Frame static link: Handle null pointer.
[binutils-gdb.git] / gdb / findvar.c
1 /* Find a variable's value in memory, for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2016 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "frame.h"
24 #include "value.h"
25 #include "gdbcore.h"
26 #include "inferior.h"
27 #include "target.h"
28 #include "floatformat.h"
29 #include "symfile.h" /* for overlay functions */
30 #include "regcache.h"
31 #include "user-regs.h"
32 #include "block.h"
33 #include "objfiles.h"
34 #include "language.h"
35 #include "dwarf2loc.h"
36
37 /* Basic byte-swapping routines. All 'extract' functions return a
38 host-format integer from a target-format integer at ADDR which is
39 LEN bytes long. */
40
41 #if TARGET_CHAR_BIT != 8 || HOST_CHAR_BIT != 8
42 /* 8 bit characters are a pretty safe assumption these days, so we
43 assume it throughout all these swapping routines. If we had to deal with
44 9 bit characters, we would need to make len be in bits and would have
45 to re-write these routines... */
46 you lose
47 #endif
48
49 LONGEST
50 extract_signed_integer (const gdb_byte *addr, int len,
51 enum bfd_endian byte_order)
52 {
53 LONGEST retval;
54 const unsigned char *p;
55 const unsigned char *startaddr = addr;
56 const unsigned char *endaddr = startaddr + len;
57
58 if (len > (int) sizeof (LONGEST))
59 error (_("\
60 That operation is not available on integers of more than %d bytes."),
61 (int) sizeof (LONGEST));
62
63 /* Start at the most significant end of the integer, and work towards
64 the least significant. */
65 if (byte_order == BFD_ENDIAN_BIG)
66 {
67 p = startaddr;
68 /* Do the sign extension once at the start. */
69 retval = ((LONGEST) * p ^ 0x80) - 0x80;
70 for (++p; p < endaddr; ++p)
71 retval = (retval << 8) | *p;
72 }
73 else
74 {
75 p = endaddr - 1;
76 /* Do the sign extension once at the start. */
77 retval = ((LONGEST) * p ^ 0x80) - 0x80;
78 for (--p; p >= startaddr; --p)
79 retval = (retval << 8) | *p;
80 }
81 return retval;
82 }
83
84 ULONGEST
85 extract_unsigned_integer (const gdb_byte *addr, int len,
86 enum bfd_endian byte_order)
87 {
88 ULONGEST retval;
89 const unsigned char *p;
90 const unsigned char *startaddr = addr;
91 const unsigned char *endaddr = startaddr + len;
92
93 if (len > (int) sizeof (ULONGEST))
94 error (_("\
95 That operation is not available on integers of more than %d bytes."),
96 (int) sizeof (ULONGEST));
97
98 /* Start at the most significant end of the integer, and work towards
99 the least significant. */
100 retval = 0;
101 if (byte_order == BFD_ENDIAN_BIG)
102 {
103 for (p = startaddr; p < endaddr; ++p)
104 retval = (retval << 8) | *p;
105 }
106 else
107 {
108 for (p = endaddr - 1; p >= startaddr; --p)
109 retval = (retval << 8) | *p;
110 }
111 return retval;
112 }
113
114 /* Sometimes a long long unsigned integer can be extracted as a
115 LONGEST value. This is done so that we can print these values
116 better. If this integer can be converted to a LONGEST, this
117 function returns 1 and sets *PVAL. Otherwise it returns 0. */
118
119 int
120 extract_long_unsigned_integer (const gdb_byte *addr, int orig_len,
121 enum bfd_endian byte_order, LONGEST *pval)
122 {
123 const gdb_byte *p;
124 const gdb_byte *first_addr;
125 int len;
126
127 len = orig_len;
128 if (byte_order == BFD_ENDIAN_BIG)
129 {
130 for (p = addr;
131 len > (int) sizeof (LONGEST) && p < addr + orig_len;
132 p++)
133 {
134 if (*p == 0)
135 len--;
136 else
137 break;
138 }
139 first_addr = p;
140 }
141 else
