2010-05-06 Michael Snyder <msnyder@vmware.com>
[binutils-gdb.git] / gdb / frame.c
1 /* Cache and manage frames for GDB, the GNU debugger.
2
3 Copyright (C) 1986, 1987, 1989, 1991, 1994, 1995, 1996, 1998, 2000, 2001,
4 2002, 2003, 2004, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "frame.h"
23 #include "target.h"
24 #include "value.h"
25 #include "inferior.h" /* for inferior_ptid */
26 #include "regcache.h"
27 #include "gdb_assert.h"
28 #include "gdb_string.h"
29 #include "user-regs.h"
30 #include "gdb_obstack.h"
31 #include "dummy-frame.h"
32 #include "sentinel-frame.h"
33 #include "gdbcore.h"
34 #include "annotate.h"
35 #include "language.h"
36 #include "frame-unwind.h"
37 #include "frame-base.h"
38 #include "command.h"
39 #include "gdbcmd.h"
40 #include "observer.h"
41 #include "objfiles.h"
42 #include "exceptions.h"
43 #include "gdbthread.h"
44 #include "block.h"
45 #include "inline-frame.h"
46 #include "tracepoint.h"
47
48 static struct frame_info *get_prev_frame_1 (struct frame_info *this_frame);
49 static struct frame_info *get_prev_frame_raw (struct frame_info *this_frame);
50
51 /* We keep a cache of stack frames, each of which is a "struct
52 frame_info". The innermost one gets allocated (in
53 wait_for_inferior) each time the inferior stops; current_frame
54 points to it. Additional frames get allocated (in get_prev_frame)
55 as needed, and are chained through the next and prev fields. Any
56 time that the frame cache becomes invalid (most notably when we
57 execute something, but also if we change how we interpret the
58 frames (e.g. "set heuristic-fence-post" in mips-tdep.c, or anything
59 which reads new symbols)), we should call reinit_frame_cache. */
60
61 struct frame_info
62 {
63 /* Level of this frame. The inner-most (youngest) frame is at level
64 0. As you move towards the outer-most (oldest) frame, the level
65 increases. This is a cached value. It could just as easily be
66 computed by counting back from the selected frame to the inner
67 most frame. */
68 /* NOTE: cagney/2002-04-05: Perhaps a level of ``-1'' should be
69 reserved to indicate a bogus frame - one that has been created
70 just to keep GDB happy (GDB always needs a frame). For the
71 moment leave this as speculation. */
72 int level;
73
74 /* The frame's program space. */
75 struct program_space *pspace;
76
77 /* The frame's address space. */
78 struct address_space *aspace;
79
80 /* The frame's low-level unwinder and corresponding cache. The
81 low-level unwinder is responsible for unwinding register values
82 for the previous frame. The low-level unwind methods are
83 selected based on the presence, or otherwise, of register unwind
84 information such as CFI. */
85 void *prologue_cache;
86 const struct frame_unwind *unwind;
87
88 /* Cached copy of the previous frame's architecture. */
89 struct
90 {
91 int p;
92 struct gdbarch *arch;
93 } prev_arch;
94
95 /* Cached copy of the previous frame's resume address. */
96 struct {
97 int p;
98 CORE_ADDR value;
99 } prev_pc;
100
101 /* Cached copy of the previous frame's function address. */
102 struct
103 {
104 CORE_ADDR addr;
105 int p;
106 } prev_func;
107
108 /* This frame's ID. */
109 struct
110 {
111 int p;
112 struct frame_id value;
113 } this_id;
114
115 /* The frame's high-level base methods, and corresponding cache.
116 The high level base methods are selected based on the frame's
117 debug info. */
118 const struct frame_base *base;
119 void *base_cache;
120
121 /* Pointers to the next (down, inner, younger) and previous (up,
122 outer, older) frame_info's in the frame cache. */
123 struct frame_info *next; /* down, inner, younger */
124 int prev_p;
125 struct frame_info *prev; /* up, outer, older */
126
127 /* The reason why we could not set PREV, or UNWIND_NO_REASON if we
128 could. Only valid when PREV_P is set. */
129 enum unwind_stop_reason stop_reason;
130 };
131
132 /* A frame stash used to speed up frame lookups. */
133
134 /* We currently only stash one frame at a time, as this seems to be
135 sufficient for now. */
136 static struct frame_info *frame_stash = NULL;
137
138 /* Add the following FRAME to the frame stash. */
139
140 static void
141 frame_stash_add (struct frame_info *frame)
142 {
143 frame_stash = frame;
144 }
145
146 /* Search the frame stash for an entry with the given frame ID.
147 If found, return that frame. Otherwise return NULL. */
148
149 static struct frame_info *
150 frame_stash_find (struct frame_id id)
151 {
152 if (frame_stash && frame_id_eq (frame_stash->this_id.value, id))
153 return frame_stash;
154
155 return NULL;
156 }
157
158 /* Invalidate the frame stash by removing all entries in it. */
159
160 static void
161 frame_stash_invalidate (void)
162 {
163 frame_stash = NULL;
164 }
165
166 /* Flag to control debugging. */
167
168 int frame_debug;
169 static void
170 show_frame_debug (struct ui_file *file, int from_tty,
171 struct cmd_list_element *c, const char *value)
172 {
173 fprintf_filtered (file, _("Frame debugging is %s.\n"), value);
174 }
175
176 /* Flag to indicate whether backtraces should stop at main et.al. */
177
178 static int backtrace_past_main;
179 static void
180 show_backtrace_past_main (struct ui_file *file, int from_tty,
181 struct cmd_list_element *c, const char *value)
182 {
183 fprintf_filtered (file, _("\
184 Whether backtraces should continue past \"main\" is %s.\n"),
185 value);
186 }
187
188 static int backtrace_past_entry;
189 static void
190 show_backtrace_past_entry (struct ui_file *file, int from_tty,
191 struct cmd_list_element *c, const char *value)
192 {
193 fprintf_filtered (file, _("\
194 Whether backtraces should continue past the entry point of a program is %s.\n"),
195 value);
196 }
197
198 static int backtrace_limit = INT_MAX;
199 static void
200 show_backtrace_limit (struct ui_file *file, int from_tty,
201 struct cmd_list_element *c, const char *value)
202 {
203 fprintf_filtered (file, _("\
204 An upper bound on the number of backtrace levels is %s.\n"),
205 value);
206 }
207
208
209 static void
210 fprint_field (struct ui_file *file, const char *name, int p, CORE_ADDR addr)
211 {
212 if (p)
213 fprintf_unfiltered (file, "%s=%s", name, hex_string (addr));
214 else
215 fprintf_unfiltered (file, "!%s", name);
216 }
217
218 void
219 fprint_frame_id (struct ui_file *file, struct frame_id id)
220 {
221 fprintf_unfiltered (file, "{");
222 fprint_field (file, "stack", id.stack_addr_p, id.stack_addr);
223 fprintf_unfiltered (file, ",");
224 fprint_field (file, "code", id.code_addr_p, id.code_addr);
225 fprintf_unfiltered (file, ",");
226 fprint_field (file, "special", id.special_addr_p, id.special_addr);
227 if (id.inline_depth)
228 fprintf_unfiltered (file, ",inlined=%d", id.inline_depth);
229 fprintf_unfiltered (file, "}");
230 }
231
232 static void
233 fprint_frame_type (struct ui_file *file, enum frame_type type)
234 {
235 switch (type)
236 {
237 case NORMAL_FRAME:
238 fprintf_unfiltered (file, "NORMAL_FRAME");
239 return;
240 case DUMMY_FRAME:
241 fprintf_unfiltered (file, "DUMMY_FRAME");
242 return;
243 case INLINE_FRAME:
244 fprintf_unfiltered (file, "INLINE_FRAME");
245 return;
246 case SENTINEL_FRAME:
247 fprintf_unfiltered (file, "SENTINEL_FRAME");
248 return;
249 case SIGTRAMP_FRAME:
250 fprintf_unfiltered (file, "SIGTRAMP_FRAME");
251 return;
252 case ARCH_FRAME:
253 fprintf_unfiltered (file, "ARCH_FRAME");
254 return;
255 default:
256 fprintf_unfiltered (file, "<unknown type>");
257 return;
258 };
259 }
260
261 static void
262 fprint_frame (struct ui_file *file, struct frame_info *fi)
263 {
264 if (fi == NULL)
265 {
266 fprintf_unfiltered (file, "<NULL frame>");
267 return;
268 }
269 fprintf_unfiltered (file, "{");
270 fprintf_unfiltered (file, "level=%d", fi->level);
271 fprintf_unfiltered (file, ",");
272 fprintf_unfiltered (file, "type=");
273 if (fi->unwind != NULL)
274 fprint_frame_type (file, fi->unwind->type);
275 else
276 fprintf_unfiltered (file, "<unknown>");
277 fprintf_unfiltered (file, ",");
278 fprintf_unfiltered (file, "unwind=");
279 if (fi->unwind != NULL)
280 gdb_print_host_address (fi->unwind, file);
281 else
282 fprintf_unfiltered (file, "<unknown>");
283 fprintf_unfiltered (file, ",");
284 fprintf_unfiltered (file, "pc=");
285 if (fi->next != NULL && fi->next->prev_pc.p)
286 fprintf_unfiltered (file, "%s", hex_string (fi->next->prev_pc.value));
287 else
288 fprintf_unfiltered (file, "<unknown>");
289 fprintf_unfiltered (file, ",");
290 fprintf_unfiltered (file, "id=");
291 if (fi->this_id.p)
292 fprint_frame_id (file, fi->this_id.value);
293 else
294 fprintf_unfiltered (file, "<unknown>");
295 fprintf_unfiltered (file, ",");
296 fprintf_unfiltered (file, "func=");
297 if (fi->next != NULL && fi->next->prev_func.p)
298 fprintf_unfiltered (file, "%s", hex_string (fi->next->prev_func.addr));
299 else
300 fprintf_unfiltered (file, "<unknown>");
301 fprintf_unfiltered (file, "}");
302 }
303
304 /* Given FRAME, return the enclosing normal frame for inlined
305 function frames. Otherwise return the original frame. */
306
307 static struct frame_info *
308 skip_inlined_frames (struct frame_info *frame)
309 {
310 while (get_frame_type (frame) == INLINE_FRAME)
311 frame = get_prev_frame (frame);
312
313 return frame;
314 }
315
316 /* Return a frame uniq ID that can be used to, later, re-find the
317 frame. */
318
319 struct frame_id
320 get_frame_id (struct frame_info *fi)
321 {
322 if (fi == NULL)
323 return null_frame_id;
324
325 if (!fi->this_id.p)
326 {
327 if (frame_debug)
328 fprintf_unfiltered (gdb_stdlog, "{ get_frame_id (fi=%d) ",
329 fi->level);
330 /* Find the unwinder. */
331 if (fi->unwind == NULL)
332 fi->unwind = frame_unwind_find_by_frame (fi, &fi->prologue_cache);
333 /* Find THIS frame's ID. */
334 /* Default to outermost if no ID is found. */
335 fi->this_id.value = outer_frame_id;
