run copyright.sh for 2011.
[binutils-gdb.git] / gdb / frame.c
1 /* Cache and manage frames for GDB, the GNU debugger.
2
3 Copyright (C) 1986, 1987, 1989, 1991, 1994, 1995, 1996, 1998, 2000, 2001,
4 2002, 2003, 2004, 2007, 2008, 2009, 2010, 2011
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "frame.h"
24 #include "target.h"
25 #include "value.h"
26 #include "inferior.h" /* for inferior_ptid */
27 #include "regcache.h"
28 #include "gdb_assert.h"
29 #include "gdb_string.h"
30 #include "user-regs.h"
31 #include "gdb_obstack.h"
32 #include "dummy-frame.h"
33 #include "sentinel-frame.h"
34 #include "gdbcore.h"
35 #include "annotate.h"
36 #include "language.h"
37 #include "frame-unwind.h"
38 #include "frame-base.h"
39 #include "command.h"
40 #include "gdbcmd.h"
41 #include "observer.h"
42 #include "objfiles.h"
43 #include "exceptions.h"
44 #include "gdbthread.h"
45 #include "block.h"
46 #include "inline-frame.h"
47 #include "tracepoint.h"
48
49 static struct frame_info *get_prev_frame_1 (struct frame_info *this_frame);
50 static struct frame_info *get_prev_frame_raw (struct frame_info *this_frame);
51
52 /* We keep a cache of stack frames, each of which is a "struct
53 frame_info". The innermost one gets allocated (in
54 wait_for_inferior) each time the inferior stops; current_frame
55 points to it. Additional frames get allocated (in get_prev_frame)
56 as needed, and are chained through the next and prev fields. Any
57 time that the frame cache becomes invalid (most notably when we
58 execute something, but also if we change how we interpret the
59 frames (e.g. "set heuristic-fence-post" in mips-tdep.c, or anything
60 which reads new symbols)), we should call reinit_frame_cache. */
61
62 struct frame_info
63 {
64 /* Level of this frame. The inner-most (youngest) frame is at level
65 0. As you move towards the outer-most (oldest) frame, the level
66 increases. This is a cached value. It could just as easily be
67 computed by counting back from the selected frame to the inner
68 most frame. */
69 /* NOTE: cagney/2002-04-05: Perhaps a level of ``-1'' should be
70 reserved to indicate a bogus frame - one that has been created
71 just to keep GDB happy (GDB always needs a frame). For the
72 moment leave this as speculation. */
73 int level;
74
75 /* The frame's program space. */
76 struct program_space *pspace;
77
78 /* The frame's address space. */
79 struct address_space *aspace;
80
81 /* The frame's low-level unwinder and corresponding cache. The
82 low-level unwinder is responsible for unwinding register values
83 for the previous frame. The low-level unwind methods are
84 selected based on the presence, or otherwise, of register unwind
85 information such as CFI. */
86 void *prologue_cache;
87 const struct frame_unwind *unwind;
88
89 /* Cached copy of the previous frame's architecture. */
90 struct
91 {
92 int p;
93 struct gdbarch *arch;
94 } prev_arch;
95
96 /* Cached copy of the previous frame's resume address. */
97 struct {
98 int p;
99 CORE_ADDR value;
100 } prev_pc;
101
102 /* Cached copy of the previous frame's function address. */
103 struct
104 {
105 CORE_ADDR addr;
106 int p;
107 } prev_func;
108
109 /* This frame's ID. */
110 struct
111 {
112 int p;
113 struct frame_id value;
114 } this_id;
115
116 /* The frame's high-level base methods, and corresponding cache.
117 The high level base methods are selected based on the frame's
118 debug info. */
119 const struct frame_base *base;
120 void *base_cache;
121
122 /* Pointers to the next (down, inner, younger) and previous (up,
123 outer, older) frame_info's in the frame cache. */
124 struct frame_info *next; /* down, inner, younger */
125 int prev_p;
126 struct frame_info *prev; /* up, outer, older */
127
128 /* The reason why we could not set PREV, or UNWIND_NO_REASON if we
129 could. Only valid when PREV_P is set. */
130 enum unwind_stop_reason stop_reason;
131 };
132
133 /* A frame stash used to speed up frame lookups. */
134
135 /* We currently only stash one frame at a time, as this seems to be
136 sufficient for now. */
137 static struct frame_info *frame_stash = NULL;
138
139 /* Add the following FRAME to the frame stash. */
140
141 static void
142 frame_stash_add (struct frame_info *frame)
143 {
144 frame_stash = frame;
145 }
146
147 /* Search the frame stash for an entry with the given frame ID.
148 If found, return that frame. Otherwise return NULL. */
149
150 static struct frame_info *
151 frame_stash_find (struct frame_id id)
152 {
153 if (frame_stash && frame_id_eq (frame_stash->this_id.value, id))
154 return frame_stash;
155
156 return NULL;
157 }
158
159 /* Invalidate the frame stash by removing all entries in it. */
160
161 static void
162 frame_stash_invalidate (void)
163 {
164 frame_stash = NULL;
165 }
166
167 /* Flag to control debugging. */
168
169 int frame_debug;
170 static void
171 show_frame_debug (struct ui_file *file, int from_tty,
172 struct cmd_list_element *c, const char *value)
173 {
174 fprintf_filtered (file, _("Frame debugging is %s.\n"), value);
175 }
176
177 /* Flag to indicate whether backtraces should stop at main et.al. */
178
179 static int backtrace_past_main;
180 static void
181 show_backtrace_past_main (struct ui_file *file, int from_tty,
182 struct cmd_list_element *c, const char *value)
183 {
184 fprintf_filtered (file, _("\
185 Whether backtraces should continue past \"main\" is %s.\n"),
186 value);
187 }
188
189 static int backtrace_past_entry;
190 static void
191 show_backtrace_past_entry (struct ui_file *file, int from_tty,
192 struct cmd_list_element *c, const char *value)
193 {
194 fprintf_filtered (file, _("\
195 Whether backtraces should continue past the entry point of a program is %s.\n"),
196 value);
197 }
198
199 static int backtrace_limit = INT_MAX;
200 static void
201 show_backtrace_limit (struct ui_file *file, int from_tty,
202 struct cmd_list_element *c, const char *value)
203 {
204 fprintf_filtered (file, _("\
205 An upper bound on the number of backtrace levels is %s.\n"),
206 value);
207 }
208
209
210 static void
211 fprint_field (struct ui_file *file, const char *name, int p, CORE_ADDR addr)
212 {
213 if (p)
214 fprintf_unfiltered (file, "%s=%s", name, hex_string (addr));
215 else
216 fprintf_unfiltered (file, "!%s", name);
217 }
218
219 void
220 fprint_frame_id (struct ui_file *file, struct frame_id id)
221 {
222 fprintf_unfiltered (file, "{");
223 fprint_field (file, "stack", id.stack_addr_p, id.stack_addr);
224 fprintf_unfiltered (file, ",");
225 fprint_field (file, "code", id.code_addr_p, id.code_addr);
226 fprintf_unfiltered (file, ",");
227 fprint_field (file, "special", id.special_addr_p, id.special_addr);
228 if (id.inline_depth)
229 fprintf_unfiltered (file, ",inlined=%d", id.inline_depth);
230 fprintf_unfiltered (file, "}");
231 }
232
233 static void
234 fprint_frame_type (struct ui_file *file, enum frame_type type)
235 {
236 switch (type)
237 {
238 case NORMAL_FRAME:
239 fprintf_unfiltered (file, "NORMAL_FRAME");
240 return;
241 case DUMMY_FRAME:
242 fprintf_unfiltered (file, "DUMMY_FRAME");
243 return;
244 case INLINE_FRAME:
245 fprintf_unfiltered (file, "INLINE_FRAME");
246 return;
247 case SENTINEL_FRAME:
248 fprintf_unfiltered (file, "SENTINEL_FRAME");
249 return;
250 case SIGTRAMP_FRAME:
251 fprintf_unfiltered (file, "SIGTRAMP_FRAME");
252 return;
253 case ARCH_FRAME:
254 fprintf_unfiltered (file, "ARCH_FRAME");
255 return;
256 default:
257 fprintf_unfiltered (file, "<unknown type>");
258 return;
259 };
260 }
261
262 static void
263 fprint_frame (struct ui_file *file, struct frame_info *fi)
264 {
265 if (fi == NULL)
266 {
267 fprintf_unfiltered (file, "<NULL frame>");
268 return;
269 }
270 fprintf_unfiltered (file, "{");
271 fprintf_unfiltered (file, "level=%d", fi->level);
272 fprintf_unfiltered (file, ",");
273 fprintf_unfiltered (file, "type=");
274 if (fi->unwind != NULL)
275 fprint_frame_type (file, fi->unwind->type);
276 else
277 fprintf_unfiltered (file, "<unknown>");
278 fprintf_unfiltered (file, ",");
279 fprintf_unfiltered (file, "unwind=");
280 if (fi->unwind != NULL)
281 gdb_print_host_address (fi->unwind, file);
282 else
283 fprintf_unfiltered (file, "<unknown>");
284 fprintf_unfiltered (file, ",");
285 fprintf_unfiltered (file, "pc=");
286 if (fi->next != NULL && fi->next->prev_pc.p)
287 fprintf_unfiltered (file, "%s", hex_string (fi->next->prev_pc.value));
288 else
289 fprintf_unfiltered (file, "<unknown>");
290 fprintf_unfiltered (file, ",");
291 fprintf_unfiltered (file, "id=");
292 if (fi->this_id.p)
293 fprint_frame_id (file, fi->this_id.value);
294 else
295 fprintf_unfiltered (file, "<unknown>");
296 fprintf_unfiltered (file, ",");
297 fprintf_unfiltered (file, "func=");
298 if (fi->next != NULL && fi->next->prev_func.p)
299 fprintf_unfiltered (file, "%s", hex_string (fi->next->prev_func.addr));
300 else
301 fprintf_unfiltered (file, "<unknown>");
302 fprintf_unfiltered (file, "}");
303 }
304
305 /* Given FRAME, return the enclosing normal frame for inlined
306 function frames. Otherwise return the original frame. */
307
308 static struct frame_info *
309 skip_inlined_frames (struct frame_info *frame)
310 {
311 while (get_frame_type (frame) == INLINE_FRAME)
312 frame = get_prev_frame (frame);
313
314 return frame;
315 }
316
317 /* Return a frame uniq ID that can be used to, later, re-find the
318 frame. */
319
320 struct frame_id
321 get_frame_id (struct frame_info *fi)
322 {
323 if (fi == NULL)
324 return null_frame_id;
325
326 if (!fi->this_id.p)
327 {
328 if (frame_debug)
329 fprintf_unfiltered (gdb_stdlog, "{ get_frame_id (fi=%d) ",
330 fi->level);
331 /* Find the unwinder. */
332 if (fi->unwind == NULL)
333 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
334 /* Find THIS frame's ID. */
335 /* Default to outermost if no ID is found. */
336 fi->this_id.value = outer_frame_id;
