* infrun.c (normal_stop): Don't call
[binutils-gdb.git] / gdb / frame.c
1 /* Cache and manage frames for GDB, the GNU debugger.
2
3 Copyright (C) 1986, 1987, 1989, 1991, 1994, 1995, 1996, 1998, 2000, 2001,
4 2002, 2003, 2004, 2007, 2008, 2009 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "frame.h"
23 #include "target.h"
24 #include "value.h"
25 #include "inferior.h" /* for inferior_ptid */
26 #include "regcache.h"
27 #include "gdb_assert.h"
28 #include "gdb_string.h"
29 #include "user-regs.h"
30 #include "gdb_obstack.h"
31 #include "dummy-frame.h"
32 #include "sentinel-frame.h"
33 #include "gdbcore.h"
34 #include "annotate.h"
35 #include "language.h"
36 #include "frame-unwind.h"
37 #include "frame-base.h"
38 #include "command.h"
39 #include "gdbcmd.h"
40 #include "observer.h"
41 #include "objfiles.h"
42 #include "exceptions.h"
43 #include "gdbthread.h"
44
45 static struct frame_info *get_prev_frame_1 (struct frame_info *this_frame);
46
47 /* We keep a cache of stack frames, each of which is a "struct
48 frame_info". The innermost one gets allocated (in
49 wait_for_inferior) each time the inferior stops; current_frame
50 points to it. Additional frames get allocated (in get_prev_frame)
51 as needed, and are chained through the next and prev fields. Any
52 time that the frame cache becomes invalid (most notably when we
53 execute something, but also if we change how we interpret the
54 frames (e.g. "set heuristic-fence-post" in mips-tdep.c, or anything
55 which reads new symbols)), we should call reinit_frame_cache. */
56
57 struct frame_info
58 {
59 /* Level of this frame. The inner-most (youngest) frame is at level
60 0. As you move towards the outer-most (oldest) frame, the level
61 increases. This is a cached value. It could just as easily be
62 computed by counting back from the selected frame to the inner
63 most frame. */
64 /* NOTE: cagney/2002-04-05: Perhaps a level of ``-1'' should be
65 reserved to indicate a bogus frame - one that has been created
66 just to keep GDB happy (GDB always needs a frame). For the
67 moment leave this as speculation. */
68 int level;
69
70 /* The frame's low-level unwinder and corresponding cache. The
71 low-level unwinder is responsible for unwinding register values
72 for the previous frame. The low-level unwind methods are
73 selected based on the presence, or otherwise, of register unwind
74 information such as CFI. */
75 void *prologue_cache;
76 const struct frame_unwind *unwind;
77
78 /* Cached copy of the previous frame's resume address. */
79 struct {
80 int p;
81 CORE_ADDR value;
82 } prev_pc;
83
84 /* Cached copy of the previous frame's function address. */
85 struct
86 {
87 CORE_ADDR addr;
88 int p;
89 } prev_func;
90
91 /* This frame's ID. */
92 struct
93 {
94 int p;
95 struct frame_id value;
96 } this_id;
97
98 /* The frame's high-level base methods, and corresponding cache.
99 The high level base methods are selected based on the frame's
100 debug info. */
101 const struct frame_base *base;
102 void *base_cache;
103
104 /* Pointers to the next (down, inner, younger) and previous (up,
105 outer, older) frame_info's in the frame cache. */
106 struct frame_info *next; /* down, inner, younger */
107 int prev_p;
108 struct frame_info *prev; /* up, outer, older */
109
110 /* The reason why we could not set PREV, or UNWIND_NO_REASON if we
111 could. Only valid when PREV_P is set. */
112 enum unwind_stop_reason stop_reason;
113 };
114
115 /* Flag to control debugging. */
116
117 int frame_debug;
118 static void
119 show_frame_debug (struct ui_file *file, int from_tty,
120 struct cmd_list_element *c, const char *value)
121 {
122 fprintf_filtered (file, _("Frame debugging is %s.\n"), value);
123 }
124
125 /* Flag to indicate whether backtraces should stop at main et.al. */
126
127 static int backtrace_past_main;
128 static void
129 show_backtrace_past_main (struct ui_file *file, int from_tty,
130 struct cmd_list_element *c, const char *value)
131 {
132 fprintf_filtered (file, _("\
133 Whether backtraces should continue past \"main\" is %s.\n"),
134 value);
135 }
136
137 static int backtrace_past_entry;
138 static void
139 show_backtrace_past_entry (struct ui_file *file, int from_tty,
140 struct cmd_list_element *c, const char *value)
141 {
142 fprintf_filtered (file, _("\
143 Whether backtraces should continue past the entry point of a program is %s.\n"),
144 value);
145 }
146
147 static int backtrace_limit = INT_MAX;
148 static void
149 show_backtrace_limit (struct ui_file *file, int from_tty,
150 struct cmd_list_element *c, const char *value)
151 {
152 fprintf_filtered (file, _("\
153 An upper bound on the number of backtrace levels is %s.\n"),
154 value);
155 }
156
157
158 static void
159 fprint_field (struct ui_file *file, const char *name, int p, CORE_ADDR addr)
160 {
161 if (p)
162 fprintf_unfiltered (file, "%s=0x%s", name, paddr_nz (addr));
163 else
164 fprintf_unfiltered (file, "!%s", name);
165 }
166
167 void
168 fprint_frame_id (struct ui_file *file, struct frame_id id)
169 {
170 fprintf_unfiltered (file, "{");
171 fprint_field (file, "stack", id.stack_addr_p, id.stack_addr);
172 fprintf_unfiltered (file, ",");
173 fprint_field (file, "code", id.code_addr_p, id.code_addr);
174 fprintf_unfiltered (file, ",");
175 fprint_field (file, "special", id.special_addr_p, id.special_addr);
176 fprintf_unfiltered (file, "}");
177 }
178
179 static void
180 fprint_frame_type (struct ui_file *file, enum frame_type type)
181 {
182 switch (type)
183 {
184 case NORMAL_FRAME:
185 fprintf_unfiltered (file, "NORMAL_FRAME");
186 return;
187 case DUMMY_FRAME:
188 fprintf_unfiltered (file, "DUMMY_FRAME");
189 return;
190 case SIGTRAMP_FRAME:
191 fprintf_unfiltered (file, "SIGTRAMP_FRAME");
192 return;
193 default:
194 fprintf_unfiltered (file, "<unknown type>");
195 return;
196 };
197 }
198
199 static void
200 fprint_frame (struct ui_file *file, struct frame_info *fi)
201 {
202 if (fi == NULL)
203 {
204 fprintf_unfiltered (file, "<NULL frame>");
205 return;
206 }
207 fprintf_unfiltered (file, "{");
208 fprintf_unfiltered (file, "level=%d", fi->level);
209 fprintf_unfiltered (file, ",");
210 fprintf_unfiltered (file, "type=");
211 if (fi->unwind != NULL)
212 fprint_frame_type (file, fi->unwind->type);
213 else
214 fprintf_unfiltered (file, "<unknown>");
215 fprintf_unfiltered (file, ",");
216 fprintf_unfiltered (file, "unwind=");
217 if (fi->unwind != NULL)
218 gdb_print_host_address (fi->unwind, file);
219 else
220 fprintf_unfiltered (file, "<unknown>");
221 fprintf_unfiltered (file, ",");
222 fprintf_unfiltered (file, "pc=");
223 if (fi->next != NULL && fi->next->prev_pc.p)
224 fprintf_unfiltered (file, "0x%s", paddr_nz (fi->next->prev_pc.value));
225 else
226 fprintf_unfiltered (file, "<unknown>");
227 fprintf_unfiltered (file, ",");
228 fprintf_unfiltered (file, "id=");
229 if (fi->this_id.p)
230 fprint_frame_id (file, fi->this_id.value);
231 else
232 fprintf_unfiltered (file, "<unknown>");
233 fprintf_unfiltered (file, ",");
234 fprintf_unfiltered (file, "func=");
235 if (fi->next != NULL && fi->next->prev_func.p)
236 fprintf_unfiltered (file, "0x%s", paddr_nz (fi->next->prev_func.addr));
237 else
238 fprintf_unfiltered (file, "<unknown>");
239 fprintf_unfiltered (file, "}");
240 }
241
242 /* Return a frame uniq ID that can be used to, later, re-find the
243 frame. */
244
245 struct frame_id
246 get_frame_id (struct frame_info *fi)
247 {
248 if (fi == NULL)
249 {
250 return null_frame_id;
251 }
252 if (!fi->this_id.p)
253 {
254 if (frame_debug)
255 fprintf_unfiltered (gdb_stdlog, "{ get_frame_id (fi=%d) ",
256 fi->level);
257 /* Find the unwinder. */
258 if (fi->unwind == NULL)
259 fi->unwind = frame_unwind_find_by_frame (fi, &fi->prologue_cache);
260 /* Find THIS frame's ID. */
261 fi->unwind->this_id (fi, &fi->prologue_cache, &fi->this_id.value);
262 fi->this_id.p = 1;
263 if (frame_debug)
264 {
265 fprintf_unfiltered (gdb_stdlog, "-> ");
266 fprint_frame_id (gdb_stdlog, fi->this_id.value);
267 fprintf_unfiltered (gdb_stdlog, " }\n");
268 }
269 }
270 return fi->this_id.value;
271 }
272
273 struct frame_id
274 frame_unwind_id (struct frame_info *next_frame)
275 {
276 /* Use prev_frame, and not get_prev_frame. The latter will truncate
277 the frame chain, leading to this function unintentionally
278 returning a null_frame_id (e.g., when a caller requests the frame
279 ID of "main()"s caller. */
280 return get_frame_id (get_prev_frame_1 (next_frame));
281 }
282
283 const struct frame_id null_frame_id; /* All zeros. */
284
285 struct frame_id
286 frame_id_build_special (CORE_ADDR stack_addr, CORE_ADDR code_addr,
287 CORE_ADDR special_addr)
288 {
289 struct frame_id id = null_frame_id;
290 id.stack_addr = stack_addr;
291 id.stack_addr_p = 1;
292 id.code_addr = code_addr;
293 id.code_addr_p = 1;
294 id.special_addr = special_addr;
295 id.special_addr_p = 1;
296 return id;
297 }
298
299 struct frame_id
300 frame_id_build (CORE_ADDR stack_addr, CORE_ADDR code_addr)
301 {
302 struct frame_id id = null_frame_id;
303 id.stack_addr = stack_addr;
304 id.stack_addr_p = 1;
305 id.code_addr = code_addr;
306 id.code_addr_p = 1;
307 return id;
308 }
309
310 struct frame_id
311 frame_id_build_wild (CORE_ADDR stack_addr)
312 {
313 struct frame_id id = null_frame_id;
314 id.stack_addr = stack_addr;
315 id.stack_addr_p = 1;
316 return id;
317 }
318
319 int
320 frame_id_p (struct frame_id l)
321 {
322 int p;
323 /* The frame is valid iff it has a valid stack address. */
324 p = l.stack_addr_p;
325 if (frame_debug)
326 {
327 fprintf_unfiltered (gdb_stdlog, "{ frame_id_p (l=");
328 fprint_frame_id (gdb_stdlog, l);
329 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", p);
330 }
331 return p;
332 }
333
334 int
335 frame_id_eq (struct frame_id l, struct frame_id r)
336 {
337 int eq;
338 if (!l.stack_addr_p || !r.stack_addr_p)
339 /* Like a NaN, if either ID is invalid, the result is false.
