f13813367afd64a54104ac37d2cbd5a51556a911
[binutils-gdb.git] / gdb / frame.c
1 /* Cache and manage frames for GDB, the GNU debugger.
2
3 Copyright (C) 1986, 1987, 1989, 1991, 1994, 1995, 1996, 1998, 2000, 2001,
4 2002, 2003, 2004, 2007, 2008, 2009 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "frame.h"
23 #include "target.h"
24 #include "value.h"
25 #include "inferior.h" /* for inferior_ptid */
26 #include "regcache.h"
27 #include "gdb_assert.h"
28 #include "gdb_string.h"
29 #include "user-regs.h"
30 #include "gdb_obstack.h"
31 #include "dummy-frame.h"
32 #include "sentinel-frame.h"
33 #include "gdbcore.h"
34 #include "annotate.h"
35 #include "language.h"
36 #include "frame-unwind.h"
37 #include "frame-base.h"
38 #include "command.h"
39 #include "gdbcmd.h"
40 #include "observer.h"
41 #include "objfiles.h"
42 #include "exceptions.h"
43 #include "gdbthread.h"
44
45 static struct frame_info *get_prev_frame_1 (struct frame_info *this_frame);
46
47 /* We keep a cache of stack frames, each of which is a "struct
48 frame_info". The innermost one gets allocated (in
49 wait_for_inferior) each time the inferior stops; current_frame
50 points to it. Additional frames get allocated (in get_prev_frame)
51 as needed, and are chained through the next and prev fields. Any
52 time that the frame cache becomes invalid (most notably when we
53 execute something, but also if we change how we interpret the
54 frames (e.g. "set heuristic-fence-post" in mips-tdep.c, or anything
55 which reads new symbols)), we should call reinit_frame_cache. */
56
57 struct frame_info
58 {
59 /* Level of this frame. The inner-most (youngest) frame is at level
60 0. As you move towards the outer-most (oldest) frame, the level
61 increases. This is a cached value. It could just as easily be
62 computed by counting back from the selected frame to the inner
63 most frame. */
64 /* NOTE: cagney/2002-04-05: Perhaps a level of ``-1'' should be
65 reserved to indicate a bogus frame - one that has been created
66 just to keep GDB happy (GDB always needs a frame). For the
67 moment leave this as speculation. */
68 int level;
69
70 /* The frame's low-level unwinder and corresponding cache. The
71 low-level unwinder is responsible for unwinding register values
72 for the previous frame. The low-level unwind methods are
73 selected based on the presence, or otherwise, of register unwind
74 information such as CFI. */
75 void *prologue_cache;
76 const struct frame_unwind *unwind;
77
78 /* Cached copy of the previous frame's resume address. */
79 struct {
80 int p;
81 CORE_ADDR value;
82 } prev_pc;
83
84 /* Cached copy of the previous frame's function address. */
85 struct
86 {
87 CORE_ADDR addr;
88 int p;
89 } prev_func;
90
91 /* This frame's ID. */
92 struct
93 {
94 int p;
95 struct frame_id value;
96 } this_id;
97
98 /* The frame's high-level base methods, and corresponding cache.
99 The high level base methods are selected based on the frame's
100 debug info. */
101 const struct frame_base *base;
102 void *base_cache;
103
104 /* Pointers to the next (down, inner, younger) and previous (up,
105 outer, older) frame_info's in the frame cache. */
106 struct frame_info *next; /* down, inner, younger */
107 int prev_p;
108 struct frame_info *prev; /* up, outer, older */
109
110 /* The reason why we could not set PREV, or UNWIND_NO_REASON if we
111 could. Only valid when PREV_P is set. */
112 enum unwind_stop_reason stop_reason;
113 };
114
115 /* Flag to control debugging. */
116
117 int frame_debug;
118 static void
119 show_frame_debug (struct ui_file *file, int from_tty,
120 struct cmd_list_element *c, const char *value)
121 {
122 fprintf_filtered (file, _("Frame debugging is %s.\n"), value);
123 }
124
125 /* Flag to indicate whether backtraces should stop at main et.al. */
126
127 static int backtrace_past_main;
128 static void
129 show_backtrace_past_main (struct ui_file *file, int from_tty,
130 struct cmd_list_element *c, const char *value)
131 {
132 fprintf_filtered (file, _("\
133 Whether backtraces should continue past \"main\" is %s.\n"),
134 value);
135 }
136
137 static int backtrace_past_entry;
138 static void
139 show_backtrace_past_entry (struct ui_file *file, int from_tty,
140 struct cmd_list_element *c, const char *value)
141 {
142 fprintf_filtered (file, _("\
143 Whether backtraces should continue past the entry point of a program is %s.\n"),
144 value);
145 }
146
147 static int backtrace_limit = INT_MAX;
148 static void
149 show_backtrace_limit (struct ui_file *file, int from_tty,
150 struct cmd_list_element *c, const char *value)
151 {
152 fprintf_filtered (file, _("\
153 An upper bound on the number of backtrace levels is %s.\n"),
154 value);
155 }
156
157
158 static void
159 fprint_field (struct ui_file *file, const char *name, int p, CORE_ADDR addr)
160 {
161 if (p)
162 fprintf_unfiltered (file, "%s=0x%s", name, paddr_nz (addr));
163 else
164 fprintf_unfiltered (file, "!%s", name);
165 }
166
167 void
168 fprint_frame_id (struct ui_file *file, struct frame_id id)
169 {
170 fprintf_unfiltered (file, "{");
171 fprint_field (file, "stack", id.stack_addr_p, id.stack_addr);
172 fprintf_unfiltered (file, ",");
173 fprint_field (file, "code", id.code_addr_p, id.code_addr);
174 fprintf_unfiltered (file, ",");
175 fprint_field (file, "special", id.special_addr_p, id.special_addr);
176 fprintf_unfiltered (file, "}");
177 }
178
179 static void
180 fprint_frame_type (struct ui_file *file, enum frame_type type)
181 {
182 switch (type)
183 {
184 case NORMAL_FRAME:
185 fprintf_unfiltered (file, "NORMAL_FRAME");
186 return;
187 case DUMMY_FRAME:
188 fprintf_unfiltered (file, "DUMMY_FRAME");
189 return;
190 case SIGTRAMP_FRAME:
191 fprintf_unfiltered (file, "SIGTRAMP_FRAME");
192 return;
193 default:
194 fprintf_unfiltered (file, "<unknown type>");
195 return;
196 };
197 }
198
199 static void
200 fprint_frame (struct ui_file *file, struct frame_info *fi)
201 {
202 if (fi == NULL)
203 {
204 fprintf_unfiltered (file, "<NULL frame>");
205 return;
206 }
207 fprintf_unfiltered (file, "{");
208 fprintf_unfiltered (file, "level=%d", fi->level);
209 fprintf_unfiltered (file, ",");
210 fprintf_unfiltered (file, "type=");
211 if (fi->unwind != NULL)
212 fprint_frame_type (file, fi->unwind->type);
213 else
214 fprintf_unfiltered (file, "<unknown>");
215 fprintf_unfiltered (file, ",");
216 fprintf_unfiltered (file, "unwind=");
217 if (fi->unwind != NULL)
218 gdb_print_host_address (fi->unwind, file);
219 else
220 fprintf_unfiltered (file, "<unknown>");
221 fprintf_unfiltered (file, ",");
222 fprintf_unfiltered (file, "pc=");
223 if (fi->next != NULL && fi->next->prev_pc.p)
224 fprintf_unfiltered (file, "0x%s", paddr_nz (fi->next->prev_pc.value));
225 else
226 fprintf_unfiltered (file, "<unknown>");
227 fprintf_unfiltered (file, ",");
228 fprintf_unfiltered (file, "id=");
229 if (fi->this_id.p)
230 fprint_frame_id (file, fi->this_id.value);
231 else
232 fprintf_unfiltered (file, "<unknown>");
233 fprintf_unfiltered (file, ",");
234 fprintf_unfiltered (file, "func=");
235 if (fi->next != NULL && fi->next->prev_func.p)
236 fprintf_unfiltered (file, "0x%s", paddr_nz (fi->next->prev_func.addr));
237 else
238 fprintf_unfiltered (file, "<unknown>");
239 fprintf_unfiltered (file, "}");
240 }
241
242 /* Return a frame uniq ID that can be used to, later, re-find the
243 frame. */
244
245 struct frame_id
246 get_frame_id (struct frame_info *fi)
247 {
248 if (fi == NULL)
249 {
250 return null_frame_id;
251 }
252 if (!fi->this_id.p)
253 {
254 if (frame_debug)
255 fprintf_unfiltered (gdb_stdlog, "{ get_frame_id (fi=%d) ",
256 fi->level);
257 /* Find the unwinder. */
258 if (fi->unwind == NULL)
259 fi->unwind = frame_unwind_find_by_frame (fi, &fi->prologue_cache);
260 /* Find THIS frame's ID. */
261 fi->unwind->this_id (fi, &fi->prologue_cache, &fi->this_id.value);
262 fi->this_id.p = 1;
263 if (frame_debug)
264 {
265 fprintf_unfiltered (gdb_stdlog, "-> ");
266 fprint_frame_id (gdb_stdlog, fi->this_id.value);
267 fprintf_unfiltered (gdb_stdlog, " }\n");
268 }
269 }
270 return fi->this_id.value;
271 }
272
273 struct frame_id
274 frame_unwind_id (struct frame_info *next_frame)
275 {
276 /* Use prev_frame, and not get_prev_frame. The latter will truncate
277 the frame chain, leading to this function unintentionally
278 returning a null_frame_id (e.g., when a caller requests the frame
279 ID of "main()"s caller. */
280 return get_frame_id (get_prev_frame_1 (next_frame));
281 }
282
283 const struct frame_id null_frame_id; /* All zeros. */
284
285 struct frame_id
286 frame_id_build_special (CORE_ADDR stack_addr, CORE_ADDR code_addr,
287 CORE_ADDR special_addr)
288 {
289 struct frame_id id = null_frame_id;
290 id.stack_addr = stack_addr;
291 id.stack_addr_p = 1;
292 id.code_addr = code_addr;
293 id.code_addr_p = 1;
294 id.special_addr = special_addr;
295 id.special_addr_p = 1;
296 return id;
297 }
298
299 struct frame_id
300 frame_id_build (CORE_ADDR stack_addr, CORE_ADDR code_addr)
301 {
302 struct frame_id id = null_frame_id;
303 id.stack_addr = stack_addr;
304 id.stack_addr_p = 1;
305 id.code_addr = code_addr;
306 id.code_addr_p = 1;
307 return id;
308 }
309
310 struct frame_id
311 frame_id_build_wild (CORE_ADDR stack_addr)
312 {
313 struct frame_id id = null_frame_id;
314 id.stack_addr = stack_addr;
315 id.stack_addr_p = 1;
316 return id;
317 }
318
319 int
320 frame_id_p (struct frame_id l)
321 {
322 int p;
323 /* The frame is valid iff it has a valid stack address. */
324 p = l.stack_addr_p;
325 if (frame_debug)
326 {
327 fprintf_unfiltered (gdb_stdlog, "{ frame_id_p (l=");
328 fprint_frame_id (gdb_stdlog, l);
329 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", p);
330 }
331 return p;
332 }
333
334 int
335 frame_id_eq (struct frame_id l, struct frame_id r)
336 {
337 int eq;
338 if (!l.stack_addr_p || !r.stack_addr_p)
339 /* Like a NaN, if either ID is invalid, the result is false.