336 fi->unwind->this_id (fi, &fi->prologue_cache, &fi->this_id.value);
337 gdb_assert (frame_id_p (fi->this_id.value));
338 fi->this_id.p = 1;
339 if (frame_debug)
340 {
341 fprintf_unfiltered (gdb_stdlog, "-> ");
342 fprint_frame_id (gdb_stdlog, fi->this_id.value);
343 fprintf_unfiltered (gdb_stdlog, " }\n");
344 }
345 }
346
347 frame_stash_add (fi);
348
349 return fi->this_id.value;
350 }
351
352 struct frame_id
353 get_stack_frame_id (struct frame_info *next_frame)
354 {
355 return get_frame_id (skip_inlined_frames (next_frame));
356 }
357
358 struct frame_id
359 frame_unwind_caller_id (struct frame_info *next_frame)
360 {
361 struct frame_info *this_frame;
362
363 /* Use get_prev_frame_1, and not get_prev_frame. The latter will truncate
364 the frame chain, leading to this function unintentionally
365 returning a null_frame_id (e.g., when a caller requests the frame
366 ID of "main()"s caller. */
367
368 next_frame = skip_inlined_frames (next_frame);
369 this_frame = get_prev_frame_1 (next_frame);
370 if (this_frame)
371 return get_frame_id (skip_inlined_frames (this_frame));
372 else
373 return null_frame_id;
374 }
375
376 const struct frame_id null_frame_id; /* All zeros. */
377 const struct frame_id outer_frame_id = { 0, 0, 0, 0, 0, 1, 0 };
378
379 struct frame_id
380 frame_id_build_special (CORE_ADDR stack_addr, CORE_ADDR code_addr,
381 CORE_ADDR special_addr)
382 {
383 struct frame_id id = null_frame_id;
384 id.stack_addr = stack_addr;
385 id.stack_addr_p = 1;
386 id.code_addr = code_addr;
387 id.code_addr_p = 1;
388 id.special_addr = special_addr;
389 id.special_addr_p = 1;
390 return id;
391 }
392
393 struct frame_id
394 frame_id_build (CORE_ADDR stack_addr, CORE_ADDR code_addr)
395 {
396 struct frame_id id = null_frame_id;
397 id.stack_addr = stack_addr;
398 id.stack_addr_p = 1;
399 id.code_addr = code_addr;
400 id.code_addr_p = 1;
401 return id;
402 }
403
404 struct frame_id
405 frame_id_build_wild (CORE_ADDR stack_addr)
406 {
407 struct frame_id id = null_frame_id;
408 id.stack_addr = stack_addr;
409 id.stack_addr_p = 1;
410 return id;
411 }
412
413 int
414 frame_id_p (struct frame_id l)
415 {
416 int p;
417 /* The frame is valid iff it has a valid stack address. */
418 p = l.stack_addr_p;
419 /* outer_frame_id is also valid. */
420 if (!p && memcmp (&l, &outer_frame_id, sizeof (l)) == 0)
421 p = 1;
422 if (frame_debug)
423 {
424 fprintf_unfiltered (gdb_stdlog, "{ frame_id_p (l=");
425 fprint_frame_id (gdb_stdlog, l);
426 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", p);
427 }
428 return p;
429 }
430
431 int
432 frame_id_inlined_p (struct frame_id l)
433 {
434 if (!frame_id_p (l))
435 return 0;
436
437 return (l.inline_depth != 0);
438 }
439
440 int
441 frame_id_eq (struct frame_id l, struct frame_id r)
442 {
443 int eq;
444 if (!l.stack_addr_p && l.special_addr_p && !r.stack_addr_p && r.special_addr_p)
445 /* The outermost frame marker is equal to itself. This is the
446 dodgy thing about outer_frame_id, since between execution steps
447 we might step into another function - from which we can't
448 unwind either. More thought required to get rid of
449 outer_frame_id. */
450 eq = 1;
451 else if (!l.stack_addr_p || !r.stack_addr_p)
452 /* Like a NaN, if either ID is invalid, the result is false.
453 Note that a frame ID is invalid iff it is the null frame ID. */
454 eq = 0;
455 else if (l.stack_addr != r.stack_addr)
456 /* If .stack addresses are different, the frames are different. */
457 eq = 0;
458 else if (l.code_addr_p && r.code_addr_p && l.code_addr != r.code_addr)
459 /* An invalid code addr is a wild card. If .code addresses are
460 different, the frames are different. */
461 eq = 0;
462 else if (l.special_addr_p && r.special_addr_p
463 && l.special_addr != r.special_addr)
464 /* An invalid special addr is a wild card (or unused). Otherwise
465 if special addresses are different, the frames are different. */
466 eq = 0;
467 else if (l.inline_depth != r.inline_depth)
468 /* If inline depths are different, the frames must be different. */
469 eq = 0;
470 else
471 /* Frames are equal. */
472 eq = 1;
473
474 if (frame_debug)
475 {
476 fprintf_unfiltered (gdb_stdlog, "{ frame_id_eq (l=");
477 fprint_frame_id (gdb_stdlog, l);
478 fprintf_unfiltered (gdb_stdlog, ",r=");
479 fprint_frame_id (gdb_stdlog, r);
480 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", eq);
481 }
482 return eq;
483 }
484
485 /* Safety net to check whether frame ID L should be inner to
486 frame ID R, according to their stack addresses.
487
488 This method cannot be used to compare arbitrary frames, as the
489 ranges of valid stack addresses may be discontiguous (e.g. due
490 to sigaltstack).
491
492 However, it can be used as safety net to discover invalid frame
493 IDs in certain circumstances. Assuming that NEXT is the immediate
494 inner frame to THIS and that NEXT and THIS are both NORMAL frames:
495
496 * The stack address of NEXT must be inner-than-or-equal to the stack
497 address of THIS.
498
499 Therefore, if frame_id_inner (THIS, NEXT) holds, some unwind
500 error has occurred.
501
502 * If NEXT and THIS have different stack addresses, no other frame
503 in the frame chain may have a stack address in between.
504
505 Therefore, if frame_id_inner (TEST, THIS) holds, but
506 frame_id_inner (TEST, NEXT) does not hold, TEST cannot refer
507 to a valid frame in the frame chain.
508
509 The sanity checks above cannot be performed when a SIGTRAMP frame
510 is involved, because signal handlers might be executed on a different
511 stack than the stack used by the routine that caused the signal
512 to be raised. This can happen for instance when a thread exceeds
513 its maximum stack size. In this case, certain compilers implement
514 a stack overflow strategy that cause the handler to be run on a
515 different stack. */
516
517 static int
518 frame_id_inner (struct gdbarch *gdbarch, struct frame_id l, struct frame_id r)
519 {
520 int inner;
521 if (!l.stack_addr_p || !r.stack_addr_p)
522 /* Like NaN, any operation involving an invalid ID always fails. */
523 inner = 0;
524 else if (l.inline_depth > r.inline_depth
525 && l.stack_addr == r.stack_addr
526 && l.code_addr_p == r.code_addr_p
527 && l.special_addr_p == r.special_addr_p
528 && l.special_addr == r.special_addr)
529 {
530 /* Same function, different inlined functions. */
531 struct block *lb, *rb;
532
533 gdb_assert (l.code_addr_p && r.code_addr_p);
534
535 lb = block_for_pc (l.code_addr);
536 rb = block_for_pc (r.code_addr);
537
538 if (lb == NULL || rb == NULL)
539 /* Something's gone wrong. */
540 inner = 0;
541 else
542 /* This will return true if LB and RB are the same block, or
543 if the block with the smaller depth lexically encloses the
544 block with the greater depth. */
545 inner = contained_in (lb, rb);
546 }
547 else
548 /* Only return non-zero when strictly inner than. Note that, per
549 comment in "frame.h", there is some fuzz here. Frameless
550 functions are not strictly inner than (same .stack but
551 different .code and/or .special address). */
552 inner = gdbarch_inner_than (gdbarch, l.stack_addr, r.stack_addr);
553 if (frame_debug)
554 {
555 fprintf_unfiltered (gdb_stdlog, "{ frame_id_inner (l=");
556 fprint_frame_id (gdb_stdlog, l);
557 fprintf_unfiltered (gdb_stdlog, ",r=");
558 fprint_frame_id (gdb_stdlog, r);
559 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", inner);
560 }
561 return inner;
562 }
563
564 struct frame_info *
565 frame_find_by_id (struct frame_id id)
566 {
567 struct frame_info *frame, *prev_frame;
568
569 /* ZERO denotes the null frame, let the caller decide what to do
570 about it. Should it instead return get_current_frame()? */
571 if (!frame_id_p (id))
572 return NULL;
573
574 /* Try using the frame stash first. Finding it there removes the need
575 to perform the search by looping over all frames, which can be very
576 CPU-intensive if the number of frames is very high (the loop is O(n)
577 and get_prev_frame performs a series of checks that are relatively
578 expensive). This optimization is particularly useful when this function
579 is called from another function (such as value_fetch_lazy, case
580 VALUE_LVAL (val) == lval_register) which already loops over all frames,
581 making the overall behavior O(n^2). */
582 frame = frame_stash_find (id);
583 if (frame)
584 return frame;
585
586 for (frame = get_current_frame (); ; frame = prev_frame)
587 {
588 struct frame_id this = get_frame_id (frame);
589 if (frame_id_eq (id, this))
590 /* An exact match. */
591 return frame;
592
593 prev_frame = get_prev_frame (frame);
594 if (!prev_frame)
595 return NULL;
596
597 /* As a safety net to avoid unnecessary backtracing while trying
598 to find an invalid ID, we check for a common situation where
599 we can detect from comparing stack addresses that no other
600 frame in the current frame chain can have this ID. See the
601 comment at frame_id_inner for details. */
602 if (get_frame_type (frame) == NORMAL_FRAME
603 && !frame_id_inner (get_frame_arch (frame), id, this)
604 && frame_id_inner (get_frame_arch (prev_frame), id,
605 get_frame_id (prev_frame)))
606 return NULL;
607 }
608 return NULL;
609 }
610
611 static CORE_ADDR
612 frame_unwind_pc (struct frame_info *this_frame)
613 {
614 if (!this_frame->prev_pc.p)
615 {
616 CORE_ADDR pc;
617 if (gdbarch_unwind_pc_p (frame_unwind_arch (this_frame)))
618 {
619 /* The right way. The `pure' way. The one true way. This
620 method depends solely on the register-unwind code to
621 determine the value of registers in THIS frame, and hence
622 the value of this frame's PC (resume address). A typical
623 implementation is no more than:
624
625 frame_unwind_register (this_frame, ISA_PC_REGNUM, buf);
626 return extract_unsigned_integer (buf, size of ISA_PC_REGNUM);
627
