* ax-gdb.c (gen_var_ref): Use SYMBOL_LINKAGE_NAME.
[binutils-gdb.git] / gdb / f-valprint.c
1 /* Support for printing Fortran values for GDB, the GNU debugger.
2
3 Copyright (C) 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2003, 2005, 2006,
4 2007, 2008 Free Software Foundation, Inc.
5
6 Contributed by Motorola. Adapted from the C definitions by Farooq Butt
7 (fmbutt@engage.sps.mot.com), additionally worked over by Stan Shebs.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include "gdb_string.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "expression.h"
29 #include "value.h"
30 #include "valprint.h"
31 #include "language.h"
32 #include "f-lang.h"
33 #include "frame.h"
34 #include "gdbcore.h"
35 #include "command.h"
36 #include "block.h"
37
38 #if 0
39 static int there_is_a_visible_common_named (char *);
40 #endif
41
42 extern void _initialize_f_valprint (void);
43 static void info_common_command (char *, int);
44 static void list_all_visible_commons (char *);
45 static void f77_create_arrayprint_offset_tbl (struct type *,
46 struct ui_file *);
47 static void f77_get_dynamic_length_of_aggregate (struct type *);
48
49 int f77_array_offset_tbl[MAX_FORTRAN_DIMS + 1][2];
50
51 /* Array which holds offsets to be applied to get a row's elements
52 for a given array. Array also holds the size of each subarray. */
53
54 /* The following macro gives us the size of the nth dimension, Where
55 n is 1 based. */
56
57 #define F77_DIM_SIZE(n) (f77_array_offset_tbl[n][1])
58
59 /* The following gives us the offset for row n where n is 1-based. */
60
61 #define F77_DIM_OFFSET(n) (f77_array_offset_tbl[n][0])
62
63 int
64 f77_get_dynamic_lowerbound (struct type *type, int *lower_bound)
65 {
66 struct frame_info *frame;
67 CORE_ADDR current_frame_addr;
68 CORE_ADDR ptr_to_lower_bound;
69
70 switch (TYPE_ARRAY_LOWER_BOUND_TYPE (type))
71 {
72 case BOUND_BY_VALUE_ON_STACK:
73 frame = deprecated_safe_get_selected_frame ();
74 current_frame_addr = get_frame_base (frame);
75 if (current_frame_addr > 0)
76 {
77 *lower_bound =
78 read_memory_integer (current_frame_addr +
79 TYPE_ARRAY_LOWER_BOUND_VALUE (type),
80 4);
81 }
82 else
83 {
84 *lower_bound = DEFAULT_LOWER_BOUND;
85 return BOUND_FETCH_ERROR;
86 }
87 break;
88
89 case BOUND_SIMPLE:
90 *lower_bound = TYPE_ARRAY_LOWER_BOUND_VALUE (type);
91 break;
92
93 case BOUND_CANNOT_BE_DETERMINED:
94 error (_("Lower bound may not be '*' in F77"));
95 break;
96
97 case BOUND_BY_REF_ON_STACK:
98 frame = deprecated_safe_get_selected_frame ();
99 current_frame_addr = get_frame_base (frame);
100 if (current_frame_addr > 0)
101 {
102 ptr_to_lower_bound =
103 read_memory_typed_address (current_frame_addr +
104 TYPE_ARRAY_LOWER_BOUND_VALUE (type),
