[gdb/testsuite] Fix breakpoint detection in gdb.gdb/python-helper.exp
[binutils-gdb.git] / gdb / frame.c
1 /* Cache and manage frames for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2021 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "target.h"
23 #include "value.h"
24 #include "inferior.h" /* for inferior_ptid */
25 #include "regcache.h"
26 #include "user-regs.h"
27 #include "gdb_obstack.h"
28 #include "dummy-frame.h"
29 #include "sentinel-frame.h"
30 #include "gdbcore.h"
31 #include "annotate.h"
32 #include "language.h"
33 #include "frame-unwind.h"
34 #include "frame-base.h"
35 #include "command.h"
36 #include "gdbcmd.h"
37 #include "observable.h"
38 #include "objfiles.h"
39 #include "gdbthread.h"
40 #include "block.h"
41 #include "inline-frame.h"
42 #include "tracepoint.h"
43 #include "hashtab.h"
44 #include "valprint.h"
45 #include "cli/cli-option.h"
46
47 /* The sentinel frame terminates the innermost end of the frame chain.
48 If unwound, it returns the information needed to construct an
49 innermost frame.
50
51 The current frame, which is the innermost frame, can be found at
52 sentinel_frame->prev. */
53
54 static struct frame_info *sentinel_frame;
55
56 /* Number of calls to reinit_frame_cache. */
57 static unsigned int frame_cache_generation = 0;
58
59 /* See frame.h. */
60
61 unsigned int
62 get_frame_cache_generation ()
63 {
64 return frame_cache_generation;
65 }
66
67 /* The values behind the global "set backtrace ..." settings. */
68 set_backtrace_options user_set_backtrace_options;
69
70 static struct frame_info *get_prev_frame_raw (struct frame_info *this_frame);
71 static const char *frame_stop_reason_symbol_string (enum unwind_stop_reason reason);
72
73 /* Status of some values cached in the frame_info object. */
74
75 enum cached_copy_status
76 {
77 /* Value is unknown. */
78 CC_UNKNOWN,
79
80 /* We have a value. */
81 CC_VALUE,
82
83 /* Value was not saved. */
84 CC_NOT_SAVED,
85
86 /* Value is unavailable. */
87 CC_UNAVAILABLE
88 };
89
90 enum class frame_id_status
91 {
92 /* Frame id is not computed. */
93 NOT_COMPUTED = 0,
94
95 /* Frame id is being computed (compute_frame_id is active). */
96 COMPUTING,
97
98 /* Frame id has been computed. */
99 COMPUTED,
100 };
101
102 /* We keep a cache of stack frames, each of which is a "struct
103 frame_info". The innermost one gets allocated (in
104 wait_for_inferior) each time the inferior stops; sentinel_frame
105 points to it. Additional frames get allocated (in get_prev_frame)
106 as needed, and are chained through the next and prev fields. Any
107 time that the frame cache becomes invalid (most notably when we
108 execute something, but also if we change how we interpret the
109 frames (e.g. "set heuristic-fence-post" in mips-tdep.c, or anything
110 which reads new symbols)), we should call reinit_frame_cache. */
111
112 struct frame_info
113 {
114 /* Return a string representation of this frame. */
115 std::string to_string () const;
116
117 /* Level of this frame. The inner-most (youngest) frame is at level
118 0. As you move towards the outer-most (oldest) frame, the level
119 increases. This is a cached value. It could just as easily be
120 computed by counting back from the selected frame to the inner
121 most frame. */
122 /* NOTE: cagney/2002-04-05: Perhaps a level of ``-1'' should be
123 reserved to indicate a bogus frame - one that has been created
124 just to keep GDB happy (GDB always needs a frame). For the
125 moment leave this as speculation. */
126 int level;
127
128 /* The frame's program space. */
129 struct program_space *pspace;
130
131 /* The frame's address space. */
132 const address_space *aspace;
133
134 /* The frame's low-level unwinder and corresponding cache. The
135 low-level unwinder is responsible for unwinding register values
136 for the previous frame. The low-level unwind methods are
137 selected based on the presence, or otherwise, of register unwind
138 information such as CFI. */
139 void *prologue_cache;
140 const struct frame_unwind *unwind;
141
142 /* Cached copy of the previous frame's architecture. */
143 struct
144 {
145 bool p;
146 struct gdbarch *arch;
147 } prev_arch;
148
149 /* Cached copy of the previous frame's resume address. */
150 struct {
151 cached_copy_status status;
152 /* Did VALUE require unmasking when being read. */
153 bool masked;
154 CORE_ADDR value;
155 } prev_pc;
156
157 /* Cached copy of the previous frame's function address. */
158 struct
159 {
160 CORE_ADDR addr;
161 cached_copy_status status;
162 } prev_func;
163
164 /* This frame's ID. */
165 struct
166 {
167 frame_id_status p;
168 struct frame_id value;
169 } this_id;
170
171 /* The frame's high-level base methods, and corresponding cache.
172 The high level base methods are selected based on the frame's
173 debug info. */
174 const struct frame_base *base;
175 void *base_cache;
176
177 /* Pointers to the next (down, inner, younger) and previous (up,
178 outer, older) frame_info's in the frame cache. */
179 struct frame_info *next; /* down, inner, younger */
180 bool prev_p;
181 struct frame_info *prev; /* up, outer, older */
182
183 /* The reason why we could not set PREV, or UNWIND_NO_REASON if we
184 could. Only valid when PREV_P is set. */
185 enum unwind_stop_reason stop_reason;
186
187 /* A frame specific string describing the STOP_REASON in more detail.
188 Only valid when PREV_P is set, but even then may still be NULL. */
189 const char *stop_string;
190 };
191
192 /* See frame.h. */
193
194 void
195 set_frame_previous_pc_masked (struct frame_info *frame)
196 {
197 frame->prev_pc.masked = true;
198 }
199
200 /* See frame.h. */
201
202 bool
203 get_frame_pc_masked (const struct frame_info *frame)
204 {
205 gdb_assert (frame->next != nullptr);
206 gdb_assert (frame->next->prev_pc.status == CC_VALUE);
207
208 return frame->next->prev_pc.masked;
209 }
210
211 /* A frame stash used to speed up frame lookups. Create a hash table
212 to stash frames previously accessed from the frame cache for
213 quicker subsequent retrieval. The hash table is emptied whenever
214 the frame cache is invalidated. */
215
216 static htab_t frame_stash;
217
218 /* Internal function to calculate a hash from the frame_id addresses,
219 using as many valid addresses as possible. Frames below level 0
220 are not stored in the hash table. */
221
222 static hashval_t
223 frame_addr_hash (const void *ap)
224 {
225 const struct frame_info *frame = (const struct frame_info *) ap;
226 const struct frame_id f_id = frame->this_id.value;
227 hashval_t hash = 0;
228
229 gdb_assert (f_id.stack_status != FID_STACK_INVALID
230 || f_id.code_addr_p
231 || f_id.special_addr_p);
232
233 if (f_id.stack_status == FID_STACK_VALID)
234 hash = iterative_hash (&f_id.stack_addr,
235 sizeof (f_id.stack_addr), hash);
236 if (f_id.code_addr_p)
237 hash = iterative_hash (&f_id.code_addr,
238 sizeof (f_id.code_addr), hash);
239 if (f_id.special_addr_p)
240 hash = iterative_hash (&f_id.special_addr,
241 sizeof (f_id.special_addr), hash);
242
243 return hash;
244 }
245
246 /* Internal equality function for the hash table. This function
247 defers equality operations to frame_id_eq. */
248
249 static int
250 frame_addr_hash_eq (const void *a, const void *b)
251 {
252 const struct frame_info *f_entry = (const struct frame_info *) a;
253 const struct frame_info *f_element = (const struct frame_info *) b;
254
255 return frame_id_eq (f_entry->this_id.value,
256 f_element->this_id.value);
257 }
258
259 /* Internal function to create the frame_stash hash table. 100 seems
260 to be a good compromise to start the hash table at. */
261
262 static void
263 frame_stash_create (void)
264 {
265 frame_stash = htab_create (100,
266 frame_addr_hash,
267 frame_addr_hash_eq,
268 NULL);
269 }
270
271 /* Internal function to add a frame to the frame_stash hash table.
272 Returns false if a frame with the same ID was already stashed, true
273 otherwise. */
274
275 static bool
276 frame_stash_add (frame_info *frame)
277 {
278 /* Do not try to stash the sentinel frame. */
279 gdb_assert (frame->level >= 0);
280
281 frame_info **slot = (struct frame_info **) htab_find_slot (frame_stash,
282 frame, INSERT);
283
284 /* If we already have a frame in the stack with the same id, we
285 either have a stack cycle (corrupted stack?), or some bug
286 elsewhere in GDB. In any case, ignore the duplicate and return
287 an indication to the caller. */
288 if (*slot != nullptr)
289 return false;
290
291 *slot = frame;
292 return true;
293 }
294
295 /* Internal function to search the frame stash for an entry with the
296 given frame ID. If found, return that frame. Otherwise return
297 NULL. */
298
299 static struct frame_info *
300 frame_stash_find (struct frame_id id)
301 {
302 struct frame_info dummy;
303 struct frame_info *frame;
304
305 dummy.this_id.value = id;
306 frame = (struct frame_info *) htab_find (frame_stash, &dummy);
307 return frame;
308 }
309
310 /* Internal function to invalidate the frame stash by removing all
311 entries in it. This only occurs when the frame cache is
312 invalidated. */
313
314 static void
315 frame_stash_invalidate (void)
316 {
317 htab_empty (frame_stash);
318 }
319
320 /* See frame.h */
321 scoped_restore_selected_frame::scoped_restore_selected_frame ()
322 {
323 m_lang = current_language->la_language;
324 save_selected_frame (&m_fid, &m_level);
325 }
326
327 /* See frame.h */
328 scoped_restore_selected_frame::~scoped_restore_selected_frame ()
329 {
330 restore_selected_frame (m_fid, m_level);
331 set_language (m_lang);
332 }
333
334 /* Flag to control debugging. */
335
336 bool frame_debug;
337
338 static void
339 show_frame_debug (struct ui_file *file, int from_tty,
340 struct cmd_list_element *c, const char *value)
341 {
342 fprintf_filtered (file, _("Frame debugging is %s.\n"), value);
343 }
344
345 /* Implementation of "show backtrace past-main". */
346
347 static void
348 show_backtrace_past_main (struct ui_file *file, int from_tty,
349 struct cmd_list_element *c, const char *value)
350 {
351 fprintf_filtered (file,
352 _("Whether backtraces should "
353 "continue past \"main\" is %s.\n"),
354 value);
355 }
356
357 /* Implementation of "show backtrace past-entry". */
358
359 static void
360 show_backtrace_past_entry (struct ui_file *file, int from_tty,
361 struct cmd_list_element *c, const char *value)
362 {
363 fprintf_filtered (file, _("Whether backtraces should continue past the "
364 "entry point of a program is %s.\n"),
365 value);
366 }
367
368 /* Implementation of "show backtrace limit". */
369
370 static void
371 show_backtrace_limit (struct ui_file *file, int from_tty,
372 struct cmd_list_element *c, const char *value)
373 {
374 fprintf_filtered (file,
375 _("An upper bound on the number "
376 "of backtrace levels is %s.\n"),
377 value);
378 }
379
380 /* See frame.h. */
381
382 std::string
383 frame_id::to_string () const
384 {
385 const struct frame_id &id = *this;
386
387 std::string res = "{";
388
389 if (id.stack_status == FID_STACK_INVALID)
390 res += "!stack";
391 else if (id.stack_status == FID_STACK_UNAVAILABLE)
392 res += "stack=<unavailable>";
393 else if (id.stack_status == FID_STACK_SENTINEL)
394 res += "stack=<sentinel>";
395 else if (id.stack_status == FID_STACK_OUTER)
396 res += "stack=<outer>";
397 else
398 res += std::string ("stack=") + hex_string (id.stack_addr);
399
400 /* Helper function to format 'N=A' if P is true, otherwise '!N'. */
401 auto field_to_string = [] (const char *n, bool p, CORE_ADDR a) -> std::string
402 {
403 if (p)
404 return std::string (n) + "=" + core_addr_to_string (a);
405 else
406 return std::string ("!") + std::string (n);
407 };
408
409 res += (std::string (",")
410 + field_to_string ("code", id.code_addr_p, id.code_addr)
411 + std::string (",")
412 + field_to_string ("special", id.special_addr_p, id.special_addr));
413
414 if (id.artificial_depth)
415 res += ",artificial=" + std::to_string (id.artificial_depth);
416 res += "}";
417 return res;
418 }
419
420 /* Return a string representation of TYPE. */
421
422 static const char *
423 frame_type_str (frame_type type)
424 {
425 switch (type)
426 {
427 case NORMAL_FRAME:
428 return "NORMAL_FRAME";
429
430 case DUMMY_FRAME:
431 return "DUMMY_FRAME";
432
433 case INLINE_FRAME:
434 return "INLINE_FRAME";
435
436 case TAILCALL_FRAME:
437 return "TAILCALL_FRAME";
438
439 case SIGTRAMP_FRAME:
440 return "SIGTRAMP_FRAME";
441
442 case ARCH_FRAME:
443 return "ARCH_FRAME";
444
445 case SENTINEL_FRAME:
446 return "SENTINEL_FRAME";
447
448 default:
449 return "<unknown type>";
450 };
451 }
452
453 /* See struct frame_info. */
454
455 std::string
456 frame_info::to_string () const
457 {
458 const frame_info *fi = this;
459
460 std::string res;
461
462 res += string_printf ("{level=%d,", fi->level);
463
464 if (fi->unwind != NULL)
465 res += string_printf ("type=%s,", frame_type_str (fi->unwind->type));
466 else
467 res += "type=<unknown>,";
468
469 if (fi->unwind != NULL)
470 res += string_printf ("unwinder=\"%s\",", fi->unwind->name);
471 else
472 res += "unwinder=<unknown>,";
473
474 if (fi->next == NULL || fi->next->prev_pc.status == CC_UNKNOWN)
475 res += "pc=<unknown>,";
476 else if (fi->next->prev_pc.status == CC_VALUE)
477 res += string_printf ("pc=%s%s,", hex_string (fi->next->prev_pc.value),
478 fi->next->prev_pc.masked ? "[PAC]" : "");
479 else if (fi->next->prev_pc.status == CC_NOT_SAVED)
480 res += "pc=<not saved>,";
481 else if (fi->next->prev_pc.status == CC_UNAVAILABLE)
482 res += "pc=<unavailable>,";
483
484 if (fi->this_id.p == frame_id_status::NOT_COMPUTED)
485 res += "id=<not computed>,";
486 else if (fi->this_id.p == frame_id_status::COMPUTING)
487 res += "id=<computing>,";
488 else
489 res += string_printf ("id=%s,", fi->this_id.value.to_string ().c_str ());
490
491 if (fi->next != NULL && fi->next->prev_func.status == CC_VALUE)
492 res += string_printf ("func=%s", hex_string (fi->next->prev_func.addr));
493 else
494 res += "func=<unknown>";
495
496 res += "}";
497
498 return res;
499 }
500
501 /* Given FRAME, return the enclosing frame as found in real frames read-in from
502 inferior memory. Skip any previous frames which were made up by GDB.
