fed58717c95d4dc7500917f6bbc4803eb00e1c78
[binutils-gdb.git] / gdb / frame.c
1 /* Cache and manage frames for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2021 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "target.h"
23 #include "value.h"
24 #include "inferior.h" /* for inferior_ptid */
25 #include "regcache.h"
26 #include "user-regs.h"
27 #include "gdb_obstack.h"
28 #include "dummy-frame.h"
29 #include "sentinel-frame.h"
30 #include "gdbcore.h"
31 #include "annotate.h"
32 #include "language.h"
33 #include "frame-unwind.h"
34 #include "frame-base.h"
35 #include "command.h"
36 #include "gdbcmd.h"
37 #include "observable.h"
38 #include "objfiles.h"
39 #include "gdbthread.h"
40 #include "block.h"
41 #include "inline-frame.h"
42 #include "tracepoint.h"
43 #include "hashtab.h"
44 #include "valprint.h"
45 #include "cli/cli-option.h"
46
47 /* The sentinel frame terminates the innermost end of the frame chain.
48 If unwound, it returns the information needed to construct an
49 innermost frame.
50
51 The current frame, which is the innermost frame, can be found at
52 sentinel_frame->prev. */
53
54 static struct frame_info *sentinel_frame;
55
56 /* Number of calls to reinit_frame_cache. */
57 static unsigned int frame_cache_generation = 0;
58
59 /* See frame.h. */
60
61 unsigned int
62 get_frame_cache_generation ()
63 {
64 return frame_cache_generation;
65 }
66
67 /* The values behind the global "set backtrace ..." settings. */
68 set_backtrace_options user_set_backtrace_options;
69
70 static struct frame_info *get_prev_frame_raw (struct frame_info *this_frame);
71 static const char *frame_stop_reason_symbol_string (enum unwind_stop_reason reason);
72
73 /* Status of some values cached in the frame_info object. */
74
75 enum cached_copy_status
76 {
77 /* Value is unknown. */
78 CC_UNKNOWN,
79
80 /* We have a value. */
81 CC_VALUE,
82
83 /* Value was not saved. */
84 CC_NOT_SAVED,
85
86 /* Value is unavailable. */
87 CC_UNAVAILABLE
88 };
89
90 enum class frame_id_status
91 {
92 /* Frame id is not computed. */
93 NOT_COMPUTED = 0,
94
95 /* Frame id is being computed (compute_frame_id is active). */
96 COMPUTING,
97
98 /* Frame id has been computed. */
99 COMPUTED,
100 };
101
102 /* We keep a cache of stack frames, each of which is a "struct
103 frame_info". The innermost one gets allocated (in
104 wait_for_inferior) each time the inferior stops; sentinel_frame
105 points to it. Additional frames get allocated (in get_prev_frame)
106 as needed, and are chained through the next and prev fields. Any
107 time that the frame cache becomes invalid (most notably when we
108 execute something, but also if we change how we interpret the
109 frames (e.g. "set heuristic-fence-post" in mips-tdep.c, or anything
110 which reads new symbols)), we should call reinit_frame_cache. */
111
112 struct frame_info
113 {
114 /* Level of this frame. The inner-most (youngest) frame is at level
115 0. As you move towards the outer-most (oldest) frame, the level
116 increases. This is a cached value. It could just as easily be
117 computed by counting back from the selected frame to the inner
118 most frame. */
119 /* NOTE: cagney/2002-04-05: Perhaps a level of ``-1'' should be
120 reserved to indicate a bogus frame - one that has been created
121 just to keep GDB happy (GDB always needs a frame). For the
122 moment leave this as speculation. */
123 int level;
124
125 /* The frame's program space. */
126 struct program_space *pspace;
127
128 /* The frame's address space. */
129 const address_space *aspace;
130
131 /* The frame's low-level unwinder and corresponding cache. The
132 low-level unwinder is responsible for unwinding register values
133 for the previous frame. The low-level unwind methods are
134 selected based on the presence, or otherwise, of register unwind
135 information such as CFI. */
136 void *prologue_cache;
137 const struct frame_unwind *unwind;
138
139 /* Cached copy of the previous frame's architecture. */
140 struct
141 {
142 bool p;
143 struct gdbarch *arch;
144 } prev_arch;
145
146 /* Cached copy of the previous frame's resume address. */
147 struct {
148 cached_copy_status status;
149 /* Did VALUE require unmasking when being read. */
150 bool masked;
151 CORE_ADDR value;
152 } prev_pc;
153
154 /* Cached copy of the previous frame's function address. */
155 struct
156 {
157 CORE_ADDR addr;
158 cached_copy_status status;
159 } prev_func;
160
161 /* This frame's ID. */
162 struct
163 {
164 frame_id_status p;
165 struct frame_id value;
166 } this_id;
167
168 /* The frame's high-level base methods, and corresponding cache.
169 The high level base methods are selected based on the frame's
170 debug info. */
171 const struct frame_base *base;
172 void *base_cache;
173
174 /* Pointers to the next (down, inner, younger) and previous (up,
175 outer, older) frame_info's in the frame cache. */
176 struct frame_info *next; /* down, inner, younger */
177 bool prev_p;
178 struct frame_info *prev; /* up, outer, older */
179
180 /* The reason why we could not set PREV, or UNWIND_NO_REASON if we
181 could. Only valid when PREV_P is set. */
182 enum unwind_stop_reason stop_reason;
183
184 /* A frame specific string describing the STOP_REASON in more detail.
185 Only valid when PREV_P is set, but even then may still be NULL. */
186 const char *stop_string;
187 };
188
189 /* See frame.h. */
190
191 void
192 set_frame_previous_pc_masked (struct frame_info *frame)
193 {
194 frame->prev_pc.masked = true;
195 }
196
197 /* See frame.h. */
198
199 bool
200 get_frame_pc_masked (const struct frame_info *frame)
201 {
202 gdb_assert (frame->next != nullptr);
203 gdb_assert (frame->next->prev_pc.status == CC_VALUE);
204
205 return frame->next->prev_pc.masked;
206 }
207
208 /* A frame stash used to speed up frame lookups. Create a hash table
209 to stash frames previously accessed from the frame cache for
210 quicker subsequent retrieval. The hash table is emptied whenever
211 the frame cache is invalidated. */
212
213 static htab_t frame_stash;
214
215 /* Internal function to calculate a hash from the frame_id addresses,
216 using as many valid addresses as possible. Frames below level 0
217 are not stored in the hash table. */
218
219 static hashval_t
220 frame_addr_hash (const void *ap)
221 {
222 const struct frame_info *frame = (const struct frame_info *) ap;
223 const struct frame_id f_id = frame->this_id.value;
224 hashval_t hash = 0;
225
226 gdb_assert (f_id.stack_status != FID_STACK_INVALID
227 || f_id.code_addr_p
228 || f_id.special_addr_p);
229
230 if (f_id.stack_status == FID_STACK_VALID)
231 hash = iterative_hash (&f_id.stack_addr,
232 sizeof (f_id.stack_addr), hash);
233 if (f_id.code_addr_p)
234 hash = iterative_hash (&f_id.code_addr,
235 sizeof (f_id.code_addr), hash);
236 if (f_id.special_addr_p)
237 hash = iterative_hash (&f_id.special_addr,
238 sizeof (f_id.special_addr), hash);
239
240 return hash;
241 }
242
243 /* Internal equality function for the hash table. This function
244 defers equality operations to frame_id_eq. */
245
246 static int
247 frame_addr_hash_eq (const void *a, const void *b)
248 {
249 const struct frame_info *f_entry = (const struct frame_info *) a;
250 const struct frame_info *f_element = (const struct frame_info *) b;
251
252 return frame_id_eq (f_entry->this_id.value,
253 f_element->this_id.value);
254 }
255
256 /* Internal function to create the frame_stash hash table. 100 seems
257 to be a good compromise to start the hash table at. */
258
259 static void
260 frame_stash_create (void)
261 {
262 frame_stash = htab_create (100,
263 frame_addr_hash,
264 frame_addr_hash_eq,
265 NULL);
266 }
267
268 /* Internal function to add a frame to the frame_stash hash table.
269 Returns false if a frame with the same ID was already stashed, true
270 otherwise. */
271
272 static bool
273 frame_stash_add (frame_info *frame)
274 {
275 /* Do not try to stash the sentinel frame. */
276 gdb_assert (frame->level >= 0);
277
278 frame_info **slot = (struct frame_info **) htab_find_slot (frame_stash,
279 frame, INSERT);
280
281 /* If we already have a frame in the stack with the same id, we
282 either have a stack cycle (corrupted stack?), or some bug
283 elsewhere in GDB. In any case, ignore the duplicate and return
284 an indication to the caller. */
285 if (*slot != nullptr)
286 return false;
287
288 *slot = frame;
289 return true;
290 }
291
292 /* Internal function to search the frame stash for an entry with the
293 given frame ID. If found, return that frame. Otherwise return
294 NULL. */
295
296 static struct frame_info *
297 frame_stash_find (struct frame_id id)
298 {
299 struct frame_info dummy;
300 struct frame_info *frame;
301
302 dummy.this_id.value = id;
303 frame = (struct frame_info *) htab_find (frame_stash, &dummy);
304 return frame;
305 }
306
307 /* Internal function to invalidate the frame stash by removing all
308 entries in it. This only occurs when the frame cache is
309 invalidated. */
310
311 static void
312 frame_stash_invalidate (void)
313 {
314 htab_empty (frame_stash);
315 }
316
317 /* See frame.h */
318 scoped_restore_selected_frame::scoped_restore_selected_frame ()
319 {
320 m_lang = current_language->la_language;
321 save_selected_frame (&m_fid, &m_level);
322 }
323
324 /* See frame.h */
325 scoped_restore_selected_frame::~scoped_restore_selected_frame ()
326 {
327 restore_selected_frame (m_fid, m_level);
328 set_language (m_lang);
329 }
330
331 /* Flag to control debugging. */
332
333 unsigned int frame_debug;
334 static void
335 show_frame_debug (struct ui_file *file, int from_tty,
336 struct cmd_list_element *c, const char *value)
337 {
338 fprintf_filtered (file, _("Frame debugging is %s.\n"), value);
339 }
340
341 /* Implementation of "show backtrace past-main". */
342
343 static void
344 show_backtrace_past_main (struct ui_file *file, int from_tty,
345 struct cmd_list_element *c, const char *value)
346 {
347 fprintf_filtered (file,
348 _("Whether backtraces should "
349 "continue past \"main\" is %s.\n"),
350 value);
351 }
352
353 /* Implementation of "show backtrace past-entry". */
354
355 static void
356 show_backtrace_past_entry (struct ui_file *file, int from_tty,
357 struct cmd_list_element *c, const char *value)
358 {
359 fprintf_filtered (file, _("Whether backtraces should continue past the "
360 "entry point of a program is %s.\n"),
361 value);
362 }
363
364 /* Implementation of "show backtrace limit". */
365
366 static void
367 show_backtrace_limit (struct ui_file *file, int from_tty,
368 struct cmd_list_element *c, const char *value)
369 {
370 fprintf_filtered (file,
371 _("An upper bound on the number "
372 "of backtrace levels is %s.\n"),
373 value);
374 }
375
376
377 static void
378 fprint_field (struct ui_file *file, const char *name, int p, CORE_ADDR addr)
379 {
380 if (p)
381 fprintf_unfiltered (file, "%s=%s", name, hex_string (addr));
382 else
383 fprintf_unfiltered (file, "!%s", name);
384 }
385
386 void
387 fprint_frame_id (struct ui_file *file, struct frame_id id)
388 {
389 fprintf_unfiltered (file, "{");
390
391 if (id.stack_status == FID_STACK_INVALID)
392 fprintf_unfiltered (file, "!stack");
393 else if (id.stack_status == FID_STACK_UNAVAILABLE)
394 fprintf_unfiltered (file, "stack=<unavailable>");
395 else if (id.stack_status == FID_STACK_SENTINEL)
396 fprintf_unfiltered (file, "stack=<sentinel>");
397 else if (id.stack_status == FID_STACK_OUTER)
398 fprintf_unfiltered (file, "stack=<outer>");
399 else
400 fprintf_unfiltered (file, "stack=%s", hex_string (id.stack_addr));
401
402 fprintf_unfiltered (file, ",");
403
404 fprint_field (file, "code", id.code_addr_p, id.code_addr);
405 fprintf_unfiltered (file, ",");
406
407 fprint_field (file, "special", id.special_addr_p, id.special_addr);
408
409 if (id.artificial_depth)
410 fprintf_unfiltered (file, ",artificial=%d", id.artificial_depth);
411
412 fprintf_unfiltered (file, "}");
413 }
414
415 static void
416 fprint_frame_type (struct ui_file *file, enum frame_type type)
417 {
418 switch (type)
419 {
420 case NORMAL_FRAME:
421 fprintf_unfiltered (file, "NORMAL_FRAME");
422 return;
423 case DUMMY_FRAME:
424 fprintf_unfiltered (file, "DUMMY_FRAME");
425 return;
426 case INLINE_FRAME:
427 fprintf_unfiltered (file, "INLINE_FRAME");
428 return;
429 case TAILCALL_FRAME:
430 fprintf_unfiltered (file, "TAILCALL_FRAME");
431 return;
432 case SIGTRAMP_FRAME:
433 fprintf_unfiltered (file, "SIGTRAMP_FRAME");
434 return;
435 case ARCH_FRAME:
436 fprintf_unfiltered (file, "ARCH_FRAME");
437 return;
438 case SENTINEL_FRAME:
439 fprintf_unfiltered (file, "SENTINEL_FRAME");
440 return;
441 default:
442 fprintf_unfiltered (file, "<unknown type>");
443 return;
444 };
445 }
446
447 static void
448 fprint_frame (struct ui_file *file, struct frame_info *fi)
449 {
450 if (fi == NULL)
451 {
452 fprintf_unfiltered (file, "<NULL frame>");
453 return;
454 }
455
456 fprintf_unfiltered (file, "{");
457 fprintf_unfiltered (file, "level=%d", fi->level);
458 fprintf_unfiltered (file, ",");
459
460 fprintf_unfiltered (file, "type=");
461 if (fi->unwind != NULL)
462 fprint_frame_type (file, fi->unwind->type);
463 else
464 fprintf_unfiltered (file, "<unknown>");
465 fprintf_unfiltered (file, ",");
466
467 fprintf_unfiltered (file, "unwind=");
468 if (fi->unwind != NULL)
469 gdb_print_host_address (fi->unwind, file);
470 else
471 fprintf_unfiltered (file, "<unknown>");
472 fprintf_unfiltered (file, ",");
473
474 fprintf_unfiltered (file, "pc=");
475 if (fi->next == NULL || fi->next->prev_pc.status == CC_UNKNOWN)
476 fprintf_unfiltered (file, "<unknown>");
477 else if (fi->next->prev_pc.status == CC_VALUE)
478 {
479 fprintf_unfiltered (file, "%s", hex_string (fi->next->prev_pc.value));
480 if (fi->next->prev_pc.masked)
481 fprintf_unfiltered (file, "[PAC]");
482 }
483 else if (fi->next->prev_pc.status == CC_NOT_SAVED)
484 val_print_not_saved (file);
485 else if (fi->next->prev_pc.status == CC_UNAVAILABLE)
486 val_print_unavailable (file);
487 fprintf_unfiltered (file, ",");
488
489 fprintf_unfiltered (file, "id=");
490 if (fi->this_id.p == frame_id_status::NOT_COMPUTED)
491 fprintf_unfiltered (file, "<not computed>");
492 else if (fi->this_id.p == frame_id_status::COMPUTING)
493 fprintf_unfiltered (file, "<computing>");
494 else
495 fprint_frame_id (file, fi->this_id.value);
496 fprintf_unfiltered (file, ",");
497
498 fprintf_unfiltered (file, "func=");
499 if (fi->next != NULL && fi->next->prev_func.status == CC_VALUE)
500 fprintf_unfiltered (file, "%s", hex_string (fi->next->prev_func.addr));
501 else
502 fprintf_unfiltered (file, "<unknown>");
503 fprintf_unfiltered (file, "}");
504 }
505
506 /* Given FRAME, return the enclosing frame as found in real frames read-in from
507 inferior memory. Skip any previous frames which were made up by GDB.
