gdb/
[binutils-gdb.git] / gdb / frame.c
1 /* Cache and manage frames for GDB, the GNU debugger.
2
3 Copyright (C) 1986, 1987, 1989, 1991, 1994, 1995, 1996, 1998, 2000, 2001,
4 2002, 2003, 2004, 2007, 2008, 2009, 2010, 2011
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "frame.h"
24 #include "target.h"
25 #include "value.h"
26 #include "inferior.h" /* for inferior_ptid */
27 #include "regcache.h"
28 #include "gdb_assert.h"
29 #include "gdb_string.h"
30 #include "user-regs.h"
31 #include "gdb_obstack.h"
32 #include "dummy-frame.h"
33 #include "sentinel-frame.h"
34 #include "gdbcore.h"
35 #include "annotate.h"
36 #include "language.h"
37 #include "frame-unwind.h"
38 #include "frame-base.h"
39 #include "command.h"
40 #include "gdbcmd.h"
41 #include "observer.h"
42 #include "objfiles.h"
43 #include "exceptions.h"
44 #include "gdbthread.h"
45 #include "block.h"
46 #include "inline-frame.h"
47 #include "tracepoint.h"
48
49 static struct frame_info *get_prev_frame_1 (struct frame_info *this_frame);
50 static struct frame_info *get_prev_frame_raw (struct frame_info *this_frame);
51
52 /* We keep a cache of stack frames, each of which is a "struct
53 frame_info". The innermost one gets allocated (in
54 wait_for_inferior) each time the inferior stops; current_frame
55 points to it. Additional frames get allocated (in get_prev_frame)
56 as needed, and are chained through the next and prev fields. Any
57 time that the frame cache becomes invalid (most notably when we
58 execute something, but also if we change how we interpret the
59 frames (e.g. "set heuristic-fence-post" in mips-tdep.c, or anything
60 which reads new symbols)), we should call reinit_frame_cache. */
61
62 struct frame_info
63 {
64 /* Level of this frame. The inner-most (youngest) frame is at level
65 0. As you move towards the outer-most (oldest) frame, the level
66 increases. This is a cached value. It could just as easily be
67 computed by counting back from the selected frame to the inner
68 most frame. */
69 /* NOTE: cagney/2002-04-05: Perhaps a level of ``-1'' should be
70 reserved to indicate a bogus frame - one that has been created
71 just to keep GDB happy (GDB always needs a frame). For the
72 moment leave this as speculation. */
73 int level;
74
75 /* The frame's program space. */
76 struct program_space *pspace;
77
78 /* The frame's address space. */
79 struct address_space *aspace;
80
81 /* The frame's low-level unwinder and corresponding cache. The
82 low-level unwinder is responsible for unwinding register values
83 for the previous frame. The low-level unwind methods are
84 selected based on the presence, or otherwise, of register unwind
85 information such as CFI. */
86 void *prologue_cache;
87 const struct frame_unwind *unwind;
88
89 /* Cached copy of the previous frame's architecture. */
90 struct
91 {
92 int p;
93 struct gdbarch *arch;
94 } prev_arch;
95
96 /* Cached copy of the previous frame's resume address. */
97 struct {
98 int p;
99 CORE_ADDR value;
100 } prev_pc;
101
102 /* Cached copy of the previous frame's function address. */
103 struct
104 {
105 CORE_ADDR addr;
106 int p;
107 } prev_func;
108
109 /* This frame's ID. */
110 struct
111 {
112 int p;
113 struct frame_id value;
114 } this_id;
115
116 /* The frame's high-level base methods, and corresponding cache.
117 The high level base methods are selected based on the frame's
118 debug info. */
119 const struct frame_base *base;
120 void *base_cache;
121
122 /* Pointers to the next (down, inner, younger) and previous (up,
123 outer, older) frame_info's in the frame cache. */
124 struct frame_info *next; /* down, inner, younger */
125 int prev_p;
126 struct frame_info *prev; /* up, outer, older */
127
128 /* The reason why we could not set PREV, or UNWIND_NO_REASON if we
129 could. Only valid when PREV_P is set. */
130 enum unwind_stop_reason stop_reason;
131 };
132
133 /* A frame stash used to speed up frame lookups. */
134
135 /* We currently only stash one frame at a time, as this seems to be
136 sufficient for now. */
137 static struct frame_info *frame_stash = NULL;
138
139 /* Add the following FRAME to the frame stash. */
140
141 static void
142 frame_stash_add (struct frame_info *frame)
143 {
144 frame_stash = frame;
145 }
146
147 /* Search the frame stash for an entry with the given frame ID.
148 If found, return that frame. Otherwise return NULL. */
149
150 static struct frame_info *
151 frame_stash_find (struct frame_id id)
152 {
153 if (frame_stash && frame_id_eq (frame_stash->this_id.value, id))
154 return frame_stash;
155
156 return NULL;
157 }
158
159 /* Invalidate the frame stash by removing all entries in it. */
160
161 static void
162 frame_stash_invalidate (void)
163 {
164 frame_stash = NULL;
165 }
166
167 /* Flag to control debugging. */
168
169 int frame_debug;
170 static void
171 show_frame_debug (struct ui_file *file, int from_tty,
172 struct cmd_list_element *c, const char *value)
173 {
174 fprintf_filtered (file, _("Frame debugging is %s.\n"), value);
175 }
176
177 /* Flag to indicate whether backtraces should stop at main et.al. */
178
179 static int backtrace_past_main;
180 static void
181 show_backtrace_past_main (struct ui_file *file, int from_tty,
182 struct cmd_list_element *c, const char *value)
183 {
184 fprintf_filtered (file,
185 _("Whether backtraces should "
186 "continue past \"main\" is %s.\n"),
187 value);
188 }
189
190 static int backtrace_past_entry;
191 static void
192 show_backtrace_past_entry (struct ui_file *file, int from_tty,
193 struct cmd_list_element *c, const char *value)
194 {
195 fprintf_filtered (file, _("Whether backtraces should continue past the "
196 "entry point of a program is %s.\n"),
197 value);
198 }
199
200 static int backtrace_limit = INT_MAX;
201 static void
202 show_backtrace_limit (struct ui_file *file, int from_tty,
203 struct cmd_list_element *c, const char *value)
204 {
205 fprintf_filtered (file,
206 _("An upper bound on the number "
207 "of backtrace levels is %s.\n"),
208 value);
209 }
210
211
212 static void
213 fprint_field (struct ui_file *file, const char *name, int p, CORE_ADDR addr)
214 {
215 if (p)
216 fprintf_unfiltered (file, "%s=%s", name, hex_string (addr));
217 else
218 fprintf_unfiltered (file, "!%s", name);
219 }
220
221 void
222 fprint_frame_id (struct ui_file *file, struct frame_id id)
223 {
224 fprintf_unfiltered (file, "{");
225 fprint_field (file, "stack", id.stack_addr_p, id.stack_addr);
226 fprintf_unfiltered (file, ",");
227 fprint_field (file, "code", id.code_addr_p, id.code_addr);
228 fprintf_unfiltered (file, ",");
229 fprint_field (file, "special", id.special_addr_p, id.special_addr);
230 if (id.inline_depth)
231 fprintf_unfiltered (file, ",inlined=%d", id.inline_depth);
232 fprintf_unfiltered (file, "}");
233 }
234
235 static void
236 fprint_frame_type (struct ui_file *file, enum frame_type type)
237 {
238 switch (type)
239 {
240 case NORMAL_FRAME:
241 fprintf_unfiltered (file, "NORMAL_FRAME");
242 return;
243 case DUMMY_FRAME:
244 fprintf_unfiltered (file, "DUMMY_FRAME");
245 return;
246 case INLINE_FRAME:
247 fprintf_unfiltered (file, "INLINE_FRAME");
248 return;
249 case SENTINEL_FRAME:
250 fprintf_unfiltered (file, "SENTINEL_FRAME");
251 return;
252 case SIGTRAMP_FRAME:
253 fprintf_unfiltered (file, "SIGTRAMP_FRAME");
254 return;
255 case ARCH_FRAME:
256 fprintf_unfiltered (file, "ARCH_FRAME");
257 return;
258 default:
259 fprintf_unfiltered (file, "<unknown type>");
260 return;
261 };
262 }
263
264 static void
265 fprint_frame (struct ui_file *file, struct frame_info *fi)
266 {
267 if (fi == NULL)
268 {
269 fprintf_unfiltered (file, "<NULL frame>");
270 return;
271 }
272 fprintf_unfiltered (file, "{");
273 fprintf_unfiltered (file, "level=%d", fi->level);
274 fprintf_unfiltered (file, ",");
275 fprintf_unfiltered (file, "type=");
276 if (fi->unwind != NULL)
277 fprint_frame_type (file, fi->unwind->type);
278 else
279 fprintf_unfiltered (file, "<unknown>");
280 fprintf_unfiltered (file, ",");
281 fprintf_unfiltered (file, "unwind=");
282 if (fi->unwind != NULL)
283 gdb_print_host_address (fi->unwind, file);
284 else
285 fprintf_unfiltered (file, "<unknown>");
286 fprintf_unfiltered (file, ",");
287 fprintf_unfiltered (file, "pc=");
288 if (fi->next != NULL && fi->next->prev_pc.p)
289 fprintf_unfiltered (file, "%s", hex_string (fi->next->prev_pc.value));
290 else
291 fprintf_unfiltered (file, "<unknown>");
292 fprintf_unfiltered (file, ",");
293 fprintf_unfiltered (file, "id=");
294 if (fi->this_id.p)
295 fprint_frame_id (file, fi->this_id.value);
296 else
297 fprintf_unfiltered (file, "<unknown>");
298 fprintf_unfiltered (file, ",");
299 fprintf_unfiltered (file, "func=");
300 if (fi->next != NULL && fi->next->prev_func.p)
301 fprintf_unfiltered (file, "%s", hex_string (fi->next->prev_func.addr));
302 else
303 fprintf_unfiltered (file, "<unknown>");
304 fprintf_unfiltered (file, "}");
305 }
306
307 /* Given FRAME, return the enclosing normal frame for inlined
308 function frames. Otherwise return the original frame. */
309
310 static struct frame_info *
311 skip_inlined_frames (struct frame_info *frame)
312 {
313 while (get_frame_type (frame) == INLINE_FRAME)
314 frame = get_prev_frame (frame);
315
316 return frame;
317 }
318
319 /* Return a frame uniq ID that can be used to, later, re-find the
320 frame. */
321
322 struct frame_id
323 get_frame_id (struct frame_info *fi)
324 {
325 if (fi == NULL)
326 return null_frame_id;
327
328 if (!fi->this_id.p)
329 {
330 if (frame_debug)
331 fprintf_unfiltered (gdb_stdlog, "{ get_frame_id (fi=%d) ",
332 fi->level);
333 /* Find the unwinder. */
334 if (fi->unwind == NULL)
335 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
336 /* Find THIS frame's ID. */
337 /* Default to outermost if no ID is found. */
338 fi->this_id.value = outer_frame_id;
339 fi->unwind->this_id (fi, &fi->prologue_cache, &fi->this_id.value);
340 gdb_assert (frame_id_p (fi->this_id.value));
341 fi->this_id.p = 1;
