Add attribute::as_unsigned method
[binutils-gdb.git] / gdb / frame.c
1 /* Cache and manage frames for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "target.h"
23 #include "value.h"
24 #include "inferior.h" /* for inferior_ptid */
25 #include "regcache.h"
26 #include "user-regs.h"
27 #include "gdb_obstack.h"
28 #include "dummy-frame.h"
29 #include "sentinel-frame.h"
30 #include "gdbcore.h"
31 #include "annotate.h"
32 #include "language.h"
33 #include "frame-unwind.h"
34 #include "frame-base.h"
35 #include "command.h"
36 #include "gdbcmd.h"
37 #include "observable.h"
38 #include "objfiles.h"
39 #include "gdbthread.h"
40 #include "block.h"
41 #include "inline-frame.h"
42 #include "tracepoint.h"
43 #include "hashtab.h"
44 #include "valprint.h"
45 #include "cli/cli-option.h"
46
47 /* The sentinel frame terminates the innermost end of the frame chain.
48 If unwound, it returns the information needed to construct an
49 innermost frame.
50
51 The current frame, which is the innermost frame, can be found at
52 sentinel_frame->prev. */
53
54 static struct frame_info *sentinel_frame;
55
56 /* Number of calls to reinit_frame_cache. */
57 static unsigned int frame_cache_generation = 0;
58
59 /* See frame.h. */
60
61 unsigned int
62 get_frame_cache_generation ()
63 {
64 return frame_cache_generation;
65 }
66
67 /* The values behind the global "set backtrace ..." settings. */
68 set_backtrace_options user_set_backtrace_options;
69
70 static struct frame_info *get_prev_frame_raw (struct frame_info *this_frame);
71 static const char *frame_stop_reason_symbol_string (enum unwind_stop_reason reason);
72
73 /* Status of some values cached in the frame_info object. */
74
75 enum cached_copy_status
76 {
77 /* Value is unknown. */
78 CC_UNKNOWN,
79
80 /* We have a value. */
81 CC_VALUE,
82
83 /* Value was not saved. */
84 CC_NOT_SAVED,
85
86 /* Value is unavailable. */
87 CC_UNAVAILABLE
88 };
89
90 enum class frame_id_status
91 {
92 /* Frame id is not computed. */
93 NOT_COMPUTED = 0,
94
95 /* Frame id is being computed (compute_frame_id is active). */
96 COMPUTING,
97
98 /* Frame id has been computed. */
99 COMPUTED,
100 };
101
102 /* We keep a cache of stack frames, each of which is a "struct
103 frame_info". The innermost one gets allocated (in
104 wait_for_inferior) each time the inferior stops; sentinel_frame
105 points to it. Additional frames get allocated (in get_prev_frame)
106 as needed, and are chained through the next and prev fields. Any
107 time that the frame cache becomes invalid (most notably when we
108 execute something, but also if we change how we interpret the
109 frames (e.g. "set heuristic-fence-post" in mips-tdep.c, or anything
110 which reads new symbols)), we should call reinit_frame_cache. */
111
112 struct frame_info
113 {
114 /* Level of this frame. The inner-most (youngest) frame is at level
115 0. As you move towards the outer-most (oldest) frame, the level
116 increases. This is a cached value. It could just as easily be
117 computed by counting back from the selected frame to the inner
118 most frame. */
119 /* NOTE: cagney/2002-04-05: Perhaps a level of ``-1'' should be
120 reserved to indicate a bogus frame - one that has been created
121 just to keep GDB happy (GDB always needs a frame). For the
122 moment leave this as speculation. */
123 int level;
124
125 /* The frame's program space. */
126 struct program_space *pspace;
127
128 /* The frame's address space. */
129 const address_space *aspace;
130
131 /* The frame's low-level unwinder and corresponding cache. The
132 low-level unwinder is responsible for unwinding register values
133 for the previous frame. The low-level unwind methods are
134 selected based on the presence, or otherwise, of register unwind
135 information such as CFI. */
136 void *prologue_cache;
137 const struct frame_unwind *unwind;
138
139 /* Cached copy of the previous frame's architecture. */
140 struct
141 {
142 bool p;
143 struct gdbarch *arch;
144 } prev_arch;
145
146 /* Cached copy of the previous frame's resume address. */
147 struct {
148 cached_copy_status status;
149 /* Did VALUE require unmasking when being read. */
150 bool masked;
151 CORE_ADDR value;
152 } prev_pc;
153
154 /* Cached copy of the previous frame's function address. */
155 struct
156 {
157 CORE_ADDR addr;
158 cached_copy_status status;
159 } prev_func;
160
161 /* This frame's ID. */
162 struct
163 {
164 frame_id_status p;
165 struct frame_id value;
166 } this_id;
167
168 /* The frame's high-level base methods, and corresponding cache.
169 The high level base methods are selected based on the frame's
170 debug info. */
171 const struct frame_base *base;
172 void *base_cache;
173
174 /* Pointers to the next (down, inner, younger) and previous (up,
175 outer, older) frame_info's in the frame cache. */
176 struct frame_info *next; /* down, inner, younger */
177 bool prev_p;
178 struct frame_info *prev; /* up, outer, older */
179
180 /* The reason why we could not set PREV, or UNWIND_NO_REASON if we
181 could. Only valid when PREV_P is set. */
182 enum unwind_stop_reason stop_reason;
183
184 /* A frame specific string describing the STOP_REASON in more detail.
185 Only valid when PREV_P is set, but even then may still be NULL. */
186 const char *stop_string;
187 };
188
189 /* See frame.h. */
190
191 void
192 set_frame_previous_pc_masked (struct frame_info *frame)
193 {
194 frame->prev_pc.masked = true;
195 }
196
197 /* See frame.h. */
198
199 bool
200 get_frame_pc_masked (const struct frame_info *frame)
201 {
202 gdb_assert (frame->next != nullptr);
203 gdb_assert (frame->next->prev_pc.status == CC_VALUE);
204
205 return frame->next->prev_pc.masked;
206 }
207
208 /* A frame stash used to speed up frame lookups. Create a hash table
209 to stash frames previously accessed from the frame cache for
210 quicker subsequent retrieval. The hash table is emptied whenever
211 the frame cache is invalidated. */
212
213 static htab_t frame_stash;
214
215 /* Internal function to calculate a hash from the frame_id addresses,
216 using as many valid addresses as possible. Frames below level 0
217 are not stored in the hash table. */
218
219 static hashval_t
220 frame_addr_hash (const void *ap)
221 {
222 const struct frame_info *frame = (const struct frame_info *) ap;
223 const struct frame_id f_id = frame->this_id.value;
224 hashval_t hash = 0;
225
226 gdb_assert (f_id.stack_status != FID_STACK_INVALID
227 || f_id.code_addr_p
228 || f_id.special_addr_p);
229
230 if (f_id.stack_status == FID_STACK_VALID)
231 hash = iterative_hash (&f_id.stack_addr,
232 sizeof (f_id.stack_addr), hash);
233 if (f_id.code_addr_p)
234 hash = iterative_hash (&f_id.code_addr,
235 sizeof (f_id.code_addr), hash);
236 if (f_id.special_addr_p)
237 hash = iterative_hash (&f_id.special_addr,
238 sizeof (f_id.special_addr), hash);
239
240 return hash;
241 }
242
243 /* Internal equality function for the hash table. This function
244 defers equality operations to frame_id_eq. */
245
246 static int
247 frame_addr_hash_eq (const void *a, const void *b)
248 {
249 const struct frame_info *f_entry = (const struct frame_info *) a;
250 const struct frame_info *f_element = (const struct frame_info *) b;
251
252 return frame_id_eq (f_entry->this_id.value,
253 f_element->this_id.value);
254 }
255
256 /* Internal function to create the frame_stash hash table. 100 seems
257 to be a good compromise to start the hash table at. */
258
259 static void
260 frame_stash_create (void)
261 {
262 frame_stash = htab_create (100,
263 frame_addr_hash,
264 frame_addr_hash_eq,
265 NULL);
266 }
267
268 /* Internal function to add a frame to the frame_stash hash table.
269 Returns false if a frame with the same ID was already stashed, true
270 otherwise. */
271
272 static bool
273 frame_stash_add (frame_info *frame)
274 {
275 /* Do not try to stash the sentinel frame. */
276 gdb_assert (frame->level >= 0);
277
278 frame_info **slot = (struct frame_info **) htab_find_slot (frame_stash,
279 frame, INSERT);
280
281 /* If we already have a frame in the stack with the same id, we
282 either have a stack cycle (corrupted stack?), or some bug
283 elsewhere in GDB. In any case, ignore the duplicate and return
284 an indication to the caller. */
285 if (*slot != nullptr)
286 return false;
287
288 *slot = frame;
289 return true;
290 }
291
292 /* Internal function to search the frame stash for an entry with the
293 given frame ID. If found, return that frame. Otherwise return
294 NULL. */
295
296 static struct frame_info *
297 frame_stash_find (struct frame_id id)
298 {
299 struct frame_info dummy;
300 struct frame_info *frame;
301
302 dummy.this_id.value = id;
303 frame = (struct frame_info *) htab_find (frame_stash, &dummy);
304 return frame;
305 }
306
307 /* Internal function to invalidate the frame stash by removing all
308 entries in it. This only occurs when the frame cache is
309 invalidated. */
310
311 static void
312 frame_stash_invalidate (void)
313 {
314 htab_empty (frame_stash);
315 }
316
317 /* See frame.h */
318 scoped_restore_selected_frame::scoped_restore_selected_frame ()
319 {
320 m_fid = get_frame_id (get_selected_frame (NULL));
321 }
322
323 /* See frame.h */
324 scoped_restore_selected_frame::~scoped_restore_selected_frame ()
325 {
326 frame_info *frame = frame_find_by_id (m_fid);
327 if (frame == NULL)
328 warning (_("Unable to restore previously selected frame."));
329 else
330 select_frame (frame);
331 }
332
333 /* Flag to control debugging. */
334
335 unsigned int frame_debug;
336 static void
337 show_frame_debug (struct ui_file *file, int from_tty,
338 struct cmd_list_element *c, const char *value)
339 {
340 fprintf_filtered (file, _("Frame debugging is %s.\n"), value);
341 }
342
343 /* Implementation of "show backtrace past-main". */
344
345 static void
346 show_backtrace_past_main (struct ui_file *file, int from_tty,
347 struct cmd_list_element *c, const char *value)
348 {
349 fprintf_filtered (file,
350 _("Whether backtraces should "
351 "continue past \"main\" is %s.\n"),
352 value);
353 }
354
355 /* Implementation of "show backtrace past-entry". */
356
357 static void
358 show_backtrace_past_entry (struct ui_file *file, int from_tty,
359 struct cmd_list_element *c, const char *value)
360 {
361 fprintf_filtered (file, _("Whether backtraces should continue past the "
362 "entry point of a program is %s.\n"),
363 value);
364 }
365
366 /* Implementation of "show backtrace limit". */
367
368 static void
369 show_backtrace_limit (struct ui_file *file, int from_tty,
370 struct cmd_list_element *c, const char *value)
371 {
372 fprintf_filtered (file,
373 _("An upper bound on the number "
374 "of backtrace levels is %s.\n"),
375 value);
376 }
377
378
379 static void
380 fprint_field (struct ui_file *file, const char *name, int p, CORE_ADDR addr)
381 {
382 if (p)
383 fprintf_unfiltered (file, "%s=%s", name, hex_string (addr));
384 else
385 fprintf_unfiltered (file, "!%s", name);
386 }
387
388 void
389 fprint_frame_id (struct ui_file *file, struct frame_id id)
390 {
391 fprintf_unfiltered (file, "{");
392
393 if (id.stack_status == FID_STACK_INVALID)
394 fprintf_unfiltered (file, "!stack");
395 else if (id.stack_status == FID_STACK_UNAVAILABLE)
396 fprintf_unfiltered (file, "stack=<unavailable>");
397 else if (id.stack_status == FID_STACK_SENTINEL)
398 fprintf_unfiltered (file, "stack=<sentinel>");
399 else if (id.stack_status == FID_STACK_OUTER)
400 fprintf_unfiltered (file, "stack=<outer>");
401 else
402 fprintf_unfiltered (file, "stack=%s", hex_string (id.stack_addr));
403
404 fprintf_unfiltered (file, ",");
405
406 fprint_field (file, "code", id.code_addr_p, id.code_addr);
407 fprintf_unfiltered (file, ",");
408
409 fprint_field (file, "special", id.special_addr_p, id.special_addr);
410
411 if (id.artificial_depth)
412 fprintf_unfiltered (file, ",artificial=%d", id.artificial_depth);
413
414 fprintf_unfiltered (file, "}");
415 }
416
417 static void
418 fprint_frame_type (struct ui_file *file, enum frame_type type)
419 {
420 switch (type)
421 {
422 case NORMAL_FRAME:
423 fprintf_unfiltered (file, "NORMAL_FRAME");
424 return;
425 case DUMMY_FRAME:
426 fprintf_unfiltered (file, "DUMMY_FRAME");
427 return;
428 case INLINE_FRAME:
429 fprintf_unfiltered (file, "INLINE_FRAME");
430 return;
431 case TAILCALL_FRAME:
432 fprintf_unfiltered (file, "TAILCALL_FRAME");
433 return;
434 case SIGTRAMP_FRAME:
435 fprintf_unfiltered (file, "SIGTRAMP_FRAME");
436 return;
437 case ARCH_FRAME:
438 fprintf_unfiltered (file, "ARCH_FRAME");
439 return;
440 case SENTINEL_FRAME:
441 fprintf_unfiltered (file, "SENTINEL_FRAME");
442 return;
443 default:
444 fprintf_unfiltered (file, "<unknown type>");
445 return;
446 };
447 }
448
449 static void
450 fprint_frame (struct ui_file *file, struct frame_info *fi)
451 {
452 if (fi == NULL)
453 {
454 fprintf_unfiltered (file, "<NULL frame>");
455 return;
456 }
457
458 fprintf_unfiltered (file, "{");
459 fprintf_unfiltered (file, "level=%d", fi->level);
460 fprintf_unfiltered (file, ",");
461
462 fprintf_unfiltered (file, "type=");
463 if (fi->unwind != NULL)
464 fprint_frame_type (file, fi->unwind->type);
465 else
466 fprintf_unfiltered (file, "<unknown>");
467 fprintf_unfiltered (file, ",");
468
469 fprintf_unfiltered (file, "unwind=");
470 if (fi->unwind != NULL)
471 gdb_print_host_address (fi->unwind, file);
472 else
473 fprintf_unfiltered (file, "<unknown>");
474 fprintf_unfiltered (file, ",");
475
476 fprintf_unfiltered (file, "pc=");
477 if (fi->next == NULL || fi->next->prev_pc.status == CC_UNKNOWN)
478 fprintf_unfiltered (file, "<unknown>");
479 else if (fi->next->prev_pc.status == CC_VALUE)
480 {
481 fprintf_unfiltered (file, "%s", hex_string (fi->next->prev_pc.value));
482 if (fi->next->prev_pc.masked)
483 fprintf_unfiltered (file, "[PAC]");
484 }
485 else if (fi->next->prev_pc.status == CC_NOT_SAVED)
486 val_print_not_saved (file);
487 else if (fi->next->prev_pc.status == CC_UNAVAILABLE)
488 val_print_unavailable (file);
489 fprintf_unfiltered (file, ",");
490
491 fprintf_unfiltered (file, "id=");
492 if (fi->this_id.p == frame_id_status::NOT_COMPUTED)
493 fprintf_unfiltered (file, "<not computed>");
494 else if (fi->this_id.p == frame_id_status::COMPUTING)
495 fprintf_unfiltered (file, "<computing>");
496 else
497 fprint_frame_id (file, fi->this_id.value);
498 fprintf_unfiltered (file, ",");
499
500 fprintf_unfiltered (file, "func=");
501 if (fi->next != NULL && fi->next->prev_func.status == CC_VALUE)
502 fprintf_unfiltered (file, "%s", hex_string (fi->next->prev_func.addr));
503 else
504 fprintf_unfiltered (file, "<unknown>");
505 fprintf_unfiltered (file, "}");
506 }
507
508 /* Given FRAME, return the enclosing frame as found in real frames read-in from
509 inferior memory. Skip any previous frames which were made up by GDB.