340 Note that a frame ID is invalid iff it is the null frame ID. */
341 eq = 0;
342 else if (l.stack_addr != r.stack_addr)
343 /* If .stack addresses are different, the frames are different. */
344 eq = 0;
345 else if (!l.code_addr_p || !r.code_addr_p)
346 /* An invalid code addr is a wild card, always succeed. */
347 eq = 1;
348 else if (l.code_addr != r.code_addr)
349 /* If .code addresses are different, the frames are different. */
350 eq = 0;
351 else if (!l.special_addr_p || !r.special_addr_p)
352 /* An invalid special addr is a wild card (or unused), always succeed. */
353 eq = 1;
354 else if (l.special_addr == r.special_addr)
355 /* Frames are equal. */
356 eq = 1;
357 else
358 /* No luck. */
359 eq = 0;
360 if (frame_debug)
361 {
362 fprintf_unfiltered (gdb_stdlog, "{ frame_id_eq (l=");
363 fprint_frame_id (gdb_stdlog, l);
364 fprintf_unfiltered (gdb_stdlog, ",r=");
365 fprint_frame_id (gdb_stdlog, r);
366 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", eq);
367 }
368 return eq;
369 }
370
371 /* Safety net to check whether frame ID L should be inner to
372 frame ID R, according to their stack addresses.
373
374 This method cannot be used to compare arbitrary frames, as the
375 ranges of valid stack addresses may be discontiguous (e.g. due
376 to sigaltstack).
377
378 However, it can be used as safety net to discover invalid frame
379 IDs in certain circumstances.
380
381 * If frame NEXT is the immediate inner frame to THIS, and NEXT
382 is a NORMAL frame, then the stack address of NEXT must be
383 inner-than-or-equal to the stack address of THIS.
384
385 Therefore, if frame_id_inner (THIS, NEXT) holds, some unwind
386 error has occurred.
387
388 * If frame NEXT is the immediate inner frame to THIS, and NEXT
389 is a NORMAL frame, and NEXT and THIS have different stack
390 addresses, no other frame in the frame chain may have a stack
391 address in between.
392
393 Therefore, if frame_id_inner (TEST, THIS) holds, but
394 frame_id_inner (TEST, NEXT) does not hold, TEST cannot refer
395 to a valid frame in the frame chain. */
396
397 static int
398 frame_id_inner (struct gdbarch *gdbarch, struct frame_id l, struct frame_id r)
399 {
400 int inner;
401 if (!l.stack_addr_p || !r.stack_addr_p)
402 /* Like NaN, any operation involving an invalid ID always fails. */
403 inner = 0;
404 else
405 /* Only return non-zero when strictly inner than. Note that, per
406 comment in "frame.h", there is some fuzz here. Frameless
407 functions are not strictly inner than (same .stack but
408 different .code and/or .special address). */
409 inner = gdbarch_inner_than (gdbarch, l.stack_addr, r.stack_addr);
410 if (frame_debug)
411 {
412 fprintf_unfiltered (gdb_stdlog, "{ frame_id_inner (l=");
413 fprint_frame_id (gdb_stdlog, l);
414 fprintf_unfiltered (gdb_stdlog, ",r=");
415 fprint_frame_id (gdb_stdlog, r);
416 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", inner);
417 }
418 return inner;
419 }
420
421 struct frame_info *
422 frame_find_by_id (struct frame_id id)
423 {
424 struct frame_info *frame, *prev_frame;
425
426 /* ZERO denotes the null frame, let the caller decide what to do
427 about it. Should it instead return get_current_frame()? */
428 if (!frame_id_p (id))
429 return NULL;
430
431 for (frame = get_current_frame (); ; frame = prev_frame)
432 {
433 struct frame_id this = get_frame_id (frame);
434 if (frame_id_eq (id, this))
435 /* An exact match. */
436 return frame;
437
438 prev_frame = get_prev_frame (frame);
439 if (!prev_frame)
440 return NULL;
441
442 /* As a safety net to avoid unnecessary backtracing while trying
443 to find an invalid ID, we check for a common situation where
444 we can detect from comparing stack addresses that no other
445 frame in the current frame chain can have this ID. See the
446 comment at frame_id_inner for details. */
447 if (get_frame_type (frame) == NORMAL_FRAME
448 && !frame_id_inner (get_frame_arch (frame), id, this)
449 && frame_id_inner (get_frame_arch (prev_frame), id,
450 get_frame_id (prev_frame)))
451 return NULL;
452 }
453 return NULL;
454 }
455
456 CORE_ADDR
457 frame_pc_unwind (struct frame_info *this_frame)
458 {
459 if (!this_frame->prev_pc.p)
460 {
461 CORE_ADDR pc;
462 if (gdbarch_unwind_pc_p (get_frame_arch (this_frame)))
463 {
464 /* The right way. The `pure' way. The one true way. This
465 method depends solely on the register-unwind code to
466 determine the value of registers in THIS frame, and hence
467 the value of this frame's PC (resume address). A typical
468 implementation is no more than:
469
470 frame_unwind_register (this_frame, ISA_PC_REGNUM, buf);
471 return extract_unsigned_integer (buf, size of ISA_PC_REGNUM);
472
473 Note: this method is very heavily dependent on a correct
474 register-unwind implementation, it pays to fix that
475 method first; this method is frame type agnostic, since
476 it only deals with register values, it works with any
477 frame. This is all in stark contrast to the old
478 FRAME_SAVED_PC which would try to directly handle all the
479 different ways that a PC could be unwound. */
480 pc = gdbarch_unwind_pc (get_frame_arch (this_frame), this_frame);
481 }
482 else
483 internal_error (__FILE__, __LINE__, _("No unwind_pc method"));
484 this_frame->prev_pc.value = pc;
485 this_frame->prev_pc.p = 1;
486 if (frame_debug)
487 fprintf_unfiltered (gdb_stdlog,
488 "{ frame_pc_unwind (this_frame=%d) -> 0x%s }\n",
489 this_frame->level,
490 paddr_nz (this_frame->prev_pc.value));
491 }
492 return this_frame->prev_pc.value;
493 }
494
495 CORE_ADDR
496 get_frame_func (struct frame_info *this_frame)
497 {
498 struct frame_info *next_frame = this_frame->next;
499
500 if (!next_frame->prev_func.p)
501 {
502 /* Make certain that this, and not the adjacent, function is
503 found. */
504 CORE_ADDR addr_in_block = get_frame_address_in_block (this_frame);
505 next_frame->prev_func.p = 1;
506 next_frame->prev_func.addr = get_pc_function_start (addr_in_block);
507 if (frame_debug)
508 fprintf_unfiltered (gdb_stdlog,
509 "{ get_frame_func (this_frame=%d) -> 0x%s }\n",
510 this_frame->level,
511 paddr_nz (next_frame->prev_func.addr));
512 }
513 return next_frame->prev_func.addr;
514 }
515
516 static int
517 do_frame_register_read (void *src, int regnum, gdb_byte *buf)
518 {
519 return frame_register_read (src, regnum, buf);
520 }
521
522 struct regcache *
523 frame_save_as_regcache (struct frame_info *this_frame)
524 {
525 struct regcache *regcache = regcache_xmalloc (get_frame_arch (this_frame));
526 struct cleanup *cleanups = make_cleanup_regcache_xfree (regcache);
527 regcache_save (regcache, do_frame_register_read, this_frame);
528 discard_cleanups (cleanups);
529 return regcache;
530 }
531
532 void
533 frame_pop (struct frame_info *this_frame)
534 {
535 struct frame_info *prev_frame;
536 struct regcache *scratch;
537 struct cleanup *cleanups;
538
539 if (get_frame_type (this_frame) == DUMMY_FRAME)
540 {
541 /* Popping a dummy frame involves restoring more than just registers.