142 {
143 first_addr = addr;
144 for (p = addr + orig_len - 1;
145 len > (int) sizeof (LONGEST) && p >= addr;
146 p--)
147 {
148 if (*p == 0)
149 len--;
150 else
151 break;
152 }
153 }
154
155 if (len <= (int) sizeof (LONGEST))
156 {
157 *pval = (LONGEST) extract_unsigned_integer (first_addr,
158 sizeof (LONGEST),
159 byte_order);
160 return 1;
161 }
162
163 return 0;
164 }
165
166
167 /* Treat the bytes at BUF as a pointer of type TYPE, and return the
168 address it represents. */
169 CORE_ADDR
170 extract_typed_address (const gdb_byte *buf, struct type *type)
171 {
172 if (TYPE_CODE (type) != TYPE_CODE_PTR
173 && TYPE_CODE (type) != TYPE_CODE_REF)
174 internal_error (__FILE__, __LINE__,
175 _("extract_typed_address: "
176 "type is not a pointer or reference"));
177
178 return gdbarch_pointer_to_address (get_type_arch (type), type, buf);
179 }
180
181 /* All 'store' functions accept a host-format integer and store a
182 target-format integer at ADDR which is LEN bytes long. */
183
184 void
185 store_signed_integer (gdb_byte *addr, int len,
186 enum bfd_endian byte_order, LONGEST val)
187 {
188 gdb_byte *p;
189 gdb_byte *startaddr = addr;
190 gdb_byte *endaddr = startaddr + len;
191
192 /* Start at the least significant end of the integer, and work towards
193 the most significant. */
194 if (byte_order == BFD_ENDIAN_BIG)
195 {
196 for (p = endaddr - 1; p >= startaddr; --p)
197 {
198 *p = val & 0xff;
199 val >>= 8;
200 }
201 }
202 else
203 {
204 for (p = startaddr; p < endaddr; ++p)
205 {
206 *p = val & 0xff;
207 val >>= 8;
208 }
209 }
210 }
211
212 void
213 store_unsigned_integer (gdb_byte *addr, int len,
214 enum bfd_endian byte_order, ULONGEST val)
215 {
216 unsigned char *p;
217 unsigned char *startaddr = (unsigned char *) addr;
218 unsigned char *endaddr = startaddr + len;
219
220 /* Start at the least significant end of the integer, and work towards
221 the most significant. */
222 if (byte_order == BFD_ENDIAN_BIG)
223 {
224 for (p = endaddr - 1; p >= startaddr; --p)
225 {
226 *p = val & 0xff;
227 val >>= 8;
228 }
229 }
230 else
231 {
232 for (p = startaddr; p < endaddr; ++p)
233 {
234 *p = val & 0xff;
235 val >>= 8;
236 }
237 }
238 }
239
240 /* Store the address ADDR as a pointer of type TYPE at BUF, in target
241 form. */
242 void
243 store_typed_address (gdb_byte *buf, struct type *type, CORE_ADDR addr)
244 {
245 if (TYPE_CODE (type) != TYPE_CODE_PTR
246 && TYPE_CODE (type) != TYPE_CODE_REF)
247 internal_error (__FILE__, __LINE__,
248 _("store_typed_address: "
249 "type is not a pointer or reference"));
250
251 gdbarch_address_to_pointer (get_type_arch (type), type, buf, addr);
252 }
253
254
255
256 /* Return a `value' with the contents of (virtual or cooked) register
257 REGNUM as found in the specified FRAME. The register's type is
258 determined by register_type(). */
259
260 struct value *
261 value_of_register (int regnum, struct frame_info *frame)
262 {
263 struct gdbarch *gdbarch = get_frame_arch (frame);
264 struct value *reg_val;
265
266 /* User registers lie completely outside of the range of normal
267 registers. Catch them early so that the target never sees them. */
268 if (regnum >= gdbarch_num_regs (gdbarch)
269 + gdbarch_num_pseudo_regs (gdbarch))
270 return value_of_user_reg (regnum, frame);
271
272 reg_val = value_of_register_lazy (frame, regnum);
273 value_fetch_lazy (reg_val);
274 return reg_val;
275 }
276
277 /* Return a `value' with the contents of (virtual or cooked) register
