PR c++/13225
[binutils-gdb.git] / gdb / eval.c
1 /* Evaluate expressions for GDB.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2005, 2006, 2007, 2008,
5 2009, 2010, 2011 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "gdb_string.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "value.h"
27 #include "expression.h"
28 #include "target.h"
29 #include "frame.h"
30 #include "language.h" /* For CAST_IS_CONVERSION. */
31 #include "f-lang.h" /* For array bound stuff. */
32 #include "cp-abi.h"
33 #include "infcall.h"
34 #include "objc-lang.h"
35 #include "block.h"
36 #include "parser-defs.h"
37 #include "cp-support.h"
38 #include "ui-out.h"
39 #include "exceptions.h"
40 #include "regcache.h"
41 #include "user-regs.h"
42 #include "valprint.h"
43 #include "gdb_obstack.h"
44 #include "objfiles.h"
45 #include "python/python.h"
46 #include "wrapper.h"
47
48 #include "gdb_assert.h"
49
50 #include <ctype.h>
51
52 /* This is defined in valops.c */
53 extern int overload_resolution;
54
55 /* Prototypes for local functions. */
56
57 static struct value *evaluate_subexp_for_sizeof (struct expression *, int *);
58
59 static struct value *evaluate_subexp_for_address (struct expression *,
60 int *, enum noside);
61
62 static char *get_label (struct expression *, int *);
63
64 static struct value *evaluate_struct_tuple (struct value *,
65 struct expression *, int *,
66 enum noside, int);
67
68 static LONGEST init_array_element (struct value *, struct value *,
69 struct expression *, int *, enum noside,
70 LONGEST, LONGEST);
71
72 struct value *
73 evaluate_subexp (struct type *expect_type, struct expression *exp,
74 int *pos, enum noside noside)
75 {
76 return (*exp->language_defn->la_exp_desc->evaluate_exp)
77 (expect_type, exp, pos, noside);
78 }
79 \f
80 /* Parse the string EXP as a C expression, evaluate it,
81 and return the result as a number. */
82
83 CORE_ADDR
84 parse_and_eval_address (char *exp)
85 {
86 struct expression *expr = parse_expression (exp);
87 CORE_ADDR addr;
88 struct cleanup *old_chain =
89 make_cleanup (free_current_contents, &expr);
90
91 addr = value_as_address (evaluate_expression (expr));
92 do_cleanups (old_chain);
93 return addr;
94 }
95
96 /* Like parse_and_eval_address, but treats the value of the expression
97 as an integer, not an address, returns a LONGEST, not a CORE_ADDR. */
98 LONGEST
99 parse_and_eval_long (char *exp)
100 {
101 struct expression *expr = parse_expression (exp);
102 LONGEST retval;
103 struct cleanup *old_chain =
104 make_cleanup (free_current_contents, &expr);
105
106 retval = value_as_long (evaluate_expression (expr));
107 do_cleanups (old_chain);
108 return (retval);
109 }
110
111 struct value *
112 parse_and_eval (char *exp)
113 {
114 struct expression *expr = parse_expression (exp);
115 struct value *val;
116 struct cleanup *old_chain =
117 make_cleanup (free_current_contents, &expr);
118
119 val = evaluate_expression (expr);
120 do_cleanups (old_chain);
121 return val;
122 }
123
124 /* Parse up to a comma (or to a closeparen)
125 in the string EXPP as an expression, evaluate it, and return the value.
126 EXPP is advanced to point to the comma. */
127
128 struct value *
129 parse_to_comma_and_eval (char **expp)
130 {
131 struct expression *expr = parse_exp_1 (expp, (struct block *) 0, 1);
132 struct value *val;
133 struct cleanup *old_chain =
134 make_cleanup (free_current_contents, &expr);
135
136 val = evaluate_expression (expr);
137 do_cleanups (old_chain);
138 return val;
139 }
140 \f
141 /* Evaluate an expression in internal prefix form
142 such as is constructed by parse.y.
143
144 See expression.h for info on the format of an expression. */
145
146 struct value *
147 evaluate_expression (struct expression *exp)
148 {
149 int pc = 0;
150
151 return evaluate_subexp (NULL_TYPE, exp, &pc, EVAL_NORMAL);
152 }
153
154 /* Evaluate an expression, avoiding all memory references
155 and getting a value whose type alone is correct. */
156
157 struct value *
158 evaluate_type (struct expression *exp)
159 {
160 int pc = 0;
161
162 return evaluate_subexp (NULL_TYPE, exp, &pc, EVAL_AVOID_SIDE_EFFECTS);
163 }
164
165 /* Evaluate a subexpression, avoiding all memory references and
166 getting a value whose type alone is correct. */
167
168 struct value *
169 evaluate_subexpression_type (struct expression *exp, int subexp)
170 {
171 return evaluate_subexp (NULL_TYPE, exp, &subexp, EVAL_AVOID_SIDE_EFFECTS);
172 }
173
174 /* Find the current value of a watchpoint on EXP. Return the value in
175 *VALP and *RESULTP and the chain of intermediate and final values
176 in *VAL_CHAIN. RESULTP and VAL_CHAIN may be NULL if the caller does
177 not need them.
178
179 If a memory error occurs while evaluating the expression, *RESULTP will
180 be set to NULL. *RESULTP may be a lazy value, if the result could
181 not be read from memory. It is used to determine whether a value
182 is user-specified (we should watch the whole value) or intermediate
183 (we should watch only the bit used to locate the final value).
184
185 If the final value, or any intermediate value, could not be read
186 from memory, *VALP will be set to NULL. *VAL_CHAIN will still be
187 set to any referenced values. *VALP will never be a lazy value.
188 This is the value which we store in struct breakpoint.
189
190 If VAL_CHAIN is non-NULL, *VAL_CHAIN will be released from the
191 value chain. The caller must free the values individually. If
192 VAL_CHAIN is NULL, all generated values will be left on the value
193 chain. */
194
195 void
196 fetch_subexp_value (struct expression *exp, int *pc, struct value **valp,
197 struct value **resultp, struct value **val_chain)
198 {
199 struct value *mark, *new_mark, *result;
200 volatile struct gdb_exception ex;
201
202 *valp = NULL;
203 if (resultp)
204 *resultp = NULL;
205 if (val_chain)
206 *val_chain = NULL;
207
208 /* Evaluate the expression. */
209 mark = value_mark ();
210 result = NULL;
211
212 TRY_CATCH (ex, RETURN_MASK_ALL)
213 {
214 result = evaluate_subexp (NULL_TYPE, exp, pc, EVAL_NORMAL);
215 }
216 if (ex.reason < 0)
217 {
218 /* Ignore memory errors, we want watchpoints pointing at
219 inaccessible memory to still be created; otherwise, throw the
220 error to some higher catcher. */
221 switch (ex.error)
222 {
223 case MEMORY_ERROR:
224 break;
225 default:
226 throw_exception (ex);
227 break;
228 }
229 }
230
231 new_mark = value_mark ();
232 if (mark == new_mark)
233 return;
234 if (resultp)
235 *resultp = result;
236
237 /* Make sure it's not lazy, so that after the target stops again we
238 have a non-lazy previous value to compare with. */
239 if (result != NULL
240 && (!value_lazy (result) || gdb_value_fetch_lazy (result)))
241 *valp = result;
242
243 if (val_chain)
244 {
245 /* Return the chain of intermediate values. We use this to
246 decide which addresses to watch. */
247 *val_chain = new_mark;
248 value_release_to_mark (mark);
249 }
250 }
251
252 /* Extract a field operation from an expression. If the subexpression
253 of EXP starting at *SUBEXP is not a structure dereference
254 operation, return NULL. Otherwise, return the name of the
255 dereferenced field, and advance *SUBEXP to point to the
256 subexpression of the left-hand-side of the dereference. This is
257 used when completing field names. */
258
259 char *
260 extract_field_op (struct expression *exp, int *subexp)
261 {
262 int tem;
263 char *result;
264
265 if (exp->elts[*subexp].opcode != STRUCTOP_STRUCT
266 && exp->elts[*subexp].opcode != STRUCTOP_PTR)
267 return NULL;
268 tem = longest_to_int (exp->elts[*subexp + 1].longconst);
269 result = &exp->elts[*subexp + 2].string;
270 (*subexp) += 1 + 3 + BYTES_TO_EXP_ELEM (tem + 1);
271 return result;
272 }
273
274 /* If the next expression is an OP_LABELED, skips past it,
275 returning the label. Otherwise, does nothing and returns NULL. */
276
277 static char *
278 get_label (struct expression *exp, int *pos)
279 {
280 if (exp->elts[*pos].opcode == OP_LABELED)
281 {
282 int pc = (*pos)++;
283 char *name = &exp->elts[pc + 2].string;
284 int tem = longest_to_int (exp->elts[pc + 1].longconst);
285
286 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
287 return name;
288 }
289 else
290 return NULL;
291 }
292
293 /* This function evaluates tuples (in (the deleted) Chill) or
294 brace-initializers (in C/C++) for structure types. */
295
296 static struct value *
297 evaluate_struct_tuple (struct value *struct_val,
298 struct expression *exp,
299 int *pos, enum noside noside, int nargs)
300 {
301 struct type *struct_type = check_typedef (value_type (struct_val));
302 struct type *substruct_type = struct_type;
303 struct type *field_type;
304 int fieldno = -1;
305 int variantno = -1;
306 int subfieldno = -1;
307
308 while (--nargs >= 0)
309 {
310 int pc = *pos;
311 struct value *val = NULL;
312 int nlabels = 0;
313 int bitpos, bitsize;
314 bfd_byte *addr;
315
316 /* Skip past the labels, and count them. */
317 while (get_label (exp, pos) != NULL)
318 nlabels++;
319
320 do
321 {
322 char *label = get_label (exp, &pc);
323
324 if (label)
325 {
326 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type);
327 fieldno++)
328 {
329 char *field_name = TYPE_FIELD_NAME (struct_type, fieldno);
330
331 if (field_name != NULL && strcmp (field_name, label) == 0)
332 {
333 variantno = -1;
334 subfieldno = fieldno;
335 substruct_type = struct_type;
336 goto found;
337 }
338 }
339 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type);
340 fieldno++)
341 {
342 char *field_name = TYPE_FIELD_NAME (struct_type, fieldno);
343
344 field_type = TYPE_FIELD_TYPE (struct_type, fieldno);
345 if ((field_name == 0 || *field_name == '\0')
346 && TYPE_CODE (field_type) == TYPE_CODE_UNION)
347 {
348 variantno = 0;
349 for (; variantno < TYPE_NFIELDS (field_type);
350 variantno++)
351 {
352 substruct_type
353 = TYPE_FIELD_TYPE (field_type, variantno);
354 if (TYPE_CODE (substruct_type) == TYPE_CODE_STRUCT)
355 {
356 for (subfieldno = 0;
357 subfieldno < TYPE_NFIELDS (substruct_type);
358 subfieldno++)
359 {
360 if (strcmp(TYPE_FIELD_NAME (substruct_type,
361 subfieldno),
362 label) == 0)
363 {
364 goto found;
365 }
366 }
367 }
368 }
369 }
370 }
371 error (_("there is no field named %s"), label);
372 found:
373 ;
374 }
375 else
376 {
377 /* Unlabelled tuple element - go to next field. */
378 if (variantno >= 0)
379 {
380 subfieldno++;
381 if (subfieldno >= TYPE_NFIELDS (substruct_type))
382 {
383 variantno = -1;
384 substruct_type = struct_type;
385 }
386 }
387 if (variantno < 0)
388 {
389 fieldno++;
390 /* Skip static fields. */
391 while (fieldno < TYPE_NFIELDS (struct_type)
392 && field_is_static (&TYPE_FIELD (struct_type,
393 fieldno)))
394 fieldno++;
395 subfieldno = fieldno;
396 if (fieldno >= TYPE_NFIELDS (struct_type))
397 error (_("too many initializers"));
398 field_type = TYPE_FIELD_TYPE (struct_type, fieldno);
399 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
400 && TYPE_FIELD_NAME (struct_type, fieldno)[0] == '0')
401 error (_("don't know which variant you want to set"));
402 }
403 }
404
405 /* Here, struct_type is the type of the inner struct,
406 while substruct_type is the type of the inner struct.
407 These are the same for normal structures, but a variant struct
408 contains anonymous union fields that contain substruct fields.