105 builtin_type_void_data_ptr);
106 *lower_bound = read_memory_integer (ptr_to_lower_bound, 4);
107 }
108 else
109 {
110 *lower_bound = DEFAULT_LOWER_BOUND;
111 return BOUND_FETCH_ERROR;
112 }
113 break;
114
115 case BOUND_BY_REF_IN_REG:
116 case BOUND_BY_VALUE_IN_REG:
117 default:
118 error (_("??? unhandled dynamic array bound type ???"));
119 break;
120 }
121 return BOUND_FETCH_OK;
122 }
123
124 int
125 f77_get_dynamic_upperbound (struct type *type, int *upper_bound)
126 {
127 struct frame_info *frame;
128 CORE_ADDR current_frame_addr = 0;
129 CORE_ADDR ptr_to_upper_bound;
130
131 switch (TYPE_ARRAY_UPPER_BOUND_TYPE (type))
132 {
133 case BOUND_BY_VALUE_ON_STACK:
134 frame = deprecated_safe_get_selected_frame ();
135 current_frame_addr = get_frame_base (frame);
136 if (current_frame_addr > 0)
137 {
138 *upper_bound =
139 read_memory_integer (current_frame_addr +
140 TYPE_ARRAY_UPPER_BOUND_VALUE (type),
141 4);
142 }
143 else
144 {
145 *upper_bound = DEFAULT_UPPER_BOUND;
146 return BOUND_FETCH_ERROR;
147 }
148 break;
149
150 case BOUND_SIMPLE:
151 *upper_bound = TYPE_ARRAY_UPPER_BOUND_VALUE (type);
152 break;
153
154 case BOUND_CANNOT_BE_DETERMINED:
155 /* we have an assumed size array on our hands. Assume that
156 upper_bound == lower_bound so that we show at least
157 1 element.If the user wants to see more elements, let
158 him manually ask for 'em and we'll subscript the
159 array and show him */
160 f77_get_dynamic_lowerbound (type, upper_bound);
161 break;
162
163 case BOUND_BY_REF_ON_STACK:
164 frame = deprecated_safe_get_selected_frame ();
165 current_frame_addr = get_frame_base (frame);
166 if (current_frame_addr > 0)
167 {
168 ptr_to_upper_bound =
169 read_memory_typed_address (current_frame_addr +
170 TYPE_ARRAY_UPPER_BOUND_VALUE (type),
171 builtin_type_void_data_ptr);
172 *upper_bound = read_memory_integer (ptr_to_upper_bound, 4);
173 }
174 else
175 {
176 *upper_bound = DEFAULT_UPPER_BOUND;
177 return BOUND_FETCH_ERROR;
178 }
179 break;
180
181 case BOUND_BY_REF_IN_REG:
182 case BOUND_BY_VALUE_IN_REG:
183 default:
184 error (_("??? unhandled dynamic array bound type ???"));
185 break;
186 }
187 return BOUND_FETCH_OK;
188 }
189
190 /* Obtain F77 adjustable array dimensions */
191
192 static void
193 f77_get_dynamic_length_of_aggregate (struct type *type)
194 {
195 int upper_bound = -1;
196 int lower_bound = 1;
197 int retcode;
198
199 /* Recursively go all the way down into a possibly multi-dimensional
200 F77 array and get the bounds. For simple arrays, this is pretty
201 easy but when the bounds are dynamic, we must be very careful
202 to add up all the lengths correctly. Not doing this right
203 will lead to horrendous-looking arrays in parameter lists.