628 Note: this method is very heavily dependent on a correct
629 register-unwind implementation, it pays to fix that
630 method first; this method is frame type agnostic, since
631 it only deals with register values, it works with any
632 frame. This is all in stark contrast to the old
633 FRAME_SAVED_PC which would try to directly handle all the
634 different ways that a PC could be unwound. */
635 pc = gdbarch_unwind_pc (frame_unwind_arch (this_frame), this_frame);
636 }
637 else
638 internal_error (__FILE__, __LINE__, _("No unwind_pc method"));
639 this_frame->prev_pc.value = pc;
640 this_frame->prev_pc.p = 1;
641 if (frame_debug)
642 fprintf_unfiltered (gdb_stdlog,
643 "{ frame_unwind_caller_pc (this_frame=%d) -> %s }\n",
644 this_frame->level,
645 hex_string (this_frame->prev_pc.value));
646 }
647 return this_frame->prev_pc.value;
648 }
649
650 CORE_ADDR
651 frame_unwind_caller_pc (struct frame_info *this_frame)
652 {
653 return frame_unwind_pc (skip_inlined_frames (this_frame));
654 }
655
656 CORE_ADDR
657 get_frame_func (struct frame_info *this_frame)
658 {
659 struct frame_info *next_frame = this_frame->next;
660
661 if (!next_frame->prev_func.p)
662 {
663 /* Make certain that this, and not the adjacent, function is
664 found. */
665 CORE_ADDR addr_in_block = get_frame_address_in_block (this_frame);
666 next_frame->prev_func.p = 1;
667 next_frame->prev_func.addr = get_pc_function_start (addr_in_block);
668 if (frame_debug)
669 fprintf_unfiltered (gdb_stdlog,
670 "{ get_frame_func (this_frame=%d) -> %s }\n",
671 this_frame->level,
672 hex_string (next_frame->prev_func.addr));
673 }
674 return next_frame->prev_func.addr;
675 }
676
677 static int
678 do_frame_register_read (void *src, int regnum, gdb_byte *buf)
679 {
680 return frame_register_read (src, regnum, buf);
681 }
682
683 struct regcache *
684 frame_save_as_regcache (struct frame_info *this_frame)
685 {
686 struct address_space *aspace = get_frame_address_space (this_frame);
687 struct regcache *regcache = regcache_xmalloc (get_frame_arch (this_frame),
688 aspace);
689 struct cleanup *cleanups = make_cleanup_regcache_xfree (regcache);
690 regcache_save (regcache, do_frame_register_read, this_frame);
691 discard_cleanups (cleanups);
692 return regcache;
693 }
694
695 void
696 frame_pop (struct frame_info *this_frame)
697 {
698 struct frame_info *prev_frame;
699 struct regcache *scratch;
700 struct cleanup *cleanups;
701
702 if (get_frame_type (this_frame) == DUMMY_FRAME)
703 {
704 /* Popping a dummy frame involves restoring more than just registers.
705 dummy_frame_pop does all the work. */
706 dummy_frame_pop (get_frame_id (this_frame));
707 return;
708 }
709
710 /* Ensure that we have a frame to pop to. */
711 prev_frame = get_prev_frame_1 (this_frame);
712
713 if (!prev_frame)
714 error (_("Cannot pop the initial frame."));
715
716 /* Make a copy of all the register values unwound from this frame.
717 Save them in a scratch buffer so that there isn't a race between
718 trying to extract the old values from the current regcache while
719 at the same time writing new values into that same cache. */
720 scratch = frame_save_as_regcache (prev_frame);
721 cleanups = make_cleanup_regcache_xfree (scratch);
722
723 /* FIXME: cagney/2003-03-16: It should be possible to tell the
724 target's register cache that it is about to be hit with a burst
725 register transfer and that the sequence of register writes should
726 be batched. The pair target_prepare_to_store() and
727 target_store_registers() kind of suggest this functionality.
728 Unfortunately, they don't implement it. Their lack of a formal
729 definition can lead to targets writing back bogus values
730 (arguably a bug in the target code mind). */
731 /* Now copy those saved registers into the current regcache.
732 Here, regcache_cpy() calls regcache_restore(). */
733 regcache_cpy (get_current_regcache (), scratch);
734 do_cleanups (cleanups);
735
736 /* We've made right mess of GDB's local state, just discard
737 everything. */
738 reinit_frame_cache ();
739 }
740
741 void
742 frame_register_unwind (struct frame_info *frame, int regnum,
743 int *optimizedp, enum lval_type *lvalp,
744 CORE_ADDR *addrp, int *realnump, gdb_byte *bufferp)
745 {
746 struct value *value;
747
748 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
749 that the value proper does not need to be fetched. */
750 gdb_assert (optimizedp != NULL);
751 gdb_assert (lvalp != NULL);
752 gdb_assert (addrp != NULL);
753 gdb_assert (realnump != NULL);
754 /* gdb_assert (bufferp != NULL); */
755
756 value = frame_unwind_register_value (frame, regnum);
757
758 gdb_assert (value != NULL);
759
760 *optimizedp = value_optimized_out (value);
761 *lvalp = VALUE_LVAL (value);
762 *addrp = value_address (value);
763 *realnump = VALUE_REGNUM (value);
764
765 if (bufferp)
766 memcpy (bufferp, value_contents_all (value),
767 TYPE_LENGTH (value_type (value)));
768
769 /* Dispose of the new value. This prevents watchpoints from
770 trying to watch the saved frame pointer. */
771 release_value (value);
772 value_free (value);
773 }
774
775 void
776 frame_register (struct frame_info *frame, int regnum,
777 int *optimizedp, enum lval_type *lvalp,
778 CORE_ADDR *addrp, int *realnump, gdb_byte *bufferp)
779 {
780 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
781 that the value proper does not need to be fetched. */
782 gdb_assert (optimizedp != NULL);
783 gdb_assert (lvalp != NULL);
784 gdb_assert (addrp != NULL);
785 gdb_assert (realnump != NULL);
786 /* gdb_assert (bufferp != NULL); */
787
788 /* Obtain the register value by unwinding the register from the next
789 (more inner frame). */
790 gdb_assert (frame != NULL && frame->next != NULL);
791 frame_register_unwind (frame->next, regnum, optimizedp, lvalp, addrp,
792 realnump, bufferp);
793 }
794
795 void
796 frame_unwind_register (struct frame_info *frame, int regnum, gdb_byte *buf)
797 {
798 int optimized;
799 CORE_ADDR addr;
800 int realnum;
801 enum lval_type lval;
802 frame_register_unwind (frame, regnum, &optimized, &lval, &addr,
803 &realnum, buf);
804 }
805
806 void
807 get_frame_register (struct frame_info *frame,
808 int regnum, gdb_byte *buf)
809 {
810 frame_unwind_register (frame->next, regnum, buf);
811 }
812
813 struct value *
814 frame_unwind_register_value (struct frame_info *frame, int regnum)
815 {
816 struct gdbarch *gdbarch;
817 struct value *value;
818
819 gdb_assert (frame != NULL);
820 gdbarch = frame_unwind_arch (frame);
821
822 if (frame_debug)
823 {
824 fprintf_unfiltered (gdb_stdlog, "\
825 { frame_unwind_register_value (frame=%d,regnum=%d(%s),...) ",
826 frame->level, regnum,
827 user_reg_map_regnum_to_name (gdbarch, regnum));
828 }
829
830 /* Find the unwinder. */
831 if (frame->unwind == NULL)
832 frame->unwind = frame_unwind_find_by_frame (frame, &frame->prologue_cache);
833
834 /* Ask this frame to unwind its register. */
835 value = frame->unwind->prev_register (frame, &frame->prologue_cache, regnum);
836
837 if (frame_debug)
838 {
839 fprintf_unfiltered (gdb_stdlog, "->");
840 if (value_optimized_out (value))
841 fprintf_unfiltered (gdb_stdlog, " optimized out");
842 else
843 {
844 if (VALUE_LVAL (value) == lval_register)
845 fprintf_unfiltered (gdb_stdlog, " register=%d",
846 VALUE_REGNUM (value));
847 else if (VALUE_LVAL (value) == lval_memory)
848 fprintf_unfiltered (gdb_stdlog, " address=%s",
849 paddress (gdbarch,
850 value_address (value)));
851 else
852 fprintf_unfiltered (gdb_stdlog, " computed");
853
854 if (value_lazy (value))
855 fprintf_unfiltered (gdb_stdlog, " lazy");
856 else
857 {
858 int i;
859 const gdb_byte *buf = value_contents (value);
860
861 fprintf_unfiltered (gdb_stdlog, " bytes=");
862 fprintf_unfiltered (gdb_stdlog, "[");
863 for (i = 0; i < register_size (gdbarch, regnum); i++)
864 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
865 fprintf_unfiltered (gdb_stdlog, "]");
866 }
867 }
868
869 fprintf_unfiltered (gdb_stdlog, " }\n");
870 }
871
872 return value;
873 }
874
875 struct value *
876 get_frame_register_value (struct frame_info *frame, int regnum)
877 {
878 return frame_unwind_register_value (frame->next, regnum);
879 }
880
881 LONGEST
882 frame_unwind_register_signed (struct frame_info *frame, int regnum)
883 {
884 struct gdbarch *gdbarch = frame_unwind_arch (frame);
885 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
886 int size = register_size (gdbarch, regnum);
887 gdb_byte buf[MAX_REGISTER_SIZE];
888 frame_unwind_register (frame, regnum, buf);
889 return extract_signed_integer (buf, size, byte_order);
890 }
891
892 LONGEST
893 get_frame_register_signed (struct frame_info *frame, int regnum)
894 {
895 return frame_unwind_register_signed (frame->next, regnum);
896 }
897
898 ULONGEST
899 frame_unwind_register_unsigned (struct frame_info *frame, int regnum)
900 {
901 struct gdbarch *gdbarch = frame_unwind_arch (frame);
902 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
903 int size = register_size (gdbarch, regnum);
904 gdb_byte buf[MAX_REGISTER_SIZE];
905 frame_unwind_register (frame, regnum, buf);
906 return extract_unsigned_integer (buf, size, byte_order);
907 }
908
909 ULONGEST
910 get_frame_register_unsigned (struct frame_info *frame, int regnum)
911 {
912 return frame_unwind_register_unsigned (frame->next, regnum);
913 }
914
915 void
916 put_frame_register (struct frame_info *frame, int regnum,
917 const gdb_byte *buf)
918 {
919 struct gdbarch *gdbarch = get_frame_arch (frame);
920 int realnum;
921 int optim;
922 enum lval_type lval;
923 CORE_ADDR addr;
924 frame_register (frame, regnum, &optim, &lval, &addr, &realnum, NULL);
925 if (optim)
926 error (_("Attempt to assign to a value that was optimized out."));
927 switch (lval)
928 {
929 case lval_memory:
930 {
931 /* FIXME: write_memory doesn't yet take constant buffers.