508 Return FRAME if FRAME is a non-artificial frame.
509 Return NULL if FRAME is the start of an artificial-only chain. */
510
511 static struct frame_info *
512 skip_artificial_frames (struct frame_info *frame)
513 {
514 /* Note we use get_prev_frame_always, and not get_prev_frame. The
515 latter will truncate the frame chain, leading to this function
516 unintentionally returning a null_frame_id (e.g., when the user
517 sets a backtrace limit).
518
519 Note that for record targets we may get a frame chain that consists
520 of artificial frames only. */
521 while (get_frame_type (frame) == INLINE_FRAME
522 || get_frame_type (frame) == TAILCALL_FRAME)
523 {
524 frame = get_prev_frame_always (frame);
525 if (frame == NULL)
526 break;
527 }
528
529 return frame;
530 }
531
532 struct frame_info *
533 skip_unwritable_frames (struct frame_info *frame)
534 {
535 while (gdbarch_code_of_frame_writable (get_frame_arch (frame), frame) == 0)
536 {
537 frame = get_prev_frame (frame);
538 if (frame == NULL)
539 break;
540 }
541
542 return frame;
543 }
544
545 /* See frame.h. */
546
547 struct frame_info *
548 skip_tailcall_frames (struct frame_info *frame)
549 {
550 while (get_frame_type (frame) == TAILCALL_FRAME)
551 {
552 /* Note that for record targets we may get a frame chain that consists of
553 tailcall frames only. */
554 frame = get_prev_frame (frame);
555 if (frame == NULL)
556 break;
557 }
558
559 return frame;
560 }
561
562 /* Compute the frame's uniq ID that can be used to, later, re-find the
563 frame. */
564
565 static void
566 compute_frame_id (struct frame_info *fi)
567 {
568 gdb_assert (fi->this_id.p == frame_id_status::NOT_COMPUTED);
569
570 unsigned int entry_generation = get_frame_cache_generation ();
571
572 try
573 {
574 /* Mark this frame's id as "being computed. */
575 fi->this_id.p = frame_id_status::COMPUTING;
576
577 if (frame_debug)
578 fprintf_unfiltered (gdb_stdlog, "{ compute_frame_id (fi=%d) ",
579 fi->level);
580
581 /* Find the unwinder. */
582 if (fi->unwind == NULL)
583 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
584
585 /* Find THIS frame's ID. */
586 /* Default to outermost if no ID is found. */
587 fi->this_id.value = outer_frame_id;
588 fi->unwind->this_id (fi, &fi->prologue_cache, &fi->this_id.value);
589 gdb_assert (frame_id_p (fi->this_id.value));
590
591 /* Mark this frame's id as "computed". */
592 fi->this_id.p = frame_id_status::COMPUTED;
593
594 if (frame_debug)
595 {
596 fprintf_unfiltered (gdb_stdlog, "-> ");
597 fprint_frame_id (gdb_stdlog, fi->this_id.value);
598 fprintf_unfiltered (gdb_stdlog, " }\n");
599 }
600 }
601 catch (const gdb_exception &ex)
602 {
603 /* On error, revert the frame id status to not computed. If the frame
604 cache generation changed, the frame object doesn't exist anymore, so
605 don't touch it. */
606 if (get_frame_cache_generation () == entry_generation)
607 fi->this_id.p = frame_id_status::NOT_COMPUTED;
608
609 throw;
610 }
611 }
612
613 /* Return a frame uniq ID that can be used to, later, re-find the
614 frame. */
615
616 struct frame_id
617 get_frame_id (struct frame_info *fi)
618 {
619 if (fi == NULL)
620 return null_frame_id;
621
622 /* It's always invalid to try to get a frame's id while it is being
623 computed. */
624 gdb_assert (fi->this_id.p != frame_id_status::COMPUTING);
625
626 if (fi->this_id.p == frame_id_status::NOT_COMPUTED)
627 {
628 /* If we haven't computed the frame id yet, then it must be that
629 this is the current frame. Compute it now, and stash the
630 result. The IDs of other frames are computed as soon as
631 they're created, in order to detect cycles. See
632 get_prev_frame_if_no_cycle. */
633 gdb_assert (fi->level == 0);
634
635 /* Compute. */
636 compute_frame_id (fi);
637
638 /* Since this is the first frame in the chain, this should
639 always succeed. */
640 bool stashed = frame_stash_add (fi);
641 gdb_assert (stashed);
642 }
643
644 return fi->this_id.value;
645 }
646
647 struct frame_id
648 get_stack_frame_id (struct frame_info *next_frame)
649 {
650 return get_frame_id (skip_artificial_frames (next_frame));
651 }
652
653 struct frame_id
654 frame_unwind_caller_id (struct frame_info *next_frame)
655 {
656 struct frame_info *this_frame;
657
658 /* Use get_prev_frame_always, and not get_prev_frame. The latter
659 will truncate the frame chain, leading to this function
660 unintentionally returning a null_frame_id (e.g., when a caller
661 requests the frame ID of "main()"s caller. */
662
663 next_frame = skip_artificial_frames (next_frame);
664 if (next_frame == NULL)
665 return null_frame_id;
666
667 this_frame = get_prev_frame_always (next_frame);
668 if (this_frame)
669 return get_frame_id (skip_artificial_frames (this_frame));
670 else
671 return null_frame_id;
672 }
673
674 const struct frame_id null_frame_id = { 0 }; /* All zeros. */
675 const struct frame_id sentinel_frame_id = { 0, 0, 0, FID_STACK_SENTINEL, 0, 1, 0 };
676 const struct frame_id outer_frame_id = { 0, 0, 0, FID_STACK_OUTER, 0, 1, 0 };
677
678 struct frame_id
679 frame_id_build_special (CORE_ADDR stack_addr, CORE_ADDR code_addr,
680 CORE_ADDR special_addr)
681 {
682 struct frame_id id = null_frame_id;
683
684 id.stack_addr = stack_addr;
685 id.stack_status = FID_STACK_VALID;
686 id.code_addr = code_addr;
687 id.code_addr_p = true;
688 id.special_addr = special_addr;
689 id.special_addr_p = true;
690 return id;
691 }
692
693 /* See frame.h. */
694
695 struct frame_id
696 frame_id_build_unavailable_stack (CORE_ADDR code_addr)
697 {
698 struct frame_id id = null_frame_id;
699
700 id.stack_status = FID_STACK_UNAVAILABLE;
701 id.code_addr = code_addr;
702 id.code_addr_p = true;
703 return id;
704 }
705
706 /* See frame.h. */
707
708 struct frame_id
709 frame_id_build_unavailable_stack_special (CORE_ADDR code_addr,
710 CORE_ADDR special_addr)
711 {
712 struct frame_id id = null_frame_id;
713
714 id.stack_status = FID_STACK_UNAVAILABLE;
715 id.code_addr = code_addr;
716 id.code_addr_p = true;
717 id.special_addr = special_addr;
718 id.special_addr_p = true;
719 return id;
720 }
721
722 struct frame_id
723 frame_id_build (CORE_ADDR stack_addr, CORE_ADDR code_addr)
724 {
725 struct frame_id id = null_frame_id;
726
727 id.stack_addr = stack_addr;
728 id.stack_status = FID_STACK_VALID;
729 id.code_addr = code_addr;
730 id.code_addr_p = true;
731 return id;
732 }
733
734 struct frame_id
735 frame_id_build_wild (CORE_ADDR stack_addr)
736 {
737 struct frame_id id = null_frame_id;
738
739 id.stack_addr = stack_addr;
740 id.stack_status = FID_STACK_VALID;
741 return id;
742 }
743
744 bool
745 frame_id_p (frame_id l)
746 {
747 /* The frame is valid iff it has a valid stack address. */
748 bool p = l.stack_status != FID_STACK_INVALID;
749
750 if (frame_debug)
751 {
752 fprintf_unfiltered (gdb_stdlog, "{ frame_id_p (l=");
753 fprint_frame_id (gdb_stdlog, l);
754 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", p);
755 }
756
757 return p;
758 }
759
760 bool
761 frame_id_artificial_p (frame_id l)
762 {
763 if (!frame_id_p (l))
764 return false;
765
766 return l.artificial_depth != 0;
767 }
768
769 bool
770 frame_id_eq (frame_id l, frame_id r)
771 {
772 bool eq;
773
774 if (l.stack_status == FID_STACK_INVALID
775 || r.stack_status == FID_STACK_INVALID)
776 /* Like a NaN, if either ID is invalid, the result is false.
777 Note that a frame ID is invalid iff it is the null frame ID. */
778 eq = false;
779 else if (l.stack_status != r.stack_status || l.stack_addr != r.stack_addr)
780 /* If .stack addresses are different, the frames are different. */
781 eq = false;
782 else if (l.code_addr_p && r.code_addr_p && l.code_addr != r.code_addr)
783 /* An invalid code addr is a wild card. If .code addresses are
784 different, the frames are different. */
785 eq = false;
786 else if (l.special_addr_p && r.special_addr_p
787 && l.special_addr != r.special_addr)
788 /* An invalid special addr is a wild card (or unused). Otherwise
789 if special addresses are different, the frames are different. */
790 eq = false;
791 else if (l.artificial_depth != r.artificial_depth)
792 /* If artificial depths are different, the frames must be different. */
793 eq = false;
794 else
795 /* Frames are equal. */
796 eq = true;
797
798 if (frame_debug)
799 {
800 fprintf_unfiltered (gdb_stdlog, "{ frame_id_eq (l=");
801 fprint_frame_id (gdb_stdlog, l);
802 fprintf_unfiltered (gdb_stdlog, ",r=");
803 fprint_frame_id (gdb_stdlog, r);
804 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", eq);
805 }
806
807 return eq;
808 }
809
810 /* Safety net to check whether frame ID L should be inner to
811 frame ID R, according to their stack addresses.
812
813 This method cannot be used to compare arbitrary frames, as the
814 ranges of valid stack addresses may be discontiguous (e.g. due
815 to sigaltstack).
816
817 However, it can be used as safety net to discover invalid frame
818 IDs in certain circumstances. Assuming that NEXT is the immediate
819 inner frame to THIS and that NEXT and THIS are both NORMAL frames:
820
821 * The stack address of NEXT must be inner-than-or-equal to the stack
822 address of THIS.
823
824 Therefore, if frame_id_inner (THIS, NEXT) holds, some unwind
825 error has occurred.
826
827 * If NEXT and THIS have different stack addresses, no other frame
828 in the frame chain may have a stack address in between.
829
830 Therefore, if frame_id_inner (TEST, THIS) holds, but
831 frame_id_inner (TEST, NEXT) does not hold, TEST cannot refer
832 to a valid frame in the frame chain.
833
834 The sanity checks above cannot be performed when a SIGTRAMP frame
835 is involved, because signal handlers might be executed on a different
836 stack than the stack used by the routine that caused the signal
837 to be raised. This can happen for instance when a thread exceeds
838 its maximum stack size. In this case, certain compilers implement
839 a stack overflow strategy that cause the handler to be run on a
840 different stack. */
841
842 static bool
843 frame_id_inner (struct gdbarch *gdbarch, struct frame_id l, struct frame_id r)
844 {
845 bool inner;
846
847 if (l.stack_status != FID_STACK_VALID || r.stack_status != FID_STACK_VALID)
848 /* Like NaN, any operation involving an invalid ID always fails.