340 Note that a frame ID is invalid iff it is the null frame ID. */
341 eq = 0;
342 else if (l.stack_addr != r.stack_addr)
343 /* If .stack addresses are different, the frames are different. */
344 eq = 0;
345 else if (!l.code_addr_p || !r.code_addr_p)
346 /* An invalid code addr is a wild card, always succeed. */
347 eq = 1;
348 else if (l.code_addr != r.code_addr)
349 /* If .code addresses are different, the frames are different. */
350 eq = 0;
351 else if (!l.special_addr_p || !r.special_addr_p)
352 /* An invalid special addr is a wild card (or unused), always succeed. */
353 eq = 1;
354 else if (l.special_addr == r.special_addr)
355 /* Frames are equal. */
356 eq = 1;
357 else
358 /* No luck. */
359 eq = 0;
360 if (frame_debug)
361 {
362 fprintf_unfiltered (gdb_stdlog, "{ frame_id_eq (l=");
363 fprint_frame_id (gdb_stdlog, l);
364 fprintf_unfiltered (gdb_stdlog, ",r=");
365 fprint_frame_id (gdb_stdlog, r);
366 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", eq);
367 }
368 return eq;
369 }
370
371 /* Safety net to check whether frame ID L should be inner to
372 frame ID R, according to their stack addresses.
373
374 This method cannot be used to compare arbitrary frames, as the
375 ranges of valid stack addresses may be discontiguous (e.g. due
376 to sigaltstack).
377
378 However, it can be used as safety net to discover invalid frame
379 IDs in certain circumstances.
380
381 * If frame NEXT is the immediate inner frame to THIS, and NEXT
382 is a NORMAL frame, then the stack address of NEXT must be
383 inner-than-or-equal to the stack address of THIS.
384
385 Therefore, if frame_id_inner (THIS, NEXT) holds, some unwind
386 error has occurred.
387
388 * If frame NEXT is the immediate inner frame to THIS, and NEXT
389 is a NORMAL frame, and NEXT and THIS have different stack
390 addresses, no other frame in the frame chain may have a stack
391 address in between.
392
393 Therefore, if frame_id_inner (TEST, THIS) holds, but
394 frame_id_inner (TEST, NEXT) does not hold, TEST cannot refer
395 to a valid frame in the frame chain. */
396
397 static int
398 frame_id_inner (struct gdbarch *gdbarch, struct frame_id l, struct frame_id r)
399 {
400 int inner;
401 if (!l.stack_addr_p || !r.stack_addr_p)
402 /* Like NaN, any operation involving an invalid ID always fails. */
403 inner = 0;
404 else
405 /* Only return non-zero when strictly inner than. Note that, per
406 comment in "frame.h", there is some fuzz here. Frameless
407 functions are not strictly inner than (same .stack but
408 different .code and/or .special address). */
409 inner = gdbarch_inner_than (gdbarch, l.stack_addr, r.stack_addr);
410 if (frame_debug)
411 {
412 fprintf_unfiltered (gdb_stdlog, "{ frame_id_inner (l=");
413 fprint_frame_id (gdb_stdlog, l);
414 fprintf_unfiltered (gdb_stdlog, ",r=");
415 fprint_frame_id (gdb_stdlog, r);
416 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", inner);
417 }
418 return inner;
419 }
420
421 struct frame_info *
422 frame_find_by_id (struct frame_id id)
423 {
424 struct frame_info *frame, *prev_frame;
425
426 /* ZERO denotes the null frame, let the caller decide what to do
427 about it. Should it instead return get_current_frame()? */
428 if (!frame_id_p (id))
429 return NULL;
430
431 for (frame = get_current_frame (); ; frame = prev_frame)
432 {
433 struct frame_id this = get_frame_id (frame);
434 if (frame_id_eq (id, this))
435 /* An exact match. */
436 return frame;
437
438 prev_frame = get_prev_frame (frame);
439 if (!prev_frame)
440 return NULL;
441
442 /* As a safety net to avoid unnecessary backtracing while trying
443 to find an invalid ID, we check for a common situation where
444 we can detect from comparing stack addresses that no other
445 frame in the current frame chain can have this ID. See the
446 comment at frame_id_inner for details. */
447 if (get_frame_type (frame) == NORMAL_FRAME
448 && !frame_id_inner (get_frame_arch (frame), id, this)
449 && frame_id_inner (get_frame_arch (prev_frame), id,
450 get_frame_id (prev_frame)))
451 return NULL;
452 }
453 return NULL;
454 }
455
456 CORE_ADDR
457 frame_pc_unwind (struct frame_info *this_frame)
458 {
459 if (!this_frame->prev_pc.p)
460 {
461 CORE_ADDR pc;
462 if (gdbarch_unwind_pc_p (get_frame_arch (this_frame)))
463 {
464 /* The right way. The `pure' way. The one true way. This
465 method depends solely on the register-unwind code to
466 determine the value of registers in THIS frame, and hence
467 the value of this frame's PC (resume address). A typical
468 implementation is no more than:
469
470 frame_unwind_register (this_frame, ISA_PC_REGNUM, buf);
471 return extract_unsigned_integer (buf, size of ISA_PC_REGNUM);
472
473 Note: this method is very heavily dependent on a correct
474 register-unwind implementation, it pays to fix that
475 method first; this method is frame type agnostic, since
476 it only deals with register values, it works with any
477 frame. This is all in stark contrast to the old
478 FRAME_SAVED_PC which would try to directly handle all the
479 different ways that a PC could be unwound. */
480 pc = gdbarch_unwind_pc (get_frame_arch (this_frame), this_frame);
481 }
482 else
483 internal_error (__FILE__, __LINE__, _("No unwind_pc method"));
484 this_frame->prev_pc.value = pc;
485 this_frame->prev_pc.p = 1;
486 if (frame_debug)
487 fprintf_unfiltered (gdb_stdlog,
488 "{ frame_pc_unwind (this_frame=%d) -> 0x%s }\n",
489 this_frame->level,
490 paddr_nz (this_frame->prev_pc.value));
491 }
492 return this_frame->prev_pc.value;
493 }
494
495 CORE_ADDR
496 get_frame_func (struct frame_info *this_frame)
497 {
498 struct frame_info *next_frame = this_frame->next;
499
500 if (!next_frame->prev_func.p)
501 {
502 /* Make certain that this, and not the adjacent, function is
503 found. */
504 CORE_ADDR addr_in_block = get_frame_address_in_block (this_frame);
505 next_frame->prev_func.p = 1;
506 next_frame->prev_func.addr = get_pc_function_start (addr_in_block);
507 if (frame_debug)
508 fprintf_unfiltered (gdb_stdlog,
509 "{ get_frame_func (this_frame=%d) -> 0x%s }\n",
510 this_frame->level,
511 paddr_nz (next_frame->prev_func.addr));
512 }
513 return next_frame->prev_func.addr;
514 }
515
516 static int
517 do_frame_register_read (void *src, int regnum, gdb_byte *buf)
518 {
519 return frame_register_read (src, regnum, buf);
520 }
521
522 struct regcache *
523 frame_save_as_regcache (struct frame_info *this_frame)
524 {
525 struct regcache *regcache = regcache_xmalloc (get_frame_arch (this_frame));
526 struct cleanup *cleanups = make_cleanup_regcache_xfree (regcache);
527 regcache_save (regcache, do_frame_register_read, this_frame);
528 discard_cleanups (cleanups);
529 return regcache;
530 }
531
532 void
533 frame_pop (struct frame_info *this_frame)
534 {
535 struct frame_info *prev_frame;
536 struct regcache *scratch;
537 struct cleanup *cleanups;
538
539 if (get_frame_type (this_frame) == DUMMY_FRAME)
540 {
541 /* Popping a dummy frame involves restoring more than just registers.