337 fi->unwind->this_id (fi, &fi->prologue_cache, &fi->this_id.value);
338 gdb_assert (frame_id_p (fi->this_id.value));
339 fi->this_id.p = 1;
340 if (frame_debug)
341 {
342 fprintf_unfiltered (gdb_stdlog, "-> ");
343 fprint_frame_id (gdb_stdlog, fi->this_id.value);
344 fprintf_unfiltered (gdb_stdlog, " }\n");
345 }
346 }
347
348 frame_stash_add (fi);
349
350 return fi->this_id.value;
351 }
352
353 struct frame_id
354 get_stack_frame_id (struct frame_info *next_frame)
355 {
356 return get_frame_id (skip_inlined_frames (next_frame));
357 }
358
359 struct frame_id
360 frame_unwind_caller_id (struct frame_info *next_frame)
361 {
362 struct frame_info *this_frame;
363
364 /* Use get_prev_frame_1, and not get_prev_frame. The latter will truncate
365 the frame chain, leading to this function unintentionally
366 returning a null_frame_id (e.g., when a caller requests the frame
367 ID of "main()"s caller. */
368
369 next_frame = skip_inlined_frames (next_frame);
370 this_frame = get_prev_frame_1 (next_frame);
371 if (this_frame)
372 return get_frame_id (skip_inlined_frames (this_frame));
373 else
374 return null_frame_id;
375 }
376
377 const struct frame_id null_frame_id; /* All zeros. */
378 const struct frame_id outer_frame_id = { 0, 0, 0, 0, 0, 1, 0 };
379
380 struct frame_id
381 frame_id_build_special (CORE_ADDR stack_addr, CORE_ADDR code_addr,
382 CORE_ADDR special_addr)
383 {
384 struct frame_id id = null_frame_id;
385
386 id.stack_addr = stack_addr;
387 id.stack_addr_p = 1;
388 id.code_addr = code_addr;
389 id.code_addr_p = 1;
390 id.special_addr = special_addr;
391 id.special_addr_p = 1;
392 return id;
393 }
394
395 struct frame_id
396 frame_id_build (CORE_ADDR stack_addr, CORE_ADDR code_addr)
397 {
398 struct frame_id id = null_frame_id;
399
400 id.stack_addr = stack_addr;
401 id.stack_addr_p = 1;
402 id.code_addr = code_addr;
403 id.code_addr_p = 1;
404 return id;
405 }
406
407 struct frame_id
408 frame_id_build_wild (CORE_ADDR stack_addr)
409 {
410 struct frame_id id = null_frame_id;
411
412 id.stack_addr = stack_addr;
413 id.stack_addr_p = 1;
414 return id;
415 }
416
417 int
418 frame_id_p (struct frame_id l)
419 {
420 int p;
421
422 /* The frame is valid iff it has a valid stack address. */
423 p = l.stack_addr_p;
424 /* outer_frame_id is also valid. */
425 if (!p && memcmp (&l, &outer_frame_id, sizeof (l)) == 0)
426 p = 1;
427 if (frame_debug)
428 {
429 fprintf_unfiltered (gdb_stdlog, "{ frame_id_p (l=");
430 fprint_frame_id (gdb_stdlog, l);
431 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", p);
432 }
433 return p;
434 }
435
436 int
437 frame_id_inlined_p (struct frame_id l)
438 {
439 if (!frame_id_p (l))
440 return 0;
441
442 return (l.inline_depth != 0);
443 }
444
445 int
446 frame_id_eq (struct frame_id l, struct frame_id r)
447 {
448 int eq;
449
450 if (!l.stack_addr_p && l.special_addr_p && !r.stack_addr_p && r.special_addr_p)
451 /* The outermost frame marker is equal to itself. This is the
452 dodgy thing about outer_frame_id, since between execution steps
453 we might step into another function - from which we can't
454 unwind either. More thought required to get rid of
455 outer_frame_id. */
456 eq = 1;
457 else if (!l.stack_addr_p || !r.stack_addr_p)
458 /* Like a NaN, if either ID is invalid, the result is false.
459 Note that a frame ID is invalid iff it is the null frame ID. */
460 eq = 0;
461 else if (l.stack_addr != r.stack_addr)
462 /* If .stack addresses are different, the frames are different. */
463 eq = 0;
464 else if (l.code_addr_p && r.code_addr_p && l.code_addr != r.code_addr)
465 /* An invalid code addr is a wild card. If .code addresses are
466 different, the frames are different. */
467 eq = 0;
468 else if (l.special_addr_p && r.special_addr_p
469 && l.special_addr != r.special_addr)
470 /* An invalid special addr is a wild card (or unused). Otherwise
471 if special addresses are different, the frames are different. */
472 eq = 0;
473 else if (l.inline_depth != r.inline_depth)
474 /* If inline depths are different, the frames must be different. */
475 eq = 0;
476 else
477 /* Frames are equal. */
478 eq = 1;
479
480 if (frame_debug)
481 {
482 fprintf_unfiltered (gdb_stdlog, "{ frame_id_eq (l=");
483 fprint_frame_id (gdb_stdlog, l);
484 fprintf_unfiltered (gdb_stdlog, ",r=");
485 fprint_frame_id (gdb_stdlog, r);
486 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", eq);
487 }
488 return eq;
489 }
490
491 /* Safety net to check whether frame ID L should be inner to
492 frame ID R, according to their stack addresses.
493
494 This method cannot be used to compare arbitrary frames, as the
495 ranges of valid stack addresses may be discontiguous (e.g. due
496 to sigaltstack).
497
498 However, it can be used as safety net to discover invalid frame
499 IDs in certain circumstances. Assuming that NEXT is the immediate
500 inner frame to THIS and that NEXT and THIS are both NORMAL frames:
501
502 * The stack address of NEXT must be inner-than-or-equal to the stack
503 address of THIS.
504
505 Therefore, if frame_id_inner (THIS, NEXT) holds, some unwind
506 error has occurred.
507
508 * If NEXT and THIS have different stack addresses, no other frame
509 in the frame chain may have a stack address in between.
510
511 Therefore, if frame_id_inner (TEST, THIS) holds, but
512 frame_id_inner (TEST, NEXT) does not hold, TEST cannot refer
513 to a valid frame in the frame chain.
514
515 The sanity checks above cannot be performed when a SIGTRAMP frame
516 is involved, because signal handlers might be executed on a different
517 stack than the stack used by the routine that caused the signal
518 to be raised. This can happen for instance when a thread exceeds
519 its maximum stack size. In this case, certain compilers implement
520 a stack overflow strategy that cause the handler to be run on a
521 different stack. */
522
523 static int
524 frame_id_inner (struct gdbarch *gdbarch, struct frame_id l, struct frame_id r)
525 {
526 int inner;
527
528 if (!l.stack_addr_p || !r.stack_addr_p)
529 /* Like NaN, any operation involving an invalid ID always fails. */
530 inner = 0;
531 else if (l.inline_depth > r.inline_depth
532 && l.stack_addr == r.stack_addr
533 && l.code_addr_p == r.code_addr_p
534 && l.special_addr_p == r.special_addr_p
535 && l.special_addr == r.special_addr)
536 {
537 /* Same function, different inlined functions. */
538 struct block *lb, *rb;
539
540 gdb_assert (l.code_addr_p && r.code_addr_p);
541
542 lb = block_for_pc (l.code_addr);
543 rb = block_for_pc (r.code_addr);
544
545 if (lb == NULL || rb == NULL)
546 /* Something's gone wrong. */
547 inner = 0;
548 else
549 /* This will return true if LB and RB are the same block, or
550 if the block with the smaller depth lexically encloses the
551 block with the greater depth. */
552 inner = contained_in (lb, rb);
553 }
554 else
555 /* Only return non-zero when strictly inner than. Note that, per
556 comment in "frame.h", there is some fuzz here. Frameless
557 functions are not strictly inner than (same .stack but
558 different .code and/or .special address). */
559 inner = gdbarch_inner_than (gdbarch, l.stack_addr, r.stack_addr);
560 if (frame_debug)
561 {
562 fprintf_unfiltered (gdb_stdlog, "{ frame_id_inner (l=");
563 fprint_frame_id (gdb_stdlog, l);
564 fprintf_unfiltered (gdb_stdlog, ",r=");
565 fprint_frame_id (gdb_stdlog, r);
566 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", inner);
567 }
568 return inner;
569 }
570
571 struct frame_info *
572 frame_find_by_id (struct frame_id id)
573 {
574 struct frame_info *frame, *prev_frame;
575
576 /* ZERO denotes the null frame, let the caller decide what to do
577 about it. Should it instead return get_current_frame()? */
578 if (!frame_id_p (id))
579 return NULL;
580
581 /* Try using the frame stash first. Finding it there removes the need
582 to perform the search by looping over all frames, which can be very
583 CPU-intensive if the number of frames is very high (the loop is O(n)
584 and get_prev_frame performs a series of checks that are relatively
585 expensive). This optimization is particularly useful when this function
586 is called from another function (such as value_fetch_lazy, case
587 VALUE_LVAL (val) == lval_register) which already loops over all frames,
588 making the overall behavior O(n^2). */
589 frame = frame_stash_find (id);
590 if (frame)
591 return frame;
592
593 for (frame = get_current_frame (); ; frame = prev_frame)
594 {
595 struct frame_id this = get_frame_id (frame);
596
597 if (frame_id_eq (id, this))
598 /* An exact match. */
599 return frame;
600
601 prev_frame = get_prev_frame (frame);
602 if (!prev_frame)
603 return NULL;
604
605 /* As a safety net to avoid unnecessary backtracing while trying
606 to find an invalid ID, we check for a common situation where
607 we can detect from comparing stack addresses that no other
608 frame in the current frame chain can have this ID. See the
609 comment at frame_id_inner for details. */
610 if (get_frame_type (frame) == NORMAL_FRAME
611 && !frame_id_inner (get_frame_arch (frame), id, this)
612 && frame_id_inner (get_frame_arch (prev_frame), id,
613 get_frame_id (prev_frame)))
614 return NULL;
615 }
616 return NULL;
617 }
618
619 static CORE_ADDR
620 frame_unwind_pc (struct frame_info *this_frame)
621 {
622 if (!this_frame->prev_pc.p)
623 {
624 CORE_ADDR pc;
625
626 if (gdbarch_unwind_pc_p (frame_unwind_arch (this_frame)))
627 {
628 /* The right way. The `pure' way. The one true way. This
629 method depends solely on the register-unwind code to
630 determine the value of registers in THIS frame, and hence
631 the value of this frame's PC (resume address). A typical
632 implementation is no more than:
633
634 frame_unwind_register (this_frame, ISA_PC_REGNUM, buf);
635 return extract_unsigned_integer (buf, size of ISA_PC_REGNUM);
636