503 Return FRAME if FRAME is a non-artificial frame.
504 Return NULL if FRAME is the start of an artificial-only chain. */
505
506 static struct frame_info *
507 skip_artificial_frames (struct frame_info *frame)
508 {
509 /* Note we use get_prev_frame_always, and not get_prev_frame. The
510 latter will truncate the frame chain, leading to this function
511 unintentionally returning a null_frame_id (e.g., when the user
512 sets a backtrace limit).
513
514 Note that for record targets we may get a frame chain that consists
515 of artificial frames only. */
516 while (get_frame_type (frame) == INLINE_FRAME
517 || get_frame_type (frame) == TAILCALL_FRAME)
518 {
519 frame = get_prev_frame_always (frame);
520 if (frame == NULL)
521 break;
522 }
523
524 return frame;
525 }
526
527 struct frame_info *
528 skip_unwritable_frames (struct frame_info *frame)
529 {
530 while (gdbarch_code_of_frame_writable (get_frame_arch (frame), frame) == 0)
531 {
532 frame = get_prev_frame (frame);
533 if (frame == NULL)
534 break;
535 }
536
537 return frame;
538 }
539
540 /* See frame.h. */
541
542 struct frame_info *
543 skip_tailcall_frames (struct frame_info *frame)
544 {
545 while (get_frame_type (frame) == TAILCALL_FRAME)
546 {
547 /* Note that for record targets we may get a frame chain that consists of
548 tailcall frames only. */
549 frame = get_prev_frame (frame);
550 if (frame == NULL)
551 break;
552 }
553
554 return frame;
555 }
556
557 /* Compute the frame's uniq ID that can be used to, later, re-find the
558 frame. */
559
560 static void
561 compute_frame_id (struct frame_info *fi)
562 {
563 FRAME_SCOPED_DEBUG_ENTER_EXIT;
564
565 gdb_assert (fi->this_id.p == frame_id_status::NOT_COMPUTED);
566
567 unsigned int entry_generation = get_frame_cache_generation ();
568
569 try
570 {
571 /* Mark this frame's id as "being computed. */
572 fi->this_id.p = frame_id_status::COMPUTING;
573
574 frame_debug_printf ("fi=%d", fi->level);
575
576 /* Find the unwinder. */
577 if (fi->unwind == NULL)
578 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
579
580 /* Find THIS frame's ID. */
581 /* Default to outermost if no ID is found. */
582 fi->this_id.value = outer_frame_id;
583 fi->unwind->this_id (fi, &fi->prologue_cache, &fi->this_id.value);
584 gdb_assert (frame_id_p (fi->this_id.value));
585
586 /* Mark this frame's id as "computed". */
587 fi->this_id.p = frame_id_status::COMPUTED;
588
589 frame_debug_printf (" -> %s", fi->this_id.value.to_string ().c_str ());
590 }
591 catch (const gdb_exception &ex)
592 {
593 /* On error, revert the frame id status to not computed. If the frame
594 cache generation changed, the frame object doesn't exist anymore, so
595 don't touch it. */
596 if (get_frame_cache_generation () == entry_generation)
597 fi->this_id.p = frame_id_status::NOT_COMPUTED;
598
599 throw;
600 }
601 }
602
603 /* Return a frame uniq ID that can be used to, later, re-find the
604 frame. */
605
606 struct frame_id
607 get_frame_id (struct frame_info *fi)
608 {
609 if (fi == NULL)
610 return null_frame_id;
611
612 /* It's always invalid to try to get a frame's id while it is being
613 computed. */
614 gdb_assert (fi->this_id.p != frame_id_status::COMPUTING);
615
616 if (fi->this_id.p == frame_id_status::NOT_COMPUTED)
617 {
618 /* If we haven't computed the frame id yet, then it must be that
619 this is the current frame. Compute it now, and stash the
620 result. The IDs of other frames are computed as soon as
621 they're created, in order to detect cycles. See
622 get_prev_frame_if_no_cycle. */
623 gdb_assert (fi->level == 0);
624
625 /* Compute. */
626 compute_frame_id (fi);
627
628 /* Since this is the first frame in the chain, this should
629 always succeed. */
630 bool stashed = frame_stash_add (fi);
631 gdb_assert (stashed);
632 }
633
634 return fi->this_id.value;
635 }
636
637 struct frame_id
638 get_stack_frame_id (struct frame_info *next_frame)
639 {
640 return get_frame_id (skip_artificial_frames (next_frame));
641 }
642
643 struct frame_id
644 frame_unwind_caller_id (struct frame_info *next_frame)
645 {
646 struct frame_info *this_frame;
647
648 /* Use get_prev_frame_always, and not get_prev_frame. The latter
649 will truncate the frame chain, leading to this function
650 unintentionally returning a null_frame_id (e.g., when a caller
651 requests the frame ID of "main()"s caller. */
652
653 next_frame = skip_artificial_frames (next_frame);
654 if (next_frame == NULL)
655 return null_frame_id;
656
657 this_frame = get_prev_frame_always (next_frame);
658 if (this_frame)
659 return get_frame_id (skip_artificial_frames (this_frame));
660 else
661 return null_frame_id;
662 }
663
664 const struct frame_id null_frame_id = { 0 }; /* All zeros. */
665 const struct frame_id sentinel_frame_id = { 0, 0, 0, FID_STACK_SENTINEL, 0, 1, 0 };
666 const struct frame_id outer_frame_id = { 0, 0, 0, FID_STACK_OUTER, 0, 1, 0 };
667
668 struct frame_id
669 frame_id_build_special (CORE_ADDR stack_addr, CORE_ADDR code_addr,
670 CORE_ADDR special_addr)
671 {
672 struct frame_id id = null_frame_id;
673
674 id.stack_addr = stack_addr;
675 id.stack_status = FID_STACK_VALID;
676 id.code_addr = code_addr;
677 id.code_addr_p = true;
678 id.special_addr = special_addr;
679 id.special_addr_p = true;
680 return id;
681 }
682
683 /* See frame.h. */
684
685 struct frame_id
686 frame_id_build_unavailable_stack (CORE_ADDR code_addr)
687 {
688 struct frame_id id = null_frame_id;
689
690 id.stack_status = FID_STACK_UNAVAILABLE;
691 id.code_addr = code_addr;
692 id.code_addr_p = true;
693 return id;
694 }
695
696 /* See frame.h. */
697
698 struct frame_id
699 frame_id_build_unavailable_stack_special (CORE_ADDR code_addr,
700 CORE_ADDR special_addr)
701 {
702 struct frame_id id = null_frame_id;
703
704 id.stack_status = FID_STACK_UNAVAILABLE;
705 id.code_addr = code_addr;
706 id.code_addr_p = true;
707 id.special_addr = special_addr;
708 id.special_addr_p = true;
709 return id;
710 }
711
712 struct frame_id
713 frame_id_build (CORE_ADDR stack_addr, CORE_ADDR code_addr)
714 {
715 struct frame_id id = null_frame_id;
716
717 id.stack_addr = stack_addr;
718 id.stack_status = FID_STACK_VALID;
719 id.code_addr = code_addr;
720 id.code_addr_p = true;
721 return id;
722 }
723
724 struct frame_id
725 frame_id_build_wild (CORE_ADDR stack_addr)
726 {
727 struct frame_id id = null_frame_id;
728
729 id.stack_addr = stack_addr;
730 id.stack_status = FID_STACK_VALID;
731 return id;
732 }
733
734 bool
735 frame_id_p (frame_id l)
736 {
737 /* The frame is valid iff it has a valid stack address. */
738 bool p = l.stack_status != FID_STACK_INVALID;
739
740 frame_debug_printf ("l=%s -> %d", l.to_string ().c_str (), p);
741
742 return p;
743 }
744
745 bool
746 frame_id_artificial_p (frame_id l)
747 {
748 if (!frame_id_p (l))
749 return false;
750
751 return l.artificial_depth != 0;
752 }
753
754 bool
755 frame_id_eq (frame_id l, frame_id r)
756 {
757 bool eq;
758
759 if (l.stack_status == FID_STACK_INVALID
760 || r.stack_status == FID_STACK_INVALID)
761 /* Like a NaN, if either ID is invalid, the result is false.
762 Note that a frame ID is invalid iff it is the null frame ID. */
763 eq = false;
764 else if (l.stack_status != r.stack_status || l.stack_addr != r.stack_addr)
765 /* If .stack addresses are different, the frames are different. */
766 eq = false;
767 else if (l.code_addr_p && r.code_addr_p && l.code_addr != r.code_addr)
768 /* An invalid code addr is a wild card. If .code addresses are
769 different, the frames are different. */
770 eq = false;
771 else if (l.special_addr_p && r.special_addr_p
772 && l.special_addr != r.special_addr)
773 /* An invalid special addr is a wild card (or unused). Otherwise
774 if special addresses are different, the frames are different. */
775 eq = false;
776 else if (l.artificial_depth != r.artificial_depth)
777 /* If artificial depths are different, the frames must be different. */
778 eq = false;
779 else
780 /* Frames are equal. */
781 eq = true;
782
783 frame_debug_printf ("l=%s, r=%s -> %d",
784 l.to_string ().c_str (), r.to_string ().c_str (), eq);
785
786 return eq;
787 }
788
789 /* Safety net to check whether frame ID L should be inner to
790 frame ID R, according to their stack addresses.
791
792 This method cannot be used to compare arbitrary frames, as the
793 ranges of valid stack addresses may be discontiguous (e.g. due
794 to sigaltstack).
795
796 However, it can be used as safety net to discover invalid frame
797 IDs in certain circumstances. Assuming that NEXT is the immediate
798 inner frame to THIS and that NEXT and THIS are both NORMAL frames:
799
800 * The stack address of NEXT must be inner-than-or-equal to the stack
801 address of THIS.
802
803 Therefore, if frame_id_inner (THIS, NEXT) holds, some unwind
804 error has occurred.
805
806 * If NEXT and THIS have different stack addresses, no other frame
807 in the frame chain may have a stack address in between.
808
809 Therefore, if frame_id_inner (TEST, THIS) holds, but
810 frame_id_inner (TEST, NEXT) does not hold, TEST cannot refer
811 to a valid frame in the frame chain.
812
813 The sanity checks above cannot be performed when a SIGTRAMP frame
814 is involved, because signal handlers might be executed on a different
815 stack than the stack used by the routine that caused the signal
816 to be raised. This can happen for instance when a thread exceeds
817 its maximum stack size. In this case, certain compilers implement
818 a stack overflow strategy that cause the handler to be run on a
819 different stack. */
820
821 static bool
822 frame_id_inner (struct gdbarch *gdbarch, struct frame_id l, struct frame_id r)
823 {
824 bool inner;
825
826 if (l.stack_status != FID_STACK_VALID || r.stack_status != FID_STACK_VALID)
827 /* Like NaN, any operation involving an invalid ID always fails.