510 Return FRAME if FRAME is a non-artificial frame.
511 Return NULL if FRAME is the start of an artificial-only chain. */
512
513 static struct frame_info *
514 skip_artificial_frames (struct frame_info *frame)
515 {
516 /* Note we use get_prev_frame_always, and not get_prev_frame. The
517 latter will truncate the frame chain, leading to this function
518 unintentionally returning a null_frame_id (e.g., when the user
519 sets a backtrace limit).
520
521 Note that for record targets we may get a frame chain that consists
522 of artificial frames only. */
523 while (get_frame_type (frame) == INLINE_FRAME
524 || get_frame_type (frame) == TAILCALL_FRAME)
525 {
526 frame = get_prev_frame_always (frame);
527 if (frame == NULL)
528 break;
529 }
530
531 return frame;
532 }
533
534 struct frame_info *
535 skip_unwritable_frames (struct frame_info *frame)
536 {
537 while (gdbarch_code_of_frame_writable (get_frame_arch (frame), frame) == 0)
538 {
539 frame = get_prev_frame (frame);
540 if (frame == NULL)
541 break;
542 }
543
544 return frame;
545 }
546
547 /* See frame.h. */
548
549 struct frame_info *
550 skip_tailcall_frames (struct frame_info *frame)
551 {
552 while (get_frame_type (frame) == TAILCALL_FRAME)
553 {
554 /* Note that for record targets we may get a frame chain that consists of
555 tailcall frames only. */
556 frame = get_prev_frame (frame);
557 if (frame == NULL)
558 break;
559 }
560
561 return frame;
562 }
563
564 /* Compute the frame's uniq ID that can be used to, later, re-find the
565 frame. */
566
567 static void
568 compute_frame_id (struct frame_info *fi)
569 {
570 gdb_assert (fi->this_id.p == frame_id_status::NOT_COMPUTED);
571
572 unsigned int entry_generation = get_frame_cache_generation ();
573
574 try
575 {
576 /* Mark this frame's id as "being computed. */
577 fi->this_id.p = frame_id_status::COMPUTING;
578
579 if (frame_debug)
580 fprintf_unfiltered (gdb_stdlog, "{ compute_frame_id (fi=%d) ",
581 fi->level);
582
583 /* Find the unwinder. */
584 if (fi->unwind == NULL)
585 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
586
587 /* Find THIS frame's ID. */
588 /* Default to outermost if no ID is found. */
589 fi->this_id.value = outer_frame_id;
590 fi->unwind->this_id (fi, &fi->prologue_cache, &fi->this_id.value);
591 gdb_assert (frame_id_p (fi->this_id.value));
592
593 /* Mark this frame's id as "computed". */
594 fi->this_id.p = frame_id_status::COMPUTED;
595
596 if (frame_debug)
597 {
598 fprintf_unfiltered (gdb_stdlog, "-> ");
599 fprint_frame_id (gdb_stdlog, fi->this_id.value);
600 fprintf_unfiltered (gdb_stdlog, " }\n");
601 }
602 }
603 catch (const gdb_exception &ex)
604 {
605 /* On error, revert the frame id status to not computed. If the frame
606 cache generation changed, the frame object doesn't exist anymore, so
607 don't touch it. */
608 if (get_frame_cache_generation () == entry_generation)
609 fi->this_id.p = frame_id_status::NOT_COMPUTED;
610
611 throw;
612 }
613 }
614
615 /* Return a frame uniq ID that can be used to, later, re-find the
616 frame. */
617
618 struct frame_id
619 get_frame_id (struct frame_info *fi)
620 {
621 if (fi == NULL)
622 return null_frame_id;
623
624 /* It's always invalid to try to get a frame's id while it is being
625 computed. */
626 gdb_assert (fi->this_id.p != frame_id_status::COMPUTING);
627
628 if (fi->this_id.p == frame_id_status::NOT_COMPUTED)
629 {
630 /* If we haven't computed the frame id yet, then it must be that
631 this is the current frame. Compute it now, and stash the
632 result. The IDs of other frames are computed as soon as
633 they're created, in order to detect cycles. See
634 get_prev_frame_if_no_cycle. */
635 gdb_assert (fi->level == 0);
636
637 /* Compute. */
638 compute_frame_id (fi);
639
640 /* Since this is the first frame in the chain, this should
641 always succeed. */
642 bool stashed = frame_stash_add (fi);
643 gdb_assert (stashed);
644 }
645
646 return fi->this_id.value;
647 }
648
649 struct frame_id
650 get_stack_frame_id (struct frame_info *next_frame)
651 {
652 return get_frame_id (skip_artificial_frames (next_frame));
653 }
654
655 struct frame_id
656 frame_unwind_caller_id (struct frame_info *next_frame)
657 {
658 struct frame_info *this_frame;
659
660 /* Use get_prev_frame_always, and not get_prev_frame. The latter
661 will truncate the frame chain, leading to this function
662 unintentionally returning a null_frame_id (e.g., when a caller
663 requests the frame ID of "main()"s caller. */
664
665 next_frame = skip_artificial_frames (next_frame);
666 if (next_frame == NULL)
667 return null_frame_id;
668
669 this_frame = get_prev_frame_always (next_frame);
670 if (this_frame)
671 return get_frame_id (skip_artificial_frames (this_frame));
672 else
673 return null_frame_id;
674 }
675
676 const struct frame_id null_frame_id = { 0 }; /* All zeros. */
677 const struct frame_id sentinel_frame_id = { 0, 0, 0, FID_STACK_SENTINEL, 0, 1, 0 };
678 const struct frame_id outer_frame_id = { 0, 0, 0, FID_STACK_OUTER, 0, 1, 0 };
679
680 struct frame_id
681 frame_id_build_special (CORE_ADDR stack_addr, CORE_ADDR code_addr,
682 CORE_ADDR special_addr)
683 {
684 struct frame_id id = null_frame_id;
685
686 id.stack_addr = stack_addr;
687 id.stack_status = FID_STACK_VALID;
688 id.code_addr = code_addr;
689 id.code_addr_p = true;
690 id.special_addr = special_addr;
691 id.special_addr_p = true;
692 return id;
693 }
694
695 /* See frame.h. */
696
697 struct frame_id
698 frame_id_build_unavailable_stack (CORE_ADDR code_addr)
699 {
700 struct frame_id id = null_frame_id;
701
702 id.stack_status = FID_STACK_UNAVAILABLE;
703 id.code_addr = code_addr;
704 id.code_addr_p = true;
705 return id;
706 }
707
708 /* See frame.h. */
709
710 struct frame_id
711 frame_id_build_unavailable_stack_special (CORE_ADDR code_addr,
712 CORE_ADDR special_addr)
713 {
714 struct frame_id id = null_frame_id;
715
716 id.stack_status = FID_STACK_UNAVAILABLE;
717 id.code_addr = code_addr;
718 id.code_addr_p = true;
719 id.special_addr = special_addr;
720 id.special_addr_p = true;
721 return id;
722 }
723
724 struct frame_id
725 frame_id_build (CORE_ADDR stack_addr, CORE_ADDR code_addr)
726 {
727 struct frame_id id = null_frame_id;
728
729 id.stack_addr = stack_addr;
730 id.stack_status = FID_STACK_VALID;
731 id.code_addr = code_addr;
732 id.code_addr_p = true;
733 return id;
734 }
735
736 struct frame_id
737 frame_id_build_wild (CORE_ADDR stack_addr)
738 {
739 struct frame_id id = null_frame_id;
740
741 id.stack_addr = stack_addr;
742 id.stack_status = FID_STACK_VALID;
743 return id;
744 }
745
746 bool
747 frame_id_p (frame_id l)
748 {
749 /* The frame is valid iff it has a valid stack address. */
750 bool p = l.stack_status != FID_STACK_INVALID;
751
752 if (frame_debug)
753 {
754 fprintf_unfiltered (gdb_stdlog, "{ frame_id_p (l=");
755 fprint_frame_id (gdb_stdlog, l);
756 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", p);
757 }
758
759 return p;
760 }
761
762 bool
763 frame_id_artificial_p (frame_id l)
764 {
765 if (!frame_id_p (l))
766 return false;
767
768 return l.artificial_depth != 0;
769 }
770
771 bool
772 frame_id_eq (frame_id l, frame_id r)
773 {
774 bool eq;
775
776 if (l.stack_status == FID_STACK_INVALID
777 || r.stack_status == FID_STACK_INVALID)
778 /* Like a NaN, if either ID is invalid, the result is false.
779 Note that a frame ID is invalid iff it is the null frame ID. */
780 eq = false;
781 else if (l.stack_status != r.stack_status || l.stack_addr != r.stack_addr)
782 /* If .stack addresses are different, the frames are different. */
783 eq = false;
784 else if (l.code_addr_p && r.code_addr_p && l.code_addr != r.code_addr)
785 /* An invalid code addr is a wild card. If .code addresses are
786 different, the frames are different. */
787 eq = false;
788 else if (l.special_addr_p && r.special_addr_p
789 && l.special_addr != r.special_addr)
790 /* An invalid special addr is a wild card (or unused). Otherwise
791 if special addresses are different, the frames are different. */
792 eq = false;
793 else if (l.artificial_depth != r.artificial_depth)
794 /* If artificial depths are different, the frames must be different. */
795 eq = false;
796 else
797 /* Frames are equal. */
798 eq = true;
799
800 if (frame_debug)
801 {
802 fprintf_unfiltered (gdb_stdlog, "{ frame_id_eq (l=");
803 fprint_frame_id (gdb_stdlog, l);
804 fprintf_unfiltered (gdb_stdlog, ",r=");
805 fprint_frame_id (gdb_stdlog, r);
806 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", eq);
807 }
808
809 return eq;
810 }
811
812 /* Safety net to check whether frame ID L should be inner to
813 frame ID R, according to their stack addresses.
814
815 This method cannot be used to compare arbitrary frames, as the
816 ranges of valid stack addresses may be discontiguous (e.g. due
817 to sigaltstack).
818
819 However, it can be used as safety net to discover invalid frame
820 IDs in certain circumstances. Assuming that NEXT is the immediate
821 inner frame to THIS and that NEXT and THIS are both NORMAL frames:
822
823 * The stack address of NEXT must be inner-than-or-equal to the stack
824 address of THIS.
825
826 Therefore, if frame_id_inner (THIS, NEXT) holds, some unwind
827 error has occurred.
828
829 * If NEXT and THIS have different stack addresses, no other frame
830 in the frame chain may have a stack address in between.
831
832 Therefore, if frame_id_inner (TEST, THIS) holds, but
833 frame_id_inner (TEST, NEXT) does not hold, TEST cannot refer
834 to a valid frame in the frame chain.
