62a71363d9661adfe7d4f2e45015ee2a7f5de4c1
[binutils-gdb.git] / gdb / f-valprint.c
1 /* Support for printing Fortran values for GDB, the GNU debugger.
2
3 Copyright (C) 1993-1996, 1998-2000, 2003, 2005-2012 Free Software
4 Foundation, Inc.
5
6 Contributed by Motorola. Adapted from the C definitions by Farooq Butt
7 (fmbutt@engage.sps.mot.com), additionally worked over by Stan Shebs.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include "gdb_string.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "expression.h"
29 #include "value.h"
30 #include "valprint.h"
31 #include "language.h"
32 #include "f-lang.h"
33 #include "frame.h"
34 #include "gdbcore.h"
35 #include "command.h"
36 #include "block.h"
37
38 #if 0
39 static int there_is_a_visible_common_named (char *);
40 #endif
41
42 extern void _initialize_f_valprint (void);
43 static void info_common_command (char *, int);
44 static void list_all_visible_commons (const char *);
45 static void f77_create_arrayprint_offset_tbl (struct type *,
46 struct ui_file *);
47 static void f77_get_dynamic_length_of_aggregate (struct type *);
48
49 int f77_array_offset_tbl[MAX_FORTRAN_DIMS + 1][2];
50
51 /* Array which holds offsets to be applied to get a row's elements
52 for a given array. Array also holds the size of each subarray. */
53
54 /* The following macro gives us the size of the nth dimension, Where
55 n is 1 based. */
56
57 #define F77_DIM_SIZE(n) (f77_array_offset_tbl[n][1])
58
59 /* The following gives us the offset for row n where n is 1-based. */
60
61 #define F77_DIM_OFFSET(n) (f77_array_offset_tbl[n][0])
62
63 int
64 f77_get_lowerbound (struct type *type)
65 {
66 if (TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
67 error (_("Lower bound may not be '*' in F77"));
68
69 return TYPE_ARRAY_LOWER_BOUND_VALUE (type);
70 }
71
72 int
73 f77_get_upperbound (struct type *type)
74 {
75 if (TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
76 {
77 /* We have an assumed size array on our hands. Assume that
78 upper_bound == lower_bound so that we show at least 1 element.
79 If the user wants to see more elements, let him manually ask for 'em
80 and we'll subscript the array and show him. */
81
82 return f77_get_lowerbound (type);
83 }
84
85 return TYPE_ARRAY_UPPER_BOUND_VALUE (type);
86 }
87
88 /* Obtain F77 adjustable array dimensions. */
89
90 static void
91 f77_get_dynamic_length_of_aggregate (struct type *type)
92 {
93 int upper_bound = -1;
94 int lower_bound = 1;
95
96 /* Recursively go all the way down into a possibly multi-dimensional
97 F77 array and get the bounds. For simple arrays, this is pretty
98 easy but when the bounds are dynamic, we must be very careful
99 to add up all the lengths correctly. Not doing this right
100 will lead to horrendous-looking arrays in parameter lists.
