Remove target_has_stack macro
[binutils-gdb.git] / gdb / frame.c
1 /* Cache and manage frames for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "target.h"
23 #include "value.h"
24 #include "inferior.h" /* for inferior_ptid */
25 #include "regcache.h"
26 #include "user-regs.h"
27 #include "gdb_obstack.h"
28 #include "dummy-frame.h"
29 #include "sentinel-frame.h"
30 #include "gdbcore.h"
31 #include "annotate.h"
32 #include "language.h"
33 #include "frame-unwind.h"
34 #include "frame-base.h"
35 #include "command.h"
36 #include "gdbcmd.h"
37 #include "observable.h"
38 #include "objfiles.h"
39 #include "gdbthread.h"
40 #include "block.h"
41 #include "inline-frame.h"
42 #include "tracepoint.h"
43 #include "hashtab.h"
44 #include "valprint.h"
45 #include "cli/cli-option.h"
46
47 /* The sentinel frame terminates the innermost end of the frame chain.
48 If unwound, it returns the information needed to construct an
49 innermost frame.
50
51 The current frame, which is the innermost frame, can be found at
52 sentinel_frame->prev. */
53
54 static struct frame_info *sentinel_frame;
55
56 /* Number of calls to reinit_frame_cache. */
57 static unsigned int frame_cache_generation = 0;
58
59 /* See frame.h. */
60
61 unsigned int
62 get_frame_cache_generation ()
63 {
64 return frame_cache_generation;
65 }
66
67 /* The values behind the global "set backtrace ..." settings. */
68 set_backtrace_options user_set_backtrace_options;
69
70 static struct frame_info *get_prev_frame_raw (struct frame_info *this_frame);
71 static const char *frame_stop_reason_symbol_string (enum unwind_stop_reason reason);
72
73 /* Status of some values cached in the frame_info object. */
74
75 enum cached_copy_status
76 {
77 /* Value is unknown. */
78 CC_UNKNOWN,
79
80 /* We have a value. */
81 CC_VALUE,
82
83 /* Value was not saved. */
84 CC_NOT_SAVED,
85
86 /* Value is unavailable. */
87 CC_UNAVAILABLE
88 };
89
90 enum class frame_id_status
91 {
92 /* Frame id is not computed. */
93 NOT_COMPUTED = 0,
94
95 /* Frame id is being computed (compute_frame_id is active). */
96 COMPUTING,
97
98 /* Frame id has been computed. */
99 COMPUTED,
100 };
101
102 /* We keep a cache of stack frames, each of which is a "struct
103 frame_info". The innermost one gets allocated (in
104 wait_for_inferior) each time the inferior stops; sentinel_frame
105 points to it. Additional frames get allocated (in get_prev_frame)
106 as needed, and are chained through the next and prev fields. Any
107 time that the frame cache becomes invalid (most notably when we
108 execute something, but also if we change how we interpret the
109 frames (e.g. "set heuristic-fence-post" in mips-tdep.c, or anything
110 which reads new symbols)), we should call reinit_frame_cache. */
111
112 struct frame_info
113 {
114 /* Level of this frame. The inner-most (youngest) frame is at level
115 0. As you move towards the outer-most (oldest) frame, the level
116 increases. This is a cached value. It could just as easily be
117 computed by counting back from the selected frame to the inner
118 most frame. */
119 /* NOTE: cagney/2002-04-05: Perhaps a level of ``-1'' should be
120 reserved to indicate a bogus frame - one that has been created
121 just to keep GDB happy (GDB always needs a frame). For the
122 moment leave this as speculation. */
123 int level;
124
125 /* The frame's program space. */
126 struct program_space *pspace;
127
128 /* The frame's address space. */
129 const address_space *aspace;
130
131 /* The frame's low-level unwinder and corresponding cache. The
132 low-level unwinder is responsible for unwinding register values
133 for the previous frame. The low-level unwind methods are
134 selected based on the presence, or otherwise, of register unwind
135 information such as CFI. */
136 void *prologue_cache;
137 const struct frame_unwind *unwind;
138
139 /* Cached copy of the previous frame's architecture. */
140 struct
141 {
142 bool p;
143 struct gdbarch *arch;
144 } prev_arch;
145
146 /* Cached copy of the previous frame's resume address. */
147 struct {
148 cached_copy_status status;
149 /* Did VALUE require unmasking when being read. */
150 bool masked;
151 CORE_ADDR value;
152 } prev_pc;
153
154 /* Cached copy of the previous frame's function address. */
155 struct
156 {
157 CORE_ADDR addr;
158 cached_copy_status status;
159 } prev_func;
160
161 /* This frame's ID. */
162 struct
163 {
164 frame_id_status p;
165 struct frame_id value;
166 } this_id;
167
168 /* The frame's high-level base methods, and corresponding cache.
169 The high level base methods are selected based on the frame's
170 debug info. */
171 const struct frame_base *base;
172 void *base_cache;
173
174 /* Pointers to the next (down, inner, younger) and previous (up,
175 outer, older) frame_info's in the frame cache. */
176 struct frame_info *next; /* down, inner, younger */
177 bool prev_p;
178 struct frame_info *prev; /* up, outer, older */
179
180 /* The reason why we could not set PREV, or UNWIND_NO_REASON if we
181 could. Only valid when PREV_P is set. */
182 enum unwind_stop_reason stop_reason;
183
184 /* A frame specific string describing the STOP_REASON in more detail.
185 Only valid when PREV_P is set, but even then may still be NULL. */
186 const char *stop_string;
187 };
188
189 /* See frame.h. */
190
191 void
192 set_frame_previous_pc_masked (struct frame_info *frame)
193 {
194 frame->prev_pc.masked = true;
195 }
196
197 /* See frame.h. */
198
199 bool
200 get_frame_pc_masked (const struct frame_info *frame)
201 {
202 gdb_assert (frame->next != nullptr);
203 gdb_assert (frame->next->prev_pc.status == CC_VALUE);
204
205 return frame->next->prev_pc.masked;
206 }
207
208 /* A frame stash used to speed up frame lookups. Create a hash table
209 to stash frames previously accessed from the frame cache for
210 quicker subsequent retrieval. The hash table is emptied whenever
211 the frame cache is invalidated. */
212
213 static htab_t frame_stash;
214
215 /* Internal function to calculate a hash from the frame_id addresses,
216 using as many valid addresses as possible. Frames below level 0
217 are not stored in the hash table. */
218
219 static hashval_t
220 frame_addr_hash (const void *ap)
221 {
222 const struct frame_info *frame = (const struct frame_info *) ap;
223 const struct frame_id f_id = frame->this_id.value;
224 hashval_t hash = 0;
225
226 gdb_assert (f_id.stack_status != FID_STACK_INVALID
227 || f_id.code_addr_p
228 || f_id.special_addr_p);
229
230 if (f_id.stack_status == FID_STACK_VALID)
231 hash = iterative_hash (&f_id.stack_addr,
232 sizeof (f_id.stack_addr), hash);
233 if (f_id.code_addr_p)
234 hash = iterative_hash (&f_id.code_addr,
235 sizeof (f_id.code_addr), hash);
236 if (f_id.special_addr_p)
237 hash = iterative_hash (&f_id.special_addr,
238 sizeof (f_id.special_addr), hash);
239
240 return hash;
241 }
242
243 /* Internal equality function for the hash table. This function
244 defers equality operations to frame_id_eq. */
245
246 static int
247 frame_addr_hash_eq (const void *a, const void *b)
248 {
249 const struct frame_info *f_entry = (const struct frame_info *) a;
250 const struct frame_info *f_element = (const struct frame_info *) b;
251
252 return frame_id_eq (f_entry->this_id.value,
253 f_element->this_id.value);
254 }
255
256 /* Internal function to create the frame_stash hash table. 100 seems
257 to be a good compromise to start the hash table at. */
258
259 static void
260 frame_stash_create (void)
261 {
262 frame_stash = htab_create (100,
263 frame_addr_hash,
264 frame_addr_hash_eq,
265 NULL);
266 }
267
268 /* Internal function to add a frame to the frame_stash hash table.