542 dummy_frame_pop does all the work. */
543 dummy_frame_pop (get_frame_id (this_frame));
544 return;
545 }
546
547 /* Ensure that we have a frame to pop to. */
548 prev_frame = get_prev_frame_1 (this_frame);
549
550 if (!prev_frame)
551 error (_("Cannot pop the initial frame."));
552
553 /* Make a copy of all the register values unwound from this frame.
554 Save them in a scratch buffer so that there isn't a race between
555 trying to extract the old values from the current regcache while
556 at the same time writing new values into that same cache. */
557 scratch = frame_save_as_regcache (prev_frame);
558 cleanups = make_cleanup_regcache_xfree (scratch);
559
560 /* FIXME: cagney/2003-03-16: It should be possible to tell the
561 target's register cache that it is about to be hit with a burst
562 register transfer and that the sequence of register writes should
563 be batched. The pair target_prepare_to_store() and
564 target_store_registers() kind of suggest this functionality.
565 Unfortunately, they don't implement it. Their lack of a formal
566 definition can lead to targets writing back bogus values
567 (arguably a bug in the target code mind). */
568 /* Now copy those saved registers into the current regcache.
569 Here, regcache_cpy() calls regcache_restore(). */
570 regcache_cpy (get_current_regcache (), scratch);
571 do_cleanups (cleanups);
572
573 /* We've made right mess of GDB's local state, just discard
574 everything. */
575 reinit_frame_cache ();
576 }
577
578 void
579 frame_register_unwind (struct frame_info *frame, int regnum,
580 int *optimizedp, enum lval_type *lvalp,
581 CORE_ADDR *addrp, int *realnump, gdb_byte *bufferp)
582 {
583 struct value *value;
584
585 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
586 that the value proper does not need to be fetched. */
587 gdb_assert (optimizedp != NULL);
588 gdb_assert (lvalp != NULL);
589 gdb_assert (addrp != NULL);
590 gdb_assert (realnump != NULL);
591 /* gdb_assert (bufferp != NULL); */
592
593 value = frame_unwind_register_value (frame, regnum);
594
595 gdb_assert (value != NULL);
596
597 *optimizedp = value_optimized_out (value);
598 *lvalp = VALUE_LVAL (value);
599 *addrp = VALUE_ADDRESS (value);
600 *realnump = VALUE_REGNUM (value);
601
602 if (bufferp)
603 memcpy (bufferp, value_contents_all (value),
604 TYPE_LENGTH (value_type (value)));
605
606 /* Dispose of the new value. This prevents watchpoints from
607 trying to watch the saved frame pointer. */
608 release_value (value);
609 value_free (value);
610 }
611
612 void
613 frame_register (struct frame_info *frame, int regnum,
614 int *optimizedp, enum lval_type *lvalp,
615 CORE_ADDR *addrp, int *realnump, gdb_byte *bufferp)
616 {
617 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
618 that the value proper does not need to be fetched. */
619 gdb_assert (optimizedp != NULL);
620 gdb_assert (lvalp != NULL);
621 gdb_assert (addrp != NULL);
622 gdb_assert (realnump != NULL);
623 /* gdb_assert (bufferp != NULL); */
624
625 /* Obtain the register value by unwinding the register from the next
626 (more inner frame). */
627 gdb_assert (frame != NULL && frame->next != NULL);
628 frame_register_unwind (frame->next, regnum, optimizedp, lvalp, addrp,
629 realnump, bufferp);
630 }
631
632 void
633 frame_unwind_register (struct frame_info *frame, int regnum, gdb_byte *buf)
634 {
635 int optimized;
636 CORE_ADDR addr;
637 int realnum;
638 enum lval_type lval;
639 frame_register_unwind (frame, regnum, &optimized, &lval, &addr,
640 &realnum, buf);
641 }
642
643 void
644 get_frame_register (struct frame_info *frame,
645 int regnum, gdb_byte *buf)
646 {
647 frame_unwind_register (frame->next, regnum, buf);
648 }
649
650 struct value *
651 frame_unwind_register_value (struct frame_info *frame, int regnum)
652 {
653 struct value *value;
654
655 gdb_assert (frame != NULL);
656
657 if (frame_debug)
658 {
659 fprintf_unfiltered (gdb_stdlog, "\
660 { frame_unwind_register_value (frame=%d,regnum=%d(%s),...) ",
661 frame->level, regnum,
662 user_reg_map_regnum_to_name
663 (get_frame_arch (frame), regnum));
664 }
665
666 /* Find the unwinder. */
667 if (frame->unwind == NULL)
668 frame->unwind = frame_unwind_find_by_frame (frame, &frame->prologue_cache);
669
670 /* Ask this frame to unwind its register. */
671 value = frame->unwind->prev_register (frame, &frame->prologue_cache, regnum);
672
673 if (frame_debug)
674 {
675 fprintf_unfiltered (gdb_stdlog, "->");
676 if (value_optimized_out (value))
677 fprintf_unfiltered (gdb_stdlog, " optimized out");
678 else
679 {
680 if (VALUE_LVAL (value) == lval_register)
681 fprintf_unfiltered (gdb_stdlog, " register=%d",
682 VALUE_REGNUM (value));
683 else if (VALUE_LVAL (value) == lval_memory)
684 fprintf_unfiltered (gdb_stdlog, " address=0x%s",
685 paddr_nz (VALUE_ADDRESS (value)));
686 else
687 fprintf_unfiltered (gdb_stdlog, " computed");
688
689 if (value_lazy (value))
690 fprintf_unfiltered (gdb_stdlog, " lazy");
691 else
692 {
693 int i;
694 const gdb_byte *buf = value_contents (value);
695
696 fprintf_unfiltered (gdb_stdlog, " bytes=");
697 fprintf_unfiltered (gdb_stdlog, "[");
698 for (i = 0; i < register_size (get_frame_arch (frame), regnum); i++)
699 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
700 fprintf_unfiltered (gdb_stdlog, "]");
701 }
702 }
703
704 fprintf_unfiltered (gdb_stdlog, " }\n");
705 }
706
707 return value;
708 }
709
710 struct value *
711 get_frame_register_value (struct frame_info *frame, int regnum)
712 {
713 return frame_unwind_register_value (frame->next, regnum);
714 }
715
716 LONGEST
717 frame_unwind_register_signed (struct frame_info *frame, int regnum)
718 {
719 gdb_byte buf[MAX_REGISTER_SIZE];
720 frame_unwind_register (frame, regnum, buf);
721 return extract_signed_integer (buf, register_size (get_frame_arch (frame),
722 regnum));
723 }
724
725 LONGEST
726 get_frame_register_signed (struct frame_info *frame, int regnum)
727 {
728 return frame_unwind_register_signed (frame->next, regnum);
729 }
730
731 ULONGEST
732 frame_unwind_register_unsigned (struct frame_info *frame, int regnum)
733 {
734 gdb_byte buf[MAX_REGISTER_SIZE];
735 frame_unwind_register (frame, regnum, buf);
736 return extract_unsigned_integer (buf, register_size (get_frame_arch (frame),
737 regnum));
738 }
739
740 ULONGEST
741 get_frame_register_unsigned (struct frame_info *frame, int regnum)
742 {
743 return frame_unwind_register_unsigned (frame->next, regnum);
744 }
745
746 void
747 put_frame_register (struct frame_info *frame, int regnum,
748 const gdb_byte *buf)
749 {
750 struct gdbarch *gdbarch = get_frame_arch (frame);
751 int realnum;
752 int optim;
753 enum lval_type lval;
754 CORE_ADDR addr;
755 frame_register (frame, regnum, &optim, &lval, &addr, &realnum, NULL);
756 if (optim)
757 error (_("Attempt to assign to a value that was optimized out."));
758 switch (lval)
759 {
760 case lval_memory:
761 {
762 /* FIXME: write_memory doesn't yet take constant buffers.