101
102 This function also works for strings which behave very
103 similarly to arrays. */
104
105 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY
106 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_STRING)
107 f77_get_dynamic_length_of_aggregate (TYPE_TARGET_TYPE (type));
108
109 /* Recursion ends here, start setting up lengths. */
110 lower_bound = f77_get_lowerbound (type);
111 upper_bound = f77_get_upperbound (type);
112
113 /* Patch in a valid length value. */
114
115 TYPE_LENGTH (type) =
116 (upper_bound - lower_bound + 1)
117 * TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type)));
118 }
119
120 /* Function that sets up the array offset,size table for the array
121 type "type". */
122
123 static void
124 f77_create_arrayprint_offset_tbl (struct type *type, struct ui_file *stream)
125 {
126 struct type *tmp_type;
127 int eltlen;
128 int ndimen = 1;
129 int upper, lower;
130
131 tmp_type = type;
132
133 while ((TYPE_CODE (tmp_type) == TYPE_CODE_ARRAY))
134 {
135 upper = f77_get_upperbound (tmp_type);
136 lower = f77_get_lowerbound (tmp_type);
137
138 F77_DIM_SIZE (ndimen) = upper - lower + 1;
139
140 tmp_type = TYPE_TARGET_TYPE (tmp_type);
141 ndimen++;
142 }
143
144 /* Now we multiply eltlen by all the offsets, so that later we
145 can print out array elements correctly. Up till now we
146 know an offset to apply to get the item but we also
147 have to know how much to add to get to the next item. */
148
149 ndimen--;
150 eltlen = TYPE_LENGTH (tmp_type);
151 F77_DIM_OFFSET (ndimen) = eltlen;
152 while (--ndimen > 0)
153 {
154 eltlen *= F77_DIM_SIZE (ndimen + 1);
155 F77_DIM_OFFSET (ndimen) = eltlen;
156 }
157 }
158
159
160
161 /* Actual function which prints out F77 arrays, Valaddr == address in
162 the superior. Address == the address in the inferior. */
163
164 static void
165 f77_print_array_1 (int nss, int ndimensions, struct type *type,
166 const gdb_byte *valaddr,
167 int embedded_offset, CORE_ADDR address,
168 struct ui_file *stream, int recurse,
169 const struct value *val,
170 const struct value_print_options *options,
171 int *elts)
172 {
173 int i;
174
175 if (nss != ndimensions)
176 {
177 for (i = 0;
178 (i < F77_DIM_SIZE (nss) && (*elts) < options->print_max);
179 i++)
180 {
181 fprintf_filtered (stream, "( ");
182 f77_print_array_1 (nss + 1, ndimensions, TYPE_TARGET_TYPE (type),
183 valaddr,
184 embedded_offset + i * F77_DIM_OFFSET (nss),
185 address,
186 stream, recurse, val, options, elts);
187 fprintf_filtered (stream, ") ");
188 }
189 if (*elts >= options->print_max && i < F77_DIM_SIZE (nss))
190 fprintf_filtered (stream, "...");
191 }
192 else
193 {
194 for (i = 0; i < F77_DIM_SIZE (nss) && (*elts) < options->print_max;
195 i++, (*elts)++)
196 {
197 val_print (TYPE_TARGET_TYPE (type),
198 valaddr,
199 embedded_offset + i * F77_DIM_OFFSET (ndimensions),
200 address, stream, recurse,
201 val, options, current_language);
202
203 if (i != (F77_DIM_SIZE (nss) - 1))
204 fprintf_filtered (stream, ", ");
205
206 if ((*elts == options->print_max - 1)
207 && (i != (F77_DIM_SIZE (nss) - 1)))
208 fprintf_filtered (stream, "...");
209 }
210 }
211 }
212
213 /* This function gets called to print an F77 array, we set up some
214 stuff and then immediately call f77_print_array_1(). */
215
216 static void
217 f77_print_array (struct type *type, const gdb_byte *valaddr,
218 int embedded_offset,
219 CORE_ADDR address, struct ui_file *stream,
220 int recurse,
221 const struct value *val,
222 const struct value_print_options *options)
223 {
224 int ndimensions;
225 int elts = 0;
226
227 ndimensions = calc_f77_array_dims (type);
228
229 if (ndimensions > MAX_FORTRAN_DIMS || ndimensions < 0)
230 error (_("\