269 Returns false if a frame with the same ID was already stashed, true
270 otherwise. */
271
272 static bool
273 frame_stash_add (frame_info *frame)
274 {
275 /* Do not try to stash the sentinel frame. */
276 gdb_assert (frame->level >= 0);
277
278 frame_info **slot = (struct frame_info **) htab_find_slot (frame_stash,
279 frame, INSERT);
280
281 /* If we already have a frame in the stack with the same id, we
282 either have a stack cycle (corrupted stack?), or some bug
283 elsewhere in GDB. In any case, ignore the duplicate and return
284 an indication to the caller. */
285 if (*slot != nullptr)
286 return false;
287
288 *slot = frame;
289 return true;
290 }
291
292 /* Internal function to search the frame stash for an entry with the
293 given frame ID. If found, return that frame. Otherwise return
294 NULL. */
295
296 static struct frame_info *
297 frame_stash_find (struct frame_id id)
298 {
299 struct frame_info dummy;
300 struct frame_info *frame;
301
302 dummy.this_id.value = id;
303 frame = (struct frame_info *) htab_find (frame_stash, &dummy);
304 return frame;
305 }
306
307 /* Internal function to invalidate the frame stash by removing all
308 entries in it. This only occurs when the frame cache is
309 invalidated. */
310
311 static void
312 frame_stash_invalidate (void)
313 {
314 htab_empty (frame_stash);
315 }
316
317 /* See frame.h */
318 scoped_restore_selected_frame::scoped_restore_selected_frame ()
319 {
320 m_fid = get_frame_id (get_selected_frame (NULL));
321 }
322
323 /* See frame.h */
324 scoped_restore_selected_frame::~scoped_restore_selected_frame ()
325 {
326 frame_info *frame = frame_find_by_id (m_fid);
327 if (frame == NULL)
328 warning (_("Unable to restore previously selected frame."));
329 else
330 select_frame (frame);
331 }
332
333 /* Flag to control debugging. */
334
335 unsigned int frame_debug;
336 static void
337 show_frame_debug (struct ui_file *file, int from_tty,
338 struct cmd_list_element *c, const char *value)
339 {
340 fprintf_filtered (file, _("Frame debugging is %s.\n"), value);
341 }
342
343 /* Implementation of "show backtrace past-main". */
344
345 static void
346 show_backtrace_past_main (struct ui_file *file, int from_tty,
347 struct cmd_list_element *c, const char *value)
348 {
349 fprintf_filtered (file,
350 _("Whether backtraces should "
351 "continue past \"main\" is %s.\n"),
352 value);
353 }
354
355 /* Implementation of "show backtrace past-entry". */
356
357 static void
358 show_backtrace_past_entry (struct ui_file *file, int from_tty,
359 struct cmd_list_element *c, const char *value)
360 {
361 fprintf_filtered (file, _("Whether backtraces should continue past the "
362 "entry point of a program is %s.\n"),
363 value);
364 }
365
366 /* Implementation of "show backtrace limit". */
367
368 static void
369 show_backtrace_limit (struct ui_file *file, int from_tty,
370 struct cmd_list_element *c, const char *value)
371 {
372 fprintf_filtered (file,
373 _("An upper bound on the number "
374 "of backtrace levels is %s.\n"),
375 value);
376 }
377
378
379 static void
380 fprint_field (struct ui_file *file, const char *name, int p, CORE_ADDR addr)
381 {
382 if (p)
383 fprintf_unfiltered (file, "%s=%s", name, hex_string (addr));
384 else
385 fprintf_unfiltered (file, "!%s", name);
386 }
387
388 void
389 fprint_frame_id (struct ui_file *file, struct frame_id id)
390 {
391 fprintf_unfiltered (file, "{");
392
393 if (id.stack_status == FID_STACK_INVALID)
394 fprintf_unfiltered (file, "!stack");
395 else if (id.stack_status == FID_STACK_UNAVAILABLE)
396 fprintf_unfiltered (file, "stack=<unavailable>");
397 else if (id.stack_status == FID_STACK_SENTINEL)
398 fprintf_unfiltered (file, "stack=<sentinel>");
399 else if (id.stack_status == FID_STACK_OUTER)
400 fprintf_unfiltered (file, "stack=<outer>");
401 else
402 fprintf_unfiltered (file, "stack=%s", hex_string (id.stack_addr));
403
404 fprintf_unfiltered (file, ",");
405
406 fprint_field (file, "code", id.code_addr_p, id.code_addr);
407 fprintf_unfiltered (file, ",");
408
409 fprint_field (file, "special", id.special_addr_p, id.special_addr);
410
411 if (id.artificial_depth)
412 fprintf_unfiltered (file, ",artificial=%d", id.artificial_depth);
413
414 fprintf_unfiltered (file, "}");
415 }
416
417 static void
418 fprint_frame_type (struct ui_file *file, enum frame_type type)
419 {
420 switch (type)
421 {
422 case NORMAL_FRAME:
423 fprintf_unfiltered (file, "NORMAL_FRAME");
424 return;
425 case DUMMY_FRAME:
426 fprintf_unfiltered (file, "DUMMY_FRAME");
427 return;
428 case INLINE_FRAME:
429 fprintf_unfiltered (file, "INLINE_FRAME");
430 return;
431 case TAILCALL_FRAME:
432 fprintf_unfiltered (file, "TAILCALL_FRAME");
433 return;
434 case SIGTRAMP_FRAME:
435 fprintf_unfiltered (file, "SIGTRAMP_FRAME");
436 return;
437 case ARCH_FRAME:
438 fprintf_unfiltered (file, "ARCH_FRAME");
439 return;
440 case SENTINEL_FRAME:
441 fprintf_unfiltered (file, "SENTINEL_FRAME");
442 return;
443 default:
444 fprintf_unfiltered (file, "<unknown type>");
445 return;
446 };
447 }
448
449 static void
450 fprint_frame (struct ui_file *file, struct frame_info *fi)
451 {
452 if (fi == NULL)
453 {
454 fprintf_unfiltered (file, "<NULL frame>");
455 return;
456 }
457
458 fprintf_unfiltered (file, "{");
459 fprintf_unfiltered (file, "level=%d", fi->level);
460 fprintf_unfiltered (file, ",");
461
462 fprintf_unfiltered (file, "type=");
463 if (fi->unwind != NULL)
464 fprint_frame_type (file, fi->unwind->type);
465 else
466 fprintf_unfiltered (file, "<unknown>");
467 fprintf_unfiltered (file, ",");
468
469 fprintf_unfiltered (file, "unwind=");
470 if (fi->unwind != NULL)
471 gdb_print_host_address (fi->unwind, file);
472 else
473 fprintf_unfiltered (file, "<unknown>");
474 fprintf_unfiltered (file, ",");
475
476 fprintf_unfiltered (file, "pc=");
477 if (fi->next == NULL || fi->next->prev_pc.status == CC_UNKNOWN)
478 fprintf_unfiltered (file, "<unknown>");
479 else if (fi->next->prev_pc.status == CC_VALUE)
480 {
481 fprintf_unfiltered (file, "%s", hex_string (fi->next->prev_pc.value));
482 if (fi->next->prev_pc.masked)
483 fprintf_unfiltered (file, "[PAC]");
484 }
485 else if (fi->next->prev_pc.status == CC_NOT_SAVED)
486 val_print_not_saved (file);
487 else if (fi->next->prev_pc.status == CC_UNAVAILABLE)
488 val_print_unavailable (file);
489 fprintf_unfiltered (file, ",");
490
491 fprintf_unfiltered (file, "id=");
492 if (fi->this_id.p == frame_id_status::NOT_COMPUTED)
493 fprintf_unfiltered (file, "<not computed>");
494 else if (fi->this_id.p == frame_id_status::COMPUTING)
495 fprintf_unfiltered (file, "<computing>");
496 else
497 fprint_frame_id (file, fi->this_id.value);
498 fprintf_unfiltered (file, ",");
499
500 fprintf_unfiltered (file, "func=");
501 if (fi->next != NULL && fi->next->prev_func.status == CC_VALUE)
502 fprintf_unfiltered (file, "%s", hex_string (fi->next->prev_func.addr));
503 else
504 fprintf_unfiltered (file, "<unknown>");
505 fprintf_unfiltered (file, "}");
506 }
507
508 /* Given FRAME, return the enclosing frame as found in real frames read-in from
509 inferior memory. Skip any previous frames which were made up by GDB.
510 Return FRAME if FRAME is a non-artificial frame.
511 Return NULL if FRAME is the start of an artificial-only chain. */
512
513 static struct frame_info *
514 skip_artificial_frames (struct frame_info *frame)
515 {
516 /* Note we use get_prev_frame_always, and not get_prev_frame. The
517 latter will truncate the frame chain, leading to this function
518 unintentionally returning a null_frame_id (e.g., when the user
519 sets a backtrace limit).