409 The value fieldno is the index of the top-level (normal or
410 anonymous union) field in struct_field, while the value
411 subfieldno is the index of the actual real (named inner) field
412 in substruct_type. */
413
414 field_type = TYPE_FIELD_TYPE (substruct_type, subfieldno);
415 if (val == 0)
416 val = evaluate_subexp (field_type, exp, pos, noside);
417
418 /* Now actually set the field in struct_val. */
419
420 /* Assign val to field fieldno. */
421 if (value_type (val) != field_type)
422 val = value_cast (field_type, val);
423
424 bitsize = TYPE_FIELD_BITSIZE (substruct_type, subfieldno);
425 bitpos = TYPE_FIELD_BITPOS (struct_type, fieldno);
426 if (variantno >= 0)
427 bitpos += TYPE_FIELD_BITPOS (substruct_type, subfieldno);
428 addr = value_contents_writeable (struct_val) + bitpos / 8;
429 if (bitsize)
430 modify_field (struct_type, addr,
431 value_as_long (val), bitpos % 8, bitsize);
432 else
433 memcpy (addr, value_contents (val),
434 TYPE_LENGTH (value_type (val)));
435 }
436 while (--nlabels > 0);
437 }
438 return struct_val;
439 }
440
441 /* Recursive helper function for setting elements of array tuples for
442 (the deleted) Chill. The target is ARRAY (which has bounds
443 LOW_BOUND to HIGH_BOUND); the element value is ELEMENT; EXP, POS
444 and NOSIDE are as usual. Evaluates index expresions and sets the
445 specified element(s) of ARRAY to ELEMENT. Returns last index
446 value. */
447
448 static LONGEST
449 init_array_element (struct value *array, struct value *element,
450 struct expression *exp, int *pos,
451 enum noside noside, LONGEST low_bound, LONGEST high_bound)
452 {
453 LONGEST index;
454 int element_size = TYPE_LENGTH (value_type (element));
455
456 if (exp->elts[*pos].opcode == BINOP_COMMA)
457 {
458 (*pos)++;
459 init_array_element (array, element, exp, pos, noside,
460 low_bound, high_bound);
461 return init_array_element (array, element,
462 exp, pos, noside, low_bound, high_bound);
463 }
464 else if (exp->elts[*pos].opcode == BINOP_RANGE)
465 {
466 LONGEST low, high;
467
468 (*pos)++;
469 low = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
470 high = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
471 if (low < low_bound || high > high_bound)
472 error (_("tuple range index out of range"));
473 for (index = low; index <= high; index++)
474 {
475 memcpy (value_contents_raw (array)
476 + (index - low_bound) * element_size,
477 value_contents (element), element_size);
478 }
479 }
480 else
481 {
482 index = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
483 if (index < low_bound || index > high_bound)
484 error (_("tuple index out of range"));
485 memcpy (value_contents_raw (array) + (index - low_bound) * element_size,
486 value_contents (element), element_size);
487 }
488 return index;
489 }
490
491 static struct value *
492 value_f90_subarray (struct value *array,
493 struct expression *exp, int *pos, enum noside noside)
494 {
495 int pc = (*pos) + 1;
496 LONGEST low_bound, high_bound;
497 struct type *range = check_typedef (TYPE_INDEX_TYPE (value_type (array)));
498 enum f90_range_type range_type = longest_to_int (exp->elts[pc].longconst);
499
500 *pos += 3;
501
502 if (range_type == LOW_BOUND_DEFAULT || range_type == BOTH_BOUND_DEFAULT)
503 low_bound = TYPE_LOW_BOUND (range);
504 else
505 low_bound = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
506
507 if (range_type == HIGH_BOUND_DEFAULT || range_type == BOTH_BOUND_DEFAULT)
508 high_bound = TYPE_HIGH_BOUND (range);
509 else
510 high_bound = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
511
512 return value_slice (array, low_bound, high_bound - low_bound + 1);
513 }
514
515
516 /* Promote value ARG1 as appropriate before performing a unary operation
517 on this argument.
518 If the result is not appropriate for any particular language then it
519 needs to patch this function. */
520
521 void
522 unop_promote (const struct language_defn *language, struct gdbarch *gdbarch,
523 struct value **arg1)
524 {
525 struct type *type1;
526
527 *arg1 = coerce_ref (*arg1);
528 type1 = check_typedef (value_type (*arg1));
529
530 if (is_integral_type (type1))
531 {
532 switch (language->la_language)
533 {
534 default:
535 /* Perform integral promotion for ANSI C/C++.
536 If not appropropriate for any particular language
537 it needs to modify this function. */
538 {
539 struct type *builtin_int = builtin_type (gdbarch)->builtin_int;
540
541 if (TYPE_LENGTH (type1) < TYPE_LENGTH (builtin_int))
542 *arg1 = value_cast (builtin_int, *arg1);
543 }
544 break;
545 }
546 }
547 }
548
549 /* Promote values ARG1 and ARG2 as appropriate before performing a binary
550 operation on those two operands.
551 If the result is not appropriate for any particular language then it
552 needs to patch this function. */
553
554 void
555 binop_promote (const struct language_defn *language, struct gdbarch *gdbarch,
556 struct value **arg1, struct value **arg2)
557 {
558 struct type *promoted_type = NULL;
559 struct type *type1;
560 struct type *type2;
561
562 *arg1 = coerce_ref (*arg1);
563 *arg2 = coerce_ref (*arg2);
564
565 type1 = check_typedef (value_type (*arg1));
566 type2 = check_typedef (value_type (*arg2));
567
568 if ((TYPE_CODE (type1) != TYPE_CODE_FLT
569 && TYPE_CODE (type1) != TYPE_CODE_DECFLOAT
570 && !is_integral_type (type1))
571 || (TYPE_CODE (type2) != TYPE_CODE_FLT
572 && TYPE_CODE (type2) != TYPE_CODE_DECFLOAT
573 && !is_integral_type (type2)))
574 return;
575
576 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT
577 || TYPE_CODE (type2) == TYPE_CODE_DECFLOAT)
578 {
579 /* No promotion required. */
580 }
581 else if (TYPE_CODE (type1) == TYPE_CODE_FLT
582 || TYPE_CODE (type2) == TYPE_CODE_FLT)
583 {
584 switch (language->la_language)
585 {
586 case language_c:
587 case language_cplus:
588 case language_asm:
589 case language_objc:
590 case language_opencl:
591 /* No promotion required. */
592 break;
593
594 default:
595 /* For other languages the result type is unchanged from gdb
596 version 6.7 for backward compatibility.
597 If either arg was long double, make sure that value is also long
598 double. Otherwise use double. */
599 if (TYPE_LENGTH (type1) * 8 > gdbarch_double_bit (gdbarch)
600 || TYPE_LENGTH (type2) * 8 > gdbarch_double_bit (gdbarch))
601 promoted_type = builtin_type (gdbarch)->builtin_long_double;
602 else
603 promoted_type = builtin_type (gdbarch)->builtin_double;
604 break;
605 }
606 }
607 else if (TYPE_CODE (type1) == TYPE_CODE_BOOL
608 && TYPE_CODE (type2) == TYPE_CODE_BOOL)
609 {
610 /* No promotion required. */
611 }
612 else
613 /* Integral operations here. */
614 /* FIXME: Also mixed integral/booleans, with result an integer. */
615 {
616 const struct builtin_type *builtin = builtin_type (gdbarch);
617 unsigned int promoted_len1 = TYPE_LENGTH (type1);
618 unsigned int promoted_len2 = TYPE_LENGTH (type2);
619 int is_unsigned1 = TYPE_UNSIGNED (type1);
620 int is_unsigned2 = TYPE_UNSIGNED (type2);
621 unsigned int result_len;
622 int unsigned_operation;
623
624 /* Determine type length and signedness after promotion for
625 both operands. */
626 if (promoted_len1 < TYPE_LENGTH (builtin->builtin_int))
627 {
628 is_unsigned1 = 0;
629 promoted_len1 = TYPE_LENGTH (builtin->builtin_int);
630 }
631 if (promoted_len2 < TYPE_LENGTH (builtin->builtin_int))
632 {
633 is_unsigned2 = 0;
634 promoted_len2 = TYPE_LENGTH (builtin->builtin_int);
635 }
636
637 if (promoted_len1 > promoted_len2)
638 {
639 unsigned_operation = is_unsigned1;
640 result_len = promoted_len1;
641 }
642 else if (promoted_len2 > promoted_len1)
643 {
644 unsigned_operation = is_unsigned2;
645 result_len = promoted_len2;
646 }
647 else
648 {
649 unsigned_operation = is_unsigned1 || is_unsigned2;
650 result_len = promoted_len1;
651 }
652
653 switch (language->la_language)
654 {
655 case language_c:
656 case language_cplus:
657 case language_asm:
658 case language_objc:
659 if (result_len <= TYPE_LENGTH (builtin->builtin_int))
660 {
661 promoted_type = (unsigned_operation
662 ? builtin->builtin_unsigned_int
663 : builtin->builtin_int);
664 }
665 else if (result_len <= TYPE_LENGTH (builtin->builtin_long))
666 {
667 promoted_type = (unsigned_operation
668 ? builtin->builtin_unsigned_long
669 : builtin->builtin_long);
670 }
671 else
672 {
673 promoted_type = (unsigned_operation
674 ? builtin->builtin_unsigned_long_long
675 : builtin->builtin_long_long);
676 }
677 break;
678 case language_opencl:
679 if (result_len <= TYPE_LENGTH (lookup_signed_typename
680 (language, gdbarch, "int")))
681 {
682 promoted_type =
683 (unsigned_operation
684 ? lookup_unsigned_typename (language, gdbarch, "int")
685 : lookup_signed_typename (language, gdbarch, "int"));
686 }
687 else if (result_len <= TYPE_LENGTH (lookup_signed_typename
688 (language, gdbarch, "long")))
689 {
690 promoted_type =
691 (unsigned_operation
692 ? lookup_unsigned_typename (language, gdbarch, "long")
693 : lookup_signed_typename (language, gdbarch,"long"));
694 }
695 break;
696 default:
697 /* For other languages the result type is unchanged from gdb
698 version 6.7 for backward compatibility.
699 If either arg was long long, make sure that value is also long
700 long. Otherwise use long. */
701 if (unsigned_operation)
702 {
703 if (result_len > gdbarch_long_bit (gdbarch) / HOST_CHAR_BIT)
704 promoted_type = builtin->builtin_unsigned_long_long;
705 else
706 promoted_type = builtin->builtin_unsigned_long;
707 }
708 else
709 {
710 if (result_len > gdbarch_long_bit (gdbarch) / HOST_CHAR_BIT)
711 promoted_type = builtin->builtin_long_long;
712 else
713 promoted_type = builtin->builtin_long;
714 }
715 break;
716 }
717 }
718
719 if (promoted_type)
720 {
721 /* Promote both operands to common type. */
722 *arg1 = value_cast (promoted_type, *arg1);
723 *arg2 = value_cast (promoted_type, *arg2);
724 }
725 }
726
727 static int
728 ptrmath_type_p (const struct language_defn *lang, struct type *type)
729 {
730 type = check_typedef (type);
731 if (TYPE_CODE (type) == TYPE_CODE_REF)
732 type = TYPE_TARGET_TYPE (type);
733
734 switch (TYPE_CODE (type))
735 {
736 case TYPE_CODE_PTR:
737 case TYPE_CODE_FUNC:
738 return 1;
739
740 case TYPE_CODE_ARRAY:
741 return TYPE_VECTOR (type) ? 0 : lang->c_style_arrays;
742
743 default:
744 return 0;
745 }
746 }
747
748 /* Constructs a fake method with the given parameter types.
749 This function is used by the parser to construct an "expected"
750 type for method overload resolution. */
751
752 static struct type *
753 make_params (int num_types, struct type **param_types)
754 {
755 struct type *type = XZALLOC (struct type);
756 TYPE_MAIN_TYPE (type) = XZALLOC (struct main_type);
757 TYPE_LENGTH (type) = 1;
758 TYPE_CODE (type) = TYPE_CODE_METHOD;
759 TYPE_VPTR_FIELDNO (type) = -1;
760 TYPE_CHAIN (type) = type;
761 TYPE_NFIELDS (type) = num_types;
762 TYPE_FIELDS (type) = (struct field *)
763 TYPE_ZALLOC (type, sizeof (struct field) * num_types);
764
765 while (num_types-- > 0)
766 TYPE_FIELD_TYPE (type, num_types) = param_types[num_types];
767
768 return type;
769 }
770
771 struct value *
772 evaluate_subexp_standard (struct type *expect_type,
773 struct expression *exp, int *pos,
774 enum noside noside)
775 {
776 enum exp_opcode op;
777 int tem, tem2, tem3;
778 int pc, pc2 = 0, oldpos;
779 struct value *arg1 = NULL;
780 struct value *arg2 = NULL;
781 struct value *arg3;
782 struct type *type;
783 int nargs;
784 struct value **argvec;
785 int upper, lower;
786 int code;
787 int ix;
788 long mem_offset;
789 struct type **arg_types;
790 int save_pos1;
791 struct symbol *function = NULL;
792 char *function_name = NULL;
793
794 pc = (*pos)++;
795 op = exp->elts[pc].opcode;
796
797 switch (op)
798 {
799 case OP_SCOPE:
800 tem = longest_to_int (exp->elts[pc + 2].longconst);
801 (*pos) += 4 + BYTES_TO_EXP_ELEM (tem + 1);
802 if (noside == EVAL_SKIP)
803 goto nosideret;
804 arg1 = value_aggregate_elt (exp->elts[pc + 1].type,
805 &exp->elts[pc + 3].string,
806 expect_type, 0, noside);
807 if (arg1 == NULL)
808 error (_("There is no field named %s"), &exp->elts[pc + 3].string);
809 return arg1;
810
811 case OP_LONG:
812 (*pos) += 3;
813 return value_from_longest (exp->elts[pc + 1].type,
814 exp->elts[pc + 2].longconst);
815
816 case OP_DOUBLE:
817 (*pos) += 3;
818 return value_from_double (exp->elts[pc + 1].type,
819 exp->elts[pc + 2].doubleconst);
820
821 case OP_DECFLOAT:
822 (*pos) += 3;
823 return value_from_decfloat (exp->elts[pc + 1].type,
824 exp->elts[pc + 2].decfloatconst);
825
826 case OP_ADL_FUNC:
827 case OP_VAR_VALUE:
828 (*pos) += 3;
829 if (noside == EVAL_SKIP)
830 goto nosideret;
831
832 /* JYG: We used to just return value_zero of the symbol type
833 if we're asked to avoid side effects. Otherwise we return
834 value_of_variable (...). However I'm not sure if
835 value_of_variable () has any side effect.