231 Type node corrupt! F77 arrays cannot have %d subscripts (%d Max)"),
232 ndimensions, MAX_FORTRAN_DIMS);
233
234 /* Since F77 arrays are stored column-major, we set up an
235 offset table to get at the various row's elements. The
236 offset table contains entries for both offset and subarray size. */
237
238 f77_create_arrayprint_offset_tbl (type, stream);
239
240 f77_print_array_1 (1, ndimensions, type, valaddr, embedded_offset,
241 address, stream, recurse, val, options, &elts);
242 }
243 \f
244
245 /* Decorations for Fortran. */
246
247 static const struct generic_val_print_decorations f_decorations =
248 {
249 "(",
250 ",",
251 ")",
252 ".TRUE.",
253 ".FALSE.",
254 "VOID",
255 };
256
257 /* See val_print for a description of the various parameters of this
258 function; they are identical. */
259
260 void
261 f_val_print (struct type *type, const gdb_byte *valaddr, int embedded_offset,
262 CORE_ADDR address, struct ui_file *stream, int recurse,
263 const struct value *original_value,
264 const struct value_print_options *options)
265 {
266 struct gdbarch *gdbarch = get_type_arch (type);
267 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
268 unsigned int i = 0; /* Number of characters printed. */
269 struct type *elttype;
270 LONGEST val;
271 CORE_ADDR addr;
272 int index;
273
274 CHECK_TYPEDEF (type);
275 switch (TYPE_CODE (type))
276 {
277 case TYPE_CODE_STRING:
278 f77_get_dynamic_length_of_aggregate (type);
279 LA_PRINT_STRING (stream, builtin_type (gdbarch)->builtin_char,
280 valaddr + embedded_offset,
281 TYPE_LENGTH (type), NULL, 0, options);
282 break;
283
284 case TYPE_CODE_ARRAY:
285 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_CHAR)
286 {
287 fprintf_filtered (stream, "(");
288 f77_print_array (type, valaddr, embedded_offset,
289 address, stream, recurse, original_value, options);
290 fprintf_filtered (stream, ")");
291 }
292 else
293 {
294 struct type *ch_type = TYPE_TARGET_TYPE (type);
295
296 f77_get_dynamic_length_of_aggregate (type);
297 LA_PRINT_STRING (stream, ch_type,
298 valaddr + embedded_offset,
299 TYPE_LENGTH (type) / TYPE_LENGTH (ch_type),
300 NULL, 0, options);
301 }
302 break;
303
304 case TYPE_CODE_PTR:
305 if (options->format && options->format != 's')
306 {
307 val_print_scalar_formatted (type, valaddr, embedded_offset,
308 original_value, options, 0, stream);
309 break;
310 }
311 else
312 {
313 addr = unpack_pointer (type, valaddr + embedded_offset);
314 elttype = check_typedef (TYPE_TARGET_TYPE (type));
315
316 if (TYPE_CODE (elttype) == TYPE_CODE_FUNC)
317 {
318 /* Try to print what function it points to. */
319 print_function_pointer_address (gdbarch, addr, stream,
320 options->addressprint);
321 return;
322 }
323
324 if (options->addressprint && options->format != 's')
325 fputs_filtered (paddress (gdbarch, addr), stream);
326
327 /* For a pointer to char or unsigned char, also print the string
328 pointed to, unless pointer is null. */
329 if (TYPE_LENGTH (elttype) == 1
330 && TYPE_CODE (elttype) == TYPE_CODE_INT
331 && (options->format == 0 || options->format == 's')
332 && addr != 0)
333 i = val_print_string (TYPE_TARGET_TYPE (type), NULL, addr, -1,
334 stream, options);
335 return;
336 }
337 break;
338
339 case TYPE_CODE_INT:
340 if (options->format || options->output_format)
341 {
342 struct value_print_options opts = *options;
343
344 opts.format = (options->format ? options->format
345 : options->output_format);
346 val_print_scalar_formatted (type, valaddr, embedded_offset,
347 original_value, options, 0, stream);
348 }
349 else
350 {
351 val_print_type_code_int (type, valaddr + embedded_offset, stream);
352 /* C and C++ has no single byte int type, char is used instead.