849 Likewise if either ID has an unavailable stack address. */
850 inner = false;
851 else if (l.artificial_depth > r.artificial_depth
852 && l.stack_addr == r.stack_addr
853 && l.code_addr_p == r.code_addr_p
854 && l.special_addr_p == r.special_addr_p
855 && l.special_addr == r.special_addr)
856 {
857 /* Same function, different inlined functions. */
858 const struct block *lb, *rb;
859
860 gdb_assert (l.code_addr_p && r.code_addr_p);
861
862 lb = block_for_pc (l.code_addr);
863 rb = block_for_pc (r.code_addr);
864
865 if (lb == NULL || rb == NULL)
866 /* Something's gone wrong. */
867 inner = false;
868 else
869 /* This will return true if LB and RB are the same block, or
870 if the block with the smaller depth lexically encloses the
871 block with the greater depth. */
872 inner = contained_in (lb, rb);
873 }
874 else
875 /* Only return non-zero when strictly inner than. Note that, per
876 comment in "frame.h", there is some fuzz here. Frameless
877 functions are not strictly inner than (same .stack but
878 different .code and/or .special address). */
879 inner = gdbarch_inner_than (gdbarch, l.stack_addr, r.stack_addr);
880
881 if (frame_debug)
882 {
883 fprintf_unfiltered (gdb_stdlog, "{ frame_id_inner (l=");
884 fprint_frame_id (gdb_stdlog, l);
885 fprintf_unfiltered (gdb_stdlog, ",r=");
886 fprint_frame_id (gdb_stdlog, r);
887 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", inner);
888 }
889
890 return inner;
891 }
892
893 struct frame_info *
894 frame_find_by_id (struct frame_id id)
895 {
896 struct frame_info *frame, *prev_frame;
897
898 /* ZERO denotes the null frame, let the caller decide what to do
899 about it. Should it instead return get_current_frame()? */
900 if (!frame_id_p (id))
901 return NULL;
902
903 /* Check for the sentinel frame. */
904 if (frame_id_eq (id, sentinel_frame_id))
905 return sentinel_frame;
906
907 /* Try using the frame stash first. Finding it there removes the need
908 to perform the search by looping over all frames, which can be very
909 CPU-intensive if the number of frames is very high (the loop is O(n)
910 and get_prev_frame performs a series of checks that are relatively
911 expensive). This optimization is particularly useful when this function
912 is called from another function (such as value_fetch_lazy, case
913 VALUE_LVAL (val) == lval_register) which already loops over all frames,
914 making the overall behavior O(n^2). */
915 frame = frame_stash_find (id);
916 if (frame)
917 return frame;
918
919 for (frame = get_current_frame (); ; frame = prev_frame)
920 {
921 struct frame_id self = get_frame_id (frame);
922
923 if (frame_id_eq (id, self))
924 /* An exact match. */
925 return frame;
926
927 prev_frame = get_prev_frame (frame);
928 if (!prev_frame)
929 return NULL;
930
931 /* As a safety net to avoid unnecessary backtracing while trying
932 to find an invalid ID, we check for a common situation where
933 we can detect from comparing stack addresses that no other
934 frame in the current frame chain can have this ID. See the
935 comment at frame_id_inner for details. */
936 if (get_frame_type (frame) == NORMAL_FRAME
937 && !frame_id_inner (get_frame_arch (frame), id, self)
938 && frame_id_inner (get_frame_arch (prev_frame), id,
939 get_frame_id (prev_frame)))
940 return NULL;
941 }
942 return NULL;
943 }
944
945 static CORE_ADDR
946 frame_unwind_pc (struct frame_info *this_frame)
947 {
948 if (this_frame->prev_pc.status == CC_UNKNOWN)
949 {
950 struct gdbarch *prev_gdbarch;
951 CORE_ADDR pc = 0;
952 bool pc_p = false;
953
954 /* The right way. The `pure' way. The one true way. This
955 method depends solely on the register-unwind code to
956 determine the value of registers in THIS frame, and hence
957 the value of this frame's PC (resume address). A typical
958 implementation is no more than:
959
960 frame_unwind_register (this_frame, ISA_PC_REGNUM, buf);
961 return extract_unsigned_integer (buf, size of ISA_PC_REGNUM);
962
963 Note: this method is very heavily dependent on a correct
964 register-unwind implementation, it pays to fix that
965 method first; this method is frame type agnostic, since
966 it only deals with register values, it works with any
967 frame. This is all in stark contrast to the old
968 FRAME_SAVED_PC which would try to directly handle all the
969 different ways that a PC could be unwound. */
970 prev_gdbarch = frame_unwind_arch (this_frame);
971
972 try
973 {
974 pc = gdbarch_unwind_pc (prev_gdbarch, this_frame);
975 pc_p = true;
976 }
977 catch (const gdb_exception_error &ex)
978 {
979 if (ex.error == NOT_AVAILABLE_ERROR)
980 {
981 this_frame->prev_pc.status = CC_UNAVAILABLE;
982
983 if (frame_debug)
984 fprintf_unfiltered (gdb_stdlog,
985 "{ frame_unwind_pc (this_frame=%d)"
986 " -> <unavailable> }\n",
987 this_frame->level);
988 }
989 else if (ex.error == OPTIMIZED_OUT_ERROR)
990 {
991 this_frame->prev_pc.status = CC_NOT_SAVED;
992
993 if (frame_debug)
994 fprintf_unfiltered (gdb_stdlog,
995 "{ frame_unwind_pc (this_frame=%d)"
996 " -> <not saved> }\n",
997 this_frame->level);
998 }
999 else
1000 throw;
1001 }
1002
1003 if (pc_p)
1004 {
1005 this_frame->prev_pc.value = pc;
1006 this_frame->prev_pc.status = CC_VALUE;
1007 if (frame_debug)
1008 fprintf_unfiltered (gdb_stdlog,
1009 "{ frame_unwind_pc (this_frame=%d) "
1010 "-> %s }\n",
1011 this_frame->level,
1012 hex_string (this_frame->prev_pc.value));
1013 }
1014 }
1015
1016 if (this_frame->prev_pc.status == CC_VALUE)
1017 return this_frame->prev_pc.value;
1018 else if (this_frame->prev_pc.status == CC_UNAVAILABLE)
1019 throw_error (NOT_AVAILABLE_ERROR, _("PC not available"));
1020 else if (this_frame->prev_pc.status == CC_NOT_SAVED)
1021 throw_error (OPTIMIZED_OUT_ERROR, _("PC not saved"));
1022 else
1023 internal_error (__FILE__, __LINE__,
1024 "unexpected prev_pc status: %d",
1025 (int) this_frame->prev_pc.status);
1026 }
1027
1028 CORE_ADDR
1029 frame_unwind_caller_pc (struct frame_info *this_frame)
1030 {
1031 this_frame = skip_artificial_frames (this_frame);
1032
1033 /* We must have a non-artificial frame. The caller is supposed to check
1034 the result of frame_unwind_caller_id (), which returns NULL_FRAME_ID
1035 in this case. */
1036 gdb_assert (this_frame != NULL);
1037
1038 return frame_unwind_pc (this_frame);
1039 }
1040
1041 bool
1042 get_frame_func_if_available (frame_info *this_frame, CORE_ADDR *pc)
1043 {
1044 struct frame_info *next_frame = this_frame->next;
1045
1046 if (next_frame->prev_func.status == CC_UNKNOWN)
1047 {
1048 CORE_ADDR addr_in_block;
1049
1050 /* Make certain that this, and not the adjacent, function is
1051 found. */
1052 if (!get_frame_address_in_block_if_available (this_frame, &addr_in_block))
1053 {
1054 next_frame->prev_func.status = CC_UNAVAILABLE;
1055 if (frame_debug)
1056 fprintf_unfiltered (gdb_stdlog,
1057 "{ get_frame_func (this_frame=%d)"
1058 " -> unavailable }\n",
1059 this_frame->level);
1060 }
1061 else
1062 {
1063 next_frame->prev_func.status = CC_VALUE;
1064 next_frame->prev_func.addr = get_pc_function_start (addr_in_block);
1065 if (frame_debug)
1066 fprintf_unfiltered (gdb_stdlog,
1067 "{ get_frame_func (this_frame=%d) -> %s }\n",
1068 this_frame->level,
1069 hex_string (next_frame->prev_func.addr));
1070 }
1071 }
1072
1073 if (next_frame->prev_func.status == CC_UNAVAILABLE)
1074 {
1075 *pc = -1;
1076 return false;
1077 }
1078 else
1079 {
1080 gdb_assert (next_frame->prev_func.status == CC_VALUE);
1081
1082 *pc = next_frame->prev_func.addr;
1083 return true;
1084 }
1085 }
1086
1087 CORE_ADDR
1088 get_frame_func (struct frame_info *this_frame)
1089 {
1090 CORE_ADDR pc;
1091
1092 if (!get_frame_func_if_available (this_frame, &pc))
1093 throw_error (NOT_AVAILABLE_ERROR, _("PC not available"));
1094
1095 return pc;
1096 }
1097
1098 std::unique_ptr<readonly_detached_regcache>
1099 frame_save_as_regcache (struct frame_info *this_frame)
1100 {
1101 auto cooked_read = [this_frame] (int regnum, gdb_byte *buf)
1102 {
1103 if (!deprecated_frame_register_read (this_frame, regnum, buf))
1104 return REG_UNAVAILABLE;
1105 else
1106 return REG_VALID;
1107 };
1108
1109 std::unique_ptr<readonly_detached_regcache> regcache
1110 (new readonly_detached_regcache (get_frame_arch (this_frame), cooked_read));
1111
1112 return regcache;
1113 }
1114
1115 void
1116 frame_pop (struct frame_info *this_frame)
1117 {
1118 struct frame_info *prev_frame;
1119
1120 if (get_frame_type (this_frame) == DUMMY_FRAME)
1121 {
1122 /* Popping a dummy frame involves restoring more than just registers.
1123 dummy_frame_pop does all the work. */
1124 dummy_frame_pop (get_frame_id (this_frame), inferior_thread ());
1125 return;
1126 }
1127
1128 /* Ensure that we have a frame to pop to. */
1129 prev_frame = get_prev_frame_always (this_frame);
1130
1131 if (!prev_frame)
1132 error (_("Cannot pop the initial frame."));
1133
1134 /* Ignore TAILCALL_FRAME type frames, they were executed already before
1135 entering THISFRAME. */
1136 prev_frame = skip_tailcall_frames (prev_frame);
1137
1138 if (prev_frame == NULL)
1139 error (_("Cannot find the caller frame."));
1140
1141 /* Make a copy of all the register values unwound from this frame.
1142 Save them in a scratch buffer so that there isn't a race between
1143 trying to extract the old values from the current regcache while
1144 at the same time writing new values into that same cache. */
1145 std::unique_ptr<readonly_detached_regcache> scratch
1146 = frame_save_as_regcache (prev_frame);
1147
1148 /* FIXME: cagney/2003-03-16: It should be possible to tell the
1149 target's register cache that it is about to be hit with a burst
1150 register transfer and that the sequence of register writes should
1151 be batched. The pair target_prepare_to_store() and
1152 target_store_registers() kind of suggest this functionality.