637 Note: this method is very heavily dependent on a correct
638 register-unwind implementation, it pays to fix that
639 method first; this method is frame type agnostic, since
640 it only deals with register values, it works with any
641 frame. This is all in stark contrast to the old
642 FRAME_SAVED_PC which would try to directly handle all the
643 different ways that a PC could be unwound. */
644 pc = gdbarch_unwind_pc (frame_unwind_arch (this_frame), this_frame);
645 }
646 else
647 internal_error (__FILE__, __LINE__, _("No unwind_pc method"));
648 this_frame->prev_pc.value = pc;
649 this_frame->prev_pc.p = 1;
650 if (frame_debug)
651 fprintf_unfiltered (gdb_stdlog,
652 "{ frame_unwind_caller_pc (this_frame=%d) -> %s }\n",
653 this_frame->level,
654 hex_string (this_frame->prev_pc.value));
655 }
656 return this_frame->prev_pc.value;
657 }
658
659 CORE_ADDR
660 frame_unwind_caller_pc (struct frame_info *this_frame)
661 {
662 return frame_unwind_pc (skip_inlined_frames (this_frame));
663 }
664
665 CORE_ADDR
666 get_frame_func (struct frame_info *this_frame)
667 {
668 struct frame_info *next_frame = this_frame->next;
669
670 if (!next_frame->prev_func.p)
671 {
672 /* Make certain that this, and not the adjacent, function is
673 found. */
674 CORE_ADDR addr_in_block = get_frame_address_in_block (this_frame);
675 next_frame->prev_func.p = 1;
676 next_frame->prev_func.addr = get_pc_function_start (addr_in_block);
677 if (frame_debug)
678 fprintf_unfiltered (gdb_stdlog,
679 "{ get_frame_func (this_frame=%d) -> %s }\n",
680 this_frame->level,
681 hex_string (next_frame->prev_func.addr));
682 }
683 return next_frame->prev_func.addr;
684 }
685
686 static int
687 do_frame_register_read (void *src, int regnum, gdb_byte *buf)
688 {
689 return frame_register_read (src, regnum, buf);
690 }
691
692 struct regcache *
693 frame_save_as_regcache (struct frame_info *this_frame)
694 {
695 struct address_space *aspace = get_frame_address_space (this_frame);
696 struct regcache *regcache = regcache_xmalloc (get_frame_arch (this_frame),
697 aspace);
698 struct cleanup *cleanups = make_cleanup_regcache_xfree (regcache);
699
700 regcache_save (regcache, do_frame_register_read, this_frame);
701 discard_cleanups (cleanups);
702 return regcache;
703 }
704
705 void
706 frame_pop (struct frame_info *this_frame)
707 {
708 struct frame_info *prev_frame;
709 struct regcache *scratch;
710 struct cleanup *cleanups;
711
712 if (get_frame_type (this_frame) == DUMMY_FRAME)
713 {
714 /* Popping a dummy frame involves restoring more than just registers.
715 dummy_frame_pop does all the work. */
716 dummy_frame_pop (get_frame_id (this_frame));
717 return;
718 }
719
720 /* Ensure that we have a frame to pop to. */
721 prev_frame = get_prev_frame_1 (this_frame);
722
723 if (!prev_frame)
724 error (_("Cannot pop the initial frame."));
725
726 /* Make a copy of all the register values unwound from this frame.
727 Save them in a scratch buffer so that there isn't a race between
728 trying to extract the old values from the current regcache while
729 at the same time writing new values into that same cache. */
730 scratch = frame_save_as_regcache (prev_frame);
731 cleanups = make_cleanup_regcache_xfree (scratch);
732
733 /* FIXME: cagney/2003-03-16: It should be possible to tell the
734 target's register cache that it is about to be hit with a burst
735 register transfer and that the sequence of register writes should
736 be batched. The pair target_prepare_to_store() and
737 target_store_registers() kind of suggest this functionality.
738 Unfortunately, they don't implement it. Their lack of a formal
739 definition can lead to targets writing back bogus values
740 (arguably a bug in the target code mind). */
741 /* Now copy those saved registers into the current regcache.
742 Here, regcache_cpy() calls regcache_restore(). */
743 regcache_cpy (get_current_regcache (), scratch);
744 do_cleanups (cleanups);
745
746 /* We've made right mess of GDB's local state, just discard
747 everything. */
748 reinit_frame_cache ();
749 }
750
751 void
752 frame_register_unwind (struct frame_info *frame, int regnum,
753 int *optimizedp, enum lval_type *lvalp,
754 CORE_ADDR *addrp, int *realnump, gdb_byte *bufferp)
755 {
756 struct value *value;
757
758 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
759 that the value proper does not need to be fetched. */
760 gdb_assert (optimizedp != NULL);
761 gdb_assert (lvalp != NULL);
762 gdb_assert (addrp != NULL);
763 gdb_assert (realnump != NULL);
764 /* gdb_assert (bufferp != NULL); */
765
766 value = frame_unwind_register_value (frame, regnum);
767
768 gdb_assert (value != NULL);
769
770 *optimizedp = value_optimized_out (value);
771 *lvalp = VALUE_LVAL (value);
772 *addrp = value_address (value);
773 *realnump = VALUE_REGNUM (value);
774
775 if (bufferp && !*optimizedp)
776 memcpy (bufferp, value_contents_all (value),
777 TYPE_LENGTH (value_type (value)));
778
779 /* Dispose of the new value. This prevents watchpoints from
780 trying to watch the saved frame pointer. */
781 release_value (value);
782 value_free (value);
783 }
784
785 void
786 frame_register (struct frame_info *frame, int regnum,
787 int *optimizedp, enum lval_type *lvalp,
788 CORE_ADDR *addrp, int *realnump, gdb_byte *bufferp)
789 {
790 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
791 that the value proper does not need to be fetched. */
792 gdb_assert (optimizedp != NULL);
793 gdb_assert (lvalp != NULL);
794 gdb_assert (addrp != NULL);
795 gdb_assert (realnump != NULL);
796 /* gdb_assert (bufferp != NULL); */
797
798 /* Obtain the register value by unwinding the register from the next
799 (more inner frame). */
800 gdb_assert (frame != NULL && frame->next != NULL);
801 frame_register_unwind (frame->next, regnum, optimizedp, lvalp, addrp,
802 realnump, bufferp);
803 }
804
805 void
806 frame_unwind_register (struct frame_info *frame, int regnum, gdb_byte *buf)
807 {
808 int optimized;
809 CORE_ADDR addr;
810 int realnum;
811 enum lval_type lval;
812
813 frame_register_unwind (frame, regnum, &optimized, &lval, &addr,
814 &realnum, buf);
815 }
816
817 void
818 get_frame_register (struct frame_info *frame,
819 int regnum, gdb_byte *buf)
820 {
821 frame_unwind_register (frame->next, regnum, buf);
822 }
823
824 struct value *
825 frame_unwind_register_value (struct frame_info *frame, int regnum)
826 {
827 struct gdbarch *gdbarch;
828 struct value *value;
829
830 gdb_assert (frame != NULL);
831 gdbarch = frame_unwind_arch (frame);
832
833 if (frame_debug)
834 {
835 fprintf_unfiltered (gdb_stdlog, "\
836 { frame_unwind_register_value (frame=%d,regnum=%d(%s),...) ",
837 frame->level, regnum,
838 user_reg_map_regnum_to_name (gdbarch, regnum));
839 }
840
841 /* Find the unwinder. */
842 if (frame->unwind == NULL)
843 frame_unwind_find_by_frame (frame, &frame->prologue_cache);
844
845 /* Ask this frame to unwind its register. */
846 value = frame->unwind->prev_register (frame, &frame->prologue_cache, regnum);
847
848 if (frame_debug)
849 {
850 fprintf_unfiltered (gdb_stdlog, "->");
851 if (value_optimized_out (value))
852 fprintf_unfiltered (gdb_stdlog, " optimized out");
853 else
854 {
855 if (VALUE_LVAL (value) == lval_register)
856 fprintf_unfiltered (gdb_stdlog, " register=%d",
857 VALUE_REGNUM (value));
858 else if (VALUE_LVAL (value) == lval_memory)
859 fprintf_unfiltered (gdb_stdlog, " address=%s",
860 paddress (gdbarch,
861 value_address (value)));
862 else
863 fprintf_unfiltered (gdb_stdlog, " computed");
864
865 if (value_lazy (value))
866 fprintf_unfiltered (gdb_stdlog, " lazy");
867 else
868 {
869 int i;
870 const gdb_byte *buf = value_contents (value);
871
872 fprintf_unfiltered (gdb_stdlog, " bytes=");
873 fprintf_unfiltered (gdb_stdlog, "[");
874 for (i = 0; i < register_size (gdbarch, regnum); i++)
875 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
876 fprintf_unfiltered (gdb_stdlog, "]");
877 }
878 }
879
880 fprintf_unfiltered (gdb_stdlog, " }\n");
881 }
882
883 return value;
884 }
885
886 struct value *
887 get_frame_register_value (struct frame_info *frame, int regnum)
888 {
889 return frame_unwind_register_value (frame->next, regnum);
890 }
891
892 LONGEST
893 frame_unwind_register_signed (struct frame_info *frame, int regnum)
894 {
895 struct gdbarch *gdbarch = frame_unwind_arch (frame);
896 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
897 int size = register_size (gdbarch, regnum);
898 gdb_byte buf[MAX_REGISTER_SIZE];
899
900 frame_unwind_register (frame, regnum, buf);
901 return extract_signed_integer (buf, size, byte_order);
902 }
903
904 LONGEST
905 get_frame_register_signed (struct frame_info *frame, int regnum)
906 {
907 return frame_unwind_register_signed (frame->next, regnum);
908 }
909
910 ULONGEST
911 frame_unwind_register_unsigned (struct frame_info *frame, int regnum)
912 {
913 struct gdbarch *gdbarch = frame_unwind_arch (frame);
914 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
915 int size = register_size (gdbarch, regnum);
916 gdb_byte buf[MAX_REGISTER_SIZE];
917
918 frame_unwind_register (frame, regnum, buf);
919 return extract_unsigned_integer (buf, size, byte_order);
920 }
921
922 ULONGEST
923 get_frame_register_unsigned (struct frame_info *frame, int regnum)
924 {
925 return frame_unwind_register_unsigned (frame->next, regnum);
926 }
927
928 void
929 put_frame_register (struct frame_info *frame, int regnum,
930 const gdb_byte *buf)
931 {
932 struct gdbarch *gdbarch = get_frame_arch (frame);
933 int realnum;
934 int optim;
935 enum lval_type lval;
936 CORE_ADDR addr;
937
938 frame_register (frame, regnum, &optim, &lval, &addr, &realnum, NULL);
939 if (optim)
940 error (_("Attempt to assign to a value that was optimized out."));
941 switch (lval)
942 {
943 case lval_memory:
944 {
945 /* FIXME: write_memory doesn't yet take constant buffers.