278 REGNUM as found in the specified FRAME. The register's type is
279 determined by register_type(). The value is not fetched. */
280
281 struct value *
282 value_of_register_lazy (struct frame_info *frame, int regnum)
283 {
284 struct gdbarch *gdbarch = get_frame_arch (frame);
285 struct value *reg_val;
286
287 gdb_assert (regnum < (gdbarch_num_regs (gdbarch)
288 + gdbarch_num_pseudo_regs (gdbarch)));
289
290 /* We should have a valid (i.e. non-sentinel) frame. */
291 gdb_assert (frame_id_p (get_frame_id (frame)));
292
293 reg_val = allocate_value_lazy (register_type (gdbarch, regnum));
294 VALUE_LVAL (reg_val) = lval_register;
295 VALUE_REGNUM (reg_val) = regnum;
296 VALUE_FRAME_ID (reg_val) = get_frame_id (frame);
297 return reg_val;
298 }
299
300 /* Given a pointer of type TYPE in target form in BUF, return the
301 address it represents. */
302 CORE_ADDR
303 unsigned_pointer_to_address (struct gdbarch *gdbarch,
304 struct type *type, const gdb_byte *buf)
305 {
306 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
307
308 return extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
309 }
310
311 CORE_ADDR
312 signed_pointer_to_address (struct gdbarch *gdbarch,
313 struct type *type, const gdb_byte *buf)
314 {
315 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
316
317 return extract_signed_integer (buf, TYPE_LENGTH (type), byte_order);
318 }
319
320 /* Given an address, store it as a pointer of type TYPE in target
321 format in BUF. */
322 void
323 unsigned_address_to_pointer (struct gdbarch *gdbarch, struct type *type,
324 gdb_byte *buf, CORE_ADDR addr)
325 {
326 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
327
328 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order, addr);
329 }
330
331 void
332 address_to_signed_pointer (struct gdbarch *gdbarch, struct type *type,
333 gdb_byte *buf, CORE_ADDR addr)
334 {
335 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
336
337 store_signed_integer (buf, TYPE_LENGTH (type), byte_order, addr);
338 }
339 \f
340 /* Will calling read_var_value or locate_var_value on SYM end
341 up caring what frame it is being evaluated relative to? SYM must
342 be non-NULL. */
343 int
344 symbol_read_needs_frame (struct symbol *sym)
345 {
346 if (SYMBOL_COMPUTED_OPS (sym) != NULL)
347 return SYMBOL_COMPUTED_OPS (sym)->read_needs_frame (sym);
348
349 switch (SYMBOL_CLASS (sym))
350 {
351 /* All cases listed explicitly so that gcc -Wall will detect it if
352 we failed to consider one. */
353 case LOC_COMPUTED:
354 gdb_assert_not_reached (_("LOC_COMPUTED variable missing a method"));
355
356 case LOC_REGISTER:
357 case LOC_ARG:
358 case LOC_REF_ARG:
359 case LOC_REGPARM_ADDR:
360 case LOC_LOCAL:
361 return 1;
362
363 case LOC_UNDEF:
364 case LOC_CONST:
365 case LOC_STATIC:
366 case LOC_TYPEDEF:
367
368 case LOC_LABEL:
369 /* Getting the address of a label can be done independently of the block,
370 even if some *uses* of that address wouldn't work so well without
371 the right frame. */
372
373 case LOC_BLOCK:
374 case LOC_CONST_BYTES:
375 case LOC_UNRESOLVED:
376 case LOC_OPTIMIZED_OUT:
377 return 0;
378 }
379 return 1;
380 }
381
382 /* Private data to be used with minsym_lookup_iterator_cb. */
383
384 struct minsym_lookup_data
385 {
386 /* The name of the minimal symbol we are searching for. */
387 const char *name;
388
389 /* The field where the callback should store the minimal symbol
390 if found. It should be initialized to NULL before the search
391 is started. */
392 struct bound_minimal_symbol result;
393 };