1153 Unfortunately, they don't implement it. Their lack of a formal
1154 definition can lead to targets writing back bogus values
1155 (arguably a bug in the target code mind). */
1156 /* Now copy those saved registers into the current regcache. */
1157 get_current_regcache ()->restore (scratch.get ());
1158
1159 /* We've made right mess of GDB's local state, just discard
1160 everything. */
1161 reinit_frame_cache ();
1162 }
1163
1164 void
1165 frame_register_unwind (frame_info *next_frame, int regnum,
1166 int *optimizedp, int *unavailablep,
1167 enum lval_type *lvalp, CORE_ADDR *addrp,
1168 int *realnump, gdb_byte *bufferp)
1169 {
1170 struct value *value;
1171
1172 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
1173 that the value proper does not need to be fetched. */
1174 gdb_assert (optimizedp != NULL);
1175 gdb_assert (lvalp != NULL);
1176 gdb_assert (addrp != NULL);
1177 gdb_assert (realnump != NULL);
1178 /* gdb_assert (bufferp != NULL); */
1179
1180 value = frame_unwind_register_value (next_frame, regnum);
1181
1182 gdb_assert (value != NULL);
1183
1184 *optimizedp = value_optimized_out (value);
1185 *unavailablep = !value_entirely_available (value);
1186 *lvalp = VALUE_LVAL (value);
1187 *addrp = value_address (value);
1188 if (*lvalp == lval_register)
1189 *realnump = VALUE_REGNUM (value);
1190 else
1191 *realnump = -1;
1192
1193 if (bufferp)
1194 {
1195 if (!*optimizedp && !*unavailablep)
1196 memcpy (bufferp, value_contents_all (value),
1197 TYPE_LENGTH (value_type (value)));
1198 else
1199 memset (bufferp, 0, TYPE_LENGTH (value_type (value)));
1200 }
1201
1202 /* Dispose of the new value. This prevents watchpoints from
1203 trying to watch the saved frame pointer. */
1204 release_value (value);
1205 }
1206
1207 void
1208 frame_register (struct frame_info *frame, int regnum,
1209 int *optimizedp, int *unavailablep, enum lval_type *lvalp,
1210 CORE_ADDR *addrp, int *realnump, gdb_byte *bufferp)
1211 {
1212 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
1213 that the value proper does not need to be fetched. */
1214 gdb_assert (optimizedp != NULL);
1215 gdb_assert (lvalp != NULL);
1216 gdb_assert (addrp != NULL);
1217 gdb_assert (realnump != NULL);
1218 /* gdb_assert (bufferp != NULL); */
1219
1220 /* Obtain the register value by unwinding the register from the next
1221 (more inner frame). */
1222 gdb_assert (frame != NULL && frame->next != NULL);
1223 frame_register_unwind (frame->next, regnum, optimizedp, unavailablep,
1224 lvalp, addrp, realnump, bufferp);
1225 }
1226
1227 void
1228 frame_unwind_register (frame_info *next_frame, int regnum, gdb_byte *buf)
1229 {
1230 int optimized;
1231 int unavailable;
1232 CORE_ADDR addr;
1233 int realnum;
1234 enum lval_type lval;
1235
1236 frame_register_unwind (next_frame, regnum, &optimized, &unavailable,
1237 &lval, &addr, &realnum, buf);
1238
1239 if (optimized)
1240 throw_error (OPTIMIZED_OUT_ERROR,
1241 _("Register %d was not saved"), regnum);
1242 if (unavailable)
1243 throw_error (NOT_AVAILABLE_ERROR,
1244 _("Register %d is not available"), regnum);
1245 }
1246
1247 void
1248 get_frame_register (struct frame_info *frame,
1249 int regnum, gdb_byte *buf)
1250 {
1251 frame_unwind_register (frame->next, regnum, buf);
1252 }
1253
1254 struct value *
1255 frame_unwind_register_value (frame_info *next_frame, int regnum)
1256 {
1257 struct gdbarch *gdbarch;
1258 struct value *value;
1259
1260 gdb_assert (next_frame != NULL);
1261 gdbarch = frame_unwind_arch (next_frame);
1262
1263 if (frame_debug)
1264 {
1265 fprintf_unfiltered (gdb_stdlog,
1266 "{ frame_unwind_register_value "
1267 "(frame=%d,regnum=%d(%s),...) ",
1268 next_frame->level, regnum,
1269 user_reg_map_regnum_to_name (gdbarch, regnum));
1270 }
1271
1272 /* Find the unwinder. */
1273 if (next_frame->unwind == NULL)
1274 frame_unwind_find_by_frame (next_frame, &next_frame->prologue_cache);
1275
1276 /* Ask this frame to unwind its register. */
1277 value = next_frame->unwind->prev_register (next_frame,
1278 &next_frame->prologue_cache,
1279 regnum);
1280
1281 if (frame_debug)
1282 {
1283 fprintf_unfiltered (gdb_stdlog, "->");
1284 if (value_optimized_out (value))
1285 {
1286 fprintf_unfiltered (gdb_stdlog, " ");
1287 val_print_not_saved (gdb_stdlog);
1288 }
1289 else
1290 {
1291 if (VALUE_LVAL (value) == lval_register)
1292 fprintf_unfiltered (gdb_stdlog, " register=%d",
1293 VALUE_REGNUM (value));
1294 else if (VALUE_LVAL (value) == lval_memory)
1295 fprintf_unfiltered (gdb_stdlog, " address=%s",
1296 paddress (gdbarch,
1297 value_address (value)));
1298 else
1299 fprintf_unfiltered (gdb_stdlog, " computed");
1300
1301 if (value_lazy (value))
1302 fprintf_unfiltered (gdb_stdlog, " lazy");
1303 else
1304 {
1305 int i;
1306 const gdb_byte *buf = value_contents (value);
1307
1308 fprintf_unfiltered (gdb_stdlog, " bytes=");
1309 fprintf_unfiltered (gdb_stdlog, "[");
1310 for (i = 0; i < register_size (gdbarch, regnum); i++)
1311 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
1312 fprintf_unfiltered (gdb_stdlog, "]");
1313 }
1314 }
1315
1316 fprintf_unfiltered (gdb_stdlog, " }\n");
1317 }
1318
1319 return value;
1320 }
1321
1322 struct value *
1323 get_frame_register_value (struct frame_info *frame, int regnum)
1324 {
1325 return frame_unwind_register_value (frame->next, regnum);
1326 }
1327
1328 LONGEST
1329 frame_unwind_register_signed (frame_info *next_frame, int regnum)
1330 {
1331 struct gdbarch *gdbarch = frame_unwind_arch (next_frame);
1332 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1333 int size = register_size (gdbarch, regnum);
1334 struct value *value = frame_unwind_register_value (next_frame, regnum);
1335
1336 gdb_assert (value != NULL);
1337
1338 if (value_optimized_out (value))
1339 {
1340 throw_error (OPTIMIZED_OUT_ERROR,
1341 _("Register %d was not saved"), regnum);
1342 }
1343 if (!value_entirely_available (value))
1344 {
1345 throw_error (NOT_AVAILABLE_ERROR,
1346 _("Register %d is not available"), regnum);
1347 }
1348
1349 LONGEST r = extract_signed_integer (value_contents_all (value), size,
1350 byte_order);
1351
1352 release_value (value);
1353 return r;
1354 }
1355
1356 LONGEST
1357 get_frame_register_signed (struct frame_info *frame, int regnum)
1358 {
1359 return frame_unwind_register_signed (frame->next, regnum);
1360 }
1361
1362 ULONGEST
1363 frame_unwind_register_unsigned (frame_info *next_frame, int regnum)
1364 {
1365 struct gdbarch *gdbarch = frame_unwind_arch (next_frame);
1366 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1367 int size = register_size (gdbarch, regnum);
1368 struct value *value = frame_unwind_register_value (next_frame, regnum);
1369
1370 gdb_assert (value != NULL);
1371
1372 if (value_optimized_out (value))
1373 {
1374 throw_error (OPTIMIZED_OUT_ERROR,
1375 _("Register %d was not saved"), regnum);
1376 }
1377 if (!value_entirely_available (value))
1378 {
1379 throw_error (NOT_AVAILABLE_ERROR,
1380 _("Register %d is not available"), regnum);
1381 }
1382
1383 ULONGEST r = extract_unsigned_integer (value_contents_all (value), size,
1384 byte_order);
1385
1386 release_value (value);
1387 return r;
1388 }
1389
1390 ULONGEST
1391 get_frame_register_unsigned (struct frame_info *frame, int regnum)
1392 {
1393 return frame_unwind_register_unsigned (frame->next, regnum);
1394 }
1395
1396 bool
1397 read_frame_register_unsigned (frame_info *frame, int regnum,
1398 ULONGEST *val)
1399 {
1400 struct value *regval = get_frame_register_value (frame, regnum);
1401
1402 if (!value_optimized_out (regval)
1403 && value_entirely_available (regval))
1404 {
1405 struct gdbarch *gdbarch = get_frame_arch (frame);
1406 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1407 int size = register_size (gdbarch, VALUE_REGNUM (regval));
1408
1409 *val = extract_unsigned_integer (value_contents (regval), size, byte_order);
1410 return true;
1411 }
1412
1413 return false;
1414 }
1415
1416 void
1417 put_frame_register (struct frame_info *frame, int regnum,
1418 const gdb_byte *buf)
1419 {
1420 struct gdbarch *gdbarch = get_frame_arch (frame);
1421 int realnum;
1422 int optim;
1423 int unavail;
1424 enum lval_type lval;
1425 CORE_ADDR addr;
1426
1427 frame_register (frame, regnum, &optim, &unavail,
1428 &lval, &addr, &realnum, NULL);
1429 if (optim)
1430 error (_("Attempt to assign to a register that was not saved."));
1431 switch (lval)
1432 {
1433 case lval_memory:
1434 {
1435 write_memory (addr, buf, register_size (gdbarch, regnum));
1436 break;
1437 }
1438 case lval_register:
1439 get_current_regcache ()->cooked_write (realnum, buf);
1440 break;
1441 default:
1442 error (_("Attempt to assign to an unmodifiable value."));
1443 }
1444 }
1445
1446 /* This function is deprecated. Use get_frame_register_value instead,
1447 which provides more accurate information.
1448
1449 Find and return the value of REGNUM for the specified stack frame.
1450 The number of bytes copied is REGISTER_SIZE (REGNUM).
1451
1452 Returns 0 if the register value could not be found. */
1453
1454 bool
1455 deprecated_frame_register_read (frame_info *frame, int regnum,
1456 gdb_byte *myaddr)
1457 {
1458 int optimized;
1459 int unavailable;
1460 enum lval_type lval;
1461 CORE_ADDR addr;
1462 int realnum;
1463
1464 frame_register (frame, regnum, &optimized, &unavailable,
1465 &lval, &addr, &realnum, myaddr);
1466
1467 return !optimized && !unavailable;
1468 }
1469
1470 bool
1471 get_frame_register_bytes (frame_info *frame, int regnum,
1472 CORE_ADDR offset, int len, gdb_byte *myaddr,
1473 int *optimizedp, int *unavailablep)
1474 {
1475 struct gdbarch *gdbarch = get_frame_arch (frame);
1476 int i;
1477 int maxsize;
1478 int numregs;
1479
1480 /* Skip registers wholly inside of OFFSET. */
1481 while (offset >= register_size (gdbarch, regnum))
1482 {
1483 offset -= register_size (gdbarch, regnum);
1484 regnum++;
1485 }
1486
1487 /* Ensure that we will not read beyond the end of the register file.
1488 This can only ever happen if the debug information is bad. */
1489 maxsize = -offset;
1490 numregs = gdbarch_num_cooked_regs (gdbarch);
1491 for (i = regnum; i < numregs; i++)
1492 {
1493 int thissize = register_size (gdbarch, i);
1494
1495 if (thissize == 0)
1496 break; /* This register is not available on this architecture. */
1497 maxsize += thissize;
1498 }
1499 if (len > maxsize)
1500 error (_("Bad debug information detected: "
1501 "Attempt to read %d bytes from registers."), len);
1502
1503 /* Copy the data. */
1504 while (len > 0)
1505 {
1506 int curr_len = register_size (gdbarch, regnum) - offset;
1507
1508 if (curr_len > len)
1509 curr_len = len;
1510
1511 if (curr_len == register_size (gdbarch, regnum))
1512 {
1513 enum lval_type lval;
1514 CORE_ADDR addr;
1515 int realnum;
1516
1517 frame_register (frame, regnum, optimizedp, unavailablep,
1518 &lval, &addr, &realnum, myaddr);
1519 if (*optimizedp || *unavailablep)
1520 return false;
1521 }
1522 else
1523 {
1524 struct value *value = frame_unwind_register_value (frame->next,
1525 regnum);
1526 gdb_assert (value != NULL);
1527 *optimizedp = value_optimized_out (value);
1528 *unavailablep = !value_entirely_available (value);
1529
1530 if (*optimizedp || *unavailablep)
1531 {
1532 release_value (value);
1533 return false;
1534 }
1535
1536 memcpy (myaddr, value_contents_all (value) + offset, curr_len);
1537 release_value (value);
1538 }
1539
1540 myaddr += curr_len;
1541 len -= curr_len;
1542 offset = 0;
1543 regnum++;
1544 }
1545
1546 *optimizedp = 0;
1547 *unavailablep = 0;
1548
1549 return true;
1550 }
1551
1552 void
1553 put_frame_register_bytes (struct frame_info *frame, int regnum,
1554 CORE_ADDR offset, int len, const gdb_byte *myaddr)
1555 {
1556 struct gdbarch *gdbarch = get_frame_arch (frame);
1557
1558 /* Skip registers wholly inside of OFFSET. */
1559 while (offset >= register_size (gdbarch, regnum))
1560 {
1561 offset -= register_size (gdbarch, regnum);
1562 regnum++;
1563 }
1564
1565 /* Copy the data. */
1566 while (len > 0)
1567 {
1568 int curr_len = register_size (gdbarch, regnum) - offset;
1569
1570 if (curr_len > len)
1571 curr_len = len;
1572
1573 if (curr_len == register_size (gdbarch, regnum))
1574 {
1575 put_frame_register (frame, regnum, myaddr);
1576 }
1577 else
1578 {
1579 struct value *value = frame_unwind_register_value (frame->next,
1580 regnum);
1581 gdb_assert (value != NULL);
1582
1583 memcpy ((char *) value_contents_writeable (value) + offset, myaddr,
1584 curr_len);
1585 put_frame_register (frame, regnum, value_contents_raw (value));
1586 release_value (value);
1587 }
1588
1589 myaddr += curr_len;
1590 len -= curr_len;
1591 offset = 0;
1592 regnum++;
1593 }
1594 }
1595
1596 /* Create a sentinel frame. */
1597
1598 static struct frame_info *
1599 create_sentinel_frame (struct program_space *pspace, struct regcache *regcache)
1600 {
1601 struct frame_info *frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
1602
1603 frame->level = -1;
1604 frame->pspace = pspace;
1605 frame->aspace = regcache->aspace ();
1606 /* Explicitly initialize the sentinel frame's cache. Provide it
1607 with the underlying regcache. In the future additional
1608 information, such as the frame's thread will be added. */
1609 frame->prologue_cache = sentinel_frame_cache (regcache);
1610 /* For the moment there is only one sentinel frame implementation. */
1611 frame->unwind = &sentinel_frame_unwind;
1612 /* Link this frame back to itself. The frame is self referential
1613 (the unwound PC is the same as the pc), so make it so. */
1614 frame->next = frame;
1615 /* The sentinel frame has a special ID. */
1616 frame->this_id.p = frame_id_status::COMPUTED;
1617 frame->this_id.value = sentinel_frame_id;
1618 if (frame_debug)
1619 {
1620 fprintf_unfiltered (gdb_stdlog, "{ create_sentinel_frame (...) -> ");
1621 fprint_frame (gdb_stdlog, frame);
1622 fprintf_unfiltered (gdb_stdlog, " }\n");
1623 }
1624 return frame;
1625 }
1626
1627 /* Cache for frame addresses already read by gdb. Valid only while
1628 inferior is stopped. Control variables for the frame cache should
1629 be local to this module. */
1630
1631 static struct obstack frame_cache_obstack;
1632
1633 void *
1634 frame_obstack_zalloc (unsigned long size)
1635 {
1636 void *data = obstack_alloc (&frame_cache_obstack, size);
1637
1638 memset (data, 0, size);
1639 return data;
1640 }
1641
1642 static struct frame_info *get_prev_frame_always_1 (struct frame_info *this_frame);
1643
1644 struct frame_info *
1645 get_current_frame (void)
1646 {
1647 struct frame_info *current_frame;
1648
1649 /* First check, and report, the lack of registers. Having GDB
1650 report "No stack!" or "No memory" when the target doesn't even
1651 have registers is very confusing. Besides, "printcmd.exp"
1652 explicitly checks that ``print $pc'' with no registers prints "No
1653 registers". */
1654 if (!target_has_registers ())
1655 error (_("No registers."));
1656 if (!target_has_stack ())
1657 error (_("No stack."));
1658 if (!target_has_memory ())
1659 error (_("No memory."));
1660 /* Traceframes are effectively a substitute for the live inferior. */
1661 if (get_traceframe_number () < 0)
1662 validate_registers_access ();
1663
1664 if (sentinel_frame == NULL)
1665 sentinel_frame =
1666 create_sentinel_frame (current_program_space, get_current_regcache ());
1667
1668 /* Set the current frame before computing the frame id, to avoid
1669 recursion inside compute_frame_id, in case the frame's
1670 unwinder decides to do a symbol lookup (which depends on the
1671 selected frame's block).