204
205 This function also works for strings which behave very
206 similarly to arrays. */
207
208 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY
209 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_STRING)
210 f77_get_dynamic_length_of_aggregate (TYPE_TARGET_TYPE (type));
211
212 /* Recursion ends here, start setting up lengths. */
213 retcode = f77_get_dynamic_lowerbound (type, &lower_bound);
214 if (retcode == BOUND_FETCH_ERROR)
215 error (_("Cannot obtain valid array lower bound"));
216
217 retcode = f77_get_dynamic_upperbound (type, &upper_bound);
218 if (retcode == BOUND_FETCH_ERROR)
219 error (_("Cannot obtain valid array upper bound"));
220
221 /* Patch in a valid length value. */
222
223 TYPE_LENGTH (type) =
224 (upper_bound - lower_bound + 1) * TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type)));
225 }
226
227 /* Function that sets up the array offset,size table for the array
228 type "type". */
229
230 static void
231 f77_create_arrayprint_offset_tbl (struct type *type, struct ui_file *stream)
232 {
233 struct type *tmp_type;
234 int eltlen;
235 int ndimen = 1;
236 int upper, lower, retcode;
237
238 tmp_type = type;
239
240 while ((TYPE_CODE (tmp_type) == TYPE_CODE_ARRAY))
241 {
242 if (TYPE_ARRAY_UPPER_BOUND_TYPE (tmp_type) == BOUND_CANNOT_BE_DETERMINED)
243 fprintf_filtered (stream, "<assumed size array> ");
244
245 retcode = f77_get_dynamic_upperbound (tmp_type, &upper);
246 if (retcode == BOUND_FETCH_ERROR)
247 error (_("Cannot obtain dynamic upper bound"));
248
249 retcode = f77_get_dynamic_lowerbound (tmp_type, &lower);
250 if (retcode == BOUND_FETCH_ERROR)
251 error (_("Cannot obtain dynamic lower bound"));
252
253 F77_DIM_SIZE (ndimen) = upper - lower + 1;
254
255 tmp_type = TYPE_TARGET_TYPE (tmp_type);
256 ndimen++;
257 }
258
259 /* Now we multiply eltlen by all the offsets, so that later we
260 can print out array elements correctly. Up till now we
261 know an offset to apply to get the item but we also
262 have to know how much to add to get to the next item */
263
264 ndimen--;
265 eltlen = TYPE_LENGTH (tmp_type);
266 F77_DIM_OFFSET (ndimen) = eltlen;
267 while (--ndimen > 0)
268 {
269 eltlen *= F77_DIM_SIZE (ndimen + 1);
270 F77_DIM_OFFSET (ndimen) = eltlen;
271 }
272 }
273
274
275
276 /* Actual function which prints out F77 arrays, Valaddr == address in
277 the superior. Address == the address in the inferior. */
278
279 static void
280 f77_print_array_1 (int nss, int ndimensions, struct type *type,
281 const gdb_byte *valaddr, CORE_ADDR address,
282 struct ui_file *stream, int format,
283 int deref_ref, int recurse, enum val_prettyprint pretty,
284 int *elts)
285 {
286 int i;
287
288 if (nss != ndimensions)
289 {
290 for (i = 0; (i < F77_DIM_SIZE (nss) && (*elts) < print_max); i++)
291 {
292 fprintf_filtered (stream, "( ");
293 f77_print_array_1 (nss + 1, ndimensions, TYPE_TARGET_TYPE (type),
294 valaddr + i * F77_DIM_OFFSET (nss),
295 address + i * F77_DIM_OFFSET (nss),
296 stream, format, deref_ref, recurse, pretty, elts);
297 fprintf_filtered (stream, ") ");
298 }
299 if (*elts >= print_max && i < F77_DIM_SIZE (nss))
300 fprintf_filtered (stream, "...");
301 }
302 else
303 {
304 for (i = 0; i < F77_DIM_SIZE (nss) && (*elts) < print_max;
305 i++, (*elts)++)
306 {
307 val_print (TYPE_TARGET_TYPE (type),
308 valaddr + i * F77_DIM_OFFSET (ndimensions),
309 0,
310 address + i * F77_DIM_OFFSET (ndimensions),
311 stream, format, deref_ref, recurse, pretty,
312 current_language);
313
314 if (i != (F77_DIM_SIZE (nss) - 1))
315 fprintf_filtered (stream, ", ");
316
317 if ((*elts == print_max - 1) && (i != (F77_DIM_SIZE (nss) - 1)))
318 fprintf_filtered (stream, "...");
319 }
320 }
321 }
322
323 /* This function gets called to print an F77 array, we set up some
324 stuff and then immediately call f77_print_array_1() */
325
326 static void
327 f77_print_array (struct type *type, const gdb_byte *valaddr,
328 CORE_ADDR address, struct ui_file *stream,
329 int format, int deref_ref, int recurse,
330 enum val_prettyprint pretty)
331 {
332 int ndimensions;
333 int elts = 0;
334
335 ndimensions = calc_f77_array_dims (type);
336
337 if (ndimensions > MAX_FORTRAN_DIMS || ndimensions < 0)
338 error (_("Type node corrupt! F77 arrays cannot have %d subscripts (%d Max)"),
339 ndimensions, MAX_FORTRAN_DIMS);
340
341 /* Since F77 arrays are stored column-major, we set up an
342 offset table to get at the various row's elements. The
343 offset table contains entries for both offset and subarray size. */
344
345 f77_create_arrayprint_offset_tbl (type, stream);
346
347 f77_print_array_1 (1, ndimensions, type, valaddr, address, stream, format,
348 deref_ref, recurse, pretty, &elts);
349 }
350 \f
351
352 /* Print data of type TYPE located at VALADDR (within GDB), which came from
353 the inferior at address ADDRESS, onto stdio stream STREAM according to
354 FORMAT (a letter or 0 for natural format). The data at VALADDR is in
355 target byte order.