932 Arrrg! */
933 gdb_byte tmp[MAX_REGISTER_SIZE];
934 memcpy (tmp, buf, register_size (gdbarch, regnum));
935 write_memory (addr, tmp, register_size (gdbarch, regnum));
936 break;
937 }
938 case lval_register:
939 regcache_cooked_write (get_current_regcache (), realnum, buf);
940 break;
941 default:
942 error (_("Attempt to assign to an unmodifiable value."));
943 }
944 }
945
946 /* frame_register_read ()
947
948 Find and return the value of REGNUM for the specified stack frame.
949 The number of bytes copied is REGISTER_SIZE (REGNUM).
950
951 Returns 0 if the register value could not be found. */
952
953 int
954 frame_register_read (struct frame_info *frame, int regnum,
955 gdb_byte *myaddr)
956 {
957 int optimized;
958 enum lval_type lval;
959 CORE_ADDR addr;
960 int realnum;
961 frame_register (frame, regnum, &optimized, &lval, &addr, &realnum, myaddr);
962
963 return !optimized;
964 }
965
966 int
967 get_frame_register_bytes (struct frame_info *frame, int regnum,
968 CORE_ADDR offset, int len, gdb_byte *myaddr)
969 {
970 struct gdbarch *gdbarch = get_frame_arch (frame);
971 int i;
972 int maxsize;
973 int numregs;
974
975 /* Skip registers wholly inside of OFFSET. */
976 while (offset >= register_size (gdbarch, regnum))
977 {
978 offset -= register_size (gdbarch, regnum);
979 regnum++;
980 }
981
982 /* Ensure that we will not read beyond the end of the register file.
983 This can only ever happen if the debug information is bad. */
984 maxsize = -offset;
985 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
986 for (i = regnum; i < numregs; i++)
987 {
988 int thissize = register_size (gdbarch, i);
989 if (thissize == 0)
990 break; /* This register is not available on this architecture. */
991 maxsize += thissize;
992 }
993 if (len > maxsize)
994 {
995 warning (_("Bad debug information detected: "
996 "Attempt to read %d bytes from registers."), len);
997 return 0;
998 }
999
1000 /* Copy the data. */
1001 while (len > 0)
1002 {
1003 int curr_len = register_size (gdbarch, regnum) - offset;
1004 if (curr_len > len)
1005 curr_len = len;
1006
1007 if (curr_len == register_size (gdbarch, regnum))
1008 {
1009 if (!frame_register_read (frame, regnum, myaddr))
1010 return 0;
1011 }
1012 else
1013 {
1014 gdb_byte buf[MAX_REGISTER_SIZE];
1015 if (!frame_register_read (frame, regnum, buf))
1016 return 0;
1017 memcpy (myaddr, buf + offset, curr_len);
1018 }
1019
1020 myaddr += curr_len;
1021 len -= curr_len;
1022 offset = 0;
1023 regnum++;
1024 }
1025
1026 return 1;
1027 }
1028
1029 void
1030 put_frame_register_bytes (struct frame_info *frame, int regnum,
1031 CORE_ADDR offset, int len, const gdb_byte *myaddr)
1032 {
1033 struct gdbarch *gdbarch = get_frame_arch (frame);
1034
1035 /* Skip registers wholly inside of OFFSET. */
1036 while (offset >= register_size (gdbarch, regnum))
1037 {
1038 offset -= register_size (gdbarch, regnum);
1039 regnum++;
1040 }
1041
1042 /* Copy the data. */
1043 while (len > 0)
1044 {
1045 int curr_len = register_size (gdbarch, regnum) - offset;
1046 if (curr_len > len)
1047 curr_len = len;
1048
1049 if (curr_len == register_size (gdbarch, regnum))
1050 {
1051 put_frame_register (frame, regnum, myaddr);
1052 }
1053 else
1054 {
1055 gdb_byte buf[MAX_REGISTER_SIZE];
1056 frame_register_read (frame, regnum, buf);
1057 memcpy (buf + offset, myaddr, curr_len);
1058 put_frame_register (frame, regnum, buf);
1059 }
1060
1061 myaddr += curr_len;
1062 len -= curr_len;
1063 offset = 0;
1064 regnum++;
1065 }
1066 }
1067
1068 /* Create a sentinel frame. */
1069
1070 static struct frame_info *
1071 create_sentinel_frame (struct program_space *pspace, struct regcache *regcache)
1072 {
1073 struct frame_info *frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
1074 frame->level = -1;
1075 frame->pspace = pspace;
1076 frame->aspace = get_regcache_aspace (regcache);
1077 /* Explicitly initialize the sentinel frame's cache. Provide it
1078 with the underlying regcache. In the future additional
1079 information, such as the frame's thread will be added. */
1080 frame->prologue_cache = sentinel_frame_cache (regcache);
1081 /* For the moment there is only one sentinel frame implementation. */
1082 frame->unwind = sentinel_frame_unwind;
1083 /* Link this frame back to itself. The frame is self referential
1084 (the unwound PC is the same as the pc), so make it so. */
1085 frame->next = frame;
1086 /* Make the sentinel frame's ID valid, but invalid. That way all
1087 comparisons with it should fail. */
1088 frame->this_id.p = 1;
1089 frame->this_id.value = null_frame_id;
1090 if (frame_debug)
1091 {
1092 fprintf_unfiltered (gdb_stdlog, "{ create_sentinel_frame (...) -> ");
1093 fprint_frame (gdb_stdlog, frame);
1094 fprintf_unfiltered (gdb_stdlog, " }\n");
1095 }
1096 return frame;
1097 }
1098
1099 /* Info about the innermost stack frame (contents of FP register) */
1100
1101 static struct frame_info *current_frame;
1102
1103 /* Cache for frame addresses already read by gdb. Valid only while
1104 inferior is stopped. Control variables for the frame cache should
1105 be local to this module. */
1106
1107 static struct obstack frame_cache_obstack;
1108
1109 void *
1110 frame_obstack_zalloc (unsigned long size)
1111 {
1112 void *data = obstack_alloc (&frame_cache_obstack, size);
1113 memset (data, 0, size);
1114 return data;
1115 }
1116
1117 /* Return the innermost (currently executing) stack frame. This is
1118 split into two functions. The function unwind_to_current_frame()
1119 is wrapped in catch exceptions so that, even when the unwind of the
1120 sentinel frame fails, the function still returns a stack frame. */
1121
1122 static int
1123 unwind_to_current_frame (struct ui_out *ui_out, void *args)
1124 {
1125 struct frame_info *frame = get_prev_frame (args);
1126 /* A sentinel frame can fail to unwind, e.g., because its PC value
1127 lands in somewhere like start. */
1128 if (frame == NULL)
1129 return 1;
1130 current_frame = frame;
1131 return 0;
1132 }
1133
1134 struct frame_info *
1135 get_current_frame (void)
1136 {
1137 /* First check, and report, the lack of registers. Having GDB
1138 report "No stack!" or "No memory" when the target doesn't even
1139 have registers is very confusing. Besides, "printcmd.exp"
1140 explicitly checks that ``print $pc'' with no registers prints "No
1141 registers". */
1142 if (!target_has_registers)
1143 error (_("No registers."));
1144 if (!target_has_stack)
1145 error (_("No stack."));
1146 if (!target_has_memory)
1147 error (_("No memory."));
1148 /* Traceframes are effectively a substitute for the live inferior. */
1149 if (get_traceframe_number () < 0)
1150 {
1151 if (ptid_equal (inferior_ptid, null_ptid))
1152 error (_("No selected thread."));
1153 if (is_exited (inferior_ptid))
1154 error (_("Invalid selected thread."));
1155 if (is_executing (inferior_ptid))
1156 error (_("Target is executing."));
1157 }
1158
1159 if (current_frame == NULL)
1160 {
1161 struct frame_info *sentinel_frame =
1162 create_sentinel_frame (current_program_space, get_current_regcache ());
1163 if (catch_exceptions (uiout, unwind_to_current_frame, sentinel_frame,
1164 RETURN_MASK_ERROR) != 0)
1165 {
1166 /* Oops! Fake a current frame? Is this useful? It has a PC
1167 of zero, for instance. */
1168 current_frame = sentinel_frame;
1169 }
1170 }
1171 return current_frame;
1172 }
1173
1174 /* The "selected" stack frame is used by default for local and arg
1175 access. May be zero, for no selected frame. */
1176
1177 static struct frame_info *selected_frame;
1178
1179 int
1180 has_stack_frames (void)
1181 {
1182 if (!target_has_registers || !target_has_stack || !target_has_memory)
1183 return 0;
1184
1185 /* No current inferior, no frame. */
1186 if (ptid_equal (inferior_ptid, null_ptid))
1187 return 0;
1188
1189 /* Don't try to read from a dead thread. */
1190 if (is_exited (inferior_ptid))
1191 return 0;
1192
1193 /* ... or from a spinning thread. */
1194 if (is_executing (inferior_ptid))
1195 return 0;
1196
1197 return 1;
1198 }
1199
1200 /* Return the selected frame. Always non-NULL (unless there isn't an
1201 inferior sufficient for creating a frame) in which case an error is
1202 thrown. */
1203
1204 struct frame_info *
1205 get_selected_frame (const char *message)
1206 {
1207 if (selected_frame == NULL)
1208 {
1209 if (message != NULL && !has_stack_frames ())
1210 error (("%s"), message);
1211 /* Hey! Don't trust this. It should really be re-finding the
1212 last selected frame of the currently selected thread. This,
1213 though, is better than nothing. */
1214 select_frame (get_current_frame ());
1215 }
1216 /* There is always a frame. */
1217 gdb_assert (selected_frame != NULL);
1218 return selected_frame;
1219 }
1220
1221 /* This is a variant of get_selected_frame() which can be called when
1222 the inferior does not have a frame; in that case it will return
1223 NULL instead of calling error(). */
1224
1225 struct frame_info *
1226 deprecated_safe_get_selected_frame (void)
1227 {
1228 if (!has_stack_frames ())
1229 return NULL;
1230 return get_selected_frame (NULL);
1231 }
1232
1233 /* Select frame FI (or NULL - to invalidate the current frame). */
1234
1235 void
1236 select_frame (struct frame_info *fi)
1237 {
1238 struct symtab *s;
1239
1240 selected_frame = fi;
1241 /* NOTE: cagney/2002-05-04: FI can be NULL. This occurs when the
1242 frame is being invalidated. */
1243 if (deprecated_selected_frame_level_changed_hook)
1244 deprecated_selected_frame_level_changed_hook (frame_relative_level (fi));
1245
1246 /* FIXME: kseitz/2002-08-28: It would be nice to call
1247 selected_frame_level_changed_event() right here, but due to limitations
1248 in the current interfaces, we would end up flooding UIs with events
1249 because select_frame() is used extensively internally.