836 We need a full value object returned here for whatis_exp ()
837 to call evaluate_type () and then pass the full value to
838 value_rtti_target_type () if we are dealing with a pointer
839 or reference to a base class and print object is on. */
840
841 {
842 volatile struct gdb_exception except;
843 struct value *ret = NULL;
844
845 TRY_CATCH (except, RETURN_MASK_ERROR)
846 {
847 ret = value_of_variable (exp->elts[pc + 2].symbol,
848 exp->elts[pc + 1].block);
849 }
850
851 if (except.reason < 0)
852 {
853 if (noside == EVAL_AVOID_SIDE_EFFECTS)
854 ret = value_zero (SYMBOL_TYPE (exp->elts[pc + 2].symbol),
855 not_lval);
856 else
857 throw_exception (except);
858 }
859
860 return ret;
861 }
862
863 case OP_VAR_ENTRY_VALUE:
864 (*pos) += 2;
865 if (noside == EVAL_SKIP)
866 goto nosideret;
867
868 {
869 struct symbol *sym = exp->elts[pc + 1].symbol;
870 struct frame_info *frame;
871
872 if (noside == EVAL_AVOID_SIDE_EFFECTS)
873 return value_zero (SYMBOL_TYPE (sym), not_lval);
874
875 if (SYMBOL_CLASS (sym) != LOC_COMPUTED
876 || SYMBOL_COMPUTED_OPS (sym)->read_variable_at_entry == NULL)
877 error (_("Symbol \"%s\" does not have any specific entry value"),
878 SYMBOL_PRINT_NAME (sym));
879
880 frame = get_selected_frame (NULL);
881 return SYMBOL_COMPUTED_OPS (sym)->read_variable_at_entry (sym, frame);
882 }
883
884 case OP_LAST:
885 (*pos) += 2;
886 return
887 access_value_history (longest_to_int (exp->elts[pc + 1].longconst));
888
889 case OP_REGISTER:
890 {
891 const char *name = &exp->elts[pc + 2].string;
892 int regno;
893 struct value *val;
894
895 (*pos) += 3 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
896 regno = user_reg_map_name_to_regnum (exp->gdbarch,
897 name, strlen (name));
898 if (regno == -1)
899 error (_("Register $%s not available."), name);
900
901 /* In EVAL_AVOID_SIDE_EFFECTS mode, we only need to return
902 a value with the appropriate register type. Unfortunately,
903 we don't have easy access to the type of user registers.
904 So for these registers, we fetch the register value regardless
905 of the evaluation mode. */
906 if (noside == EVAL_AVOID_SIDE_EFFECTS
907 && regno < gdbarch_num_regs (exp->gdbarch)
908 + gdbarch_num_pseudo_regs (exp->gdbarch))
909 val = value_zero (register_type (exp->gdbarch, regno), not_lval);
910 else
911 val = value_of_register (regno, get_selected_frame (NULL));
912 if (val == NULL)
913 error (_("Value of register %s not available."), name);
914 else
915 return val;
916 }
917 case OP_BOOL:
918 (*pos) += 2;
919 type = language_bool_type (exp->language_defn, exp->gdbarch);
920 return value_from_longest (type, exp->elts[pc + 1].longconst);
921
922 case OP_INTERNALVAR:
923 (*pos) += 2;
924 return value_of_internalvar (exp->gdbarch,
925 exp->elts[pc + 1].internalvar);
926
927 case OP_STRING:
928 tem = longest_to_int (exp->elts[pc + 1].longconst);
929 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
930 if (noside == EVAL_SKIP)
931 goto nosideret;
932 type = language_string_char_type (exp->language_defn, exp->gdbarch);
933 return value_string (&exp->elts[pc + 2].string, tem, type);
934
935 case OP_OBJC_NSSTRING: /* Objective C Foundation Class
936 NSString constant. */
937 tem = longest_to_int (exp->elts[pc + 1].longconst);
938 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
939 if (noside == EVAL_SKIP)
940 {
941 goto nosideret;
942 }
943 return value_nsstring (exp->gdbarch, &exp->elts[pc + 2].string, tem + 1);
944
945 case OP_BITSTRING:
946 tem = longest_to_int (exp->elts[pc + 1].longconst);
947 (*pos)
948 += 3 + BYTES_TO_EXP_ELEM ((tem + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT);
949 if (noside == EVAL_SKIP)
950 goto nosideret;
951 return value_bitstring (&exp->elts[pc + 2].string, tem,
952 builtin_type (exp->gdbarch)->builtin_int);
953 break;
954
955 case OP_ARRAY:
956 (*pos) += 3;
957 tem2 = longest_to_int (exp->elts[pc + 1].longconst);
958 tem3 = longest_to_int (exp->elts[pc + 2].longconst);
959 nargs = tem3 - tem2 + 1;
960 type = expect_type ? check_typedef (expect_type) : NULL_TYPE;
961
962 if (expect_type != NULL_TYPE && noside != EVAL_SKIP
963 && TYPE_CODE (type) == TYPE_CODE_STRUCT)
964 {
965 struct value *rec = allocate_value (expect_type);
966
967 memset (value_contents_raw (rec), '\0', TYPE_LENGTH (type));
968 return evaluate_struct_tuple (rec, exp, pos, noside, nargs);
969 }
970
971 if (expect_type != NULL_TYPE && noside != EVAL_SKIP
972 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
973 {
974 struct type *range_type = TYPE_INDEX_TYPE (type);
975 struct type *element_type = TYPE_TARGET_TYPE (type);
976 struct value *array = allocate_value (expect_type);
977 int element_size = TYPE_LENGTH (check_typedef (element_type));
978 LONGEST low_bound, high_bound, index;
979
980 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
981 {
982 low_bound = 0;
983 high_bound = (TYPE_LENGTH (type) / element_size) - 1;
984 }
985 index = low_bound;
986 memset (value_contents_raw (array), 0, TYPE_LENGTH (expect_type));
987 for (tem = nargs; --nargs >= 0;)
988 {
989 struct value *element;
990 int index_pc = 0;
991
992 if (exp->elts[*pos].opcode == BINOP_RANGE)
993 {
994 index_pc = ++(*pos);
995 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
996 }
997 element = evaluate_subexp (element_type, exp, pos, noside);
998 if (value_type (element) != element_type)
999 element = value_cast (element_type, element);
1000 if (index_pc)
1001 {
1002 int continue_pc = *pos;
1003
1004 *pos = index_pc;
1005 index = init_array_element (array, element, exp, pos, noside,
1006 low_bound, high_bound);
1007 *pos = continue_pc;
1008 }
1009 else
1010 {
1011 if (index > high_bound)
1012 /* To avoid memory corruption. */
1013 error (_("Too many array elements"));
1014 memcpy (value_contents_raw (array)
1015 + (index - low_bound) * element_size,
1016 value_contents (element),
1017 element_size);
1018 }
1019 index++;
1020 }
1021 return array;
1022 }
1023
1024 if (expect_type != NULL_TYPE && noside != EVAL_SKIP
1025 && TYPE_CODE (type) == TYPE_CODE_SET)
1026 {
1027 struct value *set = allocate_value (expect_type);
1028 gdb_byte *valaddr = value_contents_raw (set);
1029 struct type *element_type = TYPE_INDEX_TYPE (type);
1030 struct type *check_type = element_type;
1031 LONGEST low_bound, high_bound;
1032
1033 /* Get targettype of elementtype. */
1034 while (TYPE_CODE (check_type) == TYPE_CODE_RANGE
1035 || TYPE_CODE (check_type) == TYPE_CODE_TYPEDEF)
1036 check_type = TYPE_TARGET_TYPE (check_type);
1037
1038 if (get_discrete_bounds (element_type, &low_bound, &high_bound) < 0)
1039 error (_("(power)set type with unknown size"));
1040 memset (valaddr, '\0', TYPE_LENGTH (type));
1041 for (tem = 0; tem < nargs; tem++)
1042 {
1043 LONGEST range_low, range_high;
1044 struct type *range_low_type, *range_high_type;
1045 struct value *elem_val;
1046
1047 if (exp->elts[*pos].opcode == BINOP_RANGE)
1048 {
1049 (*pos)++;
1050 elem_val = evaluate_subexp (element_type, exp, pos, noside);
1051 range_low_type = value_type (elem_val);
1052 range_low = value_as_long (elem_val);
1053 elem_val = evaluate_subexp (element_type, exp, pos, noside);
1054 range_high_type = value_type (elem_val);
1055 range_high = value_as_long (elem_val);
1056 }
1057 else
1058 {
1059 elem_val = evaluate_subexp (element_type, exp, pos, noside);
1060 range_low_type = range_high_type = value_type (elem_val);
1061 range_low = range_high = value_as_long (elem_val);
1062 }
1063 /* Check types of elements to avoid mixture of elements from
1064 different types. Also check if type of element is "compatible"
1065 with element type of powerset. */
1066 if (TYPE_CODE (range_low_type) == TYPE_CODE_RANGE)
1067 range_low_type = TYPE_TARGET_TYPE (range_low_type);
1068 if (TYPE_CODE (range_high_type) == TYPE_CODE_RANGE)
1069 range_high_type = TYPE_TARGET_TYPE (range_high_type);
1070 if ((TYPE_CODE (range_low_type) != TYPE_CODE (range_high_type))
1071 || (TYPE_CODE (range_low_type) == TYPE_CODE_ENUM
1072 && (range_low_type != range_high_type)))
1073 /* different element modes. */
1074 error (_("POWERSET tuple elements of different mode"));
1075 if ((TYPE_CODE (check_type) != TYPE_CODE (range_low_type))
1076 || (TYPE_CODE (check_type) == TYPE_CODE_ENUM
1077 && range_low_type != check_type))
1078 error (_("incompatible POWERSET tuple elements"));
1079 if (range_low > range_high)
1080 {
1081 warning (_("empty POWERSET tuple range"));
1082 continue;
1083 }
1084 if (range_low < low_bound || range_high > high_bound)
1085 error (_("POWERSET tuple element out of range"));
1086 range_low -= low_bound;
1087 range_high -= low_bound;
1088 for (; range_low <= range_high; range_low++)
1089 {
1090 int bit_index = (unsigned) range_low % TARGET_CHAR_BIT;
1091
1092 if (gdbarch_bits_big_endian (exp->gdbarch))
1093 bit_index = TARGET_CHAR_BIT - 1 - bit_index;
1094 valaddr[(unsigned) range_low / TARGET_CHAR_BIT]
1095 |= 1 << bit_index;
1096 }
1097 }
1098 return set;
1099 }
1100
1101 argvec = (struct value **) alloca (sizeof (struct value *) * nargs);
1102 for (tem = 0; tem < nargs; tem++)
1103 {
1104 /* Ensure that array expressions are coerced into pointer
1105 objects. */
1106 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1107 }
1108 if (noside == EVAL_SKIP)
1109 goto nosideret;
1110 return value_array (tem2, tem3, argvec);
1111
1112 case TERNOP_SLICE:
1113 {
1114 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1115 int lowbound
1116 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
1117 int upper
1118 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
1119
1120 if (noside == EVAL_SKIP)
1121 goto nosideret;
1122 return value_slice (array, lowbound, upper - lowbound + 1);
1123 }
1124
1125 case TERNOP_SLICE_COUNT:
1126 {
1127 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1128 int lowbound
1129 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
1130 int length
1131 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
1132
1133 return value_slice (array, lowbound, length);
1134 }
1135
1136 case TERNOP_COND:
1137 /* Skip third and second args to evaluate the first one. */
1138 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1139 if (value_logical_not (arg1))
1140 {
1141 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
1142 return evaluate_subexp (NULL_TYPE, exp, pos, noside);
1143 }
1144 else
1145 {
1146 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1147 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
1148 return arg2;
1149 }
1150
1151 case OP_OBJC_SELECTOR:
1152 { /* Objective C @selector operator. */
1153 char *sel = &exp->elts[pc + 2].string;
1154 int len = longest_to_int (exp->elts[pc + 1].longconst);
1155 struct type *selector_type;
1156
1157 (*pos) += 3 + BYTES_TO_EXP_ELEM (len + 1);
1158 if (noside == EVAL_SKIP)
1159 goto nosideret;
1160
1161 if (sel[len] != 0)
1162 sel[len] = 0; /* Make sure it's terminated. */
1163
1164 selector_type = builtin_type (exp->gdbarch)->builtin_data_ptr;
1165 return value_from_longest (selector_type,
1166 lookup_child_selector (exp->gdbarch, sel));
1167 }
1168
1169 case OP_OBJC_MSGCALL:
1170 { /* Objective C message (method) call. */
1171
1172 CORE_ADDR responds_selector = 0;
1173 CORE_ADDR method_selector = 0;
1174
1175 CORE_ADDR selector = 0;
1176
1177 int struct_return = 0;
1178 int sub_no_side = 0;
1179
1180 struct value *msg_send = NULL;
1181 struct value *msg_send_stret = NULL;
1182 int gnu_runtime = 0;
1183
1184 struct value *target = NULL;