828 Likewise if either ID has an unavailable stack address. */
829 inner = false;
830 else if (l.artificial_depth > r.artificial_depth
831 && l.stack_addr == r.stack_addr
832 && l.code_addr_p == r.code_addr_p
833 && l.special_addr_p == r.special_addr_p
834 && l.special_addr == r.special_addr)
835 {
836 /* Same function, different inlined functions. */
837 const struct block *lb, *rb;
838
839 gdb_assert (l.code_addr_p && r.code_addr_p);
840
841 lb = block_for_pc (l.code_addr);
842 rb = block_for_pc (r.code_addr);
843
844 if (lb == NULL || rb == NULL)
845 /* Something's gone wrong. */
846 inner = false;
847 else
848 /* This will return true if LB and RB are the same block, or
849 if the block with the smaller depth lexically encloses the
850 block with the greater depth. */
851 inner = contained_in (lb, rb);
852 }
853 else
854 /* Only return non-zero when strictly inner than. Note that, per
855 comment in "frame.h", there is some fuzz here. Frameless
856 functions are not strictly inner than (same .stack but
857 different .code and/or .special address). */
858 inner = gdbarch_inner_than (gdbarch, l.stack_addr, r.stack_addr);
859
860 frame_debug_printf ("is l=%s inner than r=%s? %d",
861 l.to_string ().c_str (), r.to_string ().c_str (),
862 inner);
863
864 return inner;
865 }
866
867 struct frame_info *
868 frame_find_by_id (struct frame_id id)
869 {
870 struct frame_info *frame, *prev_frame;
871
872 /* ZERO denotes the null frame, let the caller decide what to do
873 about it. Should it instead return get_current_frame()? */
874 if (!frame_id_p (id))
875 return NULL;
876
877 /* Check for the sentinel frame. */
878 if (frame_id_eq (id, sentinel_frame_id))
879 return sentinel_frame;
880
881 /* Try using the frame stash first. Finding it there removes the need
882 to perform the search by looping over all frames, which can be very
883 CPU-intensive if the number of frames is very high (the loop is O(n)
884 and get_prev_frame performs a series of checks that are relatively
885 expensive). This optimization is particularly useful when this function
886 is called from another function (such as value_fetch_lazy, case
887 VALUE_LVAL (val) == lval_register) which already loops over all frames,
888 making the overall behavior O(n^2). */
889 frame = frame_stash_find (id);
890 if (frame)
891 return frame;
892
893 for (frame = get_current_frame (); ; frame = prev_frame)
894 {
895 struct frame_id self = get_frame_id (frame);
896
897 if (frame_id_eq (id, self))
898 /* An exact match. */
899 return frame;
900
901 prev_frame = get_prev_frame (frame);
902 if (!prev_frame)
903 return NULL;
904
905 /* As a safety net to avoid unnecessary backtracing while trying
906 to find an invalid ID, we check for a common situation where
907 we can detect from comparing stack addresses that no other
908 frame in the current frame chain can have this ID. See the
909 comment at frame_id_inner for details. */
910 if (get_frame_type (frame) == NORMAL_FRAME
911 && !frame_id_inner (get_frame_arch (frame), id, self)
912 && frame_id_inner (get_frame_arch (prev_frame), id,
913 get_frame_id (prev_frame)))
914 return NULL;
915 }
916 return NULL;
917 }
918
919 static CORE_ADDR
920 frame_unwind_pc (struct frame_info *this_frame)
921 {
922 if (this_frame->prev_pc.status == CC_UNKNOWN)
923 {
924 struct gdbarch *prev_gdbarch;
925 CORE_ADDR pc = 0;
926 bool pc_p = false;
927
928 /* The right way. The `pure' way. The one true way. This
929 method depends solely on the register-unwind code to
930 determine the value of registers in THIS frame, and hence
931 the value of this frame's PC (resume address). A typical
932 implementation is no more than:
933
934 frame_unwind_register (this_frame, ISA_PC_REGNUM, buf);
935 return extract_unsigned_integer (buf, size of ISA_PC_REGNUM);
936
937 Note: this method is very heavily dependent on a correct
938 register-unwind implementation, it pays to fix that
939 method first; this method is frame type agnostic, since
940 it only deals with register values, it works with any
941 frame. This is all in stark contrast to the old
942 FRAME_SAVED_PC which would try to directly handle all the
943 different ways that a PC could be unwound. */
944 prev_gdbarch = frame_unwind_arch (this_frame);
945
946 try
947 {
948 pc = gdbarch_unwind_pc (prev_gdbarch, this_frame);
949 pc_p = true;
950 }
951 catch (const gdb_exception_error &ex)
952 {
953 if (ex.error == NOT_AVAILABLE_ERROR)
954 {
955 this_frame->prev_pc.status = CC_UNAVAILABLE;
956
957 frame_debug_printf ("this_frame=%d -> <unavailable>",
958 this_frame->level);
959 }
960 else if (ex.error == OPTIMIZED_OUT_ERROR)
961 {
962 this_frame->prev_pc.status = CC_NOT_SAVED;
963
964 frame_debug_printf ("this_frame=%d -> <not saved>",
965 this_frame->level);
966 }
967 else
968 throw;
969 }
970
971 if (pc_p)
972 {
973 this_frame->prev_pc.value = pc;
974 this_frame->prev_pc.status = CC_VALUE;
975
976 frame_debug_printf ("this_frame=%d -> %s",
977 this_frame->level,
978 hex_string (this_frame->prev_pc.value));
979 }
980 }
981
982 if (this_frame->prev_pc.status == CC_VALUE)
983 return this_frame->prev_pc.value;
984 else if (this_frame->prev_pc.status == CC_UNAVAILABLE)
985 throw_error (NOT_AVAILABLE_ERROR, _("PC not available"));
986 else if (this_frame->prev_pc.status == CC_NOT_SAVED)
987 throw_error (OPTIMIZED_OUT_ERROR, _("PC not saved"));
988 else
989 internal_error (__FILE__, __LINE__,
990 "unexpected prev_pc status: %d",
991 (int) this_frame->prev_pc.status);
992 }
993
994 CORE_ADDR
995 frame_unwind_caller_pc (struct frame_info *this_frame)
996 {
997 this_frame = skip_artificial_frames (this_frame);
998
999 /* We must have a non-artificial frame. The caller is supposed to check
1000 the result of frame_unwind_caller_id (), which returns NULL_FRAME_ID
1001 in this case. */
1002 gdb_assert (this_frame != NULL);
1003
1004 return frame_unwind_pc (this_frame);
1005 }
1006
1007 bool
1008 get_frame_func_if_available (frame_info *this_frame, CORE_ADDR *pc)
1009 {
1010 struct frame_info *next_frame = this_frame->next;
1011
1012 if (next_frame->prev_func.status == CC_UNKNOWN)
1013 {
1014 CORE_ADDR addr_in_block;
1015
1016 /* Make certain that this, and not the adjacent, function is
1017 found. */
1018 if (!get_frame_address_in_block_if_available (this_frame, &addr_in_block))
1019 {
1020 next_frame->prev_func.status = CC_UNAVAILABLE;
1021
1022 frame_debug_printf ("this_frame=%d -> unavailable",
1023 this_frame->level);
1024 }
1025 else
1026 {
1027 next_frame->prev_func.status = CC_VALUE;
1028 next_frame->prev_func.addr = get_pc_function_start (addr_in_block);
1029
1030 frame_debug_printf ("this_frame=%d -> %s",
1031 this_frame->level,
1032 hex_string (next_frame->prev_func.addr));
1033 }
1034 }
1035
1036 if (next_frame->prev_func.status == CC_UNAVAILABLE)
1037 {
1038 *pc = -1;
1039 return false;
1040 }
1041 else
1042 {
1043 gdb_assert (next_frame->prev_func.status == CC_VALUE);
1044
1045 *pc = next_frame->prev_func.addr;
1046 return true;
1047 }
1048 }
1049
1050 CORE_ADDR
1051 get_frame_func (struct frame_info *this_frame)
1052 {
1053 CORE_ADDR pc;
1054
1055 if (!get_frame_func_if_available (this_frame, &pc))
1056 throw_error (NOT_AVAILABLE_ERROR, _("PC not available"));
1057
1058 return pc;
1059 }
1060
1061 std::unique_ptr<readonly_detached_regcache>
1062 frame_save_as_regcache (struct frame_info *this_frame)
1063 {
1064 auto cooked_read = [this_frame] (int regnum, gdb_byte *buf)
1065 {
1066 if (!deprecated_frame_register_read (this_frame, regnum, buf))
1067 return REG_UNAVAILABLE;
1068 else
1069 return REG_VALID;
1070 };
1071
1072 std::unique_ptr<readonly_detached_regcache> regcache
1073 (new readonly_detached_regcache (get_frame_arch (this_frame), cooked_read));
1074
1075 return regcache;
1076 }
1077
1078 void
1079 frame_pop (struct frame_info *this_frame)
1080 {
1081 struct frame_info *prev_frame;
1082
1083 if (get_frame_type (this_frame) == DUMMY_FRAME)
1084 {
1085 /* Popping a dummy frame involves restoring more than just registers.
1086 dummy_frame_pop does all the work. */
1087 dummy_frame_pop (get_frame_id (this_frame), inferior_thread ());
1088 return;
1089 }
1090
1091 /* Ensure that we have a frame to pop to. */
1092 prev_frame = get_prev_frame_always (this_frame);
1093
1094 if (!prev_frame)
1095 error (_("Cannot pop the initial frame."));
1096
1097 /* Ignore TAILCALL_FRAME type frames, they were executed already before
1098 entering THISFRAME. */
1099 prev_frame = skip_tailcall_frames (prev_frame);
1100
1101 if (prev_frame == NULL)
1102 error (_("Cannot find the caller frame."));
1103
1104 /* Make a copy of all the register values unwound from this frame.
1105 Save them in a scratch buffer so that there isn't a race between
1106 trying to extract the old values from the current regcache while
1107 at the same time writing new values into that same cache. */
1108 std::unique_ptr<readonly_detached_regcache> scratch
1109 = frame_save_as_regcache (prev_frame);
1110
1111 /* FIXME: cagney/2003-03-16: It should be possible to tell the
1112 target's register cache that it is about to be hit with a burst
1113 register transfer and that the sequence of register writes should
1114 be batched. The pair target_prepare_to_store() and
1115 target_store_registers() kind of suggest this functionality.
1116 Unfortunately, they don't implement it. Their lack of a formal
1117 definition can lead to targets writing back bogus values
1118 (arguably a bug in the target code mind). */
1119 /* Now copy those saved registers into the current regcache. */
1120 get_current_regcache ()->restore (scratch.get ());
1121
1122 /* We've made right mess of GDB's local state, just discard
1123 everything. */
1124 reinit_frame_cache ();
1125 }
1126
1127 void
1128 frame_register_unwind (frame_info *next_frame, int regnum,
1129 int *optimizedp, int *unavailablep,
1130 enum lval_type *lvalp, CORE_ADDR *addrp,
1131 int *realnump, gdb_byte *bufferp)
1132 {
1133 struct value *value;
1134
1135 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
1136 that the value proper does not need to be fetched. */
1137 gdb_assert (optimizedp != NULL);
1138 gdb_assert (lvalp != NULL);
1139 gdb_assert (addrp != NULL);
1140 gdb_assert (realnump != NULL);
1141 /* gdb_assert (bufferp != NULL); */
1142
1143 value = frame_unwind_register_value (next_frame, regnum);
1144
1145 gdb_assert (value != NULL);
1146
1147 *optimizedp = value_optimized_out (value);
1148 *unavailablep = !value_entirely_available (value);
1149 *lvalp = VALUE_LVAL (value);
1150 *addrp = value_address (value);
1151 if (*lvalp == lval_register)
1152 *realnump = VALUE_REGNUM (value);
1153 else
1154 *realnump = -1;
1155
1156 if (bufferp)
1157 {
1158 if (!*optimizedp && !*unavailablep)
1159 memcpy (bufferp, value_contents_all (value),
1160 TYPE_LENGTH (value_type (value)));
1161 else
1162 memset (bufferp, 0, TYPE_LENGTH (value_type (value)));
1163 }
1164
1165 /* Dispose of the new value. This prevents watchpoints from
1166 trying to watch the saved frame pointer. */
1167 release_value (value);
1168 }
1169
1170 void
1171 frame_register (struct frame_info *frame, int regnum,
1172 int *optimizedp, int *unavailablep, enum lval_type *lvalp,
1173 CORE_ADDR *addrp, int *realnump, gdb_byte *bufferp)
1174 {
1175 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
1176 that the value proper does not need to be fetched. */
1177 gdb_assert (optimizedp != NULL);
1178 gdb_assert (lvalp != NULL);
1179 gdb_assert (addrp != NULL);
1180 gdb_assert (realnump != NULL);
1181 /* gdb_assert (bufferp != NULL); */
1182
1183 /* Obtain the register value by unwinding the register from the next
1184 (more inner frame). */
1185 gdb_assert (frame != NULL && frame->next != NULL);
1186 frame_register_unwind (frame->next, regnum, optimizedp, unavailablep,
1187 lvalp, addrp, realnump, bufferp);
1188 }
1189
1190 void
1191 frame_unwind_register (frame_info *next_frame, int regnum, gdb_byte *buf)
1192 {
1193 int optimized;
1194 int unavailable;
1195 CORE_ADDR addr;
1196 int realnum;
1197 enum lval_type lval;
1198
1199 frame_register_unwind (next_frame, regnum, &optimized, &unavailable,
1200 &lval, &addr, &realnum, buf);
1201
1202 if (optimized)
1203 throw_error (OPTIMIZED_OUT_ERROR,
1204 _("Register %d was not saved"), regnum);
1205 if (unavailable)
1206 throw_error (NOT_AVAILABLE_ERROR,
1207 _("Register %d is not available"), regnum);
1208 }
1209
1210 void
1211 get_frame_register (struct frame_info *frame,
1212 int regnum, gdb_byte *buf)
1213 {
1214 frame_unwind_register (frame->next, regnum, buf);
1215 }
1216
1217 struct value *
1218 frame_unwind_register_value (frame_info *next_frame, int regnum)
1219 {
1220 FRAME_SCOPED_DEBUG_ENTER_EXIT;
1221
1222 gdb_assert (next_frame != NULL);
1223 gdbarch *gdbarch = frame_unwind_arch (next_frame);
1224 frame_debug_printf ("frame=%d, regnum=%d(%s)",
1225 next_frame->level, regnum,
1226 user_reg_map_regnum_to_name (gdbarch, regnum));
1227
1228 /* Find the unwinder. */
1229 if (next_frame->unwind == NULL)
1230 frame_unwind_find_by_frame (next_frame, &next_frame->prologue_cache);
1231
1232 /* Ask this frame to unwind its register. */
1233 value *value = next_frame->unwind->prev_register (next_frame,