1250
1251 Once we have frame-parameterized frame (and frame-related) commands,
1252 the event notification can be moved here, since this function will only
1253 be called when the user's selected frame is being changed. */
1254
1255 /* Ensure that symbols for this frame are read in. Also, determine the
1256 source language of this frame, and switch to it if desired. */
1257 if (fi)
1258 {
1259 /* We retrieve the frame's symtab by using the frame PC. However
1260 we cannot use the frame PC as-is, because it usually points to
1261 the instruction following the "call", which is sometimes the
1262 first instruction of another function. So we rely on
1263 get_frame_address_in_block() which provides us with a PC which
1264 is guaranteed to be inside the frame's code block. */
1265 s = find_pc_symtab (get_frame_address_in_block (fi));
1266 if (s
1267 && s->language != current_language->la_language
1268 && s->language != language_unknown
1269 && language_mode == language_mode_auto)
1270 {
1271 set_language (s->language);
1272 }
1273 }
1274 }
1275
1276 /* Create an arbitrary (i.e. address specified by user) or innermost frame.
1277 Always returns a non-NULL value. */
1278
1279 struct frame_info *
1280 create_new_frame (CORE_ADDR addr, CORE_ADDR pc)
1281 {
1282 struct frame_info *fi;
1283
1284 if (frame_debug)
1285 {
1286 fprintf_unfiltered (gdb_stdlog,
1287 "{ create_new_frame (addr=%s, pc=%s) ",
1288 hex_string (addr), hex_string (pc));
1289 }
1290
1291 fi = FRAME_OBSTACK_ZALLOC (struct frame_info);
1292
1293 fi->next = create_sentinel_frame (current_program_space, get_current_regcache ());
1294
1295 /* Set/update this frame's cached PC value, found in the next frame.
1296 Do this before looking for this frame's unwinder. A sniffer is
1297 very likely to read this, and the corresponding unwinder is
1298 entitled to rely that the PC doesn't magically change. */
1299 fi->next->prev_pc.value = pc;
1300 fi->next->prev_pc.p = 1;
1301
1302 /* We currently assume that frame chain's can't cross spaces. */
1303 fi->pspace = fi->next->pspace;
1304 fi->aspace = fi->next->aspace;
1305
1306 /* Select/initialize both the unwind function and the frame's type
1307 based on the PC. */
1308 fi->unwind = frame_unwind_find_by_frame (fi, &fi->prologue_cache);
1309
1310 fi->this_id.p = 1;
1311 fi->this_id.value = frame_id_build (addr, pc);
1312
1313 if (frame_debug)
1314 {
1315 fprintf_unfiltered (gdb_stdlog, "-> ");
1316 fprint_frame (gdb_stdlog, fi);
1317 fprintf_unfiltered (gdb_stdlog, " }\n");
1318 }
1319
1320 return fi;
1321 }
1322
1323 /* Return the frame that THIS_FRAME calls (NULL if THIS_FRAME is the
1324 innermost frame). Be careful to not fall off the bottom of the
1325 frame chain and onto the sentinel frame. */
1326
1327 struct frame_info *
1328 get_next_frame (struct frame_info *this_frame)
1329 {
1330 if (this_frame->level > 0)
1331 return this_frame->next;
1332 else
1333 return NULL;
1334 }
1335
1336 /* Observer for the target_changed event. */
1337
1338 static void
1339 frame_observer_target_changed (struct target_ops *target)
1340 {
1341 reinit_frame_cache ();
1342 }
1343
1344 /* Flush the entire frame cache. */
1345
1346 void
1347 reinit_frame_cache (void)
1348 {
1349 struct frame_info *fi;
1350
1351 /* Tear down all frame caches. */
1352 for (fi = current_frame; fi != NULL; fi = fi->prev)
1353 {
1354 if (fi->prologue_cache && fi->unwind->dealloc_cache)
1355 fi->unwind->dealloc_cache (fi, fi->prologue_cache);
1356 if (fi->base_cache && fi->base->unwind->dealloc_cache)
1357 fi->base->unwind->dealloc_cache (fi, fi->base_cache);
1358 }
1359
1360 /* Since we can't really be sure what the first object allocated was */
1361 obstack_free (&frame_cache_obstack, 0);
1362 obstack_init (&frame_cache_obstack);
1363
1364 if (current_frame != NULL)
1365 annotate_frames_invalid ();
1366
1367 current_frame = NULL; /* Invalidate cache */
1368 select_frame (NULL);
1369 frame_stash_invalidate ();
1370 if (frame_debug)
1371 fprintf_unfiltered (gdb_stdlog, "{ reinit_frame_cache () }\n");
1372 }
1373
1374 /* Find where a register is saved (in memory or another register).
1375 The result of frame_register_unwind is just where it is saved
1376 relative to this particular frame. */
1377
1378 static void
1379 frame_register_unwind_location (struct frame_info *this_frame, int regnum,
1380 int *optimizedp, enum lval_type *lvalp,
1381 CORE_ADDR *addrp, int *realnump)
1382 {
1383 gdb_assert (this_frame == NULL || this_frame->level >= 0);
1384
1385 while (this_frame != NULL)
1386 {
1387 frame_register_unwind (this_frame, regnum, optimizedp, lvalp,
1388 addrp, realnump, NULL);
1389
1390 if (*optimizedp)
1391 break;
1392
1393 if (*lvalp != lval_register)
1394 break;
1395
1396 regnum = *realnump;
1397 this_frame = get_next_frame (this_frame);
1398 }
1399 }
1400
1401 /* Return a "struct frame_info" corresponding to the frame that called
1402 THIS_FRAME. Returns NULL if there is no such frame.
1403
1404 Unlike get_prev_frame, this function always tries to unwind the
1405 frame. */
1406
1407 static struct frame_info *
1408 get_prev_frame_1 (struct frame_info *this_frame)
1409 {
1410 struct frame_id this_id;
1411 struct gdbarch *gdbarch;
1412
1413 gdb_assert (this_frame != NULL);
1414 gdbarch = get_frame_arch (this_frame);
1415
1416 if (frame_debug)
1417 {
1418 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame_1 (this_frame=");
1419 if (this_frame != NULL)
1420 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1421 else
1422 fprintf_unfiltered (gdb_stdlog, "<NULL>");
1423 fprintf_unfiltered (gdb_stdlog, ") ");
1424 }
1425
1426 /* Only try to do the unwind once. */
1427 if (this_frame->prev_p)
1428 {
1429 if (frame_debug)
1430 {
1431 fprintf_unfiltered (gdb_stdlog, "-> ");
1432 fprint_frame (gdb_stdlog, this_frame->prev);
1433 fprintf_unfiltered (gdb_stdlog, " // cached \n");
1434 }
1435 return this_frame->prev;
1436 }
1437
1438 /* If the frame unwinder hasn't been selected yet, we must do so
1439 before setting prev_p; otherwise the check for misbehaved
1440 sniffers will think that this frame's sniffer tried to unwind
1441 further (see frame_cleanup_after_sniffer). */
1442 if (this_frame->unwind == NULL)
1443 this_frame->unwind
1444 = frame_unwind_find_by_frame (this_frame, &this_frame->prologue_cache);
1445
1446 this_frame->prev_p = 1;
1447 this_frame->stop_reason = UNWIND_NO_REASON;
1448
1449 /* If we are unwinding from an inline frame, all of the below tests
1450 were already performed when we unwound from the next non-inline
1451 frame. We must skip them, since we can not get THIS_FRAME's ID
1452 until we have unwound all the way down to the previous non-inline
1453 frame. */
1454 if (get_frame_type (this_frame) == INLINE_FRAME)
1455 return get_prev_frame_raw (this_frame);
1456
1457 /* Check that this frame's ID was valid. If it wasn't, don't try to
1458 unwind to the prev frame. Be careful to not apply this test to
1459 the sentinel frame. */
1460 this_id = get_frame_id (this_frame);
1461 if (this_frame->level >= 0 && frame_id_eq (this_id, outer_frame_id))
1462 {
1463 if (frame_debug)
1464 {
1465 fprintf_unfiltered (gdb_stdlog, "-> ");
1466 fprint_frame (gdb_stdlog, NULL);
1467 fprintf_unfiltered (gdb_stdlog, " // this ID is NULL }\n");
1468 }
1469 this_frame->stop_reason = UNWIND_NULL_ID;
1470 return NULL;
1471 }
1472
1473 /* Check that this frame's ID isn't inner to (younger, below, next)
1474 the next frame. This happens when a frame unwind goes backwards.