1185 struct value *method = NULL;
1186 struct value *called_method = NULL;
1187
1188 struct type *selector_type = NULL;
1189 struct type *long_type;
1190
1191 struct value *ret = NULL;
1192 CORE_ADDR addr = 0;
1193
1194 selector = exp->elts[pc + 1].longconst;
1195 nargs = exp->elts[pc + 2].longconst;
1196 argvec = (struct value **) alloca (sizeof (struct value *)
1197 * (nargs + 5));
1198
1199 (*pos) += 3;
1200
1201 long_type = builtin_type (exp->gdbarch)->builtin_long;
1202 selector_type = builtin_type (exp->gdbarch)->builtin_data_ptr;
1203
1204 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1205 sub_no_side = EVAL_NORMAL;
1206 else
1207 sub_no_side = noside;
1208
1209 target = evaluate_subexp (selector_type, exp, pos, sub_no_side);
1210
1211 if (value_as_long (target) == 0)
1212 return value_from_longest (long_type, 0);
1213
1214 if (lookup_minimal_symbol ("objc_msg_lookup", 0, 0))
1215 gnu_runtime = 1;
1216
1217 /* Find the method dispatch (Apple runtime) or method lookup
1218 (GNU runtime) function for Objective-C. These will be used
1219 to lookup the symbol information for the method. If we
1220 can't find any symbol information, then we'll use these to
1221 call the method, otherwise we can call the method
1222 directly. The msg_send_stret function is used in the special
1223 case of a method that returns a structure (Apple runtime
1224 only). */
1225 if (gnu_runtime)
1226 {
1227 struct type *type = selector_type;
1228
1229 type = lookup_function_type (type);
1230 type = lookup_pointer_type (type);
1231 type = lookup_function_type (type);
1232 type = lookup_pointer_type (type);
1233
1234 msg_send = find_function_in_inferior ("objc_msg_lookup", NULL);
1235 msg_send_stret
1236 = find_function_in_inferior ("objc_msg_lookup", NULL);
1237
1238 msg_send = value_from_pointer (type, value_as_address (msg_send));
1239 msg_send_stret = value_from_pointer (type,
1240 value_as_address (msg_send_stret));
1241 }
1242 else
1243 {
1244 msg_send = find_function_in_inferior ("objc_msgSend", NULL);
1245 /* Special dispatcher for methods returning structs. */
1246 msg_send_stret
1247 = find_function_in_inferior ("objc_msgSend_stret", NULL);
1248 }
1249
1250 /* Verify the target object responds to this method. The
1251 standard top-level 'Object' class uses a different name for
1252 the verification method than the non-standard, but more
1253 often used, 'NSObject' class. Make sure we check for both. */
1254
1255 responds_selector
1256 = lookup_child_selector (exp->gdbarch, "respondsToSelector:");
1257 if (responds_selector == 0)
1258 responds_selector
1259 = lookup_child_selector (exp->gdbarch, "respondsTo:");
1260
1261 if (responds_selector == 0)
1262 error (_("no 'respondsTo:' or 'respondsToSelector:' method"));
1263
1264 method_selector
1265 = lookup_child_selector (exp->gdbarch, "methodForSelector:");
1266 if (method_selector == 0)
1267 method_selector
1268 = lookup_child_selector (exp->gdbarch, "methodFor:");
1269
1270 if (method_selector == 0)
1271 error (_("no 'methodFor:' or 'methodForSelector:' method"));
1272
1273 /* Call the verification method, to make sure that the target
1274 class implements the desired method. */
1275
1276 argvec[0] = msg_send;
1277 argvec[1] = target;
1278 argvec[2] = value_from_longest (long_type, responds_selector);
1279 argvec[3] = value_from_longest (long_type, selector);
1280 argvec[4] = 0;
1281
1282 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
1283 if (gnu_runtime)
1284 {
1285 /* Function objc_msg_lookup returns a pointer. */
1286 argvec[0] = ret;
1287 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
1288 }
1289 if (value_as_long (ret) == 0)
1290 error (_("Target does not respond to this message selector."));
1291
1292 /* Call "methodForSelector:" method, to get the address of a
1293 function method that implements this selector for this
1294 class. If we can find a symbol at that address, then we
1295 know the return type, parameter types etc. (that's a good
1296 thing). */
1297
1298 argvec[0] = msg_send;
1299 argvec[1] = target;
1300 argvec[2] = value_from_longest (long_type, method_selector);
1301 argvec[3] = value_from_longest (long_type, selector);
1302 argvec[4] = 0;
1303
1304 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
1305 if (gnu_runtime)
1306 {
1307 argvec[0] = ret;
1308 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
1309 }
1310
1311 /* ret should now be the selector. */
1312
1313 addr = value_as_long (ret);
1314 if (addr)
1315 {
1316 struct symbol *sym = NULL;
1317
1318 /* The address might point to a function descriptor;
1319 resolve it to the actual code address instead. */
1320 addr = gdbarch_convert_from_func_ptr_addr (exp->gdbarch, addr,
1321 &current_target);
1322
1323 /* Is it a high_level symbol? */
1324 sym = find_pc_function (addr);
1325 if (sym != NULL)
1326 method = value_of_variable (sym, 0);
1327 }
1328
1329 /* If we found a method with symbol information, check to see
1330 if it returns a struct. Otherwise assume it doesn't. */
1331
1332 if (method)
1333 {
1334 CORE_ADDR funaddr;
1335 struct type *val_type;
1336
1337 funaddr = find_function_addr (method, &val_type);
1338
1339 block_for_pc (funaddr);
1340
1341 CHECK_TYPEDEF (val_type);
1342
1343 if ((val_type == NULL)
1344 || (TYPE_CODE(val_type) == TYPE_CODE_ERROR))
1345 {
1346 if (expect_type != NULL)
1347 val_type = expect_type;
1348 }
1349
1350 struct_return = using_struct_return (exp->gdbarch,
1351 value_type (method),
1352 val_type);
1353 }
1354 else if (expect_type != NULL)
1355 {
1356 struct_return = using_struct_return (exp->gdbarch, NULL,
1357 check_typedef (expect_type));
1358 }
1359
1360 /* Found a function symbol. Now we will substitute its
1361 value in place of the message dispatcher (obj_msgSend),
1362 so that we call the method directly instead of thru
1363 the dispatcher. The main reason for doing this is that
1364 we can now evaluate the return value and parameter values
1365 according to their known data types, in case we need to
1366 do things like promotion, dereferencing, special handling
1367 of structs and doubles, etc.
1368
1369 We want to use the type signature of 'method', but still
1370 jump to objc_msgSend() or objc_msgSend_stret() to better
1371 mimic the behavior of the runtime. */
1372
1373 if (method)
1374 {
1375 if (TYPE_CODE (value_type (method)) != TYPE_CODE_FUNC)
1376 error (_("method address has symbol information "
1377 "with non-function type; skipping"));
1378
1379 /* Create a function pointer of the appropriate type, and
1380 replace its value with the value of msg_send or
1381 msg_send_stret. We must use a pointer here, as
1382 msg_send and msg_send_stret are of pointer type, and
1383 the representation may be different on systems that use
1384 function descriptors. */
1385 if (struct_return)
1386 called_method
1387 = value_from_pointer (lookup_pointer_type (value_type (method)),
1388 value_as_address (msg_send_stret));
1389 else
1390 called_method
1391 = value_from_pointer (lookup_pointer_type (value_type (method)),
1392 value_as_address (msg_send));
1393 }
1394 else
1395 {
1396 if (struct_return)
1397 called_method = msg_send_stret;
1398 else
1399 called_method = msg_send;
1400 }
1401
1402 if (noside == EVAL_SKIP)
1403 goto nosideret;
1404
1405 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1406 {
1407 /* If the return type doesn't look like a function type,
1408 call an error. This can happen if somebody tries to
1409 turn a variable into a function call. This is here
1410 because people often want to call, eg, strcmp, which
1411 gdb doesn't know is a function. If gdb isn't asked for
1412 it's opinion (ie. through "whatis"), it won't offer
1413 it. */
1414
1415 struct type *type = value_type (called_method);
1416
1417 if (type && TYPE_CODE (type) == TYPE_CODE_PTR)
1418 type = TYPE_TARGET_TYPE (type);
1419 type = TYPE_TARGET_TYPE (type);
1420
1421 if (type)
1422 {
1423 if ((TYPE_CODE (type) == TYPE_CODE_ERROR) && expect_type)
1424 return allocate_value (expect_type);
1425 else
1426 return allocate_value (type);
1427 }
1428 else
1429 error (_("Expression of type other than "
1430 "\"method returning ...\" used as a method"));
1431 }
1432
1433 /* Now depending on whether we found a symbol for the method,
1434 we will either call the runtime dispatcher or the method
1435 directly. */
1436
1437 argvec[0] = called_method;
1438 argvec[1] = target;
1439 argvec[2] = value_from_longest (long_type, selector);
1440 /* User-supplied arguments. */
1441 for (tem = 0; tem < nargs; tem++)
1442 argvec[tem + 3] = evaluate_subexp_with_coercion (exp, pos, noside);
1443 argvec[tem + 3] = 0;
1444
1445 if (gnu_runtime && (method != NULL))
1446 {
1447 /* Function objc_msg_lookup returns a pointer. */
1448 deprecated_set_value_type (argvec[0],
1449 lookup_pointer_type (lookup_function_type (value_type (argvec[0]))));
1450 argvec[0]
1451 = call_function_by_hand (argvec[0], nargs + 2, argvec + 1);
1452 }
1453
1454 ret = call_function_by_hand (argvec[0], nargs + 2, argvec + 1);
1455 return ret;
1456 }
1457 break;
1458
1459 case OP_FUNCALL:
1460 (*pos) += 2;
1461 op = exp->elts[*pos].opcode;
1462 nargs = longest_to_int (exp->elts[pc + 1].longconst);
1463 /* Allocate arg vector, including space for the function to be
1464 called in argvec[0] and a terminating NULL. */
1465 argvec = (struct value **)
1466 alloca (sizeof (struct value *) * (nargs + 3));
1467 if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR)
1468 {
1469 nargs++;
1470 /* First, evaluate the structure into arg2. */
1471 pc2 = (*pos)++;
1472
1473 if (noside == EVAL_SKIP)
1474 goto nosideret;
1475
1476 if (op == STRUCTOP_MEMBER)
1477 {
1478 arg2 = evaluate_subexp_for_address (exp, pos, noside);
1479 }
1480 else
1481 {
1482 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1483 }
1484
1485 /* If the function is a virtual function, then the
1486 aggregate value (providing the structure) plays
1487 its part by providing the vtable. Otherwise,
1488 it is just along for the ride: call the function
1489 directly. */
1490
1491 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1492
1493 if (TYPE_CODE (check_typedef (value_type (arg1)))
1494 != TYPE_CODE_METHODPTR)
1495 error (_("Non-pointer-to-member value used in pointer-to-member "
1496 "construct"));
1497
1498 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1499 {
1500 struct type *method_type = check_typedef (value_type (arg1));
1501
1502 arg1 = value_zero (method_type, not_lval);
1503 }
1504 else
1505 arg1 = cplus_method_ptr_to_value (&arg2, arg1);
1506
1507 /* Now, say which argument to start evaluating from. */
1508 tem = 2;
1509 }
1510 else if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR)
1511 {
1512 /* Hair for method invocations. */
1513 int tem2;
1514
1515 nargs++;
1516 /* First, evaluate the structure into arg2. */
1517 pc2 = (*pos)++;
1518 tem2 = longest_to_int (exp->elts[pc2 + 1].longconst);
1519 *pos += 3 + BYTES_TO_EXP_ELEM (tem2 + 1);
1520 if (noside == EVAL_SKIP)
1521 goto nosideret;
1522
1523 if (op == STRUCTOP_STRUCT)
1524 {
1525 /* If v is a variable in a register, and the user types
1526 v.method (), this will produce an error, because v has
1527 no address.
1528
1529 A possible way around this would be to allocate a
1530 copy of the variable on the stack, copy in the
1531 contents, call the function, and copy out the
1532 contents. I.e. convert this from call by reference
1533 to call by copy-return (or whatever it's called).