1672
1673 This call must always succeed. In particular, nothing inside
1674 get_prev_frame_always_1 should try to unwind from the
1675 sentinel frame, because that could fail/throw, and we always
1676 want to leave with the current frame created and linked in --
1677 we should never end up with the sentinel frame as outermost
1678 frame. */
1679 current_frame = get_prev_frame_always_1 (sentinel_frame);
1680 gdb_assert (current_frame != NULL);
1681
1682 return current_frame;
1683 }
1684
1685 /* The "selected" stack frame is used by default for local and arg
1686 access.
1687
1688 The "single source of truth" for the selected frame is the
1689 SELECTED_FRAME_ID / SELECTED_FRAME_LEVEL pair.
1690
1691 Frame IDs can be saved/restored across reinitializing the frame
1692 cache, while frame_info pointers can't (frame_info objects are
1693 invalidated). If we know the corresponding frame_info object, it
1694 is cached in SELECTED_FRAME.
1695
1696 If SELECTED_FRAME_ID / SELECTED_FRAME_LEVEL are null_frame_id / -1,
1697 and the target has stack and is stopped, the selected frame is the
1698 current (innermost) frame. This means that SELECTED_FRAME_LEVEL is
1699 never 0 and SELECTED_FRAME_ID is never the ID of the innermost
1700 frame.
1701
1702 If SELECTED_FRAME_ID / SELECTED_FRAME_LEVEL are null_frame_id / -1,
1703 and the target has no stack or is executing, then there's no
1704 selected frame. */
1705 static frame_id selected_frame_id = null_frame_id;
1706 static int selected_frame_level = -1;
1707
1708 /* The cached frame_info object pointing to the selected frame.
1709 Looked up on demand by get_selected_frame. */
1710 static struct frame_info *selected_frame;
1711
1712 /* See frame.h. */
1713
1714 void
1715 save_selected_frame (frame_id *frame_id, int *frame_level)
1716 noexcept
1717 {
1718 *frame_id = selected_frame_id;
1719 *frame_level = selected_frame_level;
1720 }
1721
1722 /* See frame.h. */
1723
1724 void
1725 restore_selected_frame (frame_id frame_id, int frame_level)
1726 noexcept
1727 {
1728 /* save_selected_frame never returns level == 0, so we shouldn't see
1729 it here either. */
1730 gdb_assert (frame_level != 0);
1731
1732 /* FRAME_ID can be null_frame_id only IFF frame_level is -1. */
1733 gdb_assert ((frame_level == -1 && !frame_id_p (frame_id))
1734 || (frame_level != -1 && frame_id_p (frame_id)));
1735
1736 selected_frame_id = frame_id;
1737 selected_frame_level = frame_level;
1738
1739 /* Will be looked up later by get_selected_frame. */
1740 selected_frame = nullptr;
1741 }
1742
1743 /* See frame.h. */
1744
1745 void
1746 lookup_selected_frame (struct frame_id a_frame_id, int frame_level)
1747 {
1748 struct frame_info *frame = NULL;
1749 int count;
1750
1751 /* This either means there was no selected frame, or the selected
1752 frame was the current frame. In either case, select the current
1753 frame. */
1754 if (frame_level == -1)
1755 {
1756 select_frame (get_current_frame ());
1757 return;
1758 }
1759
1760 /* select_frame never saves 0 in SELECTED_FRAME_LEVEL, so we
1761 shouldn't see it here. */
1762 gdb_assert (frame_level > 0);
1763
1764 /* Restore by level first, check if the frame id is the same as
1765 expected. If that fails, try restoring by frame id. If that
1766 fails, nothing to do, just warn the user. */
1767
1768 count = frame_level;
1769 frame = find_relative_frame (get_current_frame (), &count);
1770 if (count == 0
1771 && frame != NULL
1772 /* The frame ids must match - either both valid or both
1773 outer_frame_id. The latter case is not failsafe, but since
1774 it's highly unlikely the search by level finds the wrong
1775 frame, it's 99.9(9)% of the time (for all practical purposes)
1776 safe. */
1777 && frame_id_eq (get_frame_id (frame), a_frame_id))
1778 {
1779 /* Cool, all is fine. */
1780 select_frame (frame);
1781 return;
1782 }
1783
1784 frame = frame_find_by_id (a_frame_id);
1785 if (frame != NULL)
1786 {
1787 /* Cool, refound it. */
1788 select_frame (frame);
1789 return;
1790 }
1791
1792 /* Nothing else to do, the frame layout really changed. Select the
1793 innermost stack frame. */
1794 select_frame (get_current_frame ());
1795
1796 /* Warn the user. */
1797 if (frame_level > 0 && !current_uiout->is_mi_like_p ())
1798 {
1799 warning (_("Couldn't restore frame #%d in "
1800 "current thread. Bottom (innermost) frame selected:"),
1801 frame_level);
1802 /* For MI, we should probably have a notification about current
1803 frame change. But this error is not very likely, so don't
1804 bother for now. */
1805 print_stack_frame (get_selected_frame (NULL), 1, SRC_AND_LOC, 1);
1806 }
1807 }
1808
1809 bool
1810 has_stack_frames ()
1811 {
1812 if (!target_has_registers () || !target_has_stack ()
1813 || !target_has_memory ())
1814 return false;
1815
1816 /* Traceframes are effectively a substitute for the live inferior. */
1817 if (get_traceframe_number () < 0)
1818 {
1819 /* No current inferior, no frame. */
1820 if (inferior_ptid == null_ptid)
1821 return false;
1822
1823 thread_info *tp = inferior_thread ();
1824 /* Don't try to read from a dead thread. */
1825 if (tp->state == THREAD_EXITED)
1826 return false;
1827
1828 /* ... or from a spinning thread. */
1829 if (tp->executing)
1830 return false;
1831 }
1832
1833 return true;
1834 }
1835
1836 /* See frame.h. */
1837
1838 struct frame_info *
1839 get_selected_frame (const char *message)
1840 {
1841 if (selected_frame == NULL)
1842 {
1843 if (message != NULL && !has_stack_frames ())
1844 error (("%s"), message);
1845
1846 lookup_selected_frame (selected_frame_id, selected_frame_level);
1847 }
1848 /* There is always a frame. */
1849 gdb_assert (selected_frame != NULL);
1850 return selected_frame;
1851 }
1852
1853 /* This is a variant of get_selected_frame() which can be called when
1854 the inferior does not have a frame; in that case it will return
1855 NULL instead of calling error(). */
1856
1857 struct frame_info *
1858 deprecated_safe_get_selected_frame (void)
1859 {
1860 if (!has_stack_frames ())
1861 return NULL;
1862 return get_selected_frame (NULL);
1863 }
1864
1865 /* Select frame FI (or NULL - to invalidate the selected frame). */
1866
1867 void
1868 select_frame (struct frame_info *fi)
1869 {
1870 selected_frame = fi;
1871 selected_frame_level = frame_relative_level (fi);
1872 if (selected_frame_level == 0)
1873 {
1874 /* Treat the current frame especially -- we want to always
1875 save/restore it without warning, even if the frame ID changes
1876 (see lookup_selected_frame). E.g.:
1877
1878 // The current frame is selected, the target had just stopped.
1879 {
1880 scoped_restore_selected_frame restore_frame;
1881 some_operation_that_changes_the_stack ();
1882 }
1883 // scoped_restore_selected_frame's dtor runs, but the
1884 // original frame_id can't be found. No matter whether it
1885 // is found or not, we still end up with the now-current
1886 // frame selected. Warning in lookup_selected_frame in this
1887 // case seems pointless.
1888
1889 Also get_frame_id may access the target's registers/memory,
1890 and thus skipping get_frame_id optimizes the common case.
1891
1892 Saving the selected frame this way makes get_selected_frame
1893 and restore_current_frame return/re-select whatever frame is
1894 the innermost (current) then. */
1895 selected_frame_level = -1;
1896 selected_frame_id = null_frame_id;
1897 }
1898 else
1899 selected_frame_id = get_frame_id (fi);
1900
1901 /* NOTE: cagney/2002-05-04: FI can be NULL. This occurs when the
1902 frame is being invalidated. */
1903
1904 /* FIXME: kseitz/2002-08-28: It would be nice to call
1905 selected_frame_level_changed_event() right here, but due to limitations
1906 in the current interfaces, we would end up flooding UIs with events
1907 because select_frame() is used extensively internally.
1908
1909 Once we have frame-parameterized frame (and frame-related) commands,
1910 the event notification can be moved here, since this function will only
1911 be called when the user's selected frame is being changed. */
1912
1913 /* Ensure that symbols for this frame are read in. Also, determine the
1914 source language of this frame, and switch to it if desired. */
1915 if (fi)
1916 {
1917 CORE_ADDR pc;
1918
1919 /* We retrieve the frame's symtab by using the frame PC.
1920 However we cannot use the frame PC as-is, because it usually
1921 points to the instruction following the "call", which is
1922 sometimes the first instruction of another function. So we
1923 rely on get_frame_address_in_block() which provides us with a
1924 PC which is guaranteed to be inside the frame's code
1925 block. */
1926 if (get_frame_address_in_block_if_available (fi, &pc))
1927 {
1928 struct compunit_symtab *cust = find_pc_compunit_symtab (pc);
1929
1930 if (cust != NULL
1931 && compunit_language (cust) != current_language->la_language
1932 && compunit_language (cust) != language_unknown
1933 && language_mode == language_mode_auto)
1934 set_language (compunit_language (cust));
1935 }
1936 }
1937 }
1938
1939 /* Create an arbitrary (i.e. address specified by user) or innermost frame.
1940 Always returns a non-NULL value. */
1941
1942 struct frame_info *
1943 create_new_frame (CORE_ADDR addr, CORE_ADDR pc)
1944 {
1945 struct frame_info *fi;
1946
1947 if (frame_debug)
1948 {
1949 fprintf_unfiltered (gdb_stdlog,
1950 "{ create_new_frame (addr=%s, pc=%s) ",
1951 hex_string (addr), hex_string (pc));
1952 }
1953
1954 fi = FRAME_OBSTACK_ZALLOC (struct frame_info);
1955
1956 fi->next = create_sentinel_frame (current_program_space,
1957 get_current_regcache ());
1958
1959 /* Set/update this frame's cached PC value, found in the next frame.
1960 Do this before looking for this frame's unwinder. A sniffer is
1961 very likely to read this, and the corresponding unwinder is
1962 entitled to rely that the PC doesn't magically change. */
1963 fi->next->prev_pc.value = pc;
1964 fi->next->prev_pc.status = CC_VALUE;
1965
1966 /* We currently assume that frame chain's can't cross spaces. */
1967 fi->pspace = fi->next->pspace;
1968 fi->aspace = fi->next->aspace;
1969
1970 /* Select/initialize both the unwind function and the frame's type
1971 based on the PC. */
1972 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
1973
1974 fi->this_id.p = frame_id_status::COMPUTED;
1975 fi->this_id.value = frame_id_build (addr, pc);
1976
1977 if (frame_debug)
1978 {
1979 fprintf_unfiltered (gdb_stdlog, "-> ");
1980 fprint_frame (gdb_stdlog, fi);
1981 fprintf_unfiltered (gdb_stdlog, " }\n");
1982 }
1983
1984 return fi;
1985 }
1986
1987 /* Return the frame that THIS_FRAME calls (NULL if THIS_FRAME is the
1988 innermost frame). Be careful to not fall off the bottom of the
1989 frame chain and onto the sentinel frame. */
1990
1991 struct frame_info *
1992 get_next_frame (struct frame_info *this_frame)
1993 {
1994 if (this_frame->level > 0)
1995 return this_frame->next;
1996 else
1997 return NULL;
1998 }
1999
2000 /* Return the frame that THIS_FRAME calls. If THIS_FRAME is the
2001 innermost (i.e. current) frame, return the sentinel frame. Thus,
2002 unlike get_next_frame(), NULL will never be returned. */
2003
2004 struct frame_info *
2005 get_next_frame_sentinel_okay (struct frame_info *this_frame)
2006 {
2007 gdb_assert (this_frame != NULL);
2008
2009 /* Note that, due to the manner in which the sentinel frame is
2010 constructed, this_frame->next still works even when this_frame
2011 is the sentinel frame. But we disallow it here anyway because
2012 calling get_next_frame_sentinel_okay() on the sentinel frame
2013 is likely a coding error. */
2014 gdb_assert (this_frame != sentinel_frame);
2015
2016 return this_frame->next;
2017 }
2018
2019 /* Observer for the target_changed event. */
2020
2021 static void
2022 frame_observer_target_changed (struct target_ops *target)
2023 {
2024 reinit_frame_cache ();
2025 }
2026
2027 /* Flush the entire frame cache. */
2028
2029 void
2030 reinit_frame_cache (void)
2031 {
2032 struct frame_info *fi;
2033
2034 ++frame_cache_generation;
2035
2036 /* Tear down all frame caches. */
2037 for (fi = sentinel_frame; fi != NULL; fi = fi->prev)
2038 {
2039 if (fi->prologue_cache && fi->unwind->dealloc_cache)
2040 fi->unwind->dealloc_cache (fi, fi->prologue_cache);
2041 if (fi->base_cache && fi->base->unwind->dealloc_cache)
2042 fi->base->unwind->dealloc_cache (fi, fi->base_cache);
2043 }
2044
2045 /* Since we can't really be sure what the first object allocated was. */
2046 obstack_free (&frame_cache_obstack, 0);
2047 obstack_init (&frame_cache_obstack);
2048
2049 if (sentinel_frame != NULL)
2050 annotate_frames_invalid ();
2051
2052 sentinel_frame = NULL; /* Invalidate cache */
2053 select_frame (NULL);
2054 frame_stash_invalidate ();
2055 if (frame_debug)
2056 fprintf_unfiltered (gdb_stdlog, "{ reinit_frame_cache () }\n");
2057 }
2058
2059 /* Find where a register is saved (in memory or another register).