342 if (frame_debug)
343 {
344 fprintf_unfiltered (gdb_stdlog, "-> ");
345 fprint_frame_id (gdb_stdlog, fi->this_id.value);
346 fprintf_unfiltered (gdb_stdlog, " }\n");
347 }
348 }
349
350 frame_stash_add (fi);
351
352 return fi->this_id.value;
353 }
354
355 struct frame_id
356 get_stack_frame_id (struct frame_info *next_frame)
357 {
358 return get_frame_id (skip_inlined_frames (next_frame));
359 }
360
361 struct frame_id
362 frame_unwind_caller_id (struct frame_info *next_frame)
363 {
364 struct frame_info *this_frame;
365
366 /* Use get_prev_frame_1, and not get_prev_frame. The latter will truncate
367 the frame chain, leading to this function unintentionally
368 returning a null_frame_id (e.g., when a caller requests the frame
369 ID of "main()"s caller. */
370
371 next_frame = skip_inlined_frames (next_frame);
372 this_frame = get_prev_frame_1 (next_frame);
373 if (this_frame)
374 return get_frame_id (skip_inlined_frames (this_frame));
375 else
376 return null_frame_id;
377 }
378
379 const struct frame_id null_frame_id; /* All zeros. */
380 const struct frame_id outer_frame_id = { 0, 0, 0, 0, 0, 1, 0 };
381
382 struct frame_id
383 frame_id_build_special (CORE_ADDR stack_addr, CORE_ADDR code_addr,
384 CORE_ADDR special_addr)
385 {
386 struct frame_id id = null_frame_id;
387
388 id.stack_addr = stack_addr;
389 id.stack_addr_p = 1;
390 id.code_addr = code_addr;
391 id.code_addr_p = 1;
392 id.special_addr = special_addr;
393 id.special_addr_p = 1;
394 return id;
395 }
396
397 struct frame_id
398 frame_id_build (CORE_ADDR stack_addr, CORE_ADDR code_addr)
399 {
400 struct frame_id id = null_frame_id;
401
402 id.stack_addr = stack_addr;
403 id.stack_addr_p = 1;
404 id.code_addr = code_addr;
405 id.code_addr_p = 1;
406 return id;
407 }
408
409 struct frame_id
410 frame_id_build_wild (CORE_ADDR stack_addr)
411 {
412 struct frame_id id = null_frame_id;
413
414 id.stack_addr = stack_addr;
415 id.stack_addr_p = 1;
416 return id;
417 }
418
419 int
420 frame_id_p (struct frame_id l)
421 {
422 int p;
423
424 /* The frame is valid iff it has a valid stack address. */
425 p = l.stack_addr_p;
426 /* outer_frame_id is also valid. */
427 if (!p && memcmp (&l, &outer_frame_id, sizeof (l)) == 0)
428 p = 1;
429 if (frame_debug)
430 {
431 fprintf_unfiltered (gdb_stdlog, "{ frame_id_p (l=");
432 fprint_frame_id (gdb_stdlog, l);
433 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", p);
434 }
435 return p;
436 }
437
438 int
439 frame_id_inlined_p (struct frame_id l)
440 {
441 if (!frame_id_p (l))
442 return 0;
443
444 return (l.inline_depth != 0);
445 }
446
447 int
448 frame_id_eq (struct frame_id l, struct frame_id r)
449 {
450 int eq;
451
452 if (!l.stack_addr_p && l.special_addr_p
453 && !r.stack_addr_p && r.special_addr_p)
454 /* The outermost frame marker is equal to itself. This is the
455 dodgy thing about outer_frame_id, since between execution steps
456 we might step into another function - from which we can't
457 unwind either. More thought required to get rid of
458 outer_frame_id. */
459 eq = 1;
460 else if (!l.stack_addr_p || !r.stack_addr_p)
461 /* Like a NaN, if either ID is invalid, the result is false.
462 Note that a frame ID is invalid iff it is the null frame ID. */
463 eq = 0;
464 else if (l.stack_addr != r.stack_addr)
465 /* If .stack addresses are different, the frames are different. */
466 eq = 0;
467 else if (l.code_addr_p && r.code_addr_p && l.code_addr != r.code_addr)
468 /* An invalid code addr is a wild card. If .code addresses are
469 different, the frames are different. */
470 eq = 0;
471 else if (l.special_addr_p && r.special_addr_p
472 && l.special_addr != r.special_addr)
473 /* An invalid special addr is a wild card (or unused). Otherwise
474 if special addresses are different, the frames are different. */
475 eq = 0;
476 else if (l.inline_depth != r.inline_depth)
477 /* If inline depths are different, the frames must be different. */
478 eq = 0;
479 else
480 /* Frames are equal. */
481 eq = 1;
482
483 if (frame_debug)
484 {
485 fprintf_unfiltered (gdb_stdlog, "{ frame_id_eq (l=");
486 fprint_frame_id (gdb_stdlog, l);
487 fprintf_unfiltered (gdb_stdlog, ",r=");
488 fprint_frame_id (gdb_stdlog, r);
489 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", eq);
490 }
491 return eq;
492 }
493
494 /* Safety net to check whether frame ID L should be inner to
495 frame ID R, according to their stack addresses.
496
497 This method cannot be used to compare arbitrary frames, as the
498 ranges of valid stack addresses may be discontiguous (e.g. due
499 to sigaltstack).
500
501 However, it can be used as safety net to discover invalid frame
502 IDs in certain circumstances. Assuming that NEXT is the immediate
503 inner frame to THIS and that NEXT and THIS are both NORMAL frames:
504
505 * The stack address of NEXT must be inner-than-or-equal to the stack
506 address of THIS.
507
508 Therefore, if frame_id_inner (THIS, NEXT) holds, some unwind
509 error has occurred.
510
511 * If NEXT and THIS have different stack addresses, no other frame
512 in the frame chain may have a stack address in between.
513
514 Therefore, if frame_id_inner (TEST, THIS) holds, but
515 frame_id_inner (TEST, NEXT) does not hold, TEST cannot refer
516 to a valid frame in the frame chain.
517
518 The sanity checks above cannot be performed when a SIGTRAMP frame
519 is involved, because signal handlers might be executed on a different
520 stack than the stack used by the routine that caused the signal
521 to be raised. This can happen for instance when a thread exceeds
522 its maximum stack size. In this case, certain compilers implement
523 a stack overflow strategy that cause the handler to be run on a
524 different stack. */
525
526 static int
527 frame_id_inner (struct gdbarch *gdbarch, struct frame_id l, struct frame_id r)
528 {
529 int inner;
530
531 if (!l.stack_addr_p || !r.stack_addr_p)
532 /* Like NaN, any operation involving an invalid ID always fails. */
533 inner = 0;
534 else if (l.inline_depth > r.inline_depth
535 && l.stack_addr == r.stack_addr
536 && l.code_addr_p == r.code_addr_p
537 && l.special_addr_p == r.special_addr_p
538 && l.special_addr == r.special_addr)
539 {
540 /* Same function, different inlined functions. */
541 struct block *lb, *rb;
542
543 gdb_assert (l.code_addr_p && r.code_addr_p);
544
545 lb = block_for_pc (l.code_addr);
546 rb = block_for_pc (r.code_addr);
547
548 if (lb == NULL || rb == NULL)
549 /* Something's gone wrong. */
550 inner = 0;
551 else
552 /* This will return true if LB and RB are the same block, or
553 if the block with the smaller depth lexically encloses the
554 block with the greater depth. */
555 inner = contained_in (lb, rb);
556 }
557 else
558 /* Only return non-zero when strictly inner than. Note that, per
559 comment in "frame.h", there is some fuzz here. Frameless
560 functions are not strictly inner than (same .stack but
561 different .code and/or .special address). */
562 inner = gdbarch_inner_than (gdbarch, l.stack_addr, r.stack_addr);
563 if (frame_debug)
564 {
565 fprintf_unfiltered (gdb_stdlog, "{ frame_id_inner (l=");
566 fprint_frame_id (gdb_stdlog, l);
567 fprintf_unfiltered (gdb_stdlog, ",r=");
568 fprint_frame_id (gdb_stdlog, r);
569 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", inner);
570 }
571 return inner;
572 }
573
574 struct frame_info *
575 frame_find_by_id (struct frame_id id)
576 {
577 struct frame_info *frame, *prev_frame;
578
579 /* ZERO denotes the null frame, let the caller decide what to do
580 about it. Should it instead return get_current_frame()? */
581 if (!frame_id_p (id))
582 return NULL;
583
584 /* Try using the frame stash first. Finding it there removes the need
585 to perform the search by looping over all frames, which can be very
586 CPU-intensive if the number of frames is very high (the loop is O(n)
587 and get_prev_frame performs a series of checks that are relatively
588 expensive). This optimization is particularly useful when this function
589 is called from another function (such as value_fetch_lazy, case
590 VALUE_LVAL (val) == lval_register) which already loops over all frames,
591 making the overall behavior O(n^2). */
592 frame = frame_stash_find (id);
593 if (frame)
594 return frame;
595
596 for (frame = get_current_frame (); ; frame = prev_frame)
597 {
598 struct frame_id this = get_frame_id (frame);
599
600 if (frame_id_eq (id, this))
601 /* An exact match. */
602 return frame;
603
604 prev_frame = get_prev_frame (frame);
605 if (!prev_frame)
606 return NULL;
607
608 /* As a safety net to avoid unnecessary backtracing while trying
609 to find an invalid ID, we check for a common situation where
610 we can detect from comparing stack addresses that no other
611 frame in the current frame chain can have this ID. See the
612 comment at frame_id_inner for details. */
613 if (get_frame_type (frame) == NORMAL_FRAME
614 && !frame_id_inner (get_frame_arch (frame), id, this)
615 && frame_id_inner (get_frame_arch (prev_frame), id,
616 get_frame_id (prev_frame)))
617 return NULL;
618 }
619 return NULL;
620 }
621
622 static CORE_ADDR
623 frame_unwind_pc (struct frame_info *this_frame)
624 {
625 if (!this_frame->prev_pc.p)
626 {
627 CORE_ADDR pc;
628
629 if (gdbarch_unwind_pc_p (frame_unwind_arch (this_frame)))
630 {
631 /* The right way. The `pure' way. The one true way. This
632 method depends solely on the register-unwind code to
633 determine the value of registers in THIS frame, and hence
634 the value of this frame's PC (resume address). A typical
635 implementation is no more than:
636
637 frame_unwind_register (this_frame, ISA_PC_REGNUM, buf);
638 return extract_unsigned_integer (buf, size of ISA_PC_REGNUM);
639
640 Note: this method is very heavily dependent on a correct
641 register-unwind implementation, it pays to fix that
642 method first; this method is frame type agnostic, since
643 it only deals with register values, it works with any