1234 &next_frame->prologue_cache,
1235 regnum);
1236
1237 if (frame_debug)
1238 {
1239 string_file debug_file;
1240
1241 fprintf_unfiltered (&debug_file, " ->");
1242 if (value_optimized_out (value))
1243 {
1244 fprintf_unfiltered (&debug_file, " ");
1245 val_print_not_saved (&debug_file);
1246 }
1247 else
1248 {
1249 if (VALUE_LVAL (value) == lval_register)
1250 fprintf_unfiltered (&debug_file, " register=%d",
1251 VALUE_REGNUM (value));
1252 else if (VALUE_LVAL (value) == lval_memory)
1253 fprintf_unfiltered (&debug_file, " address=%s",
1254 paddress (gdbarch,
1255 value_address (value)));
1256 else
1257 fprintf_unfiltered (&debug_file, " computed");
1258
1259 if (value_lazy (value))
1260 fprintf_unfiltered (&debug_file, " lazy");
1261 else
1262 {
1263 int i;
1264 const gdb_byte *buf = value_contents (value);
1265
1266 fprintf_unfiltered (&debug_file, " bytes=");
1267 fprintf_unfiltered (&debug_file, "[");
1268 for (i = 0; i < register_size (gdbarch, regnum); i++)
1269 fprintf_unfiltered (&debug_file, "%02x", buf[i]);
1270 fprintf_unfiltered (&debug_file, "]");
1271 }
1272 }
1273
1274 frame_debug_printf ("%s", debug_file.c_str ());
1275 }
1276
1277 return value;
1278 }
1279
1280 struct value *
1281 get_frame_register_value (struct frame_info *frame, int regnum)
1282 {
1283 return frame_unwind_register_value (frame->next, regnum);
1284 }
1285
1286 LONGEST
1287 frame_unwind_register_signed (frame_info *next_frame, int regnum)
1288 {
1289 struct gdbarch *gdbarch = frame_unwind_arch (next_frame);
1290 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1291 int size = register_size (gdbarch, regnum);
1292 struct value *value = frame_unwind_register_value (next_frame, regnum);
1293
1294 gdb_assert (value != NULL);
1295
1296 if (value_optimized_out (value))
1297 {
1298 throw_error (OPTIMIZED_OUT_ERROR,
1299 _("Register %d was not saved"), regnum);
1300 }
1301 if (!value_entirely_available (value))
1302 {
1303 throw_error (NOT_AVAILABLE_ERROR,
1304 _("Register %d is not available"), regnum);
1305 }
1306
1307 LONGEST r = extract_signed_integer (value_contents_all (value), size,
1308 byte_order);
1309
1310 release_value (value);
1311 return r;
1312 }
1313
1314 LONGEST
1315 get_frame_register_signed (struct frame_info *frame, int regnum)
1316 {
1317 return frame_unwind_register_signed (frame->next, regnum);
1318 }
1319
1320 ULONGEST
1321 frame_unwind_register_unsigned (frame_info *next_frame, int regnum)
1322 {
1323 struct gdbarch *gdbarch = frame_unwind_arch (next_frame);
1324 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1325 int size = register_size (gdbarch, regnum);
1326 struct value *value = frame_unwind_register_value (next_frame, regnum);
1327
1328 gdb_assert (value != NULL);
1329
1330 if (value_optimized_out (value))
1331 {
1332 throw_error (OPTIMIZED_OUT_ERROR,
1333 _("Register %d was not saved"), regnum);
1334 }
1335 if (!value_entirely_available (value))
1336 {
1337 throw_error (NOT_AVAILABLE_ERROR,
1338 _("Register %d is not available"), regnum);
1339 }
1340
1341 ULONGEST r = extract_unsigned_integer (value_contents_all (value), size,
1342 byte_order);
1343
1344 release_value (value);
1345 return r;
1346 }
1347
1348 ULONGEST
1349 get_frame_register_unsigned (struct frame_info *frame, int regnum)
1350 {
1351 return frame_unwind_register_unsigned (frame->next, regnum);
1352 }
1353
1354 bool
1355 read_frame_register_unsigned (frame_info *frame, int regnum,
1356 ULONGEST *val)
1357 {
1358 struct value *regval = get_frame_register_value (frame, regnum);
1359
1360 if (!value_optimized_out (regval)
1361 && value_entirely_available (regval))
1362 {
1363 struct gdbarch *gdbarch = get_frame_arch (frame);
1364 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1365 int size = register_size (gdbarch, VALUE_REGNUM (regval));
1366
1367 *val = extract_unsigned_integer (value_contents (regval), size, byte_order);
1368 return true;
1369 }
1370
1371 return false;
1372 }
1373
1374 void
1375 put_frame_register (struct frame_info *frame, int regnum,
1376 const gdb_byte *buf)
1377 {
1378 struct gdbarch *gdbarch = get_frame_arch (frame);
1379 int realnum;
1380 int optim;
1381 int unavail;
1382 enum lval_type lval;
1383 CORE_ADDR addr;
1384
1385 frame_register (frame, regnum, &optim, &unavail,
1386 &lval, &addr, &realnum, NULL);
1387 if (optim)
1388 error (_("Attempt to assign to a register that was not saved."));
1389 switch (lval)
1390 {
1391 case lval_memory:
1392 {
1393 write_memory (addr, buf, register_size (gdbarch, regnum));
1394 break;
1395 }
1396 case lval_register:
1397 get_current_regcache ()->cooked_write (realnum, buf);
1398 break;
1399 default:
1400 error (_("Attempt to assign to an unmodifiable value."));
1401 }
1402 }
1403
1404 /* This function is deprecated. Use get_frame_register_value instead,
1405 which provides more accurate information.
1406
1407 Find and return the value of REGNUM for the specified stack frame.
1408 The number of bytes copied is REGISTER_SIZE (REGNUM).
1409
1410 Returns 0 if the register value could not be found. */
1411
1412 bool
1413 deprecated_frame_register_read (frame_info *frame, int regnum,
1414 gdb_byte *myaddr)
1415 {
1416 int optimized;
1417 int unavailable;
1418 enum lval_type lval;
1419 CORE_ADDR addr;
1420 int realnum;
1421
1422 frame_register (frame, regnum, &optimized, &unavailable,
1423 &lval, &addr, &realnum, myaddr);
1424
1425 return !optimized && !unavailable;
1426 }
1427
1428 bool
1429 get_frame_register_bytes (frame_info *frame, int regnum,
1430 CORE_ADDR offset,
1431 gdb::array_view<gdb_byte> buffer,
1432 int *optimizedp, int *unavailablep)
1433 {
1434 struct gdbarch *gdbarch = get_frame_arch (frame);
1435 int i;
1436 int maxsize;
1437 int numregs;
1438
1439 /* Skip registers wholly inside of OFFSET. */
1440 while (offset >= register_size (gdbarch, regnum))
1441 {
1442 offset -= register_size (gdbarch, regnum);
1443 regnum++;
1444 }
1445
1446 /* Ensure that we will not read beyond the end of the register file.
1447 This can only ever happen if the debug information is bad. */
1448 maxsize = -offset;
1449 numregs = gdbarch_num_cooked_regs (gdbarch);
1450 for (i = regnum; i < numregs; i++)
1451 {
1452 int thissize = register_size (gdbarch, i);
1453
1454 if (thissize == 0)
1455 break; /* This register is not available on this architecture. */
1456 maxsize += thissize;
1457 }
1458
1459 int len = buffer.size ();
1460 if (len > maxsize)
1461 error (_("Bad debug information detected: "
1462 "Attempt to read %d bytes from registers."), len);
1463
1464 /* Copy the data. */
1465 while (len > 0)
1466 {
1467 int curr_len = register_size (gdbarch, regnum) - offset;
1468
1469 if (curr_len > len)
1470 curr_len = len;
1471
1472 gdb_byte *myaddr = buffer.data ();
1473
1474 if (curr_len == register_size (gdbarch, regnum))
1475 {
1476 enum lval_type lval;
1477 CORE_ADDR addr;
1478 int realnum;
1479
1480 frame_register (frame, regnum, optimizedp, unavailablep,
1481 &lval, &addr, &realnum, myaddr);
1482 if (*optimizedp || *unavailablep)
1483 return false;
1484 }
1485 else
1486 {
1487 struct value *value = frame_unwind_register_value (frame->next,
1488 regnum);
1489 gdb_assert (value != NULL);
1490 *optimizedp = value_optimized_out (value);
1491 *unavailablep = !value_entirely_available (value);
1492
1493 if (*optimizedp || *unavailablep)
1494 {
1495 release_value (value);
1496 return false;
1497 }
1498
1499 memcpy (myaddr, value_contents_all (value) + offset, curr_len);
1500 release_value (value);
1501 }
1502
1503 myaddr += curr_len;
1504 len -= curr_len;
1505 offset = 0;
1506 regnum++;
1507 }
1508
1509 *optimizedp = 0;
1510 *unavailablep = 0;
1511
1512 return true;
1513 }
1514
1515 void
1516 put_frame_register_bytes (struct frame_info *frame, int regnum,
1517 CORE_ADDR offset,
1518 gdb::array_view<const gdb_byte> buffer)
1519 {
1520 struct gdbarch *gdbarch = get_frame_arch (frame);
1521
1522 /* Skip registers wholly inside of OFFSET. */
1523 while (offset >= register_size (gdbarch, regnum))
1524 {
1525 offset -= register_size (gdbarch, regnum);
1526 regnum++;
1527 }
1528
1529 int len = buffer.size ();
1530 /* Copy the data. */
1531 while (len > 0)
1532 {
1533 int curr_len = register_size (gdbarch, regnum) - offset;
1534
1535 if (curr_len > len)
1536 curr_len = len;
1537
1538 const gdb_byte *myaddr = buffer.data ();
1539 if (curr_len == register_size (gdbarch, regnum))
1540 {
1541 put_frame_register (frame, regnum, myaddr);
1542 }
1543 else
1544 {
1545 struct value *value = frame_unwind_register_value (frame->next,
1546 regnum);
1547 gdb_assert (value != NULL);
1548
1549 memcpy ((char *) value_contents_writeable (value) + offset, myaddr,
1550 curr_len);
1551 put_frame_register (frame, regnum, value_contents_raw (value));
1552 release_value (value);
1553 }
1554
1555 myaddr += curr_len;
1556 len -= curr_len;
1557 offset = 0;
1558 regnum++;
1559 }
1560 }
1561
1562 /* Create a sentinel frame. */
1563
1564 static struct frame_info *
1565 create_sentinel_frame (struct program_space *pspace, struct regcache *regcache)
1566 {
1567 struct frame_info *frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
1568
1569 frame->level = -1;
1570 frame->pspace = pspace;
1571 frame->aspace = regcache->aspace ();
1572 /* Explicitly initialize the sentinel frame's cache. Provide it
1573 with the underlying regcache. In the future additional
1574 information, such as the frame's thread will be added. */
1575 frame->prologue_cache = sentinel_frame_cache (regcache);
1576 /* For the moment there is only one sentinel frame implementation. */
1577 frame->unwind = &sentinel_frame_unwind;
1578 /* Link this frame back to itself. The frame is self referential
1579 (the unwound PC is the same as the pc), so make it so. */
1580 frame->next = frame;
1581 /* The sentinel frame has a special ID. */
1582 frame->this_id.p = frame_id_status::COMPUTED;
1583 frame->this_id.value = sentinel_frame_id;
1584
1585 frame_debug_printf (" -> %s", frame->to_string ().c_str ());
1586
1587 return frame;
1588 }
1589
1590 /* Cache for frame addresses already read by gdb. Valid only while
1591 inferior is stopped. Control variables for the frame cache should
1592 be local to this module. */
1593
1594 static struct obstack frame_cache_obstack;
1595
1596 void *
1597 frame_obstack_zalloc (unsigned long size)
1598 {
1599 void *data = obstack_alloc (&frame_cache_obstack, size);
1600
1601 memset (data, 0, size);
1602 return data;
1603 }
1604
1605 static struct frame_info *get_prev_frame_always_1 (struct frame_info *this_frame);
1606
1607 struct frame_info *
1608 get_current_frame (void)
1609 {
1610 struct frame_info *current_frame;
1611
1612 /* First check, and report, the lack of registers. Having GDB
1613 report "No stack!" or "No memory" when the target doesn't even
1614 have registers is very confusing. Besides, "printcmd.exp"
1615 explicitly checks that ``print $pc'' with no registers prints "No
1616 registers". */
1617 if (!target_has_registers ())
1618 error (_("No registers."));
1619 if (!target_has_stack ())
1620 error (_("No stack."));
1621 if (!target_has_memory ())
1622 error (_("No memory."));
1623 /* Traceframes are effectively a substitute for the live inferior. */
1624 if (get_traceframe_number () < 0)
1625 validate_registers_access ();
1626
1627 if (sentinel_frame == NULL)
1628 sentinel_frame =
1629 create_sentinel_frame (current_program_space, get_current_regcache ());
1630
1631 /* Set the current frame before computing the frame id, to avoid
1632 recursion inside compute_frame_id, in case the frame's
1633 unwinder decides to do a symbol lookup (which depends on the
1634 selected frame's block).
1635
1636 This call must always succeed. In particular, nothing inside
1637 get_prev_frame_always_1 should try to unwind from the
1638 sentinel frame, because that could fail/throw, and we always
1639 want to leave with the current frame created and linked in --
1640 we should never end up with the sentinel frame as outermost
1641 frame. */
1642 current_frame = get_prev_frame_always_1 (sentinel_frame);
1643 gdb_assert (current_frame != NULL);
1644
1645 return current_frame;
1646 }
1647
1648 /* The "selected" stack frame is used by default for local and arg
1649 access.
1650
1651 The "single source of truth" for the selected frame is the
1652 SELECTED_FRAME_ID / SELECTED_FRAME_LEVEL pair.
1653
1654 Frame IDs can be saved/restored across reinitializing the frame
1655 cache, while frame_info pointers can't (frame_info objects are
1656 invalidated). If we know the corresponding frame_info object, it
1657 is cached in SELECTED_FRAME.
1658
1659 If SELECTED_FRAME_ID / SELECTED_FRAME_LEVEL are null_frame_id / -1,
1660 and the target has stack and is stopped, the selected frame is the
1661 current (innermost) frame. This means that SELECTED_FRAME_LEVEL is
1662 never 0 and SELECTED_FRAME_ID is never the ID of the innermost
1663 frame.
1664
1665 If SELECTED_FRAME_ID / SELECTED_FRAME_LEVEL are null_frame_id / -1,
1666 and the target has no stack or is executing, then there's no
1667 selected frame. */
1668 static frame_id selected_frame_id = null_frame_id;
1669 static int selected_frame_level = -1;
1670
1671 /* The cached frame_info object pointing to the selected frame.