1475 This check is valid only if this frame and the next frame are NORMAL.
1476 See the comment at frame_id_inner for details. */
1477 if (get_frame_type (this_frame) == NORMAL_FRAME
1478 && this_frame->next->unwind->type == NORMAL_FRAME
1479 && frame_id_inner (get_frame_arch (this_frame->next), this_id,
1480 get_frame_id (this_frame->next)))
1481 {
1482 if (frame_debug)
1483 {
1484 fprintf_unfiltered (gdb_stdlog, "-> ");
1485 fprint_frame (gdb_stdlog, NULL);
1486 fprintf_unfiltered (gdb_stdlog, " // this frame ID is inner }\n");
1487 }
1488 this_frame->stop_reason = UNWIND_INNER_ID;
1489 return NULL;
1490 }
1491
1492 /* Check that this and the next frame are not identical. If they
1493 are, there is most likely a stack cycle. As with the inner-than
1494 test above, avoid comparing the inner-most and sentinel frames. */
1495 if (this_frame->level > 0
1496 && frame_id_eq (this_id, get_frame_id (this_frame->next)))
1497 {
1498 if (frame_debug)
1499 {
1500 fprintf_unfiltered (gdb_stdlog, "-> ");
1501 fprint_frame (gdb_stdlog, NULL);
1502 fprintf_unfiltered (gdb_stdlog, " // this frame has same ID }\n");
1503 }
1504 this_frame->stop_reason = UNWIND_SAME_ID;
1505 return NULL;
1506 }
1507
1508 /* Check that this and the next frame do not unwind the PC register
1509 to the same memory location. If they do, then even though they
1510 have different frame IDs, the new frame will be bogus; two
1511 functions can't share a register save slot for the PC. This can
1512 happen when the prologue analyzer finds a stack adjustment, but
1513 no PC save.
1514
1515 This check does assume that the "PC register" is roughly a
1516 traditional PC, even if the gdbarch_unwind_pc method adjusts
1517 it (we do not rely on the value, only on the unwound PC being
1518 dependent on this value). A potential improvement would be
1519 to have the frame prev_pc method and the gdbarch unwind_pc
1520 method set the same lval and location information as
1521 frame_register_unwind. */
1522 if (this_frame->level > 0
1523 && gdbarch_pc_regnum (gdbarch) >= 0
1524 && get_frame_type (this_frame) == NORMAL_FRAME
1525 && (get_frame_type (this_frame->next) == NORMAL_FRAME
1526 || get_frame_type (this_frame->next) == INLINE_FRAME))
1527 {
1528 int optimized, realnum, nrealnum;
1529 enum lval_type lval, nlval;
1530 CORE_ADDR addr, naddr;
1531
1532 frame_register_unwind_location (this_frame,
1533 gdbarch_pc_regnum (gdbarch),
1534 &optimized, &lval, &addr, &realnum);
1535 frame_register_unwind_location (get_next_frame (this_frame),
1536 gdbarch_pc_regnum (gdbarch),
1537 &optimized, &nlval, &naddr, &nrealnum);
1538
1539 if ((lval == lval_memory && lval == nlval && addr == naddr)
1540 || (lval == lval_register && lval == nlval && realnum == nrealnum))
1541 {
1542 if (frame_debug)
1543 {
1544 fprintf_unfiltered (gdb_stdlog, "-> ");
1545 fprint_frame (gdb_stdlog, NULL);
1546 fprintf_unfiltered (gdb_stdlog, " // no saved PC }\n");
1547 }
1548
1549 this_frame->stop_reason = UNWIND_NO_SAVED_PC;
1550 this_frame->prev = NULL;
1551 return NULL;
1552 }
1553 }
1554
1555 return get_prev_frame_raw (this_frame);
1556 }
1557
1558 /* Construct a new "struct frame_info" and link it previous to
1559 this_frame. */
1560
1561 static struct frame_info *
1562 get_prev_frame_raw (struct frame_info *this_frame)
1563 {
1564 struct frame_info *prev_frame;
1565
1566 /* Allocate the new frame but do not wire it in to the frame chain.
1567 Some (bad) code in INIT_FRAME_EXTRA_INFO tries to look along
1568 frame->next to pull some fancy tricks (of course such code is, by
1569 definition, recursive). Try to prevent it.
1570
1571 There is no reason to worry about memory leaks, should the
1572 remainder of the function fail. The allocated memory will be
1573 quickly reclaimed when the frame cache is flushed, and the `we've
1574 been here before' check above will stop repeated memory
1575 allocation calls. */
1576 prev_frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
1577 prev_frame->level = this_frame->level + 1;
1578
1579 /* For now, assume we don't have frame chains crossing address
1580 spaces. */
1581 prev_frame->pspace = this_frame->pspace;
1582 prev_frame->aspace = this_frame->aspace;
1583
1584 /* Don't yet compute ->unwind (and hence ->type). It is computed
1585 on-demand in get_frame_type, frame_register_unwind, and
1586 get_frame_id. */
1587
1588 /* Don't yet compute the frame's ID. It is computed on-demand by
1589 get_frame_id(). */
1590
1591 /* The unwound frame ID is validate at the start of this function,
1592 as part of the logic to decide if that frame should be further
1593 unwound, and not here while the prev frame is being created.
1594 Doing this makes it possible for the user to examine a frame that
1595 has an invalid frame ID.
1596
1597 Some very old VAX code noted: [...] For the sake of argument,
1598 suppose that the stack is somewhat trashed (which is one reason
1599 that "info frame" exists). So, return 0 (indicating we don't
1600 know the address of the arglist) if we don't know what frame this
1601 frame calls. */
1602
1603 /* Link it in. */
1604 this_frame->prev = prev_frame;
1605 prev_frame->next = this_frame;
1606
1607 if (frame_debug)
1608 {
1609 fprintf_unfiltered (gdb_stdlog, "-> ");
1610 fprint_frame (gdb_stdlog, prev_frame);
1611 fprintf_unfiltered (gdb_stdlog, " }\n");
1612 }
1613
1614 return prev_frame;
1615 }
1616
1617 /* Debug routine to print a NULL frame being returned. */
1618
1619 static void
1620 frame_debug_got_null_frame (struct frame_info *this_frame,
1621 const char *reason)
1622 {
1623 if (frame_debug)
1624 {
1625 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame (this_frame=");
1626 if (this_frame != NULL)
1627 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1628 else
1629 fprintf_unfiltered (gdb_stdlog, "<NULL>");
1630 fprintf_unfiltered (gdb_stdlog, ") -> // %s}\n", reason);
1631 }
1632 }
1633
1634 /* Is this (non-sentinel) frame in the "main"() function? */
1635
1636 static int
1637 inside_main_func (struct frame_info *this_frame)
1638 {
1639 struct minimal_symbol *msymbol;
1640 CORE_ADDR maddr;
1641
1642 if (symfile_objfile == 0)
1643 return 0;
1644 msymbol = lookup_minimal_symbol (main_name (), NULL, symfile_objfile);
1645 if (msymbol == NULL)
1646 return 0;
1647 /* Make certain that the code, and not descriptor, address is
1648 returned. */
1649 maddr = gdbarch_convert_from_func_ptr_addr (get_frame_arch (this_frame),
1650 SYMBOL_VALUE_ADDRESS (msymbol),
1651 &current_target);
1652 return maddr == get_frame_func (this_frame);
1653 }
1654
1655 /* Test whether THIS_FRAME is inside the process entry point function. */
1656
1657 static int
1658 inside_entry_func (struct frame_info *this_frame)
1659 {
1660 CORE_ADDR entry_point;
1661
1662 if (!entry_point_address_query (&entry_point))
1663 return 0;
1664
1665 return get_frame_func (this_frame) == entry_point;
1666 }
1667
1668 /* Return a structure containing various interesting information about
1669 the frame that called THIS_FRAME. Returns NULL if there is entier
1670 no such frame or the frame fails any of a set of target-independent
1671 condition that should terminate the frame chain (e.g., as unwinding
1672 past main()).
1673
1674 This function should not contain target-dependent tests, such as
1675 checking whether the program-counter is zero. */
1676
1677 struct frame_info *
1678 get_prev_frame (struct frame_info *this_frame)
1679 {
1680 /* There is always a frame. If this assertion fails, suspect that
1681 something should be calling get_selected_frame() or
1682 get_current_frame(). */
1683 gdb_assert (this_frame != NULL);
1684
1685 /* tausq/2004-12-07: Dummy frames are skipped because it doesn't make much
1686 sense to stop unwinding at a dummy frame. One place where a dummy
1687 frame may have an address "inside_main_func" is on HPUX. On HPUX, the
1688 pcsqh register (space register for the instruction at the head of the
1689 instruction queue) cannot be written directly; the only way to set it
1690 is to branch to code that is in the target space. In order to implement
1691 frame dummies on HPUX, the called function is made to jump back to where
1692 the inferior was when the user function was called. If gdb was inside
1693 the main function when we created the dummy frame, the dummy frame will
1694 point inside the main function. */
1695 if (this_frame->level >= 0
1696 && get_frame_type (this_frame) == NORMAL_FRAME
1697 && !backtrace_past_main
1698 && inside_main_func (this_frame))
1699 /* Don't unwind past main(). Note, this is done _before_ the
1700 frame has been marked as previously unwound. That way if the
1701 user later decides to enable unwinds past main(), that will
1702 automatically happen. */
1703 {
1704 frame_debug_got_null_frame (this_frame, "inside main func");
1705 return NULL;
1706 }
1707
1708 /* If the user's backtrace limit has been exceeded, stop. We must
1709 add two to the current level; one of those accounts for backtrace_limit
1710 being 1-based and the level being 0-based, and the other accounts for
1711 the level of the new frame instead of the level of the current
1712 frame. */
1713 if (this_frame->level + 2 > backtrace_limit)
1714 {
1715 frame_debug_got_null_frame (this_frame, "backtrace limit exceeded");
1716 return NULL;
1717 }
1718
1719 /* If we're already inside the entry function for the main objfile,
1720 then it isn't valid. Don't apply this test to a dummy frame -
1721 dummy frame PCs typically land in the entry func. Don't apply
1722 this test to the sentinel frame. Sentinel frames should always
1723 be allowed to unwind. */
1724 /* NOTE: cagney/2003-07-07: Fixed a bug in inside_main_func() -
1725 wasn't checking for "main" in the minimal symbols. With that
1726 fixed asm-source tests now stop in "main" instead of halting the
1727 backtrace in weird and wonderful ways somewhere inside the entry
1728 file. Suspect that tests for inside the entry file/func were
1729 added to work around that (now fixed) case. */
1730 /* NOTE: cagney/2003-07-15: danielj (if I'm reading it right)
1731 suggested having the inside_entry_func test use the
1732 inside_main_func() msymbol trick (along with entry_point_address()