644 frame. This is all in stark contrast to the old
645 FRAME_SAVED_PC which would try to directly handle all the
646 different ways that a PC could be unwound. */
647 pc = gdbarch_unwind_pc (frame_unwind_arch (this_frame), this_frame);
648 }
649 else
650 internal_error (__FILE__, __LINE__, _("No unwind_pc method"));
651 this_frame->prev_pc.value = pc;
652 this_frame->prev_pc.p = 1;
653 if (frame_debug)
654 fprintf_unfiltered (gdb_stdlog,
655 "{ frame_unwind_caller_pc "
656 "(this_frame=%d) -> %s }\n",
657 this_frame->level,
658 hex_string (this_frame->prev_pc.value));
659 }
660 return this_frame->prev_pc.value;
661 }
662
663 CORE_ADDR
664 frame_unwind_caller_pc (struct frame_info *this_frame)
665 {
666 return frame_unwind_pc (skip_inlined_frames (this_frame));
667 }
668
669 CORE_ADDR
670 get_frame_func (struct frame_info *this_frame)
671 {
672 struct frame_info *next_frame = this_frame->next;
673
674 if (!next_frame->prev_func.p)
675 {
676 /* Make certain that this, and not the adjacent, function is
677 found. */
678 CORE_ADDR addr_in_block = get_frame_address_in_block (this_frame);
679 next_frame->prev_func.p = 1;
680 next_frame->prev_func.addr = get_pc_function_start (addr_in_block);
681 if (frame_debug)
682 fprintf_unfiltered (gdb_stdlog,
683 "{ get_frame_func (this_frame=%d) -> %s }\n",
684 this_frame->level,
685 hex_string (next_frame->prev_func.addr));
686 }
687 return next_frame->prev_func.addr;
688 }
689
690 static enum register_status
691 do_frame_register_read (void *src, int regnum, gdb_byte *buf)
692 {
693 if (!frame_register_read (src, regnum, buf))
694 return REG_UNAVAILABLE;
695 else
696 return REG_VALID;
697 }
698
699 struct regcache *
700 frame_save_as_regcache (struct frame_info *this_frame)
701 {
702 struct address_space *aspace = get_frame_address_space (this_frame);
703 struct regcache *regcache = regcache_xmalloc (get_frame_arch (this_frame),
704 aspace);
705 struct cleanup *cleanups = make_cleanup_regcache_xfree (regcache);
706
707 regcache_save (regcache, do_frame_register_read, this_frame);
708 discard_cleanups (cleanups);
709 return regcache;
710 }
711
712 void
713 frame_pop (struct frame_info *this_frame)
714 {
715 struct frame_info *prev_frame;
716 struct regcache *scratch;
717 struct cleanup *cleanups;
718
719 if (get_frame_type (this_frame) == DUMMY_FRAME)
720 {
721 /* Popping a dummy frame involves restoring more than just registers.
722 dummy_frame_pop does all the work. */
723 dummy_frame_pop (get_frame_id (this_frame));
724 return;
725 }
726
727 /* Ensure that we have a frame to pop to. */
728 prev_frame = get_prev_frame_1 (this_frame);
729
730 if (!prev_frame)
731 error (_("Cannot pop the initial frame."));
732
733 /* Make a copy of all the register values unwound from this frame.
734 Save them in a scratch buffer so that there isn't a race between
735 trying to extract the old values from the current regcache while
736 at the same time writing new values into that same cache. */
737 scratch = frame_save_as_regcache (prev_frame);
738 cleanups = make_cleanup_regcache_xfree (scratch);
739
740 /* FIXME: cagney/2003-03-16: It should be possible to tell the
741 target's register cache that it is about to be hit with a burst
742 register transfer and that the sequence of register writes should
743 be batched. The pair target_prepare_to_store() and
744 target_store_registers() kind of suggest this functionality.
745 Unfortunately, they don't implement it. Their lack of a formal
746 definition can lead to targets writing back bogus values
747 (arguably a bug in the target code mind). */
748 /* Now copy those saved registers into the current regcache.
749 Here, regcache_cpy() calls regcache_restore(). */
750 regcache_cpy (get_current_regcache (), scratch);
751 do_cleanups (cleanups);
752
753 /* We've made right mess of GDB's local state, just discard
754 everything. */
755 reinit_frame_cache ();
756 }
757
758 void
759 frame_register_unwind (struct frame_info *frame, int regnum,
760 int *optimizedp, int *unavailablep,
761 enum lval_type *lvalp, CORE_ADDR *addrp,
762 int *realnump, gdb_byte *bufferp)
763 {
764 struct value *value;
765
766 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
767 that the value proper does not need to be fetched. */
768 gdb_assert (optimizedp != NULL);
769 gdb_assert (lvalp != NULL);
770 gdb_assert (addrp != NULL);
771 gdb_assert (realnump != NULL);
772 /* gdb_assert (bufferp != NULL); */
773
774 value = frame_unwind_register_value (frame, regnum);
775
776 gdb_assert (value != NULL);
777
778 *optimizedp = value_optimized_out (value);
779 *unavailablep = !value_entirely_available (value);
780 *lvalp = VALUE_LVAL (value);
781 *addrp = value_address (value);
782 *realnump = VALUE_REGNUM (value);
783
784 if (bufferp)
785 {
786 if (!*optimizedp && !*unavailablep)
787 memcpy (bufferp, value_contents_all (value),
788 TYPE_LENGTH (value_type (value)));
789 else
790 memset (bufferp, 0, TYPE_LENGTH (value_type (value)));
791 }
792
793 /* Dispose of the new value. This prevents watchpoints from
794 trying to watch the saved frame pointer. */
795 release_value (value);
796 value_free (value);
797 }
798
799 void
800 frame_register (struct frame_info *frame, int regnum,
801 int *optimizedp, int *unavailablep, enum lval_type *lvalp,
802 CORE_ADDR *addrp, int *realnump, gdb_byte *bufferp)
803 {
804 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
805 that the value proper does not need to be fetched. */
806 gdb_assert (optimizedp != NULL);
807 gdb_assert (lvalp != NULL);
808 gdb_assert (addrp != NULL);
809 gdb_assert (realnump != NULL);
810 /* gdb_assert (bufferp != NULL); */
811
812 /* Obtain the register value by unwinding the register from the next
813 (more inner frame). */
814 gdb_assert (frame != NULL && frame->next != NULL);
815 frame_register_unwind (frame->next, regnum, optimizedp, unavailablep,
816 lvalp, addrp, realnump, bufferp);
817 }
818
819 void
820 frame_unwind_register (struct frame_info *frame, int regnum, gdb_byte *buf)
821 {
822 int optimized;
823 int unavailable;
824 CORE_ADDR addr;
825 int realnum;
826 enum lval_type lval;
827
828 frame_register_unwind (frame, regnum, &optimized, &unavailable,
829 &lval, &addr, &realnum, buf);
830 }
831
832 void
833 get_frame_register (struct frame_info *frame,
834 int regnum, gdb_byte *buf)
835 {
836 frame_unwind_register (frame->next, regnum, buf);
837 }
838
839 struct value *
840 frame_unwind_register_value (struct frame_info *frame, int regnum)
841 {
842 struct gdbarch *gdbarch;
843 struct value *value;
844
845 gdb_assert (frame != NULL);
846 gdbarch = frame_unwind_arch (frame);
847
848 if (frame_debug)
849 {
850 fprintf_unfiltered (gdb_stdlog,
851 "{ frame_unwind_register_value "
852 "(frame=%d,regnum=%d(%s),...) ",
853 frame->level, regnum,
854 user_reg_map_regnum_to_name (gdbarch, regnum));
855 }
856
857 /* Find the unwinder. */
858 if (frame->unwind == NULL)
859 frame_unwind_find_by_frame (frame, &frame->prologue_cache);
860
861 /* Ask this frame to unwind its register. */
862 value = frame->unwind->prev_register (frame, &frame->prologue_cache, regnum);
863
864 if (frame_debug)
865 {
866 fprintf_unfiltered (gdb_stdlog, "->");
867 if (value_optimized_out (value))
868 fprintf_unfiltered (gdb_stdlog, " optimized out");
869 else
870 {
871 if (VALUE_LVAL (value) == lval_register)
872 fprintf_unfiltered (gdb_stdlog, " register=%d",
873 VALUE_REGNUM (value));
874 else if (VALUE_LVAL (value) == lval_memory)
875 fprintf_unfiltered (gdb_stdlog, " address=%s",
876 paddress (gdbarch,
877 value_address (value)));
878 else
879 fprintf_unfiltered (gdb_stdlog, " computed");
880
881 if (value_lazy (value))
882 fprintf_unfiltered (gdb_stdlog, " lazy");
883 else
884 {
885 int i;
886 const gdb_byte *buf = value_contents (value);
887
888 fprintf_unfiltered (gdb_stdlog, " bytes=");
889 fprintf_unfiltered (gdb_stdlog, "[");
890 for (i = 0; i < register_size (gdbarch, regnum); i++)
891 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
892 fprintf_unfiltered (gdb_stdlog, "]");
893 }
894 }
895
896 fprintf_unfiltered (gdb_stdlog, " }\n");
897 }
898
899 return value;
900 }
901
902 struct value *
903 get_frame_register_value (struct frame_info *frame, int regnum)
904 {
905 return frame_unwind_register_value (frame->next, regnum);
906 }
907
908 LONGEST
909 frame_unwind_register_signed (struct frame_info *frame, int regnum)
910 {
911 struct gdbarch *gdbarch = frame_unwind_arch (frame);
912 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
913 int size = register_size (gdbarch, regnum);
914 gdb_byte buf[MAX_REGISTER_SIZE];
915
916 frame_unwind_register (frame, regnum, buf);
917 return extract_signed_integer (buf, size, byte_order);
918 }
919
920 LONGEST
921 get_frame_register_signed (struct frame_info *frame, int regnum)
922 {
923 return frame_unwind_register_signed (frame->next, regnum);
924 }
925
926 ULONGEST
927 frame_unwind_register_unsigned (struct frame_info *frame, int regnum)
928 {
929 struct gdbarch *gdbarch = frame_unwind_arch (frame);
930 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
931 int size = register_size (gdbarch, regnum);
932 gdb_byte buf[MAX_REGISTER_SIZE];
933
934 frame_unwind_register (frame, regnum, buf);
935 return extract_unsigned_integer (buf, size, byte_order);
936 }
937
938 ULONGEST
939 get_frame_register_unsigned (struct frame_info *frame, int regnum)
940 {
941 return frame_unwind_register_unsigned (frame->next, regnum);
942 }
943
944 void
945 put_frame_register (struct frame_info *frame, int regnum,
946 const gdb_byte *buf)
947 {
948 struct gdbarch *gdbarch = get_frame_arch (frame);
949 int realnum;
950 int optim;
951 int unavail;
952 enum lval_type lval;
953 CORE_ADDR addr;
954
955 frame_register (frame, regnum, &optim, &unavail,
956 &lval, &addr, &realnum, NULL);
957 if (optim)
958 error (_("Attempt to assign to a value that was optimized out."));
959 switch (lval)
960 {
961 case lval_memory:
962 {
963 /* FIXME: write_memory doesn't yet take constant buffers.