353 Since we don't know whether the value is really intended to
354 be used as an integer or a character, print the character
355 equivalent as well. */
356 if (TYPE_LENGTH (type) == 1)
357 {
358 LONGEST c;
359
360 fputs_filtered (" ", stream);
361 c = unpack_long (type, valaddr + embedded_offset);
362 LA_PRINT_CHAR ((unsigned char) c, type, stream);
363 }
364 }
365 break;
366
367 case TYPE_CODE_STRUCT:
368 case TYPE_CODE_UNION:
369 /* Starting from the Fortran 90 standard, Fortran supports derived
370 types. */
371 fprintf_filtered (stream, "( ");
372 for (index = 0; index < TYPE_NFIELDS (type); index++)
373 {
374 int offset = TYPE_FIELD_BITPOS (type, index) / 8;
375
376 val_print (TYPE_FIELD_TYPE (type, index), valaddr,
377 embedded_offset + offset,
378 address, stream, recurse + 1,
379 original_value, options, current_language);
380 if (index != TYPE_NFIELDS (type) - 1)
381 fputs_filtered (", ", stream);
382 }
383 fprintf_filtered (stream, " )");
384 break;
385
386 case TYPE_CODE_REF:
387 case TYPE_CODE_FUNC:
388 case TYPE_CODE_FLAGS:
389 case TYPE_CODE_FLT:
390 case TYPE_CODE_VOID:
391 case TYPE_CODE_ERROR:
392 case TYPE_CODE_RANGE:
393 case TYPE_CODE_UNDEF:
394 case TYPE_CODE_COMPLEX:
395 case TYPE_CODE_BOOL:
396 case TYPE_CODE_CHAR:
397 default:
398 generic_val_print (type, valaddr, embedded_offset, address,
399 stream, recurse, original_value, options,
400 &f_decorations);
401 break;
402 }
403 gdb_flush (stream);
404 }
405
406 static void
407 list_all_visible_commons (const char *funname)
408 {
409 SAVED_F77_COMMON_PTR tmp;
410
411 tmp = head_common_list;
412
413 printf_filtered (_("All COMMON blocks visible at this level:\n\n"));
414
415 while (tmp != NULL)
416 {
417 if (strcmp (tmp->owning_function, funname) == 0)
418 printf_filtered ("%s\n", tmp->name);
419
420 tmp = tmp->next;
421 }
422 }
423
424 /* This function is used to print out the values in a given COMMON
425 block. It will always use the most local common block of the
426 given name. */
427
428 static void
429 info_common_command (char *comname, int from_tty)
430 {
431 SAVED_F77_COMMON_PTR the_common;
432 COMMON_ENTRY_PTR entry;
433 struct frame_info *fi;
434 const char *funname = 0;
435 struct symbol *func;
436
437 /* We have been told to display the contents of F77 COMMON
438 block supposedly visible in this function. Let us
439 first make sure that it is visible and if so, let
440 us display its contents. */
441
442 fi = get_selected_frame (_("No frame selected"));
443
444 /* The following is generally ripped off from stack.c's routine
445 print_frame_info(). */
446
447 func = find_pc_function (get_frame_pc (fi));
448 if (func)
449 {
450 /* In certain pathological cases, the symtabs give the wrong
451 function (when we are in the first function in a file which
452 is compiled without debugging symbols, the previous function
453 is compiled with debugging symbols, and the "foo.o" symbol
454 that is supposed to tell us where the file with debugging symbols
455 ends has been truncated by ar because it is longer than 15
456 characters).
457
458 So look in the minimal symbol tables as well, and if it comes
459 up with a larger address for the function use that instead.
460 I don't think this can ever cause any problems; there shouldn't
461 be any minimal symbols in the middle of a function.