394
395 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
396 It searches by name for a minimal symbol within the given OBJFILE.
397 The arguments are passed via CB_DATA, which in reality is a pointer
398 to struct minsym_lookup_data. */
399
400 static int
401 minsym_lookup_iterator_cb (struct objfile *objfile, void *cb_data)
402 {
403 struct minsym_lookup_data *data = (struct minsym_lookup_data *) cb_data;
404
405 gdb_assert (data->result.minsym == NULL);
406
407 data->result = lookup_minimal_symbol (data->name, NULL, objfile);
408
409 /* The iterator should stop iff a match was found. */
410 return (data->result.minsym != NULL);
411 }
412
413 /* Given static link expression and the frame it lives in, look for the frame
414 the static links points to and return it. Return NULL if we could not find
415 such a frame. */
416
417 static struct frame_info *
418 follow_static_link (struct frame_info *frame,
419 const struct dynamic_prop *static_link)
420 {
421 CORE_ADDR upper_frame_base;
422
423 if (!dwarf2_evaluate_property (static_link, frame, NULL, &upper_frame_base))
424 return NULL;
425
426 /* Now climb up the stack frame until we reach the frame we are interested
427 in. */
428 for (; frame != NULL; frame = get_prev_frame (frame))
429 {
430 struct symbol *framefunc = get_frame_function (frame);
431
432 /* Stacks can be quite deep: give the user a chance to stop this. */
433 QUIT;
434
435 /* If we don't know how to compute FRAME's base address, don't give up:
436 maybe the frame we are looking for is upper in the stace frame. */
437 if (framefunc != NULL
438 && SYMBOL_BLOCK_OPS (framefunc) != NULL
439 && SYMBOL_BLOCK_OPS (framefunc)->get_frame_base != NULL
440 && (SYMBOL_BLOCK_OPS (framefunc)->get_frame_base (framefunc, frame)
441 == upper_frame_base))
442 break;
443 }
444
445 return frame;
446 }
447
448 /* Assuming VAR is a symbol that can be reached from FRAME thanks to lexical
449 rules, look for the frame that is actually hosting VAR and return it. If,
450 for some reason, we found no such frame, return NULL.
451
452 This kind of computation is necessary to correctly handle lexically nested
453 functions.
454
455 Note that in some cases, we know what scope VAR comes from but we cannot
456 reach the specific frame that hosts the instance of VAR we are looking for.
457 For backward compatibility purposes (with old compilers), we then look for
458 the first frame that can host it. */
459
460 static struct frame_info *
461 get_hosting_frame (struct symbol *var, const struct block *var_block,
462 struct frame_info *frame)
463 {
464 const struct block *frame_block = NULL;
465
466 if (!symbol_read_needs_frame (var))
467 return NULL;
468
469 /* Some symbols for local variables have no block: this happens when they are
470 not produced by a debug information reader, for instance when GDB creates
471 synthetic symbols. Without block information, we must assume they are
472 local to FRAME. In this case, there is nothing to do. */
473 else if (var_block == NULL)
474 return frame;
475
476 /* We currently assume that all symbols with a location list need a frame.
477 This is true in practice because selecting the location description
478 requires to compute the CFA, hence requires a frame. However we have
479 tests that embed global/static symbols with null location lists.