964 Arrrg! */
965 gdb_byte tmp[MAX_REGISTER_SIZE];
966
967 memcpy (tmp, buf, register_size (gdbarch, regnum));
968 write_memory (addr, tmp, register_size (gdbarch, regnum));
969 break;
970 }
971 case lval_register:
972 regcache_cooked_write (get_current_regcache (), realnum, buf);
973 break;
974 default:
975 error (_("Attempt to assign to an unmodifiable value."));
976 }
977 }
978
979 /* frame_register_read ()
980
981 Find and return the value of REGNUM for the specified stack frame.
982 The number of bytes copied is REGISTER_SIZE (REGNUM).
983
984 Returns 0 if the register value could not be found. */
985
986 int
987 frame_register_read (struct frame_info *frame, int regnum,
988 gdb_byte *myaddr)
989 {
990 int optimized;
991 int unavailable;
992 enum lval_type lval;
993 CORE_ADDR addr;
994 int realnum;
995
996 frame_register (frame, regnum, &optimized, &unavailable,
997 &lval, &addr, &realnum, myaddr);
998
999 return !optimized && !unavailable;
1000 }
1001
1002 int
1003 get_frame_register_bytes (struct frame_info *frame, int regnum,
1004 CORE_ADDR offset, int len, gdb_byte *myaddr)
1005 {
1006 struct gdbarch *gdbarch = get_frame_arch (frame);
1007 int i;
1008 int maxsize;
1009 int numregs;
1010
1011 /* Skip registers wholly inside of OFFSET. */
1012 while (offset >= register_size (gdbarch, regnum))
1013 {
1014 offset -= register_size (gdbarch, regnum);
1015 regnum++;
1016 }
1017
1018 /* Ensure that we will not read beyond the end of the register file.
1019 This can only ever happen if the debug information is bad. */
1020 maxsize = -offset;
1021 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1022 for (i = regnum; i < numregs; i++)
1023 {
1024 int thissize = register_size (gdbarch, i);
1025
1026 if (thissize == 0)
1027 break; /* This register is not available on this architecture. */
1028 maxsize += thissize;
1029 }
1030 if (len > maxsize)
1031 {
1032 warning (_("Bad debug information detected: "
1033 "Attempt to read %d bytes from registers."), len);
1034 return 0;
1035 }
1036
1037 /* Copy the data. */
1038 while (len > 0)
1039 {
1040 int curr_len = register_size (gdbarch, regnum) - offset;
1041
1042 if (curr_len > len)
1043 curr_len = len;
1044
1045 if (curr_len == register_size (gdbarch, regnum))
1046 {
1047 if (!frame_register_read (frame, regnum, myaddr))
1048 return 0;
1049 }
1050 else
1051 {
1052 gdb_byte buf[MAX_REGISTER_SIZE];
1053
1054 if (!frame_register_read (frame, regnum, buf))
1055 return 0;
1056 memcpy (myaddr, buf + offset, curr_len);
1057 }
1058
1059 myaddr += curr_len;
1060 len -= curr_len;
1061 offset = 0;
1062 regnum++;
1063 }
1064
1065 return 1;
1066 }
1067
1068 void
1069 put_frame_register_bytes (struct frame_info *frame, int regnum,
1070 CORE_ADDR offset, int len, const gdb_byte *myaddr)
1071 {
1072 struct gdbarch *gdbarch = get_frame_arch (frame);
1073
1074 /* Skip registers wholly inside of OFFSET. */
1075 while (offset >= register_size (gdbarch, regnum))
1076 {
1077 offset -= register_size (gdbarch, regnum);
1078 regnum++;
1079 }
1080
1081 /* Copy the data. */
1082 while (len > 0)
1083 {
1084 int curr_len = register_size (gdbarch, regnum) - offset;
1085
1086 if (curr_len > len)
1087 curr_len = len;
1088
1089 if (curr_len == register_size (gdbarch, regnum))
1090 {
1091 put_frame_register (frame, regnum, myaddr);
1092 }
1093 else
1094 {
1095 gdb_byte buf[MAX_REGISTER_SIZE];
1096
1097 frame_register_read (frame, regnum, buf);
1098 memcpy (buf + offset, myaddr, curr_len);
1099 put_frame_register (frame, regnum, buf);
1100 }
1101
1102 myaddr += curr_len;
1103 len -= curr_len;
1104 offset = 0;
1105 regnum++;
1106 }
1107 }
1108
1109 /* Create a sentinel frame. */
1110
1111 static struct frame_info *
1112 create_sentinel_frame (struct program_space *pspace, struct regcache *regcache)
1113 {
1114 struct frame_info *frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
1115
1116 frame->level = -1;
1117 frame->pspace = pspace;
1118 frame->aspace = get_regcache_aspace (regcache);
1119 /* Explicitly initialize the sentinel frame's cache. Provide it
1120 with the underlying regcache. In the future additional
1121 information, such as the frame's thread will be added. */
1122 frame->prologue_cache = sentinel_frame_cache (regcache);
1123 /* For the moment there is only one sentinel frame implementation. */
1124 frame->unwind = &sentinel_frame_unwind;
1125 /* Link this frame back to itself. The frame is self referential
1126 (the unwound PC is the same as the pc), so make it so. */
1127 frame->next = frame;
1128 /* Make the sentinel frame's ID valid, but invalid. That way all
1129 comparisons with it should fail. */
1130 frame->this_id.p = 1;
1131 frame->this_id.value = null_frame_id;
1132 if (frame_debug)
1133 {
1134 fprintf_unfiltered (gdb_stdlog, "{ create_sentinel_frame (...) -> ");
1135 fprint_frame (gdb_stdlog, frame);
1136 fprintf_unfiltered (gdb_stdlog, " }\n");
1137 }
1138 return frame;
1139 }
1140
1141 /* Info about the innermost stack frame (contents of FP register). */
1142
1143 static struct frame_info *current_frame;
1144
1145 /* Cache for frame addresses already read by gdb. Valid only while
1146 inferior is stopped. Control variables for the frame cache should
1147 be local to this module. */
1148
1149 static struct obstack frame_cache_obstack;
1150
1151 void *
1152 frame_obstack_zalloc (unsigned long size)
1153 {
1154 void *data = obstack_alloc (&frame_cache_obstack, size);
1155
1156 memset (data, 0, size);
1157 return data;
1158 }
1159
1160 /* Return the innermost (currently executing) stack frame. This is
1161 split into two functions. The function unwind_to_current_frame()
1162 is wrapped in catch exceptions so that, even when the unwind of the
1163 sentinel frame fails, the function still returns a stack frame. */
1164
1165 static int
1166 unwind_to_current_frame (struct ui_out *ui_out, void *args)
1167 {
1168 struct frame_info *frame = get_prev_frame (args);
1169
1170 /* A sentinel frame can fail to unwind, e.g., because its PC value
1171 lands in somewhere like start. */
1172 if (frame == NULL)
1173 return 1;
1174 current_frame = frame;
1175 return 0;
1176 }
1177
1178 struct frame_info *
1179 get_current_frame (void)
1180 {
1181 /* First check, and report, the lack of registers. Having GDB
1182 report "No stack!" or "No memory" when the target doesn't even
1183 have registers is very confusing. Besides, "printcmd.exp"
1184 explicitly checks that ``print $pc'' with no registers prints "No
1185 registers". */
1186 if (!target_has_registers)
1187 error (_("No registers."));
1188 if (!target_has_stack)
1189 error (_("No stack."));
1190 if (!target_has_memory)
1191 error (_("No memory."));
1192 /* Traceframes are effectively a substitute for the live inferior. */
1193 if (get_traceframe_number () < 0)
1194 {
1195 if (ptid_equal (inferior_ptid, null_ptid))
1196 error (_("No selected thread."));
1197 if (is_exited (inferior_ptid))
1198 error (_("Invalid selected thread."));
1199 if (is_executing (inferior_ptid))
1200 error (_("Target is executing."));
1201 }
1202
1203 if (current_frame == NULL)
1204 {
1205 struct frame_info *sentinel_frame =
1206 create_sentinel_frame (current_program_space, get_current_regcache ());
1207 if (catch_exceptions (uiout, unwind_to_current_frame, sentinel_frame,
1208 RETURN_MASK_ERROR) != 0)
1209 {
1210 /* Oops! Fake a current frame? Is this useful? It has a PC
1211 of zero, for instance. */
1212 current_frame = sentinel_frame;
1213 }
1214 }
1215 return current_frame;
1216 }
1217
1218 /* The "selected" stack frame is used by default for local and arg
1219 access. May be zero, for no selected frame. */
1220
1221 static struct frame_info *selected_frame;
1222
1223 int
1224 has_stack_frames (void)
1225 {
1226 if (!target_has_registers || !target_has_stack || !target_has_memory)
1227 return 0;
1228
1229 /* No current inferior, no frame. */
1230 if (ptid_equal (inferior_ptid, null_ptid))
1231 return 0;
1232
1233 /* Don't try to read from a dead thread. */
1234 if (is_exited (inferior_ptid))
1235 return 0;
1236
1237 /* ... or from a spinning thread. */
1238 if (is_executing (inferior_ptid))
1239 return 0;
1240
1241 return 1;
1242 }
1243
1244 /* Return the selected frame. Always non-NULL (unless there isn't an
1245 inferior sufficient for creating a frame) in which case an error is
1246 thrown. */
1247
1248 struct frame_info *
1249 get_selected_frame (const char *message)
1250 {
1251 if (selected_frame == NULL)
1252 {
1253 if (message != NULL && !has_stack_frames ())
1254 error (("%s"), message);
1255 /* Hey! Don't trust this. It should really be re-finding the
1256 last selected frame of the currently selected thread. This,
1257 though, is better than nothing. */
1258 select_frame (get_current_frame ());
1259 }
1260 /* There is always a frame. */
1261 gdb_assert (selected_frame != NULL);
1262 return selected_frame;
1263 }
1264
1265 /* If there is a selected frame, return it. Otherwise, return NULL. */
1266
1267 struct frame_info *
1268 get_selected_frame_if_set (void)
1269 {
1270 return selected_frame;
1271 }
1272
1273 /* This is a variant of get_selected_frame() which can be called when
1274 the inferior does not have a frame; in that case it will return
1275 NULL instead of calling error(). */
1276
1277 struct frame_info *
1278 deprecated_safe_get_selected_frame (void)
1279 {
1280 if (!has_stack_frames ())
1281 return NULL;
1282 return get_selected_frame (NULL);
1283 }
1284
1285 /* Select frame FI (or NULL - to invalidate the current frame). */
1286
1287 void
1288 select_frame (struct frame_info *fi)
1289 {
1290 struct symtab *s;
1291
1292 selected_frame = fi;
1293 /* NOTE: cagney/2002-05-04: FI can be NULL. This occurs when the
1294 frame is being invalidated. */
1295 if (deprecated_selected_frame_level_changed_hook)
1296 deprecated_selected_frame_level_changed_hook (frame_relative_level (fi));
1297
1298 /* FIXME: kseitz/2002-08-28: It would be nice to call
1299 selected_frame_level_changed_event() right here, but due to limitations
1300 in the current interfaces, we would end up flooding UIs with events
1301 because select_frame() is used extensively internally.