520
521 Note that for record targets we may get a frame chain that consists
522 of artificial frames only. */
523 while (get_frame_type (frame) == INLINE_FRAME
524 || get_frame_type (frame) == TAILCALL_FRAME)
525 {
526 frame = get_prev_frame_always (frame);
527 if (frame == NULL)
528 break;
529 }
530
531 return frame;
532 }
533
534 struct frame_info *
535 skip_unwritable_frames (struct frame_info *frame)
536 {
537 while (gdbarch_code_of_frame_writable (get_frame_arch (frame), frame) == 0)
538 {
539 frame = get_prev_frame (frame);
540 if (frame == NULL)
541 break;
542 }
543
544 return frame;
545 }
546
547 /* See frame.h. */
548
549 struct frame_info *
550 skip_tailcall_frames (struct frame_info *frame)
551 {
552 while (get_frame_type (frame) == TAILCALL_FRAME)
553 {
554 /* Note that for record targets we may get a frame chain that consists of
555 tailcall frames only. */
556 frame = get_prev_frame (frame);
557 if (frame == NULL)
558 break;
559 }
560
561 return frame;
562 }
563
564 /* Compute the frame's uniq ID that can be used to, later, re-find the
565 frame. */
566
567 static void
568 compute_frame_id (struct frame_info *fi)
569 {
570 gdb_assert (fi->this_id.p == frame_id_status::NOT_COMPUTED);
571
572 unsigned int entry_generation = get_frame_cache_generation ();
573
574 try
575 {
576 /* Mark this frame's id as "being computed. */
577 fi->this_id.p = frame_id_status::COMPUTING;
578
579 if (frame_debug)
580 fprintf_unfiltered (gdb_stdlog, "{ compute_frame_id (fi=%d) ",
581 fi->level);
582
583 /* Find the unwinder. */
584 if (fi->unwind == NULL)
585 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
586
587 /* Find THIS frame's ID. */
588 /* Default to outermost if no ID is found. */
589 fi->this_id.value = outer_frame_id;
590 fi->unwind->this_id (fi, &fi->prologue_cache, &fi->this_id.value);
591 gdb_assert (frame_id_p (fi->this_id.value));
592
593 /* Mark this frame's id as "computed". */
594 fi->this_id.p = frame_id_status::COMPUTED;
595
596 if (frame_debug)
597 {
598 fprintf_unfiltered (gdb_stdlog, "-> ");
599 fprint_frame_id (gdb_stdlog, fi->this_id.value);
600 fprintf_unfiltered (gdb_stdlog, " }\n");
601 }
602 }
603 catch (const gdb_exception &ex)
604 {
605 /* On error, revert the frame id status to not computed. If the frame
606 cache generation changed, the frame object doesn't exist anymore, so
607 don't touch it. */
608 if (get_frame_cache_generation () == entry_generation)
609 fi->this_id.p = frame_id_status::NOT_COMPUTED;
610
611 throw;
612 }
613 }
614
615 /* Return a frame uniq ID that can be used to, later, re-find the
616 frame. */
617
618 struct frame_id
619 get_frame_id (struct frame_info *fi)
620 {
621 if (fi == NULL)
622 return null_frame_id;
623
624 /* It's always invalid to try to get a frame's id while it is being
625 computed. */
626 gdb_assert (fi->this_id.p != frame_id_status::COMPUTING);
627
628 if (fi->this_id.p == frame_id_status::NOT_COMPUTED)
629 {
630 /* If we haven't computed the frame id yet, then it must be that
631 this is the current frame. Compute it now, and stash the
632 result. The IDs of other frames are computed as soon as
633 they're created, in order to detect cycles. See
634 get_prev_frame_if_no_cycle. */
635 gdb_assert (fi->level == 0);
636
637 /* Compute. */
638 compute_frame_id (fi);
639
640 /* Since this is the first frame in the chain, this should
641 always succeed. */
642 bool stashed = frame_stash_add (fi);
643 gdb_assert (stashed);
644 }
645
646 return fi->this_id.value;
647 }
648
649 struct frame_id
650 get_stack_frame_id (struct frame_info *next_frame)
651 {
652 return get_frame_id (skip_artificial_frames (next_frame));
653 }
654
655 struct frame_id
656 frame_unwind_caller_id (struct frame_info *next_frame)
657 {
658 struct frame_info *this_frame;
659
660 /* Use get_prev_frame_always, and not get_prev_frame. The latter
661 will truncate the frame chain, leading to this function
662 unintentionally returning a null_frame_id (e.g., when a caller
663 requests the frame ID of "main()"s caller. */
664
665 next_frame = skip_artificial_frames (next_frame);
666 if (next_frame == NULL)
667 return null_frame_id;
668
669 this_frame = get_prev_frame_always (next_frame);
670 if (this_frame)
671 return get_frame_id (skip_artificial_frames (this_frame));
672 else
673 return null_frame_id;
674 }
675
676 const struct frame_id null_frame_id = { 0 }; /* All zeros. */
677 const struct frame_id sentinel_frame_id = { 0, 0, 0, FID_STACK_SENTINEL, 0, 1, 0 };
678 const struct frame_id outer_frame_id = { 0, 0, 0, FID_STACK_OUTER, 0, 1, 0 };
679
680 struct frame_id
681 frame_id_build_special (CORE_ADDR stack_addr, CORE_ADDR code_addr,
682 CORE_ADDR special_addr)
683 {
684 struct frame_id id = null_frame_id;
685
686 id.stack_addr = stack_addr;
687 id.stack_status = FID_STACK_VALID;
688 id.code_addr = code_addr;
689 id.code_addr_p = true;
690 id.special_addr = special_addr;
691 id.special_addr_p = true;
692 return id;
693 }
694
695 /* See frame.h. */
696
697 struct frame_id
698 frame_id_build_unavailable_stack (CORE_ADDR code_addr)
699 {
700 struct frame_id id = null_frame_id;
701
702 id.stack_status = FID_STACK_UNAVAILABLE;
703 id.code_addr = code_addr;
704 id.code_addr_p = true;
705 return id;
706 }
707
708 /* See frame.h. */
709
710 struct frame_id
711 frame_id_build_unavailable_stack_special (CORE_ADDR code_addr,
712 CORE_ADDR special_addr)
713 {
714 struct frame_id id = null_frame_id;
715
716 id.stack_status = FID_STACK_UNAVAILABLE;
717 id.code_addr = code_addr;
718 id.code_addr_p = true;
719 id.special_addr = special_addr;
720 id.special_addr_p = true;
721 return id;
722 }
723
724 struct frame_id
725 frame_id_build (CORE_ADDR stack_addr, CORE_ADDR code_addr)
726 {
727 struct frame_id id = null_frame_id;
728
729 id.stack_addr = stack_addr;
730 id.stack_status = FID_STACK_VALID;
731 id.code_addr = code_addr;
732 id.code_addr_p = true;
733 return id;
734 }
735
736 struct frame_id
737 frame_id_build_wild (CORE_ADDR stack_addr)
738 {
739 struct frame_id id = null_frame_id;
740
741 id.stack_addr = stack_addr;
742 id.stack_status = FID_STACK_VALID;
743 return id;
744 }
745
746 bool
747 frame_id_p (frame_id l)
748 {
749 /* The frame is valid iff it has a valid stack address. */
750 bool p = l.stack_status != FID_STACK_INVALID;
751
752 if (frame_debug)
753 {
754 fprintf_unfiltered (gdb_stdlog, "{ frame_id_p (l=");
755 fprint_frame_id (gdb_stdlog, l);
756 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", p);
757 }
758
759 return p;
760 }
761
762 bool
763 frame_id_artificial_p (frame_id l)
764 {
765 if (!frame_id_p (l))
766 return false;
767
768 return l.artificial_depth != 0;
769 }
770
771 bool
772 frame_id_eq (frame_id l, frame_id r)
773 {
774 bool eq;
775
776 if (l.stack_status == FID_STACK_INVALID
777 || r.stack_status == FID_STACK_INVALID)
778 /* Like a NaN, if either ID is invalid, the result is false.
779 Note that a frame ID is invalid iff it is the null frame ID. */
780 eq = false;
781 else if (l.stack_status != r.stack_status || l.stack_addr != r.stack_addr)
782 /* If .stack addresses are different, the frames are different. */
783 eq = false;
784 else if (l.code_addr_p && r.code_addr_p && l.code_addr != r.code_addr)
785 /* An invalid code addr is a wild card. If .code addresses are
786 different, the frames are different. */
787 eq = false;
788 else if (l.special_addr_p && r.special_addr_p
789 && l.special_addr != r.special_addr)
790 /* An invalid special addr is a wild card (or unused). Otherwise
791 if special addresses are different, the frames are different. */
792 eq = false;
793 else if (l.artificial_depth != r.artificial_depth)
794 /* If artificial depths are different, the frames must be different. */
795 eq = false;
796 else
797 /* Frames are equal. */
798 eq = true;
799
800 if (frame_debug)
801 {
802 fprintf_unfiltered (gdb_stdlog, "{ frame_id_eq (l=");
803 fprint_frame_id (gdb_stdlog, l);
804 fprintf_unfiltered (gdb_stdlog, ",r=");
805 fprint_frame_id (gdb_stdlog, r);
806 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", eq);
807 }
808
809 return eq;
810 }
811
812 /* Safety net to check whether frame ID L should be inner to
813 frame ID R, according to their stack addresses.
814
815 This method cannot be used to compare arbitrary frames, as the
816 ranges of valid stack addresses may be discontiguous (e.g. due
817 to sigaltstack).
818
819 However, it can be used as safety net to discover invalid frame
820 IDs in certain circumstances. Assuming that NEXT is the immediate
821 inner frame to THIS and that NEXT and THIS are both NORMAL frames:
822
823 * The stack address of NEXT must be inner-than-or-equal to the stack
824 address of THIS.
825
826 Therefore, if frame_id_inner (THIS, NEXT) holds, some unwind
827 error has occurred.
828
829 * If NEXT and THIS have different stack addresses, no other frame
830 in the frame chain may have a stack address in between.
831
832 Therefore, if frame_id_inner (TEST, THIS) holds, but
833 frame_id_inner (TEST, NEXT) does not hold, TEST cannot refer
834 to a valid frame in the frame chain.
835
836 The sanity checks above cannot be performed when a SIGTRAMP frame
837 is involved, because signal handlers might be executed on a different
838 stack than the stack used by the routine that caused the signal
839 to be raised. This can happen for instance when a thread exceeds
840 its maximum stack size. In this case, certain compilers implement
841 a stack overflow strategy that cause the handler to be run on a
842 different stack. */
843
844 static bool
845 frame_id_inner (struct gdbarch *gdbarch, struct frame_id l, struct frame_id r)
846 {
847 bool inner;
848
849 if (l.stack_status != FID_STACK_VALID || r.stack_status != FID_STACK_VALID)
850 /* Like NaN, any operation involving an invalid ID always fails.