1672 Looked up on demand by get_selected_frame. */
1673 static struct frame_info *selected_frame;
1674
1675 /* See frame.h. */
1676
1677 void
1678 save_selected_frame (frame_id *frame_id, int *frame_level)
1679 noexcept
1680 {
1681 *frame_id = selected_frame_id;
1682 *frame_level = selected_frame_level;
1683 }
1684
1685 /* See frame.h. */
1686
1687 void
1688 restore_selected_frame (frame_id frame_id, int frame_level)
1689 noexcept
1690 {
1691 /* save_selected_frame never returns level == 0, so we shouldn't see
1692 it here either. */
1693 gdb_assert (frame_level != 0);
1694
1695 /* FRAME_ID can be null_frame_id only IFF frame_level is -1. */
1696 gdb_assert ((frame_level == -1 && !frame_id_p (frame_id))
1697 || (frame_level != -1 && frame_id_p (frame_id)));
1698
1699 selected_frame_id = frame_id;
1700 selected_frame_level = frame_level;
1701
1702 /* Will be looked up later by get_selected_frame. */
1703 selected_frame = nullptr;
1704 }
1705
1706 /* See frame.h. */
1707
1708 void
1709 lookup_selected_frame (struct frame_id a_frame_id, int frame_level)
1710 {
1711 struct frame_info *frame = NULL;
1712 int count;
1713
1714 /* This either means there was no selected frame, or the selected
1715 frame was the current frame. In either case, select the current
1716 frame. */
1717 if (frame_level == -1)
1718 {
1719 select_frame (get_current_frame ());
1720 return;
1721 }
1722
1723 /* select_frame never saves 0 in SELECTED_FRAME_LEVEL, so we
1724 shouldn't see it here. */
1725 gdb_assert (frame_level > 0);
1726
1727 /* Restore by level first, check if the frame id is the same as
1728 expected. If that fails, try restoring by frame id. If that
1729 fails, nothing to do, just warn the user. */
1730
1731 count = frame_level;
1732 frame = find_relative_frame (get_current_frame (), &count);
1733 if (count == 0
1734 && frame != NULL
1735 /* The frame ids must match - either both valid or both
1736 outer_frame_id. The latter case is not failsafe, but since
1737 it's highly unlikely the search by level finds the wrong
1738 frame, it's 99.9(9)% of the time (for all practical purposes)
1739 safe. */
1740 && frame_id_eq (get_frame_id (frame), a_frame_id))
1741 {
1742 /* Cool, all is fine. */
1743 select_frame (frame);
1744 return;
1745 }
1746
1747 frame = frame_find_by_id (a_frame_id);
1748 if (frame != NULL)
1749 {
1750 /* Cool, refound it. */
1751 select_frame (frame);
1752 return;
1753 }
1754
1755 /* Nothing else to do, the frame layout really changed. Select the
1756 innermost stack frame. */
1757 select_frame (get_current_frame ());
1758
1759 /* Warn the user. */
1760 if (frame_level > 0 && !current_uiout->is_mi_like_p ())
1761 {
1762 warning (_("Couldn't restore frame #%d in "
1763 "current thread. Bottom (innermost) frame selected:"),
1764 frame_level);
1765 /* For MI, we should probably have a notification about current
1766 frame change. But this error is not very likely, so don't
1767 bother for now. */
1768 print_stack_frame (get_selected_frame (NULL), 1, SRC_AND_LOC, 1);
1769 }
1770 }
1771
1772 bool
1773 has_stack_frames ()
1774 {
1775 if (!target_has_registers () || !target_has_stack ()
1776 || !target_has_memory ())
1777 return false;
1778
1779 /* Traceframes are effectively a substitute for the live inferior. */
1780 if (get_traceframe_number () < 0)
1781 {
1782 /* No current inferior, no frame. */
1783 if (inferior_ptid == null_ptid)
1784 return false;
1785
1786 thread_info *tp = inferior_thread ();
1787 /* Don't try to read from a dead thread. */
1788 if (tp->state == THREAD_EXITED)
1789 return false;
1790
1791 /* ... or from a spinning thread. */
1792 if (tp->executing ())
1793 return false;
1794 }
1795
1796 return true;
1797 }
1798
1799 /* See frame.h. */
1800
1801 struct frame_info *
1802 get_selected_frame (const char *message)
1803 {
1804 if (selected_frame == NULL)
1805 {
1806 if (message != NULL && !has_stack_frames ())
1807 error (("%s"), message);
1808
1809 lookup_selected_frame (selected_frame_id, selected_frame_level);
1810 }
1811 /* There is always a frame. */
1812 gdb_assert (selected_frame != NULL);
1813 return selected_frame;
1814 }
1815
1816 /* This is a variant of get_selected_frame() which can be called when
1817 the inferior does not have a frame; in that case it will return
1818 NULL instead of calling error(). */
1819
1820 struct frame_info *
1821 deprecated_safe_get_selected_frame (void)
1822 {
1823 if (!has_stack_frames ())
1824 return NULL;
1825 return get_selected_frame (NULL);
1826 }
1827
1828 /* Select frame FI (or NULL - to invalidate the selected frame). */
1829
1830 void
1831 select_frame (struct frame_info *fi)
1832 {
1833 selected_frame = fi;
1834 selected_frame_level = frame_relative_level (fi);
1835 if (selected_frame_level == 0)
1836 {
1837 /* Treat the current frame especially -- we want to always
1838 save/restore it without warning, even if the frame ID changes
1839 (see lookup_selected_frame). E.g.:
1840
1841 // The current frame is selected, the target had just stopped.
1842 {
1843 scoped_restore_selected_frame restore_frame;
1844 some_operation_that_changes_the_stack ();
1845 }
1846 // scoped_restore_selected_frame's dtor runs, but the
1847 // original frame_id can't be found. No matter whether it
1848 // is found or not, we still end up with the now-current
1849 // frame selected. Warning in lookup_selected_frame in this
1850 // case seems pointless.
1851
1852 Also get_frame_id may access the target's registers/memory,
1853 and thus skipping get_frame_id optimizes the common case.
1854
1855 Saving the selected frame this way makes get_selected_frame
1856 and restore_current_frame return/re-select whatever frame is
1857 the innermost (current) then. */
1858 selected_frame_level = -1;
1859 selected_frame_id = null_frame_id;
1860 }
1861 else
1862 selected_frame_id = get_frame_id (fi);
1863
1864 /* NOTE: cagney/2002-05-04: FI can be NULL. This occurs when the
1865 frame is being invalidated. */
1866
1867 /* FIXME: kseitz/2002-08-28: It would be nice to call
1868 selected_frame_level_changed_event() right here, but due to limitations
1869 in the current interfaces, we would end up flooding UIs with events
1870 because select_frame() is used extensively internally.
1871
1872 Once we have frame-parameterized frame (and frame-related) commands,
1873 the event notification can be moved here, since this function will only
1874 be called when the user's selected frame is being changed. */
1875
1876 /* Ensure that symbols for this frame are read in. Also, determine the
1877 source language of this frame, and switch to it if desired. */
1878 if (fi)
1879 {
1880 CORE_ADDR pc;
1881
1882 /* We retrieve the frame's symtab by using the frame PC.
1883 However we cannot use the frame PC as-is, because it usually
1884 points to the instruction following the "call", which is
1885 sometimes the first instruction of another function. So we
1886 rely on get_frame_address_in_block() which provides us with a
1887 PC which is guaranteed to be inside the frame's code
1888 block. */
1889 if (get_frame_address_in_block_if_available (fi, &pc))
1890 {
1891 struct compunit_symtab *cust = find_pc_compunit_symtab (pc);
1892
1893 if (cust != NULL
1894 && compunit_language (cust) != current_language->la_language
1895 && compunit_language (cust) != language_unknown
1896 && language_mode == language_mode_auto)
1897 set_language (compunit_language (cust));
1898 }
1899 }
1900 }
1901
1902 /* Create an arbitrary (i.e. address specified by user) or innermost frame.
1903 Always returns a non-NULL value. */
1904
1905 struct frame_info *
1906 create_new_frame (CORE_ADDR addr, CORE_ADDR pc)
1907 {
1908 struct frame_info *fi;
1909
1910 frame_debug_printf ("addr=%s, pc=%s", hex_string (addr), hex_string (pc));
1911
1912 fi = FRAME_OBSTACK_ZALLOC (struct frame_info);
1913
1914 fi->next = create_sentinel_frame (current_program_space,
1915 get_current_regcache ());
1916
1917 /* Set/update this frame's cached PC value, found in the next frame.
1918 Do this before looking for this frame's unwinder. A sniffer is
1919 very likely to read this, and the corresponding unwinder is
1920 entitled to rely that the PC doesn't magically change. */
1921 fi->next->prev_pc.value = pc;
1922 fi->next->prev_pc.status = CC_VALUE;
1923
1924 /* We currently assume that frame chain's can't cross spaces. */
1925 fi->pspace = fi->next->pspace;
1926 fi->aspace = fi->next->aspace;
1927
1928 /* Select/initialize both the unwind function and the frame's type
1929 based on the PC. */
1930 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
1931
1932 fi->this_id.p = frame_id_status::COMPUTED;
1933 fi->this_id.value = frame_id_build (addr, pc);
1934
1935 frame_debug_printf (" -> %s", fi->to_string ().c_str ());
1936
1937 return fi;
1938 }
1939
1940 /* Return the frame that THIS_FRAME calls (NULL if THIS_FRAME is the
1941 innermost frame). Be careful to not fall off the bottom of the
1942 frame chain and onto the sentinel frame. */
1943
1944 struct frame_info *
1945 get_next_frame (struct frame_info *this_frame)
1946 {
1947 if (this_frame->level > 0)
1948 return this_frame->next;
1949 else
1950 return NULL;
1951 }
1952
1953 /* Return the frame that THIS_FRAME calls. If THIS_FRAME is the
1954 innermost (i.e. current) frame, return the sentinel frame. Thus,
1955 unlike get_next_frame(), NULL will never be returned. */
1956
1957 struct frame_info *
1958 get_next_frame_sentinel_okay (struct frame_info *this_frame)
1959 {
1960 gdb_assert (this_frame != NULL);
1961
1962 /* Note that, due to the manner in which the sentinel frame is
1963 constructed, this_frame->next still works even when this_frame
1964 is the sentinel frame. But we disallow it here anyway because
1965 calling get_next_frame_sentinel_okay() on the sentinel frame
1966 is likely a coding error. */
1967 gdb_assert (this_frame != sentinel_frame);
1968
1969 return this_frame->next;
1970 }
1971
1972 /* Observer for the target_changed event. */
1973
1974 static void
1975 frame_observer_target_changed (struct target_ops *target)
1976 {
1977 reinit_frame_cache ();
1978 }
1979
1980 /* Flush the entire frame cache. */
1981
1982 void
1983 reinit_frame_cache (void)
1984 {
1985 struct frame_info *fi;
1986
1987 ++frame_cache_generation;
1988
1989 /* Tear down all frame caches. */
1990 for (fi = sentinel_frame; fi != NULL; fi = fi->prev)
1991 {
1992 if (fi->prologue_cache && fi->unwind->dealloc_cache)
1993 fi->unwind->dealloc_cache (fi, fi->prologue_cache);
1994 if (fi->base_cache && fi->base->unwind->dealloc_cache)
1995 fi->base->unwind->dealloc_cache (fi, fi->base_cache);
1996 }
1997
1998 /* Since we can't really be sure what the first object allocated was. */
1999 obstack_free (&frame_cache_obstack, 0);
2000 obstack_init (&frame_cache_obstack);
2001
2002 if (sentinel_frame != NULL)
2003 annotate_frames_invalid ();
2004
2005 sentinel_frame = NULL; /* Invalidate cache */
2006 select_frame (NULL);
2007 frame_stash_invalidate ();
2008
2009 frame_debug_printf ("generation=%d", frame_cache_generation);
2010 }
2011
2012 /* Find where a register is saved (in memory or another register).
2013 The result of frame_register_unwind is just where it is saved
2014 relative to this particular frame. */
2015
2016 static void
2017 frame_register_unwind_location (struct frame_info *this_frame, int regnum,
2018 int *optimizedp, enum lval_type *lvalp,
2019 CORE_ADDR *addrp, int *realnump)
2020 {
2021 gdb_assert (this_frame == NULL || this_frame->level >= 0);
2022
2023 while (this_frame != NULL)
2024 {
2025 int unavailable;
2026
2027 frame_register_unwind (this_frame, regnum, optimizedp, &unavailable,
2028 lvalp, addrp, realnump, NULL);
2029
2030 if (*optimizedp)
2031 break;
2032
2033 if (*lvalp != lval_register)
2034 break;
2035
2036 regnum = *realnump;
2037 this_frame = get_next_frame (this_frame);
2038 }
2039 }
2040
2041 /* Get the previous raw frame, and check that it is not identical to
2042 same other frame frame already in the chain. If it is, there is
2043 most likely a stack cycle, so we discard it, and mark THIS_FRAME as
2044 outermost, with UNWIND_SAME_ID stop reason. Unlike the other
2045 validity tests, that compare THIS_FRAME and the next frame, we do
2046 this right after creating the previous frame, to avoid ever ending
2047 up with two frames with the same id in the frame chain.