1302
1303 Once we have frame-parameterized frame (and frame-related) commands,
1304 the event notification can be moved here, since this function will only
1305 be called when the user's selected frame is being changed. */
1306
1307 /* Ensure that symbols for this frame are read in. Also, determine the
1308 source language of this frame, and switch to it if desired. */
1309 if (fi)
1310 {
1311 /* We retrieve the frame's symtab by using the frame PC. However
1312 we cannot use the frame PC as-is, because it usually points to
1313 the instruction following the "call", which is sometimes the
1314 first instruction of another function. So we rely on
1315 get_frame_address_in_block() which provides us with a PC which
1316 is guaranteed to be inside the frame's code block. */
1317 s = find_pc_symtab (get_frame_address_in_block (fi));
1318 if (s
1319 && s->language != current_language->la_language
1320 && s->language != language_unknown
1321 && language_mode == language_mode_auto)
1322 {
1323 set_language (s->language);
1324 }
1325 }
1326 }
1327
1328 /* Create an arbitrary (i.e. address specified by user) or innermost frame.
1329 Always returns a non-NULL value. */
1330
1331 struct frame_info *
1332 create_new_frame (CORE_ADDR addr, CORE_ADDR pc)
1333 {
1334 struct frame_info *fi;
1335
1336 if (frame_debug)
1337 {
1338 fprintf_unfiltered (gdb_stdlog,
1339 "{ create_new_frame (addr=%s, pc=%s) ",
1340 hex_string (addr), hex_string (pc));
1341 }
1342
1343 fi = FRAME_OBSTACK_ZALLOC (struct frame_info);
1344
1345 fi->next = create_sentinel_frame (current_program_space,
1346 get_current_regcache ());
1347
1348 /* Set/update this frame's cached PC value, found in the next frame.
1349 Do this before looking for this frame's unwinder. A sniffer is
1350 very likely to read this, and the corresponding unwinder is
1351 entitled to rely that the PC doesn't magically change. */
1352 fi->next->prev_pc.value = pc;
1353 fi->next->prev_pc.p = 1;
1354
1355 /* We currently assume that frame chain's can't cross spaces. */
1356 fi->pspace = fi->next->pspace;
1357 fi->aspace = fi->next->aspace;
1358
1359 /* Select/initialize both the unwind function and the frame's type
1360 based on the PC. */
1361 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
1362
1363 fi->this_id.p = 1;
1364 fi->this_id.value = frame_id_build (addr, pc);
1365
1366 if (frame_debug)
1367 {
1368 fprintf_unfiltered (gdb_stdlog, "-> ");
1369 fprint_frame (gdb_stdlog, fi);
1370 fprintf_unfiltered (gdb_stdlog, " }\n");
1371 }
1372
1373 return fi;
1374 }
1375
1376 /* Return the frame that THIS_FRAME calls (NULL if THIS_FRAME is the
1377 innermost frame). Be careful to not fall off the bottom of the
1378 frame chain and onto the sentinel frame. */
1379
1380 struct frame_info *
1381 get_next_frame (struct frame_info *this_frame)
1382 {
1383 if (this_frame->level > 0)
1384 return this_frame->next;
1385 else
1386 return NULL;
1387 }
1388
1389 /* Observer for the target_changed event. */
1390
1391 static void
1392 frame_observer_target_changed (struct target_ops *target)
1393 {
1394 reinit_frame_cache ();
1395 }
1396
1397 /* Flush the entire frame cache. */
1398
1399 void
1400 reinit_frame_cache (void)
1401 {
1402 struct frame_info *fi;
1403
1404 /* Tear down all frame caches. */
1405 for (fi = current_frame; fi != NULL; fi = fi->prev)
1406 {
1407 if (fi->prologue_cache && fi->unwind->dealloc_cache)
1408 fi->unwind->dealloc_cache (fi, fi->prologue_cache);
1409 if (fi->base_cache && fi->base->unwind->dealloc_cache)
1410 fi->base->unwind->dealloc_cache (fi, fi->base_cache);
1411 }
1412
1413 /* Since we can't really be sure what the first object allocated was. */
1414 obstack_free (&frame_cache_obstack, 0);
1415 obstack_init (&frame_cache_obstack);
1416
1417 if (current_frame != NULL)
1418 annotate_frames_invalid ();
1419
1420 current_frame = NULL; /* Invalidate cache */
1421 select_frame (NULL);
1422 frame_stash_invalidate ();
1423 if (frame_debug)
1424 fprintf_unfiltered (gdb_stdlog, "{ reinit_frame_cache () }\n");
1425 }
1426
1427 /* Find where a register is saved (in memory or another register).
1428 The result of frame_register_unwind is just where it is saved
1429 relative to this particular frame. */
1430
1431 static void
1432 frame_register_unwind_location (struct frame_info *this_frame, int regnum,
1433 int *optimizedp, enum lval_type *lvalp,
1434 CORE_ADDR *addrp, int *realnump)
1435 {
1436 gdb_assert (this_frame == NULL || this_frame->level >= 0);
1437
1438 while (this_frame != NULL)
1439 {
1440 int unavailable;
1441
1442 frame_register_unwind (this_frame, regnum, optimizedp, &unavailable,
1443 lvalp, addrp, realnump, NULL);
1444
1445 if (*optimizedp)
1446 break;
1447
1448 if (*lvalp != lval_register)
1449 break;
1450
1451 regnum = *realnump;
1452 this_frame = get_next_frame (this_frame);
1453 }
1454 }
1455
1456 /* Return a "struct frame_info" corresponding to the frame that called
1457 THIS_FRAME. Returns NULL if there is no such frame.
1458
1459 Unlike get_prev_frame, this function always tries to unwind the
1460 frame. */
1461
1462 static struct frame_info *
1463 get_prev_frame_1 (struct frame_info *this_frame)
1464 {
1465 struct frame_id this_id;
1466 struct gdbarch *gdbarch;
1467
1468 gdb_assert (this_frame != NULL);
1469 gdbarch = get_frame_arch (this_frame);
1470
1471 if (frame_debug)
1472 {
1473 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame_1 (this_frame=");
1474 if (this_frame != NULL)
1475 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1476 else
1477 fprintf_unfiltered (gdb_stdlog, "<NULL>");
1478 fprintf_unfiltered (gdb_stdlog, ") ");
1479 }
1480
1481 /* Only try to do the unwind once. */
1482 if (this_frame->prev_p)
1483 {
1484 if (frame_debug)
1485 {
1486 fprintf_unfiltered (gdb_stdlog, "-> ");
1487 fprint_frame (gdb_stdlog, this_frame->prev);
1488 fprintf_unfiltered (gdb_stdlog, " // cached \n");
1489 }
1490 return this_frame->prev;
1491 }
1492
1493 /* If the frame unwinder hasn't been selected yet, we must do so
1494 before setting prev_p; otherwise the check for misbehaved
1495 sniffers will think that this frame's sniffer tried to unwind
1496 further (see frame_cleanup_after_sniffer). */
1497 if (this_frame->unwind == NULL)
1498 frame_unwind_find_by_frame (this_frame, &this_frame->prologue_cache);
1499
1500 this_frame->prev_p = 1;
1501 this_frame->stop_reason = UNWIND_NO_REASON;
1502
1503 /* If we are unwinding from an inline frame, all of the below tests
1504 were already performed when we unwound from the next non-inline
1505 frame. We must skip them, since we can not get THIS_FRAME's ID
1506 until we have unwound all the way down to the previous non-inline
1507 frame. */
1508 if (get_frame_type (this_frame) == INLINE_FRAME)
1509 return get_prev_frame_raw (this_frame);
1510
1511 /* Check that this frame's ID was valid. If it wasn't, don't try to
1512 unwind to the prev frame. Be careful to not apply this test to
1513 the sentinel frame. */
1514 this_id = get_frame_id (this_frame);
1515 if (this_frame->level >= 0 && frame_id_eq (this_id, outer_frame_id))
1516 {
1517 if (frame_debug)
1518 {
1519 fprintf_unfiltered (gdb_stdlog, "-> ");
1520 fprint_frame (gdb_stdlog, NULL);
1521 fprintf_unfiltered (gdb_stdlog, " // this ID is NULL }\n");
1522 }
1523 this_frame->stop_reason = UNWIND_NULL_ID;
1524 return NULL;
1525 }
1526
1527 /* Check that this frame's ID isn't inner to (younger, below, next)
1528 the next frame. This happens when a frame unwind goes backwards.