763 Arrrg! */
764 gdb_byte tmp[MAX_REGISTER_SIZE];
765 memcpy (tmp, buf, register_size (gdbarch, regnum));
766 write_memory (addr, tmp, register_size (gdbarch, regnum));
767 break;
768 }
769 case lval_register:
770 regcache_cooked_write (get_current_regcache (), realnum, buf);
771 break;
772 default:
773 error (_("Attempt to assign to an unmodifiable value."));
774 }
775 }
776
777 /* frame_register_read ()
778
779 Find and return the value of REGNUM for the specified stack frame.
780 The number of bytes copied is REGISTER_SIZE (REGNUM).
781
782 Returns 0 if the register value could not be found. */
783
784 int
785 frame_register_read (struct frame_info *frame, int regnum,
786 gdb_byte *myaddr)
787 {
788 int optimized;
789 enum lval_type lval;
790 CORE_ADDR addr;
791 int realnum;
792 frame_register (frame, regnum, &optimized, &lval, &addr, &realnum, myaddr);
793
794 return !optimized;
795 }
796
797 int
798 get_frame_register_bytes (struct frame_info *frame, int regnum,
799 CORE_ADDR offset, int len, gdb_byte *myaddr)
800 {
801 struct gdbarch *gdbarch = get_frame_arch (frame);
802 int i;
803 int maxsize;
804 int numregs;
805
806 /* Skip registers wholly inside of OFFSET. */
807 while (offset >= register_size (gdbarch, regnum))
808 {
809 offset -= register_size (gdbarch, regnum);
810 regnum++;
811 }
812
813 /* Ensure that we will not read beyond the end of the register file.
814 This can only ever happen if the debug information is bad. */
815 maxsize = -offset;
816 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
817 for (i = regnum; i < numregs; i++)
818 {
819 int thissize = register_size (gdbarch, i);
820 if (thissize == 0)
821 break; /* This register is not available on this architecture. */
822 maxsize += thissize;
823 }
824 if (len > maxsize)
825 {
826 warning (_("Bad debug information detected: "
827 "Attempt to read %d bytes from registers."), len);
828 return 0;
829 }
830
831 /* Copy the data. */
832 while (len > 0)
833 {
834 int curr_len = register_size (gdbarch, regnum) - offset;
835 if (curr_len > len)
836 curr_len = len;
837
838 if (curr_len == register_size (gdbarch, regnum))
839 {
840 if (!frame_register_read (frame, regnum, myaddr))
841 return 0;
842 }
843 else
844 {
845 gdb_byte buf[MAX_REGISTER_SIZE];
846 if (!frame_register_read (frame, regnum, buf))
847 return 0;
848 memcpy (myaddr, buf + offset, curr_len);
849 }
850
851 myaddr += curr_len;
852 len -= curr_len;
853 offset = 0;
854 regnum++;
855 }
856
857 return 1;
858 }
859
860 void
861 put_frame_register_bytes (struct frame_info *frame, int regnum,
862 CORE_ADDR offset, int len, const gdb_byte *myaddr)
863 {
864 struct gdbarch *gdbarch = get_frame_arch (frame);
865
866 /* Skip registers wholly inside of OFFSET. */
867 while (offset >= register_size (gdbarch, regnum))
868 {
869 offset -= register_size (gdbarch, regnum);
870 regnum++;
871 }
872
873 /* Copy the data. */
874 while (len > 0)
875 {
876 int curr_len = register_size (gdbarch, regnum) - offset;
877 if (curr_len > len)
878 curr_len = len;
879
880 if (curr_len == register_size (gdbarch, regnum))
881 {
882 put_frame_register (frame, regnum, myaddr);
883 }
884 else
885 {
886 gdb_byte buf[MAX_REGISTER_SIZE];
887 frame_register_read (frame, regnum, buf);
888 memcpy (buf + offset, myaddr, curr_len);
889 put_frame_register (frame, regnum, buf);
890 }
891
892 myaddr += curr_len;
893 len -= curr_len;
894 offset = 0;
895 regnum++;
896 }
897 }
898
899 /* Create a sentinel frame. */
900
901 static struct frame_info *
902 create_sentinel_frame (struct regcache *regcache)
903 {
904 struct frame_info *frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
905 frame->level = -1;
906 /* Explicitly initialize the sentinel frame's cache. Provide it
907 with the underlying regcache. In the future additional
908 information, such as the frame's thread will be added. */
909 frame->prologue_cache = sentinel_frame_cache (regcache);
910 /* For the moment there is only one sentinel frame implementation. */
911 frame->unwind = sentinel_frame_unwind;
912 /* Link this frame back to itself. The frame is self referential
913 (the unwound PC is the same as the pc), so make it so. */
914 frame->next = frame;
915 /* Make the sentinel frame's ID valid, but invalid. That way all
916 comparisons with it should fail. */
917 frame->this_id.p = 1;
918 frame->this_id.value = null_frame_id;
919 if (frame_debug)
920 {
921 fprintf_unfiltered (gdb_stdlog, "{ create_sentinel_frame (...) -> ");
922 fprint_frame (gdb_stdlog, frame);
923 fprintf_unfiltered (gdb_stdlog, " }\n");
924 }
925 return frame;
926 }
927
928 /* Info about the innermost stack frame (contents of FP register) */
929
930 static struct frame_info *current_frame;
931
932 /* Cache for frame addresses already read by gdb. Valid only while
933 inferior is stopped. Control variables for the frame cache should
934 be local to this module. */
935
936 static struct obstack frame_cache_obstack;
937
938 void *
939 frame_obstack_zalloc (unsigned long size)
940 {
941 void *data = obstack_alloc (&frame_cache_obstack, size);
942 memset (data, 0, size);
943 return data;
944 }
945
946 /* Return the innermost (currently executing) stack frame. This is
947 split into two functions. The function unwind_to_current_frame()
948 is wrapped in catch exceptions so that, even when the unwind of the
949 sentinel frame fails, the function still returns a stack frame. */
950
951 static int
952 unwind_to_current_frame (struct ui_out *ui_out, void *args)
953 {
954 struct frame_info *frame = get_prev_frame (args);
955 /* A sentinel frame can fail to unwind, e.g., because its PC value
956 lands in somewhere like start. */
957 if (frame == NULL)
958 return 1;
959 current_frame = frame;
960 return 0;
961 }
962
963 struct frame_info *
964 get_current_frame (void)
965 {
966 /* First check, and report, the lack of registers. Having GDB
967 report "No stack!" or "No memory" when the target doesn't even
968 have registers is very confusing. Besides, "printcmd.exp"
969 explicitly checks that ``print $pc'' with no registers prints "No
970 registers". */
971 if (!target_has_registers)
972 error (_("No registers."));
973 if (!target_has_stack)
974 error (_("No stack."));
975 if (!target_has_memory)
976 error (_("No memory."));
977 if (is_executing (inferior_ptid))
978 error (_("Target is executing."));
979
980 if (current_frame == NULL)
981 {
982 struct frame_info *sentinel_frame =
983 create_sentinel_frame (get_current_regcache ());
984 if (catch_exceptions (uiout, unwind_to_current_frame, sentinel_frame,
985 RETURN_MASK_ERROR) != 0)
986 {
987 /* Oops! Fake a current frame? Is this useful? It has a PC
988 of zero, for instance. */
989 current_frame = sentinel_frame;
990 }
991 }
992 return current_frame;
993 }
994
995 /* The "selected" stack frame is used by default for local and arg
996 access. May be zero, for no selected frame. */
997
998 static struct frame_info *selected_frame;
999
1000 static int
1001 has_stack_frames (void)
1002 {
1003 if (!target_has_registers || !target_has_stack || !target_has_memory)
1004 return 0;
1005
1006 /* If the current thread is executing, don't try to read from
1007 it. */
1008 if (is_executing (inferior_ptid))
1009 return 0;
1010
1011 return 1;
1012 }
1013
1014 /* Return the selected frame. Always non-NULL (unless there isn't an
1015 inferior sufficient for creating a frame) in which case an error is
1016 thrown. */
1017
1018 struct frame_info *
1019 get_selected_frame (const char *message)
1020 {
1021 if (selected_frame == NULL)
1022 {
1023 if (message != NULL && !has_stack_frames ())
1024 error (("%s"), message);
1025 /* Hey! Don't trust this. It should really be re-finding the
1026 last selected frame of the currently selected thread. This,
1027 though, is better than nothing. */
1028 select_frame (get_current_frame ());
1029 }
1030 /* There is always a frame. */
1031 gdb_assert (selected_frame != NULL);
1032 return selected_frame;
1033 }
1034
1035 /* This is a variant of get_selected_frame() which can be called when
1036 the inferior does not have a frame; in that case it will return
1037 NULL instead of calling error(). */
1038
1039 struct frame_info *
1040 deprecated_safe_get_selected_frame (void)
1041 {
1042 if (!has_stack_frames ())
1043 return NULL;
1044 return get_selected_frame (NULL);
1045 }
1046
1047 /* Select frame FI (or NULL - to invalidate the current frame). */
1048
1049 void
1050 select_frame (struct frame_info *fi)
1051 {
1052 struct symtab *s;
1053
1054 selected_frame = fi;
1055 /* NOTE: cagney/2002-05-04: FI can be NULL. This occurs when the
1056 frame is being invalidated. */
1057 if (deprecated_selected_frame_level_changed_hook)
1058 deprecated_selected_frame_level_changed_hook (frame_relative_level (fi));
1059
1060 /* FIXME: kseitz/2002-08-28: It would be nice to call
1061 selected_frame_level_changed_event() right here, but due to limitations
1062 in the current interfaces, we would end up flooding UIs with events
1063 because select_frame() is used extensively internally.