2048
2049 There is however, one case where this cycle detection is not desirable,
2050 when asking for the previous frame of an inline frame, in this case, if
2051 the previous frame is a duplicate and we return nullptr then we will be
2052 unable to calculate the frame_id of the inline frame, this in turn
2053 causes inline_frame_this_id() to fail. So for inline frames (and only
2054 for inline frames), the previous frame will always be returned, even when it
2055 has a duplicate frame_id. We're not worried about cycles in the frame
2056 chain as, if the previous frame returned here has a duplicate frame_id,
2057 then the frame_id of the inline frame, calculated based off the frame_id
2058 of the previous frame, should also be a duplicate. */
2059
2060 static struct frame_info *
2061 get_prev_frame_maybe_check_cycle (struct frame_info *this_frame)
2062 {
2063 struct frame_info *prev_frame = get_prev_frame_raw (this_frame);
2064
2065 /* Don't compute the frame id of the current frame yet. Unwinding
2066 the sentinel frame can fail (e.g., if the thread is gone and we
2067 can't thus read its registers). If we let the cycle detection
2068 code below try to compute a frame ID, then an error thrown from
2069 within the frame ID computation would result in the sentinel
2070 frame as outermost frame, which is bogus. Instead, we'll compute
2071 the current frame's ID lazily in get_frame_id. Note that there's
2072 no point in doing cycle detection when there's only one frame, so
2073 nothing is lost here. */
2074 if (prev_frame->level == 0)
2075 return prev_frame;
2076
2077 unsigned int entry_generation = get_frame_cache_generation ();
2078
2079 try
2080 {
2081 compute_frame_id (prev_frame);
2082
2083 bool cycle_detection_p = get_frame_type (this_frame) != INLINE_FRAME;
2084
2085 /* This assert checks GDB's state with respect to calculating the
2086 frame-id of THIS_FRAME, in the case where THIS_FRAME is an inline
2087 frame.
2088
2089 If THIS_FRAME is frame #0, and is an inline frame, then we put off
2090 calculating the frame_id until we specifically make a call to
2091 get_frame_id(). As a result we can enter this function in two
2092 possible states. If GDB asked for the previous frame of frame #0
2093 then THIS_FRAME will be frame #0 (an inline frame), and the
2094 frame_id will be in the NOT_COMPUTED state. However, if GDB asked
2095 for the frame_id of frame #0, then, as getting the frame_id of an
2096 inline frame requires us to get the frame_id of the previous
2097 frame, we will still end up in here, and the frame_id status will
2098 be COMPUTING.
2099
2100 If, instead, THIS_FRAME is at a level greater than #0 then things
2101 are simpler. For these frames we immediately compute the frame_id
2102 when the frame is initially created, and so, for those frames, we
2103 will always enter this function with the frame_id status of
2104 COMPUTING. */
2105 gdb_assert (cycle_detection_p
2106 || (this_frame->level > 0
2107 && (this_frame->this_id.p
2108 == frame_id_status::COMPUTING))
2109 || (this_frame->level == 0
2110 && (this_frame->this_id.p
2111 != frame_id_status::COMPUTED)));
2112
2113 /* We must do the CYCLE_DETECTION_P check after attempting to add
2114 PREV_FRAME into the cache; if PREV_FRAME is unique then we do want
2115 it in the cache, but if it is a duplicate and CYCLE_DETECTION_P is
2116 false, then we don't want to unlink it. */
2117 if (!frame_stash_add (prev_frame) && cycle_detection_p)
2118 {
2119 /* Another frame with the same id was already in the stash. We just
2120 detected a cycle. */
2121 frame_debug_printf (" -> nullptr // this frame has same ID");
2122
2123 this_frame->stop_reason = UNWIND_SAME_ID;
2124 /* Unlink. */
2125 prev_frame->next = NULL;
2126 this_frame->prev = NULL;
2127 prev_frame = NULL;
2128 }
2129 }
2130 catch (const gdb_exception &ex)
2131 {
2132 if (get_frame_cache_generation () == entry_generation)
2133 {
2134 prev_frame->next = NULL;
2135 this_frame->prev = NULL;
2136 }
2137
2138 throw;
2139 }
2140
2141 return prev_frame;
2142 }
2143
2144 /* Helper function for get_prev_frame_always, this is called inside a
2145 TRY_CATCH block. Return the frame that called THIS_FRAME or NULL if
2146 there is no such frame. This may throw an exception. */
2147
2148 static struct frame_info *
2149 get_prev_frame_always_1 (struct frame_info *this_frame)
2150 {
2151 FRAME_SCOPED_DEBUG_ENTER_EXIT;
2152
2153 gdb_assert (this_frame != NULL);
2154
2155 if (frame_debug)
2156 {
2157 if (this_frame != NULL)
2158 frame_debug_printf ("this_frame=%d", this_frame->level);
2159 else
2160 frame_debug_printf ("this_frame=nullptr");
2161 }
2162
2163 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2164
2165 /* Only try to do the unwind once. */
2166 if (this_frame->prev_p)
2167 {
2168 if (this_frame->prev != nullptr)
2169 frame_debug_printf (" -> %s // cached",
2170 this_frame->prev->to_string ().c_str ());
2171 else
2172 frame_debug_printf
2173 (" -> nullptr // %s // cached",
2174 frame_stop_reason_symbol_string (this_frame->stop_reason));
2175 return this_frame->prev;
2176 }
2177
2178 /* If the frame unwinder hasn't been selected yet, we must do so
2179 before setting prev_p; otherwise the check for misbehaved
2180 sniffers will think that this frame's sniffer tried to unwind
2181 further (see frame_cleanup_after_sniffer). */
2182 if (this_frame->unwind == NULL)
2183 frame_unwind_find_by_frame (this_frame, &this_frame->prologue_cache);
2184
2185 this_frame->prev_p = true;
2186 this_frame->stop_reason = UNWIND_NO_REASON;
2187
2188 /* If we are unwinding from an inline frame, all of the below tests
2189 were already performed when we unwound from the next non-inline
2190 frame. We must skip them, since we can not get THIS_FRAME's ID
2191 until we have unwound all the way down to the previous non-inline
2192 frame. */
2193 if (get_frame_type (this_frame) == INLINE_FRAME)
2194 return get_prev_frame_maybe_check_cycle (this_frame);
2195
2196 /* If this_frame is the current frame, then compute and stash its
2197 frame id prior to fetching and computing the frame id of the
2198 previous frame. Otherwise, the cycle detection code in
2199 get_prev_frame_if_no_cycle() will not work correctly. When
2200 get_frame_id() is called later on, an assertion error will be
2201 triggered in the event of a cycle between the current frame and
2202 its previous frame.
2203
2204 Note we do this after the INLINE_FRAME check above. That is
2205 because the inline frame's frame id computation needs to fetch
2206 the frame id of its previous real stack frame. I.e., we need to
2207 avoid recursion in that case. This is OK since we're sure the
2208 inline frame won't create a cycle with the real stack frame. See
2209 inline_frame_this_id. */
2210 if (this_frame->level == 0)
2211 get_frame_id (this_frame);
2212
2213 /* Check that this frame is unwindable. If it isn't, don't try to
2214 unwind to the prev frame. */
2215 this_frame->stop_reason
2216 = this_frame->unwind->stop_reason (this_frame,
2217 &this_frame->prologue_cache);
2218
2219 if (this_frame->stop_reason != UNWIND_NO_REASON)
2220 {
2221 frame_debug_printf
2222 (" -> nullptr // %s",
2223 frame_stop_reason_symbol_string (this_frame->stop_reason));
2224 return NULL;
2225 }
2226
2227 /* Check that this frame's ID isn't inner to (younger, below, next)
2228 the next frame. This happens when a frame unwind goes backwards.
2229 This check is valid only if this frame and the next frame are NORMAL.
2230 See the comment at frame_id_inner for details. */
2231 if (get_frame_type (this_frame) == NORMAL_FRAME
2232 && this_frame->next->unwind->type == NORMAL_FRAME
2233 && frame_id_inner (get_frame_arch (this_frame->next),
2234 get_frame_id (this_frame),
2235 get_frame_id (this_frame->next)))
2236 {
2237 CORE_ADDR this_pc_in_block;
2238 struct minimal_symbol *morestack_msym;
2239 const char *morestack_name = NULL;
2240
2241 /* gcc -fsplit-stack __morestack can continue the stack anywhere. */
2242 this_pc_in_block = get_frame_address_in_block (this_frame);
2243 morestack_msym = lookup_minimal_symbol_by_pc (this_pc_in_block).minsym;
2244 if (morestack_msym)
2245 morestack_name = morestack_msym->linkage_name ();
2246 if (!morestack_name || strcmp (morestack_name, "__morestack") != 0)
2247 {
2248 frame_debug_printf (" -> nullptr // this frame ID is inner");
2249 this_frame->stop_reason = UNWIND_INNER_ID;
2250 return NULL;
2251 }
2252 }
2253
2254 /* Check that this and the next frame do not unwind the PC register
2255 to the same memory location. If they do, then even though they
2256 have different frame IDs, the new frame will be bogus; two
2257 functions can't share a register save slot for the PC. This can
2258 happen when the prologue analyzer finds a stack adjustment, but
2259 no PC save.
2260
2261 This check does assume that the "PC register" is roughly a
2262 traditional PC, even if the gdbarch_unwind_pc method adjusts
2263 it (we do not rely on the value, only on the unwound PC being
2264 dependent on this value). A potential improvement would be
2265 to have the frame prev_pc method and the gdbarch unwind_pc
2266 method set the same lval and location information as
2267 frame_register_unwind. */
2268 if (this_frame->level > 0
2269 && gdbarch_pc_regnum (gdbarch) >= 0
2270 && get_frame_type (this_frame) == NORMAL_FRAME
2271 && (get_frame_type (this_frame->next) == NORMAL_FRAME
2272 || get_frame_type (this_frame->next) == INLINE_FRAME))
2273 {
2274 int optimized, realnum, nrealnum;
2275 enum lval_type lval, nlval;
2276 CORE_ADDR addr, naddr;
2277
2278 frame_register_unwind_location (this_frame,
2279 gdbarch_pc_regnum (gdbarch),
2280 &optimized, &lval, &addr, &realnum);
2281 frame_register_unwind_location (get_next_frame (this_frame),
2282 gdbarch_pc_regnum (gdbarch),
2283 &optimized, &nlval, &naddr, &nrealnum);
2284
2285 if ((lval == lval_memory && lval == nlval && addr == naddr)
2286 || (lval == lval_register && lval == nlval && realnum == nrealnum))
2287 {
2288 frame_debug_printf (" -> nullptr // no saved PC");
2289 this_frame->stop_reason = UNWIND_NO_SAVED_PC;
2290 this_frame->prev = NULL;
2291 return NULL;
2292 }
2293 }
2294
2295 return get_prev_frame_maybe_check_cycle (this_frame);
2296 }
2297
2298 /* Return a "struct frame_info" corresponding to the frame that called
2299 THIS_FRAME. Returns NULL if there is no such frame.
2300
2301 Unlike get_prev_frame, this function always tries to unwind the
2302 frame. */
2303
2304 struct frame_info *
2305 get_prev_frame_always (struct frame_info *this_frame)
2306 {
2307 struct frame_info *prev_frame = NULL;
2308
2309 try
2310 {
2311 prev_frame = get_prev_frame_always_1 (this_frame);
2312 }
2313 catch (const gdb_exception_error &ex)
2314 {
2315 if (ex.error == MEMORY_ERROR)
2316 {
2317 this_frame->stop_reason = UNWIND_MEMORY_ERROR;
2318 if (ex.message != NULL)
2319 {
2320 char *stop_string;
2321 size_t size;
2322
2323 /* The error needs to live as long as the frame does.
2324 Allocate using stack local STOP_STRING then assign the
2325 pointer to the frame, this allows the STOP_STRING on the
2326 frame to be of type 'const char *'. */
2327 size = ex.message->size () + 1;
2328 stop_string = (char *) frame_obstack_zalloc (size);
2329 memcpy (stop_string, ex.what (), size);
2330 this_frame->stop_string = stop_string;
2331 }
2332 prev_frame = NULL;
2333 }
2334 else
2335 throw;
2336 }
2337
2338 return prev_frame;
2339 }
2340
2341 /* Construct a new "struct frame_info" and link it previous to
2342 this_frame. */
2343
2344 static struct frame_info *
2345 get_prev_frame_raw (struct frame_info *this_frame)
2346 {
2347 struct frame_info *prev_frame;
2348
2349 /* Allocate the new frame but do not wire it in to the frame chain.
2350 Some (bad) code in INIT_FRAME_EXTRA_INFO tries to look along
2351 frame->next to pull some fancy tricks (of course such code is, by
2352 definition, recursive). Try to prevent it.
2353
2354 There is no reason to worry about memory leaks, should the
2355 remainder of the function fail. The allocated memory will be
2356 quickly reclaimed when the frame cache is flushed, and the `we've
2357 been here before' check above will stop repeated memory
2358 allocation calls. */
2359 prev_frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
2360 prev_frame->level = this_frame->level + 1;
2361
2362 /* For now, assume we don't have frame chains crossing address
2363 spaces. */
2364 prev_frame->pspace = this_frame->pspace;
2365 prev_frame->aspace = this_frame->aspace;
2366
2367 /* Don't yet compute ->unwind (and hence ->type). It is computed
2368 on-demand in get_frame_type, frame_register_unwind, and
2369 get_frame_id. */
2370
2371 /* Don't yet compute the frame's ID. It is computed on-demand by
2372 get_frame_id(). */
2373
2374 /* The unwound frame ID is validate at the start of this function,
2375 as part of the logic to decide if that frame should be further
2376 unwound, and not here while the prev frame is being created.
2377 Doing this makes it possible for the user to examine a frame that
2378 has an invalid frame ID.