480 We want to get <optimized out> instead of <frame required> when evaluating
481 them so return a frame instead of raising an error. */
482 else if (var_block == block_global_block (var_block)
483 || var_block == block_static_block (var_block))
484 return frame;
485
486 /* We have to handle the "my_func::my_local_var" notation. This requires us
487 to look for upper frames when we find no block for the current frame: here
488 and below, handle when frame_block == NULL. */
489 if (frame != NULL)
490 frame_block = get_frame_block (frame, NULL);
491
492 /* Climb up the call stack until reaching the frame we are looking for. */
493 while (frame != NULL && frame_block != var_block)
494 {
495 /* Stacks can be quite deep: give the user a chance to stop this. */
496 QUIT;
497
498 if (frame_block == NULL)
499 {
500 frame = get_prev_frame (frame);
501 if (frame == NULL)
502 break;
503 frame_block = get_frame_block (frame, NULL);
504 }
505
506 /* If we failed to find the proper frame, fallback to the heuristic
507 method below. */
508 else if (frame_block == block_global_block (frame_block))
509 {
510 frame = NULL;
511 break;
512 }
513
514 /* Assuming we have a block for this frame: if we are at the function
515 level, the immediate upper lexical block is in an outer function:
516 follow the static link. */
517 else if (BLOCK_FUNCTION (frame_block))
518 {
519 const struct dynamic_prop *static_link
520 = block_static_link (frame_block);
521 int could_climb_up = 0;
522
523 if (static_link != NULL)
524 {
525 frame = follow_static_link (frame, static_link);
526 if (frame != NULL)
527 {
528 frame_block = get_frame_block (frame, NULL);
529 could_climb_up = frame_block != NULL;
530 }
531 }
532 if (!could_climb_up)
533 {
534 frame = NULL;
535 break;
536 }
537 }
538
539 else
540 /* We must be in some function nested lexical block. Just get the
541 outer block: both must share the same frame. */
542 frame_block = BLOCK_SUPERBLOCK (frame_block);
543 }
544
545 /* Old compilers may not provide a static link, or they may provide an
546 invalid one. For such cases, fallback on the old way to evaluate
547 non-local references: just climb up the call stack and pick the first
548 frame that contains the variable we are looking for. */
549 if (frame == NULL)
550 {
551 frame = block_innermost_frame (var_block);
552 if (frame == NULL)
553 {
554 if (BLOCK_FUNCTION (var_block)
555 && !block_inlined_p (var_block)
556 && SYMBOL_PRINT_NAME (BLOCK_FUNCTION (var_block)))
557 error (_("No frame is currently executing in block %s."),
558 SYMBOL_PRINT_NAME (BLOCK_FUNCTION (var_block)));
559 else
560 error (_("No frame is currently executing in specified"
561 " block"));
562 }
563 }
564
565 return frame;
566 }
567
568 /* A default implementation for the "la_read_var_value" hook in
569 the language vector which should work in most situations. */
570
571 struct value *
572 default_read_var_value (struct symbol *var, const struct block *var_block,
573 struct frame_info *frame)
574 {
575 struct value *v;
576 struct type *type = SYMBOL_TYPE (var);
577 CORE_ADDR addr;
578
579 /* Call check_typedef on our type to make sure that, if TYPE is
580 a TYPE_CODE_TYPEDEF, its length is set to the length of the target type
581 instead of zero. However, we do not replace the typedef type by the
582 target type, because we want to keep the typedef in order to be able to
583 set the returned value type description correctly. */
584 check_typedef (type);
585
586 if (symbol_read_needs_frame (var))
587 gdb_assert (frame != NULL);
588
589 if (frame != NULL)
590 frame = get_hosting_frame (var, var_block, frame);
591
592 if (SYMBOL_COMPUTED_OPS (var) != NULL)
593 return SYMBOL_COMPUTED_OPS (var)->read_variable (var, frame);
594
595 switch (SYMBOL_CLASS (var))
596 {
597 case LOC_CONST:
598 if (is_dynamic_type (type))
599 {
600 /* Value is a constant byte-sequence and needs no memory access. */
