))
2628 {
2629 return value_x_unop (arg1, op, noside);
2630 }
2631 else
2632 {
2633 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2634 arg2 = value_ptradd (arg1, -1);
2635 else
2636 {
2637 struct value *tmp = arg1;
2638
2639 arg2 = value_one (value_type (arg1));
2640 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2641 arg2 = value_binop (tmp, arg2, BINOP_SUB);
2642 }
2643
2644 return value_assign (arg1, arg2);
2645 }
2646
2647 case UNOP_POSTINCREMENT:
2648 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2649 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2650 return arg1;
2651 else if (unop_user_defined_p (op, arg1))
2652 {
2653 return value_x_unop (arg1, op, noside);
2654 }
2655 else
2656 {
2657 arg3 = value_non_lval (arg1);
2658
2659 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2660 arg2 = value_ptradd (arg1, 1);
2661 else
2662 {
2663 struct value *tmp = arg1;
2664
2665 arg2 = value_one (value_type (arg1));
2666 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2667 arg2 = value_binop (tmp, arg2, BINOP_ADD);
2668 }
2669
2670 value_assign (arg1, arg2);
2671 return arg3;
2672 }
2673
2674 case UNOP_POSTDECREMENT:
2675 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2676 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2677 return arg1;
2678 else if (unop_user_defined_p (op, arg1))
2679 {
2680 return value_x_unop (arg1, op, noside);
2681 }
2682 else
2683 {
2684 arg3 = value_non_lval (arg1);
2685
2686 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2687 arg2 = value_ptradd (arg1, -1);
2688 else
2689 {
2690 struct value *tmp = arg1;
2691
2692 arg2 = value_one (value_type (arg1));
2693 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2694 arg2 = value_binop (tmp, arg2, BINOP_SUB);
2695 }
2696
2697 value_assign (arg1, arg2);
2698 return arg3;
2699 }
2700
2701 case OP_THIS:
2702 (*pos) += 1;
2703 return value_of_this (exp->language_defn);
2704
2705 case OP_TYPE:
2706 /* The value is not supposed to be used. This is here to make it
2707 easier to accommodate expressions that contain types. */
2708 (*pos) += 2;
2709 if (noside == EVAL_SKIP)
2710 goto nosideret;
2711 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2712 {
2713 struct type *type = exp->elts[pc + 1].type;
2714
2715 /* If this is a typedef, then find its immediate target. We
2716 use check_typedef to resolve stubs, but we ignore its
2717 result because we do not want to dig past all
2718 typedefs. */
2719 check_typedef (type);
2720 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2721 type = TYPE_TARGET_TYPE (type);
2722 return allocate_value (type);
2723 }
2724 else
2725 error (_("Attempt to use a type name as an expression"));
2726
2727 case OP_TYPEOF:
2728 case OP_DECLTYPE:
2729 if (noside == EVAL_SKIP)
2730 {
2731 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
2732 goto nosideret;
2733 }
2734 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2735 {
2736 enum exp_opcode sub_op = exp->elts[*pos].opcode;
2737 struct value *result;
2738
2739 result = evaluate_subexp (NULL_TYPE, exp, pos,
2740 EVAL_AVOID_SIDE_EFFECTS);
2741
2742 /* 'decltype' has special semantics for lvalues. */
2743 if (op == OP_DECLTYPE
2744 && (sub_op == BINOP_SUBSCRIPT
2745 || sub_op == STRUCTOP_MEMBER
2746 || sub_op == STRUCTOP_MPTR
2747 || sub_op == UNOP_IND
2748 || sub_op == STRUCTOP_STRUCT
2749 || sub_op == STRUCTOP_PTR
2750 || sub_op == OP_SCOPE))
2751 {
2752 struct type *type = value_type (result);
2753
2754 if (TYPE_CODE (check_typedef (type)) != TYPE_CODE_REF)
2755 {
2756 type = lookup_reference_type (type);
2757 result = allocate_value (type);
2758 }
2759 }
2760
2761 return result;
2762 }
2763 else
2764 error (_("Attempt to use a type as an expression"));
2765
2766 case OP_TYPEID:
2767 {
2768 struct value *result;
2769 enum exp_opcode sub_op = exp->elts[*pos].opcode;
2770
2771 if (sub_op == OP_TYPE || sub_op == OP_DECLTYPE || sub_op == OP_TYPEOF)
2772 result = evaluate_subexp (NULL_TYPE, exp, pos,
2773 EVAL_AVOID_SIDE_EFFECTS);
2774 else
2775 result = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2776
2777 if (noside != EVAL_NORMAL)
2778 return allocate_value (cplus_typeid_type (exp->gdbarch));
2779
2780 return cplus_typeid (result);
2781 }
2782
2783 default:
2784 /* Removing this case and compiling with gcc -Wall reveals that
2785 a lot of cases are hitting this case. Some of these should
2786 probably be removed from expression.h; others are legitimate
2787 expressions which are (apparently) not fully implemented.