1733 I guess) to determine the address range of the start function.
1734 That should provide a far better stopper than the current
1735 heuristics. */
1736 /* NOTE: tausq/2004-10-09: this is needed if, for example, the compiler
1737 applied tail-call optimizations to main so that a function called
1738 from main returns directly to the caller of main. Since we don't
1739 stop at main, we should at least stop at the entry point of the
1740 application. */
1741 if (this_frame->level >= 0
1742 && get_frame_type (this_frame) == NORMAL_FRAME
1743 && !backtrace_past_entry
1744 && inside_entry_func (this_frame))
1745 {
1746 frame_debug_got_null_frame (this_frame, "inside entry func");
1747 return NULL;
1748 }
1749
1750 /* Assume that the only way to get a zero PC is through something
1751 like a SIGSEGV or a dummy frame, and hence that NORMAL frames
1752 will never unwind a zero PC. */
1753 if (this_frame->level > 0
1754 && (get_frame_type (this_frame) == NORMAL_FRAME
1755 || get_frame_type (this_frame) == INLINE_FRAME)
1756 && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME
1757 && get_frame_pc (this_frame) == 0)
1758 {
1759 frame_debug_got_null_frame (this_frame, "zero PC");
1760 return NULL;
1761 }
1762
1763 return get_prev_frame_1 (this_frame);
1764 }
1765
1766 CORE_ADDR
1767 get_frame_pc (struct frame_info *frame)
1768 {
1769 gdb_assert (frame->next != NULL);
1770 return frame_unwind_pc (frame->next);
1771 }
1772
1773 /* Return an address that falls within THIS_FRAME's code block. */
1774
1775 CORE_ADDR
1776 get_frame_address_in_block (struct frame_info *this_frame)
1777 {
1778 /* A draft address. */
1779 CORE_ADDR pc = get_frame_pc (this_frame);
1780
1781 struct frame_info *next_frame = this_frame->next;
1782
1783 /* Calling get_frame_pc returns the resume address for THIS_FRAME.
1784 Normally the resume address is inside the body of the function
1785 associated with THIS_FRAME, but there is a special case: when
1786 calling a function which the compiler knows will never return
1787 (for instance abort), the call may be the very last instruction
1788 in the calling function. The resume address will point after the
1789 call and may be at the beginning of a different function
1790 entirely.
1791
1792 If THIS_FRAME is a signal frame or dummy frame, then we should
1793 not adjust the unwound PC. For a dummy frame, GDB pushed the
1794 resume address manually onto the stack. For a signal frame, the
1795 OS may have pushed the resume address manually and invoked the
1796 handler (e.g. GNU/Linux), or invoked the trampoline which called
1797 the signal handler - but in either case the signal handler is
1798 expected to return to the trampoline. So in both of these
1799 cases we know that the resume address is executable and
1800 related. So we only need to adjust the PC if THIS_FRAME
1801 is a normal function.
1802
1803 If the program has been interrupted while THIS_FRAME is current,
1804 then clearly the resume address is inside the associated
1805 function. There are three kinds of interruption: debugger stop
1806 (next frame will be SENTINEL_FRAME), operating system
1807 signal or exception (next frame will be SIGTRAMP_FRAME),
1808 or debugger-induced function call (next frame will be
1809 DUMMY_FRAME). So we only need to adjust the PC if
1810 NEXT_FRAME is a normal function.
1811
1812 We check the type of NEXT_FRAME first, since it is already
1813 known; frame type is determined by the unwinder, and since
1814 we have THIS_FRAME we've already selected an unwinder for
1815 NEXT_FRAME.
1816
1817 If the next frame is inlined, we need to keep going until we find
1818 the real function - for instance, if a signal handler is invoked
1819 while in an inlined function, then the code address of the
1820 "calling" normal function should not be adjusted either. */
1821
1822 while (get_frame_type (next_frame) == INLINE_FRAME)
1823 next_frame = next_frame->next;
1824
1825 if (get_frame_type (next_frame) == NORMAL_FRAME
1826 && (get_frame_type (this_frame) == NORMAL_FRAME
1827 || get_frame_type (this_frame) == INLINE_FRAME))
1828 return pc - 1;
1829
1830 return pc;
1831 }
1832
1833 void
1834 find_frame_sal (struct frame_info *frame, struct symtab_and_line *sal)
1835 {
1836 struct frame_info *next_frame;
1837 int notcurrent;
1838
1839 /* If the next frame represents an inlined function call, this frame's
1840 sal is the "call site" of that inlined function, which can not
1841 be inferred from get_frame_pc. */
1842 next_frame = get_next_frame (frame);
1843 if (frame_inlined_callees (frame) > 0)
1844 {
1845 struct symbol *sym;
1846
1847 if (next_frame)
1848 sym = get_frame_function (next_frame);
1849 else
1850 sym = inline_skipped_symbol (inferior_ptid);
1851
1852 init_sal (sal);
1853 if (SYMBOL_LINE (sym) != 0)
1854 {
1855 sal->symtab = SYMBOL_SYMTAB (sym);
1856 sal->line = SYMBOL_LINE (sym);
1857 }
1858 else
1859 /* If the symbol does not have a location, we don't know where
1860 the call site is. Do not pretend to. This is jarring, but
1861 we can't do much better. */
1862 sal->pc = get_frame_pc (frame);
1863
1864 return;
1865 }
1866
1867 /* If FRAME is not the innermost frame, that normally means that
1868 FRAME->pc points at the return instruction (which is *after* the
1869 call instruction), and we want to get the line containing the
1870 call (because the call is where the user thinks the program is).
1871 However, if the next frame is either a SIGTRAMP_FRAME or a
1872 DUMMY_FRAME, then the next frame will contain a saved interrupt
1873 PC and such a PC indicates the current (rather than next)
1874 instruction/line, consequently, for such cases, want to get the
1875 line containing fi->pc. */
1876 notcurrent = (get_frame_pc (frame) != get_frame_address_in_block (frame));
1877 (*sal) = find_pc_line (get_frame_pc (frame), notcurrent);
1878 }
1879
1880 /* Per "frame.h", return the ``address'' of the frame. Code should
1881 really be using get_frame_id(). */
1882 CORE_ADDR
1883 get_frame_base (struct frame_info *fi)
1884 {
1885 return get_frame_id (fi).stack_addr;
1886 }
1887
1888 /* High-level offsets into the frame. Used by the debug info. */
1889
1890 CORE_ADDR
1891 get_frame_base_address (struct frame_info *fi)
1892 {
1893 if (get_frame_type (fi) != NORMAL_FRAME)
1894 return 0;
1895 if (fi->base == NULL)
1896 fi->base = frame_base_find_by_frame (fi);
1897 /* Sneaky: If the low-level unwind and high-level base code share a
1898 common unwinder, let them share the prologue cache. */
1899 if (fi->base->unwind == fi->unwind)
1900 return fi->base->this_base (fi, &fi->prologue_cache);
1901 return fi->base->this_base (fi, &fi->base_cache);
1902 }
1903
1904 CORE_ADDR
1905 get_frame_locals_address (struct frame_info *fi)
1906 {
1907 if (get_frame_type (fi) != NORMAL_FRAME)
1908 return 0;
1909 /* If there isn't a frame address method, find it. */
1910 if (fi->base == NULL)
1911 fi->base = frame_base_find_by_frame (fi);
1912 /* Sneaky: If the low-level unwind and high-level base code share a
1913 common unwinder, let them share the prologue cache. */
1914 if (fi->base->unwind == fi->unwind)
1915 return fi->base->this_locals (fi, &fi->prologue_cache);
1916 return fi->base->this_locals (fi, &fi->base_cache);
1917 }
1918
1919 CORE_ADDR
1920 get_frame_args_address (struct frame_info *fi)
1921 {
1922 if (get_frame_type (fi) != NORMAL_FRAME)
1923 return 0;
1924 /* If there isn't a frame address method, find it. */
1925 if (fi->base == NULL)
1926 fi->base = frame_base_find_by_frame (fi);
1927 /* Sneaky: If the low-level unwind and high-level base code share a
1928 common unwinder, let them share the prologue cache. */
1929 if (fi->base->unwind == fi->unwind)
1930 return fi->base->this_args (fi, &fi->prologue_cache);
1931 return fi->base->this_args (fi, &fi->base_cache);
1932 }
1933
1934 /* Return true if the frame unwinder for frame FI is UNWINDER; false
1935 otherwise. */
1936
1937 int
1938 frame_unwinder_is (struct frame_info *fi, const struct frame_unwind *unwinder)
1939 {
1940 if (fi->unwind == NULL)
1941 fi->unwind = frame_unwind_find_by_frame (fi, &fi->prologue_cache);
1942 return fi->unwind == unwinder;
1943 }
1944
1945 /* Level of the selected frame: 0 for innermost, 1 for its caller, ...