2060 The result of frame_register_unwind is just where it is saved
2061 relative to this particular frame. */
2062
2063 static void
2064 frame_register_unwind_location (struct frame_info *this_frame, int regnum,
2065 int *optimizedp, enum lval_type *lvalp,
2066 CORE_ADDR *addrp, int *realnump)
2067 {
2068 gdb_assert (this_frame == NULL || this_frame->level >= 0);
2069
2070 while (this_frame != NULL)
2071 {
2072 int unavailable;
2073
2074 frame_register_unwind (this_frame, regnum, optimizedp, &unavailable,
2075 lvalp, addrp, realnump, NULL);
2076
2077 if (*optimizedp)
2078 break;
2079
2080 if (*lvalp != lval_register)
2081 break;
2082
2083 regnum = *realnump;
2084 this_frame = get_next_frame (this_frame);
2085 }
2086 }
2087
2088 /* Get the previous raw frame, and check that it is not identical to
2089 same other frame frame already in the chain. If it is, there is
2090 most likely a stack cycle, so we discard it, and mark THIS_FRAME as
2091 outermost, with UNWIND_SAME_ID stop reason. Unlike the other
2092 validity tests, that compare THIS_FRAME and the next frame, we do
2093 this right after creating the previous frame, to avoid ever ending
2094 up with two frames with the same id in the frame chain. */
2095
2096 static struct frame_info *
2097 get_prev_frame_if_no_cycle (struct frame_info *this_frame)
2098 {
2099 struct frame_info *prev_frame;
2100
2101 prev_frame = get_prev_frame_raw (this_frame);
2102
2103 /* Don't compute the frame id of the current frame yet. Unwinding
2104 the sentinel frame can fail (e.g., if the thread is gone and we
2105 can't thus read its registers). If we let the cycle detection
2106 code below try to compute a frame ID, then an error thrown from
2107 within the frame ID computation would result in the sentinel
2108 frame as outermost frame, which is bogus. Instead, we'll compute
2109 the current frame's ID lazily in get_frame_id. Note that there's
2110 no point in doing cycle detection when there's only one frame, so
2111 nothing is lost here. */
2112 if (prev_frame->level == 0)
2113 return prev_frame;
2114
2115 unsigned int entry_generation = get_frame_cache_generation ();
2116
2117 try
2118 {
2119 compute_frame_id (prev_frame);
2120 if (!frame_stash_add (prev_frame))
2121 {
2122 /* Another frame with the same id was already in the stash. We just
2123 detected a cycle. */
2124 if (frame_debug)
2125 {
2126 fprintf_unfiltered (gdb_stdlog, "-> ");
2127 fprint_frame (gdb_stdlog, NULL);
2128 fprintf_unfiltered (gdb_stdlog, " // this frame has same ID }\n");
2129 }
2130 this_frame->stop_reason = UNWIND_SAME_ID;
2131 /* Unlink. */
2132 prev_frame->next = NULL;
2133 this_frame->prev = NULL;
2134 prev_frame = NULL;
2135 }
2136 }
2137 catch (const gdb_exception &ex)
2138 {
2139 if (get_frame_cache_generation () == entry_generation)
2140 {
2141 prev_frame->next = NULL;
2142 this_frame->prev = NULL;
2143 }
2144
2145 throw;
2146 }
2147
2148 return prev_frame;
2149 }
2150
2151 /* Helper function for get_prev_frame_always, this is called inside a
2152 TRY_CATCH block. Return the frame that called THIS_FRAME or NULL if
2153 there is no such frame. This may throw an exception. */
2154
2155 static struct frame_info *
2156 get_prev_frame_always_1 (struct frame_info *this_frame)
2157 {
2158 struct gdbarch *gdbarch;
2159
2160 gdb_assert (this_frame != NULL);
2161 gdbarch = get_frame_arch (this_frame);
2162
2163 if (frame_debug)
2164 {
2165 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame_always (this_frame=");
2166 if (this_frame != NULL)
2167 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
2168 else
2169 fprintf_unfiltered (gdb_stdlog, "<NULL>");
2170 fprintf_unfiltered (gdb_stdlog, ") ");
2171 }
2172
2173 /* Only try to do the unwind once. */
2174 if (this_frame->prev_p)
2175 {
2176 if (frame_debug)
2177 {
2178 fprintf_unfiltered (gdb_stdlog, "-> ");
2179 fprint_frame (gdb_stdlog, this_frame->prev);
2180 fprintf_unfiltered (gdb_stdlog, " // cached \n");
2181 }
2182 return this_frame->prev;
2183 }
2184
2185 /* If the frame unwinder hasn't been selected yet, we must do so
2186 before setting prev_p; otherwise the check for misbehaved
2187 sniffers will think that this frame's sniffer tried to unwind
2188 further (see frame_cleanup_after_sniffer). */
2189 if (this_frame->unwind == NULL)
2190 frame_unwind_find_by_frame (this_frame, &this_frame->prologue_cache);
2191
2192 this_frame->prev_p = true;
2193 this_frame->stop_reason = UNWIND_NO_REASON;
2194
2195 /* If we are unwinding from an inline frame, all of the below tests
2196 were already performed when we unwound from the next non-inline
2197 frame. We must skip them, since we can not get THIS_FRAME's ID
2198 until we have unwound all the way down to the previous non-inline
2199 frame. */
2200 if (get_frame_type (this_frame) == INLINE_FRAME)
2201 return get_prev_frame_if_no_cycle (this_frame);
2202
2203 /* If this_frame is the current frame, then compute and stash its
2204 frame id prior to fetching and computing the frame id of the
2205 previous frame. Otherwise, the cycle detection code in
2206 get_prev_frame_if_no_cycle() will not work correctly. When
2207 get_frame_id() is called later on, an assertion error will be
2208 triggered in the event of a cycle between the current frame and
2209 its previous frame.
2210
2211 Note we do this after the INLINE_FRAME check above. That is
2212 because the inline frame's frame id computation needs to fetch
2213 the frame id of its previous real stack frame. I.e., we need to
2214 avoid recursion in that case. This is OK since we're sure the
2215 inline frame won't create a cycle with the real stack frame. See
2216 inline_frame_this_id. */
2217 if (this_frame->level == 0)
2218 get_frame_id (this_frame);
2219
2220 /* Check that this frame is unwindable. If it isn't, don't try to
2221 unwind to the prev frame. */
2222 this_frame->stop_reason
2223 = this_frame->unwind->stop_reason (this_frame,
2224 &this_frame->prologue_cache);
2225
2226 if (this_frame->stop_reason != UNWIND_NO_REASON)
2227 {
2228 if (frame_debug)
2229 {
2230 enum unwind_stop_reason reason = this_frame->stop_reason;
2231
2232 fprintf_unfiltered (gdb_stdlog, "-> ");
2233 fprint_frame (gdb_stdlog, NULL);
2234 fprintf_unfiltered (gdb_stdlog, " // %s }\n",
2235 frame_stop_reason_symbol_string (reason));
2236 }
2237 return NULL;
2238 }
2239
2240 /* Check that this frame's ID isn't inner to (younger, below, next)
2241 the next frame. This happens when a frame unwind goes backwards.
2242 This check is valid only if this frame and the next frame are NORMAL.
2243 See the comment at frame_id_inner for details. */
2244 if (get_frame_type (this_frame) == NORMAL_FRAME
2245 && this_frame->next->unwind->type == NORMAL_FRAME
2246 && frame_id_inner (get_frame_arch (this_frame->next),
2247 get_frame_id (this_frame),
2248 get_frame_id (this_frame->next)))
2249 {
2250 CORE_ADDR this_pc_in_block;
2251 struct minimal_symbol *morestack_msym;
2252 const char *morestack_name = NULL;
2253
2254 /* gcc -fsplit-stack __morestack can continue the stack anywhere. */
2255 this_pc_in_block = get_frame_address_in_block (this_frame);
2256 morestack_msym = lookup_minimal_symbol_by_pc (this_pc_in_block).minsym;
2257 if (morestack_msym)
2258 morestack_name = morestack_msym->linkage_name ();
2259 if (!morestack_name || strcmp (morestack_name, "__morestack") != 0)
2260 {
2261 if (frame_debug)
2262 {
2263 fprintf_unfiltered (gdb_stdlog, "-> ");
2264 fprint_frame (gdb_stdlog, NULL);
2265 fprintf_unfiltered (gdb_stdlog,
2266 " // this frame ID is inner }\n");
2267 }
2268 this_frame->stop_reason = UNWIND_INNER_ID;
2269 return NULL;
2270 }
2271 }
2272
2273 /* Check that this and the next frame do not unwind the PC register
2274 to the same memory location. If they do, then even though they
2275 have different frame IDs, the new frame will be bogus; two
2276 functions can't share a register save slot for the PC. This can
2277 happen when the prologue analyzer finds a stack adjustment, but
2278 no PC save.
2279
2280 This check does assume that the "PC register" is roughly a
2281 traditional PC, even if the gdbarch_unwind_pc method adjusts
2282 it (we do not rely on the value, only on the unwound PC being
2283 dependent on this value). A potential improvement would be
2284 to have the frame prev_pc method and the gdbarch unwind_pc
2285 method set the same lval and location information as
2286 frame_register_unwind. */
2287 if (this_frame->level > 0
2288 && gdbarch_pc_regnum (gdbarch) >= 0
2289 && get_frame_type (this_frame) == NORMAL_FRAME
2290 && (get_frame_type (this_frame->next) == NORMAL_FRAME
2291 || get_frame_type (this_frame->next) == INLINE_FRAME))
2292 {
2293 int optimized, realnum, nrealnum;
2294 enum lval_type lval, nlval;
2295 CORE_ADDR addr, naddr;
2296
2297 frame_register_unwind_location (this_frame,
2298 gdbarch_pc_regnum (gdbarch),
2299 &optimized, &lval, &addr, &realnum);
2300 frame_register_unwind_location (get_next_frame (this_frame),
2301 gdbarch_pc_regnum (gdbarch),
2302 &optimized, &nlval, &naddr, &nrealnum);
2303
2304 if ((lval == lval_memory && lval == nlval && addr == naddr)
2305 || (lval == lval_register && lval == nlval && realnum == nrealnum))
2306 {
2307 if (frame_debug)
2308 {
2309 fprintf_unfiltered (gdb_stdlog, "-> ");
2310 fprint_frame (gdb_stdlog, NULL);
2311 fprintf_unfiltered (gdb_stdlog, " // no saved PC }\n");
2312 }
2313
2314 this_frame->stop_reason = UNWIND_NO_SAVED_PC;
2315 this_frame->prev = NULL;
2316 return NULL;
2317 }
2318 }
2319
2320 return get_prev_frame_if_no_cycle (this_frame);
2321 }
2322
2323 /* Return a "struct frame_info" corresponding to the frame that called
2324 THIS_FRAME. Returns NULL if there is no such frame.
2325
2326 Unlike get_prev_frame, this function always tries to unwind the
2327 frame. */
2328
2329 struct frame_info *
2330 get_prev_frame_always (struct frame_info *this_frame)
2331 {
2332 struct frame_info *prev_frame = NULL;
2333
2334 try
2335 {
2336 prev_frame = get_prev_frame_always_1 (this_frame);
2337 }
2338 catch (const gdb_exception_error &ex)
2339 {
2340 if (ex.error == MEMORY_ERROR)
2341 {
2342 this_frame->stop_reason = UNWIND_MEMORY_ERROR;
2343 if (ex.message != NULL)
2344 {
2345 char *stop_string;
2346 size_t size;
2347
2348 /* The error needs to live as long as the frame does.
2349 Allocate using stack local STOP_STRING then assign the
2350 pointer to the frame, this allows the STOP_STRING on the
2351 frame to be of type 'const char *'. */
2352 size = ex.message->size () + 1;
2353 stop_string = (char *) frame_obstack_zalloc (size);
2354 memcpy (stop_string, ex.what (), size);
2355 this_frame->stop_string = stop_string;
2356 }
2357 prev_frame = NULL;
2358 }
2359 else
2360 throw;
2361 }
2362
2363 return prev_frame;
2364 }
2365
2366 /* Construct a new "struct frame_info" and link it previous to
2367 this_frame. */
2368
2369 static struct frame_info *
2370 get_prev_frame_raw (struct frame_info *this_frame)
2371 {
2372 struct frame_info *prev_frame;
2373
2374 /* Allocate the new frame but do not wire it in to the frame chain.
2375 Some (bad) code in INIT_FRAME_EXTRA_INFO tries to look along
2376 frame->next to pull some fancy tricks (of course such code is, by
2377 definition, recursive). Try to prevent it.
2378
2379 There is no reason to worry about memory leaks, should the
2380 remainder of the function fail. The allocated memory will be
2381 quickly reclaimed when the frame cache is flushed, and the `we've
2382 been here before' check above will stop repeated memory
2383 allocation calls. */
2384 prev_frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
2385 prev_frame->level = this_frame->level + 1;
2386
2387 /* For now, assume we don't have frame chains crossing address
2388 spaces. */
2389 prev_frame->pspace = this_frame->pspace;
2390 prev_frame->aspace = this_frame->aspace;
2391
2392 /* Don't yet compute ->unwind (and hence ->type). It is computed
2393 on-demand in get_frame_type, frame_register_unwind, and
2394 get_frame_id. */
2395
2396 /* Don't yet compute the frame's ID. It is computed on-demand by
2397 get_frame_id(). */
2398
2399 /* The unwound frame ID is validate at the start of this function,
2400 as part of the logic to decide if that frame should be further
2401 unwound, and not here while the prev frame is being created.
2402 Doing this makes it possible for the user to examine a frame that
2403 has an invalid frame ID.