835
836 The sanity checks above cannot be performed when a SIGTRAMP frame
837 is involved, because signal handlers might be executed on a different
838 stack than the stack used by the routine that caused the signal
839 to be raised. This can happen for instance when a thread exceeds
840 its maximum stack size. In this case, certain compilers implement
841 a stack overflow strategy that cause the handler to be run on a
842 different stack. */
843
844 static bool
845 frame_id_inner (struct gdbarch *gdbarch, struct frame_id l, struct frame_id r)
846 {
847 bool inner;
848
849 if (l.stack_status != FID_STACK_VALID || r.stack_status != FID_STACK_VALID)
850 /* Like NaN, any operation involving an invalid ID always fails.
851 Likewise if either ID has an unavailable stack address. */
852 inner = false;
853 else if (l.artificial_depth > r.artificial_depth
854 && l.stack_addr == r.stack_addr
855 && l.code_addr_p == r.code_addr_p
856 && l.special_addr_p == r.special_addr_p
857 && l.special_addr == r.special_addr)
858 {
859 /* Same function, different inlined functions. */
860 const struct block *lb, *rb;
861
862 gdb_assert (l.code_addr_p && r.code_addr_p);
863
864 lb = block_for_pc (l.code_addr);
865 rb = block_for_pc (r.code_addr);
866
867 if (lb == NULL || rb == NULL)
868 /* Something's gone wrong. */
869 inner = false;
870 else
871 /* This will return true if LB and RB are the same block, or
872 if the block with the smaller depth lexically encloses the
873 block with the greater depth. */
874 inner = contained_in (lb, rb);
875 }
876 else
877 /* Only return non-zero when strictly inner than. Note that, per
878 comment in "frame.h", there is some fuzz here. Frameless
879 functions are not strictly inner than (same .stack but
880 different .code and/or .special address). */
881 inner = gdbarch_inner_than (gdbarch, l.stack_addr, r.stack_addr);
882
883 if (frame_debug)
884 {
885 fprintf_unfiltered (gdb_stdlog, "{ frame_id_inner (l=");
886 fprint_frame_id (gdb_stdlog, l);
887 fprintf_unfiltered (gdb_stdlog, ",r=");
888 fprint_frame_id (gdb_stdlog, r);
889 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", inner);
890 }
891
892 return inner;
893 }
894
895 struct frame_info *
896 frame_find_by_id (struct frame_id id)
897 {
898 struct frame_info *frame, *prev_frame;
899
900 /* ZERO denotes the null frame, let the caller decide what to do
901 about it. Should it instead return get_current_frame()? */
902 if (!frame_id_p (id))
903 return NULL;
904
905 /* Check for the sentinel frame. */
906 if (frame_id_eq (id, sentinel_frame_id))
907 return sentinel_frame;
908
909 /* Try using the frame stash first. Finding it there removes the need
910 to perform the search by looping over all frames, which can be very
911 CPU-intensive if the number of frames is very high (the loop is O(n)
912 and get_prev_frame performs a series of checks that are relatively
913 expensive). This optimization is particularly useful when this function
914 is called from another function (such as value_fetch_lazy, case
915 VALUE_LVAL (val) == lval_register) which already loops over all frames,
916 making the overall behavior O(n^2). */
917 frame = frame_stash_find (id);
918 if (frame)
919 return frame;
920
921 for (frame = get_current_frame (); ; frame = prev_frame)
922 {
923 struct frame_id self = get_frame_id (frame);
924
925 if (frame_id_eq (id, self))
926 /* An exact match. */
927 return frame;
928
929 prev_frame = get_prev_frame (frame);
930 if (!prev_frame)
931 return NULL;
932
933 /* As a safety net to avoid unnecessary backtracing while trying
934 to find an invalid ID, we check for a common situation where
935 we can detect from comparing stack addresses that no other
936 frame in the current frame chain can have this ID. See the
937 comment at frame_id_inner for details. */
938 if (get_frame_type (frame) == NORMAL_FRAME
939 && !frame_id_inner (get_frame_arch (frame), id, self)
940 && frame_id_inner (get_frame_arch (prev_frame), id,
941 get_frame_id (prev_frame)))
942 return NULL;
943 }
944 return NULL;
945 }
946
947 static CORE_ADDR
948 frame_unwind_pc (struct frame_info *this_frame)
949 {
950 if (this_frame->prev_pc.status == CC_UNKNOWN)
951 {
952 struct gdbarch *prev_gdbarch;
953 CORE_ADDR pc = 0;
954 bool pc_p = false;
955
956 /* The right way. The `pure' way. The one true way. This
957 method depends solely on the register-unwind code to
958 determine the value of registers in THIS frame, and hence
959 the value of this frame's PC (resume address). A typical
960 implementation is no more than:
961
962 frame_unwind_register (this_frame, ISA_PC_REGNUM, buf);
963 return extract_unsigned_integer (buf, size of ISA_PC_REGNUM);
964
965 Note: this method is very heavily dependent on a correct
966 register-unwind implementation, it pays to fix that
967 method first; this method is frame type agnostic, since
968 it only deals with register values, it works with any
969 frame. This is all in stark contrast to the old
970 FRAME_SAVED_PC which would try to directly handle all the
971 different ways that a PC could be unwound. */
972 prev_gdbarch = frame_unwind_arch (this_frame);
973
974 try
975 {
976 pc = gdbarch_unwind_pc (prev_gdbarch, this_frame);
977 pc_p = true;
978 }
979 catch (const gdb_exception_error &ex)
980 {
981 if (ex.error == NOT_AVAILABLE_ERROR)
982 {
983 this_frame->prev_pc.status = CC_UNAVAILABLE;
984
985 if (frame_debug)
986 fprintf_unfiltered (gdb_stdlog,
987 "{ frame_unwind_pc (this_frame=%d)"
988 " -> <unavailable> }\n",
989 this_frame->level);
990 }
991 else if (ex.error == OPTIMIZED_OUT_ERROR)
992 {
993 this_frame->prev_pc.status = CC_NOT_SAVED;
994
995 if (frame_debug)
996 fprintf_unfiltered (gdb_stdlog,
997 "{ frame_unwind_pc (this_frame=%d)"
998 " -> <not saved> }\n",
999 this_frame->level);
1000 }
1001 else
1002 throw;
1003 }
1004
1005 if (pc_p)
1006 {
1007 this_frame->prev_pc.value = pc;
1008 this_frame->prev_pc.status = CC_VALUE;
1009 if (frame_debug)
1010 fprintf_unfiltered (gdb_stdlog,
1011 "{ frame_unwind_pc (this_frame=%d) "
1012 "-> %s }\n",
1013 this_frame->level,
1014 hex_string (this_frame->prev_pc.value));
1015 }
1016 }
1017
1018 if (this_frame->prev_pc.status == CC_VALUE)
1019 return this_frame->prev_pc.value;
1020 else if (this_frame->prev_pc.status == CC_UNAVAILABLE)
1021 throw_error (NOT_AVAILABLE_ERROR, _("PC not available"));
1022 else if (this_frame->prev_pc.status == CC_NOT_SAVED)
1023 throw_error (OPTIMIZED_OUT_ERROR, _("PC not saved"));
1024 else
1025 internal_error (__FILE__, __LINE__,
1026 "unexpected prev_pc status: %d",
1027 (int) this_frame->prev_pc.status);
1028 }
1029
1030 CORE_ADDR
1031 frame_unwind_caller_pc (struct frame_info *this_frame)
1032 {
1033 this_frame = skip_artificial_frames (this_frame);
1034
1035 /* We must have a non-artificial frame. The caller is supposed to check
1036 the result of frame_unwind_caller_id (), which returns NULL_FRAME_ID
1037 in this case. */
1038 gdb_assert (this_frame != NULL);
1039
1040 return frame_unwind_pc (this_frame);
1041 }
1042
1043 bool
1044 get_frame_func_if_available (frame_info *this_frame, CORE_ADDR *pc)
1045 {
1046 struct frame_info *next_frame = this_frame->next;
1047
1048 if (next_frame->prev_func.status == CC_UNKNOWN)
1049 {
1050 CORE_ADDR addr_in_block;
1051
1052 /* Make certain that this, and not the adjacent, function is
1053 found. */
1054 if (!get_frame_address_in_block_if_available (this_frame, &addr_in_block))
1055 {
1056 next_frame->prev_func.status = CC_UNAVAILABLE;
1057 if (frame_debug)
1058 fprintf_unfiltered (gdb_stdlog,
1059 "{ get_frame_func (this_frame=%d)"
1060 " -> unavailable }\n",
1061 this_frame->level);
1062 }
1063 else
1064 {
1065 next_frame->prev_func.status = CC_VALUE;
1066 next_frame->prev_func.addr = get_pc_function_start (addr_in_block);
1067 if (frame_debug)
1068 fprintf_unfiltered (gdb_stdlog,
1069 "{ get_frame_func (this_frame=%d) -> %s }\n",
1070 this_frame->level,
1071 hex_string (next_frame->prev_func.addr));
1072 }
1073 }
1074
1075 if (next_frame->prev_func.status == CC_UNAVAILABLE)
1076 {
1077 *pc = -1;
1078 return false;
1079 }
1080 else
1081 {
1082 gdb_assert (next_frame->prev_func.status == CC_VALUE);
1083
1084 *pc = next_frame->prev_func.addr;
1085 return true;
1086 }
1087 }
1088
1089 CORE_ADDR
1090 get_frame_func (struct frame_info *this_frame)
1091 {
1092 CORE_ADDR pc;
1093
1094 if (!get_frame_func_if_available (this_frame, &pc))
1095 throw_error (NOT_AVAILABLE_ERROR, _("PC not available"));
1096
1097 return pc;
1098 }
1099
1100 std::unique_ptr<readonly_detached_regcache>
1101 frame_save_as_regcache (struct frame_info *this_frame)
1102 {
1103 auto cooked_read = [this_frame] (int regnum, gdb_byte *buf)
1104 {
1105 if (!deprecated_frame_register_read (this_frame, regnum, buf))
1106 return REG_UNAVAILABLE;
1107 else
1108 return REG_VALID;
1109 };
1110
1111 std::unique_ptr<readonly_detached_regcache> regcache
1112 (new readonly_detached_regcache (get_frame_arch (this_frame), cooked_read));
1113
1114 return regcache;
1115 }
1116
1117 void
1118 frame_pop (struct frame_info *this_frame)
1119 {
1120 struct frame_info *prev_frame;
1121
1122 if (get_frame_type (this_frame) == DUMMY_FRAME)
1123 {
1124 /* Popping a dummy frame involves restoring more than just registers.
1125 dummy_frame_pop does all the work. */
1126 dummy_frame_pop (get_frame_id (this_frame), inferior_thread ());
1127 return;
1128 }
1129
1130 /* Ensure that we have a frame to pop to. */
1131 prev_frame = get_prev_frame_always (this_frame);
1132
1133 if (!prev_frame)
1134 error (_("Cannot pop the initial frame."));
1135
1136 /* Ignore TAILCALL_FRAME type frames, they were executed already before
1137 entering THISFRAME. */
1138 prev_frame = skip_tailcall_frames (prev_frame);
1139
1140 if (prev_frame == NULL)
1141 error (_("Cannot find the caller frame."));
1142
1143 /* Make a copy of all the register values unwound from this frame.
1144 Save them in a scratch buffer so that there isn't a race between
1145 trying to extract the old values from the current regcache while
1146 at the same time writing new values into that same cache. */
1147 std::unique_ptr<readonly_detached_regcache> scratch
1148 = frame_save_as_regcache (prev_frame);
1149
1150 /* FIXME: cagney/2003-03-16: It should be possible to tell the
1151 target's register cache that it is about to be hit with a burst
1152 register transfer and that the sequence of register writes should
1153 be batched. The pair target_prepare_to_store() and
1154 target_store_registers() kind of suggest this functionality.