1064
1065 Once we have frame-parameterized frame (and frame-related) commands,
1066 the event notification can be moved here, since this function will only
1067 be called when the user's selected frame is being changed. */
1068
1069 /* Ensure that symbols for this frame are read in. Also, determine the
1070 source language of this frame, and switch to it if desired. */
1071 if (fi)
1072 {
1073 /* We retrieve the frame's symtab by using the frame PC. However
1074 we cannot use the frame PC as-is, because it usually points to
1075 the instruction following the "call", which is sometimes the
1076 first instruction of another function. So we rely on
1077 get_frame_address_in_block() which provides us with a PC which
1078 is guaranteed to be inside the frame's code block. */
1079 s = find_pc_symtab (get_frame_address_in_block (fi));
1080 if (s
1081 && s->language != current_language->la_language
1082 && s->language != language_unknown
1083 && language_mode == language_mode_auto)
1084 {
1085 set_language (s->language);
1086 }
1087 }
1088 }
1089
1090 /* Create an arbitrary (i.e. address specified by user) or innermost frame.
1091 Always returns a non-NULL value. */
1092
1093 struct frame_info *
1094 create_new_frame (CORE_ADDR addr, CORE_ADDR pc)
1095 {
1096 struct frame_info *fi;
1097
1098 if (frame_debug)
1099 {
1100 fprintf_unfiltered (gdb_stdlog,
1101 "{ create_new_frame (addr=0x%s, pc=0x%s) ",
1102 paddr_nz (addr), paddr_nz (pc));
1103 }
1104
1105 fi = FRAME_OBSTACK_ZALLOC (struct frame_info);
1106
1107 fi->next = create_sentinel_frame (get_current_regcache ());
1108
1109 /* Select/initialize both the unwind function and the frame's type
1110 based on the PC. */
1111 fi->unwind = frame_unwind_find_by_frame (fi, &fi->prologue_cache);
1112
1113 fi->this_id.p = 1;
1114 fi->this_id.value.stack_addr = addr;
1115 /* While we're at it, update this frame's cached PC value, found
1116 in the next frame. Oh for the day when "struct frame_info"
1117 is opaque and this hack on hack can just go away. */
1118 fi->next->prev_pc.value = pc;
1119 fi->next->prev_pc.p = 1;
1120
1121 if (frame_debug)
1122 {
1123 fprintf_unfiltered (gdb_stdlog, "-> ");
1124 fprint_frame (gdb_stdlog, fi);
1125 fprintf_unfiltered (gdb_stdlog, " }\n");
1126 }
1127
1128 return fi;
1129 }
1130
1131 /* Return the frame that THIS_FRAME calls (NULL if THIS_FRAME is the
1132 innermost frame). Be careful to not fall off the bottom of the
1133 frame chain and onto the sentinel frame. */
1134
1135 struct frame_info *
1136 get_next_frame (struct frame_info *this_frame)
1137 {
1138 if (this_frame->level > 0)
1139 return this_frame->next;
1140 else
1141 return NULL;
1142 }
1143
1144 /* Observer for the target_changed event. */
1145
1146 void
1147 frame_observer_target_changed (struct target_ops *target)
1148 {
1149 reinit_frame_cache ();
1150 }
1151
1152 /* Flush the entire frame cache. */
1153
1154 void
1155 reinit_frame_cache (void)
1156 {
1157 struct frame_info *fi;
1158
1159 /* Tear down all frame caches. */
1160 for (fi = current_frame; fi != NULL; fi = fi->prev)
1161 {
1162 if (fi->prologue_cache && fi->unwind->dealloc_cache)
1163 fi->unwind->dealloc_cache (fi, fi->prologue_cache);
1164 if (fi->base_cache && fi->base->unwind->dealloc_cache)
1165 fi->base->unwind->dealloc_cache (fi, fi->base_cache);
1166 }
1167
1168 /* Since we can't really be sure what the first object allocated was */
1169 obstack_free (&frame_cache_obstack, 0);
1170 obstack_init (&frame_cache_obstack);
1171
1172 if (current_frame != NULL)
1173 annotate_frames_invalid ();
1174
1175 current_frame = NULL; /* Invalidate cache */
1176 select_frame (NULL);
1177 if (frame_debug)
1178 fprintf_unfiltered (gdb_stdlog, "{ reinit_frame_cache () }\n");
1179 }
1180
1181 /* Find where a register is saved (in memory or another register).
1182 The result of frame_register_unwind is just where it is saved
1183 relative to this particular frame. */
1184
1185 static void
1186 frame_register_unwind_location (struct frame_info *this_frame, int regnum,
1187 int *optimizedp, enum lval_type *lvalp,
1188 CORE_ADDR *addrp, int *realnump)
1189 {
1190 gdb_assert (this_frame == NULL || this_frame->level >= 0);
1191
1192 while (this_frame != NULL)
1193 {
1194 frame_register_unwind (this_frame, regnum, optimizedp, lvalp,
1195 addrp, realnump, NULL);
1196
1197 if (*optimizedp)
1198 break;
1199
1200 if (*lvalp != lval_register)
1201 break;
1202
1203 regnum = *realnump;
1204 this_frame = get_next_frame (this_frame);
1205 }
1206 }
1207
1208 /* Return a "struct frame_info" corresponding to the frame that called
1209 THIS_FRAME. Returns NULL if there is no such frame.
1210
1211 Unlike get_prev_frame, this function always tries to unwind the
1212 frame. */
1213
1214 static struct frame_info *
1215 get_prev_frame_1 (struct frame_info *this_frame)
1216 {
1217 struct frame_info *prev_frame;
1218 struct frame_id this_id;
1219 struct gdbarch *gdbarch;
1220
1221 gdb_assert (this_frame != NULL);
1222 gdbarch = get_frame_arch (this_frame);
1223
1224 if (frame_debug)
1225 {
1226 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame_1 (this_frame=");
1227 if (this_frame != NULL)
1228 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1229 else
1230 fprintf_unfiltered (gdb_stdlog, "<NULL>");
1231 fprintf_unfiltered (gdb_stdlog, ") ");
1232 }
1233
1234 /* Only try to do the unwind once. */
1235 if (this_frame->prev_p)
1236 {
1237 if (frame_debug)
1238 {
1239 fprintf_unfiltered (gdb_stdlog, "-> ");
1240 fprint_frame (gdb_stdlog, this_frame->prev);
1241 fprintf_unfiltered (gdb_stdlog, " // cached \n");
1242 }
1243 return this_frame->prev;
1244 }
1245
1246 /* If the frame unwinder hasn't been selected yet, we must do so
1247 before setting prev_p; otherwise the check for misbehaved
1248 sniffers will think that this frame's sniffer tried to unwind
1249 further (see frame_cleanup_after_sniffer). */
1250 if (this_frame->unwind == NULL)
1251 this_frame->unwind
1252 = frame_unwind_find_by_frame (this_frame, &this_frame->prologue_cache);
1253
1254 this_frame->prev_p = 1;
1255 this_frame->stop_reason = UNWIND_NO_REASON;
1256
1257 /* Check that this frame's ID was valid. If it wasn't, don't try to
1258 unwind to the prev frame. Be careful to not apply this test to
1259 the sentinel frame. */
1260 this_id = get_frame_id (this_frame);
1261 if (this_frame->level >= 0 && !frame_id_p (this_id))
1262 {
1263 if (frame_debug)
1264 {
1265 fprintf_unfiltered (gdb_stdlog, "-> ");
1266 fprint_frame (gdb_stdlog, NULL);
1267 fprintf_unfiltered (gdb_stdlog, " // this ID is NULL }\n");
1268 }
1269 this_frame->stop_reason = UNWIND_NULL_ID;
1270 return NULL;
1271 }
1272
1273 /* Check that this frame's ID isn't inner to (younger, below, next)
1274 the next frame. This happens when a frame unwind goes backwards.
1275 This check is valid only if the next frame is NORMAL. See the
1276 comment at frame_id_inner for details. */
1277 if (this_frame->next->unwind->type == NORMAL_FRAME
1278 && frame_id_inner (get_frame_arch (this_frame->next), this_id,
1279 get_frame_id (this_frame->next)))
1280 {
1281 if (frame_debug)
1282 {
1283 fprintf_unfiltered (gdb_stdlog, "-> ");
1284 fprint_frame (gdb_stdlog, NULL);
1285 fprintf_unfiltered (gdb_stdlog, " // this frame ID is inner }\n");
1286 }
1287 this_frame->stop_reason = UNWIND_INNER_ID;
1288 return NULL;
1289 }
1290
1291 /* Check that this and the next frame are not identical. If they
1292 are, there is most likely a stack cycle. As with the inner-than
1293 test above, avoid comparing the inner-most and sentinel frames. */
1294 if (this_frame->level > 0
1295 && frame_id_eq (this_id, get_frame_id (this_frame->next)))
1296 {
1297 if (frame_debug)
1298 {
1299 fprintf_unfiltered (gdb_stdlog, "-> ");
1300 fprint_frame (gdb_stdlog, NULL);
1301 fprintf_unfiltered (gdb_stdlog, " // this frame has same ID }\n");
1302 }
1303 this_frame->stop_reason = UNWIND_SAME_ID;
1304 return NULL;
1305 }
1306
1307 /* Check that this and the next frame do not unwind the PC register
1308 to the same memory location. If they do, then even though they
1309 have different frame IDs, the new frame will be bogus; two
1310 functions can't share a register save slot for the PC. This can
1311 happen when the prologue analyzer finds a stack adjustment, but
1312 no PC save.