542 dummy_frame_pop does all the work. */
543 dummy_frame_pop (get_frame_id (this_frame));
544 return;
545 }
546
547 /* Ensure that we have a frame to pop to. */
548 prev_frame = get_prev_frame_1 (this_frame);
549
550 if (!prev_frame)
551 error (_("Cannot pop the initial frame."));
552
553 /* Make a copy of all the register values unwound from this frame.
554 Save them in a scratch buffer so that there isn't a race between
555 trying to extract the old values from the current regcache while
556 at the same time writing new values into that same cache. */
557 scratch = frame_save_as_regcache (prev_frame);
558 cleanups = make_cleanup_regcache_xfree (scratch);
559
560 /* FIXME: cagney/2003-03-16: It should be possible to tell the
561 target's register cache that it is about to be hit with a burst
562 register transfer and that the sequence of register writes should
563 be batched. The pair target_prepare_to_store() and
564 target_store_registers() kind of suggest this functionality.
565 Unfortunately, they don't implement it. Their lack of a formal
566 definition can lead to targets writing back bogus values
567 (arguably a bug in the target code mind). */
568 /* Now copy those saved registers into the current regcache.
569 Here, regcache_cpy() calls regcache_restore(). */
570 regcache_cpy (get_current_regcache (), scratch);
571 do_cleanups (cleanups);
572
573 /* We've made right mess of GDB's local state, just discard
574 everything. */
575 reinit_frame_cache ();
576 }
577
578 void
579 frame_register_unwind (struct frame_info *frame, int regnum,
580 int *optimizedp, enum lval_type *lvalp,
581 CORE_ADDR *addrp, int *realnump, gdb_byte *bufferp)
582 {
583 struct value *value;
584
585 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
586 that the value proper does not need to be fetched. */
587 gdb_assert (optimizedp != NULL);
588 gdb_assert (lvalp != NULL);
589 gdb_assert (addrp != NULL);
590 gdb_assert (realnump != NULL);
591 /* gdb_assert (bufferp != NULL); */
592
593 value = frame_unwind_register_value (frame, regnum);
594
595 gdb_assert (value != NULL);
596
597 *optimizedp = value_optimized_out (value);
598 *lvalp = VALUE_LVAL (value);
599 *addrp = VALUE_ADDRESS (value);
600 *realnump = VALUE_REGNUM (value);
601
602 if (bufferp)
603 memcpy (bufferp, value_contents_all (value),
604 TYPE_LENGTH (value_type (value)));
605
606 /* Dispose of the new value. This prevents watchpoints from
607 trying to watch the saved frame pointer. */
608 release_value (value);
609 value_free (value);
610 }
611
612 void
613 frame_register (struct frame_info *frame, int regnum,
614 int *optimizedp, enum lval_type *lvalp,
615 CORE_ADDR *addrp, int *realnump, gdb_byte *bufferp)
616 {
617 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
618 that the value proper does not need to be fetched. */
619 gdb_assert (optimizedp != NULL);
620 gdb_assert (lvalp != NULL);
621 gdb_assert (addrp != NULL);
622 gdb_assert (realnump != NULL);
623 /* gdb_assert (bufferp != NULL); */
624
625 /* Obtain the register value by unwinding the register from the next
626 (more inner frame). */
627 gdb_assert (frame != NULL && frame->next != NULL);
628 frame_register_unwind (frame->next, regnum, optimizedp, lvalp, addrp,
629 realnump, bufferp);
630 }
631
632 void
633 frame_unwind_register (struct frame_info *frame, int regnum, gdb_byte *buf)
634 {
635 int optimized;
636 CORE_ADDR addr;
637 int realnum;
638 enum lval_type lval;
639 frame_register_unwind (frame, regnum, &optimized, &lval, &addr,
640 &realnum, buf);
641 }
642
643 void
644 get_frame_register (struct frame_info *frame,
645 int regnum, gdb_byte *buf)
646 {
647 frame_unwind_register (frame->next, regnum, buf);
648 }
649
650 struct value *
651 frame_unwind_register_value (struct frame_info *frame, int regnum)
652 {
653 struct value *value;
654
655 gdb_assert (frame != NULL);
656
657 if (frame_debug)
658 {
659 fprintf_unfiltered (gdb_stdlog, "\
660 { frame_unwind_register_value (frame=%d,regnum=%d(%s),...) ",
661 frame->level, regnum,
662 user_reg_map_regnum_to_name
663 (get_frame_arch (frame), regnum));
664 }
665
666 /* Find the unwinder. */
667 if (frame->unwind == NULL)
668 frame->unwind = frame_unwind_find_by_frame (frame, &frame->prologue_cache);
669
670 /* Ask this frame to unwind its register. */
671 value = frame->unwind->prev_register (frame, &frame->prologue_cache, regnum);
672
673 if (frame_debug)
674 {
675 fprintf_unfiltered (gdb_stdlog, "->");
676 if (value_optimized_out (value))
677 fprintf_unfiltered (gdb_stdlog, " optimized out");
678 else
679 {
680 if (VALUE_LVAL (value) == lval_register)
681 fprintf_unfiltered (gdb_stdlog, " register=%d",
682 VALUE_REGNUM (value));
683 else if (VALUE_LVAL (value) == lval_memory)
684 fprintf_unfiltered (gdb_stdlog, " address=0x%s",
685 paddr_nz (VALUE_ADDRESS (value)));
686 else
687 fprintf_unfiltered (gdb_stdlog, " computed");
688
689 if (value_lazy (value))
690 fprintf_unfiltered (gdb_stdlog, " lazy");
691 else
692 {
693 int i;
694 const gdb_byte *buf = value_contents (value);
695
696 fprintf_unfiltered (gdb_stdlog, " bytes=");
697 fprintf_unfiltered (gdb_stdlog, "[");
698 for (i = 0; i < register_size (get_frame_arch (frame), regnum); i++)
699 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
700 fprintf_unfiltered (gdb_stdlog, "]");
701 }
702 }
703
704 fprintf_unfiltered (gdb_stdlog, " }\n");
705 }
706
707 return value;
708 }
709
710 struct value *
711 get_frame_register_value (struct frame_info *frame, int regnum)
712 {
713 return frame_unwind_register_value (frame->next, regnum);
714 }
715
716 LONGEST
717 frame_unwind_register_signed (struct frame_info *frame, int regnum)
718 {
719 gdb_byte buf[MAX_REGISTER_SIZE];
720 frame_unwind_register (frame, regnum, buf);
721 return extract_signed_integer (buf, register_size (get_frame_arch (frame),
722 regnum));
723 }
724
725 LONGEST
726 get_frame_register_signed (struct frame_info *frame, int regnum)
727 {
728 return frame_unwind_register_signed (frame->next, regnum);
729 }
730
731 ULONGEST
732 frame_unwind_register_unsigned (struct frame_info *frame, int regnum)
733 {
734 gdb_byte buf[MAX_REGISTER_SIZE];
735 frame_unwind_register (frame, regnum, buf);
736 return extract_unsigned_integer (buf, register_size (get_frame_arch (frame),
737 regnum));
738 }
739
740 ULONGEST
741 get_frame_register_unsigned (struct frame_info *frame, int regnum)
742 {
743 return frame_unwind_register_unsigned (frame->next, regnum);
744 }
745
746 void
747 put_frame_register (struct frame_info *frame, int regnum,
748 const gdb_byte *buf)
749 {
750 struct gdbarch *gdbarch = get_frame_arch (frame);
751 int realnum;
752 int optim;
753 enum lval_type lval;
754 CORE_ADDR addr;
755 frame_register (frame, regnum, &optim, &lval, &addr, &realnum, NULL);
756 if (optim)
757 error (_("Attempt to assign to a value that was optimized out."));
758 switch (lval)
759 {
760 case lval_memory:
761 {
762 /* FIXME: write_memory doesn't yet take constant buffers.