946 Arrrg! */
947 gdb_byte tmp[MAX_REGISTER_SIZE];
948
949 memcpy (tmp, buf, register_size (gdbarch, regnum));
950 write_memory (addr, tmp, register_size (gdbarch, regnum));
951 break;
952 }
953 case lval_register:
954 regcache_cooked_write (get_current_regcache (), realnum, buf);
955 break;
956 default:
957 error (_("Attempt to assign to an unmodifiable value."));
958 }
959 }
960
961 /* frame_register_read ()
962
963 Find and return the value of REGNUM for the specified stack frame.
964 The number of bytes copied is REGISTER_SIZE (REGNUM).
965
966 Returns 0 if the register value could not be found. */
967
968 int
969 frame_register_read (struct frame_info *frame, int regnum,
970 gdb_byte *myaddr)
971 {
972 int optimized;
973 enum lval_type lval;
974 CORE_ADDR addr;
975 int realnum;
976
977 frame_register (frame, regnum, &optimized, &lval, &addr, &realnum, myaddr);
978
979 return !optimized;
980 }
981
982 int
983 get_frame_register_bytes (struct frame_info *frame, int regnum,
984 CORE_ADDR offset, int len, gdb_byte *myaddr)
985 {
986 struct gdbarch *gdbarch = get_frame_arch (frame);
987 int i;
988 int maxsize;
989 int numregs;
990
991 /* Skip registers wholly inside of OFFSET. */
992 while (offset >= register_size (gdbarch, regnum))
993 {
994 offset -= register_size (gdbarch, regnum);
995 regnum++;
996 }
997
998 /* Ensure that we will not read beyond the end of the register file.
999 This can only ever happen if the debug information is bad. */
1000 maxsize = -offset;
1001 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1002 for (i = regnum; i < numregs; i++)
1003 {
1004 int thissize = register_size (gdbarch, i);
1005
1006 if (thissize == 0)
1007 break; /* This register is not available on this architecture. */
1008 maxsize += thissize;
1009 }
1010 if (len > maxsize)
1011 {
1012 warning (_("Bad debug information detected: "
1013 "Attempt to read %d bytes from registers."), len);
1014 return 0;
1015 }
1016
1017 /* Copy the data. */
1018 while (len > 0)
1019 {
1020 int curr_len = register_size (gdbarch, regnum) - offset;
1021
1022 if (curr_len > len)
1023 curr_len = len;
1024
1025 if (curr_len == register_size (gdbarch, regnum))
1026 {
1027 if (!frame_register_read (frame, regnum, myaddr))
1028 return 0;
1029 }
1030 else
1031 {
1032 gdb_byte buf[MAX_REGISTER_SIZE];
1033
1034 if (!frame_register_read (frame, regnum, buf))
1035 return 0;
1036 memcpy (myaddr, buf + offset, curr_len);
1037 }
1038
1039 myaddr += curr_len;
1040 len -= curr_len;
1041 offset = 0;
1042 regnum++;
1043 }
1044
1045 return 1;
1046 }
1047
1048 void
1049 put_frame_register_bytes (struct frame_info *frame, int regnum,
1050 CORE_ADDR offset, int len, const gdb_byte *myaddr)
1051 {
1052 struct gdbarch *gdbarch = get_frame_arch (frame);
1053
1054 /* Skip registers wholly inside of OFFSET. */
1055 while (offset >= register_size (gdbarch, regnum))
1056 {
1057 offset -= register_size (gdbarch, regnum);
1058 regnum++;
1059 }
1060
1061 /* Copy the data. */
1062 while (len > 0)
1063 {
1064 int curr_len = register_size (gdbarch, regnum) - offset;
1065
1066 if (curr_len > len)
1067 curr_len = len;
1068
1069 if (curr_len == register_size (gdbarch, regnum))
1070 {
1071 put_frame_register (frame, regnum, myaddr);
1072 }
1073 else
1074 {
1075 gdb_byte buf[MAX_REGISTER_SIZE];
1076
1077 frame_register_read (frame, regnum, buf);
1078 memcpy (buf + offset, myaddr, curr_len);
1079 put_frame_register (frame, regnum, buf);
1080 }
1081
1082 myaddr += curr_len;
1083 len -= curr_len;
1084 offset = 0;
1085 regnum++;
1086 }
1087 }
1088
1089 /* Create a sentinel frame. */
1090
1091 static struct frame_info *
1092 create_sentinel_frame (struct program_space *pspace, struct regcache *regcache)
1093 {
1094 struct frame_info *frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
1095
1096 frame->level = -1;
1097 frame->pspace = pspace;
1098 frame->aspace = get_regcache_aspace (regcache);
1099 /* Explicitly initialize the sentinel frame's cache. Provide it
1100 with the underlying regcache. In the future additional
1101 information, such as the frame's thread will be added. */
1102 frame->prologue_cache = sentinel_frame_cache (regcache);
1103 /* For the moment there is only one sentinel frame implementation. */
1104 frame->unwind = &sentinel_frame_unwind;
1105 /* Link this frame back to itself. The frame is self referential
1106 (the unwound PC is the same as the pc), so make it so. */
1107 frame->next = frame;
1108 /* Make the sentinel frame's ID valid, but invalid. That way all
1109 comparisons with it should fail. */
1110 frame->this_id.p = 1;
1111 frame->this_id.value = null_frame_id;
1112 if (frame_debug)
1113 {
1114 fprintf_unfiltered (gdb_stdlog, "{ create_sentinel_frame (...) -> ");
1115 fprint_frame (gdb_stdlog, frame);
1116 fprintf_unfiltered (gdb_stdlog, " }\n");
1117 }
1118 return frame;
1119 }
1120
1121 /* Info about the innermost stack frame (contents of FP register) */
1122
1123 static struct frame_info *current_frame;
1124
1125 /* Cache for frame addresses already read by gdb. Valid only while
1126 inferior is stopped. Control variables for the frame cache should
1127 be local to this module. */
1128
1129 static struct obstack frame_cache_obstack;
1130
1131 void *
1132 frame_obstack_zalloc (unsigned long size)
1133 {
1134 void *data = obstack_alloc (&frame_cache_obstack, size);
1135
1136 memset (data, 0, size);
1137 return data;
1138 }
1139
1140 /* Return the innermost (currently executing) stack frame. This is
1141 split into two functions. The function unwind_to_current_frame()
1142 is wrapped in catch exceptions so that, even when the unwind of the
1143 sentinel frame fails, the function still returns a stack frame. */
1144
1145 static int
1146 unwind_to_current_frame (struct ui_out *ui_out, void *args)
1147 {
1148 struct frame_info *frame = get_prev_frame (args);
1149
1150 /* A sentinel frame can fail to unwind, e.g., because its PC value
1151 lands in somewhere like start. */
1152 if (frame == NULL)
1153 return 1;
1154 current_frame = frame;
1155 return 0;
1156 }
1157
1158 struct frame_info *
1159 get_current_frame (void)
1160 {
1161 /* First check, and report, the lack of registers. Having GDB
1162 report "No stack!" or "No memory" when the target doesn't even
1163 have registers is very confusing. Besides, "printcmd.exp"
1164 explicitly checks that ``print $pc'' with no registers prints "No
1165 registers". */
1166 if (!target_has_registers)
1167 error (_("No registers."));
1168 if (!target_has_stack)
1169 error (_("No stack."));
1170 if (!target_has_memory)
1171 error (_("No memory."));
1172 /* Traceframes are effectively a substitute for the live inferior. */
1173 if (get_traceframe_number () < 0)
1174 {
1175 if (ptid_equal (inferior_ptid, null_ptid))
1176 error (_("No selected thread."));
1177 if (is_exited (inferior_ptid))
1178 error (_("Invalid selected thread."));
1179 if (is_executing (inferior_ptid))
1180 error (_("Target is executing."));
1181 }
1182
1183 if (current_frame == NULL)
1184 {
1185 struct frame_info *sentinel_frame =
1186 create_sentinel_frame (current_program_space, get_current_regcache ());
1187 if (catch_exceptions (uiout, unwind_to_current_frame, sentinel_frame,
1188 RETURN_MASK_ERROR) != 0)
1189 {
1190 /* Oops! Fake a current frame? Is this useful? It has a PC
1191 of zero, for instance. */
1192 current_frame = sentinel_frame;
1193 }
1194 }
1195 return current_frame;
1196 }
1197
1198 /* The "selected" stack frame is used by default for local and arg
1199 access. May be zero, for no selected frame. */
1200
1201 static struct frame_info *selected_frame;
1202
1203 int
1204 has_stack_frames (void)
1205 {
1206 if (!target_has_registers || !target_has_stack || !target_has_memory)
1207 return 0;
1208
1209 /* No current inferior, no frame. */
1210 if (ptid_equal (inferior_ptid, null_ptid))
1211 return 0;
1212
1213 /* Don't try to read from a dead thread. */
1214 if (is_exited (inferior_ptid))
1215 return 0;
1216
1217 /* ... or from a spinning thread. */
1218 if (is_executing (inferior_ptid))
1219 return 0;
1220
1221 return 1;
1222 }
1223
1224 /* Return the selected frame. Always non-NULL (unless there isn't an
1225 inferior sufficient for creating a frame) in which case an error is
1226 thrown. */
1227
1228 struct frame_info *
1229 get_selected_frame (const char *message)
1230 {
1231 if (selected_frame == NULL)
1232 {
1233 if (message != NULL && !has_stack_frames ())
1234 error (("%s"), message);
1235 /* Hey! Don't trust this. It should really be re-finding the
1236 last selected frame of the currently selected thread. This,
1237 though, is better than nothing. */
1238 select_frame (get_current_frame ());
1239 }
1240 /* There is always a frame. */
1241 gdb_assert (selected_frame != NULL);
1242 return selected_frame;
1243 }
1244
1245 /* This is a variant of get_selected_frame() which can be called when
1246 the inferior does not have a frame; in that case it will return
1247 NULL instead of calling error(). */
1248
1249 struct frame_info *
1250 deprecated_safe_get_selected_frame (void)
1251 {
1252 if (!has_stack_frames ())
1253 return NULL;
1254 return get_selected_frame (NULL);
1255 }
1256
1257 /* Select frame FI (or NULL - to invalidate the current frame). */
1258
1259 void
1260 select_frame (struct frame_info *fi)
1261 {
1262 struct symtab *s;
1263
1264 selected_frame = fi;
1265 /* NOTE: cagney/2002-05-04: FI can be NULL. This occurs when the
1266 frame is being invalidated. */
1267 if (deprecated_selected_frame_level_changed_hook)
1268 deprecated_selected_frame_level_changed_hook (frame_relative_level (fi));
1269
1270 /* FIXME: kseitz/2002-08-28: It would be nice to call
1271 selected_frame_level_changed_event() right here, but due to limitations
1272 in the current interfaces, we would end up flooding UIs with events
1273 because select_frame() is used extensively internally.