356
357 If the data are a string pointer, returns the number of string characters
358 printed.
359
360 If DEREF_REF is nonzero, then dereference references, otherwise just print
361 them like pointers.
362
363 The PRETTY parameter controls prettyprinting. */
364
365 int
366 f_val_print (struct type *type, const gdb_byte *valaddr, int embedded_offset,
367 CORE_ADDR address, struct ui_file *stream, int format,
368 int deref_ref, int recurse, enum val_prettyprint pretty)
369 {
370 unsigned int i = 0; /* Number of characters printed */
371 struct type *elttype;
372 LONGEST val;
373 CORE_ADDR addr;
374 int index;
375
376 CHECK_TYPEDEF (type);
377 switch (TYPE_CODE (type))
378 {
379 case TYPE_CODE_STRING:
380 f77_get_dynamic_length_of_aggregate (type);
381 LA_PRINT_STRING (stream, valaddr, TYPE_LENGTH (type), 1, 0);
382 break;
383
384 case TYPE_CODE_ARRAY:
385 fprintf_filtered (stream, "(");
386 f77_print_array (type, valaddr, address, stream, format,
387 deref_ref, recurse, pretty);
388 fprintf_filtered (stream, ")");
389 break;
390
391 case TYPE_CODE_PTR:
392 if (format && format != 's')
393 {
394 print_scalar_formatted (valaddr, type, format, 0, stream);
395 break;
396 }
397 else
398 {
399 addr = unpack_pointer (type, valaddr);
400 elttype = check_typedef (TYPE_TARGET_TYPE (type));
401
402 if (TYPE_CODE (elttype) == TYPE_CODE_FUNC)
403 {
404 /* Try to print what function it points to. */
405 print_address_demangle (addr, stream, demangle);
406 /* Return value is irrelevant except for string pointers. */
407 return 0;
408 }
409
410 if (addressprint && format != 's')
411 fputs_filtered (paddress (addr), stream);
412
413 /* For a pointer to char or unsigned char, also print the string
414 pointed to, unless pointer is null. */
415 if (TYPE_LENGTH (elttype) == 1
416 && TYPE_CODE (elttype) == TYPE_CODE_INT
417 && (format == 0 || format == 's')
418 && addr != 0)
419 i = val_print_string (addr, -1, TYPE_LENGTH (elttype), stream);
420
421 /* Return number of characters printed, including the terminating
422 '\0' if we reached the end. val_print_string takes care including
423 the terminating '\0' if necessary. */
424 return i;
425 }
426 break;
427
428 case TYPE_CODE_REF:
429 elttype = check_typedef (TYPE_TARGET_TYPE (type));
430 if (addressprint)
431 {
432 CORE_ADDR addr
433 = extract_typed_address (valaddr + embedded_offset, type);
434 fprintf_filtered (stream, "@");
435 fputs_filtered (paddress (addr), stream);
436 if (deref_ref)
437 fputs_filtered (": ", stream);
438 }
439 /* De-reference the reference. */
440 if (deref_ref)
441 {
442 if (TYPE_CODE (elttype) != TYPE_CODE_UNDEF)
443 {
444 struct value *deref_val =
445 value_at
446 (TYPE_TARGET_TYPE (type),
447 unpack_pointer (lookup_pointer_type (builtin_type_void),
448 valaddr + embedded_offset));
449 common_val_print (deref_val, stream, format, deref_ref, recurse,
450 pretty, current_language);
451 }
452 else
453 fputs_filtered ("???", stream);
454 }
455 break;
456
457 case TYPE_CODE_FUNC:
458 if (format)
459 {
460 print_scalar_formatted (valaddr, type, format, 0, stream);
461 break;
462 }