1155 Unfortunately, they don't implement it. Their lack of a formal
1156 definition can lead to targets writing back bogus values
1157 (arguably a bug in the target code mind). */
1158 /* Now copy those saved registers into the current regcache. */
1159 get_current_regcache ()->restore (scratch.get ());
1160
1161 /* We've made right mess of GDB's local state, just discard
1162 everything. */
1163 reinit_frame_cache ();
1164 }
1165
1166 void
1167 frame_register_unwind (frame_info *next_frame, int regnum,
1168 int *optimizedp, int *unavailablep,
1169 enum lval_type *lvalp, CORE_ADDR *addrp,
1170 int *realnump, gdb_byte *bufferp)
1171 {
1172 struct value *value;
1173
1174 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
1175 that the value proper does not need to be fetched. */
1176 gdb_assert (optimizedp != NULL);
1177 gdb_assert (lvalp != NULL);
1178 gdb_assert (addrp != NULL);
1179 gdb_assert (realnump != NULL);
1180 /* gdb_assert (bufferp != NULL); */
1181
1182 value = frame_unwind_register_value (next_frame, regnum);
1183
1184 gdb_assert (value != NULL);
1185
1186 *optimizedp = value_optimized_out (value);
1187 *unavailablep = !value_entirely_available (value);
1188 *lvalp = VALUE_LVAL (value);
1189 *addrp = value_address (value);
1190 if (*lvalp == lval_register)
1191 *realnump = VALUE_REGNUM (value);
1192 else
1193 *realnump = -1;
1194
1195 if (bufferp)
1196 {
1197 if (!*optimizedp && !*unavailablep)
1198 memcpy (bufferp, value_contents_all (value),
1199 TYPE_LENGTH (value_type (value)));
1200 else
1201 memset (bufferp, 0, TYPE_LENGTH (value_type (value)));
1202 }
1203
1204 /* Dispose of the new value. This prevents watchpoints from
1205 trying to watch the saved frame pointer. */
1206 release_value (value);
1207 }
1208
1209 void
1210 frame_register (struct frame_info *frame, int regnum,
1211 int *optimizedp, int *unavailablep, enum lval_type *lvalp,
1212 CORE_ADDR *addrp, int *realnump, gdb_byte *bufferp)
1213 {
1214 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
1215 that the value proper does not need to be fetched. */
1216 gdb_assert (optimizedp != NULL);
1217 gdb_assert (lvalp != NULL);
1218 gdb_assert (addrp != NULL);
1219 gdb_assert (realnump != NULL);
1220 /* gdb_assert (bufferp != NULL); */
1221
1222 /* Obtain the register value by unwinding the register from the next
1223 (more inner frame). */
1224 gdb_assert (frame != NULL && frame->next != NULL);
1225 frame_register_unwind (frame->next, regnum, optimizedp, unavailablep,
1226 lvalp, addrp, realnump, bufferp);
1227 }
1228
1229 void
1230 frame_unwind_register (frame_info *next_frame, int regnum, gdb_byte *buf)
1231 {
1232 int optimized;
1233 int unavailable;
1234 CORE_ADDR addr;
1235 int realnum;
1236 enum lval_type lval;
1237
1238 frame_register_unwind (next_frame, regnum, &optimized, &unavailable,
1239 &lval, &addr, &realnum, buf);
1240
1241 if (optimized)
1242 throw_error (OPTIMIZED_OUT_ERROR,
1243 _("Register %d was not saved"), regnum);
1244 if (unavailable)
1245 throw_error (NOT_AVAILABLE_ERROR,
1246 _("Register %d is not available"), regnum);
1247 }
1248
1249 void
1250 get_frame_register (struct frame_info *frame,
1251 int regnum, gdb_byte *buf)
1252 {
1253 frame_unwind_register (frame->next, regnum, buf);
1254 }
1255
1256 struct value *
1257 frame_unwind_register_value (frame_info *next_frame, int regnum)
1258 {
1259 struct gdbarch *gdbarch;
1260 struct value *value;
1261
1262 gdb_assert (next_frame != NULL);
1263 gdbarch = frame_unwind_arch (next_frame);
1264
1265 if (frame_debug)
1266 {
1267 fprintf_unfiltered (gdb_stdlog,
1268 "{ frame_unwind_register_value "
1269 "(frame=%d,regnum=%d(%s),...) ",
1270 next_frame->level, regnum,
1271 user_reg_map_regnum_to_name (gdbarch, regnum));
1272 }
1273
1274 /* Find the unwinder. */
1275 if (next_frame->unwind == NULL)
1276 frame_unwind_find_by_frame (next_frame, &next_frame->prologue_cache);
1277
1278 /* Ask this frame to unwind its register. */
1279 value = next_frame->unwind->prev_register (next_frame,
1280 &next_frame->prologue_cache,
1281 regnum);
1282
1283 if (frame_debug)
1284 {
1285 fprintf_unfiltered (gdb_stdlog, "->");
1286 if (value_optimized_out (value))
1287 {
1288 fprintf_unfiltered (gdb_stdlog, " ");
1289 val_print_not_saved (gdb_stdlog);
1290 }
1291 else
1292 {
1293 if (VALUE_LVAL (value) == lval_register)
1294 fprintf_unfiltered (gdb_stdlog, " register=%d",
1295 VALUE_REGNUM (value));
1296 else if (VALUE_LVAL (value) == lval_memory)
1297 fprintf_unfiltered (gdb_stdlog, " address=%s",
1298 paddress (gdbarch,
1299 value_address (value)));
1300 else
1301 fprintf_unfiltered (gdb_stdlog, " computed");
1302
1303 if (value_lazy (value))
1304 fprintf_unfiltered (gdb_stdlog, " lazy");
1305 else
1306 {
1307 int i;
1308 const gdb_byte *buf = value_contents (value);
1309
1310 fprintf_unfiltered (gdb_stdlog, " bytes=");
1311 fprintf_unfiltered (gdb_stdlog, "[");
1312 for (i = 0; i < register_size (gdbarch, regnum); i++)
1313 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
1314 fprintf_unfiltered (gdb_stdlog, "]");
1315 }
1316 }
1317
1318 fprintf_unfiltered (gdb_stdlog, " }\n");
1319 }
1320
1321 return value;
1322 }
1323
1324 struct value *
1325 get_frame_register_value (struct frame_info *frame, int regnum)
1326 {
1327 return frame_unwind_register_value (frame->next, regnum);
1328 }
1329
1330 LONGEST
1331 frame_unwind_register_signed (frame_info *next_frame, int regnum)
1332 {
1333 struct gdbarch *gdbarch = frame_unwind_arch (next_frame);
1334 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1335 int size = register_size (gdbarch, regnum);
1336 struct value *value = frame_unwind_register_value (next_frame, regnum);
1337
1338 gdb_assert (value != NULL);
1339
1340 if (value_optimized_out (value))
1341 {
1342 throw_error (OPTIMIZED_OUT_ERROR,
1343 _("Register %d was not saved"), regnum);
1344 }
1345 if (!value_entirely_available (value))
1346 {
1347 throw_error (NOT_AVAILABLE_ERROR,
1348 _("Register %d is not available"), regnum);
1349 }
1350
1351 LONGEST r = extract_signed_integer (value_contents_all (value), size,
1352 byte_order);
1353
1354 release_value (value);
1355 return r;
1356 }
1357
1358 LONGEST
1359 get_frame_register_signed (struct frame_info *frame, int regnum)
1360 {
1361 return frame_unwind_register_signed (frame->next, regnum);
1362 }
1363
1364 ULONGEST
1365 frame_unwind_register_unsigned (frame_info *next_frame, int regnum)
1366 {
1367 struct gdbarch *gdbarch = frame_unwind_arch (next_frame);
1368 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1369 int size = register_size (gdbarch, regnum);
1370 struct value *value = frame_unwind_register_value (next_frame, regnum);
1371
1372 gdb_assert (value != NULL);
1373
1374 if (value_optimized_out (value))
1375 {
1376 throw_error (OPTIMIZED_OUT_ERROR,
1377 _("Register %d was not saved"), regnum);
1378 }
1379 if (!value_entirely_available (value))
1380 {
1381 throw_error (NOT_AVAILABLE_ERROR,
1382 _("Register %d is not available"), regnum);
1383 }
1384
1385 ULONGEST r = extract_unsigned_integer (value_contents_all (value), size,
1386 byte_order);
1387
1388 release_value (value);
1389 return r;
1390 }
1391
1392 ULONGEST
1393 get_frame_register_unsigned (struct frame_info *frame, int regnum)
1394 {
1395 return frame_unwind_register_unsigned (frame->next, regnum);
1396 }
1397
1398 bool
1399 read_frame_register_unsigned (frame_info *frame, int regnum,
1400 ULONGEST *val)
1401 {
1402 struct value *regval = get_frame_register_value (frame, regnum);
1403
1404 if (!value_optimized_out (regval)
1405 && value_entirely_available (regval))
1406 {
1407 struct gdbarch *gdbarch = get_frame_arch (frame);
1408 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1409 int size = register_size (gdbarch, VALUE_REGNUM (regval));
1410
1411 *val = extract_unsigned_integer (value_contents (regval), size, byte_order);
1412 return true;
1413 }
1414
1415 return false;
1416 }
1417
1418 void
1419 put_frame_register (struct frame_info *frame, int regnum,
1420 const gdb_byte *buf)
1421 {
1422 struct gdbarch *gdbarch = get_frame_arch (frame);
1423 int realnum;
1424 int optim;
1425 int unavail;
1426 enum lval_type lval;
1427 CORE_ADDR addr;
1428
1429 frame_register (frame, regnum, &optim, &unavail,
1430 &lval, &addr, &realnum, NULL);
1431 if (optim)
1432 error (_("Attempt to assign to a register that was not saved."));
1433 switch (lval)
1434 {
1435 case lval_memory:
1436 {
1437 write_memory (addr, buf, register_size (gdbarch, regnum));
1438 break;
1439 }
1440 case lval_register:
1441 get_current_regcache ()->cooked_write (realnum, buf);
1442 break;
1443 default:
1444 error (_("Attempt to assign to an unmodifiable value."));
1445 }
1446 }
1447
1448 /* This function is deprecated. Use get_frame_register_value instead,
1449 which provides more accurate information.
1450
1451 Find and return the value of REGNUM for the specified stack frame.
1452 The number of bytes copied is REGISTER_SIZE (REGNUM).
1453
1454 Returns 0 if the register value could not be found. */
1455
1456 bool
1457 deprecated_frame_register_read (frame_info *frame, int regnum,
1458 gdb_byte *myaddr)
1459 {
1460 int optimized;
1461 int unavailable;
1462 enum lval_type lval;
1463 CORE_ADDR addr;
1464 int realnum;
1465
1466 frame_register (frame, regnum, &optimized, &unavailable,
1467 &lval, &addr, &realnum, myaddr);
1468
1469 return !optimized && !unavailable;
1470 }
1471
1472 bool
1473 get_frame_register_bytes (frame_info *frame, int regnum,
1474 CORE_ADDR offset, int len, gdb_byte *myaddr,
1475 int *optimizedp, int *unavailablep)
1476 {
1477 struct gdbarch *gdbarch = get_frame_arch (frame);
1478 int i;
1479 int maxsize;
1480 int numregs;
1481
1482 /* Skip registers wholly inside of OFFSET. */
1483 while (offset >= register_size (gdbarch, regnum))
1484 {
1485 offset -= register_size (gdbarch, regnum);
1486 regnum++;
1487 }
1488
1489 /* Ensure that we will not read beyond the end of the register file.
1490 This can only ever happen if the debug information is bad. */
1491 maxsize = -offset;
1492 numregs = gdbarch_num_cooked_regs (gdbarch);
1493 for (i = regnum; i < numregs; i++)
1494 {
1495 int thissize = register_size (gdbarch, i);
1496
1497 if (thissize == 0)
1498 break; /* This register is not available on this architecture. */
1499 maxsize += thissize;
1500 }
1501 if (len > maxsize)
1502 error (_("Bad debug information detected: "
1503 "Attempt to read %d bytes from registers."), len);
1504
1505 /* Copy the data. */
1506 while (len > 0)
1507 {
1508 int curr_len = register_size (gdbarch, regnum) - offset;
1509
1510 if (curr_len > len)
1511 curr_len = len;
1512
1513 if (curr_len == register_size (gdbarch, regnum))
1514 {
1515 enum lval_type lval;
1516 CORE_ADDR addr;
1517 int realnum;
1518
1519 frame_register (frame, regnum, optimizedp, unavailablep,
1520 &lval, &addr, &realnum, myaddr);
1521 if (*optimizedp || *unavailablep)
1522 return false;
1523 }
1524 else
1525 {
1526 struct value *value = frame_unwind_register_value (frame->next,
1527 regnum);
1528 gdb_assert (value != NULL);
1529 *optimizedp = value_optimized_out (value);
1530 *unavailablep = !value_entirely_available (value);
1531
1532 if (*optimizedp || *unavailablep)
1533 {
1534 release_value (value);
1535 return false;
1536 }
1537
1538 memcpy (myaddr, value_contents_all (value) + offset, curr_len);
1539 release_value (value);
1540 }
1541
1542 myaddr += curr_len;
1543 len -= curr_len;
1544 offset = 0;
1545 regnum++;
1546 }
1547
1548 *optimizedp = 0;
1549 *unavailablep = 0;
1550
1551 return true;
1552 }
1553
1554 void
1555 put_frame_register_bytes (struct frame_info *frame, int regnum,
1556 CORE_ADDR offset, int len, const gdb_byte *myaddr)
1557 {
1558 struct gdbarch *gdbarch = get_frame_arch (frame);
1559
1560 /* Skip registers wholly inside of OFFSET. */
1561 while (offset >= register_size (gdbarch, regnum))
1562 {
1563 offset -= register_size (gdbarch, regnum);
1564 regnum++;
1565 }
1566
1567 /* Copy the data. */
1568 while (len > 0)
1569 {
1570 int curr_len = register_size (gdbarch, regnum) - offset;
1571
1572 if (curr_len > len)
1573 curr_len = len;
1574
1575 if (curr_len == register_size (gdbarch, regnum))
1576 {
1577 put_frame_register (frame, regnum, myaddr);
1578 }
1579 else
1580 {
1581 struct value *value = frame_unwind_register_value (frame->next,
1582 regnum);
1583 gdb_assert (value != NULL);
1584
1585 memcpy ((char *) value_contents_writeable (value) + offset, myaddr,
1586 curr_len);
1587 put_frame_register (frame, regnum, value_contents_raw (value));
1588 release_value (value);
1589 }
1590
1591 myaddr += curr_len;
1592 len -= curr_len;
1593 offset = 0;
1594 regnum++;
1595 }
1596 }
1597
1598 /* Create a sentinel frame. */
1599
1600 static struct frame_info *
1601 create_sentinel_frame (struct program_space *pspace, struct regcache *regcache)
1602 {
1603 struct frame_info *frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
1604
1605 frame->level = -1;
1606 frame->pspace = pspace;
1607 frame->aspace = regcache->aspace ();
1608 /* Explicitly initialize the sentinel frame's cache. Provide it
1609 with the underlying regcache. In the future additional
1610 information, such as the frame's thread will be added. */
1611 frame->prologue_cache = sentinel_frame_cache (regcache);
1612 /* For the moment there is only one sentinel frame implementation. */
1613 frame->unwind = &sentinel_frame_unwind;
1614 /* Link this frame back to itself. The frame is self referential
1615 (the unwound PC is the same as the pc), so make it so. */
1616 frame->next = frame;
1617 /* The sentinel frame has a special ID. */
1618 frame->this_id.p = frame_id_status::COMPUTED;
1619 frame->this_id.value = sentinel_frame_id;
1620 if (frame_debug)
1621 {
1622 fprintf_unfiltered (gdb_stdlog, "{ create_sentinel_frame (...) -> ");
1623 fprint_frame (gdb_stdlog, frame);
1624 fprintf_unfiltered (gdb_stdlog, " }\n");
1625 }
1626 return frame;
1627 }
1628
1629 /* Cache for frame addresses already read by gdb. Valid only while
1630 inferior is stopped. Control variables for the frame cache should
1631 be local to this module. */
1632
1633 static struct obstack frame_cache_obstack;
1634
1635 void *
1636 frame_obstack_zalloc (unsigned long size)
1637 {
1638 void *data = obstack_alloc (&frame_cache_obstack, size);
1639
1640 memset (data, 0, size);
1641 return data;
1642 }
1643
1644 static struct frame_info *get_prev_frame_always_1 (struct frame_info *this_frame);
1645
1646 struct frame_info *
1647 get_current_frame (void)
1648 {
1649 struct frame_info *current_frame;
1650
1651 /* First check, and report, the lack of registers. Having GDB
1652 report "No stack!" or "No memory" when the target doesn't even
1653 have registers is very confusing. Besides, "printcmd.exp"
1654 explicitly checks that ``print $pc'' with no registers prints "No
1655 registers". */
1656 if (!target_has_registers ())
1657 error (_("No registers."));
1658 if (!target_has_stack ())
1659 error (_("No stack."));
1660 if (!target_has_memory ())
1661 error (_("No memory."));
1662 /* Traceframes are effectively a substitute for the live inferior. */
1663 if (get_traceframe_number () < 0)
1664 validate_registers_access ();
1665
1666 if (sentinel_frame == NULL)
1667 sentinel_frame =
1668 create_sentinel_frame (current_program_space, get_current_regcache ());
1669
1670 /* Set the current frame before computing the frame id, to avoid
1671 recursion inside compute_frame_id, in case the frame's
1672 unwinder decides to do a symbol lookup (which depends on the
1673 selected frame's block).