851 Likewise if either ID has an unavailable stack address. */
852 inner = false;
853 else if (l.artificial_depth > r.artificial_depth
854 && l.stack_addr == r.stack_addr
855 && l.code_addr_p == r.code_addr_p
856 && l.special_addr_p == r.special_addr_p
857 && l.special_addr == r.special_addr)
858 {
859 /* Same function, different inlined functions. */
860 const struct block *lb, *rb;
861
862 gdb_assert (l.code_addr_p && r.code_addr_p);
863
864 lb = block_for_pc (l.code_addr);
865 rb = block_for_pc (r.code_addr);
866
867 if (lb == NULL || rb == NULL)
868 /* Something's gone wrong. */
869 inner = false;
870 else
871 /* This will return true if LB and RB are the same block, or
872 if the block with the smaller depth lexically encloses the
873 block with the greater depth. */
874 inner = contained_in (lb, rb);
875 }
876 else
877 /* Only return non-zero when strictly inner than. Note that, per
878 comment in "frame.h", there is some fuzz here. Frameless
879 functions are not strictly inner than (same .stack but
880 different .code and/or .special address). */
881 inner = gdbarch_inner_than (gdbarch, l.stack_addr, r.stack_addr);
882
883 if (frame_debug)
884 {
885 fprintf_unfiltered (gdb_stdlog, "{ frame_id_inner (l=");
886 fprint_frame_id (gdb_stdlog, l);
887 fprintf_unfiltered (gdb_stdlog, ",r=");
888 fprint_frame_id (gdb_stdlog, r);
889 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", inner);
890 }
891
892 return inner;
893 }
894
895 struct frame_info *
896 frame_find_by_id (struct frame_id id)
897 {
898 struct frame_info *frame, *prev_frame;
899
900 /* ZERO denotes the null frame, let the caller decide what to do
901 about it. Should it instead return get_current_frame()? */
902 if (!frame_id_p (id))
903 return NULL;
904
905 /* Check for the sentinel frame. */
906 if (frame_id_eq (id, sentinel_frame_id))
907 return sentinel_frame;
908
909 /* Try using the frame stash first. Finding it there removes the need
910 to perform the search by looping over all frames, which can be very
911 CPU-intensive if the number of frames is very high (the loop is O(n)
912 and get_prev_frame performs a series of checks that are relatively
913 expensive). This optimization is particularly useful when this function
914 is called from another function (such as value_fetch_lazy, case
915 VALUE_LVAL (val) == lval_register) which already loops over all frames,
916 making the overall behavior O(n^2). */
917 frame = frame_stash_find (id);
918 if (frame)
919 return frame;
920
921 for (frame = get_current_frame (); ; frame = prev_frame)
922 {
923 struct frame_id self = get_frame_id (frame);
924
925 if (frame_id_eq (id, self))
926 /* An exact match. */
927 return frame;
928
929 prev_frame = get_prev_frame (frame);
930 if (!prev_frame)
931 return NULL;
932
933 /* As a safety net to avoid unnecessary backtracing while trying
934 to find an invalid ID, we check for a common situation where
935 we can detect from comparing stack addresses that no other
936 frame in the current frame chain can have this ID. See the
937 comment at frame_id_inner for details. */
938 if (get_frame_type (frame) == NORMAL_FRAME
939 && !frame_id_inner (get_frame_arch (frame), id, self)
940 && frame_id_inner (get_frame_arch (prev_frame), id,
941 get_frame_id (prev_frame)))
942 return NULL;
943 }
944 return NULL;
945 }
946
947 static CORE_ADDR
948 frame_unwind_pc (struct frame_info *this_frame)
949 {
950 if (this_frame->prev_pc.status == CC_UNKNOWN)
951 {
952 struct gdbarch *prev_gdbarch;
953 CORE_ADDR pc = 0;
954 bool pc_p = false;
955
956 /* The right way. The `pure' way. The one true way. This
957 method depends solely on the register-unwind code to
958 determine the value of registers in THIS frame, and hence
959 the value of this frame's PC (resume address). A typical
960 implementation is no more than:
961
962 frame_unwind_register (this_frame, ISA_PC_REGNUM, buf);
963 return extract_unsigned_integer (buf, size of ISA_PC_REGNUM);
964
965 Note: this method is very heavily dependent on a correct
966 register-unwind implementation, it pays to fix that
967 method first; this method is frame type agnostic, since
968 it only deals with register values, it works with any
969 frame. This is all in stark contrast to the old
970 FRAME_SAVED_PC which would try to directly handle all the
971 different ways that a PC could be unwound. */
972 prev_gdbarch = frame_unwind_arch (this_frame);
973
974 try
975 {
976 pc = gdbarch_unwind_pc (prev_gdbarch, this_frame);
977 pc_p = true;
978 }
979 catch (const gdb_exception_error &ex)
980 {
981 if (ex.error == NOT_AVAILABLE_ERROR)
982 {
983 this_frame->prev_pc.status = CC_UNAVAILABLE;
984
985 if (frame_debug)
986 fprintf_unfiltered (gdb_stdlog,
987 "{ frame_unwind_pc (this_frame=%d)"
988 " -> <unavailable> }\n",
989 this_frame->level);
990 }
991 else if (ex.error == OPTIMIZED_OUT_ERROR)
992 {
993 this_frame->prev_pc.status = CC_NOT_SAVED;
994
995 if (frame_debug)
996 fprintf_unfiltered (gdb_stdlog,
997 "{ frame_unwind_pc (this_frame=%d)"
998 " -> <not saved> }\n",
999 this_frame->level);
1000 }
1001 else
1002 throw;
1003 }
1004
1005 if (pc_p)
1006 {
1007 this_frame->prev_pc.value = pc;
1008 this_frame->prev_pc.status = CC_VALUE;
1009 if (frame_debug)
1010 fprintf_unfiltered (gdb_stdlog,
1011 "{ frame_unwind_pc (this_frame=%d) "
1012 "-> %s }\n",
1013 this_frame->level,
1014 hex_string (this_frame->prev_pc.value));
1015 }
1016 }
1017
1018 if (this_frame->prev_pc.status == CC_VALUE)
1019 return this_frame->prev_pc.value;
1020 else if (this_frame->prev_pc.status == CC_UNAVAILABLE)
1021 throw_error (NOT_AVAILABLE_ERROR, _("PC not available"));
1022 else if (this_frame->prev_pc.status == CC_NOT_SAVED)
1023 throw_error (OPTIMIZED_OUT_ERROR, _("PC not saved"));
1024 else
1025 internal_error (__FILE__, __LINE__,
1026 "unexpected prev_pc status: %d",
1027 (int) this_frame->prev_pc.status);
1028 }
1029
1030 CORE_ADDR
1031 frame_unwind_caller_pc (struct frame_info *this_frame)
1032 {
1033 this_frame = skip_artificial_frames (this_frame);
1034
1035 /* We must have a non-artificial frame. The caller is supposed to check
1036 the result of frame_unwind_caller_id (), which returns NULL_FRAME_ID
1037 in this case. */
1038 gdb_assert (this_frame != NULL);
1039
1040 return frame_unwind_pc (this_frame);
1041 }
1042
1043 bool
1044 get_frame_func_if_available (frame_info *this_frame, CORE_ADDR *pc)
1045 {
1046 struct frame_info *next_frame = this_frame->next;
1047
1048 if (next_frame->prev_func.status == CC_UNKNOWN)
1049 {
1050 CORE_ADDR addr_in_block;
1051
1052 /* Make certain that this, and not the adjacent, function is
1053 found. */
1054 if (!get_frame_address_in_block_if_available (this_frame, &addr_in_block))
1055 {
1056 next_frame->prev_func.status = CC_UNAVAILABLE;
1057 if (frame_debug)
1058 fprintf_unfiltered (gdb_stdlog,
1059 "{ get_frame_func (this_frame=%d)"
1060 " -> unavailable }\n",
1061 this_frame->level);
1062 }
1063 else
1064 {
1065 next_frame->prev_func.status = CC_VALUE;
1066 next_frame->prev_func.addr = get_pc_function_start (addr_in_block);
1067 if (frame_debug)
1068 fprintf_unfiltered (gdb_stdlog,
1069 "{ get_frame_func (this_frame=%d) -> %s }\n",
1070 this_frame->level,
1071 hex_string (next_frame->prev_func.addr));
1072 }
1073 }
1074
1075 if (next_frame->prev_func.status == CC_UNAVAILABLE)
1076 {
1077 *pc = -1;
1078 return false;
1079 }
1080 else
1081 {
1082 gdb_assert (next_frame->prev_func.status == CC_VALUE);
1083
1084 *pc = next_frame->prev_func.addr;
1085 return true;
1086 }
1087 }
1088
1089 CORE_ADDR
1090 get_frame_func (struct frame_info *this_frame)
1091 {
1092 CORE_ADDR pc;
1093
1094 if (!get_frame_func_if_available (this_frame, &pc))
1095 throw_error (NOT_AVAILABLE_ERROR, _("PC not available"));
1096
1097 return pc;
1098 }
1099
1100 std::unique_ptr<readonly_detached_regcache>
1101 frame_save_as_regcache (struct frame_info *this_frame)
1102 {
1103 auto cooked_read = [this_frame] (int regnum, gdb_byte *buf)
1104 {
1105 if (!deprecated_frame_register_read (this_frame, regnum, buf))
1106 return REG_UNAVAILABLE;
1107 else
1108 return REG_VALID;
1109 };
1110
1111 std::unique_ptr<readonly_detached_regcache> regcache
1112 (new readonly_detached_regcache (get_frame_arch (this_frame), cooked_read));
1113
1114 return regcache;
1115 }
1116
1117 void
1118 frame_pop (struct frame_info *this_frame)
1119 {
1120 struct frame_info *prev_frame;
1121
1122 if (get_frame_type (this_frame) == DUMMY_FRAME)
1123 {
1124 /* Popping a dummy frame involves restoring more than just registers.