1946 or -1 for a NULL frame. */
1947
1948 int
1949 frame_relative_level (struct frame_info *fi)
1950 {
1951 if (fi == NULL)
1952 return -1;
1953 else
1954 return fi->level;
1955 }
1956
1957 enum frame_type
1958 get_frame_type (struct frame_info *frame)
1959 {
1960 if (frame->unwind == NULL)
1961 /* Initialize the frame's unwinder because that's what
1962 provides the frame's type. */
1963 frame->unwind = frame_unwind_find_by_frame (frame, &frame->prologue_cache);
1964 return frame->unwind->type;
1965 }
1966
1967 struct program_space *
1968 get_frame_program_space (struct frame_info *frame)
1969 {
1970 return frame->pspace;
1971 }
1972
1973 struct program_space *
1974 frame_unwind_program_space (struct frame_info *this_frame)
1975 {
1976 gdb_assert (this_frame);
1977
1978 /* This is really a placeholder to keep the API consistent --- we
1979 assume for now that we don't have frame chains crossing
1980 spaces. */
1981 return this_frame->pspace;
1982 }
1983
1984 struct address_space *
1985 get_frame_address_space (struct frame_info *frame)
1986 {
1987 return frame->aspace;
1988 }
1989
1990 /* Memory access methods. */
1991
1992 void
1993 get_frame_memory (struct frame_info *this_frame, CORE_ADDR addr,
1994 gdb_byte *buf, int len)
1995 {
1996 read_memory (addr, buf, len);
1997 }
1998
1999 LONGEST
2000 get_frame_memory_signed (struct frame_info *this_frame, CORE_ADDR addr,
2001 int len)
2002 {
2003 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2004 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2005 return read_memory_integer (addr, len, byte_order);
2006 }
2007
2008 ULONGEST
2009 get_frame_memory_unsigned (struct frame_info *this_frame, CORE_ADDR addr,
2010 int len)
2011 {
2012 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2013 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2014 return read_memory_unsigned_integer (addr, len, byte_order);
2015 }
2016
2017 int
2018 safe_frame_unwind_memory (struct frame_info *this_frame,
2019 CORE_ADDR addr, gdb_byte *buf, int len)
2020 {
2021 /* NOTE: target_read_memory returns zero on success! */
2022 return !target_read_memory (addr, buf, len);
2023 }
2024
2025 /* Architecture methods. */
2026
2027 struct gdbarch *
2028 get_frame_arch (struct frame_info *this_frame)
2029 {
2030 return frame_unwind_arch (this_frame->next);
2031 }
2032
2033 struct gdbarch *
2034 frame_unwind_arch (struct frame_info *next_frame)
2035 {
2036 if (!next_frame->prev_arch.p)
2037 {
2038 struct gdbarch *arch;
2039
2040 if (next_frame->unwind == NULL)
2041 next_frame->unwind
2042 = frame_unwind_find_by_frame (next_frame,
2043 &next_frame->prologue_cache);
2044
2045 if (next_frame->unwind->prev_arch != NULL)
2046 arch = next_frame->unwind->prev_arch (next_frame,
2047 &next_frame->prologue_cache);
2048 else
2049 arch = get_frame_arch (next_frame);
2050
2051 next_frame->prev_arch.arch = arch;
2052 next_frame->prev_arch.p = 1;
2053 if (frame_debug)
2054 fprintf_unfiltered (gdb_stdlog,
2055 "{ frame_unwind_arch (next_frame=%d) -> %s }\n",
2056 next_frame->level,
2057 gdbarch_bfd_arch_info (arch)->printable_name);
2058 }
2059
2060 return next_frame->prev_arch.arch;
2061 }
2062
2063 struct gdbarch *
2064 frame_unwind_caller_arch (struct frame_info *next_frame)
2065 {
2066 return frame_unwind_arch (skip_inlined_frames (next_frame));
2067 }
2068
2069 /* Stack pointer methods. */
2070
2071 CORE_ADDR
2072 get_frame_sp (struct frame_info *this_frame)
2073 {
2074 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2075 /* Normality - an architecture that provides a way of obtaining any
2076 frame inner-most address. */
2077 if (gdbarch_unwind_sp_p (gdbarch))
2078 /* NOTE drow/2008-06-28: gdbarch_unwind_sp could be converted to
2079 operate on THIS_FRAME now. */
2080 return gdbarch_unwind_sp (gdbarch, this_frame->next);
2081 /* Now things are really are grim. Hope that the value returned by
2082 the gdbarch_sp_regnum register is meaningful. */
2083 if (gdbarch_sp_regnum (gdbarch) >= 0)
2084 return get_frame_register_unsigned (this_frame,
2085 gdbarch_sp_regnum (gdbarch));
2086 internal_error (__FILE__, __LINE__, _("Missing unwind SP method"));
2087 }
2088
2089 /* Return the reason why we can't unwind past FRAME. */
2090
2091 enum unwind_stop_reason
2092 get_frame_unwind_stop_reason (struct frame_info *frame)
2093 {
2094 /* If we haven't tried to unwind past this point yet, then assume
2095 that unwinding would succeed. */
2096 if (frame->prev_p == 0)
2097 return UNWIND_NO_REASON;
2098
2099 /* Otherwise, we set a reason when we succeeded (or failed) to
2100 unwind. */
2101 return frame->stop_reason;
2102 }
2103
2104 /* Return a string explaining REASON. */
2105
2106 const char *
2107 frame_stop_reason_string (enum unwind_stop_reason reason)
2108 {
2109 switch (reason)
2110 {
2111 case UNWIND_NULL_ID:
2112 return _("unwinder did not report frame ID");
2113
2114 case UNWIND_INNER_ID:
2115 return _("previous frame inner to this frame (corrupt stack?)");
2116
2117 case UNWIND_SAME_ID:
2118 return _("previous frame identical to this frame (corrupt stack?)");
2119
2120 case UNWIND_NO_SAVED_PC:
2121 return _("frame did not save the PC");
2122
2123 case UNWIND_NO_REASON:
2124 case UNWIND_FIRST_ERROR:
2125 default:
2126 internal_error (__FILE__, __LINE__,
2127 "Invalid frame stop reason");
2128 }
2129 }
2130
2131 /* Clean up after a failed (wrong unwinder) attempt to unwind past
2132 FRAME. */
2133
2134 static void
2135 frame_cleanup_after_sniffer (void *arg)
2136 {
2137 struct frame_info *frame = arg;
2138
2139 /* The sniffer should not allocate a prologue cache if it did not
2140 match this frame. */
2141 gdb_assert (frame->prologue_cache == NULL);
2142
2143 /* No sniffer should extend the frame chain; sniff based on what is
2144 already certain. */
2145 gdb_assert (!frame->prev_p);
2146
2147 /* The sniffer should not check the frame's ID; that's circular. */
2148 gdb_assert (!frame->this_id.p);
2149
2150 /* Clear cached fields dependent on the unwinder.
2151
2152 The previous PC is independent of the unwinder, but the previous
2153 function is not (see get_frame_address_in_block). */
2154 frame->prev_func.p = 0;
2155 frame->prev_func.addr = 0;
2156
2157 /* Discard the unwinder last, so that we can easily find it if an assertion
2158 in this function triggers. */
2159 frame->unwind = NULL;
2160 }
2161
2162 /* Set FRAME's unwinder temporarily, so that we can call a sniffer.
2163 Return a cleanup which should be called if unwinding fails, and
2164 discarded if it succeeds. */
2165
2166 struct cleanup *
2167 frame_prepare_for_sniffer (struct frame_info *frame,
2168 const struct frame_unwind *unwind)
2169 {
2170 gdb_assert (frame->unwind == NULL);
2171 frame->unwind = unwind;
2172 return make_cleanup (frame_cleanup_after_sniffer, frame);
2173 }
2174
2175 extern initialize_file_ftype _initialize_frame; /* -Wmissing-prototypes */
2176
2177 static struct cmd_list_element *set_backtrace_cmdlist;
2178 static struct cmd_list_element *show_backtrace_cmdlist;
2179
2180 static void
2181 set_backtrace_cmd (char *args, int from_tty)
2182 {
2183 help_list (set_backtrace_cmdlist, "set backtrace ", -1, gdb_stdout);
2184 }
2185
2186 static void
2187 show_backtrace_cmd (char *args, int from_tty)
2188 {
2189 cmd_show_list (show_backtrace_cmdlist, from_tty, "");
2190 }
2191
2192 void
2193 _initialize_frame (void)
2194 {
2195 obstack_init (&frame_cache_obstack);
2196
2197 observer_attach_target_changed (frame_observer_target_changed);
2198
2199 add_prefix_cmd ("backtrace", class_maintenance, set_backtrace_cmd, _("\
2200 Set backtrace specific variables.\n\
2201 Configure backtrace variables such as the backtrace limit"),
2202 &set_backtrace_cmdlist, "set backtrace ",
2203 0/*allow-unknown*/, &setlist);
2204 add_prefix_cmd ("backtrace", class_maintenance, show_backtrace_cmd, _("\
2205 Show backtrace specific variables\n\
2206 Show backtrace variables such as the backtrace limit"),
2207 &show_backtrace_cmdlist, "show backtrace ",
2208 0/*allow-unknown*/, &showlist);
2209
2210 add_setshow_boolean_cmd ("past-main", class_obscure,
2211 &backtrace_past_main, _("\
2212 Set whether backtraces should continue past \"main\"."), _("\
2213 Show whether backtraces should continue past \"main\"."), _("\
2214 Normally the caller of \"main\" is not of interest, so GDB will terminate\n\
2215 the backtrace at \"main\". Set this variable if you need to see the rest\n\
2216 of the stack trace."),
2217 NULL,
2218 show_backtrace_past_main,
2219 &set_backtrace_cmdlist,
2220 &show_backtrace_cmdlist);
2221
2222 add_setshow_boolean_cmd ("past-entry", class_obscure,
2223 &backtrace_past_entry, _("\
2224 Set whether backtraces should continue past the entry point of a program."),
2225 _("\
2226 Show whether backtraces should continue past the entry point of a program."),
2227 _("\
2228 Normally there are no callers beyond the entry point of a program, so GDB\n\
2229 will terminate the backtrace there. Set this variable if you need to see \n\
2230 the rest of the stack trace."),
2231 NULL,
2232 show_backtrace_past_entry,
2233 &set_backtrace_cmdlist,
2234 &show_backtrace_cmdlist);
2235
2236 add_setshow_integer_cmd ("limit", class_obscure,
2237 &backtrace_limit, _("\
2238 Set an upper bound on the number of backtrace levels."), _("\
2239 Show the upper bound on the number of backtrace levels."), _("\
2240 No more than the specified number of frames can be displayed or examined.\n\
2241 Zero is unlimited."),
2242 NULL,
2243 show_backtrace_limit,
2244 &set_backtrace_cmdlist,
2245 &show_backtrace_cmdlist);
2246
2247 /* Debug this files internals. */
2248 add_setshow_zinteger_cmd ("frame", class_maintenance, &frame_debug, _("\
2249 Set frame debugging."), _("\
2250 Show frame debugging."), _("\
2251 When non-zero, frame specific internal debugging is enabled."),
2252 NULL,
2253 show_frame_debug,
2254 &setdebuglist, &showdebuglist);
2255 }