1274
1275 Once we have frame-parameterized frame (and frame-related) commands,
1276 the event notification can be moved here, since this function will only
1277 be called when the user's selected frame is being changed. */
1278
1279 /* Ensure that symbols for this frame are read in. Also, determine the
1280 source language of this frame, and switch to it if desired. */
1281 if (fi)
1282 {
1283 /* We retrieve the frame's symtab by using the frame PC. However
1284 we cannot use the frame PC as-is, because it usually points to
1285 the instruction following the "call", which is sometimes the
1286 first instruction of another function. So we rely on
1287 get_frame_address_in_block() which provides us with a PC which
1288 is guaranteed to be inside the frame's code block. */
1289 s = find_pc_symtab (get_frame_address_in_block (fi));
1290 if (s
1291 && s->language != current_language->la_language
1292 && s->language != language_unknown
1293 && language_mode == language_mode_auto)
1294 {
1295 set_language (s->language);
1296 }
1297 }
1298 }
1299
1300 /* Create an arbitrary (i.e. address specified by user) or innermost frame.
1301 Always returns a non-NULL value. */
1302
1303 struct frame_info *
1304 create_new_frame (CORE_ADDR addr, CORE_ADDR pc)
1305 {
1306 struct frame_info *fi;
1307
1308 if (frame_debug)
1309 {
1310 fprintf_unfiltered (gdb_stdlog,
1311 "{ create_new_frame (addr=%s, pc=%s) ",
1312 hex_string (addr), hex_string (pc));
1313 }
1314
1315 fi = FRAME_OBSTACK_ZALLOC (struct frame_info);
1316
1317 fi->next = create_sentinel_frame (current_program_space, get_current_regcache ());
1318
1319 /* Set/update this frame's cached PC value, found in the next frame.
1320 Do this before looking for this frame's unwinder. A sniffer is
1321 very likely to read this, and the corresponding unwinder is
1322 entitled to rely that the PC doesn't magically change. */
1323 fi->next->prev_pc.value = pc;
1324 fi->next->prev_pc.p = 1;
1325
1326 /* We currently assume that frame chain's can't cross spaces. */
1327 fi->pspace = fi->next->pspace;
1328 fi->aspace = fi->next->aspace;
1329
1330 /* Select/initialize both the unwind function and the frame's type
1331 based on the PC. */
1332 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
1333
1334 fi->this_id.p = 1;
1335 fi->this_id.value = frame_id_build (addr, pc);
1336
1337 if (frame_debug)
1338 {
1339 fprintf_unfiltered (gdb_stdlog, "-> ");
1340 fprint_frame (gdb_stdlog, fi);
1341 fprintf_unfiltered (gdb_stdlog, " }\n");
1342 }
1343
1344 return fi;
1345 }
1346
1347 /* Return the frame that THIS_FRAME calls (NULL if THIS_FRAME is the
1348 innermost frame). Be careful to not fall off the bottom of the
1349 frame chain and onto the sentinel frame. */
1350
1351 struct frame_info *
1352 get_next_frame (struct frame_info *this_frame)
1353 {
1354 if (this_frame->level > 0)
1355 return this_frame->next;
1356 else
1357 return NULL;
1358 }
1359
1360 /* Observer for the target_changed event. */
1361
1362 static void
1363 frame_observer_target_changed (struct target_ops *target)
1364 {
1365 reinit_frame_cache ();
1366 }
1367
1368 /* Flush the entire frame cache. */
1369
1370 void
1371 reinit_frame_cache (void)
1372 {
1373 struct frame_info *fi;
1374
1375 /* Tear down all frame caches. */
1376 for (fi = current_frame; fi != NULL; fi = fi->prev)
1377 {
1378 if (fi->prologue_cache && fi->unwind->dealloc_cache)
1379 fi->unwind->dealloc_cache (fi, fi->prologue_cache);
1380 if (fi->base_cache && fi->base->unwind->dealloc_cache)
1381 fi->base->unwind->dealloc_cache (fi, fi->base_cache);
1382 }
1383
1384 /* Since we can't really be sure what the first object allocated was */
1385 obstack_free (&frame_cache_obstack, 0);
1386 obstack_init (&frame_cache_obstack);
1387
1388 if (current_frame != NULL)
1389 annotate_frames_invalid ();
1390
1391 current_frame = NULL; /* Invalidate cache */
1392 select_frame (NULL);
1393 frame_stash_invalidate ();
1394 if (frame_debug)
1395 fprintf_unfiltered (gdb_stdlog, "{ reinit_frame_cache () }\n");
1396 }
1397
1398 /* Find where a register is saved (in memory or another register).
1399 The result of frame_register_unwind is just where it is saved
1400 relative to this particular frame. */
1401
1402 static void
1403 frame_register_unwind_location (struct frame_info *this_frame, int regnum,
1404 int *optimizedp, enum lval_type *lvalp,
1405 CORE_ADDR *addrp, int *realnump)
1406 {
1407 gdb_assert (this_frame == NULL || this_frame->level >= 0);
1408
1409 while (this_frame != NULL)
1410 {
1411 frame_register_unwind (this_frame, regnum, optimizedp, lvalp,
1412 addrp, realnump, NULL);
1413
1414 if (*optimizedp)
1415 break;
1416
1417 if (*lvalp != lval_register)
1418 break;
1419
1420 regnum = *realnump;
1421 this_frame = get_next_frame (this_frame);
1422 }
1423 }
1424
1425 /* Return a "struct frame_info" corresponding to the frame that called
1426 THIS_FRAME. Returns NULL if there is no such frame.
1427
1428 Unlike get_prev_frame, this function always tries to unwind the
1429 frame. */
1430
1431 static struct frame_info *
1432 get_prev_frame_1 (struct frame_info *this_frame)
1433 {
1434 struct frame_id this_id;
1435 struct gdbarch *gdbarch;
1436
1437 gdb_assert (this_frame != NULL);
1438 gdbarch = get_frame_arch (this_frame);
1439
1440 if (frame_debug)
1441 {
1442 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame_1 (this_frame=");
1443 if (this_frame != NULL)
1444 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1445 else
1446 fprintf_unfiltered (gdb_stdlog, "<NULL>");
1447 fprintf_unfiltered (gdb_stdlog, ") ");
1448 }
1449
1450 /* Only try to do the unwind once. */
1451 if (this_frame->prev_p)
1452 {
1453 if (frame_debug)
1454 {
1455 fprintf_unfiltered (gdb_stdlog, "-> ");
1456 fprint_frame (gdb_stdlog, this_frame->prev);
1457 fprintf_unfiltered (gdb_stdlog, " // cached \n");
1458 }
1459 return this_frame->prev;
1460 }
1461
1462 /* If the frame unwinder hasn't been selected yet, we must do so
1463 before setting prev_p; otherwise the check for misbehaved
1464 sniffers will think that this frame's sniffer tried to unwind
1465 further (see frame_cleanup_after_sniffer). */
1466 if (this_frame->unwind == NULL)
1467 frame_unwind_find_by_frame (this_frame, &this_frame->prologue_cache);
1468
1469 this_frame->prev_p = 1;
1470 this_frame->stop_reason = UNWIND_NO_REASON;
1471
1472 /* If we are unwinding from an inline frame, all of the below tests
1473 were already performed when we unwound from the next non-inline
1474 frame. We must skip them, since we can not get THIS_FRAME's ID
1475 until we have unwound all the way down to the previous non-inline
1476 frame. */
1477 if (get_frame_type (this_frame) == INLINE_FRAME)
1478 return get_prev_frame_raw (this_frame);
1479
1480 /* Check that this frame's ID was valid. If it wasn't, don't try to
1481 unwind to the prev frame. Be careful to not apply this test to
1482 the sentinel frame. */
1483 this_id = get_frame_id (this_frame);
1484 if (this_frame->level >= 0 && frame_id_eq (this_id, outer_frame_id))
1485 {
1486 if (frame_debug)
1487 {
1488 fprintf_unfiltered (gdb_stdlog, "-> ");
1489 fprint_frame (gdb_stdlog, NULL);
1490 fprintf_unfiltered (gdb_stdlog, " // this ID is NULL }\n");
1491 }
1492 this_frame->stop_reason = UNWIND_NULL_ID;
1493 return NULL;
1494 }
1495
1496 /* Check that this frame's ID isn't inner to (younger, below, next)
1497 the next frame. This happens when a frame unwind goes backwards.