763 Arrrg! */
764 gdb_byte tmp[MAX_REGISTER_SIZE];
765 memcpy (tmp, buf, register_size (gdbarch, regnum));
766 write_memory (addr, tmp, register_size (gdbarch, regnum));
767 break;
768 }
769 case lval_register:
770 regcache_cooked_write (get_current_regcache (), realnum, buf);
771 break;
772 default:
773 error (_("Attempt to assign to an unmodifiable value."));
774 }
775 }
776
777 /* frame_register_read ()
778
779 Find and return the value of REGNUM for the specified stack frame.
780 The number of bytes copied is REGISTER_SIZE (REGNUM).
781
782 Returns 0 if the register value could not be found. */
783
784 int
785 frame_register_read (struct frame_info *frame, int regnum,
786 gdb_byte *myaddr)
787 {
788 int optimized;
789 enum lval_type lval;
790 CORE_ADDR addr;
791 int realnum;
792 frame_register (frame, regnum, &optimized, &lval, &addr, &realnum, myaddr);
793
794 return !optimized;
795 }
796
797 int
798 get_frame_register_bytes (struct frame_info *frame, int regnum,
799 CORE_ADDR offset, int len, gdb_byte *myaddr)
800 {
801 struct gdbarch *gdbarch = get_frame_arch (frame);
802 int i;
803 int maxsize;
804 int numregs;
805
806 /* Skip registers wholly inside of OFFSET. */
807 while (offset >= register_size (gdbarch, regnum))
808 {
809 offset -= register_size (gdbarch, regnum);
810 regnum++;
811 }
812
813 /* Ensure that we will not read beyond the end of the register file.
814 This can only ever happen if the debug information is bad. */
815 maxsize = -offset;
816 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
817 for (i = regnum; i < numregs; i++)
818 {
819 int thissize = register_size (gdbarch, i);
820 if (thissize == 0)
821 break; /* This register is not available on this architecture. */
822 maxsize += thissize;
823 }
824 if (len > maxsize)
825 {
826 warning (_("Bad debug information detected: "
827 "Attempt to read %d bytes from registers."), len);
828 return 0;
829 }
830
831 /* Copy the data. */
832 while (len > 0)
833 {
834 int curr_len = register_size (gdbarch, regnum) - offset;
835 if (curr_len > len)
836 curr_len = len;
837
838 if (curr_len == register_size (gdbarch, regnum))
839 {
840 if (!frame_register_read (frame, regnum, myaddr))
841 return 0;
842 }
843 else
844 {
845 gdb_byte buf[MAX_REGISTER_SIZE];
846 if (!frame_register_read (frame, regnum, buf))
847 return 0;
848 memcpy (myaddr, buf + offset, curr_len);
849 }
850
851 myaddr += curr_len;
852 len -= curr_len;
853 offset = 0;
854 regnum++;
855 }
856
857 return 1;
858 }
859
860 void
861 put_frame_register_bytes (struct frame_info *frame, int regnum,
862 CORE_ADDR offset, int len, const gdb_byte *myaddr)
863 {
864 struct gdbarch *gdbarch = get_frame_arch (frame);
865
866 /* Skip registers wholly inside of OFFSET. */
867 while (offset >= register_size (gdbarch, regnum))
868 {
869 offset -= register_size (gdbarch, regnum);
870 regnum++;
871 }
872
873 /* Copy the data. */
874 while (len > 0)
875 {
876 int curr_len = register_size (gdbarch, regnum) - offset;
877 if (curr_len > len)
878 curr_len = len;
879
880 if (curr_len == register_size (gdbarch, regnum))
881 {
882 put_frame_register (frame, regnum, myaddr);
883 }
884 else
885 {
886 gdb_byte buf[MAX_REGISTER_SIZE];
887 frame_register_read (frame, regnum, buf);
888 memcpy (buf + offset, myaddr, curr_len);
889 put_frame_register (frame, regnum, buf);
890 }
891
892 myaddr += curr_len;
893 len -= curr_len;
894 offset = 0;
895 regnum++;
896 }
897 }
898
899 /* Create a sentinel frame. */
900
901 static struct frame_info *
902 create_sentinel_frame (struct regcache *regcache)
903 {
904 struct frame_info *frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
905 frame->level = -1;
906 /* Explicitly initialize the sentinel frame's cache. Provide it
907 with the underlying regcache. In the future additional
908 information, such as the frame's thread will be added. */
909 frame->prologue_cache = sentinel_frame_cache (regcache);
910 /* For the moment there is only one sentinel frame implementation. */
911 frame->unwind = sentinel_frame_unwind;
912 /* Link this frame back to itself. The frame is self referential
913 (the unwound PC is the same as the pc), so make it so. */
914 frame->next = frame;
915 /* Make the sentinel frame's ID valid, but invalid. That way all
916 comparisons with it should fail. */
917 frame->this_id.p = 1;
918 frame->this_id.value = null_frame_id;
919 if (frame_debug)
920 {
921 fprintf_unfiltered (gdb_stdlog, "{ create_sentinel_frame (...) -> ");
922 fprint_frame (gdb_stdlog, frame);
923 fprintf_unfiltered (gdb_stdlog, " }\n");
924 }
925 return frame;
926 }
927
928 /* Info about the innermost stack frame (contents of FP register) */
929
930 static struct frame_info *current_frame;
931
932 /* Cache for frame addresses already read by gdb. Valid only while
933 inferior is stopped. Control variables for the frame cache should
934 be local to this module. */
935
936 static struct obstack frame_cache_obstack;
937
938 void *
939 frame_obstack_zalloc (unsigned long size)
940 {
941 void *data = obstack_alloc (&frame_cache_obstack, size);
942 memset (data, 0, size);
943 return data;
944 }
945
946 /* Return the innermost (currently executing) stack frame. This is
947 split into two functions. The function unwind_to_current_frame()
948 is wrapped in catch exceptions so that, even when the unwind of the
949 sentinel frame fails, the function still returns a stack frame. */
950
951 static int
952 unwind_to_current_frame (struct ui_out *ui_out, void *args)
953 {
954 struct frame_info *frame = get_prev_frame (args);
955 /* A sentinel frame can fail to unwind, e.g., because its PC value
956 lands in somewhere like start. */
957 if (frame == NULL)
958 return 1;
959 current_frame = frame;
960 return 0;
961 }
962
963 struct frame_info *
964 get_current_frame (void)
965 {
966 /* First check, and report, the lack of registers. Having GDB
967 report "No stack!" or "No memory" when the target doesn't even
968 have registers is very confusing. Besides, "printcmd.exp"
969 explicitly checks that ``print $pc'' with no registers prints "No
970 registers". */
971 if (!target_has_registers)
972 error (_("No registers."));
973 if (!target_has_stack)
974 error (_("No stack."));
975 if (!target_has_memory)
976 error (_("No memory."));
977 if (is_executing (inferior_ptid))
978 error (_("Target is executing."));
979
980 if (current_frame == NULL)
981 {
982 struct frame_info *sentinel_frame =
983 create_sentinel_frame (get_current_regcache ());
984 if (catch_exceptions (uiout, unwind_to_current_frame, sentinel_frame,
985 RETURN_MASK_ERROR) != 0)
986 {
987 /* Oops! Fake a current frame? Is this useful? It has a PC
988 of zero, for instance. */
989 current_frame = sentinel_frame;
990 }
991 }
992 return current_frame;
993 }
994
995 /* The "selected" stack frame is used by default for local and arg
996 access. May be zero, for no selected frame. */
997
998 static struct frame_info *selected_frame;
999
1000 static int
1001 has_stack_frames (void)
1002 {
1003 if (!target_has_registers || !target_has_stack || !target_has_memory)
1004 return 0;
1005
1006 /* If the current thread is executing, don't try to read from
1007 it. */
1008 if (is_executing (inferior_ptid))
1009 return 0;
1010
1011 return 1;
1012 }
1013
1014 /* Return the selected frame. Always non-NULL (unless there isn't an
1015 inferior sufficient for creating a frame) in which case an error is
1016 thrown. */
1017
1018 struct frame_info *
1019 get_selected_frame (const char *message)
1020 {
1021 if (selected_frame == NULL)
1022 {
1023 if (message != NULL && !has_stack_frames ())
1024 error (("%s"), message);
1025 /* Hey! Don't trust this. It should really be re-finding the
1026 last selected frame of the currently selected thread. This,
1027 though, is better than nothing. */
1028 select_frame (get_current_frame ());
1029 }
1030 /* There is always a frame. */
1031 gdb_assert (selected_frame != NULL);
1032 return selected_frame;
1033 }
1034
1035 /* This is a variant of get_selected_frame() which can be called when
1036 the inferior does not have a frame; in that case it will return
1037 NULL instead of calling error(). */
1038
1039 struct frame_info *
1040 deprecated_safe_get_selected_frame (void)
1041 {
1042 if (!has_stack_frames ())
1043 return NULL;
1044 return get_selected_frame (NULL);
1045 }
1046
1047 /* Select frame FI (or NULL - to invalidate the current frame). */
1048
1049 void
1050 select_frame (struct frame_info *fi)
1051 {
1052 struct symtab *s;
1053
1054 selected_frame = fi;
1055 /* NOTE: cagney/2002-05-04: FI can be NULL. This occurs when the
1056 frame is being invalidated. */
1057 if (deprecated_selected_frame_level_changed_hook)
1058 deprecated_selected_frame_level_changed_hook (frame_relative_level (fi));
1059
1060 /* FIXME: kseitz/2002-08-28: It would be nice to call
1061 selected_frame_level_changed_event() right here, but due to limitations
1062 in the current interfaces, we would end up flooding UIs with events
1063 because select_frame() is used extensively internally.