1529 This check is valid only if this frame and the next frame are NORMAL.
1530 See the comment at frame_id_inner for details. */
1531 if (get_frame_type (this_frame) == NORMAL_FRAME
1532 && this_frame->next->unwind->type == NORMAL_FRAME
1533 && frame_id_inner (get_frame_arch (this_frame->next), this_id,
1534 get_frame_id (this_frame->next)))
1535 {
1536 CORE_ADDR this_pc_in_block;
1537 struct minimal_symbol *morestack_msym;
1538 const char *morestack_name = NULL;
1539
1540 /* gcc -fsplit-stack __morestack can continue the stack anywhere. */
1541 this_pc_in_block = get_frame_address_in_block (this_frame);
1542 morestack_msym = lookup_minimal_symbol_by_pc (this_pc_in_block);
1543 if (morestack_msym)
1544 morestack_name = SYMBOL_LINKAGE_NAME (morestack_msym);
1545 if (!morestack_name || strcmp (morestack_name, "__morestack") != 0)
1546 {
1547 if (frame_debug)
1548 {
1549 fprintf_unfiltered (gdb_stdlog, "-> ");
1550 fprint_frame (gdb_stdlog, NULL);
1551 fprintf_unfiltered (gdb_stdlog,
1552 " // this frame ID is inner }\n");
1553 }
1554 this_frame->stop_reason = UNWIND_INNER_ID;
1555 return NULL;
1556 }
1557 }
1558
1559 /* Check that this and the next frame are not identical. If they
1560 are, there is most likely a stack cycle. As with the inner-than
1561 test above, avoid comparing the inner-most and sentinel frames. */
1562 if (this_frame->level > 0
1563 && frame_id_eq (this_id, get_frame_id (this_frame->next)))
1564 {
1565 if (frame_debug)
1566 {
1567 fprintf_unfiltered (gdb_stdlog, "-> ");
1568 fprint_frame (gdb_stdlog, NULL);
1569 fprintf_unfiltered (gdb_stdlog, " // this frame has same ID }\n");
1570 }
1571 this_frame->stop_reason = UNWIND_SAME_ID;
1572 return NULL;
1573 }
1574
1575 /* Check that this and the next frame do not unwind the PC register
1576 to the same memory location. If they do, then even though they
1577 have different frame IDs, the new frame will be bogus; two
1578 functions can't share a register save slot for the PC. This can
1579 happen when the prologue analyzer finds a stack adjustment, but
1580 no PC save.
1581
1582 This check does assume that the "PC register" is roughly a
1583 traditional PC, even if the gdbarch_unwind_pc method adjusts
1584 it (we do not rely on the value, only on the unwound PC being
1585 dependent on this value). A potential improvement would be
1586 to have the frame prev_pc method and the gdbarch unwind_pc
1587 method set the same lval and location information as
1588 frame_register_unwind. */
1589 if (this_frame->level > 0
1590 && gdbarch_pc_regnum (gdbarch) >= 0
1591 && get_frame_type (this_frame) == NORMAL_FRAME
1592 && (get_frame_type (this_frame->next) == NORMAL_FRAME
1593 || get_frame_type (this_frame->next) == INLINE_FRAME))
1594 {
1595 int optimized, realnum, nrealnum;
1596 enum lval_type lval, nlval;
1597 CORE_ADDR addr, naddr;
1598
1599 frame_register_unwind_location (this_frame,
1600 gdbarch_pc_regnum (gdbarch),
1601 &optimized, &lval, &addr, &realnum);
1602 frame_register_unwind_location (get_next_frame (this_frame),
1603 gdbarch_pc_regnum (gdbarch),
1604 &optimized, &nlval, &naddr, &nrealnum);
1605
1606 if ((lval == lval_memory && lval == nlval && addr == naddr)
1607 || (lval == lval_register && lval == nlval && realnum == nrealnum))
1608 {
1609 if (frame_debug)
1610 {
1611 fprintf_unfiltered (gdb_stdlog, "-> ");
1612 fprint_frame (gdb_stdlog, NULL);
1613 fprintf_unfiltered (gdb_stdlog, " // no saved PC }\n");
1614 }
1615
1616 this_frame->stop_reason = UNWIND_NO_SAVED_PC;
1617 this_frame->prev = NULL;
1618 return NULL;
1619 }
1620 }
1621
1622 return get_prev_frame_raw (this_frame);
1623 }
1624
1625 /* Construct a new "struct frame_info" and link it previous to
1626 this_frame. */
1627
1628 static struct frame_info *
1629 get_prev_frame_raw (struct frame_info *this_frame)
1630 {
1631 struct frame_info *prev_frame;
1632
1633 /* Allocate the new frame but do not wire it in to the frame chain.
1634 Some (bad) code in INIT_FRAME_EXTRA_INFO tries to look along
1635 frame->next to pull some fancy tricks (of course such code is, by
1636 definition, recursive). Try to prevent it.
1637
1638 There is no reason to worry about memory leaks, should the
1639 remainder of the function fail. The allocated memory will be
1640 quickly reclaimed when the frame cache is flushed, and the `we've
1641 been here before' check above will stop repeated memory
1642 allocation calls. */
1643 prev_frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
1644 prev_frame->level = this_frame->level + 1;
1645
1646 /* For now, assume we don't have frame chains crossing address
1647 spaces. */
1648 prev_frame->pspace = this_frame->pspace;
1649 prev_frame->aspace = this_frame->aspace;
1650
1651 /* Don't yet compute ->unwind (and hence ->type). It is computed
1652 on-demand in get_frame_type, frame_register_unwind, and
1653 get_frame_id. */
1654
1655 /* Don't yet compute the frame's ID. It is computed on-demand by
1656 get_frame_id(). */
1657
1658 /* The unwound frame ID is validate at the start of this function,
1659 as part of the logic to decide if that frame should be further
1660 unwound, and not here while the prev frame is being created.
1661 Doing this makes it possible for the user to examine a frame that
1662 has an invalid frame ID.
1663
1664 Some very old VAX code noted: [...] For the sake of argument,
1665 suppose that the stack is somewhat trashed (which is one reason
1666 that "info frame" exists). So, return 0 (indicating we don't
1667 know the address of the arglist) if we don't know what frame this
1668 frame calls. */
1669
1670 /* Link it in. */
1671 this_frame->prev = prev_frame;
1672 prev_frame->next = this_frame;
1673
1674 if (frame_debug)
1675 {
1676 fprintf_unfiltered (gdb_stdlog, "-> ");
1677 fprint_frame (gdb_stdlog, prev_frame);
1678 fprintf_unfiltered (gdb_stdlog, " }\n");
1679 }
1680
1681 return prev_frame;
1682 }
1683
1684 /* Debug routine to print a NULL frame being returned. */
1685
1686 static void
1687 frame_debug_got_null_frame (struct frame_info *this_frame,
1688 const char *reason)
1689 {
1690 if (frame_debug)
1691 {
1692 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame (this_frame=");
1693 if (this_frame != NULL)
1694 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1695 else
1696 fprintf_unfiltered (gdb_stdlog, "<NULL>");
1697 fprintf_unfiltered (gdb_stdlog, ") -> // %s}\n", reason);
1698 }
1699 }
1700
1701 /* Is this (non-sentinel) frame in the "main"() function? */
1702
1703 static int
1704 inside_main_func (struct frame_info *this_frame)
1705 {
1706 struct minimal_symbol *msymbol;
1707 CORE_ADDR maddr;
1708
1709 if (symfile_objfile == 0)
1710 return 0;
1711 msymbol = lookup_minimal_symbol (main_name (), NULL, symfile_objfile);
1712 if (msymbol == NULL)
1713 return 0;
1714 /* Make certain that the code, and not descriptor, address is
1715 returned. */
1716 maddr = gdbarch_convert_from_func_ptr_addr (get_frame_arch (this_frame),
1717 SYMBOL_VALUE_ADDRESS (msymbol),
1718 &current_target);
1719 return maddr == get_frame_func (this_frame);
1720 }
1721
1722 /* Test whether THIS_FRAME is inside the process entry point function. */
1723
1724 static int
1725 inside_entry_func (struct frame_info *this_frame)
1726 {
1727 CORE_ADDR entry_point;
1728
1729 if (!entry_point_address_query (&entry_point))
1730 return 0;
1731
1732 return get_frame_func (this_frame) == entry_point;
1733 }
1734
1735 /* Return a structure containing various interesting information about
1736 the frame that called THIS_FRAME. Returns NULL if there is entier
1737 no such frame or the frame fails any of a set of target-independent
1738 condition that should terminate the frame chain (e.g., as unwinding
1739 past main()).
1740
1741 This function should not contain target-dependent tests, such as
1742 checking whether the program-counter is zero. */
1743
1744 struct frame_info *
1745 get_prev_frame (struct frame_info *this_frame)
1746 {
1747 /* There is always a frame. If this assertion fails, suspect that
1748 something should be calling get_selected_frame() or
1749 get_current_frame(). */
1750 gdb_assert (this_frame != NULL);
1751
1752 /* tausq/2004-12-07: Dummy frames are skipped because it doesn't make much
1753 sense to stop unwinding at a dummy frame. One place where a dummy
1754 frame may have an address "inside_main_func" is on HPUX. On HPUX, the
1755 pcsqh register (space register for the instruction at the head of the
1756 instruction queue) cannot be written directly; the only way to set it
1757 is to branch to code that is in the target space. In order to implement
1758 frame dummies on HPUX, the called function is made to jump back to where
1759 the inferior was when the user function was called. If gdb was inside
1760 the main function when we created the dummy frame, the dummy frame will
1761 point inside the main function. */
1762 if (this_frame->level >= 0
1763 && get_frame_type (this_frame) == NORMAL_FRAME
1764 && !backtrace_past_main
1765 && inside_main_func (this_frame))
1766 /* Don't unwind past main(). Note, this is done _before_ the
1767 frame has been marked as previously unwound. That way if the
1768 user later decides to enable unwinds past main(), that will
1769 automatically happen. */
1770 {
1771 frame_debug_got_null_frame (this_frame, "inside main func");
1772 return NULL;
1773 }
1774
1775 /* If the user's backtrace limit has been exceeded, stop. We must
1776 add two to the current level; one of those accounts for backtrace_limit
1777 being 1-based and the level being 0-based, and the other accounts for
1778 the level of the new frame instead of the level of the current
1779 frame. */
1780 if (this_frame->level + 2 > backtrace_limit)
1781 {
1782 frame_debug_got_null_frame (this_frame, "backtrace limit exceeded");
1783 return NULL;
1784 }
1785
1786 /* If we're already inside the entry function for the main objfile,
1787 then it isn't valid. Don't apply this test to a dummy frame -
1788 dummy frame PCs typically land in the entry func. Don't apply
1789 this test to the sentinel frame. Sentinel frames should always
1790 be allowed to unwind. */
1791 /* NOTE: cagney/2003-07-07: Fixed a bug in inside_main_func() -
1792 wasn't checking for "main" in the minimal symbols. With that
1793 fixed asm-source tests now stop in "main" instead of halting the
1794 backtrace in weird and wonderful ways somewhere inside the entry
1795 file. Suspect that tests for inside the entry file/func were
1796 added to work around that (now fixed) case. */
1797 /* NOTE: cagney/2003-07-15: danielj (if I'm reading it right)
1798 suggested having the inside_entry_func test use the
1799 inside_main_func() msymbol trick (along with entry_point_address()