1498 This check is valid only if this frame and the next frame are NORMAL.
1499 See the comment at frame_id_inner for details. */
1500 if (get_frame_type (this_frame) == NORMAL_FRAME
1501 && this_frame->next->unwind->type == NORMAL_FRAME
1502 && frame_id_inner (get_frame_arch (this_frame->next), this_id,
1503 get_frame_id (this_frame->next)))
1504 {
1505 if (frame_debug)
1506 {
1507 fprintf_unfiltered (gdb_stdlog, "-> ");
1508 fprint_frame (gdb_stdlog, NULL);
1509 fprintf_unfiltered (gdb_stdlog, " // this frame ID is inner }\n");
1510 }
1511 this_frame->stop_reason = UNWIND_INNER_ID;
1512 return NULL;
1513 }
1514
1515 /* Check that this and the next frame are not identical. If they
1516 are, there is most likely a stack cycle. As with the inner-than
1517 test above, avoid comparing the inner-most and sentinel frames. */
1518 if (this_frame->level > 0
1519 && frame_id_eq (this_id, get_frame_id (this_frame->next)))
1520 {
1521 if (frame_debug)
1522 {
1523 fprintf_unfiltered (gdb_stdlog, "-> ");
1524 fprint_frame (gdb_stdlog, NULL);
1525 fprintf_unfiltered (gdb_stdlog, " // this frame has same ID }\n");
1526 }
1527 this_frame->stop_reason = UNWIND_SAME_ID;
1528 return NULL;
1529 }
1530
1531 /* Check that this and the next frame do not unwind the PC register
1532 to the same memory location. If they do, then even though they
1533 have different frame IDs, the new frame will be bogus; two
1534 functions can't share a register save slot for the PC. This can
1535 happen when the prologue analyzer finds a stack adjustment, but
1536 no PC save.
1537
1538 This check does assume that the "PC register" is roughly a
1539 traditional PC, even if the gdbarch_unwind_pc method adjusts
1540 it (we do not rely on the value, only on the unwound PC being
1541 dependent on this value). A potential improvement would be
1542 to have the frame prev_pc method and the gdbarch unwind_pc
1543 method set the same lval and location information as
1544 frame_register_unwind. */
1545 if (this_frame->level > 0
1546 && gdbarch_pc_regnum (gdbarch) >= 0
1547 && get_frame_type (this_frame) == NORMAL_FRAME
1548 && (get_frame_type (this_frame->next) == NORMAL_FRAME
1549 || get_frame_type (this_frame->next) == INLINE_FRAME))
1550 {
1551 int optimized, realnum, nrealnum;
1552 enum lval_type lval, nlval;
1553 CORE_ADDR addr, naddr;
1554
1555 frame_register_unwind_location (this_frame,
1556 gdbarch_pc_regnum (gdbarch),
1557 &optimized, &lval, &addr, &realnum);
1558 frame_register_unwind_location (get_next_frame (this_frame),
1559 gdbarch_pc_regnum (gdbarch),
1560 &optimized, &nlval, &naddr, &nrealnum);
1561
1562 if ((lval == lval_memory && lval == nlval && addr == naddr)
1563 || (lval == lval_register && lval == nlval && realnum == nrealnum))
1564 {
1565 if (frame_debug)
1566 {
1567 fprintf_unfiltered (gdb_stdlog, "-> ");
1568 fprint_frame (gdb_stdlog, NULL);
1569 fprintf_unfiltered (gdb_stdlog, " // no saved PC }\n");
1570 }
1571
1572 this_frame->stop_reason = UNWIND_NO_SAVED_PC;
1573 this_frame->prev = NULL;
1574 return NULL;
1575 }
1576 }
1577
1578 return get_prev_frame_raw (this_frame);
1579 }
1580
1581 /* Construct a new "struct frame_info" and link it previous to
1582 this_frame. */
1583
1584 static struct frame_info *
1585 get_prev_frame_raw (struct frame_info *this_frame)
1586 {
1587 struct frame_info *prev_frame;
1588
1589 /* Allocate the new frame but do not wire it in to the frame chain.
1590 Some (bad) code in INIT_FRAME_EXTRA_INFO tries to look along
1591 frame->next to pull some fancy tricks (of course such code is, by
1592 definition, recursive). Try to prevent it.
1593
1594 There is no reason to worry about memory leaks, should the
1595 remainder of the function fail. The allocated memory will be
1596 quickly reclaimed when the frame cache is flushed, and the `we've
1597 been here before' check above will stop repeated memory
1598 allocation calls. */
1599 prev_frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
1600 prev_frame->level = this_frame->level + 1;
1601
1602 /* For now, assume we don't have frame chains crossing address
1603 spaces. */
1604 prev_frame->pspace = this_frame->pspace;
1605 prev_frame->aspace = this_frame->aspace;
1606
1607 /* Don't yet compute ->unwind (and hence ->type). It is computed
1608 on-demand in get_frame_type, frame_register_unwind, and
1609 get_frame_id. */
1610
1611 /* Don't yet compute the frame's ID. It is computed on-demand by
1612 get_frame_id(). */
1613
1614 /* The unwound frame ID is validate at the start of this function,
1615 as part of the logic to decide if that frame should be further
1616 unwound, and not here while the prev frame is being created.
1617 Doing this makes it possible for the user to examine a frame that
1618 has an invalid frame ID.
1619
1620 Some very old VAX code noted: [...] For the sake of argument,
1621 suppose that the stack is somewhat trashed (which is one reason
1622 that "info frame" exists). So, return 0 (indicating we don't
1623 know the address of the arglist) if we don't know what frame this
1624 frame calls. */
1625
1626 /* Link it in. */
1627 this_frame->prev = prev_frame;
1628 prev_frame->next = this_frame;
1629
1630 if (frame_debug)
1631 {
1632 fprintf_unfiltered (gdb_stdlog, "-> ");
1633 fprint_frame (gdb_stdlog, prev_frame);
1634 fprintf_unfiltered (gdb_stdlog, " }\n");
1635 }
1636
1637 return prev_frame;
1638 }
1639
1640 /* Debug routine to print a NULL frame being returned. */
1641
1642 static void
1643 frame_debug_got_null_frame (struct frame_info *this_frame,
1644 const char *reason)
1645 {
1646 if (frame_debug)
1647 {
1648 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame (this_frame=");
1649 if (this_frame != NULL)
1650 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1651 else
1652 fprintf_unfiltered (gdb_stdlog, "<NULL>");
1653 fprintf_unfiltered (gdb_stdlog, ") -> // %s}\n", reason);
1654 }
1655 }
1656
1657 /* Is this (non-sentinel) frame in the "main"() function? */
1658
1659 static int
1660 inside_main_func (struct frame_info *this_frame)
1661 {
1662 struct minimal_symbol *msymbol;
1663 CORE_ADDR maddr;
1664
1665 if (symfile_objfile == 0)
1666 return 0;
1667 msymbol = lookup_minimal_symbol (main_name (), NULL, symfile_objfile);
1668 if (msymbol == NULL)
1669 return 0;
1670 /* Make certain that the code, and not descriptor, address is
1671 returned. */
1672 maddr = gdbarch_convert_from_func_ptr_addr (get_frame_arch (this_frame),
1673 SYMBOL_VALUE_ADDRESS (msymbol),
1674 &current_target);
1675 return maddr == get_frame_func (this_frame);
1676 }
1677
1678 /* Test whether THIS_FRAME is inside the process entry point function. */
1679
1680 static int
1681 inside_entry_func (struct frame_info *this_frame)
1682 {
1683 CORE_ADDR entry_point;
1684
1685 if (!entry_point_address_query (&entry_point))
1686 return 0;
1687
1688 return get_frame_func (this_frame) == entry_point;
1689 }
1690
1691 /* Return a structure containing various interesting information about
1692 the frame that called THIS_FRAME. Returns NULL if there is entier
1693 no such frame or the frame fails any of a set of target-independent
1694 condition that should terminate the frame chain (e.g., as unwinding
1695 past main()).
1696
1697 This function should not contain target-dependent tests, such as
1698 checking whether the program-counter is zero. */
1699
1700 struct frame_info *
1701 get_prev_frame (struct frame_info *this_frame)
1702 {
1703 /* There is always a frame. If this assertion fails, suspect that
1704 something should be calling get_selected_frame() or
1705 get_current_frame(). */
1706 gdb_assert (this_frame != NULL);
1707
1708 /* tausq/2004-12-07: Dummy frames are skipped because it doesn't make much
1709 sense to stop unwinding at a dummy frame. One place where a dummy
1710 frame may have an address "inside_main_func" is on HPUX. On HPUX, the
1711 pcsqh register (space register for the instruction at the head of the
1712 instruction queue) cannot be written directly; the only way to set it
1713 is to branch to code that is in the target space. In order to implement
1714 frame dummies on HPUX, the called function is made to jump back to where
1715 the inferior was when the user function was called. If gdb was inside
1716 the main function when we created the dummy frame, the dummy frame will
1717 point inside the main function. */
1718 if (this_frame->level >= 0
1719 && get_frame_type (this_frame) == NORMAL_FRAME
1720 && !backtrace_past_main
1721 && inside_main_func (this_frame))
1722 /* Don't unwind past main(). Note, this is done _before_ the
1723 frame has been marked as previously unwound. That way if the
1724 user later decides to enable unwinds past main(), that will
1725 automatically happen. */
1726 {
1727 frame_debug_got_null_frame (this_frame, "inside main func");
1728 return NULL;
1729 }
1730
1731 /* If the user's backtrace limit has been exceeded, stop. We must
1732 add two to the current level; one of those accounts for backtrace_limit
1733 being 1-based and the level being 0-based, and the other accounts for
1734 the level of the new frame instead of the level of the current
1735 frame. */
1736 if (this_frame->level + 2 > backtrace_limit)
1737 {
1738 frame_debug_got_null_frame (this_frame, "backtrace limit exceeded");
1739 return NULL;
1740 }
1741
1742 /* If we're already inside the entry function for the main objfile,
1743 then it isn't valid. Don't apply this test to a dummy frame -
1744 dummy frame PCs typically land in the entry func. Don't apply
1745 this test to the sentinel frame. Sentinel frames should always
1746 be allowed to unwind. */
1747 /* NOTE: cagney/2003-07-07: Fixed a bug in inside_main_func() -
1748 wasn't checking for "main" in the minimal symbols. With that
1749 fixed asm-source tests now stop in "main" instead of halting the
1750 backtrace in weird and wonderful ways somewhere inside the entry
1751 file. Suspect that tests for inside the entry file/func were
1752 added to work around that (now fixed) case. */
1753 /* NOTE: cagney/2003-07-15: danielj (if I'm reading it right)
1754 suggested having the inside_entry_func test use the
1755 inside_main_func() msymbol trick (along with entry_point_address()