2379
2380 Some very old VAX code noted: [...] For the sake of argument,
2381 suppose that the stack is somewhat trashed (which is one reason
2382 that "info frame" exists). So, return 0 (indicating we don't
2383 know the address of the arglist) if we don't know what frame this
2384 frame calls. */
2385
2386 /* Link it in. */
2387 this_frame->prev = prev_frame;
2388 prev_frame->next = this_frame;
2389
2390 frame_debug_printf (" -> %s", prev_frame->to_string ().c_str ());
2391
2392 return prev_frame;
2393 }
2394
2395 /* Debug routine to print a NULL frame being returned. */
2396
2397 static void
2398 frame_debug_got_null_frame (struct frame_info *this_frame,
2399 const char *reason)
2400 {
2401 if (frame_debug)
2402 {
2403 if (this_frame != NULL)
2404 frame_debug_printf ("this_frame=%d -> %s", this_frame->level, reason);
2405 else
2406 frame_debug_printf ("this_frame=nullptr -> %s", reason);
2407 }
2408 }
2409
2410 /* Is this (non-sentinel) frame in the "main"() function? */
2411
2412 static bool
2413 inside_main_func (frame_info *this_frame)
2414 {
2415 if (current_program_space->symfile_object_file == nullptr)
2416 return false;
2417
2418 CORE_ADDR sym_addr;
2419 const char *name = main_name ();
2420 bound_minimal_symbol msymbol
2421 = lookup_minimal_symbol (name, NULL,
2422 current_program_space->symfile_object_file);
2423 if (msymbol.minsym == nullptr)
2424 {
2425 /* In some language (for example Fortran) there will be no minimal
2426 symbol with the name of the main function. In this case we should
2427 search the full symbols to see if we can find a match. */
2428 struct block_symbol bs = lookup_symbol (name, NULL, VAR_DOMAIN, 0);
2429 if (bs.symbol == nullptr)
2430 return false;
2431
2432 const struct block *block = SYMBOL_BLOCK_VALUE (bs.symbol);
2433 gdb_assert (block != nullptr);
2434 sym_addr = BLOCK_START (block);
2435 }
2436 else
2437 sym_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
2438
2439 /* Convert any function descriptor addresses into the actual function
2440 code address. */
2441 sym_addr = gdbarch_convert_from_func_ptr_addr
2442 (get_frame_arch (this_frame), sym_addr, current_inferior ()->top_target ());
2443
2444 return sym_addr == get_frame_func (this_frame);
2445 }
2446
2447 /* Test whether THIS_FRAME is inside the process entry point function. */
2448
2449 static bool
2450 inside_entry_func (frame_info *this_frame)
2451 {
2452 CORE_ADDR entry_point;
2453
2454 if (!entry_point_address_query (&entry_point))
2455 return false;
2456
2457 return get_frame_func (this_frame) == entry_point;
2458 }
2459
2460 /* Return a structure containing various interesting information about
2461 the frame that called THIS_FRAME. Returns NULL if there is entier
2462 no such frame or the frame fails any of a set of target-independent
2463 condition that should terminate the frame chain (e.g., as unwinding
2464 past main()).
2465
2466 This function should not contain target-dependent tests, such as
2467 checking whether the program-counter is zero. */
2468
2469 struct frame_info *
2470 get_prev_frame (struct frame_info *this_frame)
2471 {
2472 FRAME_SCOPED_DEBUG_ENTER_EXIT;
2473
2474 CORE_ADDR frame_pc;
2475 int frame_pc_p;
2476
2477 /* There is always a frame. If this assertion fails, suspect that
2478 something should be calling get_selected_frame() or
2479 get_current_frame(). */
2480 gdb_assert (this_frame != NULL);
2481
2482 frame_pc_p = get_frame_pc_if_available (this_frame, &frame_pc);
2483
2484 /* tausq/2004-12-07: Dummy frames are skipped because it doesn't make much
2485 sense to stop unwinding at a dummy frame. One place where a dummy
2486 frame may have an address "inside_main_func" is on HPUX. On HPUX, the
2487 pcsqh register (space register for the instruction at the head of the
2488 instruction queue) cannot be written directly; the only way to set it
2489 is to branch to code that is in the target space. In order to implement
2490 frame dummies on HPUX, the called function is made to jump back to where
2491 the inferior was when the user function was called. If gdb was inside
2492 the main function when we created the dummy frame, the dummy frame will
2493 point inside the main function. */
2494 if (this_frame->level >= 0
2495 && get_frame_type (this_frame) == NORMAL_FRAME
2496 && !user_set_backtrace_options.backtrace_past_main
2497 && frame_pc_p
2498 && inside_main_func (this_frame))
2499 /* Don't unwind past main(). Note, this is done _before_ the
2500 frame has been marked as previously unwound. That way if the
2501 user later decides to enable unwinds past main(), that will
2502 automatically happen. */
2503 {
2504 frame_debug_got_null_frame (this_frame, "inside main func");
2505 return NULL;
2506 }
2507
2508 /* If the user's backtrace limit has been exceeded, stop. We must
2509 add two to the current level; one of those accounts for backtrace_limit
2510 being 1-based and the level being 0-based, and the other accounts for
2511 the level of the new frame instead of the level of the current
2512 frame. */
2513 if (this_frame->level + 2 > user_set_backtrace_options.backtrace_limit)
2514 {
2515 frame_debug_got_null_frame (this_frame, "backtrace limit exceeded");
2516 return NULL;
2517 }
2518
2519 /* If we're already inside the entry function for the main objfile,
2520 then it isn't valid. Don't apply this test to a dummy frame -
2521 dummy frame PCs typically land in the entry func. Don't apply
2522 this test to the sentinel frame. Sentinel frames should always
2523 be allowed to unwind. */
2524 /* NOTE: cagney/2003-07-07: Fixed a bug in inside_main_func() -
2525 wasn't checking for "main" in the minimal symbols. With that
2526 fixed asm-source tests now stop in "main" instead of halting the
2527 backtrace in weird and wonderful ways somewhere inside the entry
2528 file. Suspect that tests for inside the entry file/func were
2529 added to work around that (now fixed) case. */
2530 /* NOTE: cagney/2003-07-15: danielj (if I'm reading it right)
2531 suggested having the inside_entry_func test use the
2532 inside_main_func() msymbol trick (along with entry_point_address()
2533 I guess) to determine the address range of the start function.
2534 That should provide a far better stopper than the current
2535 heuristics. */
2536 /* NOTE: tausq/2004-10-09: this is needed if, for example, the compiler
2537 applied tail-call optimizations to main so that a function called
2538 from main returns directly to the caller of main. Since we don't
2539 stop at main, we should at least stop at the entry point of the
2540 application. */
2541 if (this_frame->level >= 0
2542 && get_frame_type (this_frame) == NORMAL_FRAME
2543 && !user_set_backtrace_options.backtrace_past_entry
2544 && frame_pc_p
2545 && inside_entry_func (this_frame))
2546 {
2547 frame_debug_got_null_frame (this_frame, "inside entry func");
2548 return NULL;
2549 }
2550
2551 /* Assume that the only way to get a zero PC is through something
2552 like a SIGSEGV or a dummy frame, and hence that NORMAL frames
2553 will never unwind a zero PC. */
2554 if (this_frame->level > 0
2555 && (get_frame_type (this_frame) == NORMAL_FRAME
2556 || get_frame_type (this_frame) == INLINE_FRAME)
2557 && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME
2558 && frame_pc_p && frame_pc == 0)
2559 {
2560 frame_debug_got_null_frame (this_frame, "zero PC");
2561 return NULL;
2562 }
2563
2564 return get_prev_frame_always (this_frame);
2565 }
2566
2567 CORE_ADDR
2568 get_frame_pc (struct frame_info *frame)
2569 {
2570 gdb_assert (frame->next != NULL);
2571 return frame_unwind_pc (frame->next);
2572 }
2573
2574 bool
2575 get_frame_pc_if_available (frame_info *frame, CORE_ADDR *pc)
2576 {
2577
2578 gdb_assert (frame->next != NULL);
2579
2580 try
2581 {
2582 *pc = frame_unwind_pc (frame->next);
2583 }
2584 catch (const gdb_exception_error &ex)
2585 {
2586 if (ex.error == NOT_AVAILABLE_ERROR)
2587 return false;
2588 else
2589 throw;
2590 }
2591
2592 return true;
2593 }
2594
2595 /* Return an address that falls within THIS_FRAME's code block. */
2596
2597 CORE_ADDR
2598 get_frame_address_in_block (struct frame_info *this_frame)
2599 {
2600 /* A draft address. */
2601 CORE_ADDR pc = get_frame_pc (this_frame);
2602
2603 struct frame_info *next_frame = this_frame->next;
2604
2605 /* Calling get_frame_pc returns the resume address for THIS_FRAME.
2606 Normally the resume address is inside the body of the function
2607 associated with THIS_FRAME, but there is a special case: when
2608 calling a function which the compiler knows will never return
2609 (for instance abort), the call may be the very last instruction
2610 in the calling function. The resume address will point after the
2611 call and may be at the beginning of a different function
2612 entirely.
2613
2614 If THIS_FRAME is a signal frame or dummy frame, then we should
2615 not adjust the unwound PC. For a dummy frame, GDB pushed the
2616 resume address manually onto the stack. For a signal frame, the
2617 OS may have pushed the resume address manually and invoked the
2618 handler (e.g. GNU/Linux), or invoked the trampoline which called
2619 the signal handler - but in either case the signal handler is
2620 expected to return to the trampoline. So in both of these
2621 cases we know that the resume address is executable and
2622 related. So we only need to adjust the PC if THIS_FRAME
2623 is a normal function.
2624
2625 If the program has been interrupted while THIS_FRAME is current,
2626 then clearly the resume address is inside the associated
2627 function. There are three kinds of interruption: debugger stop
2628 (next frame will be SENTINEL_FRAME), operating system
2629 signal or exception (next frame will be SIGTRAMP_FRAME),
2630 or debugger-induced function call (next frame will be
2631 DUMMY_FRAME). So we only need to adjust the PC if
2632 NEXT_FRAME is a normal function.
2633
2634 We check the type of NEXT_FRAME first, since it is already
2635 known; frame type is determined by the unwinder, and since
2636 we have THIS_FRAME we've already selected an unwinder for
2637 NEXT_FRAME.
2638
2639 If the next frame is inlined, we need to keep going until we find
2640 the real function - for instance, if a signal handler is invoked
2641 while in an inlined function, then the code address of the
2642 "calling" normal function should not be adjusted either. */
2643
2644 while (get_frame_type (next_frame) == INLINE_FRAME)
2645 next_frame = next_frame->next;
2646
2647 if ((get_frame_type (next_frame) == NORMAL_FRAME
2648 || get_frame_type (next_frame) == TAILCALL_FRAME)
2649 && (get_frame_type (this_frame) == NORMAL_FRAME
2650 || get_frame_type (this_frame) == TAILCALL_FRAME
2651 || get_frame_type (this_frame) == INLINE_FRAME))
2652 return pc - 1;
2653
2654 return pc;
2655 }
2656
2657 bool
2658 get_frame_address_in_block_if_available (frame_info *this_frame,
2659 CORE_ADDR *pc)
2660 {
2661
2662 try
2663 {
2664 *pc = get_frame_address_in_block (this_frame);
2665 }
2666 catch (const gdb_exception_error &ex)
2667 {
2668 if (ex.error == NOT_AVAILABLE_ERROR)
2669 return false;
2670 throw;
2671 }
2672
2673 return true;
2674 }
2675
2676 symtab_and_line
2677 find_frame_sal (frame_info *frame)
2678 {
2679 struct frame_info *next_frame;
2680 int notcurrent;
2681 CORE_ADDR pc;
2682
2683 if (frame_inlined_callees (frame) > 0)
2684 {
2685 struct symbol *sym;
2686
2687 /* If the current frame has some inlined callees, and we have a next
2688 frame, then that frame must be an inlined frame. In this case
2689 this frame's sal is the "call site" of the next frame's inlined
2690 function, which can not be inferred from get_frame_pc. */
2691 next_frame = get_next_frame (frame);
2692 if (next_frame)
2693 sym = get_frame_function (next_frame);
2694 else
2695 sym = inline_skipped_symbol (inferior_thread ());
2696
2697 /* If frame is inline, it certainly has symbols. */
2698 gdb_assert (sym);
2699
2700 symtab_and_line sal;
2701 if (SYMBOL_LINE (sym) != 0)
2702 {
2703 sal.symtab = symbol_symtab (sym);
2704 sal.line = SYMBOL_LINE (sym);
2705 }
2706 else
2707 /* If the symbol does not have a location, we don't know where
2708 the call site is. Do not pretend to. This is jarring, but
2709 we can't do much better. */
2710 sal.pc = get_frame_pc (frame);
2711
2712 sal.pspace = get_frame_program_space (frame);
2713 return sal;
2714 }
2715
2716 /* If FRAME is not the innermost frame, that normally means that
2717 FRAME->pc points at the return instruction (which is *after* the
2718 call instruction), and we want to get the line containing the
2719 call (because the call is where the user thinks the program is).
2720 However, if the next frame is either a SIGTRAMP_FRAME or a
2721 DUMMY_FRAME, then the next frame will contain a saved interrupt
2722 PC and such a PC indicates the current (rather than next)
2723 instruction/line, consequently, for such cases, want to get the
2724 line containing fi->pc. */
2725 if (!get_frame_pc_if_available (frame, &pc))
2726 return {};
2727
2728 notcurrent = (pc != get_frame_address_in_block (frame));
2729 return find_pc_line (pc, notcurrent);
2730 }
2731
2732 /* Per "frame.h", return the ``address'' of the frame. Code should
2733 really be using get_frame_id(). */
2734 CORE_ADDR
2735 get_frame_base (struct frame_info *fi)
2736 {
2737 return get_frame_id (fi).stack_addr;
2738 }
2739
2740 /* High-level offsets into the frame. Used by the debug info. */
2741
2742 CORE_ADDR
2743 get_frame_base_address (struct frame_info *fi)
2744 {
2745 if (get_frame_type (fi) != NORMAL_FRAME)
2746 return 0;
2747 if (fi->base == NULL)
2748 fi->base = frame_base_find_by_frame (fi);
2749 /* Sneaky: If the low-level unwind and high-level base code share a
2750 common unwinder, let them share the prologue cache. */
2751 if (fi->base->unwind == fi->unwind)
2752 return fi->base->this_base (fi, &fi->prologue_cache);
2753 return fi->base->this_base (fi, &fi->base_cache);
2754 }
2755
2756 CORE_ADDR
2757 get_frame_locals_address (struct frame_info *fi)
2758 {
2759 if (get_frame_type (fi) != NORMAL_FRAME)
2760 return 0;
2761 /* If there isn't a frame address method, find it. */
2762 if (fi->base == NULL)
2763 fi->base = frame_base_find_by_frame (fi);
2764 /* Sneaky: If the low-level unwind and high-level base code share a
2765 common unwinder, let them share the prologue cache. */
2766 if (fi->base->unwind == fi->unwind)
2767 return fi->base->this_locals (fi, &fi->prologue_cache);
2768 return fi->base->this_locals (fi, &fi->base_cache);
2769 }
2770
2771 CORE_ADDR
2772 get_frame_args_address (struct frame_info *fi)
2773 {
2774 if (get_frame_type (fi) != NORMAL_FRAME)
2775 return 0;
2776 /* If there isn't a frame address method, find it. */
2777 if (fi->base == NULL)
2778 fi->base = frame_base_find_by_frame (fi);
2779 /* Sneaky: If the low-level unwind and high-level base code share a
2780 common unwinder, let them share the prologue cache. */
2781 if (fi->base->unwind == fi->unwind)
2782 return fi->base->this_args (fi, &fi->prologue_cache);
2783 return fi->base->this_args (fi, &fi->base_cache);
2784 }
2785
2786 /* Return true if the frame unwinder for frame FI is UNWINDER; false
2787 otherwise. */
2788
2789 bool
2790 frame_unwinder_is (frame_info *fi, const frame_unwind *unwinder)
2791 {
2792 if (fi->unwind == nullptr)
2793 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
2794
2795 return fi->unwind == unwinder;
2796 }
2797
2798 /* Level of the selected frame: 0 for innermost, 1 for its caller, ...