601 type = resolve_dynamic_type (type, NULL, /* Unused address. */ 0);
602 }
603 /* Put the constant back in target format. */
604 v = allocate_value (type);
605 store_signed_integer (value_contents_raw (v), TYPE_LENGTH (type),
606 gdbarch_byte_order (get_type_arch (type)),
607 (LONGEST) SYMBOL_VALUE (var));
608 VALUE_LVAL (v) = not_lval;
609 return v;
610
611 case LOC_LABEL:
612 /* Put the constant back in target format. */
613 v = allocate_value (type);
614 if (overlay_debugging)
615 {
616 CORE_ADDR addr
617 = symbol_overlayed_address (SYMBOL_VALUE_ADDRESS (var),
618 SYMBOL_OBJ_SECTION (symbol_objfile (var),
619 var));
620
621 store_typed_address (value_contents_raw (v), type, addr);
622 }
623 else
624 store_typed_address (value_contents_raw (v), type,
625 SYMBOL_VALUE_ADDRESS (var));
626 VALUE_LVAL (v) = not_lval;
627 return v;
628
629 case LOC_CONST_BYTES:
630 if (is_dynamic_type (type))
631 {
632 /* Value is a constant byte-sequence and needs no memory access. */
633 type = resolve_dynamic_type (type, NULL, /* Unused address. */ 0);
634 }
635 v = allocate_value (type);
636 memcpy (value_contents_raw (v), SYMBOL_VALUE_BYTES (var),
637 TYPE_LENGTH (type));
638 VALUE_LVAL (v) = not_lval;
639 return v;
640
641 case LOC_STATIC:
642 if (overlay_debugging)
643 addr = symbol_overlayed_address (SYMBOL_VALUE_ADDRESS (var),
644 SYMBOL_OBJ_SECTION (symbol_objfile (var),
645 var));
646 else
647 addr = SYMBOL_VALUE_ADDRESS (var);
648 break;
649
650 case LOC_ARG:
651 addr = get_frame_args_address (frame);
652 if (!addr)
653 error (_("Unknown argument list address for `%s'."),
654 SYMBOL_PRINT_NAME (var));
655 addr += SYMBOL_VALUE (var);
656 break;
657
658 case LOC_REF_ARG:
659 {
660 struct value *ref;
661 CORE_ADDR argref;
662
663 argref = get_frame_args_address (frame);
664 if (!argref)
665 error (_("Unknown argument list address for `%s'."),
666 SYMBOL_PRINT_NAME (var));
667 argref += SYMBOL_VALUE (var);
668 ref = value_at (lookup_pointer_type (type), argref);
669 addr = value_as_address (ref);
670 break;
671 }
672
673 case LOC_LOCAL:
674 addr = get_frame_locals_address (frame);
675 addr += SYMBOL_VALUE (var);
676 break;
677
678 case LOC_TYPEDEF:
679 error (_("Cannot look up value of a typedef `%s'."),
680 SYMBOL_PRINT_NAME (var));
681 break;
682
683 case LOC_BLOCK:
684 if (overlay_debugging)
685 addr = symbol_overlayed_address
686 (BLOCK_START (SYMBOL_BLOCK_VALUE (var)),
687 SYMBOL_OBJ_SECTION (symbol_objfile (var), var));
688 else
689 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (var));
690 break;
691
692 case LOC_REGISTER:
693 case LOC_REGPARM_ADDR:
694 {
695 int regno = SYMBOL_REGISTER_OPS (var)
696 ->register_number (var, get_frame_arch (frame));
697 struct value *regval;
698
699 if (SYMBOL_CLASS (var) == LOC_REGPARM_ADDR)
700 {
701 regval = value_from_register (lookup_pointer_type (type),
702 regno,
703 frame);
704
705 if (regval == NULL)
706 error (_("Value of register variable not available for `%s'."),
707 SYMBOL_PRINT_NAME (var));
708
709 addr = value_as_address (regval);
710 }
711 else
712 {
713 regval = value_from_register (type, regno, frame);
714
715 if (regval == NULL)
716 error (_("Value of register variable not available for `%s'."),
717 SYMBOL_PRINT_NAME (var));
718 return regval;
719 }
720 }
721 break;
722
723 case LOC_COMPUTED:
724 gdb_assert_not_reached (_("LOC_COMPUTED variable missing a method"));
725
726 case LOC_UNRESOLVED:
727 {
728 struct minsym_lookup_data lookup_data;
729 struct minimal_symbol *msym;
730 struct obj_section *obj_section;
731
732 memset (&lookup_data, 0, sizeof (lookup_data));
733 lookup_data.name = SYMBOL_LINKAGE_NAME (var);
734
735 gdbarch_iterate_over_objfiles_in_search_order
736 (symbol_arch (var),
737 minsym_lookup_iterator_cb, &lookup_data,
738 symbol_objfile (var));
739 msym = lookup_data.result.minsym;
740
741 /* If we can't find the minsym there's a problem in the symbol info.