1534 However, this does not work because it is not the
1535 same: the method being called could stash a copy of
1536 the address, and then future uses through that address
1537 (after the method returns) would be expected to
1538 use the variable itself, not some copy of it. */
1539 arg2 = evaluate_subexp_for_address (exp, pos, noside);
1540 }
1541 else
1542 {
1543 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1544
1545 /* Check to see if the operator '->' has been
1546 overloaded. If the operator has been overloaded
1547 replace arg2 with the value returned by the custom
1548 operator and continue evaluation. */
1549 while (unop_user_defined_p (op, arg2))
1550 {
1551 volatile struct gdb_exception except;
1552 struct value *value = NULL;
1553 TRY_CATCH (except, RETURN_MASK_ERROR)
1554 {
1555 value = value_x_unop (arg2, op, noside);
1556 }
1557
1558 if (except.reason < 0)
1559 {
1560 if (except.error == NOT_FOUND_ERROR)
1561 break;
1562 else
1563 throw_exception (except);
1564 }
1565 arg2 = value;
1566 }
1567 }
1568 /* Now, say which argument to start evaluating from. */
1569 tem = 2;
1570 }
1571 else if (op == OP_SCOPE
1572 && overload_resolution
1573 && (exp->language_defn->la_language == language_cplus))
1574 {
1575 /* Unpack it locally so we can properly handle overload
1576 resolution. */
1577 char *name;
1578 int local_tem;
1579
1580 pc2 = (*pos)++;
1581 local_tem = longest_to_int (exp->elts[pc2 + 2].longconst);
1582 (*pos) += 4 + BYTES_TO_EXP_ELEM (local_tem + 1);
1583 type = exp->elts[pc2 + 1].type;
1584 name = &exp->elts[pc2 + 3].string;
1585
1586 function = NULL;
1587 function_name = NULL;
1588 if (TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
1589 {
1590 function = cp_lookup_symbol_namespace (TYPE_TAG_NAME (type),
1591 name,
1592 get_selected_block (0),
1593 VAR_DOMAIN);
1594 if (function == NULL)
1595 error (_("No symbol \"%s\" in namespace \"%s\"."),
1596 name, TYPE_TAG_NAME (type));
1597
1598 tem = 1;
1599 }
1600 else
1601 {
1602 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1603 || TYPE_CODE (type) == TYPE_CODE_UNION);
1604 function_name = name;
1605
1606 arg2 = value_zero (type, lval_memory);
1607 ++nargs;
1608 tem = 2;
1609 }
1610 }
1611 else if (op == OP_ADL_FUNC)
1612 {
1613 /* Save the function position and move pos so that the arguments
1614 can be evaluated. */
1615 int func_name_len;
1616
1617 save_pos1 = *pos;
1618 tem = 1;
1619
1620 func_name_len = longest_to_int (exp->elts[save_pos1 + 3].longconst);
1621 (*pos) += 6 + BYTES_TO_EXP_ELEM (func_name_len + 1);
1622 }
1623 else
1624 {
1625 /* Non-method function call. */
1626 save_pos1 = *pos;
1627 tem = 1;
1628
1629 /* If this is a C++ function wait until overload resolution. */
1630 if (op == OP_VAR_VALUE
1631 && overload_resolution
1632 && (exp->language_defn->la_language == language_cplus))
1633 {
1634 (*pos) += 4; /* Skip the evaluation of the symbol. */
1635 argvec[0] = NULL;
1636 }
1637 else
1638 {
1639 argvec[0] = evaluate_subexp_with_coercion (exp, pos, noside);
1640 type = value_type (argvec[0]);
1641 if (type && TYPE_CODE (type) == TYPE_CODE_PTR)
1642 type = TYPE_TARGET_TYPE (type);
1643 if (type && TYPE_CODE (type) == TYPE_CODE_FUNC)
1644 {
1645 for (; tem <= nargs && tem <= TYPE_NFIELDS (type); tem++)
1646 {
1647 argvec[tem] = evaluate_subexp (TYPE_FIELD_TYPE (type,
1648 tem - 1),
1649 exp, pos, noside);
1650 }
1651 }
1652 }
1653 }
1654
1655 /* Evaluate arguments. */
1656 for (; tem <= nargs; tem++)
1657 {
1658 /* Ensure that array expressions are coerced into pointer
1659 objects. */
1660 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1661 }
1662
1663 /* Signal end of arglist. */
1664 argvec[tem] = 0;
1665 if (op == OP_ADL_FUNC)
1666 {
1667 struct symbol *symp;
1668 char *func_name;
1669 int name_len;
1670 int string_pc = save_pos1 + 3;
1671
1672 /* Extract the function name. */
1673 name_len = longest_to_int (exp->elts[string_pc].longconst);
1674 func_name = (char *) alloca (name_len + 1);
1675 strcpy (func_name, &exp->elts[string_pc + 1].string);
1676
1677 find_overload_match (&argvec[1], nargs, func_name,
1678 NON_METHOD, /* not method */
1679 0, /* strict match */
1680 NULL, NULL, /* pass NULL symbol since
1681 symbol is unknown */
1682 NULL, &symp, NULL, 0);
1683
1684 /* Now fix the expression being evaluated. */
1685 exp->elts[save_pos1 + 2].symbol = symp;
1686 argvec[0] = evaluate_subexp_with_coercion (exp, &save_pos1, noside);
1687 }
1688
1689 if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR
1690 || (op == OP_SCOPE && function_name != NULL))
1691 {
1692 int static_memfuncp;
1693 char *tstr;
1694
1695 /* Method invocation : stuff "this" as first parameter. */
1696 argvec[1] = arg2;
1697
1698 if (op != OP_SCOPE)
1699 {
1700 /* Name of method from expression. */
1701 tstr = &exp->elts[pc2 + 2].string;
1702 }
1703 else
1704 tstr = function_name;
1705
1706 if (overload_resolution && (exp->language_defn->la_language
1707 == language_cplus))
1708 {
1709 /* Language is C++, do some overload resolution before
1710 evaluation. */
1711 struct value *valp = NULL;
1712
1713 (void) find_overload_match (&argvec[1], nargs, tstr,
1714 METHOD, /* method */
1715 0, /* strict match */
1716 &arg2, /* the object */
1717 NULL, &valp, NULL,
1718 &static_memfuncp, 0);
1719
1720 if (op == OP_SCOPE && !static_memfuncp)
1721 {
1722 /* For the time being, we don't handle this. */
1723 error (_("Call to overloaded function %s requires "
1724 "`this' pointer"),
1725 function_name);
1726 }
1727 argvec[1] = arg2; /* the ``this'' pointer */
1728 argvec[0] = valp; /* Use the method found after overload
1729 resolution. */
1730 }
1731 else
1732 /* Non-C++ case -- or no overload resolution. */
1733 {
1734 struct value *temp = arg2;
1735
1736 argvec[0] = value_struct_elt (&temp, argvec + 1, tstr,
1737 &static_memfuncp,
1738 op == STRUCTOP_STRUCT
1739 ? "structure" : "structure pointer");
1740 /* value_struct_elt updates temp with the correct value
1741 of the ``this'' pointer if necessary, so modify argvec[1] to
1742 reflect any ``this'' changes. */
1743 arg2
1744 = value_from_longest (lookup_pointer_type(value_type (temp)),
1745 value_address (temp)
1746 + value_embedded_offset (temp));
1747 argvec[1] = arg2; /* the ``this'' pointer */
1748 }
1749
1750 if (static_memfuncp)
1751 {
1752 argvec[1] = argvec[0];
1753 nargs--;
1754 argvec++;
1755 }
1756 }
1757 else if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR)
1758 {
1759 argvec[1] = arg2;
1760 argvec[0] = arg1;
1761 }
1762 else if (op == OP_VAR_VALUE || (op == OP_SCOPE && function != NULL))
1763 {
1764 /* Non-member function being called. */
1765 /* fn: This can only be done for C++ functions. A C-style function
1766 in a C++ program, for instance, does not have the fields that
1767 are expected here. */
1768
1769 if (overload_resolution && (exp->language_defn->la_language
1770 == language_cplus))
1771 {
1772 /* Language is C++, do some overload resolution before
1773 evaluation. */
1774 struct symbol *symp;
1775 int no_adl = 0;
1776
1777 /* If a scope has been specified disable ADL. */
1778 if (op == OP_SCOPE)
1779 no_adl = 1;
1780
1781 if (op == OP_VAR_VALUE)
1782 function = exp->elts[save_pos1+2].symbol;
1783
1784 (void) find_overload_match (&argvec[1], nargs,
1785 NULL, /* no need for name */
1786 NON_METHOD, /* not method */
1787 0, /* strict match */
1788 NULL, function, /* the function */
1789 NULL, &symp, NULL, no_adl);
1790
1791 if (op == OP_VAR_VALUE)
1792 {
1793 /* Now fix the expression being evaluated. */
1794 exp->elts[save_pos1+2].symbol = symp;
1795 argvec[0] = evaluate_subexp_with_coercion (exp, &save_pos1,
1796 noside);
1797 }
1798 else
1799 argvec[0] = value_of_variable (symp, get_selected_block (0));
1800 }
1801 else
1802 {
1803 /* Not C++, or no overload resolution allowed. */
1804 /* Nothing to be done; argvec already correctly set up. */
1805 }
1806 }
1807 else
1808 {
1809 /* It is probably a C-style function. */
1810 /* Nothing to be done; argvec already correctly set up. */
1811 }
1812
1813 do_call_it:
1814
1815 if (noside == EVAL_SKIP)
1816 goto nosideret;
1817 if (argvec[0] == NULL)
1818 error (_("Cannot evaluate function -- may be inlined"));
1819 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1820 {
1821 /* If the return type doesn't look like a function type, call an
1822 error. This can happen if somebody tries to turn a variable into
1823 a function call. This is here because people often want to
1824 call, eg, strcmp, which gdb doesn't know is a function. If
1825 gdb isn't asked for it's opinion (ie. through "whatis"),
1826 it won't offer it. */
1827
1828 struct type *ftype = value_type (argvec[0]);
1829
1830 if (TYPE_CODE (ftype) == TYPE_CODE_INTERNAL_FUNCTION)
1831 {
1832 /* We don't know anything about what the internal
1833 function might return, but we have to return
1834 something. */
1835 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
1836 not_lval);
1837 }
1838 else if (TYPE_GNU_IFUNC (ftype))
1839 return allocate_value (TYPE_TARGET_TYPE (TYPE_TARGET_TYPE (ftype)));
1840 else if (TYPE_TARGET_TYPE (ftype))
1841 return allocate_value (TYPE_TARGET_TYPE (ftype));
1842 else
1843 error (_("Expression of type other than "
1844 "\"Function returning ...\" used as function"));
1845 }
1846 if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_INTERNAL_FUNCTION)
1847 return call_internal_function (exp->gdbarch, exp->language_defn,
1848 argvec[0], nargs, argvec + 1);
1849
1850 return call_function_by_hand (argvec[0], nargs, argvec + 1);
1851 /* pai: FIXME save value from call_function_by_hand, then adjust
1852 pc by adjust_fn_pc if +ve. */
1853
1854 case OP_F77_UNDETERMINED_ARGLIST:
1855
1856 /* Remember that in F77, functions, substring ops and
1857 array subscript operations cannot be disambiguated
1858 at parse time. We have made all array subscript operations,
1859 substring operations as well as function calls come here
1860 and we now have to discover what the heck this thing actually was.
1861 If it is a function, we process just as if we got an OP_FUNCALL. */
1862
1863 nargs = longest_to_int (exp->elts[pc + 1].longconst);
1864 (*pos) += 2;
1865
1866 /* First determine the type code we are dealing with. */
1867 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1868 type = check_typedef (value_type (arg1));
1869 code = TYPE_CODE (type);
1870
1871 if (code == TYPE_CODE_PTR)
1872 {
1873 /* Fortran always passes variable to subroutines as pointer.