462 FIXME: (Not necessarily true. What about text labels?) */
463
464 struct minimal_symbol *msymbol =
465 lookup_minimal_symbol_by_pc (get_frame_pc (fi));
466
467 if (msymbol != NULL
468 && (SYMBOL_VALUE_ADDRESS (msymbol)
469 > BLOCK_START (SYMBOL_BLOCK_VALUE (func))))
470 funname = SYMBOL_LINKAGE_NAME (msymbol);
471 else
472 funname = SYMBOL_LINKAGE_NAME (func);
473 }
474 else
475 {
476 struct minimal_symbol *msymbol =
477 lookup_minimal_symbol_by_pc (get_frame_pc (fi));
478
479 if (msymbol != NULL)
480 funname = SYMBOL_LINKAGE_NAME (msymbol);
481 else /* Got no 'funname', code below will fail. */
482 error (_("No function found for frame."));
483 }
484
485 /* If comname is NULL, we assume the user wishes to see the
486 which COMMON blocks are visible here and then return. */
487
488 if (comname == 0)
489 {
490 list_all_visible_commons (funname);
491 return;
492 }
493
494 the_common = find_common_for_function (comname, funname);
495
496 if (the_common)
497 {
498 if (strcmp (comname, BLANK_COMMON_NAME_LOCAL) == 0)
499 printf_filtered (_("Contents of blank COMMON block:\n"));
500 else
501 printf_filtered (_("Contents of F77 COMMON block '%s':\n"), comname);
502
503 printf_filtered ("\n");
504 entry = the_common->entries;
505
506 while (entry != NULL)
507 {
508 print_variable_and_value (NULL, entry->symbol, fi, gdb_stdout, 0);
509 entry = entry->next;
510 }
511 }
512 else
513 printf_filtered (_("Cannot locate the common block %s in function '%s'\n"),
514 comname, funname);
515 }
516
517 /* This function is used to determine whether there is a
518 F77 common block visible at the current scope called 'comname'. */
519
520 #if 0
521 static int
522 there_is_a_visible_common_named (char *comname)
523 {
524 SAVED_F77_COMMON_PTR the_common;
525 struct frame_info *fi;
526 char *funname = 0;
527 struct symbol *func;
528
529 if (comname == NULL)
530 error (_("Cannot deal with NULL common name!"));
531
532 fi = get_selected_frame (_("No frame selected"));
533
534 /* The following is generally ripped off from stack.c's routine
535 print_frame_info(). */
536
537 func = find_pc_function (fi->pc);
538 if (func)
539 {
540 /* In certain pathological cases, the symtabs give the wrong
541 function (when we are in the first function in a file which
542 is compiled without debugging symbols, the previous function
543 is compiled with debugging symbols, and the "foo.o" symbol
544 that is supposed to tell us where the file with debugging symbols
545 ends has been truncated by ar because it is longer than 15
546 characters).
547
548 So look in the minimal symbol tables as well, and if it comes
549 up with a larger address for the function use that instead.
550 I don't think this can ever cause any problems; there shouldn't
551 be any minimal symbols in the middle of a function.
552 FIXME: (Not necessarily true. What about text labels?) */
553
554 struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (fi->pc);
555
556 if (msymbol != NULL
557 && (SYMBOL_VALUE_ADDRESS (msymbol)
558 > BLOCK_START (SYMBOL_BLOCK_VALUE (func))))
559 funname = SYMBOL_LINKAGE_NAME (msymbol);
560 else
561 funname = SYMBOL_LINKAGE_NAME (func);
562 }
563 else
564 {
565 struct minimal_symbol *msymbol =
566 lookup_minimal_symbol_by_pc (fi->pc);
567
568 if (msymbol != NULL)
569 funname = SYMBOL_LINKAGE_NAME (msymbol);
570 }
571
572 the_common = find_common_for_function (comname, funname);
573
574 return (the_common ? 1 : 0);
575 }
576 #endif
577
578 void
579 _initialize_f_valprint (void)
580 {
581 add_info ("common", info_common_command,
582 _("Print out the values contained in a Fortran COMMON block."));
583 if (xdb_commands)
584 add_com ("lc", class_info, info_common_command,
585 _("Print out the values contained in a Fortran COMMON block."));
586 }