1125 dummy_frame_pop does all the work. */
1126 dummy_frame_pop (get_frame_id (this_frame), inferior_thread ());
1127 return;
1128 }
1129
1130 /* Ensure that we have a frame to pop to. */
1131 prev_frame = get_prev_frame_always (this_frame);
1132
1133 if (!prev_frame)
1134 error (_("Cannot pop the initial frame."));
1135
1136 /* Ignore TAILCALL_FRAME type frames, they were executed already before
1137 entering THISFRAME. */
1138 prev_frame = skip_tailcall_frames (prev_frame);
1139
1140 if (prev_frame == NULL)
1141 error (_("Cannot find the caller frame."));
1142
1143 /* Make a copy of all the register values unwound from this frame.
1144 Save them in a scratch buffer so that there isn't a race between
1145 trying to extract the old values from the current regcache while
1146 at the same time writing new values into that same cache. */
1147 std::unique_ptr<readonly_detached_regcache> scratch
1148 = frame_save_as_regcache (prev_frame);
1149
1150 /* FIXME: cagney/2003-03-16: It should be possible to tell the
1151 target's register cache that it is about to be hit with a burst
1152 register transfer and that the sequence of register writes should
1153 be batched. The pair target_prepare_to_store() and
1154 target_store_registers() kind of suggest this functionality.
1155 Unfortunately, they don't implement it. Their lack of a formal
1156 definition can lead to targets writing back bogus values
1157 (arguably a bug in the target code mind). */
1158 /* Now copy those saved registers into the current regcache. */
1159 get_current_regcache ()->restore (scratch.get ());
1160
1161 /* We've made right mess of GDB's local state, just discard
1162 everything. */
1163 reinit_frame_cache ();
1164 }
1165
1166 void
1167 frame_register_unwind (frame_info *next_frame, int regnum,
1168 int *optimizedp, int *unavailablep,
1169 enum lval_type *lvalp, CORE_ADDR *addrp,
1170 int *realnump, gdb_byte *bufferp)
1171 {
1172 struct value *value;
1173
1174 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
1175 that the value proper does not need to be fetched. */
1176 gdb_assert (optimizedp != NULL);
1177 gdb_assert (lvalp != NULL);
1178 gdb_assert (addrp != NULL);
1179 gdb_assert (realnump != NULL);
1180 /* gdb_assert (bufferp != NULL); */
1181
1182 value = frame_unwind_register_value (next_frame, regnum);
1183
1184 gdb_assert (value != NULL);
1185
1186 *optimizedp = value_optimized_out (value);
1187 *unavailablep = !value_entirely_available (value);
1188 *lvalp = VALUE_LVAL (value);
1189 *addrp = value_address (value);
1190 if (*lvalp == lval_register)
1191 *realnump = VALUE_REGNUM (value);
1192 else
1193 *realnump = -1;
1194
1195 if (bufferp)
1196 {
1197 if (!*optimizedp && !*unavailablep)
1198 memcpy (bufferp, value_contents_all (value),
1199 TYPE_LENGTH (value_type (value)));
1200 else
1201 memset (bufferp, 0, TYPE_LENGTH (value_type (value)));
1202 }
1203
1204 /* Dispose of the new value. This prevents watchpoints from
1205 trying to watch the saved frame pointer. */
1206 release_value (value);
1207 }
1208
1209 void
1210 frame_register (struct frame_info *frame, int regnum,
1211 int *optimizedp, int *unavailablep, enum lval_type *lvalp,
1212 CORE_ADDR *addrp, int *realnump, gdb_byte *bufferp)
1213 {
1214 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
1215 that the value proper does not need to be fetched. */
1216 gdb_assert (optimizedp != NULL);
1217 gdb_assert (lvalp != NULL);
1218 gdb_assert (addrp != NULL);
1219 gdb_assert (realnump != NULL);
1220 /* gdb_assert (bufferp != NULL); */
1221
1222 /* Obtain the register value by unwinding the register from the next
1223 (more inner frame). */
1224 gdb_assert (frame != NULL && frame->next != NULL);
1225 frame_register_unwind (frame->next, regnum, optimizedp, unavailablep,
1226 lvalp, addrp, realnump, bufferp);
1227 }
1228
1229 void
1230 frame_unwind_register (frame_info *next_frame, int regnum, gdb_byte *buf)
1231 {
1232 int optimized;
1233 int unavailable;
1234 CORE_ADDR addr;
1235 int realnum;
1236 enum lval_type lval;
1237
1238 frame_register_unwind (next_frame, regnum, &optimized, &unavailable,
1239 &lval, &addr, &realnum, buf);
1240
1241 if (optimized)
1242 throw_error (OPTIMIZED_OUT_ERROR,
1243 _("Register %d was not saved"), regnum);
1244 if (unavailable)
1245 throw_error (NOT_AVAILABLE_ERROR,
1246 _("Register %d is not available"), regnum);
1247 }
1248
1249 void
1250 get_frame_register (struct frame_info *frame,
1251 int regnum, gdb_byte *buf)
1252 {
1253 frame_unwind_register (frame->next, regnum, buf);
1254 }
1255
1256 struct value *
1257 frame_unwind_register_value (frame_info *next_frame, int regnum)
1258 {
1259 struct gdbarch *gdbarch;
1260 struct value *value;
1261
1262 gdb_assert (next_frame != NULL);
1263 gdbarch = frame_unwind_arch (next_frame);
1264
1265 if (frame_debug)
1266 {
1267 fprintf_unfiltered (gdb_stdlog,
1268 "{ frame_unwind_register_value "
1269 "(frame=%d,regnum=%d(%s),...) ",
1270 next_frame->level, regnum,
1271 user_reg_map_regnum_to_name (gdbarch, regnum));
1272 }
1273
1274 /* Find the unwinder. */
1275 if (next_frame->unwind == NULL)
1276 frame_unwind_find_by_frame (next_frame, &next_frame->prologue_cache);
1277
1278 /* Ask this frame to unwind its register. */
1279 value = next_frame->unwind->prev_register (next_frame,
1280 &next_frame->prologue_cache,
1281 regnum);
1282
1283 if (frame_debug)
1284 {
1285 fprintf_unfiltered (gdb_stdlog, "->");
1286 if (value_optimized_out (value))
1287 {
1288 fprintf_unfiltered (gdb_stdlog, " ");
1289 val_print_not_saved (gdb_stdlog);
1290 }
1291 else
1292 {
1293 if (VALUE_LVAL (value) == lval_register)
1294 fprintf_unfiltered (gdb_stdlog, " register=%d",
1295 VALUE_REGNUM (value));
1296 else if (VALUE_LVAL (value) == lval_memory)
1297 fprintf_unfiltered (gdb_stdlog, " address=%s",
1298 paddress (gdbarch,
1299 value_address (value)));
1300 else
1301 fprintf_unfiltered (gdb_stdlog, " computed");
1302
1303 if (value_lazy (value))
1304 fprintf_unfiltered (gdb_stdlog, " lazy");
1305 else
1306 {
1307 int i;
1308 const gdb_byte *buf = value_contents (value);
1309
1310 fprintf_unfiltered (gdb_stdlog, " bytes=");
1311 fprintf_unfiltered (gdb_stdlog, "[");
1312 for (i = 0; i < register_size (gdbarch, regnum); i++)
1313 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
1314 fprintf_unfiltered (gdb_stdlog, "]");
1315 }
1316 }
1317
1318 fprintf_unfiltered (gdb_stdlog, " }\n");
1319 }
1320
1321 return value;
1322 }
1323
1324 struct value *
1325 get_frame_register_value (struct frame_info *frame, int regnum)
1326 {
1327 return frame_unwind_register_value (frame->next, regnum);
1328 }
1329
1330 LONGEST
1331 frame_unwind_register_signed (frame_info *next_frame, int regnum)
1332 {
1333 struct gdbarch *gdbarch = frame_unwind_arch (next_frame);
1334 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1335 int size = register_size (gdbarch, regnum);
1336 struct value *value = frame_unwind_register_value (next_frame, regnum);
1337
1338 gdb_assert (value != NULL);
1339
1340 if (value_optimized_out (value))
1341 {
1342 throw_error (OPTIMIZED_OUT_ERROR,
1343 _("Register %d was not saved"), regnum);
1344 }
1345 if (!value_entirely_available (value))
1346 {
1347 throw_error (NOT_AVAILABLE_ERROR,
1348 _("Register %d is not available"), regnum);
1349 }
1350
1351 LONGEST r = extract_signed_integer (value_contents_all (value), size,
1352 byte_order);
1353
1354 release_value (value);
1355 return r;
1356 }
1357
1358 LONGEST
1359 get_frame_register_signed (struct frame_info *frame, int regnum)
1360 {
1361 return frame_unwind_register_signed (frame->next, regnum);
1362 }
1363
1364 ULONGEST
1365 frame_unwind_register_unsigned (frame_info *next_frame, int regnum)
1366 {
1367 struct gdbarch *gdbarch = frame_unwind_arch (next_frame);
1368 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1369 int size = register_size (gdbarch, regnum);
1370 struct value *value = frame_unwind_register_value (next_frame, regnum);
1371
1372 gdb_assert (value != NULL);
1373
1374 if (value_optimized_out (value))
1375 {
1376 throw_error (OPTIMIZED_OUT_ERROR,
1377 _("Register %d was not saved"), regnum);
1378 }
1379 if (!value_entirely_available (value))
1380 {
1381 throw_error (NOT_AVAILABLE_ERROR,
1382 _("Register %d is not available"), regnum);
1383 }
1384
1385 ULONGEST r = extract_unsigned_integer (value_contents_all (value), size,
1386 byte_order);
1387
1388 release_value (value);
1389 return r;
1390 }
1391
1392 ULONGEST
1393 get_frame_register_unsigned (struct frame_info *frame, int regnum)
1394 {
1395 return frame_unwind_register_unsigned (frame->next, regnum);
1396 }
1397
1398 bool
1399 read_frame_register_unsigned (frame_info *frame, int regnum,
1400 ULONGEST *val)
1401 {
1402 struct value *regval = get_frame_register_value (frame, regnum);
1403
1404 if (!value_optimized_out (regval)
1405 && value_entirely_available (regval))
1406 {
1407 struct gdbarch *gdbarch = get_frame_arch (frame);
1408 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1409 int size = register_size (gdbarch, VALUE_REGNUM (regval));
1410
1411 *val = extract_unsigned_integer (value_contents (regval), size, byte_order);
1412 return true;
1413 }
1414
1415 return false;
1416 }
1417
1418 void
1419 put_frame_register (struct frame_info *frame, int regnum,
1420 const gdb_byte *buf)
1421 {
1422 struct gdbarch *gdbarch = get_frame_arch (frame);
1423 int realnum;
1424 int optim;
1425 int unavail;
1426 enum lval_type lval;
1427 CORE_ADDR addr;
1428
1429 frame_register (frame, regnum, &optim, &unavail,
1430 &lval, &addr, &realnum, NULL);
1431 if (optim)
1432 error (_("Attempt to assign to a register that was not saved."));
1433 switch (lval)
1434 {
1435 case lval_memory:
1436 {
1437 write_memory (addr, buf, register_size (gdbarch, regnum));
1438 break;
1439 }
1440 case lval_register:
1441 get_current_regcache ()->cooked_write (realnum, buf);
1442 break;
1443 default:
1444 error (_("Attempt to assign to an unmodifiable value."));
1445 }
1446 }
1447
1448 /* This function is deprecated. Use get_frame_register_value instead,
1449 which provides more accurate information.