1313
1314 This check does assume that the "PC register" is roughly a
1315 traditional PC, even if the gdbarch_unwind_pc method adjusts
1316 it (we do not rely on the value, only on the unwound PC being
1317 dependent on this value). A potential improvement would be
1318 to have the frame prev_pc method and the gdbarch unwind_pc
1319 method set the same lval and location information as
1320 frame_register_unwind. */
1321 if (this_frame->level > 0
1322 && gdbarch_pc_regnum (gdbarch) >= 0
1323 && get_frame_type (this_frame) == NORMAL_FRAME
1324 && get_frame_type (this_frame->next) == NORMAL_FRAME)
1325 {
1326 int optimized, realnum, nrealnum;
1327 enum lval_type lval, nlval;
1328 CORE_ADDR addr, naddr;
1329
1330 frame_register_unwind_location (this_frame,
1331 gdbarch_pc_regnum (gdbarch),
1332 &optimized, &lval, &addr, &realnum);
1333 frame_register_unwind_location (get_next_frame (this_frame),
1334 gdbarch_pc_regnum (gdbarch),
1335 &optimized, &nlval, &naddr, &nrealnum);
1336
1337 if ((lval == lval_memory && lval == nlval && addr == naddr)
1338 || (lval == lval_register && lval == nlval && realnum == nrealnum))
1339 {
1340 if (frame_debug)
1341 {
1342 fprintf_unfiltered (gdb_stdlog, "-> ");
1343 fprint_frame (gdb_stdlog, NULL);
1344 fprintf_unfiltered (gdb_stdlog, " // no saved PC }\n");
1345 }
1346
1347 this_frame->stop_reason = UNWIND_NO_SAVED_PC;
1348 this_frame->prev = NULL;
1349 return NULL;
1350 }
1351 }
1352
1353 /* Allocate the new frame but do not wire it in to the frame chain.
1354 Some (bad) code in INIT_FRAME_EXTRA_INFO tries to look along
1355 frame->next to pull some fancy tricks (of course such code is, by
1356 definition, recursive). Try to prevent it.
1357
1358 There is no reason to worry about memory leaks, should the
1359 remainder of the function fail. The allocated memory will be
1360 quickly reclaimed when the frame cache is flushed, and the `we've
1361 been here before' check above will stop repeated memory
1362 allocation calls. */
1363 prev_frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
1364 prev_frame->level = this_frame->level + 1;
1365
1366 /* Don't yet compute ->unwind (and hence ->type). It is computed
1367 on-demand in get_frame_type, frame_register_unwind, and
1368 get_frame_id. */
1369
1370 /* Don't yet compute the frame's ID. It is computed on-demand by
1371 get_frame_id(). */
1372
1373 /* The unwound frame ID is validate at the start of this function,
1374 as part of the logic to decide if that frame should be further
1375 unwound, and not here while the prev frame is being created.
1376 Doing this makes it possible for the user to examine a frame that
1377 has an invalid frame ID.
1378
1379 Some very old VAX code noted: [...] For the sake of argument,
1380 suppose that the stack is somewhat trashed (which is one reason
1381 that "info frame" exists). So, return 0 (indicating we don't
1382 know the address of the arglist) if we don't know what frame this
1383 frame calls. */
1384
1385 /* Link it in. */
1386 this_frame->prev = prev_frame;
1387 prev_frame->next = this_frame;
1388
1389 if (frame_debug)
1390 {
1391 fprintf_unfiltered (gdb_stdlog, "-> ");
1392 fprint_frame (gdb_stdlog, prev_frame);
1393 fprintf_unfiltered (gdb_stdlog, " }\n");
1394 }
1395
1396 return prev_frame;
1397 }
1398
1399 /* Debug routine to print a NULL frame being returned. */
1400
1401 static void
1402 frame_debug_got_null_frame (struct frame_info *this_frame,
1403 const char *reason)
1404 {
1405 if (frame_debug)
1406 {
1407 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame (this_frame=");
1408 if (this_frame != NULL)
1409 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1410 else
1411 fprintf_unfiltered (gdb_stdlog, "<NULL>");
1412 fprintf_unfiltered (gdb_stdlog, ") -> // %s}\n", reason);
1413 }
1414 }
1415
1416 /* Is this (non-sentinel) frame in the "main"() function? */
1417
1418 static int
1419 inside_main_func (struct frame_info *this_frame)
1420 {
1421 struct minimal_symbol *msymbol;
1422 CORE_ADDR maddr;
1423
1424 if (symfile_objfile == 0)
1425 return 0;
1426 msymbol = lookup_minimal_symbol (main_name (), NULL, symfile_objfile);
1427 if (msymbol == NULL)
1428 return 0;
1429 /* Make certain that the code, and not descriptor, address is
1430 returned. */
1431 maddr = gdbarch_convert_from_func_ptr_addr (get_frame_arch (this_frame),
1432 SYMBOL_VALUE_ADDRESS (msymbol),
1433 &current_target);
1434 return maddr == get_frame_func (this_frame);
1435 }
1436
1437 /* Test whether THIS_FRAME is inside the process entry point function. */
1438
1439 static int
1440 inside_entry_func (struct frame_info *this_frame)
1441 {
1442 return (get_frame_func (this_frame) == entry_point_address ());
1443 }
1444
1445 /* Return a structure containing various interesting information about
1446 the frame that called THIS_FRAME. Returns NULL if there is entier
1447 no such frame or the frame fails any of a set of target-independent
1448 condition that should terminate the frame chain (e.g., as unwinding
1449 past main()).
1450
1451 This function should not contain target-dependent tests, such as
1452 checking whether the program-counter is zero. */
1453
1454 struct frame_info *
1455 get_prev_frame (struct frame_info *this_frame)
1456 {
1457 struct frame_info *prev_frame;
1458
1459 /* Return the inner-most frame, when the caller passes in NULL. */
1460 /* NOTE: cagney/2002-11-09: Not sure how this would happen. The
1461 caller should have previously obtained a valid frame using
1462 get_selected_frame() and then called this code - only possibility
1463 I can think of is code behaving badly.
1464
1465 NOTE: cagney/2003-01-10: Talk about code behaving badly. Check
1466 block_innermost_frame(). It does the sequence: frame = NULL;
1467 while (1) { frame = get_prev_frame (frame); .... }. Ulgh! Why
1468 it couldn't be written better, I don't know.
1469
1470 NOTE: cagney/2003-01-11: I suspect what is happening in
1471 block_innermost_frame() is, when the target has no state
1472 (registers, memory, ...), it is still calling this function. The
1473 assumption being that this function will return NULL indicating
1474 that a frame isn't possible, rather than checking that the target
1475 has state and then calling get_current_frame() and
1476 get_prev_frame(). This is a guess mind. */
1477 if (this_frame == NULL)
1478 {
1479 /* NOTE: cagney/2002-11-09: There was a code segment here that
1480 would error out when CURRENT_FRAME was NULL. The comment
1481 that went with it made the claim ...
1482
1483 ``This screws value_of_variable, which just wants a nice
1484 clean NULL return from block_innermost_frame if there are no
1485 frames. I don't think I've ever seen this message happen
1486 otherwise. And returning NULL here is a perfectly legitimate
1487 thing to do.''