2404
2405 Some very old VAX code noted: [...] For the sake of argument,
2406 suppose that the stack is somewhat trashed (which is one reason
2407 that "info frame" exists). So, return 0 (indicating we don't
2408 know the address of the arglist) if we don't know what frame this
2409 frame calls. */
2410
2411 /* Link it in. */
2412 this_frame->prev = prev_frame;
2413 prev_frame->next = this_frame;
2414
2415 if (frame_debug)
2416 {
2417 fprintf_unfiltered (gdb_stdlog, "-> ");
2418 fprint_frame (gdb_stdlog, prev_frame);
2419 fprintf_unfiltered (gdb_stdlog, " }\n");
2420 }
2421
2422 return prev_frame;
2423 }
2424
2425 /* Debug routine to print a NULL frame being returned. */
2426
2427 static void
2428 frame_debug_got_null_frame (struct frame_info *this_frame,
2429 const char *reason)
2430 {
2431 if (frame_debug)
2432 {
2433 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame (this_frame=");
2434 if (this_frame != NULL)
2435 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
2436 else
2437 fprintf_unfiltered (gdb_stdlog, "<NULL>");
2438 fprintf_unfiltered (gdb_stdlog, ") -> // %s}\n", reason);
2439 }
2440 }
2441
2442 /* Is this (non-sentinel) frame in the "main"() function? */
2443
2444 static bool
2445 inside_main_func (frame_info *this_frame)
2446 {
2447 if (current_program_space->symfile_object_file == nullptr)
2448 return false;
2449
2450 CORE_ADDR sym_addr;
2451 const char *name = main_name ();
2452 bound_minimal_symbol msymbol
2453 = lookup_minimal_symbol (name, NULL,
2454 current_program_space->symfile_object_file);
2455 if (msymbol.minsym == nullptr)
2456 {
2457 /* In some language (for example Fortran) there will be no minimal
2458 symbol with the name of the main function. In this case we should
2459 search the full symbols to see if we can find a match. */
2460 struct block_symbol bs = lookup_symbol (name, NULL, VAR_DOMAIN, 0);
2461 if (bs.symbol == nullptr)
2462 return false;
2463
2464 const struct block *block = SYMBOL_BLOCK_VALUE (bs.symbol);
2465 gdb_assert (block != nullptr);
2466 sym_addr = BLOCK_START (block);
2467 }
2468 else
2469 sym_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
2470
2471 /* Convert any function descriptor addresses into the actual function
2472 code address. */
2473 sym_addr
2474 = gdbarch_convert_from_func_ptr_addr (get_frame_arch (this_frame),
2475 sym_addr, current_top_target ());
2476
2477 return sym_addr == get_frame_func (this_frame);
2478 }
2479
2480 /* Test whether THIS_FRAME is inside the process entry point function. */
2481
2482 static bool
2483 inside_entry_func (frame_info *this_frame)
2484 {
2485 CORE_ADDR entry_point;
2486
2487 if (!entry_point_address_query (&entry_point))
2488 return false;
2489
2490 return get_frame_func (this_frame) == entry_point;
2491 }
2492
2493 /* Return a structure containing various interesting information about
2494 the frame that called THIS_FRAME. Returns NULL if there is entier
2495 no such frame or the frame fails any of a set of target-independent
2496 condition that should terminate the frame chain (e.g., as unwinding
2497 past main()).
2498
2499 This function should not contain target-dependent tests, such as
2500 checking whether the program-counter is zero. */
2501
2502 struct frame_info *
2503 get_prev_frame (struct frame_info *this_frame)
2504 {
2505 CORE_ADDR frame_pc;
2506 int frame_pc_p;
2507
2508 /* There is always a frame. If this assertion fails, suspect that
2509 something should be calling get_selected_frame() or
2510 get_current_frame(). */
2511 gdb_assert (this_frame != NULL);
2512
2513 frame_pc_p = get_frame_pc_if_available (this_frame, &frame_pc);
2514
2515 /* tausq/2004-12-07: Dummy frames are skipped because it doesn't make much
2516 sense to stop unwinding at a dummy frame. One place where a dummy
2517 frame may have an address "inside_main_func" is on HPUX. On HPUX, the
2518 pcsqh register (space register for the instruction at the head of the
2519 instruction queue) cannot be written directly; the only way to set it
2520 is to branch to code that is in the target space. In order to implement
2521 frame dummies on HPUX, the called function is made to jump back to where
2522 the inferior was when the user function was called. If gdb was inside
2523 the main function when we created the dummy frame, the dummy frame will
2524 point inside the main function. */
2525 if (this_frame->level >= 0
2526 && get_frame_type (this_frame) == NORMAL_FRAME
2527 && !user_set_backtrace_options.backtrace_past_main
2528 && frame_pc_p
2529 && inside_main_func (this_frame))
2530 /* Don't unwind past main(). Note, this is done _before_ the
2531 frame has been marked as previously unwound. That way if the
2532 user later decides to enable unwinds past main(), that will
2533 automatically happen. */
2534 {
2535 frame_debug_got_null_frame (this_frame, "inside main func");
2536 return NULL;
2537 }
2538
2539 /* If the user's backtrace limit has been exceeded, stop. We must
2540 add two to the current level; one of those accounts for backtrace_limit
2541 being 1-based and the level being 0-based, and the other accounts for
2542 the level of the new frame instead of the level of the current
2543 frame. */
2544 if (this_frame->level + 2 > user_set_backtrace_options.backtrace_limit)
2545 {
2546 frame_debug_got_null_frame (this_frame, "backtrace limit exceeded");
2547 return NULL;
2548 }
2549
2550 /* If we're already inside the entry function for the main objfile,
2551 then it isn't valid. Don't apply this test to a dummy frame -
2552 dummy frame PCs typically land in the entry func. Don't apply
2553 this test to the sentinel frame. Sentinel frames should always
2554 be allowed to unwind. */
2555 /* NOTE: cagney/2003-07-07: Fixed a bug in inside_main_func() -
2556 wasn't checking for "main" in the minimal symbols. With that
2557 fixed asm-source tests now stop in "main" instead of halting the
2558 backtrace in weird and wonderful ways somewhere inside the entry
2559 file. Suspect that tests for inside the entry file/func were
2560 added to work around that (now fixed) case. */
2561 /* NOTE: cagney/2003-07-15: danielj (if I'm reading it right)
2562 suggested having the inside_entry_func test use the
2563 inside_main_func() msymbol trick (along with entry_point_address()
2564 I guess) to determine the address range of the start function.
2565 That should provide a far better stopper than the current
2566 heuristics. */
2567 /* NOTE: tausq/2004-10-09: this is needed if, for example, the compiler
2568 applied tail-call optimizations to main so that a function called
2569 from main returns directly to the caller of main. Since we don't
2570 stop at main, we should at least stop at the entry point of the
2571 application. */
2572 if (this_frame->level >= 0
2573 && get_frame_type (this_frame) == NORMAL_FRAME
2574 && !user_set_backtrace_options.backtrace_past_entry
2575 && frame_pc_p
2576 && inside_entry_func (this_frame))
2577 {
2578 frame_debug_got_null_frame (this_frame, "inside entry func");
2579 return NULL;
2580 }
2581
2582 /* Assume that the only way to get a zero PC is through something
2583 like a SIGSEGV or a dummy frame, and hence that NORMAL frames
2584 will never unwind a zero PC. */
2585 if (this_frame->level > 0
2586 && (get_frame_type (this_frame) == NORMAL_FRAME
2587 || get_frame_type (this_frame) == INLINE_FRAME)
2588 && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME
2589 && frame_pc_p && frame_pc == 0)
2590 {
2591 frame_debug_got_null_frame (this_frame, "zero PC");
2592 return NULL;
2593 }
2594
2595 return get_prev_frame_always (this_frame);
2596 }
2597
2598 struct frame_id
2599 get_prev_frame_id_by_id (struct frame_id id)
2600 {
2601 struct frame_id prev_id;
2602 struct frame_info *frame;
2603
2604 frame = frame_find_by_id (id);
2605
2606 if (frame != NULL)
2607 prev_id = get_frame_id (get_prev_frame (frame));
2608 else
2609 prev_id = null_frame_id;
2610
2611 return prev_id;
2612 }
2613
2614 CORE_ADDR
2615 get_frame_pc (struct frame_info *frame)
2616 {
2617 gdb_assert (frame->next != NULL);
2618 return frame_unwind_pc (frame->next);
2619 }
2620
2621 bool
2622 get_frame_pc_if_available (frame_info *frame, CORE_ADDR *pc)
2623 {
2624
2625 gdb_assert (frame->next != NULL);
2626
2627 try
2628 {
2629 *pc = frame_unwind_pc (frame->next);
2630 }
2631 catch (const gdb_exception_error &ex)
2632 {
2633 if (ex.error == NOT_AVAILABLE_ERROR)
2634 return false;
2635 else
2636 throw;
2637 }
2638
2639 return true;
2640 }
2641
2642 /* Return an address that falls within THIS_FRAME's code block. */
2643
2644 CORE_ADDR
2645 get_frame_address_in_block (struct frame_info *this_frame)
2646 {
2647 /* A draft address. */
2648 CORE_ADDR pc = get_frame_pc (this_frame);
2649
2650 struct frame_info *next_frame = this_frame->next;
2651
2652 /* Calling get_frame_pc returns the resume address for THIS_FRAME.
2653 Normally the resume address is inside the body of the function
2654 associated with THIS_FRAME, but there is a special case: when
2655 calling a function which the compiler knows will never return
2656 (for instance abort), the call may be the very last instruction
2657 in the calling function. The resume address will point after the
2658 call and may be at the beginning of a different function
2659 entirely.
2660
2661 If THIS_FRAME is a signal frame or dummy frame, then we should
2662 not adjust the unwound PC. For a dummy frame, GDB pushed the
2663 resume address manually onto the stack. For a signal frame, the
2664 OS may have pushed the resume address manually and invoked the
2665 handler (e.g. GNU/Linux), or invoked the trampoline which called
2666 the signal handler - but in either case the signal handler is
2667 expected to return to the trampoline. So in both of these
2668 cases we know that the resume address is executable and
2669 related. So we only need to adjust the PC if THIS_FRAME
2670 is a normal function.
2671
2672 If the program has been interrupted while THIS_FRAME is current,
2673 then clearly the resume address is inside the associated
2674 function. There are three kinds of interruption: debugger stop
2675 (next frame will be SENTINEL_FRAME), operating system
2676 signal or exception (next frame will be SIGTRAMP_FRAME),
2677 or debugger-induced function call (next frame will be
2678 DUMMY_FRAME). So we only need to adjust the PC if
2679 NEXT_FRAME is a normal function.
2680
2681 We check the type of NEXT_FRAME first, since it is already
2682 known; frame type is determined by the unwinder, and since
2683 we have THIS_FRAME we've already selected an unwinder for
2684 NEXT_FRAME.
2685
2686 If the next frame is inlined, we need to keep going until we find
2687 the real function - for instance, if a signal handler is invoked
2688 while in an inlined function, then the code address of the
2689 "calling" normal function should not be adjusted either. */
2690
2691 while (get_frame_type (next_frame) == INLINE_FRAME)
2692 next_frame = next_frame->next;
2693
2694 if ((get_frame_type (next_frame) == NORMAL_FRAME
2695 || get_frame_type (next_frame) == TAILCALL_FRAME)
2696 && (get_frame_type (this_frame) == NORMAL_FRAME
2697 || get_frame_type (this_frame) == TAILCALL_FRAME
2698 || get_frame_type (this_frame) == INLINE_FRAME))
2699 return pc - 1;
2700
2701 return pc;
2702 }
2703
2704 bool
2705 get_frame_address_in_block_if_available (frame_info *this_frame,
2706 CORE_ADDR *pc)
2707 {
2708
2709 try
2710 {
2711 *pc = get_frame_address_in_block (this_frame);
2712 }
2713 catch (const gdb_exception_error &ex)
2714 {
2715 if (ex.error == NOT_AVAILABLE_ERROR)
2716 return false;
2717 throw;
2718 }
2719
2720 return true;
2721 }
2722
2723 symtab_and_line
2724 find_frame_sal (frame_info *frame)
2725 {
2726 struct frame_info *next_frame;
2727 int notcurrent;
2728 CORE_ADDR pc;
2729
2730 if (frame_inlined_callees (frame) > 0)
2731 {
2732 struct symbol *sym;
2733
2734 /* If the current frame has some inlined callees, and we have a next
2735 frame, then that frame must be an inlined frame. In this case
2736 this frame's sal is the "call site" of the next frame's inlined
2737 function, which can not be inferred from get_frame_pc. */
2738 next_frame = get_next_frame (frame);
2739 if (next_frame)
2740 sym = get_frame_function (next_frame);
2741 else
2742 sym = inline_skipped_symbol (inferior_thread ());
2743
2744 /* If frame is inline, it certainly has symbols. */
2745 gdb_assert (sym);
2746
2747 symtab_and_line sal;
2748 if (SYMBOL_LINE (sym) != 0)
2749 {
2750 sal.symtab = symbol_symtab (sym);
2751 sal.line = SYMBOL_LINE (sym);
2752 }
2753 else
2754 /* If the symbol does not have a location, we don't know where
2755 the call site is. Do not pretend to. This is jarring, but
2756 we can't do much better. */
2757 sal.pc = get_frame_pc (frame);
2758
2759 sal.pspace = get_frame_program_space (frame);
2760 return sal;
2761 }
2762
2763 /* If FRAME is not the innermost frame, that normally means that
2764 FRAME->pc points at the return instruction (which is *after* the
2765 call instruction), and we want to get the line containing the
2766 call (because the call is where the user thinks the program is).