1756 I guess) to determine the address range of the start function.
1757 That should provide a far better stopper than the current
1758 heuristics. */
1759 /* NOTE: tausq/2004-10-09: this is needed if, for example, the compiler
1760 applied tail-call optimizations to main so that a function called
1761 from main returns directly to the caller of main. Since we don't
1762 stop at main, we should at least stop at the entry point of the
1763 application. */
1764 if (this_frame->level >= 0
1765 && get_frame_type (this_frame) == NORMAL_FRAME
1766 && !backtrace_past_entry
1767 && inside_entry_func (this_frame))
1768 {
1769 frame_debug_got_null_frame (this_frame, "inside entry func");
1770 return NULL;
1771 }
1772
1773 /* Assume that the only way to get a zero PC is through something
1774 like a SIGSEGV or a dummy frame, and hence that NORMAL frames
1775 will never unwind a zero PC. */
1776 if (this_frame->level > 0
1777 && (get_frame_type (this_frame) == NORMAL_FRAME
1778 || get_frame_type (this_frame) == INLINE_FRAME)
1779 && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME
1780 && get_frame_pc (this_frame) == 0)
1781 {
1782 frame_debug_got_null_frame (this_frame, "zero PC");
1783 return NULL;
1784 }
1785
1786 return get_prev_frame_1 (this_frame);
1787 }
1788
1789 CORE_ADDR
1790 get_frame_pc (struct frame_info *frame)
1791 {
1792 gdb_assert (frame->next != NULL);
1793 return frame_unwind_pc (frame->next);
1794 }
1795
1796 /* Return an address that falls within THIS_FRAME's code block. */
1797
1798 CORE_ADDR
1799 get_frame_address_in_block (struct frame_info *this_frame)
1800 {
1801 /* A draft address. */
1802 CORE_ADDR pc = get_frame_pc (this_frame);
1803
1804 struct frame_info *next_frame = this_frame->next;
1805
1806 /* Calling get_frame_pc returns the resume address for THIS_FRAME.
1807 Normally the resume address is inside the body of the function
1808 associated with THIS_FRAME, but there is a special case: when
1809 calling a function which the compiler knows will never return
1810 (for instance abort), the call may be the very last instruction
1811 in the calling function. The resume address will point after the
1812 call and may be at the beginning of a different function
1813 entirely.
1814
1815 If THIS_FRAME is a signal frame or dummy frame, then we should
1816 not adjust the unwound PC. For a dummy frame, GDB pushed the
1817 resume address manually onto the stack. For a signal frame, the
1818 OS may have pushed the resume address manually and invoked the
1819 handler (e.g. GNU/Linux), or invoked the trampoline which called
1820 the signal handler - but in either case the signal handler is
1821 expected to return to the trampoline. So in both of these
1822 cases we know that the resume address is executable and
1823 related. So we only need to adjust the PC if THIS_FRAME
1824 is a normal function.
1825
1826 If the program has been interrupted while THIS_FRAME is current,
1827 then clearly the resume address is inside the associated
1828 function. There are three kinds of interruption: debugger stop
1829 (next frame will be SENTINEL_FRAME), operating system
1830 signal or exception (next frame will be SIGTRAMP_FRAME),
1831 or debugger-induced function call (next frame will be
1832 DUMMY_FRAME). So we only need to adjust the PC if
1833 NEXT_FRAME is a normal function.
1834
1835 We check the type of NEXT_FRAME first, since it is already
1836 known; frame type is determined by the unwinder, and since
1837 we have THIS_FRAME we've already selected an unwinder for
1838 NEXT_FRAME.
1839
1840 If the next frame is inlined, we need to keep going until we find
1841 the real function - for instance, if a signal handler is invoked
1842 while in an inlined function, then the code address of the
1843 "calling" normal function should not be adjusted either. */
1844
1845 while (get_frame_type (next_frame) == INLINE_FRAME)
1846 next_frame = next_frame->next;
1847
1848 if (get_frame_type (next_frame) == NORMAL_FRAME
1849 && (get_frame_type (this_frame) == NORMAL_FRAME
1850 || get_frame_type (this_frame) == INLINE_FRAME))
1851 return pc - 1;
1852
1853 return pc;
1854 }
1855
1856 void
1857 find_frame_sal (struct frame_info *frame, struct symtab_and_line *sal)
1858 {
1859 struct frame_info *next_frame;
1860 int notcurrent;
1861
1862 /* If the next frame represents an inlined function call, this frame's
1863 sal is the "call site" of that inlined function, which can not
1864 be inferred from get_frame_pc. */
1865 next_frame = get_next_frame (frame);
1866 if (frame_inlined_callees (frame) > 0)
1867 {
1868 struct symbol *sym;
1869
1870 if (next_frame)
1871 sym = get_frame_function (next_frame);
1872 else
1873 sym = inline_skipped_symbol (inferior_ptid);
1874
1875 init_sal (sal);
1876 if (SYMBOL_LINE (sym) != 0)
1877 {
1878 sal->symtab = SYMBOL_SYMTAB (sym);
1879 sal->line = SYMBOL_LINE (sym);
1880 }
1881 else
1882 /* If the symbol does not have a location, we don't know where
1883 the call site is. Do not pretend to. This is jarring, but
1884 we can't do much better. */
1885 sal->pc = get_frame_pc (frame);
1886
1887 return;
1888 }
1889
1890 /* If FRAME is not the innermost frame, that normally means that
1891 FRAME->pc points at the return instruction (which is *after* the
1892 call instruction), and we want to get the line containing the
1893 call (because the call is where the user thinks the program is).
1894 However, if the next frame is either a SIGTRAMP_FRAME or a
1895 DUMMY_FRAME, then the next frame will contain a saved interrupt
1896 PC and such a PC indicates the current (rather than next)
1897 instruction/line, consequently, for such cases, want to get the
1898 line containing fi->pc. */
1899 notcurrent = (get_frame_pc (frame) != get_frame_address_in_block (frame));
1900 (*sal) = find_pc_line (get_frame_pc (frame), notcurrent);
1901 }
1902
1903 /* Per "frame.h", return the ``address'' of the frame. Code should
1904 really be using get_frame_id(). */
1905 CORE_ADDR
1906 get_frame_base (struct frame_info *fi)
1907 {
1908 return get_frame_id (fi).stack_addr;
1909 }
1910
1911 /* High-level offsets into the frame. Used by the debug info. */
1912
1913 CORE_ADDR
1914 get_frame_base_address (struct frame_info *fi)
1915 {
1916 if (get_frame_type (fi) != NORMAL_FRAME)
1917 return 0;
1918 if (fi->base == NULL)
1919 fi->base = frame_base_find_by_frame (fi);
1920 /* Sneaky: If the low-level unwind and high-level base code share a
1921 common unwinder, let them share the prologue cache. */
1922 if (fi->base->unwind == fi->unwind)
1923 return fi->base->this_base (fi, &fi->prologue_cache);
1924 return fi->base->this_base (fi, &fi->base_cache);
1925 }
1926
1927 CORE_ADDR
1928 get_frame_locals_address (struct frame_info *fi)
1929 {
1930 if (get_frame_type (fi) != NORMAL_FRAME)
1931 return 0;
1932 /* If there isn't a frame address method, find it. */
1933 if (fi->base == NULL)
1934 fi->base = frame_base_find_by_frame (fi);
1935 /* Sneaky: If the low-level unwind and high-level base code share a
1936 common unwinder, let them share the prologue cache. */
1937 if (fi->base->unwind == fi->unwind)
1938 return fi->base->this_locals (fi, &fi->prologue_cache);
1939 return fi->base->this_locals (fi, &fi->base_cache);
1940 }
1941
1942 CORE_ADDR
1943 get_frame_args_address (struct frame_info *fi)
1944 {
1945 if (get_frame_type (fi) != NORMAL_FRAME)
1946 return 0;
1947 /* If there isn't a frame address method, find it. */
1948 if (fi->base == NULL)
1949 fi->base = frame_base_find_by_frame (fi);
1950 /* Sneaky: If the low-level unwind and high-level base code share a
1951 common unwinder, let them share the prologue cache. */
1952 if (fi->base->unwind == fi->unwind)
1953 return fi->base->this_args (fi, &fi->prologue_cache);
1954 return fi->base->this_args (fi, &fi->base_cache);
1955 }
1956
1957 /* Return true if the frame unwinder for frame FI is UNWINDER; false
1958 otherwise. */
1959
1960 int
1961 frame_unwinder_is (struct frame_info *fi, const struct frame_unwind *unwinder)
1962 {
1963 if (fi->unwind == NULL)
1964 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
1965 return fi->unwind == unwinder;
1966 }
1967
1968 /* Level of the selected frame: 0 for innermost, 1 for its caller, ...