1450
1451 Find and return the value of REGNUM for the specified stack frame.
1452 The number of bytes copied is REGISTER_SIZE (REGNUM).
1453
1454 Returns 0 if the register value could not be found. */
1455
1456 bool
1457 deprecated_frame_register_read (frame_info *frame, int regnum,
1458 gdb_byte *myaddr)
1459 {
1460 int optimized;
1461 int unavailable;
1462 enum lval_type lval;
1463 CORE_ADDR addr;
1464 int realnum;
1465
1466 frame_register (frame, regnum, &optimized, &unavailable,
1467 &lval, &addr, &realnum, myaddr);
1468
1469 return !optimized && !unavailable;
1470 }
1471
1472 bool
1473 get_frame_register_bytes (frame_info *frame, int regnum,
1474 CORE_ADDR offset, int len, gdb_byte *myaddr,
1475 int *optimizedp, int *unavailablep)
1476 {
1477 struct gdbarch *gdbarch = get_frame_arch (frame);
1478 int i;
1479 int maxsize;
1480 int numregs;
1481
1482 /* Skip registers wholly inside of OFFSET. */
1483 while (offset >= register_size (gdbarch, regnum))
1484 {
1485 offset -= register_size (gdbarch, regnum);
1486 regnum++;
1487 }
1488
1489 /* Ensure that we will not read beyond the end of the register file.
1490 This can only ever happen if the debug information is bad. */
1491 maxsize = -offset;
1492 numregs = gdbarch_num_cooked_regs (gdbarch);
1493 for (i = regnum; i < numregs; i++)
1494 {
1495 int thissize = register_size (gdbarch, i);
1496
1497 if (thissize == 0)
1498 break; /* This register is not available on this architecture. */
1499 maxsize += thissize;
1500 }
1501 if (len > maxsize)
1502 error (_("Bad debug information detected: "
1503 "Attempt to read %d bytes from registers."), len);
1504
1505 /* Copy the data. */
1506 while (len > 0)
1507 {
1508 int curr_len = register_size (gdbarch, regnum) - offset;
1509
1510 if (curr_len > len)
1511 curr_len = len;
1512
1513 if (curr_len == register_size (gdbarch, regnum))
1514 {
1515 enum lval_type lval;
1516 CORE_ADDR addr;
1517 int realnum;
1518
1519 frame_register (frame, regnum, optimizedp, unavailablep,
1520 &lval, &addr, &realnum, myaddr);
1521 if (*optimizedp || *unavailablep)
1522 return false;
1523 }
1524 else
1525 {
1526 struct value *value = frame_unwind_register_value (frame->next,
1527 regnum);
1528 gdb_assert (value != NULL);
1529 *optimizedp = value_optimized_out (value);
1530 *unavailablep = !value_entirely_available (value);
1531
1532 if (*optimizedp || *unavailablep)
1533 {
1534 release_value (value);
1535 return false;
1536 }
1537
1538 memcpy (myaddr, value_contents_all (value) + offset, curr_len);
1539 release_value (value);
1540 }
1541
1542 myaddr += curr_len;
1543 len -= curr_len;
1544 offset = 0;
1545 regnum++;
1546 }
1547
1548 *optimizedp = 0;
1549 *unavailablep = 0;
1550
1551 return true;
1552 }
1553
1554 void
1555 put_frame_register_bytes (struct frame_info *frame, int regnum,
1556 CORE_ADDR offset, int len, const gdb_byte *myaddr)
1557 {
1558 struct gdbarch *gdbarch = get_frame_arch (frame);
1559
1560 /* Skip registers wholly inside of OFFSET. */
1561 while (offset >= register_size (gdbarch, regnum))
1562 {
1563 offset -= register_size (gdbarch, regnum);
1564 regnum++;
1565 }
1566
1567 /* Copy the data. */
1568 while (len > 0)
1569 {
1570 int curr_len = register_size (gdbarch, regnum) - offset;
1571
1572 if (curr_len > len)
1573 curr_len = len;
1574
1575 if (curr_len == register_size (gdbarch, regnum))
1576 {
1577 put_frame_register (frame, regnum, myaddr);
1578 }
1579 else
1580 {
1581 struct value *value = frame_unwind_register_value (frame->next,
1582 regnum);
1583 gdb_assert (value != NULL);
1584
1585 memcpy ((char *) value_contents_writeable (value) + offset, myaddr,
1586 curr_len);
1587 put_frame_register (frame, regnum, value_contents_raw (value));
1588 release_value (value);
1589 }
1590
1591 myaddr += curr_len;
1592 len -= curr_len;
1593 offset = 0;
1594 regnum++;
1595 }
1596 }
1597
1598 /* Create a sentinel frame. */
1599
1600 static struct frame_info *
1601 create_sentinel_frame (struct program_space *pspace, struct regcache *regcache)
1602 {
1603 struct frame_info *frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
1604
1605 frame->level = -1;
1606 frame->pspace = pspace;
1607 frame->aspace = regcache->aspace ();
1608 /* Explicitly initialize the sentinel frame's cache. Provide it
1609 with the underlying regcache. In the future additional
1610 information, such as the frame's thread will be added. */
1611 frame->prologue_cache = sentinel_frame_cache (regcache);
1612 /* For the moment there is only one sentinel frame implementation. */
1613 frame->unwind = &sentinel_frame_unwind;
1614 /* Link this frame back to itself. The frame is self referential
1615 (the unwound PC is the same as the pc), so make it so. */
1616 frame->next = frame;
1617 /* The sentinel frame has a special ID. */
1618 frame->this_id.p = frame_id_status::COMPUTED;
1619 frame->this_id.value = sentinel_frame_id;
1620 if (frame_debug)
1621 {
1622 fprintf_unfiltered (gdb_stdlog, "{ create_sentinel_frame (...) -> ");
1623 fprint_frame (gdb_stdlog, frame);
1624 fprintf_unfiltered (gdb_stdlog, " }\n");
1625 }
1626 return frame;
1627 }
1628
1629 /* Cache for frame addresses already read by gdb. Valid only while
1630 inferior is stopped. Control variables for the frame cache should
1631 be local to this module. */
1632
1633 static struct obstack frame_cache_obstack;
1634
1635 void *
1636 frame_obstack_zalloc (unsigned long size)
1637 {
1638 void *data = obstack_alloc (&frame_cache_obstack, size);
1639
1640 memset (data, 0, size);
1641 return data;
1642 }
1643
1644 static struct frame_info *get_prev_frame_always_1 (struct frame_info *this_frame);
1645
1646 struct frame_info *
1647 get_current_frame (void)
1648 {
1649 struct frame_info *current_frame;
1650
1651 /* First check, and report, the lack of registers. Having GDB
1652 report "No stack!" or "No memory" when the target doesn't even
1653 have registers is very confusing. Besides, "printcmd.exp"
1654 explicitly checks that ``print $pc'' with no registers prints "No
1655 registers". */
1656 if (!target_has_registers)
1657 error (_("No registers."));
1658 if (!target_has_stack ())
1659 error (_("No stack."));
1660 if (!target_has_memory ())
1661 error (_("No memory."));
1662 /* Traceframes are effectively a substitute for the live inferior. */
1663 if (get_traceframe_number () < 0)
1664 validate_registers_access ();
1665
1666 if (sentinel_frame == NULL)
1667 sentinel_frame =
1668 create_sentinel_frame (current_program_space, get_current_regcache ());
1669
1670 /* Set the current frame before computing the frame id, to avoid
1671 recursion inside compute_frame_id, in case the frame's
1672 unwinder decides to do a symbol lookup (which depends on the
1673 selected frame's block).