1064
1065 Once we have frame-parameterized frame (and frame-related) commands,
1066 the event notification can be moved here, since this function will only
1067 be called when the user's selected frame is being changed. */
1068
1069 /* Ensure that symbols for this frame are read in. Also, determine the
1070 source language of this frame, and switch to it if desired. */
1071 if (fi)
1072 {
1073 /* We retrieve the frame's symtab by using the frame PC. However
1074 we cannot use the frame PC as-is, because it usually points to
1075 the instruction following the "call", which is sometimes the
1076 first instruction of another function. So we rely on
1077 get_frame_address_in_block() which provides us with a PC which
1078 is guaranteed to be inside the frame's code block. */
1079 s = find_pc_symtab (get_frame_address_in_block (fi));
1080 if (s
1081 && s->language != current_language->la_language
1082 && s->language != language_unknown
1083 && language_mode == language_mode_auto)
1084 {
1085 set_language (s->language);
1086 }
1087 }
1088 }
1089
1090 /* Create an arbitrary (i.e. address specified by user) or innermost frame.
1091 Always returns a non-NULL value. */
1092
1093 struct frame_info *
1094 create_new_frame (CORE_ADDR addr, CORE_ADDR pc)
1095 {
1096 struct frame_info *fi;
1097
1098 if (frame_debug)
1099 {
1100 fprintf_unfiltered (gdb_stdlog,
1101 "{ create_new_frame (addr=0x%s, pc=0x%s) ",
1102 paddr_nz (addr), paddr_nz (pc));
1103 }
1104
1105 fi = FRAME_OBSTACK_ZALLOC (struct frame_info);
1106
1107 fi->next = create_sentinel_frame (get_current_regcache ());
1108
1109 /* Select/initialize both the unwind function and the frame's type
1110 based on the PC. */
1111 fi->unwind = frame_unwind_find_by_frame (fi, &fi->prologue_cache);
1112
1113 fi->this_id.p = 1;
1114 deprecated_update_frame_base_hack (fi, addr);
1115 deprecated_update_frame_pc_hack (fi, pc);
1116
1117 if (frame_debug)
1118 {
1119 fprintf_unfiltered (gdb_stdlog, "-> ");
1120 fprint_frame (gdb_stdlog, fi);
1121 fprintf_unfiltered (gdb_stdlog, " }\n");
1122 }
1123
1124 return fi;
1125 }
1126
1127 /* Return the frame that THIS_FRAME calls (NULL if THIS_FRAME is the
1128 innermost frame). Be careful to not fall off the bottom of the
1129 frame chain and onto the sentinel frame. */
1130
1131 struct frame_info *
1132 get_next_frame (struct frame_info *this_frame)
1133 {
1134 if (this_frame->level > 0)
1135 return this_frame->next;
1136 else
1137 return NULL;
1138 }
1139
1140 /* Observer for the target_changed event. */
1141
1142 void
1143 frame_observer_target_changed (struct target_ops *target)
1144 {
1145 reinit_frame_cache ();
1146 }
1147
1148 /* Flush the entire frame cache. */
1149
1150 void
1151 reinit_frame_cache (void)
1152 {
1153 struct frame_info *fi;
1154
1155 /* Tear down all frame caches. */
1156 for (fi = current_frame; fi != NULL; fi = fi->prev)
1157 {
1158 if (fi->prologue_cache && fi->unwind->dealloc_cache)
1159 fi->unwind->dealloc_cache (fi, fi->prologue_cache);
1160 if (fi->base_cache && fi->base->unwind->dealloc_cache)
1161 fi->base->unwind->dealloc_cache (fi, fi->base_cache);
1162 }
1163
1164 /* Since we can't really be sure what the first object allocated was */
1165 obstack_free (&frame_cache_obstack, 0);
1166 obstack_init (&frame_cache_obstack);
1167
1168 if (current_frame != NULL)
1169 annotate_frames_invalid ();
1170
1171 current_frame = NULL; /* Invalidate cache */
1172 select_frame (NULL);
1173 if (frame_debug)
1174 fprintf_unfiltered (gdb_stdlog, "{ reinit_frame_cache () }\n");
1175 }
1176
1177 /* Find where a register is saved (in memory or another register).
1178 The result of frame_register_unwind is just where it is saved
1179 relative to this particular frame. */
1180
1181 static void
1182 frame_register_unwind_location (struct frame_info *this_frame, int regnum,
1183 int *optimizedp, enum lval_type *lvalp,
1184 CORE_ADDR *addrp, int *realnump)
1185 {
1186 gdb_assert (this_frame == NULL || this_frame->level >= 0);
1187
1188 while (this_frame != NULL)
1189 {
1190 frame_register_unwind (this_frame, regnum, optimizedp, lvalp,
1191 addrp, realnump, NULL);
1192
1193 if (*optimizedp)
1194 break;
1195
1196 if (*lvalp != lval_register)
1197 break;
1198
1199 regnum = *realnump;
1200 this_frame = get_next_frame (this_frame);
1201 }
1202 }
1203
1204 /* Return a "struct frame_info" corresponding to the frame that called
1205 THIS_FRAME. Returns NULL if there is no such frame.
1206
1207 Unlike get_prev_frame, this function always tries to unwind the
1208 frame. */
1209
1210 static struct frame_info *
1211 get_prev_frame_1 (struct frame_info *this_frame)
1212 {
1213 struct frame_info *prev_frame;
1214 struct frame_id this_id;
1215 struct gdbarch *gdbarch;
1216
1217 gdb_assert (this_frame != NULL);
1218 gdbarch = get_frame_arch (this_frame);
1219
1220 if (frame_debug)
1221 {
1222 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame_1 (this_frame=");
1223 if (this_frame != NULL)
1224 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1225 else
1226 fprintf_unfiltered (gdb_stdlog, "<NULL>");
1227 fprintf_unfiltered (gdb_stdlog, ") ");
1228 }
1229
1230 /* Only try to do the unwind once. */
1231 if (this_frame->prev_p)
1232 {
1233 if (frame_debug)
1234 {
1235 fprintf_unfiltered (gdb_stdlog, "-> ");
1236 fprint_frame (gdb_stdlog, this_frame->prev);
1237 fprintf_unfiltered (gdb_stdlog, " // cached \n");
1238 }
1239 return this_frame->prev;
1240 }
1241
1242 /* If the frame unwinder hasn't been selected yet, we must do so
1243 before setting prev_p; otherwise the check for misbehaved
1244 sniffers will think that this frame's sniffer tried to unwind
1245 further (see frame_cleanup_after_sniffer). */
1246 if (this_frame->unwind == NULL)
1247 this_frame->unwind
1248 = frame_unwind_find_by_frame (this_frame, &this_frame->prologue_cache);
1249
1250 this_frame->prev_p = 1;
1251 this_frame->stop_reason = UNWIND_NO_REASON;
1252
1253 /* Check that this frame's ID was valid. If it wasn't, don't try to
1254 unwind to the prev frame. Be careful to not apply this test to
1255 the sentinel frame. */
1256 this_id = get_frame_id (this_frame);
1257 if (this_frame->level >= 0 && !frame_id_p (this_id))
1258 {
1259 if (frame_debug)
1260 {
1261 fprintf_unfiltered (gdb_stdlog, "-> ");
1262 fprint_frame (gdb_stdlog, NULL);
1263 fprintf_unfiltered (gdb_stdlog, " // this ID is NULL }\n");
1264 }
1265 this_frame->stop_reason = UNWIND_NULL_ID;
1266 return NULL;
1267 }
1268
1269 /* Check that this frame's ID isn't inner to (younger, below, next)
1270 the next frame. This happens when a frame unwind goes backwards.
1271 This check is valid only if the next frame is NORMAL. See the
1272 comment at frame_id_inner for details. */
1273 if (this_frame->next->unwind->type == NORMAL_FRAME
1274 && frame_id_inner (get_frame_arch (this_frame->next), this_id,
1275 get_frame_id (this_frame->next)))
1276 {
1277 if (frame_debug)
1278 {
1279 fprintf_unfiltered (gdb_stdlog, "-> ");
1280 fprint_frame (gdb_stdlog, NULL);
1281 fprintf_unfiltered (gdb_stdlog, " // this frame ID is inner }\n");
1282 }
1283 this_frame->stop_reason = UNWIND_INNER_ID;
1284 return NULL;
1285 }
1286
1287 /* Check that this and the next frame are not identical. If they
1288 are, there is most likely a stack cycle. As with the inner-than
1289 test above, avoid comparing the inner-most and sentinel frames. */
1290 if (this_frame->level > 0
1291 && frame_id_eq (this_id, get_frame_id (this_frame->next)))
1292 {
1293 if (frame_debug)
1294 {
1295 fprintf_unfiltered (gdb_stdlog, "-> ");
1296 fprint_frame (gdb_stdlog, NULL);
1297 fprintf_unfiltered (gdb_stdlog, " // this frame has same ID }\n");
1298 }
1299 this_frame->stop_reason = UNWIND_SAME_ID;
1300 return NULL;
1301 }
1302
1303 /* Check that this and the next frame do not unwind the PC register
1304 to the same memory location. If they do, then even though they
1305 have different frame IDs, the new frame will be bogus; two
1306 functions can't share a register save slot for the PC. This can
1307 happen when the prologue analyzer finds a stack adjustment, but
1308 no PC save.