1969 or -1 for a NULL frame. */
1970
1971 int
1972 frame_relative_level (struct frame_info *fi)
1973 {
1974 if (fi == NULL)
1975 return -1;
1976 else
1977 return fi->level;
1978 }
1979
1980 enum frame_type
1981 get_frame_type (struct frame_info *frame)
1982 {
1983 if (frame->unwind == NULL)
1984 /* Initialize the frame's unwinder because that's what
1985 provides the frame's type. */
1986 frame_unwind_find_by_frame (frame, &frame->prologue_cache);
1987 return frame->unwind->type;
1988 }
1989
1990 struct program_space *
1991 get_frame_program_space (struct frame_info *frame)
1992 {
1993 return frame->pspace;
1994 }
1995
1996 struct program_space *
1997 frame_unwind_program_space (struct frame_info *this_frame)
1998 {
1999 gdb_assert (this_frame);
2000
2001 /* This is really a placeholder to keep the API consistent --- we
2002 assume for now that we don't have frame chains crossing
2003 spaces. */
2004 return this_frame->pspace;
2005 }
2006
2007 struct address_space *
2008 get_frame_address_space (struct frame_info *frame)
2009 {
2010 return frame->aspace;
2011 }
2012
2013 /* Memory access methods. */
2014
2015 void
2016 get_frame_memory (struct frame_info *this_frame, CORE_ADDR addr,
2017 gdb_byte *buf, int len)
2018 {
2019 read_memory (addr, buf, len);
2020 }
2021
2022 LONGEST
2023 get_frame_memory_signed (struct frame_info *this_frame, CORE_ADDR addr,
2024 int len)
2025 {
2026 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2027 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2028
2029 return read_memory_integer (addr, len, byte_order);
2030 }
2031
2032 ULONGEST
2033 get_frame_memory_unsigned (struct frame_info *this_frame, CORE_ADDR addr,
2034 int len)
2035 {
2036 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2037 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2038
2039 return read_memory_unsigned_integer (addr, len, byte_order);
2040 }
2041
2042 int
2043 safe_frame_unwind_memory (struct frame_info *this_frame,
2044 CORE_ADDR addr, gdb_byte *buf, int len)
2045 {
2046 /* NOTE: target_read_memory returns zero on success! */
2047 return !target_read_memory (addr, buf, len);
2048 }
2049
2050 /* Architecture methods. */
2051
2052 struct gdbarch *
2053 get_frame_arch (struct frame_info *this_frame)
2054 {
2055 return frame_unwind_arch (this_frame->next);
2056 }
2057
2058 struct gdbarch *
2059 frame_unwind_arch (struct frame_info *next_frame)
2060 {
2061 if (!next_frame->prev_arch.p)
2062 {
2063 struct gdbarch *arch;
2064
2065 if (next_frame->unwind == NULL)
2066 frame_unwind_find_by_frame (next_frame, &next_frame->prologue_cache);
2067
2068 if (next_frame->unwind->prev_arch != NULL)
2069 arch = next_frame->unwind->prev_arch (next_frame,
2070 &next_frame->prologue_cache);
2071 else
2072 arch = get_frame_arch (next_frame);
2073
2074 next_frame->prev_arch.arch = arch;
2075 next_frame->prev_arch.p = 1;
2076 if (frame_debug)
2077 fprintf_unfiltered (gdb_stdlog,
2078 "{ frame_unwind_arch (next_frame=%d) -> %s }\n",
2079 next_frame->level,
2080 gdbarch_bfd_arch_info (arch)->printable_name);
2081 }
2082
2083 return next_frame->prev_arch.arch;
2084 }
2085
2086 struct gdbarch *
2087 frame_unwind_caller_arch (struct frame_info *next_frame)
2088 {
2089 return frame_unwind_arch (skip_inlined_frames (next_frame));
2090 }
2091
2092 /* Stack pointer methods. */
2093
2094 CORE_ADDR
2095 get_frame_sp (struct frame_info *this_frame)
2096 {
2097 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2098
2099 /* Normality - an architecture that provides a way of obtaining any
2100 frame inner-most address. */
2101 if (gdbarch_unwind_sp_p (gdbarch))
2102 /* NOTE drow/2008-06-28: gdbarch_unwind_sp could be converted to
2103 operate on THIS_FRAME now. */
2104 return gdbarch_unwind_sp (gdbarch, this_frame->next);
2105 /* Now things are really are grim. Hope that the value returned by
2106 the gdbarch_sp_regnum register is meaningful. */
2107 if (gdbarch_sp_regnum (gdbarch) >= 0)
2108 return get_frame_register_unsigned (this_frame,
2109 gdbarch_sp_regnum (gdbarch));
2110 internal_error (__FILE__, __LINE__, _("Missing unwind SP method"));
2111 }
2112
2113 /* Return the reason why we can't unwind past FRAME. */
2114
2115 enum unwind_stop_reason
2116 get_frame_unwind_stop_reason (struct frame_info *frame)
2117 {
2118 /* If we haven't tried to unwind past this point yet, then assume
2119 that unwinding would succeed. */
2120 if (frame->prev_p == 0)
2121 return UNWIND_NO_REASON;
2122
2123 /* Otherwise, we set a reason when we succeeded (or failed) to
2124 unwind. */
2125 return frame->stop_reason;
2126 }
2127
2128 /* Return a string explaining REASON. */
2129
2130 const char *
2131 frame_stop_reason_string (enum unwind_stop_reason reason)
2132 {
2133 switch (reason)
2134 {
2135 case UNWIND_NULL_ID:
2136 return _("unwinder did not report frame ID");
2137
2138 case UNWIND_INNER_ID:
2139 return _("previous frame inner to this frame (corrupt stack?)");
2140
2141 case UNWIND_SAME_ID:
2142 return _("previous frame identical to this frame (corrupt stack?)");
2143
2144 case UNWIND_NO_SAVED_PC:
2145 return _("frame did not save the PC");
2146
2147 case UNWIND_NO_REASON:
2148 case UNWIND_FIRST_ERROR:
2149 default:
2150 internal_error (__FILE__, __LINE__,
2151 "Invalid frame stop reason");
2152 }
2153 }
2154
2155 /* Clean up after a failed (wrong unwinder) attempt to unwind past
2156 FRAME. */
2157
2158 static void
2159 frame_cleanup_after_sniffer (void *arg)
2160 {
2161 struct frame_info *frame = arg;
2162
2163 /* The sniffer should not allocate a prologue cache if it did not
2164 match this frame. */
2165 gdb_assert (frame->prologue_cache == NULL);
2166
2167 /* No sniffer should extend the frame chain; sniff based on what is
2168 already certain. */
2169 gdb_assert (!frame->prev_p);
2170
2171 /* The sniffer should not check the frame's ID; that's circular. */
2172 gdb_assert (!frame->this_id.p);
2173
2174 /* Clear cached fields dependent on the unwinder.
2175
2176 The previous PC is independent of the unwinder, but the previous
2177 function is not (see get_frame_address_in_block). */
2178 frame->prev_func.p = 0;
2179 frame->prev_func.addr = 0;
2180
2181 /* Discard the unwinder last, so that we can easily find it if an assertion
2182 in this function triggers. */
2183 frame->unwind = NULL;
2184 }
2185
2186 /* Set FRAME's unwinder temporarily, so that we can call a sniffer.
2187 Return a cleanup which should be called if unwinding fails, and
2188 discarded if it succeeds. */
2189
2190 struct cleanup *
2191 frame_prepare_for_sniffer (struct frame_info *frame,
2192 const struct frame_unwind *unwind)
2193 {
2194 gdb_assert (frame->unwind == NULL);
2195 frame->unwind = unwind;
2196 return make_cleanup (frame_cleanup_after_sniffer, frame);
2197 }
2198
2199 extern initialize_file_ftype _initialize_frame; /* -Wmissing-prototypes */
2200
2201 static struct cmd_list_element *set_backtrace_cmdlist;
2202 static struct cmd_list_element *show_backtrace_cmdlist;
2203
2204 static void
2205 set_backtrace_cmd (char *args, int from_tty)
2206 {
2207 help_list (set_backtrace_cmdlist, "set backtrace ", -1, gdb_stdout);
2208 }
2209
2210 static void
2211 show_backtrace_cmd (char *args, int from_tty)
2212 {
2213 cmd_show_list (show_backtrace_cmdlist, from_tty, "");
2214 }
2215
2216 void
2217 _initialize_frame (void)
2218 {
2219 obstack_init (&frame_cache_obstack);
2220
2221 observer_attach_target_changed (frame_observer_target_changed);
2222
2223 add_prefix_cmd ("backtrace", class_maintenance, set_backtrace_cmd, _("\
2224 Set backtrace specific variables.\n\
2225 Configure backtrace variables such as the backtrace limit"),
2226 &set_backtrace_cmdlist, "set backtrace ",
2227 0/*allow-unknown*/, &setlist);
2228 add_prefix_cmd ("backtrace", class_maintenance, show_backtrace_cmd, _("\
2229 Show backtrace specific variables\n\
2230 Show backtrace variables such as the backtrace limit"),
2231 &show_backtrace_cmdlist, "show backtrace ",
2232 0/*allow-unknown*/, &showlist);
2233
2234 add_setshow_boolean_cmd ("past-main", class_obscure,
2235 &backtrace_past_main, _("\
2236 Set whether backtraces should continue past \"main\"."), _("\
2237 Show whether backtraces should continue past \"main\"."), _("\
2238 Normally the caller of \"main\" is not of interest, so GDB will terminate\n\
2239 the backtrace at \"main\". Set this variable if you need to see the rest\n\
2240 of the stack trace."),
2241 NULL,
2242 show_backtrace_past_main,
2243 &set_backtrace_cmdlist,
2244 &show_backtrace_cmdlist);
2245
2246 add_setshow_boolean_cmd ("past-entry", class_obscure,
2247 &backtrace_past_entry, _("\
2248 Set whether backtraces should continue past the entry point of a program."),
2249 _("\
2250 Show whether backtraces should continue past the entry point of a program."),
2251 _("\
2252 Normally there are no callers beyond the entry point of a program, so GDB\n\
2253 will terminate the backtrace there. Set this variable if you need to see\n\
2254 the rest of the stack trace."),
2255 NULL,
2256 show_backtrace_past_entry,
2257 &set_backtrace_cmdlist,
2258 &show_backtrace_cmdlist);
2259
2260 add_setshow_integer_cmd ("limit", class_obscure,
2261 &backtrace_limit, _("\
2262 Set an upper bound on the number of backtrace levels."), _("\
2263 Show the upper bound on the number of backtrace levels."), _("\
2264 No more than the specified number of frames can be displayed or examined.\n\
2265 Zero is unlimited."),
2266 NULL,
2267 show_backtrace_limit,
2268 &set_backtrace_cmdlist,
2269 &show_backtrace_cmdlist);
2270
2271 /* Debug this files internals. */
2272 add_setshow_zinteger_cmd ("frame", class_maintenance, &frame_debug, _("\
2273 Set frame debugging."), _("\
2274 Show frame debugging."), _("\
2275 When non-zero, frame specific internal debugging is enabled."),
2276 NULL,
2277 show_frame_debug,
2278 &setdebuglist, &showdebuglist);
2279 }