742 The symbol exists in the debug info, but it's missing in the minsym
743 table. */
744 if (msym == NULL)
745 {
746 const char *flavour_name
747 = objfile_flavour_name (symbol_objfile (var));
748
749 /* We can't get here unless we've opened the file, so flavour_name
750 can't be NULL. */
751 gdb_assert (flavour_name != NULL);
752 error (_("Missing %s symbol \"%s\"."),
753 flavour_name, SYMBOL_LINKAGE_NAME (var));
754 }
755 obj_section = MSYMBOL_OBJ_SECTION (lookup_data.result.objfile, msym);
756 /* Relocate address, unless there is no section or the variable is
757 a TLS variable. */
758 if (obj_section == NULL
759 || (obj_section->the_bfd_section->flags & SEC_THREAD_LOCAL) != 0)
760 addr = MSYMBOL_VALUE_RAW_ADDRESS (msym);
761 else
762 addr = BMSYMBOL_VALUE_ADDRESS (lookup_data.result);
763 if (overlay_debugging)
764 addr = symbol_overlayed_address (addr, obj_section);
765 /* Determine address of TLS variable. */
766 if (obj_section
767 && (obj_section->the_bfd_section->flags & SEC_THREAD_LOCAL) != 0)
768 addr = target_translate_tls_address (obj_section->objfile, addr);
769 }
770 break;
771
772 case LOC_OPTIMIZED_OUT:
773 return allocate_optimized_out_value (type);
774
775 default:
776 error (_("Cannot look up value of a botched symbol `%s'."),
777 SYMBOL_PRINT_NAME (var));
778 break;
779 }
780
781 v = value_at_lazy (type, addr);
782 return v;
783 }
784
785 /* Calls VAR's language la_read_var_value hook with the given arguments. */
786
787 struct value *
788 read_var_value (struct symbol *var, const struct block *var_block,
789 struct frame_info *frame)
790 {
791 const struct language_defn *lang = language_def (SYMBOL_LANGUAGE (var));
792
793 gdb_assert (lang != NULL);
794 gdb_assert (lang->la_read_var_value != NULL);
795
796 return lang->la_read_var_value (var, var_block, frame);
797 }
798
799 /* Install default attributes for register values. */
800
801 struct value *
802 default_value_from_register (struct gdbarch *gdbarch, struct type *type,
803 int regnum, struct frame_id frame_id)
804 {
805 int len = TYPE_LENGTH (type);
806 struct value *value = allocate_value (type);
807
808 VALUE_LVAL (value) = lval_register;
809 VALUE_FRAME_ID (value) = frame_id;
810 VALUE_REGNUM (value) = regnum;
811
812 /* Any structure stored in more than one register will always be
813 an integral number of registers. Otherwise, you need to do
814 some fiddling with the last register copied here for little
815 endian machines. */
816 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
817 && len < register_size (gdbarch, regnum))
818 /* Big-endian, and we want less than full size. */
819 set_value_offset (value, register_size (gdbarch, regnum) - len);
820 else
821 set_value_offset (value, 0);
822
823 return value;
824 }
825
826 /* VALUE must be an lval_register value. If regnum is the value's
827 associated register number, and len the length of the values type,
828 read one or more registers in FRAME, starting with register REGNUM,
829 until we've read LEN bytes.
830
831 If any of the registers we try to read are optimized out, then mark the
832 complete resulting value as optimized out. */
833
834 void
835 read_frame_register_value (struct value *value, struct frame_info *frame)
836 {
837 struct gdbarch *gdbarch = get_frame_arch (frame);
838 int offset = 0;
839 int reg_offset = value_offset (value);
840 int regnum = VALUE_REGNUM (value);
841 int len = type_length_units (check_typedef (value_type (value)));
842
843 gdb_assert (VALUE_LVAL (value) == lval_register);
844
845 /* Skip registers wholly inside of REG_OFFSET. */
846 while (reg_offset >= register_size (gdbarch, regnum))
847 {
848 reg_offset -= register_size (gdbarch, regnum);
849 regnum++;
850 }
851
852 /* Copy the data. */
853 while (len > 0)
854 {
855 struct value *regval = get_frame_register_value (frame, regnum);
856 int reg_len = type_length_units (value_type (regval)) - reg_offset;
857
858 /* If the register length is larger than the number of bytes
859 remaining to copy, then only copy the appropriate bytes. */
860 if (reg_len > len)
861 reg_len = len;