2788
2789 If there are any cases landing here which mean a user error,
2790 then they should be separate cases, with more descriptive
2791 error messages. */
2792
2793 error (_("GDB does not (yet) know how to "
2794 "evaluate that kind of expression"));
2795 }
2796
2797 nosideret:
2798 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
2799 }
2800 \f
2801 /* Evaluate a subexpression of EXP, at index *POS,
2802 and return the address of that subexpression.
2803 Advance *POS over the subexpression.
2804 If the subexpression isn't an lvalue, get an error.
2805 NOSIDE may be EVAL_AVOID_SIDE_EFFECTS;
2806 then only the type of the result need be correct. */
2807
2808 static struct value *
2809 evaluate_subexp_for_address (struct expression *exp, int *pos,
2810 enum noside noside)
2811 {
2812 enum exp_opcode op;
2813 int pc;
2814 struct symbol *var;
2815 struct value *x;
2816 int tem;
2817
2818 pc = (*pos);
2819 op = exp->elts[pc].opcode;
2820
2821 switch (op)
2822 {
2823 case UNOP_IND:
2824 (*pos)++;
2825 x = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2826
2827 /* We can't optimize out "&*" if there's a user-defined operator*. */
2828 if (unop_user_defined_p (op, x))
2829 {
2830 x = value_x_unop (x, op, noside);
2831 goto default_case_after_eval;
2832 }
2833
2834 return coerce_array (x);
2835
2836 case UNOP_MEMVAL:
2837 (*pos) += 3;
2838 return value_cast (lookup_pointer_type (exp->elts[pc + 1].type),
2839 evaluate_subexp (NULL_TYPE, exp, pos, noside));
2840
2841 case UNOP_MEMVAL_TYPE:
2842 {
2843 struct type *type;
2844
2845 (*pos) += 1;
2846 x = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2847 type = value_type (x);
2848 return value_cast (lookup_pointer_type (type),
2849 evaluate_subexp (NULL_TYPE, exp, pos, noside));
2850 }
2851
2852 case OP_VAR_VALUE:
2853 var = exp->elts[pc + 2].symbol;
2854
2855 /* C++: The "address" of a reference should yield the address
2856 * of the object pointed to. Let value_addr() deal with it. */
2857 if (TYPE_CODE (SYMBOL_TYPE (var)) == TYPE_CODE_REF)
2858 goto default_case;
2859
2860 (*pos) += 4;
2861 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2862 {
2863 struct type *type =
2864 lookup_pointer_type (SYMBOL_TYPE (var));
2865 enum address_class sym_class = SYMBOL_CLASS (var);
2866
2867 if (sym_class == LOC_CONST
2868 || sym_class == LOC_CONST_BYTES
2869 || sym_class == LOC_REGISTER)
2870 error (_("Attempt to take address of register or constant."));
2871
2872 return
2873 value_zero (type, not_lval);
2874 }
2875 else
2876 return address_of_variable (var, exp->elts[pc + 1].block);
2877
2878 case OP_SCOPE:
2879 tem = longest_to_int (exp->elts[pc + 2].longconst);
2880 (*pos) += 5 + BYTES_TO_EXP_ELEM (tem + 1);
2881 x = value_aggregate_elt (exp->elts[pc + 1].type,
2882 &exp->elts[pc + 3].string,
2883 NULL, 1, noside);
2884 if (x == NULL)
2885 error (_("There is no field named %s"), &exp->elts[pc + 3].string);
2886 return x;