463 /* FIXME, we should consider, at least for ANSI C language, eliminating
464 the distinction made between FUNCs and POINTERs to FUNCs. */
465 fprintf_filtered (stream, "{");
466 type_print (type, "", stream, -1);
467 fprintf_filtered (stream, "} ");
468 /* Try to print what function it points to, and its address. */
469 print_address_demangle (address, stream, demangle);
470 break;
471
472 case TYPE_CODE_INT:
473 format = format ? format : output_format;
474 if (format)
475 print_scalar_formatted (valaddr, type, format, 0, stream);
476 else
477 {
478 val_print_type_code_int (type, valaddr, stream);
479 /* C and C++ has no single byte int type, char is used instead.
480 Since we don't know whether the value is really intended to
481 be used as an integer or a character, print the character
482 equivalent as well. */
483 if (TYPE_LENGTH (type) == 1)
484 {
485 fputs_filtered (" ", stream);
486 LA_PRINT_CHAR ((unsigned char) unpack_long (type, valaddr),
487 stream);
488 }
489 }
490 break;
491
492 case TYPE_CODE_FLAGS:
493 if (format)
494 print_scalar_formatted (valaddr, type, format, 0, stream);
495 else
496 val_print_type_code_flags (type, valaddr, stream);
497 break;
498
499 case TYPE_CODE_FLT:
500 if (format)
501 print_scalar_formatted (valaddr, type, format, 0, stream);
502 else
503 print_floating (valaddr, type, stream);
504 break;
505
506 case TYPE_CODE_VOID:
507 fprintf_filtered (stream, "VOID");
508 break;
509
510 case TYPE_CODE_ERROR:
511 fprintf_filtered (stream, "<error type>");
512 break;
513
514 case TYPE_CODE_RANGE:
515 /* FIXME, we should not ever have to print one of these yet. */
516 fprintf_filtered (stream, "<range type>");
517 break;
518
519 case TYPE_CODE_BOOL:
520 format = format ? format : output_format;
521 if (format)
522 print_scalar_formatted (valaddr, type, format, 0, stream);
523 else
524 {
525 val = 0;
526 switch (TYPE_LENGTH (type))
527 {
528 case 1:
529 val = unpack_long (builtin_type_f_logical_s1, valaddr);
530 break;
531
532 case 2:
533 val = unpack_long (builtin_type_f_logical_s2, valaddr);
534 break;
535
536 case 4:
537 val = unpack_long (builtin_type_f_logical, valaddr);
538 break;
539
540 default:
541 error (_("Logicals of length %d bytes not supported"),
542 TYPE_LENGTH (type));
543
544 }
545
546 if (val == 0)
547 fprintf_filtered (stream, ".FALSE.");
548 else if (val == 1)
549 fprintf_filtered (stream, ".TRUE.");
550 else
551 /* Not a legitimate logical type, print as an integer. */
552 {
553 /* Bash the type code temporarily. */
554 TYPE_CODE (type) = TYPE_CODE_INT;
555 f_val_print (type, valaddr, 0, address, stream, format,
556 deref_ref, recurse, pretty);
557 /* Restore the type code so later uses work as intended. */
558 TYPE_CODE (type) = TYPE_CODE_BOOL;
559 }
560 }
561 break;
562
563 case TYPE_CODE_COMPLEX:
564 switch (TYPE_LENGTH (type))
565 {
566 case 8:
567 type = builtin_type_f_real;
568 break;
569 case 16:
570 type = builtin_type_f_real_s8;
571 break;
572 case 32:
573 type = builtin_type_f_real_s16;
574 break;
575 default:
576 error (_("Cannot print out complex*%d variables"), TYPE_LENGTH (type));