1874 So we need to look into its target type to see if it is
1875 array, string or function. If it is, we need to switch
1876 to the target value the original one points to. */
1877 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1878
1879 if (TYPE_CODE (target_type) == TYPE_CODE_ARRAY
1880 || TYPE_CODE (target_type) == TYPE_CODE_STRING
1881 || TYPE_CODE (target_type) == TYPE_CODE_FUNC)
1882 {
1883 arg1 = value_ind (arg1);
1884 type = check_typedef (value_type (arg1));
1885 code = TYPE_CODE (type);
1886 }
1887 }
1888
1889 switch (code)
1890 {
1891 case TYPE_CODE_ARRAY:
1892 if (exp->elts[*pos].opcode == OP_F90_RANGE)
1893 return value_f90_subarray (arg1, exp, pos, noside);
1894 else
1895 goto multi_f77_subscript;
1896
1897 case TYPE_CODE_STRING:
1898 if (exp->elts[*pos].opcode == OP_F90_RANGE)
1899 return value_f90_subarray (arg1, exp, pos, noside);
1900 else
1901 {
1902 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1903 return value_subscript (arg1, value_as_long (arg2));
1904 }
1905
1906 case TYPE_CODE_PTR:
1907 case TYPE_CODE_FUNC:
1908 /* It's a function call. */
1909 /* Allocate arg vector, including space for the function to be
1910 called in argvec[0] and a terminating NULL. */
1911 argvec = (struct value **)
1912 alloca (sizeof (struct value *) * (nargs + 2));
1913 argvec[0] = arg1;
1914 tem = 1;
1915 for (; tem <= nargs; tem++)
1916 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1917 argvec[tem] = 0; /* signal end of arglist */
1918 goto do_call_it;
1919
1920 default:
1921 error (_("Cannot perform substring on this type"));
1922 }
1923
1924 case OP_COMPLEX:
1925 /* We have a complex number, There should be 2 floating
1926 point numbers that compose it. */
1927 (*pos) += 2;
1928 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1929 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1930
1931 return value_literal_complex (arg1, arg2, exp->elts[pc + 1].type);
1932
1933 case STRUCTOP_STRUCT:
1934 tem = longest_to_int (exp->elts[pc + 1].longconst);
1935 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
1936 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1937 if (noside == EVAL_SKIP)
1938 goto nosideret;
1939 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1940 return value_zero (lookup_struct_elt_type (value_type (arg1),
1941 &exp->elts[pc + 2].string,
1942 0),
1943 lval_memory);
1944 else
1945 {
1946 struct value *temp = arg1;
1947
1948 return value_struct_elt (&temp, NULL, &exp->elts[pc + 2].string,
1949 NULL, "structure");
1950 }
1951
1952 case STRUCTOP_PTR:
1953 tem = longest_to_int (exp->elts[pc + 1].longconst);
1954 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
1955 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1956 if (noside == EVAL_SKIP)
1957 goto nosideret;
1958
1959 /* Check to see if operator '->' has been overloaded. If so replace
1960 arg1 with the value returned by evaluating operator->(). */
1961 while (unop_user_defined_p (op, arg1))
1962 {
1963 volatile struct gdb_exception except;
1964 struct value *value = NULL;
1965 TRY_CATCH (except, RETURN_MASK_ERROR)
1966 {
1967 value = value_x_unop (arg1, op, noside);
1968 }
1969
1970 if (except.reason < 0)
1971 {
1972 if (except.error == NOT_FOUND_ERROR)
1973 break;
1974 else
1975 throw_exception (except);
1976 }
1977 arg1 = value;
1978 }
1979
1980 /* JYG: if print object is on we need to replace the base type
1981 with rtti type in order to continue on with successful
1982 lookup of member / method only available in the rtti type. */
1983 {
1984 struct type *type = value_type (arg1);
1985 struct type *real_type;
1986 int full, top, using_enc;
1987 struct value_print_options opts;
1988
1989 get_user_print_options (&opts);
1990 if (opts.objectprint && TYPE_TARGET_TYPE(type)
1991 && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_CLASS))
1992 {
1993 real_type = value_rtti_target_type (arg1, &full, &top, &using_enc);
1994 if (real_type)
1995 {
1996 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1997 real_type = lookup_pointer_type (real_type);
1998 else
1999 real_type = lookup_reference_type (real_type);
2000
2001 arg1 = value_cast (real_type, arg1);
2002 }
2003 }
2004 }
2005
2006 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2007 return value_zero (lookup_struct_elt_type (value_type (arg1),
2008 &exp->elts[pc + 2].string,
2009 0),
2010 lval_memory);
2011 else
2012 {
2013 struct value *temp = arg1;
2014
2015 return value_struct_elt (&temp, NULL, &exp->elts[pc + 2].string,
2016 NULL, "structure pointer");
2017 }
2018
2019 case STRUCTOP_MEMBER:
2020 case STRUCTOP_MPTR:
2021 if (op == STRUCTOP_MEMBER)
2022 arg1 = evaluate_subexp_for_address (exp, pos, noside);
2023 else
2024 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2025
2026 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2027
2028 if (noside == EVAL_SKIP)
2029 goto nosideret;
2030
2031 type = check_typedef (value_type (arg2));
2032 switch (TYPE_CODE (type))
2033 {
2034 case TYPE_CODE_METHODPTR:
2035 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2036 return value_zero (TYPE_TARGET_TYPE (type), not_lval);
2037 else
2038 {
2039 arg2 = cplus_method_ptr_to_value (&arg1, arg2);
2040 gdb_assert (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR);
2041 return value_ind (arg2);
2042 }
2043
2044 case TYPE_CODE_MEMBERPTR:
2045 /* Now, convert these values to an address. */
2046 arg1 = value_cast (lookup_pointer_type (TYPE_DOMAIN_TYPE (type)),
2047 arg1);
2048
2049 mem_offset = value_as_long (arg2);
2050
2051 arg3 = value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2052 value_as_long (arg1) + mem_offset);
2053 return value_ind (arg3);
2054
2055 default:
2056 error (_("non-pointer-to-member value used "
2057 "in pointer-to-member construct"));
2058 }
2059
2060 case TYPE_INSTANCE:
2061 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2062 arg_types = (struct type **) alloca (nargs * sizeof (struct type *));
2063 for (ix = 0; ix < nargs; ++ix)
2064 arg_types[ix] = exp->elts[pc + 1 + ix + 1].type;
2065
2066 expect_type = make_params (nargs, arg_types);
2067 *(pos) += 3 + nargs;
2068 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
2069 xfree (TYPE_FIELDS (expect_type));
2070 xfree (TYPE_MAIN_TYPE (expect_type));
2071 xfree (expect_type);
2072 return arg1;
2073
2074 case BINOP_CONCAT:
2075 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2076 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2077 if (noside == EVAL_SKIP)
2078 goto nosideret;
2079 if (binop_user_defined_p (op, arg1, arg2))
2080 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2081 else
2082 return value_concat (arg1, arg2);
2083
2084 case BINOP_ASSIGN:
2085 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2086 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2087
2088 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2089 return arg1;
2090 if (binop_user_defined_p (op, arg1, arg2))
2091 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2092 else
2093 return value_assign (arg1, arg2);
2094
2095 case BINOP_ASSIGN_MODIFY:
2096 (*pos) += 2;
2097 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2098 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2099 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2100 return arg1;
2101 op = exp->elts[pc + 1].opcode;
2102 if (binop_user_defined_p (op, arg1, arg2))
2103 return value_x_binop (arg1, arg2, BINOP_ASSIGN_MODIFY, op, noside);
2104 else if (op == BINOP_ADD && ptrmath_type_p (exp->language_defn,
2105 value_type (arg1))
2106 && is_integral_type (value_type (arg2)))
2107 arg2 = value_ptradd (arg1, value_as_long (arg2));
2108 else if (op == BINOP_SUB && ptrmath_type_p (exp->language_defn,
2109 value_type (arg1))
2110 && is_integral_type (value_type (arg2)))
2111 arg2 = value_ptradd (arg1, - value_as_long (arg2));
2112 else
2113 {
2114 struct value *tmp = arg1;
2115
2116 /* For shift and integer exponentiation operations,
2117 only promote the first argument. */
2118 if ((op == BINOP_LSH || op == BINOP_RSH || op == BINOP_EXP)
2119 && is_integral_type (value_type (arg2)))
2120 unop_promote (exp->language_defn, exp->gdbarch, &tmp);
2121 else
2122 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2123
2124 arg2 = value_binop (tmp, arg2, op);
2125 }
2126 return value_assign (arg1, arg2);
2127
2128 case BINOP_ADD:
2129 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2130 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2131 if (noside == EVAL_SKIP)
2132 goto nosideret;
2133 if (binop_user_defined_p (op, arg1, arg2))
2134 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2135 else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
2136 && is_integral_type (value_type (arg2)))
2137 return value_ptradd (arg1, value_as_long (arg2));
2138 else if (ptrmath_type_p (exp->language_defn, value_type (arg2))
2139 && is_integral_type (value_type (arg1)))
2140 return value_ptradd (arg2, value_as_long (arg1));
2141 else
2142 {
2143 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2144 return value_binop (arg1, arg2, BINOP_ADD);
2145 }
2146
2147 case BINOP_SUB:
2148 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2149 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2150 if (noside == EVAL_SKIP)
2151 goto nosideret;
2152 if (binop_user_defined_p (op, arg1, arg2))
2153 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2154 else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
2155 && ptrmath_type_p (exp->language_defn, value_type (arg2)))
2156 {
2157 /* FIXME -- should be ptrdiff_t */
2158 type = builtin_type (exp->gdbarch)->builtin_long;
2159 return value_from_longest (type, value_ptrdiff (arg1, arg2));
2160 }
2161 else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
2162 && is_integral_type (value_type (arg2)))
2163 return value_ptradd (arg1, - value_as_long (arg2));
2164 else
2165 {
2166 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2167 return value_binop (arg1, arg2, BINOP_SUB);
2168 }
2169
2170 case BINOP_EXP:
2171 case BINOP_MUL:
2172 case BINOP_DIV:
2173 case BINOP_INTDIV:
2174 case BINOP_REM:
2175 case BINOP_MOD:
2176 case BINOP_LSH:
2177 case BINOP_RSH:
2178 case BINOP_BITWISE_AND:
2179 case BINOP_BITWISE_IOR:
2180 case BINOP_BITWISE_XOR:
2181 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2182 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2183 if (noside == EVAL_SKIP)
2184 goto nosideret;
2185 if (binop_user_defined_p (op, arg1, arg2))
2186 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2187 else
2188 {
2189 /* If EVAL_AVOID_SIDE_EFFECTS and we're dividing by zero,
2190 fudge arg2 to avoid division-by-zero, the caller is
2191 (theoretically) only looking for the type of the result. */
2192 if (noside == EVAL_AVOID_SIDE_EFFECTS
2193 /* ??? Do we really want to test for BINOP_MOD here?