1309
1310 This check does assume that the "PC register" is roughly a
1311 traditional PC, even if the gdbarch_unwind_pc method adjusts
1312 it (we do not rely on the value, only on the unwound PC being
1313 dependent on this value). A potential improvement would be
1314 to have the frame prev_pc method and the gdbarch unwind_pc
1315 method set the same lval and location information as
1316 frame_register_unwind. */
1317 if (this_frame->level > 0
1318 && gdbarch_pc_regnum (gdbarch) >= 0
1319 && get_frame_type (this_frame) == NORMAL_FRAME
1320 && get_frame_type (this_frame->next) == NORMAL_FRAME)
1321 {
1322 int optimized, realnum, nrealnum;
1323 enum lval_type lval, nlval;
1324 CORE_ADDR addr, naddr;
1325
1326 frame_register_unwind_location (this_frame,
1327 gdbarch_pc_regnum (gdbarch),
1328 &optimized, &lval, &addr, &realnum);
1329 frame_register_unwind_location (get_next_frame (this_frame),
1330 gdbarch_pc_regnum (gdbarch),
1331 &optimized, &nlval, &naddr, &nrealnum);
1332
1333 if ((lval == lval_memory && lval == nlval && addr == naddr)
1334 || (lval == lval_register && lval == nlval && realnum == nrealnum))
1335 {
1336 if (frame_debug)
1337 {
1338 fprintf_unfiltered (gdb_stdlog, "-> ");
1339 fprint_frame (gdb_stdlog, NULL);
1340 fprintf_unfiltered (gdb_stdlog, " // no saved PC }\n");
1341 }
1342
1343 this_frame->stop_reason = UNWIND_NO_SAVED_PC;
1344 this_frame->prev = NULL;
1345 return NULL;
1346 }
1347 }
1348
1349 /* Allocate the new frame but do not wire it in to the frame chain.
1350 Some (bad) code in INIT_FRAME_EXTRA_INFO tries to look along
1351 frame->next to pull some fancy tricks (of course such code is, by
1352 definition, recursive). Try to prevent it.
1353
1354 There is no reason to worry about memory leaks, should the
1355 remainder of the function fail. The allocated memory will be
1356 quickly reclaimed when the frame cache is flushed, and the `we've
1357 been here before' check above will stop repeated memory
1358 allocation calls. */
1359 prev_frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
1360 prev_frame->level = this_frame->level + 1;
1361
1362 /* Don't yet compute ->unwind (and hence ->type). It is computed
1363 on-demand in get_frame_type, frame_register_unwind, and
1364 get_frame_id. */
1365
1366 /* Don't yet compute the frame's ID. It is computed on-demand by
1367 get_frame_id(). */
1368
1369 /* The unwound frame ID is validate at the start of this function,
1370 as part of the logic to decide if that frame should be further
1371 unwound, and not here while the prev frame is being created.
1372 Doing this makes it possible for the user to examine a frame that
1373 has an invalid frame ID.
1374
1375 Some very old VAX code noted: [...] For the sake of argument,
1376 suppose that the stack is somewhat trashed (which is one reason
1377 that "info frame" exists). So, return 0 (indicating we don't
1378 know the address of the arglist) if we don't know what frame this
1379 frame calls. */
1380
1381 /* Link it in. */
1382 this_frame->prev = prev_frame;
1383 prev_frame->next = this_frame;
1384
1385 if (frame_debug)
1386 {
1387 fprintf_unfiltered (gdb_stdlog, "-> ");
1388 fprint_frame (gdb_stdlog, prev_frame);
1389 fprintf_unfiltered (gdb_stdlog, " }\n");
1390 }
1391
1392 return prev_frame;
1393 }
1394
1395 /* Debug routine to print a NULL frame being returned. */
1396
1397 static void
1398 frame_debug_got_null_frame (struct frame_info *this_frame,
1399 const char *reason)
1400 {
1401 if (frame_debug)
1402 {
1403 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame (this_frame=");
1404 if (this_frame != NULL)
1405 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1406 else
1407 fprintf_unfiltered (gdb_stdlog, "<NULL>");
1408 fprintf_unfiltered (gdb_stdlog, ") -> // %s}\n", reason);
1409 }
1410 }
1411
1412 /* Is this (non-sentinel) frame in the "main"() function? */
1413
1414 static int
1415 inside_main_func (struct frame_info *this_frame)
1416 {
1417 struct minimal_symbol *msymbol;
1418 CORE_ADDR maddr;
1419
1420 if (symfile_objfile == 0)
1421 return 0;
1422 msymbol = lookup_minimal_symbol (main_name (), NULL, symfile_objfile);
1423 if (msymbol == NULL)
1424 return 0;
1425 /* Make certain that the code, and not descriptor, address is
1426 returned. */
1427 maddr = gdbarch_convert_from_func_ptr_addr (get_frame_arch (this_frame),
1428 SYMBOL_VALUE_ADDRESS (msymbol),
1429 &current_target);
1430 return maddr == get_frame_func (this_frame);
1431 }
1432
1433 /* Test whether THIS_FRAME is inside the process entry point function. */
1434
1435 static int
1436 inside_entry_func (struct frame_info *this_frame)
1437 {
1438 return (get_frame_func (this_frame) == entry_point_address ());
1439 }
1440
1441 /* Return a structure containing various interesting information about
1442 the frame that called THIS_FRAME. Returns NULL if there is entier
1443 no such frame or the frame fails any of a set of target-independent
1444 condition that should terminate the frame chain (e.g., as unwinding
1445 past main()).
1446
1447 This function should not contain target-dependent tests, such as
1448 checking whether the program-counter is zero. */
1449
1450 struct frame_info *
1451 get_prev_frame (struct frame_info *this_frame)
1452 {
1453 struct frame_info *prev_frame;
1454
1455 /* Return the inner-most frame, when the caller passes in NULL. */
1456 /* NOTE: cagney/2002-11-09: Not sure how this would happen. The
1457 caller should have previously obtained a valid frame using
1458 get_selected_frame() and then called this code - only possibility
1459 I can think of is code behaving badly.
1460
1461 NOTE: cagney/2003-01-10: Talk about code behaving badly. Check
1462 block_innermost_frame(). It does the sequence: frame = NULL;
1463 while (1) { frame = get_prev_frame (frame); .... }. Ulgh! Why
1464 it couldn't be written better, I don't know.
1465
1466 NOTE: cagney/2003-01-11: I suspect what is happening in
1467 block_innermost_frame() is, when the target has no state
1468 (registers, memory, ...), it is still calling this function. The
1469 assumption being that this function will return NULL indicating
1470 that a frame isn't possible, rather than checking that the target
1471 has state and then calling get_current_frame() and
1472 get_prev_frame(). This is a guess mind. */
1473 if (this_frame == NULL)
1474 {
1475 /* NOTE: cagney/2002-11-09: There was a code segment here that
1476 would error out when CURRENT_FRAME was NULL. The comment
1477 that went with it made the claim ...
1478
1479 ``This screws value_of_variable, which just wants a nice
1480 clean NULL return from block_innermost_frame if there are no
1481 frames. I don't think I've ever seen this message happen
1482 otherwise. And returning NULL here is a perfectly legitimate
1483 thing to do.''
1484
1485 Per the above, this code shouldn't even be called with a NULL
1486 THIS_FRAME. */
1487 frame_debug_got_null_frame (this_frame, "this_frame NULL");
1488 return current_frame;
1489 }
1490
1491 /* There is always a frame. If this assertion fails, suspect that
1492 something should be calling get_selected_frame() or
1493 get_current_frame(). */
1494 gdb_assert (this_frame != NULL);
1495
1496 /* tausq/2004-12-07: Dummy frames are skipped because it doesn't make much
1497 sense to stop unwinding at a dummy frame. One place where a dummy
1498 frame may have an address "inside_main_func" is on HPUX. On HPUX, the
1499 pcsqh register (space register for the instruction at the head of the
1500 instruction queue) cannot be written directly; the only way to set it
1501 is to branch to code that is in the target space. In order to implement
1502 frame dummies on HPUX, the called function is made to jump back to where
1503 the inferior was when the user function was called. If gdb was inside
1504 the main function when we created the dummy frame, the dummy frame will
1505 point inside the main function. */
1506 if (this_frame->level >= 0
1507 && get_frame_type (this_frame) != DUMMY_FRAME
1508 && !backtrace_past_main
1509 && inside_main_func (this_frame))
1510 /* Don't unwind past main(). Note, this is done _before_ the
1511 frame has been marked as previously unwound. That way if the
1512 user later decides to enable unwinds past main(), that will
1513 automatically happen. */
1514 {
1515 frame_debug_got_null_frame (this_frame, "inside main func");
1516 return NULL;
1517 }
1518
1519 /* If the user's backtrace limit has been exceeded, stop. We must
1520 add two to the current level; one of those accounts for backtrace_limit
1521 being 1-based and the level being 0-based, and the other accounts for
1522 the level of the new frame instead of the level of the current
1523 frame. */
1524 if (this_frame->level + 2 > backtrace_limit)
1525 {
1526 frame_debug_got_null_frame (this_frame, "backtrace limit exceeded");
1527 return NULL;
1528 }
1529
1530 /* If we're already inside the entry function for the main objfile,
1531 then it isn't valid. Don't apply this test to a dummy frame -
1532 dummy frame PCs typically land in the entry func. Don't apply
1533 this test to the sentinel frame. Sentinel frames should always
1534 be allowed to unwind. */
1535 /* NOTE: cagney/2003-07-07: Fixed a bug in inside_main_func() -
1536 wasn't checking for "main" in the minimal symbols. With that
1537 fixed asm-source tests now stop in "main" instead of halting the
1538 backtrace in weird and wonderful ways somewhere inside the entry
1539 file. Suspect that tests for inside the entry file/func were
1540 added to work around that (now fixed) case. */
1541 /* NOTE: cagney/2003-07-15: danielj (if I'm reading it right)
1542 suggested having the inside_entry_func test use the
1543 inside_main_func() msymbol trick (along with entry_point_address()