1488
1489 Per the above, this code shouldn't even be called with a NULL
1490 THIS_FRAME. */
1491 frame_debug_got_null_frame (this_frame, "this_frame NULL");
1492 return current_frame;
1493 }
1494
1495 /* There is always a frame. If this assertion fails, suspect that
1496 something should be calling get_selected_frame() or
1497 get_current_frame(). */
1498 gdb_assert (this_frame != NULL);
1499
1500 /* tausq/2004-12-07: Dummy frames are skipped because it doesn't make much
1501 sense to stop unwinding at a dummy frame. One place where a dummy
1502 frame may have an address "inside_main_func" is on HPUX. On HPUX, the
1503 pcsqh register (space register for the instruction at the head of the
1504 instruction queue) cannot be written directly; the only way to set it
1505 is to branch to code that is in the target space. In order to implement
1506 frame dummies on HPUX, the called function is made to jump back to where
1507 the inferior was when the user function was called. If gdb was inside
1508 the main function when we created the dummy frame, the dummy frame will
1509 point inside the main function. */
1510 if (this_frame->level >= 0
1511 && get_frame_type (this_frame) != DUMMY_FRAME
1512 && !backtrace_past_main
1513 && inside_main_func (this_frame))
1514 /* Don't unwind past main(). Note, this is done _before_ the
1515 frame has been marked as previously unwound. That way if the
1516 user later decides to enable unwinds past main(), that will
1517 automatically happen. */
1518 {
1519 frame_debug_got_null_frame (this_frame, "inside main func");
1520 return NULL;
1521 }
1522
1523 /* If the user's backtrace limit has been exceeded, stop. We must
1524 add two to the current level; one of those accounts for backtrace_limit
1525 being 1-based and the level being 0-based, and the other accounts for
1526 the level of the new frame instead of the level of the current
1527 frame. */
1528 if (this_frame->level + 2 > backtrace_limit)
1529 {
1530 frame_debug_got_null_frame (this_frame, "backtrace limit exceeded");
1531 return NULL;
1532 }
1533
1534 /* If we're already inside the entry function for the main objfile,
1535 then it isn't valid. Don't apply this test to a dummy frame -
1536 dummy frame PCs typically land in the entry func. Don't apply
1537 this test to the sentinel frame. Sentinel frames should always
1538 be allowed to unwind. */
1539 /* NOTE: cagney/2003-07-07: Fixed a bug in inside_main_func() -
1540 wasn't checking for "main" in the minimal symbols. With that
1541 fixed asm-source tests now stop in "main" instead of halting the
1542 backtrace in weird and wonderful ways somewhere inside the entry
1543 file. Suspect that tests for inside the entry file/func were
1544 added to work around that (now fixed) case. */
1545 /* NOTE: cagney/2003-07-15: danielj (if I'm reading it right)
1546 suggested having the inside_entry_func test use the
1547 inside_main_func() msymbol trick (along with entry_point_address()
1548 I guess) to determine the address range of the start function.
1549 That should provide a far better stopper than the current
1550 heuristics. */
1551 /* NOTE: tausq/2004-10-09: this is needed if, for example, the compiler
1552 applied tail-call optimizations to main so that a function called
1553 from main returns directly to the caller of main. Since we don't
1554 stop at main, we should at least stop at the entry point of the
1555 application. */
1556 if (!backtrace_past_entry
1557 && get_frame_type (this_frame) != DUMMY_FRAME && this_frame->level >= 0
1558 && inside_entry_func (this_frame))
1559 {
1560 frame_debug_got_null_frame (this_frame, "inside entry func");
1561 return NULL;
1562 }
1563
1564 /* Assume that the only way to get a zero PC is through something
1565 like a SIGSEGV or a dummy frame, and hence that NORMAL frames
1566 will never unwind a zero PC. */
1567 if (this_frame->level > 0
1568 && get_frame_type (this_frame) == NORMAL_FRAME
1569 && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME
1570 && get_frame_pc (this_frame) == 0)
1571 {
1572 frame_debug_got_null_frame (this_frame, "zero PC");
1573 return NULL;
1574 }
1575
1576 return get_prev_frame_1 (this_frame);
1577 }
1578
1579 CORE_ADDR
1580 get_frame_pc (struct frame_info *frame)
1581 {
1582 gdb_assert (frame->next != NULL);
1583 return frame_pc_unwind (frame->next);
1584 }
1585
1586 /* Return an address that falls within THIS_FRAME's code block. */
1587
1588 CORE_ADDR
1589 get_frame_address_in_block (struct frame_info *this_frame)
1590 {
1591 /* A draft address. */
1592 CORE_ADDR pc = get_frame_pc (this_frame);
1593
1594 struct frame_info *next_frame = this_frame->next;
1595
1596 /* Calling get_frame_pc returns the resume address for THIS_FRAME.
1597 Normally the resume address is inside the body of the function
1598 associated with THIS_FRAME, but there is a special case: when
1599 calling a function which the compiler knows will never return
1600 (for instance abort), the call may be the very last instruction
1601 in the calling function. The resume address will point after the
1602 call and may be at the beginning of a different function
1603 entirely.
1604
1605 If THIS_FRAME is a signal frame or dummy frame, then we should
1606 not adjust the unwound PC. For a dummy frame, GDB pushed the
1607 resume address manually onto the stack. For a signal frame, the
1608 OS may have pushed the resume address manually and invoked the
1609 handler (e.g. GNU/Linux), or invoked the trampoline which called
1610 the signal handler - but in either case the signal handler is
1611 expected to return to the trampoline. So in both of these
1612 cases we know that the resume address is executable and
1613 related. So we only need to adjust the PC if THIS_FRAME
1614 is a normal function.
1615
1616 If the program has been interrupted while THIS_FRAME is current,
1617 then clearly the resume address is inside the associated
1618 function. There are three kinds of interruption: debugger stop
1619 (next frame will be SENTINEL_FRAME), operating system
1620 signal or exception (next frame will be SIGTRAMP_FRAME),
1621 or debugger-induced function call (next frame will be
1622 DUMMY_FRAME). So we only need to adjust the PC if
1623 NEXT_FRAME is a normal function.
1624
1625 We check the type of NEXT_FRAME first, since it is already
1626 known; frame type is determined by the unwinder, and since
1627 we have THIS_FRAME we've already selected an unwinder for
1628 NEXT_FRAME. */
1629 if (get_frame_type (next_frame) == NORMAL_FRAME
1630 && get_frame_type (this_frame) == NORMAL_FRAME)
1631 return pc - 1;
1632
1633 return pc;
1634 }
1635
1636 static int
1637 pc_notcurrent (struct frame_info *frame)
1638 {
1639 /* If FRAME is not the innermost frame, that normally means that
1640 FRAME->pc points at the return instruction (which is *after* the
1641 call instruction), and we want to get the line containing the
1642 call (because the call is where the user thinks the program is).
1643 However, if the next frame is either a SIGTRAMP_FRAME or a
1644 DUMMY_FRAME, then the next frame will contain a saved interrupt
1645 PC and such a PC indicates the current (rather than next)
1646 instruction/line, consequently, for such cases, want to get the
1647 line containing fi->pc. */
1648 struct frame_info *next = get_next_frame (frame);
1649 int notcurrent = (next != NULL && get_frame_type (next) == NORMAL_FRAME);
1650 return notcurrent;
1651 }
1652
1653 void
1654 find_frame_sal (struct frame_info *frame, struct symtab_and_line *sal)
1655 {
1656 (*sal) = find_pc_line (get_frame_pc (frame), pc_notcurrent (frame));
1657 }
1658
1659 /* Per "frame.h", return the ``address'' of the frame. Code should
1660 really be using get_frame_id(). */
1661 CORE_ADDR
1662 get_frame_base (struct frame_info *fi)
1663 {
1664 return get_frame_id (fi).stack_addr;
1665 }
1666
1667 /* High-level offsets into the frame. Used by the debug info. */
1668
1669 CORE_ADDR
1670 get_frame_base_address (struct frame_info *fi)
1671 {
1672 if (get_frame_type (fi) != NORMAL_FRAME)
1673 return 0;
1674 if (fi->base == NULL)
1675 fi->base = frame_base_find_by_frame (fi);
1676 /* Sneaky: If the low-level unwind and high-level base code share a
1677 common unwinder, let them share the prologue cache. */
1678 if (fi->base->unwind == fi->unwind)
1679 return fi->base->this_base (fi, &fi->prologue_cache);
1680 return fi->base->this_base (fi, &fi->base_cache);
1681 }
1682
1683 CORE_ADDR
1684 get_frame_locals_address (struct frame_info *fi)
1685 {
1686 void **cache;
1687 if (get_frame_type (fi) != NORMAL_FRAME)
1688 return 0;
1689 /* If there isn't a frame address method, find it. */
1690 if (fi->base == NULL)
1691 fi->base = frame_base_find_by_frame (fi);
1692 /* Sneaky: If the low-level unwind and high-level base code share a
1693 common unwinder, let them share the prologue cache. */
1694 if (fi->base->unwind == fi->unwind)
1695 return fi->base->this_locals (fi, &fi->prologue_cache);
1696 return fi->base->this_locals (fi, &fi->base_cache);
1697 }
1698
1699 CORE_ADDR
1700 get_frame_args_address (struct frame_info *fi)
1701 {
1702 void **cache;
1703 if (get_frame_type (fi) != NORMAL_FRAME)
1704 return 0;
1705 /* If there isn't a frame address method, find it. */
1706 if (fi->base == NULL)
1707 fi->base = frame_base_find_by_frame (fi);
1708 /* Sneaky: If the low-level unwind and high-level base code share a
1709 common unwinder, let them share the prologue cache. */
1710 if (fi->base->unwind == fi->unwind)
1711 return fi->base->this_args (fi, &fi->prologue_cache);
1712 return fi->base->this_args (fi, &fi->base_cache);
1713 }
1714
1715 /* Level of the selected frame: 0 for innermost, 1 for its caller, ...