577 }
578 fputs_filtered ("(", stream);
579 print_floating (valaddr, type, stream);
580 fputs_filtered (",", stream);
581 print_floating (valaddr + TYPE_LENGTH (type), type, stream);
582 fputs_filtered (")", stream);
583 break;
584
585 case TYPE_CODE_UNDEF:
586 /* This happens (without TYPE_FLAG_STUB set) on systems which don't use
587 dbx xrefs (NO_DBX_XREFS in gcc) if a file has a "struct foo *bar"
588 and no complete type for struct foo in that file. */
589 fprintf_filtered (stream, "<incomplete type>");
590 break;
591
592 case TYPE_CODE_STRUCT:
593 case TYPE_CODE_UNION:
594 /* Starting from the Fortran 90 standard, Fortran supports derived
595 types. */
596 fprintf_filtered (stream, "( ");
597 for (index = 0; index < TYPE_NFIELDS (type); index++)
598 {
599 int offset = TYPE_FIELD_BITPOS (type, index) / 8;
600 f_val_print (TYPE_FIELD_TYPE (type, index), valaddr + offset,
601 embedded_offset, address, stream,
602 format, deref_ref, recurse, pretty);
603 if (index != TYPE_NFIELDS (type) - 1)
604 fputs_filtered (", ", stream);
605 }
606 fprintf_filtered (stream, " )");
607 break;
608
609 default:
610 error (_("Invalid F77 type code %d in symbol table."), TYPE_CODE (type));
611 }
612 gdb_flush (stream);
613 return 0;
614 }
615
616 static void
617 list_all_visible_commons (char *funname)
618 {
619 SAVED_F77_COMMON_PTR tmp;
620
621 tmp = head_common_list;
622
623 printf_filtered (_("All COMMON blocks visible at this level:\n\n"));
624
625 while (tmp != NULL)
626 {
627 if (strcmp (tmp->owning_function, funname) == 0)
628 printf_filtered ("%s\n", tmp->name);
629
630 tmp = tmp->next;
631 }
632 }
633
634 /* This function is used to print out the values in a given COMMON
635 block. It will always use the most local common block of the
636 given name */
637
638 static void
639 info_common_command (char *comname, int from_tty)
640 {
641 SAVED_F77_COMMON_PTR the_common;
642 COMMON_ENTRY_PTR entry;
643 struct frame_info *fi;
644 char *funname = 0;
645 struct symbol *func;
646
647 /* We have been told to display the contents of F77 COMMON
648 block supposedly visible in this function. Let us
649 first make sure that it is visible and if so, let
650 us display its contents */
651
652 fi = get_selected_frame (_("No frame selected"));
653
654 /* The following is generally ripped off from stack.c's routine
655 print_frame_info() */
656
657 func = find_pc_function (get_frame_pc (fi));
658 if (func)
659 {
660 /* In certain pathological cases, the symtabs give the wrong
661 function (when we are in the first function in a file which
662 is compiled without debugging symbols, the previous function
663 is compiled with debugging symbols, and the "foo.o" symbol
664 that is supposed to tell us where the file with debugging symbols
665 ends has been truncated by ar because it is longer than 15
666 characters).
667
668 So look in the minimal symbol tables as well, and if it comes
669 up with a larger address for the function use that instead.
670 I don't think this can ever cause any problems; there shouldn't
671 be any minimal symbols in the middle of a function.