862
863 value_contents_copy (value, offset, regval, reg_offset, reg_len);
864
865 offset += reg_len;
866 len -= reg_len;
867 reg_offset = 0;
868 regnum++;
869 }
870 }
871
872 /* Return a value of type TYPE, stored in register REGNUM, in frame FRAME. */
873
874 struct value *
875 value_from_register (struct type *type, int regnum, struct frame_info *frame)
876 {
877 struct gdbarch *gdbarch = get_frame_arch (frame);
878 struct type *type1 = check_typedef (type);
879 struct value *v;
880
881 if (gdbarch_convert_register_p (gdbarch, regnum, type1))
882 {
883 int optim, unavail, ok;
884
885 /* The ISA/ABI need to something weird when obtaining the
886 specified value from this register. It might need to
887 re-order non-adjacent, starting with REGNUM (see MIPS and
888 i386). It might need to convert the [float] register into
889 the corresponding [integer] type (see Alpha). The assumption
890 is that gdbarch_register_to_value populates the entire value
891 including the location. */
892 v = allocate_value (type);
893 VALUE_LVAL (v) = lval_register;
894 VALUE_FRAME_ID (v) = get_frame_id (frame);
895 VALUE_REGNUM (v) = regnum;
896 ok = gdbarch_register_to_value (gdbarch, frame, regnum, type1,
897 value_contents_raw (v), &optim,
898 &unavail);
899
900 if (!ok)
901 {
902 if (optim)
903 mark_value_bytes_optimized_out (v, 0, TYPE_LENGTH (type));
904 if (unavail)
905 mark_value_bytes_unavailable (v, 0, TYPE_LENGTH (type));
906 }
907 }
908 else
909 {
910 /* Construct the value. */
911 v = gdbarch_value_from_register (gdbarch, type,
912 regnum, get_frame_id (frame));
913
914 /* Get the data. */
915 read_frame_register_value (v, frame);
916 }
917
918 return v;
919 }
920
921 /* Return contents of register REGNUM in frame FRAME as address.
922 Will abort if register value is not available. */
923
924 CORE_ADDR
925 address_from_register (int regnum, struct frame_info *frame)
926 {
927 struct gdbarch *gdbarch = get_frame_arch (frame);
928 struct type *type = builtin_type (gdbarch)->builtin_data_ptr;
929 struct value *value;
930 CORE_ADDR result;
931 int regnum_max_excl = (gdbarch_num_regs (gdbarch)
932 + gdbarch_num_pseudo_regs (gdbarch));
933
934 if (regnum < 0 || regnum >= regnum_max_excl)
935 error (_("Invalid register #%d, expecting 0 <= # < %d"), regnum,
936 regnum_max_excl);
937
938 /* This routine may be called during early unwinding, at a time
939 where the ID of FRAME is not yet known. Calling value_from_register
940 would therefore abort in get_frame_id. However, since we only need
941 a temporary value that is never used as lvalue, we actually do not
942 really need to set its VALUE_FRAME_ID. Therefore, we re-implement
943 the core of value_from_register, but use the null_frame_id. */
944
945 /* Some targets require a special conversion routine even for plain
946 pointer types. Avoid constructing a value object in those cases. */
947 if (gdbarch_convert_register_p (gdbarch, regnum, type))
948 {
949 gdb_byte *buf = (gdb_byte *) alloca (TYPE_LENGTH (type));
950 int optim, unavail, ok;
951
952 ok = gdbarch_register_to_value (gdbarch, frame, regnum, type,
953 buf, &optim, &unavail);
954 if (!ok)
955 {
956 /* This function is used while computing a location expression.
957 Complain about the value being optimized out, rather than
958 letting value_as_address complain about some random register
959 the expression depends on not being saved. */
960 error_value_optimized_out ();
961 }
962
963 return unpack_long (type, buf);
964 }
965
966 value = gdbarch_value_from_register (gdbarch, type, regnum, null_frame_id);
967 read_frame_register_value (value, frame);
968
969 if (value_optimized_out (value))
970 {
971 /* This function is used while computing a location expression.
972 Complain about the value being optimized out, rather than
973 letting value_as_address complain about some random register
974 the expression depends on not being saved. */
975 error_value_optimized_out ();
976 }
977
978 result = value_as_address (value);
979 release_value (value);
980 value_free (value);
981
982 return result;
983 }
984