2767 However, if the next frame is either a SIGTRAMP_FRAME or a
2768 DUMMY_FRAME, then the next frame will contain a saved interrupt
2769 PC and such a PC indicates the current (rather than next)
2770 instruction/line, consequently, for such cases, want to get the
2771 line containing fi->pc. */
2772 if (!get_frame_pc_if_available (frame, &pc))
2773 return {};
2774
2775 notcurrent = (pc != get_frame_address_in_block (frame));
2776 return find_pc_line (pc, notcurrent);
2777 }
2778
2779 /* Per "frame.h", return the ``address'' of the frame. Code should
2780 really be using get_frame_id(). */
2781 CORE_ADDR
2782 get_frame_base (struct frame_info *fi)
2783 {
2784 return get_frame_id (fi).stack_addr;
2785 }
2786
2787 /* High-level offsets into the frame. Used by the debug info. */
2788
2789 CORE_ADDR
2790 get_frame_base_address (struct frame_info *fi)
2791 {
2792 if (get_frame_type (fi) != NORMAL_FRAME)
2793 return 0;
2794 if (fi->base == NULL)
2795 fi->base = frame_base_find_by_frame (fi);
2796 /* Sneaky: If the low-level unwind and high-level base code share a
2797 common unwinder, let them share the prologue cache. */
2798 if (fi->base->unwind == fi->unwind)
2799 return fi->base->this_base (fi, &fi->prologue_cache);
2800 return fi->base->this_base (fi, &fi->base_cache);
2801 }
2802
2803 CORE_ADDR
2804 get_frame_locals_address (struct frame_info *fi)
2805 {
2806 if (get_frame_type (fi) != NORMAL_FRAME)
2807 return 0;
2808 /* If there isn't a frame address method, find it. */
2809 if (fi->base == NULL)
2810 fi->base = frame_base_find_by_frame (fi);
2811 /* Sneaky: If the low-level unwind and high-level base code share a
2812 common unwinder, let them share the prologue cache. */
2813 if (fi->base->unwind == fi->unwind)
2814 return fi->base->this_locals (fi, &fi->prologue_cache);
2815 return fi->base->this_locals (fi, &fi->base_cache);
2816 }
2817
2818 CORE_ADDR
2819 get_frame_args_address (struct frame_info *fi)
2820 {
2821 if (get_frame_type (fi) != NORMAL_FRAME)
2822 return 0;
2823 /* If there isn't a frame address method, find it. */
2824 if (fi->base == NULL)
2825 fi->base = frame_base_find_by_frame (fi);
2826 /* Sneaky: If the low-level unwind and high-level base code share a
2827 common unwinder, let them share the prologue cache. */
2828 if (fi->base->unwind == fi->unwind)
2829 return fi->base->this_args (fi, &fi->prologue_cache);
2830 return fi->base->this_args (fi, &fi->base_cache);
2831 }
2832
2833 /* Return true if the frame unwinder for frame FI is UNWINDER; false
2834 otherwise. */
2835
2836 bool
2837 frame_unwinder_is (frame_info *fi, const frame_unwind *unwinder)
2838 {
2839 if (fi->unwind == nullptr)
2840 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
2841
2842 return fi->unwind == unwinder;
2843 }
2844
2845 /* Level of the selected frame: 0 for innermost, 1 for its caller, ...
2846 or -1 for a NULL frame. */
2847
2848 int
2849 frame_relative_level (struct frame_info *fi)
2850 {
2851 if (fi == NULL)
2852 return -1;
2853 else
2854 return fi->level;
2855 }
2856
2857 enum frame_type
2858 get_frame_type (struct frame_info *frame)
2859 {
2860 if (frame->unwind == NULL)
2861 /* Initialize the frame's unwinder because that's what
2862 provides the frame's type. */
2863 frame_unwind_find_by_frame (frame, &frame->prologue_cache);
2864 return frame->unwind->type;
2865 }
2866
2867 struct program_space *
2868 get_frame_program_space (struct frame_info *frame)
2869 {
2870 return frame->pspace;
2871 }
2872
2873 struct program_space *
2874 frame_unwind_program_space (struct frame_info *this_frame)
2875 {
2876 gdb_assert (this_frame);
2877
2878 /* This is really a placeholder to keep the API consistent --- we
2879 assume for now that we don't have frame chains crossing
2880 spaces. */
2881 return this_frame->pspace;
2882 }
2883
2884 const address_space *
2885 get_frame_address_space (struct frame_info *frame)
2886 {
2887 return frame->aspace;
2888 }
2889
2890 /* Memory access methods. */
2891
2892 void
2893 get_frame_memory (struct frame_info *this_frame, CORE_ADDR addr,
2894 gdb_byte *buf, int len)
2895 {
2896 read_memory (addr, buf, len);
2897 }
2898
2899 LONGEST
2900 get_frame_memory_signed (struct frame_info *this_frame, CORE_ADDR addr,
2901 int len)
2902 {
2903 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2904 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2905
2906 return read_memory_integer (addr, len, byte_order);
2907 }
2908
2909 ULONGEST
2910 get_frame_memory_unsigned (struct frame_info *this_frame, CORE_ADDR addr,
2911 int len)
2912 {
2913 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2914 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2915
2916 return read_memory_unsigned_integer (addr, len, byte_order);
2917 }
2918
2919 bool
2920 safe_frame_unwind_memory (struct frame_info *this_frame,
2921 CORE_ADDR addr, gdb_byte *buf, int len)
2922 {
2923 /* NOTE: target_read_memory returns zero on success! */
2924 return target_read_memory (addr, buf, len) == 0;
2925 }
2926
2927 /* Architecture methods. */
2928
2929 struct gdbarch *
2930 get_frame_arch (struct frame_info *this_frame)
2931 {
2932 return frame_unwind_arch (this_frame->next);
2933 }
2934
2935 struct gdbarch *
2936 frame_unwind_arch (struct frame_info *next_frame)
2937 {
2938 if (!next_frame->prev_arch.p)
2939 {
2940 struct gdbarch *arch;
2941
2942 if (next_frame->unwind == NULL)
2943 frame_unwind_find_by_frame (next_frame, &next_frame->prologue_cache);
2944
2945 if (next_frame->unwind->prev_arch != NULL)
2946 arch = next_frame->unwind->prev_arch (next_frame,
2947 &next_frame->prologue_cache);
2948 else
2949 arch = get_frame_arch (next_frame);
2950
2951 next_frame->prev_arch.arch = arch;
2952 next_frame->prev_arch.p = true;
2953 if (frame_debug)
2954 fprintf_unfiltered (gdb_stdlog,
2955 "{ frame_unwind_arch (next_frame=%d) -> %s }\n",
2956 next_frame->level,
2957 gdbarch_bfd_arch_info (arch)->printable_name);
2958 }
2959
2960 return next_frame->prev_arch.arch;
2961 }
2962
2963 struct gdbarch *
2964 frame_unwind_caller_arch (struct frame_info *next_frame)
2965 {
2966 next_frame = skip_artificial_frames (next_frame);
2967
2968 /* We must have a non-artificial frame. The caller is supposed to check
2969 the result of frame_unwind_caller_id (), which returns NULL_FRAME_ID
2970 in this case. */
2971 gdb_assert (next_frame != NULL);
2972
2973 return frame_unwind_arch (next_frame);
2974 }
2975
2976 /* Gets the language of FRAME. */
2977
2978 enum language
2979 get_frame_language (struct frame_info *frame)
2980 {
2981 CORE_ADDR pc = 0;
2982 bool pc_p = false;
2983
2984 gdb_assert (frame!= NULL);
2985
2986 /* We determine the current frame language by looking up its
2987 associated symtab. To retrieve this symtab, we use the frame
2988 PC. However we cannot use the frame PC as is, because it
2989 usually points to the instruction following the "call", which
2990 is sometimes the first instruction of another function. So
2991 we rely on get_frame_address_in_block(), it provides us with
2992 a PC that is guaranteed to be inside the frame's code
2993 block. */
2994
2995 try
2996 {
2997 pc = get_frame_address_in_block (frame);
2998 pc_p = true;
2999 }
3000 catch (const gdb_exception_error &ex)
3001 {
3002 if (ex.error != NOT_AVAILABLE_ERROR)
3003 throw;
3004 }
3005
3006 if (pc_p)
3007 {
3008 struct compunit_symtab *cust = find_pc_compunit_symtab (pc);
3009
3010 if (cust != NULL)
3011 return compunit_language (cust);
3012 }
3013
3014 return language_unknown;
3015 }
3016
3017 /* Stack pointer methods. */
3018
3019 CORE_ADDR
3020 get_frame_sp (struct frame_info *this_frame)
3021 {
3022 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3023
3024 /* NOTE drow/2008-06-28: gdbarch_unwind_sp could be converted to
3025 operate on THIS_FRAME now. */
3026 return gdbarch_unwind_sp (gdbarch, this_frame->next);
3027 }
3028
3029 /* Return the reason why we can't unwind past FRAME. */
3030
3031 enum unwind_stop_reason
3032 get_frame_unwind_stop_reason (struct frame_info *frame)
3033 {
3034 /* Fill-in STOP_REASON. */
3035 get_prev_frame_always (frame);
3036 gdb_assert (frame->prev_p);
3037
3038 return frame->stop_reason;
3039 }
3040
3041 /* Return a string explaining REASON. */
3042
3043 const char *
3044 unwind_stop_reason_to_string (enum unwind_stop_reason reason)
3045 {
3046 switch (reason)
3047 {
3048 #define SET(name, description) \
3049 case name: return _(description);
3050 #include "unwind_stop_reasons.def"
3051 #undef SET
3052
3053 default:
3054 internal_error (__FILE__, __LINE__,
3055 "Invalid frame stop reason");
3056 }
3057 }
3058
3059 const char *
3060 frame_stop_reason_string (struct frame_info *fi)
3061 {
3062 gdb_assert (fi->prev_p);
3063 gdb_assert (fi->prev == NULL);
3064
3065 /* Return the specific string if we have one. */
3066 if (fi->stop_string != NULL)
3067 return fi->stop_string;
3068
3069 /* Return the generic string if we have nothing better. */
3070 return unwind_stop_reason_to_string (fi->stop_reason);
3071 }
3072
3073 /* Return the enum symbol name of REASON as a string, to use in debug
3074 output. */
3075
3076 static const char *
3077 frame_stop_reason_symbol_string (enum unwind_stop_reason reason)
3078 {
3079 switch (reason)
3080 {
3081 #define SET(name, description) \
3082 case name: return #name;
3083 #include "unwind_stop_reasons.def"
3084 #undef SET
3085
3086 default:
3087 internal_error (__FILE__, __LINE__,
3088 "Invalid frame stop reason");
3089 }
3090 }
3091
3092 /* Clean up after a failed (wrong unwinder) attempt to unwind past
3093 FRAME. */
3094
3095 void
3096 frame_cleanup_after_sniffer (struct frame_info *frame)
3097 {
3098 /* The sniffer should not allocate a prologue cache if it did not
3099 match this frame. */
3100 gdb_assert (frame->prologue_cache == NULL);
3101
3102 /* No sniffer should extend the frame chain; sniff based on what is
3103 already certain. */
3104 gdb_assert (!frame->prev_p);
3105
3106 /* The sniffer should not check the frame's ID; that's circular. */
3107 gdb_assert (frame->this_id.p != frame_id_status::COMPUTED);
3108
3109 /* Clear cached fields dependent on the unwinder.
3110
3111 The previous PC is independent of the unwinder, but the previous
3112 function is not (see get_frame_address_in_block). */
3113 frame->prev_func.status = CC_UNKNOWN;
3114 frame->prev_func.addr = 0;
3115
3116 /* Discard the unwinder last, so that we can easily find it if an assertion
3117 in this function triggers. */
3118 frame->unwind = NULL;
3119 }
3120
3121 /* Set FRAME's unwinder temporarily, so that we can call a sniffer.
3122 If sniffing fails, the caller should be sure to call
3123 frame_cleanup_after_sniffer. */
3124
3125 void
3126 frame_prepare_for_sniffer (struct frame_info *frame,
3127 const struct frame_unwind *unwind)
3128 {
3129 gdb_assert (frame->unwind == NULL);
3130 frame->unwind = unwind;
3131 }
3132
3133 static struct cmd_list_element *set_backtrace_cmdlist;
3134 static struct cmd_list_element *show_backtrace_cmdlist;
3135
3136 /* Definition of the "set backtrace" settings that are exposed as
3137 "backtrace" command options. */
3138
3139 using boolean_option_def
3140 = gdb::option::boolean_option_def<set_backtrace_options>;
3141
3142 const gdb::option::option_def set_backtrace_option_defs[] = {
3143
3144 boolean_option_def {
3145 "past-main",
3146 [] (set_backtrace_options *opt) { return &opt->backtrace_past_main; },
3147 show_backtrace_past_main, /* show_cmd_cb */
3148 N_("Set whether backtraces should continue past \"main\"."),
3149 N_("Show whether backtraces should continue past \"main\"."),
3150 N_("Normally the caller of \"main\" is not of interest, so GDB will terminate\n\
3151 the backtrace at \"main\". Set this if you need to see the rest\n\
3152 of the stack trace."),
3153 },
3154
3155 boolean_option_def {
3156 "past-entry",
3157 [] (set_backtrace_options *opt) { return &opt->backtrace_past_entry; },
3158 show_backtrace_past_entry, /* show_cmd_cb */
3159 N_("Set whether backtraces should continue past the entry point of a program."),
3160 N_("Show whether backtraces should continue past the entry point of a program."),
3161 N_("Normally there are no callers beyond the entry point of a program, so GDB\n\
3162 will terminate the backtrace there. Set this if you need to see\n\
3163 the rest of the stack trace."),
3164 },
3165 };
3166
3167 void _initialize_frame ();
3168 void
3169 _initialize_frame ()
3170 {
3171 obstack_init (&frame_cache_obstack);
3172
3173 frame_stash_create ();
3174
3175 gdb::observers::target_changed.attach (frame_observer_target_changed);
3176
3177 add_basic_prefix_cmd ("backtrace", class_maintenance, _("\
3178 Set backtrace specific variables.\n\
3179 Configure backtrace variables such as the backtrace limit"),
3180 &set_backtrace_cmdlist, "set backtrace ",
3181 0/*allow-unknown*/, &setlist);
3182 add_show_prefix_cmd ("backtrace", class_maintenance, _("\
3183 Show backtrace specific variables.\n\
3184 Show backtrace variables such as the backtrace limit."),
3185 &show_backtrace_cmdlist, "show backtrace ",
3186 0/*allow-unknown*/, &showlist);
3187
3188 add_setshow_uinteger_cmd ("limit", class_obscure,
3189 &user_set_backtrace_options.backtrace_limit, _("\
3190 Set an upper bound on the number of backtrace levels."), _("\
3191 Show the upper bound on the number of backtrace levels."), _("\
3192 No more than the specified number of frames can be displayed or examined.\n\
3193 Literal \"unlimited\" or zero means no limit."),
3194 NULL,
3195 show_backtrace_limit,
3196 &set_backtrace_cmdlist,
3197 &show_backtrace_cmdlist);
3198
3199 gdb::option::add_setshow_cmds_for_options
3200 (class_stack, &user_set_backtrace_options,
3201 set_backtrace_option_defs, &set_backtrace_cmdlist, &show_backtrace_cmdlist);
3202
3203 /* Debug this files internals. */
3204 add_setshow_zuinteger_cmd ("frame", class_maintenance, &frame_debug, _("\
3205 Set frame debugging."), _("\
3206 Show frame debugging."), _("\
3207 When non-zero, frame specific internal debugging is enabled."),
3208 NULL,
3209 show_frame_debug,
3210 &setdebuglist, &showdebuglist);
3211 }