1674
1675 This call must always succeed. In particular, nothing inside
1676 get_prev_frame_always_1 should try to unwind from the
1677 sentinel frame, because that could fail/throw, and we always
1678 want to leave with the current frame created and linked in --
1679 we should never end up with the sentinel frame as outermost
1680 frame. */
1681 current_frame = get_prev_frame_always_1 (sentinel_frame);
1682 gdb_assert (current_frame != NULL);
1683
1684 return current_frame;
1685 }
1686
1687 /* The "selected" stack frame is used by default for local and arg
1688 access. May be zero, for no selected frame. */
1689
1690 static struct frame_info *selected_frame;
1691
1692 bool
1693 has_stack_frames ()
1694 {
1695 if (!target_has_registers () || !target_has_stack ()
1696 || !target_has_memory ())
1697 return false;
1698
1699 /* Traceframes are effectively a substitute for the live inferior. */
1700 if (get_traceframe_number () < 0)
1701 {
1702 /* No current inferior, no frame. */
1703 if (inferior_ptid == null_ptid)
1704 return false;
1705
1706 thread_info *tp = inferior_thread ();
1707 /* Don't try to read from a dead thread. */
1708 if (tp->state == THREAD_EXITED)
1709 return false;
1710
1711 /* ... or from a spinning thread. */
1712 if (tp->executing)
1713 return false;
1714 }
1715
1716 return true;
1717 }
1718
1719 /* Return the selected frame. Always non-NULL (unless there isn't an
1720 inferior sufficient for creating a frame) in which case an error is
1721 thrown. */
1722
1723 struct frame_info *
1724 get_selected_frame (const char *message)
1725 {
1726 if (selected_frame == NULL)
1727 {
1728 if (message != NULL && !has_stack_frames ())
1729 error (("%s"), message);
1730 /* Hey! Don't trust this. It should really be re-finding the
1731 last selected frame of the currently selected thread. This,
1732 though, is better than nothing. */
1733 select_frame (get_current_frame ());
1734 }
1735 /* There is always a frame. */
1736 gdb_assert (selected_frame != NULL);
1737 return selected_frame;
1738 }
1739
1740 /* If there is a selected frame, return it. Otherwise, return NULL. */
1741
1742 struct frame_info *
1743 get_selected_frame_if_set (void)
1744 {
1745 return selected_frame;
1746 }
1747
1748 /* This is a variant of get_selected_frame() which can be called when
1749 the inferior does not have a frame; in that case it will return
1750 NULL instead of calling error(). */
1751
1752 struct frame_info *
1753 deprecated_safe_get_selected_frame (void)
1754 {
1755 if (!has_stack_frames ())
1756 return NULL;
1757 return get_selected_frame (NULL);
1758 }
1759
1760 /* Select frame FI (or NULL - to invalidate the current frame). */
1761
1762 void
1763 select_frame (struct frame_info *fi)
1764 {
1765 selected_frame = fi;
1766 /* NOTE: cagney/2002-05-04: FI can be NULL. This occurs when the
1767 frame is being invalidated. */
1768
1769 /* FIXME: kseitz/2002-08-28: It would be nice to call
1770 selected_frame_level_changed_event() right here, but due to limitations
1771 in the current interfaces, we would end up flooding UIs with events
1772 because select_frame() is used extensively internally.
1773
1774 Once we have frame-parameterized frame (and frame-related) commands,
1775 the event notification can be moved here, since this function will only
1776 be called when the user's selected frame is being changed. */
1777
1778 /* Ensure that symbols for this frame are read in. Also, determine the
1779 source language of this frame, and switch to it if desired. */
1780 if (fi)
1781 {
1782 CORE_ADDR pc;
1783
1784 /* We retrieve the frame's symtab by using the frame PC.
1785 However we cannot use the frame PC as-is, because it usually
1786 points to the instruction following the "call", which is
1787 sometimes the first instruction of another function. So we
1788 rely on get_frame_address_in_block() which provides us with a
1789 PC which is guaranteed to be inside the frame's code
1790 block. */
1791 if (get_frame_address_in_block_if_available (fi, &pc))
1792 {
1793 struct compunit_symtab *cust = find_pc_compunit_symtab (pc);
1794
1795 if (cust != NULL
1796 && compunit_language (cust) != current_language->la_language
1797 && compunit_language (cust) != language_unknown
1798 && language_mode == language_mode_auto)
1799 set_language (compunit_language (cust));
1800 }
1801 }
1802 }
1803
1804 /* Create an arbitrary (i.e. address specified by user) or innermost frame.
1805 Always returns a non-NULL value. */
1806
1807 struct frame_info *
1808 create_new_frame (CORE_ADDR addr, CORE_ADDR pc)
1809 {
1810 struct frame_info *fi;
1811
1812 if (frame_debug)
1813 {
1814 fprintf_unfiltered (gdb_stdlog,
1815 "{ create_new_frame (addr=%s, pc=%s) ",
1816 hex_string (addr), hex_string (pc));
1817 }
1818
1819 fi = FRAME_OBSTACK_ZALLOC (struct frame_info);
1820
1821 fi->next = create_sentinel_frame (current_program_space,
1822 get_current_regcache ());
1823
1824 /* Set/update this frame's cached PC value, found in the next frame.
1825 Do this before looking for this frame's unwinder. A sniffer is
1826 very likely to read this, and the corresponding unwinder is
1827 entitled to rely that the PC doesn't magically change. */
1828 fi->next->prev_pc.value = pc;
1829 fi->next->prev_pc.status = CC_VALUE;
1830
1831 /* We currently assume that frame chain's can't cross spaces. */
1832 fi->pspace = fi->next->pspace;
1833 fi->aspace = fi->next->aspace;
1834
1835 /* Select/initialize both the unwind function and the frame's type
1836 based on the PC. */
1837 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
1838
1839 fi->this_id.p = frame_id_status::COMPUTED;
1840 fi->this_id.value = frame_id_build (addr, pc);
1841
1842 if (frame_debug)
1843 {
1844 fprintf_unfiltered (gdb_stdlog, "-> ");
1845 fprint_frame (gdb_stdlog, fi);
1846 fprintf_unfiltered (gdb_stdlog, " }\n");
1847 }
1848
1849 return fi;
1850 }
1851
1852 /* Return the frame that THIS_FRAME calls (NULL if THIS_FRAME is the
1853 innermost frame). Be careful to not fall off the bottom of the
1854 frame chain and onto the sentinel frame. */
1855
1856 struct frame_info *
1857 get_next_frame (struct frame_info *this_frame)
1858 {
1859 if (this_frame->level > 0)
1860 return this_frame->next;
1861 else
1862 return NULL;
1863 }
1864
1865 /* Return the frame that THIS_FRAME calls. If THIS_FRAME is the
1866 innermost (i.e. current) frame, return the sentinel frame. Thus,
1867 unlike get_next_frame(), NULL will never be returned. */
1868
1869 struct frame_info *
1870 get_next_frame_sentinel_okay (struct frame_info *this_frame)
1871 {
1872 gdb_assert (this_frame != NULL);
1873
1874 /* Note that, due to the manner in which the sentinel frame is
1875 constructed, this_frame->next still works even when this_frame
1876 is the sentinel frame. But we disallow it here anyway because
1877 calling get_next_frame_sentinel_okay() on the sentinel frame
1878 is likely a coding error. */
1879 gdb_assert (this_frame != sentinel_frame);
1880
1881 return this_frame->next;
1882 }
1883
1884 /* Observer for the target_changed event. */
1885
1886 static void
1887 frame_observer_target_changed (struct target_ops *target)
1888 {
1889 reinit_frame_cache ();
1890 }
1891
1892 /* Flush the entire frame cache. */
1893
1894 void
1895 reinit_frame_cache (void)
1896 {
1897 struct frame_info *fi;
1898
1899 ++frame_cache_generation;
1900
1901 /* Tear down all frame caches. */
1902 for (fi = sentinel_frame; fi != NULL; fi = fi->prev)
1903 {
1904 if (fi->prologue_cache && fi->unwind->dealloc_cache)
1905 fi->unwind->dealloc_cache (fi, fi->prologue_cache);
1906 if (fi->base_cache && fi->base->unwind->dealloc_cache)
1907 fi->base->unwind->dealloc_cache (fi, fi->base_cache);
1908 }
1909
1910 /* Since we can't really be sure what the first object allocated was. */
1911 obstack_free (&frame_cache_obstack, 0);
1912 obstack_init (&frame_cache_obstack);
1913
1914 if (sentinel_frame != NULL)
1915 annotate_frames_invalid ();
1916
1917 sentinel_frame = NULL; /* Invalidate cache */
1918 select_frame (NULL);
1919 frame_stash_invalidate ();
1920 if (frame_debug)
1921 fprintf_unfiltered (gdb_stdlog, "{ reinit_frame_cache () }\n");
1922 }
1923
1924 /* Find where a register is saved (in memory or another register).