2194 The implementation of value_binop gives it a well-defined
2195 value. */
2196 && (op == BINOP_DIV
2197 || op == BINOP_INTDIV
2198 || op == BINOP_REM
2199 || op == BINOP_MOD)
2200 && value_logical_not (arg2))
2201 {
2202 struct value *v_one, *retval;
2203
2204 v_one = value_one (value_type (arg2));
2205 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &v_one);
2206 retval = value_binop (arg1, v_one, op);
2207 return retval;
2208 }
2209 else
2210 {
2211 /* For shift and integer exponentiation operations,
2212 only promote the first argument. */
2213 if ((op == BINOP_LSH || op == BINOP_RSH || op == BINOP_EXP)
2214 && is_integral_type (value_type (arg2)))
2215 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2216 else
2217 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2218
2219 return value_binop (arg1, arg2, op);
2220 }
2221 }
2222
2223 case BINOP_RANGE:
2224 evaluate_subexp (NULL_TYPE, exp, pos, noside);
2225 evaluate_subexp (NULL_TYPE, exp, pos, noside);
2226 if (noside == EVAL_SKIP)
2227 goto nosideret;
2228 error (_("':' operator used in invalid context"));
2229
2230 case BINOP_SUBSCRIPT:
2231 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2232 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2233 if (noside == EVAL_SKIP)
2234 goto nosideret;
2235 if (binop_user_defined_p (op, arg1, arg2))
2236 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2237 else
2238 {
2239 /* If the user attempts to subscript something that is not an
2240 array or pointer type (like a plain int variable for example),
2241 then report this as an error. */
2242
2243 arg1 = coerce_ref (arg1);
2244 type = check_typedef (value_type (arg1));
2245 if (TYPE_CODE (type) != TYPE_CODE_ARRAY
2246 && TYPE_CODE (type) != TYPE_CODE_PTR)
2247 {
2248 if (TYPE_NAME (type))
2249 error (_("cannot subscript something of type `%s'"),
2250 TYPE_NAME (type));
2251 else
2252 error (_("cannot subscript requested type"));
2253 }
2254
2255 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2256 return value_zero (TYPE_TARGET_TYPE (type), VALUE_LVAL (arg1));
2257 else
2258 return value_subscript (arg1, value_as_long (arg2));
2259 }
2260
2261 case BINOP_IN:
2262 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2263 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2264 if (noside == EVAL_SKIP)
2265 goto nosideret;
2266 type = language_bool_type (exp->language_defn, exp->gdbarch);
2267 return value_from_longest (type, (LONGEST) value_in (arg1, arg2));
2268
2269 case MULTI_SUBSCRIPT:
2270 (*pos) += 2;
2271 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2272 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2273 while (nargs-- > 0)
2274 {
2275 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2276 /* FIXME: EVAL_SKIP handling may not be correct. */
2277 if (noside == EVAL_SKIP)
2278 {
2279 if (nargs > 0)
2280 {
2281 continue;
2282 }
2283 else
2284 {
2285 goto nosideret;
2286 }
2287 }
2288 /* FIXME: EVAL_AVOID_SIDE_EFFECTS handling may not be correct. */
2289 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2290 {
2291 /* If the user attempts to subscript something that has no target
2292 type (like a plain int variable for example), then report this
2293 as an error. */
2294
2295 type = TYPE_TARGET_TYPE (check_typedef (value_type (arg1)));
2296 if (type != NULL)
2297 {
2298 arg1 = value_zero (type, VALUE_LVAL (arg1));
2299 noside = EVAL_SKIP;
2300 continue;
2301 }
2302 else
2303 {
2304 error (_("cannot subscript something of type `%s'"),
2305 TYPE_NAME (value_type (arg1)));
2306 }
2307 }
2308
2309 if (binop_user_defined_p (op, arg1, arg2))
2310 {
2311 arg1 = value_x_binop (arg1, arg2, op, OP_NULL, noside);
2312 }
2313 else
2314 {
2315 arg1 = coerce_ref (arg1);
2316 type = check_typedef (value_type (arg1));
2317
2318 switch (TYPE_CODE (type))
2319 {
2320 case TYPE_CODE_PTR:
2321 case TYPE_CODE_ARRAY:
2322 case TYPE_CODE_STRING:
2323 arg1 = value_subscript (arg1, value_as_long (arg2));
2324 break;
2325
2326 case TYPE_CODE_BITSTRING:
2327 type = language_bool_type (exp->language_defn, exp->gdbarch);
2328 arg1 = value_bitstring_subscript (type, arg1,
2329 value_as_long (arg2));
2330 break;
2331
2332 default:
2333 if (TYPE_NAME (type))
2334 error (_("cannot subscript something of type `%s'"),
2335 TYPE_NAME (type));
2336 else
2337 error (_("cannot subscript requested type"));
2338 }
2339 }
2340 }
2341 return (arg1);
2342
2343 multi_f77_subscript:
2344 {
2345 LONGEST subscript_array[MAX_FORTRAN_DIMS];
2346 int ndimensions = 1, i;
2347 struct value *array = arg1;
2348
2349 if (nargs > MAX_FORTRAN_DIMS)
2350 error (_("Too many subscripts for F77 (%d Max)"), MAX_FORTRAN_DIMS);
2351
2352 ndimensions = calc_f77_array_dims (type);
2353
2354 if (nargs != ndimensions)
2355 error (_("Wrong number of subscripts"));
2356
2357 gdb_assert (nargs > 0);
2358
2359 /* Now that we know we have a legal array subscript expression
2360 let us actually find out where this element exists in the array. */
2361
2362 /* Take array indices left to right. */
2363 for (i = 0; i < nargs; i++)
2364 {
2365 /* Evaluate each subscript; it must be a legal integer in F77. */
2366 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2367
2368 /* Fill in the subscript array. */
2369
2370 subscript_array[i] = value_as_long (arg2);
2371 }
2372
2373 /* Internal type of array is arranged right to left. */
2374 for (i = nargs; i > 0; i--)
2375 {
2376 struct type *array_type = check_typedef (value_type (array));
2377 LONGEST index = subscript_array[i - 1];
2378
2379 lower = f77_get_lowerbound (array_type);
2380 array = value_subscripted_rvalue (array, index, lower);
2381 }
2382
2383 return array;
2384 }
2385
2386 case BINOP_LOGICAL_AND:
2387 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2388 if (noside == EVAL_SKIP)
2389 {
2390 evaluate_subexp (NULL_TYPE, exp, pos, noside);
2391 goto nosideret;
2392 }
2393
2394 oldpos = *pos;
2395 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2396 *pos = oldpos;
2397
2398 if (binop_user_defined_p (op, arg1, arg2))
2399 {
2400 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2401 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2402 }
2403 else
2404 {
2405 tem = value_logical_not (arg1);
2406 arg2 = evaluate_subexp (NULL_TYPE, exp, pos,
2407 (tem ? EVAL_SKIP : noside));
2408 type = language_bool_type (exp->language_defn, exp->gdbarch);
2409 return value_from_longest (type,
2410 (LONGEST) (!tem && !value_logical_not (arg2)));
2411 }
2412
2413 case BINOP_LOGICAL_OR:
2414 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2415 if (noside == EVAL_SKIP)
2416 {
2417 evaluate_subexp (NULL_TYPE, exp, pos, noside);
2418 goto nosideret;
2419 }
2420
2421 oldpos = *pos;
2422 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2423 *pos = oldpos;
2424
2425 if (binop_user_defined_p (op, arg1, arg2))
2426 {
2427 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2428 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2429 }
2430 else
2431 {
2432 tem = value_logical_not (arg1);
2433 arg2 = evaluate_subexp (NULL_TYPE, exp, pos,
2434 (!tem ? EVAL_SKIP : noside));
2435 type = language_bool_type (exp->language_defn, exp->gdbarch);
2436 return value_from_longest (type,
2437 (LONGEST) (!tem || !value_logical_not (arg2)));
2438 }
2439
2440 case BINOP_EQUAL:
2441 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2442 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2443 if (noside == EVAL_SKIP)
2444 goto nosideret;
2445 if (binop_user_defined_p (op, arg1, arg2))
2446 {
2447 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2448 }
2449 else
2450 {
2451 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2452 tem = value_equal (arg1, arg2);
2453 type = language_bool_type (exp->language_defn, exp->gdbarch);
2454 return value_from_longest (type, (LONGEST) tem);
2455 }
2456
2457 case BINOP_NOTEQUAL:
2458 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2459 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2460 if (noside == EVAL_SKIP)
2461 goto nosideret;
2462 if (binop_user_defined_p (op, arg1, arg2))
2463 {
2464 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2465 }
2466 else
2467 {
2468 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2469 tem = value_equal (arg1, arg2);
2470 type = language_bool_type (exp->language_defn, exp->gdbarch);
2471 return value_from_longest (type, (LONGEST) ! tem);
2472 }
2473
2474 case BINOP_LESS:
2475 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2476 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2477 if (noside == EVAL_SKIP)
2478 goto nosideret;
2479 if (binop_user_defined_p (op, arg1, arg2))
2480 {
2481 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2482 }
2483 else
2484 {
2485 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2486 tem = value_less (arg1, arg2);
2487 type = language_bool_type (exp->language_defn, exp->gdbarch);
2488 return value_from_longest (type, (LONGEST) tem);
2489 }
2490
2491 case BINOP_GTR:
2492 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2493 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2494 if (noside == EVAL_SKIP)
2495 goto nosideret;
2496 if (binop_user_defined_p (op, arg1, arg2))
2497 {
2498 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2499 }
2500 else
2501 {
2502 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2503 tem = value_less (arg2, arg1);
2504 type = language_bool_type (exp->language_defn, exp->gdbarch);
2505 return value_from_longest (type, (LONGEST) tem);
2506 }
2507
2508 case BINOP_GEQ:
2509 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2510 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2511 if (noside == EVAL_SKIP)
2512 goto nosideret;
2513 if (binop_user_defined_p (op, arg1, arg2))
2514 {
2515 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2516 }
2517 else
2518 {
2519 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2520 tem = value_less (arg2, arg1) || value_equal (arg1, arg2);
2521 type = language_bool_type (exp->language_defn, exp->gdbarch);
2522 return value_from_longest (type, (LONGEST) tem);
2523 }
2524
2525 case BINOP_LEQ:
2526 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2527 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2528 if (noside == EVAL_SKIP)
2529 goto nosideret;
2530 if (binop_user_defined_p (op, arg1, arg2))
2531 {
2532 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2533 }
2534 else
2535 {
2536 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2537 tem = value_less (arg1, arg2) || value_equal (arg1, arg2);
2538 type = language_bool_type (exp->language_defn, exp->gdbarch);
2539 return value_from_longest (type, (LONGEST) tem);
2540 }
2541
2542 case BINOP_REPEAT:
2543 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2544 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2545 if (noside == EVAL_SKIP)
2546 goto nosideret;
2547 type = check_typedef (value_type (arg2));
2548 if (TYPE_CODE (type) != TYPE_CODE_INT)
2549 error (_("Non-integral right operand for \"@\" operator."));
2550 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2551 {
2552 return allocate_repeat_value (value_type (arg1),
2553 longest_to_int (value_as_long (arg2)));
2554 }
2555 else
2556 return value_repeat (arg1, longest_to_int (value_as_long (arg2)));
2557
2558 case BINOP_COMMA:
2559 evaluate_subexp (NULL_TYPE, exp, pos, noside);
2560 return evaluate_subexp (NULL_TYPE, exp, pos, noside);
2561
2562 case UNOP_PLUS:
2563 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2564 if (noside == EVAL_SKIP)
2565 goto nosideret;
2566 if (unop_user_defined_p (op, arg1))
2567 return value_x_unop (arg1, op, noside);
2568 else
2569 {
2570 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2571 return value_pos (arg1);
2572 }
2573
2574 case UNOP_NEG:
2575 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2576 if (noside == EVAL_SKIP)
2577 goto nosideret;
2578 if (unop_user_defined_p (op, arg1))
2579 return value_x_unop (arg1, op, noside);
2580 else
2581 {
2582 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2583 return value_neg (arg1);
2584 }
2585
2586 case UNOP_COMPLEMENT:
2587 /* C++: check for and handle destructor names. */
2588 op = exp->elts[*pos].opcode;
2589
2590 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2591 if (noside == EVAL_SKIP)
2592 goto nosideret;
2593 if (unop_user_defined_p (UNOP_COMPLEMENT, arg1))
2594 return value_x_unop (arg1, UNOP_COMPLEMENT, noside);
2595 else
2596 {
2597 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2598 return value_complement (arg1);
2599 }
2600
2601 case UNOP_LOGICAL_NOT:
2602 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2603 if (noside == EVAL_SKIP)
2604 goto nosideret;
2605 if (unop_user_defined_p (op, arg1))
2606 return value_x_unop (arg1, op, noside);
2607 else
2608 {
2609 type = language_bool_type (exp->language_defn, exp->gdbarch);
2610 return value_from_longest (type, (LONGEST) value_logical_not (arg1));
2611 }
2612
2613 case UNOP_IND:
2614 if (expect_type && TYPE_CODE (expect_type) == TYPE_CODE_PTR)
2615 expect_type = TYPE_TARGET_TYPE (check_typedef (expect_type));
2616 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2617 type = check_typedef (value_type (arg1));
2618 if (TYPE_CODE (type) == TYPE_CODE_METHODPTR
2619 || TYPE_CODE (type) == TYPE_CODE_MEMBERPTR)
2620 error (_("Attempt to dereference pointer "
2621 "to member without an object"));
2622 if (noside == EVAL_SKIP)
2623 goto nosideret;
2624 if (unop_user_defined_p (op, arg1))
2625 return value_x_unop (arg1, op, noside);
2626 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2627 {
2628 type = check_typedef (value_type (arg1));
2629 if (TYPE_CODE (type) == TYPE_CODE_PTR
2630 || TYPE_CODE (type) == TYPE_CODE_REF
2631 /* In C you can dereference an array to get the 1st elt. */
2632 || TYPE_CODE (type) == TYPE_CODE_ARRAY
2633 )
2634 return value_zero (TYPE_TARGET_TYPE (type),
2635 lval_memory);
2636 else if (TYPE_CODE (type) == TYPE_CODE_INT)
2637 /* GDB allows dereferencing an int. */
2638 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
2639 lval_memory);
2640 else
2641 error (_("Attempt to take contents of a non-pointer value."));
2642 }
2643
2644 /* Allow * on an integer so we can cast it to whatever we want.