1800 I guess) to determine the address range of the start function.
1801 That should provide a far better stopper than the current
1802 heuristics. */
1803 /* NOTE: tausq/2004-10-09: this is needed if, for example, the compiler
1804 applied tail-call optimizations to main so that a function called
1805 from main returns directly to the caller of main. Since we don't
1806 stop at main, we should at least stop at the entry point of the
1807 application. */
1808 if (this_frame->level >= 0
1809 && get_frame_type (this_frame) == NORMAL_FRAME
1810 && !backtrace_past_entry
1811 && inside_entry_func (this_frame))
1812 {
1813 frame_debug_got_null_frame (this_frame, "inside entry func");
1814 return NULL;
1815 }
1816
1817 /* Assume that the only way to get a zero PC is through something
1818 like a SIGSEGV or a dummy frame, and hence that NORMAL frames
1819 will never unwind a zero PC. */
1820 if (this_frame->level > 0
1821 && (get_frame_type (this_frame) == NORMAL_FRAME
1822 || get_frame_type (this_frame) == INLINE_FRAME)
1823 && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME
1824 && get_frame_pc (this_frame) == 0)
1825 {
1826 frame_debug_got_null_frame (this_frame, "zero PC");
1827 return NULL;
1828 }
1829
1830 return get_prev_frame_1 (this_frame);
1831 }
1832
1833 CORE_ADDR
1834 get_frame_pc (struct frame_info *frame)
1835 {
1836 gdb_assert (frame->next != NULL);
1837 return frame_unwind_pc (frame->next);
1838 }
1839
1840 /* Return an address that falls within THIS_FRAME's code block. */
1841
1842 CORE_ADDR
1843 get_frame_address_in_block (struct frame_info *this_frame)
1844 {
1845 /* A draft address. */
1846 CORE_ADDR pc = get_frame_pc (this_frame);
1847
1848 struct frame_info *next_frame = this_frame->next;
1849
1850 /* Calling get_frame_pc returns the resume address for THIS_FRAME.
1851 Normally the resume address is inside the body of the function
1852 associated with THIS_FRAME, but there is a special case: when
1853 calling a function which the compiler knows will never return
1854 (for instance abort), the call may be the very last instruction
1855 in the calling function. The resume address will point after the
1856 call and may be at the beginning of a different function
1857 entirely.
1858
1859 If THIS_FRAME is a signal frame or dummy frame, then we should
1860 not adjust the unwound PC. For a dummy frame, GDB pushed the
1861 resume address manually onto the stack. For a signal frame, the
1862 OS may have pushed the resume address manually and invoked the
1863 handler (e.g. GNU/Linux), or invoked the trampoline which called
1864 the signal handler - but in either case the signal handler is
1865 expected to return to the trampoline. So in both of these
1866 cases we know that the resume address is executable and
1867 related. So we only need to adjust the PC if THIS_FRAME
1868 is a normal function.
1869
1870 If the program has been interrupted while THIS_FRAME is current,
1871 then clearly the resume address is inside the associated
1872 function. There are three kinds of interruption: debugger stop
1873 (next frame will be SENTINEL_FRAME), operating system
1874 signal or exception (next frame will be SIGTRAMP_FRAME),
1875 or debugger-induced function call (next frame will be
1876 DUMMY_FRAME). So we only need to adjust the PC if
1877 NEXT_FRAME is a normal function.
1878
1879 We check the type of NEXT_FRAME first, since it is already
1880 known; frame type is determined by the unwinder, and since
1881 we have THIS_FRAME we've already selected an unwinder for
1882 NEXT_FRAME.
1883
1884 If the next frame is inlined, we need to keep going until we find
1885 the real function - for instance, if a signal handler is invoked
1886 while in an inlined function, then the code address of the
1887 "calling" normal function should not be adjusted either. */
1888
1889 while (get_frame_type (next_frame) == INLINE_FRAME)
1890 next_frame = next_frame->next;
1891
1892 if (get_frame_type (next_frame) == NORMAL_FRAME
1893 && (get_frame_type (this_frame) == NORMAL_FRAME
1894 || get_frame_type (this_frame) == INLINE_FRAME))
1895 return pc - 1;
1896
1897 return pc;
1898 }
1899
1900 void
1901 find_frame_sal (struct frame_info *frame, struct symtab_and_line *sal)
1902 {
1903 struct frame_info *next_frame;
1904 int notcurrent;
1905
1906 /* If the next frame represents an inlined function call, this frame's
1907 sal is the "call site" of that inlined function, which can not
1908 be inferred from get_frame_pc. */
1909 next_frame = get_next_frame (frame);
1910 if (frame_inlined_callees (frame) > 0)
1911 {
1912 struct symbol *sym;
1913
1914 if (next_frame)
1915 sym = get_frame_function (next_frame);
1916 else
1917 sym = inline_skipped_symbol (inferior_ptid);
1918
1919 /* If frame is inline, it certainly has symbols. */
1920 gdb_assert (sym);
1921 init_sal (sal);
1922 if (SYMBOL_LINE (sym) != 0)
1923 {
1924 sal->symtab = SYMBOL_SYMTAB (sym);
1925 sal->line = SYMBOL_LINE (sym);
1926 }
1927 else
1928 /* If the symbol does not have a location, we don't know where
1929 the call site is. Do not pretend to. This is jarring, but
1930 we can't do much better. */
1931 sal->pc = get_frame_pc (frame);
1932
1933 return;
1934 }
1935
1936 /* If FRAME is not the innermost frame, that normally means that
1937 FRAME->pc points at the return instruction (which is *after* the
1938 call instruction), and we want to get the line containing the
1939 call (because the call is where the user thinks the program is).
1940 However, if the next frame is either a SIGTRAMP_FRAME or a
1941 DUMMY_FRAME, then the next frame will contain a saved interrupt
1942 PC and such a PC indicates the current (rather than next)
1943 instruction/line, consequently, for such cases, want to get the
1944 line containing fi->pc. */
1945 notcurrent = (get_frame_pc (frame) != get_frame_address_in_block (frame));
1946 (*sal) = find_pc_line (get_frame_pc (frame), notcurrent);
1947 }
1948
1949 /* Per "frame.h", return the ``address'' of the frame. Code should
1950 really be using get_frame_id(). */
1951 CORE_ADDR
1952 get_frame_base (struct frame_info *fi)
1953 {
1954 return get_frame_id (fi).stack_addr;
1955 }
1956
1957 /* High-level offsets into the frame. Used by the debug info. */
1958
1959 CORE_ADDR
1960 get_frame_base_address (struct frame_info *fi)
1961 {
1962 if (get_frame_type (fi) != NORMAL_FRAME)
1963 return 0;
1964 if (fi->base == NULL)
1965 fi->base = frame_base_find_by_frame (fi);
1966 /* Sneaky: If the low-level unwind and high-level base code share a
1967 common unwinder, let them share the prologue cache. */
1968 if (fi->base->unwind == fi->unwind)
1969 return fi->base->this_base (fi, &fi->prologue_cache);
1970 return fi->base->this_base (fi, &fi->base_cache);
1971 }
1972
1973 CORE_ADDR
1974 get_frame_locals_address (struct frame_info *fi)
1975 {
1976 if (get_frame_type (fi) != NORMAL_FRAME)
1977 return 0;
1978 /* If there isn't a frame address method, find it. */
1979 if (fi->base == NULL)
1980 fi->base = frame_base_find_by_frame (fi);
1981 /* Sneaky: If the low-level unwind and high-level base code share a
1982 common unwinder, let them share the prologue cache. */
1983 if (fi->base->unwind == fi->unwind)
1984 return fi->base->this_locals (fi, &fi->prologue_cache);
1985 return fi->base->this_locals (fi, &fi->base_cache);
1986 }
1987
1988 CORE_ADDR
1989 get_frame_args_address (struct frame_info *fi)
1990 {
1991 if (get_frame_type (fi) != NORMAL_FRAME)
1992 return 0;
1993 /* If there isn't a frame address method, find it. */
1994 if (fi->base == NULL)
1995 fi->base = frame_base_find_by_frame (fi);
1996 /* Sneaky: If the low-level unwind and high-level base code share a
1997 common unwinder, let them share the prologue cache. */
1998 if (fi->base->unwind == fi->unwind)
1999 return fi->base->this_args (fi, &fi->prologue_cache);
2000 return fi->base->this_args (fi, &fi->base_cache);
2001 }
2002
2003 /* Return true if the frame unwinder for frame FI is UNWINDER; false
2004 otherwise. */
2005
2006 int
2007 frame_unwinder_is (struct frame_info *fi, const struct frame_unwind *unwinder)
2008 {
2009 if (fi->unwind == NULL)
2010 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
2011 return fi->unwind == unwinder;
2012 }
2013
2014 /* Level of the selected frame: 0 for innermost, 1 for its caller, ...