1925 The result of frame_register_unwind is just where it is saved
1926 relative to this particular frame. */
1927
1928 static void
1929 frame_register_unwind_location (struct frame_info *this_frame, int regnum,
1930 int *optimizedp, enum lval_type *lvalp,
1931 CORE_ADDR *addrp, int *realnump)
1932 {
1933 gdb_assert (this_frame == NULL || this_frame->level >= 0);
1934
1935 while (this_frame != NULL)
1936 {
1937 int unavailable;
1938
1939 frame_register_unwind (this_frame, regnum, optimizedp, &unavailable,
1940 lvalp, addrp, realnump, NULL);
1941
1942 if (*optimizedp)
1943 break;
1944
1945 if (*lvalp != lval_register)
1946 break;
1947
1948 regnum = *realnump;
1949 this_frame = get_next_frame (this_frame);
1950 }
1951 }
1952
1953 /* Get the previous raw frame, and check that it is not identical to
1954 same other frame frame already in the chain. If it is, there is
1955 most likely a stack cycle, so we discard it, and mark THIS_FRAME as
1956 outermost, with UNWIND_SAME_ID stop reason. Unlike the other
1957 validity tests, that compare THIS_FRAME and the next frame, we do
1958 this right after creating the previous frame, to avoid ever ending
1959 up with two frames with the same id in the frame chain. */
1960
1961 static struct frame_info *
1962 get_prev_frame_if_no_cycle (struct frame_info *this_frame)
1963 {
1964 struct frame_info *prev_frame;
1965
1966 prev_frame = get_prev_frame_raw (this_frame);
1967
1968 /* Don't compute the frame id of the current frame yet. Unwinding
1969 the sentinel frame can fail (e.g., if the thread is gone and we
1970 can't thus read its registers). If we let the cycle detection
1971 code below try to compute a frame ID, then an error thrown from
1972 within the frame ID computation would result in the sentinel
1973 frame as outermost frame, which is bogus. Instead, we'll compute
1974 the current frame's ID lazily in get_frame_id. Note that there's
1975 no point in doing cycle detection when there's only one frame, so
1976 nothing is lost here. */
1977 if (prev_frame->level == 0)
1978 return prev_frame;
1979
1980 unsigned int entry_generation = get_frame_cache_generation ();
1981
1982 try
1983 {
1984 compute_frame_id (prev_frame);
1985 if (!frame_stash_add (prev_frame))
1986 {
1987 /* Another frame with the same id was already in the stash. We just
1988 detected a cycle. */
1989 if (frame_debug)
1990 {
1991 fprintf_unfiltered (gdb_stdlog, "-> ");
1992 fprint_frame (gdb_stdlog, NULL);
1993 fprintf_unfiltered (gdb_stdlog, " // this frame has same ID }\n");
1994 }
1995 this_frame->stop_reason = UNWIND_SAME_ID;
1996 /* Unlink. */
1997 prev_frame->next = NULL;
1998 this_frame->prev = NULL;
1999 prev_frame = NULL;
2000 }
2001 }
2002 catch (const gdb_exception &ex)
2003 {
2004 if (get_frame_cache_generation () == entry_generation)
2005 {
2006 prev_frame->next = NULL;
2007 this_frame->prev = NULL;
2008 }
2009
2010 throw;
2011 }
2012
2013 return prev_frame;
2014 }
2015
2016 /* Helper function for get_prev_frame_always, this is called inside a
2017 TRY_CATCH block. Return the frame that called THIS_FRAME or NULL if
2018 there is no such frame. This may throw an exception. */
2019
2020 static struct frame_info *
2021 get_prev_frame_always_1 (struct frame_info *this_frame)
2022 {
2023 struct gdbarch *gdbarch;
2024
2025 gdb_assert (this_frame != NULL);
2026 gdbarch = get_frame_arch (this_frame);
2027
2028 if (frame_debug)
2029 {
2030 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame_always (this_frame=");
2031 if (this_frame != NULL)
2032 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
2033 else
2034 fprintf_unfiltered (gdb_stdlog, "<NULL>");
2035 fprintf_unfiltered (gdb_stdlog, ") ");
2036 }
2037
2038 /* Only try to do the unwind once. */
2039 if (this_frame->prev_p)
2040 {
2041 if (frame_debug)
2042 {
2043 fprintf_unfiltered (gdb_stdlog, "-> ");
2044 fprint_frame (gdb_stdlog, this_frame->prev);
2045 fprintf_unfiltered (gdb_stdlog, " // cached \n");
2046 }
2047 return this_frame->prev;
2048 }
2049
2050 /* If the frame unwinder hasn't been selected yet, we must do so
2051 before setting prev_p; otherwise the check for misbehaved
2052 sniffers will think that this frame's sniffer tried to unwind
2053 further (see frame_cleanup_after_sniffer). */
2054 if (this_frame->unwind == NULL)
2055 frame_unwind_find_by_frame (this_frame, &this_frame->prologue_cache);
2056
2057 this_frame->prev_p = true;
2058 this_frame->stop_reason = UNWIND_NO_REASON;
2059
2060 /* If we are unwinding from an inline frame, all of the below tests
2061 were already performed when we unwound from the next non-inline
2062 frame. We must skip them, since we can not get THIS_FRAME's ID
2063 until we have unwound all the way down to the previous non-inline
2064 frame. */
2065 if (get_frame_type (this_frame) == INLINE_FRAME)
2066 return get_prev_frame_if_no_cycle (this_frame);
2067
2068 /* Check that this frame is unwindable. If it isn't, don't try to
2069 unwind to the prev frame. */
2070 this_frame->stop_reason
2071 = this_frame->unwind->stop_reason (this_frame,
2072 &this_frame->prologue_cache);
2073
2074 if (this_frame->stop_reason != UNWIND_NO_REASON)
2075 {
2076 if (frame_debug)
2077 {
2078 enum unwind_stop_reason reason = this_frame->stop_reason;
2079
2080 fprintf_unfiltered (gdb_stdlog, "-> ");
2081 fprint_frame (gdb_stdlog, NULL);
2082 fprintf_unfiltered (gdb_stdlog, " // %s }\n",
2083 frame_stop_reason_symbol_string (reason));
2084 }
2085 return NULL;
2086 }
2087
2088 /* Check that this frame's ID isn't inner to (younger, below, next)
2089 the next frame. This happens when a frame unwind goes backwards.
2090 This check is valid only if this frame and the next frame are NORMAL.
2091 See the comment at frame_id_inner for details. */
2092 if (get_frame_type (this_frame) == NORMAL_FRAME
2093 && this_frame->next->unwind->type == NORMAL_FRAME
2094 && frame_id_inner (get_frame_arch (this_frame->next),
2095 get_frame_id (this_frame),
2096 get_frame_id (this_frame->next)))
2097 {
2098 CORE_ADDR this_pc_in_block;
2099 struct minimal_symbol *morestack_msym;
2100 const char *morestack_name = NULL;
2101
2102 /* gcc -fsplit-stack __morestack can continue the stack anywhere. */
2103 this_pc_in_block = get_frame_address_in_block (this_frame);
2104 morestack_msym = lookup_minimal_symbol_by_pc (this_pc_in_block).minsym;
2105 if (morestack_msym)
2106 morestack_name = morestack_msym->linkage_name ();
2107 if (!morestack_name || strcmp (morestack_name, "__morestack") != 0)
2108 {
2109 if (frame_debug)
2110 {
2111 fprintf_unfiltered (gdb_stdlog, "-> ");
2112 fprint_frame (gdb_stdlog, NULL);
2113 fprintf_unfiltered (gdb_stdlog,
2114 " // this frame ID is inner }\n");
2115 }
2116 this_frame->stop_reason = UNWIND_INNER_ID;
2117 return NULL;
2118 }
2119 }
2120
2121 /* Check that this and the next frame do not unwind the PC register
2122 to the same memory location. If they do, then even though they
2123 have different frame IDs, the new frame will be bogus; two
2124 functions can't share a register save slot for the PC. This can
2125 happen when the prologue analyzer finds a stack adjustment, but
2126 no PC save.
2127
2128 This check does assume that the "PC register" is roughly a
2129 traditional PC, even if the gdbarch_unwind_pc method adjusts
2130 it (we do not rely on the value, only on the unwound PC being
2131 dependent on this value). A potential improvement would be
2132 to have the frame prev_pc method and the gdbarch unwind_pc
2133 method set the same lval and location information as
2134 frame_register_unwind. */
2135 if (this_frame->level > 0
2136 && gdbarch_pc_regnum (gdbarch) >= 0
2137 && get_frame_type (this_frame) == NORMAL_FRAME
2138 && (get_frame_type (this_frame->next) == NORMAL_FRAME
2139 || get_frame_type (this_frame->next) == INLINE_FRAME))
2140 {
2141 int optimized, realnum, nrealnum;
2142 enum lval_type lval, nlval;
2143 CORE_ADDR addr, naddr;
2144
2145 frame_register_unwind_location (this_frame,
2146 gdbarch_pc_regnum (gdbarch),
2147 &optimized, &lval, &addr, &realnum);
2148 frame_register_unwind_location (get_next_frame (this_frame),
2149 gdbarch_pc_regnum (gdbarch),
2150 &optimized, &nlval, &naddr, &nrealnum);
2151
2152 if ((lval == lval_memory && lval == nlval && addr == naddr)
2153 || (lval == lval_register && lval == nlval && realnum == nrealnum))
2154 {
2155 if (frame_debug)
2156 {
2157 fprintf_unfiltered (gdb_stdlog, "-> ");
2158 fprint_frame (gdb_stdlog, NULL);
2159 fprintf_unfiltered (gdb_stdlog, " // no saved PC }\n");
2160 }
2161
2162 this_frame->stop_reason = UNWIND_NO_SAVED_PC;
2163 this_frame->prev = NULL;
2164 return NULL;
2165 }
2166 }
2167
2168 return get_prev_frame_if_no_cycle (this_frame);
2169 }
2170
2171 /* Return a "struct frame_info" corresponding to the frame that called
2172 THIS_FRAME. Returns NULL if there is no such frame.
2173
2174 Unlike get_prev_frame, this function always tries to unwind the
2175 frame. */
2176
2177 struct frame_info *
2178 get_prev_frame_always (struct frame_info *this_frame)
2179 {
2180 struct frame_info *prev_frame = NULL;
2181
2182 try
2183 {
2184 prev_frame = get_prev_frame_always_1 (this_frame);
2185 }
2186 catch (const gdb_exception_error &ex)
2187 {
2188 if (ex.error == MEMORY_ERROR)
2189 {
2190 this_frame->stop_reason = UNWIND_MEMORY_ERROR;
2191 if (ex.message != NULL)
2192 {
2193 char *stop_string;
2194 size_t size;
2195
2196 /* The error needs to live as long as the frame does.
2197 Allocate using stack local STOP_STRING then assign the
2198 pointer to the frame, this allows the STOP_STRING on the
2199 frame to be of type 'const char *'. */
2200 size = ex.message->size () + 1;
2201 stop_string = (char *) frame_obstack_zalloc (size);
2202 memcpy (stop_string, ex.what (), size);
2203 this_frame->stop_string = stop_string;
2204 }
2205 prev_frame = NULL;
2206 }
2207 else
2208 throw;
2209 }
2210
2211 return prev_frame;
2212 }
2213
2214 /* Construct a new "struct frame_info" and link it previous to
2215 this_frame. */
2216
2217 static struct frame_info *
2218 get_prev_frame_raw (struct frame_info *this_frame)
2219 {
2220 struct frame_info *prev_frame;
2221
2222 /* Allocate the new frame but do not wire it in to the frame chain.
2223 Some (bad) code in INIT_FRAME_EXTRA_INFO tries to look along
2224 frame->next to pull some fancy tricks (of course such code is, by
2225 definition, recursive). Try to prevent it.
2226
2227 There is no reason to worry about memory leaks, should the
2228 remainder of the function fail. The allocated memory will be
2229 quickly reclaimed when the frame cache is flushed, and the `we've
2230 been here before' check above will stop repeated memory
2231 allocation calls. */
2232 prev_frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
2233 prev_frame->level = this_frame->level + 1;
2234
2235 /* For now, assume we don't have frame chains crossing address
2236 spaces. */
2237 prev_frame->pspace = this_frame->pspace;
2238 prev_frame->aspace = this_frame->aspace;
2239
2240 /* Don't yet compute ->unwind (and hence ->type). It is computed
2241 on-demand in get_frame_type, frame_register_unwind, and
2242 get_frame_id. */
2243
2244 /* Don't yet compute the frame's ID. It is computed on-demand by
2245 get_frame_id(). */
2246
2247 /* The unwound frame ID is validate at the start of this function,
2248 as part of the logic to decide if that frame should be further
2249 unwound, and not here while the prev frame is being created.
2250 Doing this makes it possible for the user to examine a frame that
2251 has an invalid frame ID.
2252
2253 Some very old VAX code noted: [...] For the sake of argument,
2254 suppose that the stack is somewhat trashed (which is one reason
2255 that "info frame" exists). So, return 0 (indicating we don't
2256 know the address of the arglist) if we don't know what frame this
2257 frame calls. */
2258
2259 /* Link it in. */
2260 this_frame->prev = prev_frame;
2261 prev_frame->next = this_frame;
2262
2263 if (frame_debug)
2264 {
2265 fprintf_unfiltered (gdb_stdlog, "-> ");
2266 fprint_frame (gdb_stdlog, prev_frame);
2267 fprintf_unfiltered (gdb_stdlog, " }\n");
2268 }
2269
2270 return prev_frame;
2271 }
2272
2273 /* Debug routine to print a NULL frame being returned. */
2274
2275 static void
2276 frame_debug_got_null_frame (struct frame_info *this_frame,
2277 const char *reason)
2278 {
2279 if (frame_debug)
2280 {
2281 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame (this_frame=");
2282 if (this_frame != NULL)
2283 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
2284 else
2285 fprintf_unfiltered (gdb_stdlog, "<NULL>");
2286 fprintf_unfiltered (gdb_stdlog, ") -> // %s}\n", reason);
2287 }
2288 }
2289
2290 /* Is this (non-sentinel) frame in the "main"() function? */
2291
2292 static bool
2293 inside_main_func (frame_info *this_frame)
2294 {
2295 if (symfile_objfile == nullptr)
2296 return false;
2297
2298 bound_minimal_symbol msymbol
2299 = lookup_minimal_symbol (main_name (), NULL, symfile_objfile);
2300 if (msymbol.minsym == nullptr)
2301 return false;
2302
2303 /* Make certain that the code, and not descriptor, address is
2304 returned. */
2305 CORE_ADDR maddr
2306 = gdbarch_convert_from_func_ptr_addr (get_frame_arch (this_frame),
2307 BMSYMBOL_VALUE_ADDRESS (msymbol),
2308 current_top_target ());
2309
2310 return maddr == get_frame_func (this_frame);
2311 }
2312
2313 /* Test whether THIS_FRAME is inside the process entry point function. */
2314
2315 static bool
2316 inside_entry_func (frame_info *this_frame)
2317 {
2318 CORE_ADDR entry_point;
2319
2320 if (!entry_point_address_query (&entry_point))
2321 return false;
2322
2323 return get_frame_func (this_frame) == entry_point;
2324 }
2325
2326 /* Return a structure containing various interesting information about
2327 the frame that called THIS_FRAME. Returns NULL if there is entier
2328 no such frame or the frame fails any of a set of target-independent
2329 condition that should terminate the frame chain (e.g., as unwinding
2330 past main()).