1716 or -1 for a NULL frame. */
1717
1718 int
1719 frame_relative_level (struct frame_info *fi)
1720 {
1721 if (fi == NULL)
1722 return -1;
1723 else
1724 return fi->level;
1725 }
1726
1727 enum frame_type
1728 get_frame_type (struct frame_info *frame)
1729 {
1730 if (frame->unwind == NULL)
1731 /* Initialize the frame's unwinder because that's what
1732 provides the frame's type. */
1733 frame->unwind = frame_unwind_find_by_frame (frame, &frame->prologue_cache);
1734 return frame->unwind->type;
1735 }
1736
1737 /* Memory access methods. */
1738
1739 void
1740 get_frame_memory (struct frame_info *this_frame, CORE_ADDR addr,
1741 gdb_byte *buf, int len)
1742 {
1743 read_memory (addr, buf, len);
1744 }
1745
1746 LONGEST
1747 get_frame_memory_signed (struct frame_info *this_frame, CORE_ADDR addr,
1748 int len)
1749 {
1750 return read_memory_integer (addr, len);
1751 }
1752
1753 ULONGEST
1754 get_frame_memory_unsigned (struct frame_info *this_frame, CORE_ADDR addr,
1755 int len)
1756 {
1757 return read_memory_unsigned_integer (addr, len);
1758 }
1759
1760 int
1761 safe_frame_unwind_memory (struct frame_info *this_frame,
1762 CORE_ADDR addr, gdb_byte *buf, int len)
1763 {
1764 /* NOTE: target_read_memory returns zero on success! */
1765 return !target_read_memory (addr, buf, len);
1766 }
1767
1768 /* Architecture method. */
1769
1770 struct gdbarch *
1771 get_frame_arch (struct frame_info *this_frame)
1772 {
1773 /* In the future, this function will return a per-frame
1774 architecture instead of current_gdbarch. Calling the
1775 routine with a NULL value of this_frame is a bug! */
1776 gdb_assert (this_frame);
1777
1778 return current_gdbarch;
1779 }
1780
1781 /* Stack pointer methods. */
1782
1783 CORE_ADDR
1784 get_frame_sp (struct frame_info *this_frame)
1785 {
1786 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1787 /* Normality - an architecture that provides a way of obtaining any
1788 frame inner-most address. */
1789 if (gdbarch_unwind_sp_p (gdbarch))
1790 /* NOTE drow/2008-06-28: gdbarch_unwind_sp could be converted to
1791 operate on THIS_FRAME now. */
1792 return gdbarch_unwind_sp (gdbarch, this_frame->next);
1793 /* Now things are really are grim. Hope that the value returned by
1794 the gdbarch_sp_regnum register is meaningful. */
1795 if (gdbarch_sp_regnum (gdbarch) >= 0)
1796 return get_frame_register_unsigned (this_frame,
1797 gdbarch_sp_regnum (gdbarch));
1798 internal_error (__FILE__, __LINE__, _("Missing unwind SP method"));
1799 }
1800
1801 /* Return the reason why we can't unwind past FRAME. */
1802
1803 enum unwind_stop_reason
1804 get_frame_unwind_stop_reason (struct frame_info *frame)
1805 {
1806 /* If we haven't tried to unwind past this point yet, then assume
1807 that unwinding would succeed. */
1808 if (frame->prev_p == 0)
1809 return UNWIND_NO_REASON;
1810
1811 /* Otherwise, we set a reason when we succeeded (or failed) to
1812 unwind. */
1813 return frame->stop_reason;
1814 }
1815
1816 /* Return a string explaining REASON. */
1817
1818 const char *
1819 frame_stop_reason_string (enum unwind_stop_reason reason)
1820 {
1821 switch (reason)
1822 {
1823 case UNWIND_NULL_ID:
1824 return _("unwinder did not report frame ID");
1825
1826 case UNWIND_INNER_ID:
1827 return _("previous frame inner to this frame (corrupt stack?)");
1828
1829 case UNWIND_SAME_ID:
1830 return _("previous frame identical to this frame (corrupt stack?)");
1831
1832 case UNWIND_NO_SAVED_PC:
1833 return _("frame did not save the PC");
1834
1835 case UNWIND_NO_REASON:
1836 case UNWIND_FIRST_ERROR:
1837 default:
1838 internal_error (__FILE__, __LINE__,
1839 "Invalid frame stop reason");
1840 }
1841 }
1842
1843 /* Clean up after a failed (wrong unwinder) attempt to unwind past
1844 FRAME. */
1845
1846 static void
1847 frame_cleanup_after_sniffer (void *arg)
1848 {
1849 struct frame_info *frame = arg;
1850
1851 /* The sniffer should not allocate a prologue cache if it did not
1852 match this frame. */
1853 gdb_assert (frame->prologue_cache == NULL);
1854
1855 /* No sniffer should extend the frame chain; sniff based on what is
1856 already certain. */
1857 gdb_assert (!frame->prev_p);
1858
1859 /* The sniffer should not check the frame's ID; that's circular. */
1860 gdb_assert (!frame->this_id.p);
1861
1862 /* Clear cached fields dependent on the unwinder.
1863
1864 The previous PC is independent of the unwinder, but the previous
1865 function is not (see get_frame_address_in_block). */
1866 frame->prev_func.p = 0;
1867 frame->prev_func.addr = 0;
1868
1869 /* Discard the unwinder last, so that we can easily find it if an assertion
1870 in this function triggers. */
1871 frame->unwind = NULL;
1872 }
1873
1874 /* Set FRAME's unwinder temporarily, so that we can call a sniffer.
1875 Return a cleanup which should be called if unwinding fails, and
1876 discarded if it succeeds. */
1877
1878 struct cleanup *
1879 frame_prepare_for_sniffer (struct frame_info *frame,
1880 const struct frame_unwind *unwind)
1881 {
1882 gdb_assert (frame->unwind == NULL);
1883 frame->unwind = unwind;
1884 return make_cleanup (frame_cleanup_after_sniffer, frame);
1885 }
1886
1887 extern initialize_file_ftype _initialize_frame; /* -Wmissing-prototypes */
1888
1889 static struct cmd_list_element *set_backtrace_cmdlist;
1890 static struct cmd_list_element *show_backtrace_cmdlist;
1891
1892 static void
1893 set_backtrace_cmd (char *args, int from_tty)
1894 {
1895 help_list (set_backtrace_cmdlist, "set backtrace ", -1, gdb_stdout);
1896 }
1897
1898 static void
1899 show_backtrace_cmd (char *args, int from_tty)
1900 {
1901 cmd_show_list (show_backtrace_cmdlist, from_tty, "");
1902 }
1903
1904 void
1905 _initialize_frame (void)
1906 {
1907 obstack_init (&frame_cache_obstack);
1908
1909 observer_attach_target_changed (frame_observer_target_changed);
1910
1911 add_prefix_cmd ("backtrace", class_maintenance, set_backtrace_cmd, _("\
1912 Set backtrace specific variables.\n\
1913 Configure backtrace variables such as the backtrace limit"),
1914 &set_backtrace_cmdlist, "set backtrace ",
1915 0/*allow-unknown*/, &setlist);
1916 add_prefix_cmd ("backtrace", class_maintenance, show_backtrace_cmd, _("\
1917 Show backtrace specific variables\n\
1918 Show backtrace variables such as the backtrace limit"),
1919 &show_backtrace_cmdlist, "show backtrace ",
1920 0/*allow-unknown*/, &showlist);
1921
1922 add_setshow_boolean_cmd ("past-main", class_obscure,
1923 &backtrace_past_main, _("\
1924 Set whether backtraces should continue past \"main\"."), _("\
1925 Show whether backtraces should continue past \"main\"."), _("\
1926 Normally the caller of \"main\" is not of interest, so GDB will terminate\n\
1927 the backtrace at \"main\". Set this variable if you need to see the rest\n\
1928 of the stack trace."),
1929 NULL,
1930 show_backtrace_past_main,
1931 &set_backtrace_cmdlist,
1932 &show_backtrace_cmdlist);
1933
1934 add_setshow_boolean_cmd ("past-entry", class_obscure,
1935 &backtrace_past_entry, _("\
1936 Set whether backtraces should continue past the entry point of a program."),
1937 _("\
1938 Show whether backtraces should continue past the entry point of a program."),
1939 _("\
1940 Normally there are no callers beyond the entry point of a program, so GDB\n\
1941 will terminate the backtrace there. Set this variable if you need to see \n\
1942 the rest of the stack trace."),
1943 NULL,
1944 show_backtrace_past_entry,
1945 &set_backtrace_cmdlist,
1946 &show_backtrace_cmdlist);
1947
1948 add_setshow_integer_cmd ("limit", class_obscure,
1949 &backtrace_limit, _("\
1950 Set an upper bound on the number of backtrace levels."), _("\
1951 Show the upper bound on the number of backtrace levels."), _("\
1952 No more than the specified number of frames can be displayed or examined.\n\
1953 Zero is unlimited."),
1954 NULL,
1955 show_backtrace_limit,
1956 &set_backtrace_cmdlist,
1957 &show_backtrace_cmdlist);
1958
1959 /* Debug this files internals. */
1960 add_setshow_zinteger_cmd ("frame", class_maintenance, &frame_debug, _("\
1961 Set frame debugging."), _("\
1962 Show frame debugging."), _("\
1963 When non-zero, frame specific internal debugging is enabled."),
1964 NULL,
1965 show_frame_debug,
1966 &setdebuglist, &showdebuglist);
1967 }