2799 or -1 for a NULL frame. */
2800
2801 int
2802 frame_relative_level (struct frame_info *fi)
2803 {
2804 if (fi == NULL)
2805 return -1;
2806 else
2807 return fi->level;
2808 }
2809
2810 enum frame_type
2811 get_frame_type (struct frame_info *frame)
2812 {
2813 if (frame->unwind == NULL)
2814 /* Initialize the frame's unwinder because that's what
2815 provides the frame's type. */
2816 frame_unwind_find_by_frame (frame, &frame->prologue_cache);
2817 return frame->unwind->type;
2818 }
2819
2820 struct program_space *
2821 get_frame_program_space (struct frame_info *frame)
2822 {
2823 return frame->pspace;
2824 }
2825
2826 struct program_space *
2827 frame_unwind_program_space (struct frame_info *this_frame)
2828 {
2829 gdb_assert (this_frame);
2830
2831 /* This is really a placeholder to keep the API consistent --- we
2832 assume for now that we don't have frame chains crossing
2833 spaces. */
2834 return this_frame->pspace;
2835 }
2836
2837 const address_space *
2838 get_frame_address_space (struct frame_info *frame)
2839 {
2840 return frame->aspace;
2841 }
2842
2843 /* Memory access methods. */
2844
2845 void
2846 get_frame_memory (struct frame_info *this_frame, CORE_ADDR addr,
2847 gdb::array_view<gdb_byte> buffer)
2848 {
2849 read_memory (addr, buffer.data (), buffer.size ());
2850 }
2851
2852 LONGEST
2853 get_frame_memory_signed (struct frame_info *this_frame, CORE_ADDR addr,
2854 int len)
2855 {
2856 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2857 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2858
2859 return read_memory_integer (addr, len, byte_order);
2860 }
2861
2862 ULONGEST
2863 get_frame_memory_unsigned (struct frame_info *this_frame, CORE_ADDR addr,
2864 int len)
2865 {
2866 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2867 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2868
2869 return read_memory_unsigned_integer (addr, len, byte_order);
2870 }
2871
2872 bool
2873 safe_frame_unwind_memory (struct frame_info *this_frame,
2874 CORE_ADDR addr, gdb::array_view<gdb_byte> buffer)
2875 {
2876 /* NOTE: target_read_memory returns zero on success! */
2877 return target_read_memory (addr, buffer.data (), buffer.size ()) == 0;
2878 }
2879
2880 /* Architecture methods. */
2881
2882 struct gdbarch *
2883 get_frame_arch (struct frame_info *this_frame)
2884 {
2885 return frame_unwind_arch (this_frame->next);
2886 }
2887
2888 struct gdbarch *
2889 frame_unwind_arch (struct frame_info *next_frame)
2890 {
2891 if (!next_frame->prev_arch.p)
2892 {
2893 struct gdbarch *arch;
2894
2895 if (next_frame->unwind == NULL)
2896 frame_unwind_find_by_frame (next_frame, &next_frame->prologue_cache);
2897
2898 if (next_frame->unwind->prev_arch != NULL)
2899 arch = next_frame->unwind->prev_arch (next_frame,
2900 &next_frame->prologue_cache);
2901 else
2902 arch = get_frame_arch (next_frame);
2903
2904 next_frame->prev_arch.arch = arch;
2905 next_frame->prev_arch.p = true;
2906 frame_debug_printf ("next_frame=%d -> %s",
2907 next_frame->level,
2908 gdbarch_bfd_arch_info (arch)->printable_name);
2909 }
2910
2911 return next_frame->prev_arch.arch;
2912 }
2913
2914 struct gdbarch *
2915 frame_unwind_caller_arch (struct frame_info *next_frame)
2916 {
2917 next_frame = skip_artificial_frames (next_frame);
2918
2919 /* We must have a non-artificial frame. The caller is supposed to check
2920 the result of frame_unwind_caller_id (), which returns NULL_FRAME_ID
2921 in this case. */
2922 gdb_assert (next_frame != NULL);
2923
2924 return frame_unwind_arch (next_frame);
2925 }
2926
2927 /* Gets the language of FRAME. */
2928
2929 enum language
2930 get_frame_language (struct frame_info *frame)
2931 {
2932 CORE_ADDR pc = 0;
2933 bool pc_p = false;
2934
2935 gdb_assert (frame!= NULL);
2936
2937 /* We determine the current frame language by looking up its
2938 associated symtab. To retrieve this symtab, we use the frame
2939 PC. However we cannot use the frame PC as is, because it
2940 usually points to the instruction following the "call", which
2941 is sometimes the first instruction of another function. So
2942 we rely on get_frame_address_in_block(), it provides us with
2943 a PC that is guaranteed to be inside the frame's code
2944 block. */
2945
2946 try
2947 {
2948 pc = get_frame_address_in_block (frame);
2949 pc_p = true;
2950 }
2951 catch (const gdb_exception_error &ex)
2952 {
2953 if (ex.error != NOT_AVAILABLE_ERROR)
2954 throw;
2955 }
2956
2957 if (pc_p)
2958 {
2959 struct compunit_symtab *cust = find_pc_compunit_symtab (pc);
2960
2961 if (cust != NULL)
2962 return compunit_language (cust);
2963 }
2964
2965 return language_unknown;
2966 }
2967
2968 /* Stack pointer methods. */
2969
2970 CORE_ADDR
2971 get_frame_sp (struct frame_info *this_frame)
2972 {
2973 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2974
2975 /* NOTE drow/2008-06-28: gdbarch_unwind_sp could be converted to
2976 operate on THIS_FRAME now. */
2977 return gdbarch_unwind_sp (gdbarch, this_frame->next);
2978 }
2979
2980 /* Return the reason why we can't unwind past FRAME. */
2981
2982 enum unwind_stop_reason
2983 get_frame_unwind_stop_reason (struct frame_info *frame)
2984 {
2985 /* Fill-in STOP_REASON. */
2986 get_prev_frame_always (frame);
2987 gdb_assert (frame->prev_p);
2988
2989 return frame->stop_reason;
2990 }
2991
2992 /* Return a string explaining REASON. */
2993
2994 const char *
2995 unwind_stop_reason_to_string (enum unwind_stop_reason reason)
2996 {
2997 switch (reason)
2998 {
2999 #define SET(name, description) \
3000 case name: return _(description);
3001 #include "unwind_stop_reasons.def"
3002 #undef SET
3003
3004 default:
3005 internal_error (__FILE__, __LINE__,
3006 "Invalid frame stop reason");
3007 }
3008 }
3009
3010 const char *
3011 frame_stop_reason_string (struct frame_info *fi)
3012 {
3013 gdb_assert (fi->prev_p);
3014 gdb_assert (fi->prev == NULL);
3015
3016 /* Return the specific string if we have one. */
3017 if (fi->stop_string != NULL)
3018 return fi->stop_string;
3019
3020 /* Return the generic string if we have nothing better. */
3021 return unwind_stop_reason_to_string (fi->stop_reason);
3022 }
3023
3024 /* Return the enum symbol name of REASON as a string, to use in debug
3025 output. */
3026
3027 static const char *
3028 frame_stop_reason_symbol_string (enum unwind_stop_reason reason)
3029 {
3030 switch (reason)
3031 {
3032 #define SET(name, description) \
3033 case name: return #name;
3034 #include "unwind_stop_reasons.def"
3035 #undef SET
3036
3037 default:
3038 internal_error (__FILE__, __LINE__,
3039 "Invalid frame stop reason");
3040 }
3041 }
3042
3043 /* Clean up after a failed (wrong unwinder) attempt to unwind past
3044 FRAME. */
3045
3046 void
3047 frame_cleanup_after_sniffer (struct frame_info *frame)
3048 {
3049 /* The sniffer should not allocate a prologue cache if it did not
3050 match this frame. */
3051 gdb_assert (frame->prologue_cache == NULL);
3052
3053 /* No sniffer should extend the frame chain; sniff based on what is
3054 already certain. */
3055 gdb_assert (!frame->prev_p);
3056
3057 /* The sniffer should not check the frame's ID; that's circular. */
3058 gdb_assert (frame->this_id.p != frame_id_status::COMPUTED);
3059
3060 /* Clear cached fields dependent on the unwinder.
3061
3062 The previous PC is independent of the unwinder, but the previous
3063 function is not (see get_frame_address_in_block). */
3064 frame->prev_func.status = CC_UNKNOWN;
3065 frame->prev_func.addr = 0;
3066
3067 /* Discard the unwinder last, so that we can easily find it if an assertion
3068 in this function triggers. */
3069 frame->unwind = NULL;
3070 }
3071
3072 /* Set FRAME's unwinder temporarily, so that we can call a sniffer.
3073 If sniffing fails, the caller should be sure to call
3074 frame_cleanup_after_sniffer. */
3075
3076 void
3077 frame_prepare_for_sniffer (struct frame_info *frame,
3078 const struct frame_unwind *unwind)
3079 {
3080 gdb_assert (frame->unwind == NULL);
3081 frame->unwind = unwind;
3082 }
3083
3084 static struct cmd_list_element *set_backtrace_cmdlist;
3085 static struct cmd_list_element *show_backtrace_cmdlist;
3086
3087 /* Definition of the "set backtrace" settings that are exposed as
3088 "backtrace" command options. */
3089
3090 using boolean_option_def
3091 = gdb::option::boolean_option_def<set_backtrace_options>;
3092
3093 const gdb::option::option_def set_backtrace_option_defs[] = {
3094
3095 boolean_option_def {
3096 "past-main",
3097 [] (set_backtrace_options *opt) { return &opt->backtrace_past_main; },
3098 show_backtrace_past_main, /* show_cmd_cb */
3099 N_("Set whether backtraces should continue past \"main\"."),
3100 N_("Show whether backtraces should continue past \"main\"."),
3101 N_("Normally the caller of \"main\" is not of interest, so GDB will terminate\n\
3102 the backtrace at \"main\". Set this if you need to see the rest\n\
3103 of the stack trace."),
3104 },
3105
3106 boolean_option_def {
3107 "past-entry",
3108 [] (set_backtrace_options *opt) { return &opt->backtrace_past_entry; },
3109 show_backtrace_past_entry, /* show_cmd_cb */
3110 N_("Set whether backtraces should continue past the entry point of a program."),
3111 N_("Show whether backtraces should continue past the entry point of a program."),
3112 N_("Normally there are no callers beyond the entry point of a program, so GDB\n\
3113 will terminate the backtrace there. Set this if you need to see\n\
3114 the rest of the stack trace."),
3115 },
3116 };
3117
3118 void _initialize_frame ();
3119 void
3120 _initialize_frame ()
3121 {
3122 obstack_init (&frame_cache_obstack);
3123
3124 frame_stash_create ();
3125
3126 gdb::observers::target_changed.attach (frame_observer_target_changed,
3127 "frame");
3128
3129 add_basic_prefix_cmd ("backtrace", class_maintenance, _("\
3130 Set backtrace specific variables.\n\
3131 Configure backtrace variables such as the backtrace limit"),
3132 &set_backtrace_cmdlist,
3133 0/*allow-unknown*/, &setlist);
3134 add_show_prefix_cmd ("backtrace", class_maintenance, _("\
3135 Show backtrace specific variables.\n\
3136 Show backtrace variables such as the backtrace limit."),
3137 &show_backtrace_cmdlist,
3138 0/*allow-unknown*/, &showlist);
3139
3140 add_setshow_uinteger_cmd ("limit", class_obscure,
3141 &user_set_backtrace_options.backtrace_limit, _("\
3142 Set an upper bound on the number of backtrace levels."), _("\
3143 Show the upper bound on the number of backtrace levels."), _("\
3144 No more than the specified number of frames can be displayed or examined.\n\
3145 Literal \"unlimited\" or zero means no limit."),
3146 NULL,
3147 show_backtrace_limit,
3148 &set_backtrace_cmdlist,
3149 &show_backtrace_cmdlist);
3150
3151 gdb::option::add_setshow_cmds_for_options
3152 (class_stack, &user_set_backtrace_options,
3153 set_backtrace_option_defs, &set_backtrace_cmdlist, &show_backtrace_cmdlist);
3154
3155 /* Debug this files internals. */
3156 add_setshow_boolean_cmd ("frame", class_maintenance, &frame_debug, _("\
3157 Set frame debugging."), _("\
3158 Show frame debugging."), _("\
3159 When non-zero, frame specific internal debugging is enabled."),
3160 NULL,
3161 show_frame_debug,
3162 &setdebuglist, &showdebuglist);
3163 }