2331
2332 This function should not contain target-dependent tests, such as
2333 checking whether the program-counter is zero. */
2334
2335 struct frame_info *
2336 get_prev_frame (struct frame_info *this_frame)
2337 {
2338 CORE_ADDR frame_pc;
2339 int frame_pc_p;
2340
2341 /* There is always a frame. If this assertion fails, suspect that
2342 something should be calling get_selected_frame() or
2343 get_current_frame(). */
2344 gdb_assert (this_frame != NULL);
2345
2346 /* If this_frame is the current frame, then compute and stash
2347 its frame id prior to fetching and computing the frame id of the
2348 previous frame. Otherwise, the cycle detection code in
2349 get_prev_frame_if_no_cycle() will not work correctly. When
2350 get_frame_id() is called later on, an assertion error will
2351 be triggered in the event of a cycle between the current
2352 frame and its previous frame. */
2353 if (this_frame->level == 0)
2354 get_frame_id (this_frame);
2355
2356 frame_pc_p = get_frame_pc_if_available (this_frame, &frame_pc);
2357
2358 /* tausq/2004-12-07: Dummy frames are skipped because it doesn't make much
2359 sense to stop unwinding at a dummy frame. One place where a dummy
2360 frame may have an address "inside_main_func" is on HPUX. On HPUX, the
2361 pcsqh register (space register for the instruction at the head of the
2362 instruction queue) cannot be written directly; the only way to set it
2363 is to branch to code that is in the target space. In order to implement
2364 frame dummies on HPUX, the called function is made to jump back to where
2365 the inferior was when the user function was called. If gdb was inside
2366 the main function when we created the dummy frame, the dummy frame will
2367 point inside the main function. */
2368 if (this_frame->level >= 0
2369 && get_frame_type (this_frame) == NORMAL_FRAME
2370 && !user_set_backtrace_options.backtrace_past_main
2371 && frame_pc_p
2372 && inside_main_func (this_frame))
2373 /* Don't unwind past main(). Note, this is done _before_ the
2374 frame has been marked as previously unwound. That way if the
2375 user later decides to enable unwinds past main(), that will
2376 automatically happen. */
2377 {
2378 frame_debug_got_null_frame (this_frame, "inside main func");
2379 return NULL;
2380 }
2381
2382 /* If the user's backtrace limit has been exceeded, stop. We must
2383 add two to the current level; one of those accounts for backtrace_limit
2384 being 1-based and the level being 0-based, and the other accounts for
2385 the level of the new frame instead of the level of the current
2386 frame. */
2387 if (this_frame->level + 2 > user_set_backtrace_options.backtrace_limit)
2388 {
2389 frame_debug_got_null_frame (this_frame, "backtrace limit exceeded");
2390 return NULL;
2391 }
2392
2393 /* If we're already inside the entry function for the main objfile,
2394 then it isn't valid. Don't apply this test to a dummy frame -
2395 dummy frame PCs typically land in the entry func. Don't apply
2396 this test to the sentinel frame. Sentinel frames should always
2397 be allowed to unwind. */
2398 /* NOTE: cagney/2003-07-07: Fixed a bug in inside_main_func() -
2399 wasn't checking for "main" in the minimal symbols. With that
2400 fixed asm-source tests now stop in "main" instead of halting the
2401 backtrace in weird and wonderful ways somewhere inside the entry
2402 file. Suspect that tests for inside the entry file/func were
2403 added to work around that (now fixed) case. */
2404 /* NOTE: cagney/2003-07-15: danielj (if I'm reading it right)
2405 suggested having the inside_entry_func test use the
2406 inside_main_func() msymbol trick (along with entry_point_address()
2407 I guess) to determine the address range of the start function.
2408 That should provide a far better stopper than the current
2409 heuristics. */
2410 /* NOTE: tausq/2004-10-09: this is needed if, for example, the compiler
2411 applied tail-call optimizations to main so that a function called
2412 from main returns directly to the caller of main. Since we don't
2413 stop at main, we should at least stop at the entry point of the
2414 application. */
2415 if (this_frame->level >= 0
2416 && get_frame_type (this_frame) == NORMAL_FRAME
2417 && !user_set_backtrace_options.backtrace_past_entry
2418 && frame_pc_p
2419 && inside_entry_func (this_frame))
2420 {
2421 frame_debug_got_null_frame (this_frame, "inside entry func");
2422 return NULL;
2423 }
2424
2425 /* Assume that the only way to get a zero PC is through something
2426 like a SIGSEGV or a dummy frame, and hence that NORMAL frames
2427 will never unwind a zero PC. */
2428 if (this_frame->level > 0
2429 && (get_frame_type (this_frame) == NORMAL_FRAME
2430 || get_frame_type (this_frame) == INLINE_FRAME)
2431 && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME
2432 && frame_pc_p && frame_pc == 0)
2433 {
2434 frame_debug_got_null_frame (this_frame, "zero PC");
2435 return NULL;
2436 }
2437
2438 return get_prev_frame_always (this_frame);
2439 }
2440
2441 struct frame_id
2442 get_prev_frame_id_by_id (struct frame_id id)
2443 {
2444 struct frame_id prev_id;
2445 struct frame_info *frame;
2446
2447 frame = frame_find_by_id (id);
2448
2449 if (frame != NULL)
2450 prev_id = get_frame_id (get_prev_frame (frame));
2451 else
2452 prev_id = null_frame_id;
2453
2454 return prev_id;
2455 }
2456
2457 CORE_ADDR
2458 get_frame_pc (struct frame_info *frame)
2459 {
2460 gdb_assert (frame->next != NULL);
2461 return frame_unwind_pc (frame->next);
2462 }
2463
2464 bool
2465 get_frame_pc_if_available (frame_info *frame, CORE_ADDR *pc)
2466 {
2467
2468 gdb_assert (frame->next != NULL);
2469
2470 try
2471 {
2472 *pc = frame_unwind_pc (frame->next);
2473 }
2474 catch (const gdb_exception_error &ex)
2475 {
2476 if (ex.error == NOT_AVAILABLE_ERROR)
2477 return false;
2478 else
2479 throw;
2480 }
2481
2482 return true;
2483 }
2484
2485 /* Return an address that falls within THIS_FRAME's code block. */
2486
2487 CORE_ADDR
2488 get_frame_address_in_block (struct frame_info *this_frame)
2489 {
2490 /* A draft address. */
2491 CORE_ADDR pc = get_frame_pc (this_frame);
2492
2493 struct frame_info *next_frame = this_frame->next;
2494
2495 /* Calling get_frame_pc returns the resume address for THIS_FRAME.
2496 Normally the resume address is inside the body of the function
2497 associated with THIS_FRAME, but there is a special case: when
2498 calling a function which the compiler knows will never return
2499 (for instance abort), the call may be the very last instruction
2500 in the calling function. The resume address will point after the
2501 call and may be at the beginning of a different function
2502 entirely.
2503
2504 If THIS_FRAME is a signal frame or dummy frame, then we should
2505 not adjust the unwound PC. For a dummy frame, GDB pushed the
2506 resume address manually onto the stack. For a signal frame, the
2507 OS may have pushed the resume address manually and invoked the
2508 handler (e.g. GNU/Linux), or invoked the trampoline which called
2509 the signal handler - but in either case the signal handler is
2510 expected to return to the trampoline. So in both of these
2511 cases we know that the resume address is executable and
2512 related. So we only need to adjust the PC if THIS_FRAME
2513 is a normal function.
2514
2515 If the program has been interrupted while THIS_FRAME is current,
2516 then clearly the resume address is inside the associated
2517 function. There are three kinds of interruption: debugger stop
2518 (next frame will be SENTINEL_FRAME), operating system
2519 signal or exception (next frame will be SIGTRAMP_FRAME),
2520 or debugger-induced function call (next frame will be
2521 DUMMY_FRAME). So we only need to adjust the PC if
2522 NEXT_FRAME is a normal function.
2523
2524 We check the type of NEXT_FRAME first, since it is already
2525 known; frame type is determined by the unwinder, and since
2526 we have THIS_FRAME we've already selected an unwinder for
2527 NEXT_FRAME.
2528
2529 If the next frame is inlined, we need to keep going until we find
2530 the real function - for instance, if a signal handler is invoked
2531 while in an inlined function, then the code address of the
2532 "calling" normal function should not be adjusted either. */
2533
2534 while (get_frame_type (next_frame) == INLINE_FRAME)
2535 next_frame = next_frame->next;
2536
2537 if ((get_frame_type (next_frame) == NORMAL_FRAME
2538 || get_frame_type (next_frame) == TAILCALL_FRAME)
2539 && (get_frame_type (this_frame) == NORMAL_FRAME
2540 || get_frame_type (this_frame) == TAILCALL_FRAME
2541 || get_frame_type (this_frame) == INLINE_FRAME))
2542 return pc - 1;
2543
2544 return pc;
2545 }
2546
2547 bool
2548 get_frame_address_in_block_if_available (frame_info *this_frame,
2549 CORE_ADDR *pc)
2550 {
2551
2552 try
2553 {
2554 *pc = get_frame_address_in_block (this_frame);
2555 }
2556 catch (const gdb_exception_error &ex)
2557 {
2558 if (ex.error == NOT_AVAILABLE_ERROR)
2559 return false;
2560 throw;
2561 }
2562
2563 return true;
2564 }
2565
2566 symtab_and_line
2567 find_frame_sal (frame_info *frame)
2568 {
2569 struct frame_info *next_frame;
2570 int notcurrent;
2571 CORE_ADDR pc;
2572
2573 if (frame_inlined_callees (frame) > 0)
2574 {
2575 struct symbol *sym;
2576
2577 /* If the current frame has some inlined callees, and we have a next
2578 frame, then that frame must be an inlined frame. In this case
2579 this frame's sal is the "call site" of the next frame's inlined
2580 function, which can not be inferred from get_frame_pc. */
2581 next_frame = get_next_frame (frame);
2582 if (next_frame)
2583 sym = get_frame_function (next_frame);
2584 else
2585 sym = inline_skipped_symbol (inferior_thread ());
2586
2587 /* If frame is inline, it certainly has symbols. */
2588 gdb_assert (sym);
2589
2590 symtab_and_line sal;
2591 if (SYMBOL_LINE (sym) != 0)
2592 {
2593 sal.symtab = symbol_symtab (sym);
2594 sal.line = SYMBOL_LINE (sym);
2595 }
2596 else
2597 /* If the symbol does not have a location, we don't know where
2598 the call site is. Do not pretend to. This is jarring, but
2599 we can't do much better. */
2600 sal.pc = get_frame_pc (frame);
2601
2602 sal.pspace = get_frame_program_space (frame);
2603 return sal;
2604 }
2605
2606 /* If FRAME is not the innermost frame, that normally means that
2607 FRAME->pc points at the return instruction (which is *after* the
2608 call instruction), and we want to get the line containing the
2609 call (because the call is where the user thinks the program is).
2610 However, if the next frame is either a SIGTRAMP_FRAME or a
2611 DUMMY_FRAME, then the next frame will contain a saved interrupt
2612 PC and such a PC indicates the current (rather than next)
2613 instruction/line, consequently, for such cases, want to get the
2614 line containing fi->pc. */
2615 if (!get_frame_pc_if_available (frame, &pc))
2616 return {};
2617
2618 notcurrent = (pc != get_frame_address_in_block (frame));
2619 return find_pc_line (pc, notcurrent);
2620 }
2621
2622 /* Per "frame.h", return the ``address'' of the frame. Code should
2623 really be using get_frame_id(). */
2624 CORE_ADDR
2625 get_frame_base (struct frame_info *fi)
2626 {
2627 return get_frame_id (fi).stack_addr;
2628 }
2629
2630 /* High-level offsets into the frame. Used by the debug info. */
2631
2632 CORE_ADDR
2633 get_frame_base_address (struct frame_info *fi)
2634 {
2635 if (get_frame_type (fi) != NORMAL_FRAME)
2636 return 0;
2637 if (fi->base == NULL)
2638 fi->base = frame_base_find_by_frame (fi);
2639 /* Sneaky: If the low-level unwind and high-level base code share a
2640 common unwinder, let them share the prologue cache. */
2641 if (fi->base->unwind == fi->unwind)
2642 return fi->base->this_base (fi, &fi->prologue_cache);
2643 return fi->base->this_base (fi, &fi->base_cache);
2644 }
2645
2646 CORE_ADDR
2647 get_frame_locals_address (struct frame_info *fi)
2648 {
2649 if (get_frame_type (fi) != NORMAL_FRAME)
2650 return 0;
2651 /* If there isn't a frame address method, find it. */
2652 if (fi->base == NULL)
2653 fi->base = frame_base_find_by_frame (fi);
2654 /* Sneaky: If the low-level unwind and high-level base code share a
2655 common unwinder, let them share the prologue cache. */
2656 if (fi->base->unwind == fi->unwind)
2657 return fi->base->this_locals (fi, &fi->prologue_cache);
2658 return fi->base->this_locals (fi, &fi->base_cache);
2659 }
2660
2661 CORE_ADDR
2662 get_frame_args_address (struct frame_info *fi)
2663 {
2664 if (get_frame_type (fi) != NORMAL_FRAME)
2665 return 0;
2666 /* If there isn't a frame address method, find it. */
2667 if (fi->base == NULL)
2668 fi->base = frame_base_find_by_frame (fi);
2669 /* Sneaky: If the low-level unwind and high-level base code share a
2670 common unwinder, let them share the prologue cache. */
2671 if (fi->base->unwind == fi->unwind)
2672 return fi->base->this_args (fi, &fi->prologue_cache);
2673 return fi->base->this_args (fi, &fi->base_cache);
2674 }
2675
2676 /* Return true if the frame unwinder for frame FI is UNWINDER; false
2677 otherwise. */
2678
2679 bool
2680 frame_unwinder_is (frame_info *fi, const frame_unwind *unwinder)
2681 {
2682 if (fi->unwind == nullptr)
2683 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
2684
2685 return fi->unwind == unwinder;
2686 }
2687
2688 /* Level of the selected frame: 0 for innermost, 1 for its caller, ...