1674
1675 This call must always succeed. In particular, nothing inside
1676 get_prev_frame_always_1 should try to unwind from the
1677 sentinel frame, because that could fail/throw, and we always
1678 want to leave with the current frame created and linked in --
1679 we should never end up with the sentinel frame as outermost
1680 frame. */
1681 current_frame = get_prev_frame_always_1 (sentinel_frame);
1682 gdb_assert (current_frame != NULL);
1683
1684 return current_frame;
1685 }
1686
1687 /* The "selected" stack frame is used by default for local and arg
1688 access. May be zero, for no selected frame. */
1689
1690 static struct frame_info *selected_frame;
1691
1692 bool
1693 has_stack_frames ()
1694 {
1695 if (!target_has_registers || !target_has_stack () || !target_has_memory ())
1696 return false;
1697
1698 /* Traceframes are effectively a substitute for the live inferior. */
1699 if (get_traceframe_number () < 0)
1700 {
1701 /* No current inferior, no frame. */
1702 if (inferior_ptid == null_ptid)
1703 return false;
1704
1705 thread_info *tp = inferior_thread ();
1706 /* Don't try to read from a dead thread. */
1707 if (tp->state == THREAD_EXITED)
1708 return false;
1709
1710 /* ... or from a spinning thread. */
1711 if (tp->executing)
1712 return false;
1713 }
1714
1715 return true;
1716 }
1717
1718 /* Return the selected frame. Always non-NULL (unless there isn't an
1719 inferior sufficient for creating a frame) in which case an error is
1720 thrown. */
1721
1722 struct frame_info *
1723 get_selected_frame (const char *message)
1724 {
1725 if (selected_frame == NULL)
1726 {
1727 if (message != NULL && !has_stack_frames ())
1728 error (("%s"), message);
1729 /* Hey! Don't trust this. It should really be re-finding the
1730 last selected frame of the currently selected thread. This,
1731 though, is better than nothing. */
1732 select_frame (get_current_frame ());
1733 }
1734 /* There is always a frame. */
1735 gdb_assert (selected_frame != NULL);
1736 return selected_frame;
1737 }
1738
1739 /* If there is a selected frame, return it. Otherwise, return NULL. */
1740
1741 struct frame_info *
1742 get_selected_frame_if_set (void)
1743 {
1744 return selected_frame;
1745 }
1746
1747 /* This is a variant of get_selected_frame() which can be called when
1748 the inferior does not have a frame; in that case it will return
1749 NULL instead of calling error(). */
1750
1751 struct frame_info *
1752 deprecated_safe_get_selected_frame (void)
1753 {
1754 if (!has_stack_frames ())
1755 return NULL;
1756 return get_selected_frame (NULL);
1757 }
1758
1759 /* Select frame FI (or NULL - to invalidate the current frame). */
1760
1761 void
1762 select_frame (struct frame_info *fi)
1763 {
1764 selected_frame = fi;
1765 /* NOTE: cagney/2002-05-04: FI can be NULL. This occurs when the
1766 frame is being invalidated. */
1767
1768 /* FIXME: kseitz/2002-08-28: It would be nice to call
1769 selected_frame_level_changed_event() right here, but due to limitations
1770 in the current interfaces, we would end up flooding UIs with events
1771 because select_frame() is used extensively internally.
1772
1773 Once we have frame-parameterized frame (and frame-related) commands,
1774 the event notification can be moved here, since this function will only
1775 be called when the user's selected frame is being changed. */
1776
1777 /* Ensure that symbols for this frame are read in. Also, determine the
1778 source language of this frame, and switch to it if desired. */
1779 if (fi)
1780 {
1781 CORE_ADDR pc;
1782
1783 /* We retrieve the frame's symtab by using the frame PC.
1784 However we cannot use the frame PC as-is, because it usually
1785 points to the instruction following the "call", which is
1786 sometimes the first instruction of another function. So we
1787 rely on get_frame_address_in_block() which provides us with a
1788 PC which is guaranteed to be inside the frame's code
1789 block. */
1790 if (get_frame_address_in_block_if_available (fi, &pc))
1791 {
1792 struct compunit_symtab *cust = find_pc_compunit_symtab (pc);
1793
1794 if (cust != NULL
1795 && compunit_language (cust) != current_language->la_language
1796 && compunit_language (cust) != language_unknown
1797 && language_mode == language_mode_auto)
1798 set_language (compunit_language (cust));
1799 }
1800 }
1801 }
1802
1803 /* Create an arbitrary (i.e. address specified by user) or innermost frame.
1804 Always returns a non-NULL value. */
1805
1806 struct frame_info *
1807 create_new_frame (CORE_ADDR addr, CORE_ADDR pc)
1808 {
1809 struct frame_info *fi;
1810
1811 if (frame_debug)
1812 {
1813 fprintf_unfiltered (gdb_stdlog,
1814 "{ create_new_frame (addr=%s, pc=%s) ",
1815 hex_string (addr), hex_string (pc));
1816 }
1817
1818 fi = FRAME_OBSTACK_ZALLOC (struct frame_info);
1819
1820 fi->next = create_sentinel_frame (current_program_space,
1821 get_current_regcache ());
1822
1823 /* Set/update this frame's cached PC value, found in the next frame.
1824 Do this before looking for this frame's unwinder. A sniffer is
1825 very likely to read this, and the corresponding unwinder is
1826 entitled to rely that the PC doesn't magically change. */
1827 fi->next->prev_pc.value = pc;
1828 fi->next->prev_pc.status = CC_VALUE;
1829
1830 /* We currently assume that frame chain's can't cross spaces. */
1831 fi->pspace = fi->next->pspace;
1832 fi->aspace = fi->next->aspace;
1833
1834 /* Select/initialize both the unwind function and the frame's type
1835 based on the PC. */
1836 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
1837
1838 fi->this_id.p = frame_id_status::COMPUTED;
1839 fi->this_id.value = frame_id_build (addr, pc);
1840
1841 if (frame_debug)
1842 {
1843 fprintf_unfiltered (gdb_stdlog, "-> ");
1844 fprint_frame (gdb_stdlog, fi);
1845 fprintf_unfiltered (gdb_stdlog, " }\n");
1846 }
1847
1848 return fi;
1849 }
1850
1851 /* Return the frame that THIS_FRAME calls (NULL if THIS_FRAME is the
1852 innermost frame). Be careful to not fall off the bottom of the
1853 frame chain and onto the sentinel frame. */
1854
1855 struct frame_info *
1856 get_next_frame (struct frame_info *this_frame)
1857 {
1858 if (this_frame->level > 0)
1859 return this_frame->next;
1860 else
1861 return NULL;
1862 }
1863
1864 /* Return the frame that THIS_FRAME calls. If THIS_FRAME is the
1865 innermost (i.e. current) frame, return the sentinel frame. Thus,
1866 unlike get_next_frame(), NULL will never be returned. */
1867
1868 struct frame_info *
1869 get_next_frame_sentinel_okay (struct frame_info *this_frame)
1870 {
1871 gdb_assert (this_frame != NULL);
1872
1873 /* Note that, due to the manner in which the sentinel frame is
1874 constructed, this_frame->next still works even when this_frame
1875 is the sentinel frame. But we disallow it here anyway because
1876 calling get_next_frame_sentinel_okay() on the sentinel frame
1877 is likely a coding error. */
1878 gdb_assert (this_frame != sentinel_frame);
1879
1880 return this_frame->next;
1881 }
1882
1883 /* Observer for the target_changed event. */
1884
1885 static void
1886 frame_observer_target_changed (struct target_ops *target)
1887 {
1888 reinit_frame_cache ();
1889 }
1890
1891 /* Flush the entire frame cache. */
1892
1893 void
1894 reinit_frame_cache (void)
1895 {
1896 struct frame_info *fi;
1897
1898 ++frame_cache_generation;
1899
1900 /* Tear down all frame caches. */
1901 for (fi = sentinel_frame; fi != NULL; fi = fi->prev)
1902 {
1903 if (fi->prologue_cache && fi->unwind->dealloc_cache)
1904 fi->unwind->dealloc_cache (fi, fi->prologue_cache);
1905 if (fi->base_cache && fi->base->unwind->dealloc_cache)
1906 fi->base->unwind->dealloc_cache (fi, fi->base_cache);
1907 }
1908
1909 /* Since we can't really be sure what the first object allocated was. */
1910 obstack_free (&frame_cache_obstack, 0);
1911 obstack_init (&frame_cache_obstack);
1912
1913 if (sentinel_frame != NULL)
1914 annotate_frames_invalid ();
1915
1916 sentinel_frame = NULL; /* Invalidate cache */
1917 select_frame (NULL);
1918 frame_stash_invalidate ();
1919 if (frame_debug)
1920 fprintf_unfiltered (gdb_stdlog, "{ reinit_frame_cache () }\n");
1921 }
1922
1923 /* Find where a register is saved (in memory or another register).