2015 or -1 for a NULL frame. */
2016
2017 int
2018 frame_relative_level (struct frame_info *fi)
2019 {
2020 if (fi == NULL)
2021 return -1;
2022 else
2023 return fi->level;
2024 }
2025
2026 enum frame_type
2027 get_frame_type (struct frame_info *frame)
2028 {
2029 if (frame->unwind == NULL)
2030 /* Initialize the frame's unwinder because that's what
2031 provides the frame's type. */
2032 frame_unwind_find_by_frame (frame, &frame->prologue_cache);
2033 return frame->unwind->type;
2034 }
2035
2036 struct program_space *
2037 get_frame_program_space (struct frame_info *frame)
2038 {
2039 return frame->pspace;
2040 }
2041
2042 struct program_space *
2043 frame_unwind_program_space (struct frame_info *this_frame)
2044 {
2045 gdb_assert (this_frame);
2046
2047 /* This is really a placeholder to keep the API consistent --- we
2048 assume for now that we don't have frame chains crossing
2049 spaces. */
2050 return this_frame->pspace;
2051 }
2052
2053 struct address_space *
2054 get_frame_address_space (struct frame_info *frame)
2055 {
2056 return frame->aspace;
2057 }
2058
2059 /* Memory access methods. */
2060
2061 void
2062 get_frame_memory (struct frame_info *this_frame, CORE_ADDR addr,
2063 gdb_byte *buf, int len)
2064 {
2065 read_memory (addr, buf, len);
2066 }
2067
2068 LONGEST
2069 get_frame_memory_signed (struct frame_info *this_frame, CORE_ADDR addr,
2070 int len)
2071 {
2072 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2073 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2074
2075 return read_memory_integer (addr, len, byte_order);
2076 }
2077
2078 ULONGEST
2079 get_frame_memory_unsigned (struct frame_info *this_frame, CORE_ADDR addr,
2080 int len)
2081 {
2082 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2083 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2084
2085 return read_memory_unsigned_integer (addr, len, byte_order);
2086 }
2087
2088 int
2089 safe_frame_unwind_memory (struct frame_info *this_frame,
2090 CORE_ADDR addr, gdb_byte *buf, int len)
2091 {
2092 /* NOTE: target_read_memory returns zero on success! */
2093 return !target_read_memory (addr, buf, len);
2094 }
2095
2096 /* Architecture methods. */
2097
2098 struct gdbarch *
2099 get_frame_arch (struct frame_info *this_frame)
2100 {
2101 return frame_unwind_arch (this_frame->next);
2102 }
2103
2104 struct gdbarch *
2105 frame_unwind_arch (struct frame_info *next_frame)
2106 {
2107 if (!next_frame->prev_arch.p)
2108 {
2109 struct gdbarch *arch;
2110
2111 if (next_frame->unwind == NULL)
2112 frame_unwind_find_by_frame (next_frame, &next_frame->prologue_cache);
2113
2114 if (next_frame->unwind->prev_arch != NULL)
2115 arch = next_frame->unwind->prev_arch (next_frame,
2116 &next_frame->prologue_cache);
2117 else
2118 arch = get_frame_arch (next_frame);
2119
2120 next_frame->prev_arch.arch = arch;
2121 next_frame->prev_arch.p = 1;
2122 if (frame_debug)
2123 fprintf_unfiltered (gdb_stdlog,
2124 "{ frame_unwind_arch (next_frame=%d) -> %s }\n",
2125 next_frame->level,
2126 gdbarch_bfd_arch_info (arch)->printable_name);
2127 }
2128
2129 return next_frame->prev_arch.arch;
2130 }
2131
2132 struct gdbarch *
2133 frame_unwind_caller_arch (struct frame_info *next_frame)
2134 {
2135 return frame_unwind_arch (skip_inlined_frames (next_frame));
2136 }
2137
2138 /* Stack pointer methods. */
2139
2140 CORE_ADDR
2141 get_frame_sp (struct frame_info *this_frame)
2142 {
2143 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2144
2145 /* Normality - an architecture that provides a way of obtaining any
2146 frame inner-most address. */
2147 if (gdbarch_unwind_sp_p (gdbarch))
2148 /* NOTE drow/2008-06-28: gdbarch_unwind_sp could be converted to
2149 operate on THIS_FRAME now. */
2150 return gdbarch_unwind_sp (gdbarch, this_frame->next);
2151 /* Now things are really are grim. Hope that the value returned by
2152 the gdbarch_sp_regnum register is meaningful. */
2153 if (gdbarch_sp_regnum (gdbarch) >= 0)
2154 return get_frame_register_unsigned (this_frame,
2155 gdbarch_sp_regnum (gdbarch));
2156 internal_error (__FILE__, __LINE__, _("Missing unwind SP method"));
2157 }
2158
2159 /* Return the reason why we can't unwind past FRAME. */
2160
2161 enum unwind_stop_reason
2162 get_frame_unwind_stop_reason (struct frame_info *frame)
2163 {
2164 /* If we haven't tried to unwind past this point yet, then assume
2165 that unwinding would succeed. */
2166 if (frame->prev_p == 0)
2167 return UNWIND_NO_REASON;
2168
2169 /* Otherwise, we set a reason when we succeeded (or failed) to
2170 unwind. */
2171 return frame->stop_reason;
2172 }
2173
2174 /* Return a string explaining REASON. */
2175
2176 const char *
2177 frame_stop_reason_string (enum unwind_stop_reason reason)
2178 {
2179 switch (reason)
2180 {
2181 case UNWIND_NULL_ID:
2182 return _("unwinder did not report frame ID");
2183
2184 case UNWIND_INNER_ID:
2185 return _("previous frame inner to this frame (corrupt stack?)");
2186
2187 case UNWIND_SAME_ID:
2188 return _("previous frame identical to this frame (corrupt stack?)");
2189
2190 case UNWIND_NO_SAVED_PC:
2191 return _("frame did not save the PC");
2192
2193 case UNWIND_NO_REASON:
2194 case UNWIND_FIRST_ERROR:
2195 default:
2196 internal_error (__FILE__, __LINE__,
2197 "Invalid frame stop reason");
2198 }
2199 }
2200
2201 /* Clean up after a failed (wrong unwinder) attempt to unwind past
2202 FRAME. */
2203
2204 static void
2205 frame_cleanup_after_sniffer (void *arg)
2206 {
2207 struct frame_info *frame = arg;
2208
2209 /* The sniffer should not allocate a prologue cache if it did not
2210 match this frame. */
2211 gdb_assert (frame->prologue_cache == NULL);
2212
2213 /* No sniffer should extend the frame chain; sniff based on what is
2214 already certain. */
2215 gdb_assert (!frame->prev_p);
2216
2217 /* The sniffer should not check the frame's ID; that's circular. */
2218 gdb_assert (!frame->this_id.p);
2219
2220 /* Clear cached fields dependent on the unwinder.
2221
2222 The previous PC is independent of the unwinder, but the previous
2223 function is not (see get_frame_address_in_block). */
2224 frame->prev_func.p = 0;
2225 frame->prev_func.addr = 0;
2226
2227 /* Discard the unwinder last, so that we can easily find it if an assertion
2228 in this function triggers. */
2229 frame->unwind = NULL;
2230 }
2231
2232 /* Set FRAME's unwinder temporarily, so that we can call a sniffer.
2233 Return a cleanup which should be called if unwinding fails, and
2234 discarded if it succeeds. */
2235
2236 struct cleanup *
2237 frame_prepare_for_sniffer (struct frame_info *frame,
2238 const struct frame_unwind *unwind)
2239 {
2240 gdb_assert (frame->unwind == NULL);
2241 frame->unwind = unwind;
2242 return make_cleanup (frame_cleanup_after_sniffer, frame);
2243 }
2244
2245 extern initialize_file_ftype _initialize_frame; /* -Wmissing-prototypes */
2246
2247 static struct cmd_list_element *set_backtrace_cmdlist;
2248 static struct cmd_list_element *show_backtrace_cmdlist;
2249
2250 static void
2251 set_backtrace_cmd (char *args, int from_tty)
2252 {
2253 help_list (set_backtrace_cmdlist, "set backtrace ", -1, gdb_stdout);
2254 }
2255
2256 static void
2257 show_backtrace_cmd (char *args, int from_tty)
2258 {
2259 cmd_show_list (show_backtrace_cmdlist, from_tty, "");
2260 }
2261
2262 void
2263 _initialize_frame (void)
2264 {
2265 obstack_init (&frame_cache_obstack);
2266
2267 observer_attach_target_changed (frame_observer_target_changed);
2268
2269 add_prefix_cmd ("backtrace", class_maintenance, set_backtrace_cmd, _("\
2270 Set backtrace specific variables.\n\
2271 Configure backtrace variables such as the backtrace limit"),
2272 &set_backtrace_cmdlist, "set backtrace ",
2273 0/*allow-unknown*/, &setlist);
2274 add_prefix_cmd ("backtrace", class_maintenance, show_backtrace_cmd, _("\
2275 Show backtrace specific variables\n\
2276 Show backtrace variables such as the backtrace limit"),
2277 &show_backtrace_cmdlist, "show backtrace ",
2278 0/*allow-unknown*/, &showlist);
2279
2280 add_setshow_boolean_cmd ("past-main", class_obscure,
2281 &backtrace_past_main, _("\
2282 Set whether backtraces should continue past \"main\"."), _("\
2283 Show whether backtraces should continue past \"main\"."), _("\
2284 Normally the caller of \"main\" is not of interest, so GDB will terminate\n\
2285 the backtrace at \"main\". Set this variable if you need to see the rest\n\
2286 of the stack trace."),
2287 NULL,
2288 show_backtrace_past_main,
2289 &set_backtrace_cmdlist,
2290 &show_backtrace_cmdlist);
2291
2292 add_setshow_boolean_cmd ("past-entry", class_obscure,
2293 &backtrace_past_entry, _("\
2294 Set whether backtraces should continue past the entry point of a program."),
2295 _("\
2296 Show whether backtraces should continue past the entry point of a program."),
2297 _("\
2298 Normally there are no callers beyond the entry point of a program, so GDB\n\
2299 will terminate the backtrace there. Set this variable if you need to see\n\
2300 the rest of the stack trace."),
2301 NULL,
2302 show_backtrace_past_entry,
2303 &set_backtrace_cmdlist,
2304 &show_backtrace_cmdlist);
2305
2306 add_setshow_integer_cmd ("limit", class_obscure,
2307 &backtrace_limit, _("\
2308 Set an upper bound on the number of backtrace levels."), _("\
2309 Show the upper bound on the number of backtrace levels."), _("\
2310 No more than the specified number of frames can be displayed or examined.\n\
2311 Zero is unlimited."),
2312 NULL,
2313 show_backtrace_limit,
2314 &set_backtrace_cmdlist,
2315 &show_backtrace_cmdlist);
2316
2317 /* Debug this files internals. */
2318 add_setshow_zinteger_cmd ("frame", class_maintenance, &frame_debug, _("\
2319 Set frame debugging."), _("\
2320 Show frame debugging."), _("\
2321 When non-zero, frame specific internal debugging is enabled."),
2322 NULL,
2323 show_frame_debug,
2324 &setdebuglist, &showdebuglist);
2325 }