2689 or -1 for a NULL frame. */
2690
2691 int
2692 frame_relative_level (struct frame_info *fi)
2693 {
2694 if (fi == NULL)
2695 return -1;
2696 else
2697 return fi->level;
2698 }
2699
2700 enum frame_type
2701 get_frame_type (struct frame_info *frame)
2702 {
2703 if (frame->unwind == NULL)
2704 /* Initialize the frame's unwinder because that's what
2705 provides the frame's type. */
2706 frame_unwind_find_by_frame (frame, &frame->prologue_cache);
2707 return frame->unwind->type;
2708 }
2709
2710 struct program_space *
2711 get_frame_program_space (struct frame_info *frame)
2712 {
2713 return frame->pspace;
2714 }
2715
2716 struct program_space *
2717 frame_unwind_program_space (struct frame_info *this_frame)
2718 {
2719 gdb_assert (this_frame);
2720
2721 /* This is really a placeholder to keep the API consistent --- we
2722 assume for now that we don't have frame chains crossing
2723 spaces. */
2724 return this_frame->pspace;
2725 }
2726
2727 const address_space *
2728 get_frame_address_space (struct frame_info *frame)
2729 {
2730 return frame->aspace;
2731 }
2732
2733 /* Memory access methods. */
2734
2735 void
2736 get_frame_memory (struct frame_info *this_frame, CORE_ADDR addr,
2737 gdb_byte *buf, int len)
2738 {
2739 read_memory (addr, buf, len);
2740 }
2741
2742 LONGEST
2743 get_frame_memory_signed (struct frame_info *this_frame, CORE_ADDR addr,
2744 int len)
2745 {
2746 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2747 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2748
2749 return read_memory_integer (addr, len, byte_order);
2750 }
2751
2752 ULONGEST
2753 get_frame_memory_unsigned (struct frame_info *this_frame, CORE_ADDR addr,
2754 int len)
2755 {
2756 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2757 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2758
2759 return read_memory_unsigned_integer (addr, len, byte_order);
2760 }
2761
2762 bool
2763 safe_frame_unwind_memory (struct frame_info *this_frame,
2764 CORE_ADDR addr, gdb_byte *buf, int len)
2765 {
2766 /* NOTE: target_read_memory returns zero on success! */
2767 return target_read_memory (addr, buf, len) == 0;
2768 }
2769
2770 /* Architecture methods. */
2771
2772 struct gdbarch *
2773 get_frame_arch (struct frame_info *this_frame)
2774 {
2775 return frame_unwind_arch (this_frame->next);
2776 }
2777
2778 struct gdbarch *
2779 frame_unwind_arch (struct frame_info *next_frame)
2780 {
2781 if (!next_frame->prev_arch.p)
2782 {
2783 struct gdbarch *arch;
2784
2785 if (next_frame->unwind == NULL)
2786 frame_unwind_find_by_frame (next_frame, &next_frame->prologue_cache);
2787
2788 if (next_frame->unwind->prev_arch != NULL)
2789 arch = next_frame->unwind->prev_arch (next_frame,
2790 &next_frame->prologue_cache);
2791 else
2792 arch = get_frame_arch (next_frame);
2793
2794 next_frame->prev_arch.arch = arch;
2795 next_frame->prev_arch.p = true;
2796 if (frame_debug)
2797 fprintf_unfiltered (gdb_stdlog,
2798 "{ frame_unwind_arch (next_frame=%d) -> %s }\n",
2799 next_frame->level,
2800 gdbarch_bfd_arch_info (arch)->printable_name);
2801 }
2802
2803 return next_frame->prev_arch.arch;
2804 }
2805
2806 struct gdbarch *
2807 frame_unwind_caller_arch (struct frame_info *next_frame)
2808 {
2809 next_frame = skip_artificial_frames (next_frame);
2810
2811 /* We must have a non-artificial frame. The caller is supposed to check
2812 the result of frame_unwind_caller_id (), which returns NULL_FRAME_ID
2813 in this case. */
2814 gdb_assert (next_frame != NULL);
2815
2816 return frame_unwind_arch (next_frame);
2817 }
2818
2819 /* Gets the language of FRAME. */
2820
2821 enum language
2822 get_frame_language (struct frame_info *frame)
2823 {
2824 CORE_ADDR pc = 0;
2825 bool pc_p = false;
2826
2827 gdb_assert (frame!= NULL);
2828
2829 /* We determine the current frame language by looking up its
2830 associated symtab. To retrieve this symtab, we use the frame
2831 PC. However we cannot use the frame PC as is, because it
2832 usually points to the instruction following the "call", which
2833 is sometimes the first instruction of another function. So
2834 we rely on get_frame_address_in_block(), it provides us with
2835 a PC that is guaranteed to be inside the frame's code
2836 block. */
2837
2838 try
2839 {
2840 pc = get_frame_address_in_block (frame);
2841 pc_p = true;
2842 }
2843 catch (const gdb_exception_error &ex)
2844 {
2845 if (ex.error != NOT_AVAILABLE_ERROR)
2846 throw;
2847 }
2848
2849 if (pc_p)
2850 {
2851 struct compunit_symtab *cust = find_pc_compunit_symtab (pc);
2852
2853 if (cust != NULL)
2854 return compunit_language (cust);
2855 }
2856
2857 return language_unknown;
2858 }
2859
2860 /* Stack pointer methods. */
2861
2862 CORE_ADDR
2863 get_frame_sp (struct frame_info *this_frame)
2864 {
2865 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2866
2867 /* NOTE drow/2008-06-28: gdbarch_unwind_sp could be converted to
2868 operate on THIS_FRAME now. */
2869 return gdbarch_unwind_sp (gdbarch, this_frame->next);
2870 }
2871
2872 /* Return the reason why we can't unwind past FRAME. */
2873
2874 enum unwind_stop_reason
2875 get_frame_unwind_stop_reason (struct frame_info *frame)
2876 {
2877 /* Fill-in STOP_REASON. */
2878 get_prev_frame_always (frame);
2879 gdb_assert (frame->prev_p);
2880
2881 return frame->stop_reason;
2882 }
2883
2884 /* Return a string explaining REASON. */
2885
2886 const char *
2887 unwind_stop_reason_to_string (enum unwind_stop_reason reason)
2888 {
2889 switch (reason)
2890 {
2891 #define SET(name, description) \
2892 case name: return _(description);
2893 #include "unwind_stop_reasons.def"
2894 #undef SET
2895
2896 default:
2897 internal_error (__FILE__, __LINE__,
2898 "Invalid frame stop reason");
2899 }
2900 }
2901
2902 const char *
2903 frame_stop_reason_string (struct frame_info *fi)
2904 {
2905 gdb_assert (fi->prev_p);
2906 gdb_assert (fi->prev == NULL);
2907
2908 /* Return the specific string if we have one. */
2909 if (fi->stop_string != NULL)
2910 return fi->stop_string;
2911
2912 /* Return the generic string if we have nothing better. */
2913 return unwind_stop_reason_to_string (fi->stop_reason);
2914 }
2915
2916 /* Return the enum symbol name of REASON as a string, to use in debug
2917 output. */
2918
2919 static const char *
2920 frame_stop_reason_symbol_string (enum unwind_stop_reason reason)
2921 {
2922 switch (reason)
2923 {
2924 #define SET(name, description) \
2925 case name: return #name;
2926 #include "unwind_stop_reasons.def"
2927 #undef SET
2928
2929 default:
2930 internal_error (__FILE__, __LINE__,
2931 "Invalid frame stop reason");
2932 }
2933 }
2934
2935 /* Clean up after a failed (wrong unwinder) attempt to unwind past
2936 FRAME. */
2937
2938 void
2939 frame_cleanup_after_sniffer (struct frame_info *frame)
2940 {
2941 /* The sniffer should not allocate a prologue cache if it did not
2942 match this frame. */
2943 gdb_assert (frame->prologue_cache == NULL);
2944
2945 /* No sniffer should extend the frame chain; sniff based on what is
2946 already certain. */
2947 gdb_assert (!frame->prev_p);
2948
2949 /* The sniffer should not check the frame's ID; that's circular. */
2950 gdb_assert (frame->this_id.p != frame_id_status::COMPUTED);
2951
2952 /* Clear cached fields dependent on the unwinder.
2953
2954 The previous PC is independent of the unwinder, but the previous
2955 function is not (see get_frame_address_in_block). */
2956 frame->prev_func.status = CC_UNKNOWN;
2957 frame->prev_func.addr = 0;
2958
2959 /* Discard the unwinder last, so that we can easily find it if an assertion
2960 in this function triggers. */
2961 frame->unwind = NULL;
2962 }
2963
2964 /* Set FRAME's unwinder temporarily, so that we can call a sniffer.
2965 If sniffing fails, the caller should be sure to call
2966 frame_cleanup_after_sniffer. */
2967
2968 void
2969 frame_prepare_for_sniffer (struct frame_info *frame,
2970 const struct frame_unwind *unwind)
2971 {
2972 gdb_assert (frame->unwind == NULL);
2973 frame->unwind = unwind;
2974 }
2975
2976 static struct cmd_list_element *set_backtrace_cmdlist;
2977 static struct cmd_list_element *show_backtrace_cmdlist;
2978
2979 /* Definition of the "set backtrace" settings that are exposed as
2980 "backtrace" command options. */
2981
2982 using boolean_option_def
2983 = gdb::option::boolean_option_def<set_backtrace_options>;
2984 using uinteger_option_def
2985 = gdb::option::uinteger_option_def<set_backtrace_options>;
2986
2987 const gdb::option::option_def set_backtrace_option_defs[] = {
2988
2989 boolean_option_def {
2990 "past-main",
2991 [] (set_backtrace_options *opt) { return &opt->backtrace_past_main; },
2992 show_backtrace_past_main, /* show_cmd_cb */
2993 N_("Set whether backtraces should continue past \"main\"."),
2994 N_("Show whether backtraces should continue past \"main\"."),
2995 N_("Normally the caller of \"main\" is not of interest, so GDB will terminate\n\
2996 the backtrace at \"main\". Set this if you need to see the rest\n\
2997 of the stack trace."),
2998 },
2999
3000 boolean_option_def {
3001 "past-entry",
3002 [] (set_backtrace_options *opt) { return &opt->backtrace_past_entry; },
3003 show_backtrace_past_entry, /* show_cmd_cb */
3004 N_("Set whether backtraces should continue past the entry point of a program."),
3005 N_("Show whether backtraces should continue past the entry point of a program."),
3006 N_("Normally there are no callers beyond the entry point of a program, so GDB\n\
3007 will terminate the backtrace there. Set this if you need to see\n\
3008 the rest of the stack trace."),
3009 },
3010 };
3011
3012 void _initialize_frame ();
3013 void
3014 _initialize_frame ()
3015 {
3016 obstack_init (&frame_cache_obstack);
3017
3018 frame_stash_create ();
3019
3020 gdb::observers::target_changed.attach (frame_observer_target_changed);
3021
3022 add_basic_prefix_cmd ("backtrace", class_maintenance, _("\
3023 Set backtrace specific variables.\n\
3024 Configure backtrace variables such as the backtrace limit"),
3025 &set_backtrace_cmdlist, "set backtrace ",
3026 0/*allow-unknown*/, &setlist);
3027 add_show_prefix_cmd ("backtrace", class_maintenance, _("\
3028 Show backtrace specific variables.\n\
3029 Show backtrace variables such as the backtrace limit."),
3030 &show_backtrace_cmdlist, "show backtrace ",
3031 0/*allow-unknown*/, &showlist);
3032
3033 add_setshow_uinteger_cmd ("limit", class_obscure,
3034 &user_set_backtrace_options.backtrace_limit, _("\
3035 Set an upper bound on the number of backtrace levels."), _("\
3036 Show the upper bound on the number of backtrace levels."), _("\
3037 No more than the specified number of frames can be displayed or examined.\n\
3038 Literal \"unlimited\" or zero means no limit."),
3039 NULL,
3040 show_backtrace_limit,
3041 &set_backtrace_cmdlist,
3042 &show_backtrace_cmdlist);
3043
3044 gdb::option::add_setshow_cmds_for_options
3045 (class_stack, &user_set_backtrace_options,
3046 set_backtrace_option_defs, &set_backtrace_cmdlist, &show_backtrace_cmdlist);
3047
3048 /* Debug this files internals. */
3049 add_setshow_zuinteger_cmd ("frame", class_maintenance, &frame_debug, _("\
3050 Set frame debugging."), _("\
3051 Show frame debugging."), _("\
3052 When non-zero, frame specific internal debugging is enabled."),
3053 NULL,
3054 show_frame_debug,
3055 &setdebuglist, &showdebuglist);
3056 }