2887
2888 default:
2889 default_case:
2890 x = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2891 default_case_after_eval:
2892 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2893 {
2894 struct type *type = check_typedef (value_type (x));
2895
2896 if (TYPE_CODE (type) == TYPE_CODE_REF)
2897 return value_zero (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2898 not_lval);
2899 else if (VALUE_LVAL (x) == lval_memory || value_must_coerce_to_target (x))
2900 return value_zero (lookup_pointer_type (value_type (x)),
2901 not_lval);
2902 else
2903 error (_("Attempt to take address of "
2904 "value not located in memory."));
2905 }
2906 return value_addr (x);
2907 }
2908 }
2909
2910 /* Evaluate like `evaluate_subexp' except coercing arrays to pointers.
2911 When used in contexts where arrays will be coerced anyway, this is
2912 equivalent to `evaluate_subexp' but much faster because it avoids
2913 actually fetching array contents (perhaps obsolete now that we have
2914 value_lazy()).
2915
2916 Note that we currently only do the coercion for C expressions, where
2917 arrays are zero based and the coercion is correct. For other languages,
2918 with nonzero based arrays, coercion loses. Use CAST_IS_CONVERSION
2919 to decide if coercion is appropriate. */
2920
2921 struct value *
2922 evaluate_subexp_with_coercion (struct expression *exp,
2923 int *pos, enum noside noside)
2924 {
2925 enum exp_opcode op;
2926 int pc;
2927 struct value *val;
2928 struct symbol *var;
2929 struct type *type;
2930
2931 pc = (*pos);
2932 op = exp->elts[pc].opcode;
2933
2934 switch (op)
2935 {
2936 case OP_VAR_VALUE:
2937 var = exp->elts[pc + 2].symbol;
2938 type = check_typedef (SYMBOL_TYPE (var));
2939 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2940 && !TYPE_VECTOR (type)
2941 && CAST_IS_CONVERSION (exp->language_defn))
2942 {
2943 (*pos) += 4;
2944 val = address_of_variable (var, exp->elts[pc + 1].block);
2945 return value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2946 val);
2947 }
2948 /* FALLTHROUGH */
2949
2950 default:
2951 return evaluate_subexp (NULL_TYPE, exp, pos, noside);
2952 }
2953 }
2954
2955 /* Evaluate a subexpression of EXP, at index *POS,
2956 and return a value for the size of that subexpression.
2957 Advance *POS over the subexpression. If NOSIDE is EVAL_NORMAL
2958 we allow side-effects on the operand if its type is a variable
2959 length array. */
2960
2961 static struct value *
2962 evaluate_subexp_for_sizeof (struct expression *exp, int *pos,
2963 enum noside noside)
2964 {
2965 /* FIXME: This should be size_t. */
2966 struct type *size_type = builtin_type (exp->gdbarch)->builtin_int;
2967 enum exp_opcode op;
2968 int pc;
2969 struct type *type;
2970 struct value *val;
2971
2972 pc = (*pos);
2973 op = exp->elts[pc].opcode;
2974
2975 switch (op)
2976 {
2977 /* This case is handled specially
2978 so that we avoid creating a value for the result type.