1544 I guess) to determine the address range of the start function.
1545 That should provide a far better stopper than the current
1546 heuristics. */
1547 /* NOTE: tausq/2004-10-09: this is needed if, for example, the compiler
1548 applied tail-call optimizations to main so that a function called
1549 from main returns directly to the caller of main. Since we don't
1550 stop at main, we should at least stop at the entry point of the
1551 application. */
1552 if (!backtrace_past_entry
1553 && get_frame_type (this_frame) != DUMMY_FRAME && this_frame->level >= 0
1554 && inside_entry_func (this_frame))
1555 {
1556 frame_debug_got_null_frame (this_frame, "inside entry func");
1557 return NULL;
1558 }
1559
1560 /* Assume that the only way to get a zero PC is through something
1561 like a SIGSEGV or a dummy frame, and hence that NORMAL frames
1562 will never unwind a zero PC. */
1563 if (this_frame->level > 0
1564 && get_frame_type (this_frame) == NORMAL_FRAME
1565 && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME
1566 && get_frame_pc (this_frame) == 0)
1567 {
1568 frame_debug_got_null_frame (this_frame, "zero PC");
1569 return NULL;
1570 }
1571
1572 return get_prev_frame_1 (this_frame);
1573 }
1574
1575 CORE_ADDR
1576 get_frame_pc (struct frame_info *frame)
1577 {
1578 gdb_assert (frame->next != NULL);
1579 return frame_pc_unwind (frame->next);
1580 }
1581
1582 /* Return an address that falls within THIS_FRAME's code block. */
1583
1584 CORE_ADDR
1585 get_frame_address_in_block (struct frame_info *this_frame)
1586 {
1587 /* A draft address. */
1588 CORE_ADDR pc = get_frame_pc (this_frame);
1589
1590 struct frame_info *next_frame = this_frame->next;
1591
1592 /* Calling get_frame_pc returns the resume address for THIS_FRAME.
1593 Normally the resume address is inside the body of the function
1594 associated with THIS_FRAME, but there is a special case: when
1595 calling a function which the compiler knows will never return
1596 (for instance abort), the call may be the very last instruction
1597 in the calling function. The resume address will point after the
1598 call and may be at the beginning of a different function
1599 entirely.
1600
1601 If THIS_FRAME is a signal frame or dummy frame, then we should
1602 not adjust the unwound PC. For a dummy frame, GDB pushed the
1603 resume address manually onto the stack. For a signal frame, the
1604 OS may have pushed the resume address manually and invoked the
1605 handler (e.g. GNU/Linux), or invoked the trampoline which called
1606 the signal handler - but in either case the signal handler is
1607 expected to return to the trampoline. So in both of these
1608 cases we know that the resume address is executable and
1609 related. So we only need to adjust the PC if THIS_FRAME
1610 is a normal function.
1611
1612 If the program has been interrupted while THIS_FRAME is current,
1613 then clearly the resume address is inside the associated
1614 function. There are three kinds of interruption: debugger stop
1615 (next frame will be SENTINEL_FRAME), operating system
1616 signal or exception (next frame will be SIGTRAMP_FRAME),
1617 or debugger-induced function call (next frame will be
1618 DUMMY_FRAME). So we only need to adjust the PC if
1619 NEXT_FRAME is a normal function.
1620
1621 We check the type of NEXT_FRAME first, since it is already
1622 known; frame type is determined by the unwinder, and since
1623 we have THIS_FRAME we've already selected an unwinder for
1624 NEXT_FRAME. */
1625 if (get_frame_type (next_frame) == NORMAL_FRAME
1626 && get_frame_type (this_frame) == NORMAL_FRAME)
1627 return pc - 1;
1628
1629 return pc;
1630 }
1631
1632 static int
1633 pc_notcurrent (struct frame_info *frame)
1634 {
1635 /* If FRAME is not the innermost frame, that normally means that
1636 FRAME->pc points at the return instruction (which is *after* the
1637 call instruction), and we want to get the line containing the
1638 call (because the call is where the user thinks the program is).
1639 However, if the next frame is either a SIGTRAMP_FRAME or a
1640 DUMMY_FRAME, then the next frame will contain a saved interrupt
1641 PC and such a PC indicates the current (rather than next)
1642 instruction/line, consequently, for such cases, want to get the
1643 line containing fi->pc. */
1644 struct frame_info *next = get_next_frame (frame);
1645 int notcurrent = (next != NULL && get_frame_type (next) == NORMAL_FRAME);
1646 return notcurrent;
1647 }
1648
1649 void
1650 find_frame_sal (struct frame_info *frame, struct symtab_and_line *sal)
1651 {
1652 (*sal) = find_pc_line (get_frame_pc (frame), pc_notcurrent (frame));
1653 }
1654
1655 /* Per "frame.h", return the ``address'' of the frame. Code should
1656 really be using get_frame_id(). */
1657 CORE_ADDR
1658 get_frame_base (struct frame_info *fi)
1659 {
1660 return get_frame_id (fi).stack_addr;
1661 }
1662
1663 /* High-level offsets into the frame. Used by the debug info. */
1664
1665 CORE_ADDR
1666 get_frame_base_address (struct frame_info *fi)
1667 {
1668 if (get_frame_type (fi) != NORMAL_FRAME)
1669 return 0;
1670 if (fi->base == NULL)
1671 fi->base = frame_base_find_by_frame (fi);
1672 /* Sneaky: If the low-level unwind and high-level base code share a
1673 common unwinder, let them share the prologue cache. */
1674 if (fi->base->unwind == fi->unwind)
1675 return fi->base->this_base (fi, &fi->prologue_cache);
1676 return fi->base->this_base (fi, &fi->base_cache);
1677 }
1678
1679 CORE_ADDR
1680 get_frame_locals_address (struct frame_info *fi)
1681 {
1682 void **cache;
1683 if (get_frame_type (fi) != NORMAL_FRAME)
1684 return 0;
1685 /* If there isn't a frame address method, find it. */
1686 if (fi->base == NULL)
1687 fi->base = frame_base_find_by_frame (fi);
1688 /* Sneaky: If the low-level unwind and high-level base code share a
1689 common unwinder, let them share the prologue cache. */
1690 if (fi->base->unwind == fi->unwind)
1691 return fi->base->this_locals (fi, &fi->prologue_cache);
1692 return fi->base->this_locals (fi, &fi->base_cache);
1693 }
1694
1695 CORE_ADDR
1696 get_frame_args_address (struct frame_info *fi)
1697 {
1698 void **cache;
1699 if (get_frame_type (fi) != NORMAL_FRAME)
1700 return 0;
1701 /* If there isn't a frame address method, find it. */
1702 if (fi->base == NULL)
1703 fi->base = frame_base_find_by_frame (fi);
1704 /* Sneaky: If the low-level unwind and high-level base code share a
1705 common unwinder, let them share the prologue cache. */
1706 if (fi->base->unwind == fi->unwind)
1707 return fi->base->this_args (fi, &fi->prologue_cache);
1708 return fi->base->this_args (fi, &fi->base_cache);
1709 }
1710
1711 /* Level of the selected frame: 0 for innermost, 1 for its caller, ...