672 FIXME: (Not necessarily true. What about text labels) */
673
674 struct minimal_symbol *msymbol =
675 lookup_minimal_symbol_by_pc (get_frame_pc (fi));
676
677 if (msymbol != NULL
678 && (SYMBOL_VALUE_ADDRESS (msymbol)
679 > BLOCK_START (SYMBOL_BLOCK_VALUE (func))))
680 funname = SYMBOL_LINKAGE_NAME (msymbol);
681 else
682 funname = SYMBOL_LINKAGE_NAME (func);
683 }
684 else
685 {
686 struct minimal_symbol *msymbol =
687 lookup_minimal_symbol_by_pc (get_frame_pc (fi));
688
689 if (msymbol != NULL)
690 funname = SYMBOL_LINKAGE_NAME (msymbol);
691 else /* Got no 'funname', code below will fail. */
692 error (_("No function found for frame."));
693 }
694
695 /* If comname is NULL, we assume the user wishes to see the
696 which COMMON blocks are visible here and then return */
697
698 if (comname == 0)
699 {
700 list_all_visible_commons (funname);
701 return;
702 }
703
704 the_common = find_common_for_function (comname, funname);
705
706 if (the_common)
707 {
708 if (strcmp (comname, BLANK_COMMON_NAME_LOCAL) == 0)
709 printf_filtered (_("Contents of blank COMMON block:\n"));
710 else
711 printf_filtered (_("Contents of F77 COMMON block '%s':\n"), comname);
712
713 printf_filtered ("\n");
714 entry = the_common->entries;
715
716 while (entry != NULL)
717 {
718 printf_filtered ("%s = ", SYMBOL_PRINT_NAME (entry->symbol));
719 print_variable_value (entry->symbol, fi, gdb_stdout);
720 printf_filtered ("\n");
721 entry = entry->next;
722 }
723 }
724 else
725 printf_filtered (_("Cannot locate the common block %s in function '%s'\n"),
726 comname, funname);
727 }
728
729 /* This function is used to determine whether there is a
730 F77 common block visible at the current scope called 'comname'. */
731
732 #if 0
733 static int
734 there_is_a_visible_common_named (char *comname)
735 {
736 SAVED_F77_COMMON_PTR the_common;
737 struct frame_info *fi;
738 char *funname = 0;
739 struct symbol *func;
740
741 if (comname == NULL)
742 error (_("Cannot deal with NULL common name!"));
743
744 fi = get_selected_frame (_("No frame selected"));
745
746 /* The following is generally ripped off from stack.c's routine
747 print_frame_info() */
748
749 func = find_pc_function (fi->pc);
750 if (func)
751 {
752 /* In certain pathological cases, the symtabs give the wrong
753 function (when we are in the first function in a file which
754 is compiled without debugging symbols, the previous function
755 is compiled with debugging symbols, and the "foo.o" symbol
756 that is supposed to tell us where the file with debugging symbols
757 ends has been truncated by ar because it is longer than 15
758 characters).
759
760 So look in the minimal symbol tables as well, and if it comes
761 up with a larger address for the function use that instead.
762 I don't think this can ever cause any problems; there shouldn't
763 be any minimal symbols in the middle of a function.
764 FIXME: (Not necessarily true. What about text labels) */
765
766 struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (fi->pc);
767
768 if (msymbol != NULL
769 && (SYMBOL_VALUE_ADDRESS (msymbol)
770 > BLOCK_START (SYMBOL_BLOCK_VALUE (func))))
771 funname = SYMBOL_LINKAGE_NAME (msymbol);
772 else
773 funname = SYMBOL_LINKAGE_NAME (func);
774 }
775 else
776 {
777 struct minimal_symbol *msymbol =
778 lookup_minimal_symbol_by_pc (fi->pc);
779
780 if (msymbol != NULL)
781 funname = SYMBOL_LINKAGE_NAME (msymbol);
782 }
783
784 the_common = find_common_for_function (comname, funname);
785
786 return (the_common ? 1 : 0);
787 }
788 #endif
789
790 void
791 _initialize_f_valprint (void)
792 {
793 add_info ("common", info_common_command,
794 _("Print out the values contained in a Fortran COMMON block."));
795 if (xdb_commands)
796 add_com ("lc", class_info, info_common_command,
797 _("Print out the values contained in a Fortran COMMON block."));
798 }