2979 If the result type is very big, it's desirable not to
2980 create a value unnecessarily. */
2981 case UNOP_IND:
2982 (*pos)++;
2983 val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2984 type = check_typedef (value_type (val));
2985 if (TYPE_CODE (type) != TYPE_CODE_PTR
2986 && TYPE_CODE (type) != TYPE_CODE_REF
2987 && TYPE_CODE (type) != TYPE_CODE_ARRAY)
2988 error (_("Attempt to take contents of a non-pointer value."));
2989 type = TYPE_TARGET_TYPE (type);
2990 if (is_dynamic_type (type))
2991 type = value_type (value_ind (val));
2992 return value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
2993
2994 case UNOP_MEMVAL:
2995 (*pos) += 3;
2996 type = exp->elts[pc + 1].type;
2997 break;
2998
2999 case UNOP_MEMVAL_TYPE:
3000 (*pos) += 1;
3001 val = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3002 type = value_type (val);
3003 break;
3004
3005 case OP_VAR_VALUE:
3006 type = SYMBOL_TYPE (exp->elts[pc + 2].symbol);
3007 if (is_dynamic_type (type))
3008 {
3009 val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
3010 type = value_type (val);
3011 }
3012 else
3013 (*pos) += 4;
3014 break;
3015
3016 /* Deal with the special case if NOSIDE is EVAL_NORMAL and the resulting
3017 type of the subscript is a variable length array type. In this case we
3018 must re-evaluate the right hand side of the subcription to allow
3019 side-effects. */
3020 case BINOP_SUBSCRIPT:
3021 if (noside == EVAL_NORMAL)
3022 {
3023 int pc = (*pos) + 1;
3024
3025 val = evaluate_subexp (NULL_TYPE, exp, &pc, EVAL_AVOID_SIDE_EFFECTS);
3026 type = check_typedef (value_type (val));
3027 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
3028 {
3029 type = check_typedef (TYPE_TARGET_TYPE (type));
3030 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
3031 {
3032 type = TYPE_INDEX_TYPE (type);
3033 /* Only re-evaluate the right hand side if the resulting type
3034 is a variable length type. */
3035 if (TYPE_RANGE_DATA (type)->flag_bound_evaluated)
3036 {
3037 val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
3038 return value_from_longest
3039 (size_type, (LONGEST) TYPE_LENGTH (value_type (val)));
3040 }
3041 }
3042 }
3043 }
3044
3045 /* Fall through. */
3046
3047 default:
3048 val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3049 type = value_type (val);
3050 break;
3051 }
3052
3053 /* $5.3.3/2 of the C++ Standard (n3290 draft) says of sizeof:
3054 "When applied to a reference or a reference type, the result is
3055 the size of the referenced type." */
3056 CHECK_TYPEDEF (type);
3057 if (exp->language_defn->la_language == language_cplus
3058 && TYPE_CODE (type) == TYPE_CODE_REF)
3059 type = check_typedef (TYPE_TARGET_TYPE (type));
3060 return value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
3061 }
3062
3063 /* Parse a type expression in the string [P..P+LENGTH). */
3064
3065 struct type *
3066 parse_and_eval_type (char *p, int length)
3067 {
3068 char *tmp = (char *) alloca (length + 4);
3069 struct expression *expr;
3070
3071 tmp[0] = '(';
3072 memcpy (tmp + 1, p, length);
3073 tmp[length + 1] = ')';
3074 tmp[length + 2] = '0';
3075 tmp[length + 3] = '\0';
3076 expr = parse_expression (tmp);
3077 if (expr->elts[0].opcode != UNOP_CAST)
3078 error (_("Internal error in eval_type."));
3079 return expr->elts[1].type;
3080 }
3081
3082 int
3083 calc_f77_array_dims (struct type *array_type)
3084 {
3085 int ndimen = 1;
3086 struct type *tmp_type;
3087
3088 if ((TYPE_CODE (array_type) != TYPE_CODE_ARRAY))
3089 error (_("Can't get dimensions for a non-array type"));
3090
3091 tmp_type = array_type;
3092
3093 while ((tmp_type = TYPE_TARGET_TYPE (tmp_type)))
3094 {
3095 if (TYPE_CODE (tmp_type) == TYPE_CODE_ARRAY)
3096 ++ndimen;
3097 }
3098 return ndimen;
3099 }