2645 This returns an int, which seems like the most C-like thing to
2646 do. "long long" variables are rare enough that
2647 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
2648 if (TYPE_CODE (type) == TYPE_CODE_INT)
2649 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
2650 (CORE_ADDR) value_as_address (arg1));
2651 return value_ind (arg1);
2652
2653 case UNOP_ADDR:
2654 /* C++: check for and handle pointer to members. */
2655
2656 op = exp->elts[*pos].opcode;
2657
2658 if (noside == EVAL_SKIP)
2659 {
2660 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
2661 goto nosideret;
2662 }
2663 else
2664 {
2665 struct value *retvalp = evaluate_subexp_for_address (exp, pos,
2666 noside);
2667
2668 return retvalp;
2669 }
2670
2671 case UNOP_SIZEOF:
2672 if (noside == EVAL_SKIP)
2673 {
2674 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
2675 goto nosideret;
2676 }
2677 return evaluate_subexp_for_sizeof (exp, pos);
2678
2679 case UNOP_CAST:
2680 (*pos) += 2;
2681 type = exp->elts[pc + 1].type;
2682 arg1 = evaluate_subexp (type, exp, pos, noside);
2683 if (noside == EVAL_SKIP)
2684 goto nosideret;
2685 if (type != value_type (arg1))
2686 arg1 = value_cast (type, arg1);
2687 return arg1;
2688
2689 case UNOP_DYNAMIC_CAST:
2690 (*pos) += 2;
2691 type = exp->elts[pc + 1].type;
2692 arg1 = evaluate_subexp (type, exp, pos, noside);
2693 if (noside == EVAL_SKIP)
2694 goto nosideret;
2695 return value_dynamic_cast (type, arg1);
2696
2697 case UNOP_REINTERPRET_CAST:
2698 (*pos) += 2;
2699 type = exp->elts[pc + 1].type;
2700 arg1 = evaluate_subexp (type, exp, pos, noside);
2701 if (noside == EVAL_SKIP)
2702 goto nosideret;
2703 return value_reinterpret_cast (type, arg1);
2704
2705 case UNOP_MEMVAL:
2706 (*pos) += 2;
2707 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2708 if (noside == EVAL_SKIP)
2709 goto nosideret;
2710 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2711 return value_zero (exp->elts[pc + 1].type, lval_memory);
2712 else
2713 return value_at_lazy (exp->elts[pc + 1].type,
2714 value_as_address (arg1));
2715
2716 case UNOP_MEMVAL_TLS:
2717 (*pos) += 3;
2718 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2719 if (noside == EVAL_SKIP)
2720 goto nosideret;
2721 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2722 return value_zero (exp->elts[pc + 2].type, lval_memory);
2723 else
2724 {
2725 CORE_ADDR tls_addr;
2726
2727 tls_addr = target_translate_tls_address (exp->elts[pc + 1].objfile,
2728 value_as_address (arg1));
2729 return value_at_lazy (exp->elts[pc + 2].type, tls_addr);
2730 }
2731
2732 case UNOP_PREINCREMENT:
2733 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2734 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2735 return arg1;
2736 else if (unop_user_defined_p (op, arg1))
2737 {
2738 return value_x_unop (arg1, op, noside);
2739 }
2740 else
2741 {
2742 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2743 arg2 = value_ptradd (arg1, 1);
2744 else
2745 {
2746 struct value *tmp = arg1;
2747
2748 arg2 = value_one (value_type (arg1));
2749 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2750 arg2 = value_binop (tmp, arg2, BINOP_ADD);
2751 }
2752
2753 return value_assign (arg1, arg2);
2754 }
2755
2756 case UNOP_PREDECREMENT:
2757 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2758 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2759 return arg1;
2760 else if (unop_user_defined_p (op, arg1))
2761 {
2762 return value_x_unop (arg1, op, noside);
2763 }
2764 else
2765 {
2766 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2767 arg2 = value_ptradd (arg1, -1);
2768 else
2769 {
2770 struct value *tmp = arg1;
2771
2772 arg2 = value_one (value_type (arg1));
2773 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2774 arg2 = value_binop (tmp, arg2, BINOP_SUB);
2775 }
2776
2777 return value_assign (arg1, arg2);
2778 }
2779
2780 case UNOP_POSTINCREMENT:
2781 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2782 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2783 return arg1;
2784 else if (unop_user_defined_p (op, arg1))
2785 {
2786 return value_x_unop (arg1, op, noside);
2787 }
2788 else
2789 {
2790 arg3 = value_non_lval (arg1);
2791
2792 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2793 arg2 = value_ptradd (arg1, 1);
2794 else
2795 {
2796 struct value *tmp = arg1;
2797
2798 arg2 = value_one (value_type (arg1));
2799 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2800 arg2 = value_binop (tmp, arg2, BINOP_ADD);
2801 }
2802
2803 value_assign (arg1, arg2);
2804 return arg3;
2805 }
2806
2807 case UNOP_POSTDECREMENT:
2808 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2809 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2810 return arg1;
2811 else if (unop_user_defined_p (op, arg1))
2812 {
2813 return value_x_unop (arg1, op, noside);
2814 }
2815 else
2816 {
2817 arg3 = value_non_lval (arg1);
2818
2819 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2820 arg2 = value_ptradd (arg1, -1);
2821 else
2822 {
2823 struct value *tmp = arg1;
2824
2825 arg2 = value_one (value_type (arg1));
2826 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2827 arg2 = value_binop (tmp, arg2, BINOP_SUB);
2828 }
2829
2830 value_assign (arg1, arg2);
2831 return arg3;
2832 }
2833
2834 case OP_THIS:
2835 (*pos) += 1;
2836 return value_of_this (exp->language_defn);
2837
2838 case OP_TYPE:
2839 /* The value is not supposed to be used. This is here to make it
2840 easier to accommodate expressions that contain types. */
2841 (*pos) += 2;
2842 if (noside == EVAL_SKIP)
2843 goto nosideret;
2844 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2845 {
2846 struct type *type = exp->elts[pc + 1].type;
2847
2848 /* If this is a typedef, then find its immediate target. We
2849 use check_typedef to resolve stubs, but we ignore its
2850 result because we do not want to dig past all
2851 typedefs. */
2852 check_typedef (type);
2853 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2854 type = TYPE_TARGET_TYPE (type);
2855 return allocate_value (type);
2856 }
2857 else
2858 error (_("Attempt to use a type name as an expression"));
2859
2860 default:
2861 /* Removing this case and compiling with gcc -Wall reveals that
2862 a lot of cases are hitting this case. Some of these should
2863 probably be removed from expression.h; others are legitimate
2864 expressions which are (apparently) not fully implemented.
2865
2866 If there are any cases landing here which mean a user error,
2867 then they should be separate cases, with more descriptive
2868 error messages. */
2869
2870 error (_("GDB does not (yet) know how to "
2871 "evaluate that kind of expression"));
2872 }
2873
2874 nosideret:
2875 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
2876 }
2877 \f
2878 /* Evaluate a subexpression of EXP, at index *POS,
2879 and return the address of that subexpression.
2880 Advance *POS over the subexpression.
2881 If the subexpression isn't an lvalue, get an error.
2882 NOSIDE may be EVAL_AVOID_SIDE_EFFECTS;
2883 then only the type of the result need be correct. */
2884
2885 static struct value *
2886 evaluate_subexp_for_address (struct expression *exp, int *pos,
2887 enum noside noside)
2888 {
2889 enum exp_opcode op;
2890 int pc;
2891 struct symbol *var;
2892 struct value *x;
2893 int tem;
2894
2895 pc = (*pos);
2896 op = exp->elts[pc].opcode;
2897
2898 switch (op)
2899 {
2900 case UNOP_IND:
2901 (*pos)++;
2902 x = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2903
2904 /* We can't optimize out "&*" if there's a user-defined operator*. */
2905 if (unop_user_defined_p (op, x))
2906 {
2907 x = value_x_unop (x, op, noside);
2908 goto default_case_after_eval;
2909 }
2910
2911 return coerce_array (x);
2912
2913 case UNOP_MEMVAL:
2914 (*pos) += 3;
2915 return value_cast (lookup_pointer_type (exp->elts[pc + 1].type),
2916 evaluate_subexp (NULL_TYPE, exp, pos, noside));
2917
2918 case OP_VAR_VALUE:
2919 var = exp->elts[pc + 2].symbol;
2920
2921 /* C++: The "address" of a reference should yield the address
2922 * of the object pointed to. Let value_addr() deal with it. */
2923 if (TYPE_CODE (SYMBOL_TYPE (var)) == TYPE_CODE_REF)
2924 goto default_case;
2925
2926 (*pos) += 4;
2927 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2928 {
2929 struct type *type =
2930 lookup_pointer_type (SYMBOL_TYPE (var));
2931 enum address_class sym_class = SYMBOL_CLASS (var);
2932
2933 if (sym_class == LOC_CONST
2934 || sym_class == LOC_CONST_BYTES
2935 || sym_class == LOC_REGISTER)
2936 error (_("Attempt to take address of register or constant."));
2937
2938 return
2939 value_zero (type, not_lval);
2940 }
2941 else
2942 return address_of_variable (var, exp->elts[pc + 1].block);
2943
2944 case OP_SCOPE:
2945 tem = longest_to_int (exp->elts[pc + 2].longconst);
2946 (*pos) += 5 + BYTES_TO_EXP_ELEM (tem + 1);
2947 x = value_aggregate_elt (exp->elts[pc + 1].type,
2948 &exp->elts[pc + 3].string,
2949 NULL, 1, noside);
2950 if (x == NULL)
2951 error (_("There is no field named %s"), &exp->elts[pc + 3].string);
2952 return x;
2953
2954 default:
2955 default_case:
2956 x = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2957 default_case_after_eval:
2958 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2959 {
2960 struct type *type = check_typedef (value_type (x));
2961
2962 if (VALUE_LVAL (x) == lval_memory || value_must_coerce_to_target (x))
2963 return value_zero (lookup_pointer_type (value_type (x)),
2964 not_lval);
2965 else if (TYPE_CODE (type) == TYPE_CODE_REF)
2966 return value_zero (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2967 not_lval);
2968 else
2969 error (_("Attempt to take address of "
2970 "value not located in memory."));
2971 }
2972 return value_addr (x);
2973 }
2974 }
2975
2976 /* Evaluate like `evaluate_subexp' except coercing arrays to pointers.
2977 When used in contexts where arrays will be coerced anyway, this is
2978 equivalent to `evaluate_subexp' but much faster because it avoids
2979 actually fetching array contents (perhaps obsolete now that we have
2980 value_lazy()).
2981
2982 Note that we currently only do the coercion for C expressions, where
2983 arrays are zero based and the coercion is correct. For other languages,
2984 with nonzero based arrays, coercion loses. Use CAST_IS_CONVERSION
2985 to decide if coercion is appropriate. */
2986
2987 struct value *
2988 evaluate_subexp_with_coercion (struct expression *exp,
2989 int *pos, enum noside noside)
2990 {
2991 enum exp_opcode op;
2992 int pc;
2993 struct value *val;
2994 struct symbol *var;
2995 struct type *type;
2996
2997 pc = (*pos);
2998 op = exp->elts[pc].opcode;
2999
3000 switch (op)
3001 {
3002 case OP_VAR_VALUE:
3003 var = exp->elts[pc + 2].symbol;
3004 type = check_typedef (SYMBOL_TYPE (var));
3005 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
3006 && !TYPE_VECTOR (type)
3007 && CAST_IS_CONVERSION (exp->language_defn))
3008 {
3009 (*pos) += 4;
3010 val = address_of_variable (var, exp->elts[pc + 1].block);
3011 return value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
3012 val);
3013 }
3014 /* FALLTHROUGH */
3015
3016 default:
3017 return evaluate_subexp (NULL_TYPE, exp, pos, noside);
3018 }
3019 }
3020
3021 /* Evaluate a subexpression of EXP, at index *POS,
3022 and return a value for the size of that subexpression.
3023 Advance *POS over the subexpression. */
3024
3025 static struct value *
3026 evaluate_subexp_for_sizeof (struct expression *exp, int *pos)
3027 {
3028 /* FIXME: This should be size_t. */
3029 struct type *size_type = builtin_type (exp->gdbarch)->builtin_int;
3030 enum exp_opcode op;
3031 int pc;
3032 struct type *type;
3033 struct value *val;
3034
3035 pc = (*pos);
3036 op = exp->elts[pc].opcode;
3037
3038 switch (op)
3039 {
3040 /* This case is handled specially
3041 so that we avoid creating a value for the result type.
3042 If the result type is very big, it's desirable not to
3043 create a value unnecessarily. */
3044 case UNOP_IND:
3045 (*pos)++;
3046 val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3047 type = check_typedef (value_type (val));
3048 if (TYPE_CODE (type) != TYPE_CODE_PTR
3049 && TYPE_CODE (type) != TYPE_CODE_REF
3050 && TYPE_CODE (type) != TYPE_CODE_ARRAY)
3051 error (_("Attempt to take contents of a non-pointer value."));
3052 type = check_typedef (TYPE_TARGET_TYPE (type));
3053 return value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
3054
3055 case UNOP_MEMVAL:
3056 (*pos) += 3;
3057 type = check_typedef (exp->elts[pc + 1].type);
3058 return value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
3059
3060 case OP_VAR_VALUE:
3061 (*pos) += 4;
3062 type = check_typedef (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
3063 return
3064 value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
3065
3066 default:
3067 val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3068 return value_from_longest (size_type,
3069 (LONGEST) TYPE_LENGTH (value_type (val)));
3070 }
3071 }
3072
3073 /* Parse a type expression in the string [P..P+LENGTH). */
3074
3075 struct type *
3076 parse_and_eval_type (char *p, int length)
3077 {
3078 char *tmp = (char *) alloca (length + 4);
3079 struct expression *expr;
3080
3081 tmp[0] = '(';
3082 memcpy (tmp + 1, p, length);
3083 tmp[length + 1] = ')';
3084 tmp[length + 2] = '0';
3085 tmp[length + 3] = '\0';
3086 expr = parse_expression (tmp);
3087 if (expr->elts[0].opcode != UNOP_CAST)
3088 error (_("Internal error in eval_type."));
3089 return expr->elts[1].type;
3090 }
3091
3092 int
3093 calc_f77_array_dims (struct type *array_type)
3094 {
3095 int ndimen = 1;
3096 struct type *tmp_type;
3097
3098 if ((TYPE_CODE (array_type) != TYPE_CODE_ARRAY))
3099 error (_("Can't get dimensions for a non-array type"));
3100
3101 tmp_type = array_type;
3102
3103 while ((tmp_type = TYPE_TARGET_TYPE (tmp_type)))
3104 {
3105 if (TYPE_CODE (tmp_type) == TYPE_CODE_ARRAY)
3106 ++ndimen;
3107 }
3108 return ndimen;
3109 }