1712 or -1 for a NULL frame. */
1713
1714 int
1715 frame_relative_level (struct frame_info *fi)
1716 {
1717 if (fi == NULL)
1718 return -1;
1719 else
1720 return fi->level;
1721 }
1722
1723 enum frame_type
1724 get_frame_type (struct frame_info *frame)
1725 {
1726 if (frame->unwind == NULL)
1727 /* Initialize the frame's unwinder because that's what
1728 provides the frame's type. */
1729 frame->unwind = frame_unwind_find_by_frame (frame, &frame->prologue_cache);
1730 return frame->unwind->type;
1731 }
1732
1733 void
1734 deprecated_update_frame_pc_hack (struct frame_info *frame, CORE_ADDR pc)
1735 {
1736 if (frame_debug)
1737 fprintf_unfiltered (gdb_stdlog,
1738 "{ deprecated_update_frame_pc_hack (frame=%d,pc=0x%s) }\n",
1739 frame->level, paddr_nz (pc));
1740 /* NOTE: cagney/2003-03-11: Some architectures (e.g., Arm) are
1741 maintaining a locally allocated frame object. Since such frames
1742 are not in the frame chain, it isn't possible to assume that the
1743 frame has a next. Sigh. */
1744 if (frame->next != NULL)
1745 {
1746 /* While we're at it, update this frame's cached PC value, found
1747 in the next frame. Oh for the day when "struct frame_info"
1748 is opaque and this hack on hack can just go away. */
1749 frame->next->prev_pc.value = pc;
1750 frame->next->prev_pc.p = 1;
1751 }
1752 }
1753
1754 void
1755 deprecated_update_frame_base_hack (struct frame_info *frame, CORE_ADDR base)
1756 {
1757 if (frame_debug)
1758 fprintf_unfiltered (gdb_stdlog,
1759 "{ deprecated_update_frame_base_hack (frame=%d,base=0x%s) }\n",
1760 frame->level, paddr_nz (base));
1761 /* See comment in "frame.h". */
1762 frame->this_id.value.stack_addr = base;
1763 }
1764
1765 /* Memory access methods. */
1766
1767 void
1768 get_frame_memory (struct frame_info *this_frame, CORE_ADDR addr,
1769 gdb_byte *buf, int len)
1770 {
1771 read_memory (addr, buf, len);
1772 }
1773
1774 LONGEST
1775 get_frame_memory_signed (struct frame_info *this_frame, CORE_ADDR addr,
1776 int len)
1777 {
1778 return read_memory_integer (addr, len);
1779 }
1780
1781 ULONGEST
1782 get_frame_memory_unsigned (struct frame_info *this_frame, CORE_ADDR addr,
1783 int len)
1784 {
1785 return read_memory_unsigned_integer (addr, len);
1786 }
1787
1788 int
1789 safe_frame_unwind_memory (struct frame_info *this_frame,
1790 CORE_ADDR addr, gdb_byte *buf, int len)
1791 {
1792 /* NOTE: target_read_memory returns zero on success! */
1793 return !target_read_memory (addr, buf, len);
1794 }
1795
1796 /* Architecture method. */
1797
1798 struct gdbarch *
1799 get_frame_arch (struct frame_info *this_frame)
1800 {
1801 /* In the future, this function will return a per-frame
1802 architecture instead of current_gdbarch. Calling the
1803 routine with a NULL value of this_frame is a bug! */
1804 gdb_assert (this_frame);
1805
1806 return current_gdbarch;
1807 }
1808
1809 /* Stack pointer methods. */
1810
1811 CORE_ADDR
1812 get_frame_sp (struct frame_info *this_frame)
1813 {
1814 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1815 /* Normality - an architecture that provides a way of obtaining any
1816 frame inner-most address. */
1817 if (gdbarch_unwind_sp_p (gdbarch))
1818 /* NOTE drow/2008-06-28: gdbarch_unwind_sp could be converted to
1819 operate on THIS_FRAME now. */
1820 return gdbarch_unwind_sp (gdbarch, this_frame->next);
1821 /* Now things are really are grim. Hope that the value returned by
1822 the gdbarch_sp_regnum register is meaningful. */
1823 if (gdbarch_sp_regnum (gdbarch) >= 0)
1824 return get_frame_register_unsigned (this_frame,
1825 gdbarch_sp_regnum (gdbarch));
1826 internal_error (__FILE__, __LINE__, _("Missing unwind SP method"));
1827 }
1828
1829 /* Return the reason why we can't unwind past FRAME. */
1830
1831 enum unwind_stop_reason
1832 get_frame_unwind_stop_reason (struct frame_info *frame)
1833 {
1834 /* If we haven't tried to unwind past this point yet, then assume
1835 that unwinding would succeed. */
1836 if (frame->prev_p == 0)
1837 return UNWIND_NO_REASON;
1838
1839 /* Otherwise, we set a reason when we succeeded (or failed) to
1840 unwind. */
1841 return frame->stop_reason;
1842 }
1843
1844 /* Return a string explaining REASON. */
1845
1846 const char *
1847 frame_stop_reason_string (enum unwind_stop_reason reason)
1848 {
1849 switch (reason)
1850 {
1851 case UNWIND_NULL_ID:
1852 return _("unwinder did not report frame ID");
1853
1854 case UNWIND_INNER_ID:
1855 return _("previous frame inner to this frame (corrupt stack?)");
1856
1857 case UNWIND_SAME_ID:
1858 return _("previous frame identical to this frame (corrupt stack?)");
1859
1860 case UNWIND_NO_SAVED_PC:
1861 return _("frame did not save the PC");
1862
1863 case UNWIND_NO_REASON:
1864 case UNWIND_FIRST_ERROR:
1865 default:
1866 internal_error (__FILE__, __LINE__,
1867 "Invalid frame stop reason");
1868 }
1869 }
1870
1871 /* Clean up after a failed (wrong unwinder) attempt to unwind past
1872 FRAME. */
1873
1874 static void
1875 frame_cleanup_after_sniffer (void *arg)
1876 {
1877 struct frame_info *frame = arg;
1878
1879 /* The sniffer should not allocate a prologue cache if it did not
1880 match this frame. */
1881 gdb_assert (frame->prologue_cache == NULL);
1882
1883 /* No sniffer should extend the frame chain; sniff based on what is
1884 already certain. */
1885 gdb_assert (!frame->prev_p);
1886
1887 /* The sniffer should not check the frame's ID; that's circular. */
1888 gdb_assert (!frame->this_id.p);
1889
1890 /* Clear cached fields dependent on the unwinder.
1891
1892 The previous PC is independent of the unwinder, but the previous
1893 function is not (see get_frame_address_in_block). */
1894 frame->prev_func.p = 0;
1895 frame->prev_func.addr = 0;
1896
1897 /* Discard the unwinder last, so that we can easily find it if an assertion
1898 in this function triggers. */
1899 frame->unwind = NULL;
1900 }
1901
1902 /* Set FRAME's unwinder temporarily, so that we can call a sniffer.
1903 Return a cleanup which should be called if unwinding fails, and
1904 discarded if it succeeds. */
1905
1906 struct cleanup *
1907 frame_prepare_for_sniffer (struct frame_info *frame,
1908 const struct frame_unwind *unwind)
1909 {
1910 gdb_assert (frame->unwind == NULL);
1911 frame->unwind = unwind;
1912 return make_cleanup (frame_cleanup_after_sniffer, frame);
1913 }
1914
1915 extern initialize_file_ftype _initialize_frame; /* -Wmissing-prototypes */
1916
1917 static struct cmd_list_element *set_backtrace_cmdlist;
1918 static struct cmd_list_element *show_backtrace_cmdlist;
1919
1920 static void
1921 set_backtrace_cmd (char *args, int from_tty)
1922 {
1923 help_list (set_backtrace_cmdlist, "set backtrace ", -1, gdb_stdout);
1924 }
1925
1926 static void
1927 show_backtrace_cmd (char *args, int from_tty)
1928 {
1929 cmd_show_list (show_backtrace_cmdlist, from_tty, "");
1930 }
1931
1932 void
1933 _initialize_frame (void)
1934 {
1935 obstack_init (&frame_cache_obstack);
1936
1937 observer_attach_target_changed (frame_observer_target_changed);
1938
1939 add_prefix_cmd ("backtrace", class_maintenance, set_backtrace_cmd, _("\
1940 Set backtrace specific variables.\n\
1941 Configure backtrace variables such as the backtrace limit"),
1942 &set_backtrace_cmdlist, "set backtrace ",
1943 0/*allow-unknown*/, &setlist);
1944 add_prefix_cmd ("backtrace", class_maintenance, show_backtrace_cmd, _("\
1945 Show backtrace specific variables\n\
1946 Show backtrace variables such as the backtrace limit"),
1947 &show_backtrace_cmdlist, "show backtrace ",
1948 0/*allow-unknown*/, &showlist);
1949
1950 add_setshow_boolean_cmd ("past-main", class_obscure,
1951 &backtrace_past_main, _("\
1952 Set whether backtraces should continue past \"main\"."), _("\
1953 Show whether backtraces should continue past \"main\"."), _("\
1954 Normally the caller of \"main\" is not of interest, so GDB will terminate\n\
1955 the backtrace at \"main\". Set this variable if you need to see the rest\n\
1956 of the stack trace."),
1957 NULL,
1958 show_backtrace_past_main,
1959 &set_backtrace_cmdlist,
1960 &show_backtrace_cmdlist);
1961
1962 add_setshow_boolean_cmd ("past-entry", class_obscure,
1963 &backtrace_past_entry, _("\
1964 Set whether backtraces should continue past the entry point of a program."),
1965 _("\
1966 Show whether backtraces should continue past the entry point of a program."),
1967 _("\
1968 Normally there are no callers beyond the entry point of a program, so GDB\n\
1969 will terminate the backtrace there. Set this variable if you need to see \n\
1970 the rest of the stack trace."),
1971 NULL,
1972 show_backtrace_past_entry,
1973 &set_backtrace_cmdlist,
1974 &show_backtrace_cmdlist);
1975
1976 add_setshow_integer_cmd ("limit", class_obscure,
1977 &backtrace_limit, _("\
1978 Set an upper bound on the number of backtrace levels."), _("\
1979 Show the upper bound on the number of backtrace levels."), _("\
1980 No more than the specified number of frames can be displayed or examined.\n\
1981 Zero is unlimited."),
1982 NULL,
1983 show_backtrace_limit,
1984 &set_backtrace_cmdlist,
1985 &show_backtrace_cmdlist);
1986
1987 /* Debug this files internals. */
1988 add_setshow_zinteger_cmd ("frame", class_maintenance, &frame_debug, _("\
1989 Set frame debugging."), _("\
1990 Show frame debugging."), _("\
1991 When non-zero, frame specific internal debugging is enabled."),
1992 NULL,
1993 show_frame_debug,
1994 &setdebuglist, &showdebuglist);
1995 }