1924 The result of frame_register_unwind is just where it is saved
1925 relative to this particular frame. */
1926
1927 static void
1928 frame_register_unwind_location (struct frame_info *this_frame, int regnum,
1929 int *optimizedp, enum lval_type *lvalp,
1930 CORE_ADDR *addrp, int *realnump)
1931 {
1932 gdb_assert (this_frame == NULL || this_frame->level >= 0);
1933
1934 while (this_frame != NULL)
1935 {
1936 int unavailable;
1937
1938 frame_register_unwind (this_frame, regnum, optimizedp, &unavailable,
1939 lvalp, addrp, realnump, NULL);
1940
1941 if (*optimizedp)
1942 break;
1943
1944 if (*lvalp != lval_register)
1945 break;
1946
1947 regnum = *realnump;
1948 this_frame = get_next_frame (this_frame);
1949 }
1950 }
1951
1952 /* Get the previous raw frame, and check that it is not identical to
1953 same other frame frame already in the chain. If it is, there is
1954 most likely a stack cycle, so we discard it, and mark THIS_FRAME as
1955 outermost, with UNWIND_SAME_ID stop reason. Unlike the other
1956 validity tests, that compare THIS_FRAME and the next frame, we do
1957 this right after creating the previous frame, to avoid ever ending
1958 up with two frames with the same id in the frame chain. */
1959
1960 static struct frame_info *
1961 get_prev_frame_if_no_cycle (struct frame_info *this_frame)
1962 {
1963 struct frame_info *prev_frame;
1964
1965 prev_frame = get_prev_frame_raw (this_frame);
1966
1967 /* Don't compute the frame id of the current frame yet. Unwinding
1968 the sentinel frame can fail (e.g., if the thread is gone and we
1969 can't thus read its registers). If we let the cycle detection
1970 code below try to compute a frame ID, then an error thrown from
1971 within the frame ID computation would result in the sentinel
1972 frame as outermost frame, which is bogus. Instead, we'll compute
1973 the current frame's ID lazily in get_frame_id. Note that there's
1974 no point in doing cycle detection when there's only one frame, so
1975 nothing is lost here. */
1976 if (prev_frame->level == 0)
1977 return prev_frame;
1978
1979 unsigned int entry_generation = get_frame_cache_generation ();
1980
1981 try
1982 {
1983 compute_frame_id (prev_frame);
1984 if (!frame_stash_add (prev_frame))
1985 {
1986 /* Another frame with the same id was already in the stash. We just
1987 detected a cycle. */
1988 if (frame_debug)
1989 {
1990 fprintf_unfiltered (gdb_stdlog, "-> ");
1991 fprint_frame (gdb_stdlog, NULL);
1992 fprintf_unfiltered (gdb_stdlog, " // this frame has same ID }\n");
1993 }
1994 this_frame->stop_reason = UNWIND_SAME_ID;
1995 /* Unlink. */
1996 prev_frame->next = NULL;
1997 this_frame->prev = NULL;
1998 prev_frame = NULL;
1999 }
2000 }
2001 catch (const gdb_exception &ex)
2002 {
2003 if (get_frame_cache_generation () == entry_generation)
2004 {
2005 prev_frame->next = NULL;
2006 this_frame->prev = NULL;
2007 }
2008
2009 throw;
2010 }
2011
2012 return prev_frame;
2013 }
2014
2015 /* Helper function for get_prev_frame_always, this is called inside a
2016 TRY_CATCH block. Return the frame that called THIS_FRAME or NULL if
2017 there is no such frame. This may throw an exception. */
2018
2019 static struct frame_info *
2020 get_prev_frame_always_1 (struct frame_info *this_frame)
2021 {
2022 struct gdbarch *gdbarch;
2023
2024 gdb_assert (this_frame != NULL);
2025 gdbarch = get_frame_arch (this_frame);
2026
2027 if (frame_debug)
2028 {
2029 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame_always (this_frame=");
2030 if (this_frame != NULL)
2031 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
2032 else
2033 fprintf_unfiltered (gdb_stdlog, "<NULL>");
2034 fprintf_unfiltered (gdb_stdlog, ") ");
2035 }
2036
2037 /* Only try to do the unwind once. */
2038 if (this_frame->prev_p)
2039 {
2040 if (frame_debug)
2041 {
2042 fprintf_unfiltered (gdb_stdlog, "-> ");
2043 fprint_frame (gdb_stdlog, this_frame->prev);
2044 fprintf_unfiltered (gdb_stdlog, " // cached \n");
2045 }
2046 return this_frame->prev;
2047 }
2048
2049 /* If the frame unwinder hasn't been selected yet, we must do so
2050 before setting prev_p; otherwise the check for misbehaved
2051 sniffers will think that this frame's sniffer tried to unwind
2052 further (see frame_cleanup_after_sniffer). */
2053 if (this_frame->unwind == NULL)
2054 frame_unwind_find_by_frame (this_frame, &this_frame->prologue_cache);
2055
2056 this_frame->prev_p = true;
2057 this_frame->stop_reason = UNWIND_NO_REASON;
2058
2059 /* If we are unwinding from an inline frame, all of the below tests
2060 were already performed when we unwound from the next non-inline
2061 frame. We must skip them, since we can not get THIS_FRAME's ID
2062 until we have unwound all the way down to the previous non-inline
2063 frame. */
2064 if (get_frame_type (this_frame) == INLINE_FRAME)
2065 return get_prev_frame_if_no_cycle (this_frame);
2066
2067 /* Check that this frame is unwindable. If it isn't, don't try to
2068 unwind to the prev frame. */
2069 this_frame->stop_reason
2070 = this_frame->unwind->stop_reason (this_frame,
2071 &this_frame->prologue_cache);
2072
2073 if (this_frame->stop_reason != UNWIND_NO_REASON)
2074 {
2075 if (frame_debug)
2076 {
2077 enum unwind_stop_reason reason = this_frame->stop_reason;
2078
2079 fprintf_unfiltered (gdb_stdlog, "-> ");
2080 fprint_frame (gdb_stdlog, NULL);
2081 fprintf_unfiltered (gdb_stdlog, " // %s }\n",
2082 frame_stop_reason_symbol_string (reason));
2083 }
2084 return NULL;
2085 }
2086
2087 /* Check that this frame's ID isn't inner to (younger, below, next)
2088 the next frame. This happens when a frame unwind goes backwards.
2089 This check is valid only if this frame and the next frame are NORMAL.
2090 See the comment at frame_id_inner for details. */
2091 if (get_frame_type (this_frame) == NORMAL_FRAME
2092 && this_frame->next->unwind->type == NORMAL_FRAME
2093 && frame_id_inner (get_frame_arch (this_frame->next),
2094 get_frame_id (this_frame),
2095 get_frame_id (this_frame->next)))
2096 {
2097 CORE_ADDR this_pc_in_block;
2098 struct minimal_symbol *morestack_msym;
2099 const char *morestack_name = NULL;
2100
2101 /* gcc -fsplit-stack __morestack can continue the stack anywhere. */
2102 this_pc_in_block = get_frame_address_in_block (this_frame);
2103 morestack_msym = lookup_minimal_symbol_by_pc (this_pc_in_block).minsym;
2104 if (morestack_msym)
2105 morestack_name = morestack_msym->linkage_name ();
2106 if (!morestack_name || strcmp (morestack_name, "__morestack") != 0)
2107 {
2108 if (frame_debug)
2109 {
2110 fprintf_unfiltered (gdb_stdlog, "-> ");
2111 fprint_frame (gdb_stdlog, NULL);
2112 fprintf_unfiltered (gdb_stdlog,
2113 " // this frame ID is inner }\n");
2114 }
2115 this_frame->stop_reason = UNWIND_INNER_ID;
2116 return NULL;
2117 }
2118 }
2119
2120 /* Check that this and the next frame do not unwind the PC register
2121 to the same memory location. If they do, then even though they
2122 have different frame IDs, the new frame will be bogus; two
2123 functions can't share a register save slot for the PC. This can
2124 happen when the prologue analyzer finds a stack adjustment, but
2125 no PC save.
2126
2127 This check does assume that the "PC register" is roughly a
2128 traditional PC, even if the gdbarch_unwind_pc method adjusts
2129 it (we do not rely on the value, only on the unwound PC being
2130 dependent on this value). A potential improvement would be
2131 to have the frame prev_pc method and the gdbarch unwind_pc
2132 method set the same lval and location information as
2133 frame_register_unwind. */
2134 if (this_frame->level > 0
2135 && gdbarch_pc_regnum (gdbarch) >= 0
2136 && get_frame_type (this_frame) == NORMAL_FRAME
2137 && (get_frame_type (this_frame->next) == NORMAL_FRAME
2138 || get_frame_type (this_frame->next) == INLINE_FRAME))
2139 {
2140 int optimized, realnum, nrealnum;
2141 enum lval_type lval, nlval;
2142 CORE_ADDR addr, naddr;
2143
2144 frame_register_unwind_location (this_frame,
2145 gdbarch_pc_regnum (gdbarch),
2146 &optimized, &lval, &addr, &realnum);
2147 frame_register_unwind_location (get_next_frame (this_frame),
2148 gdbarch_pc_regnum (gdbarch),
2149 &optimized, &nlval, &naddr, &nrealnum);
2150
2151 if ((lval == lval_memory && lval == nlval && addr == naddr)
2152 || (lval == lval_register && lval == nlval && realnum == nrealnum))
2153 {
2154 if (frame_debug)
2155 {
2156 fprintf_unfiltered (gdb_stdlog, "-> ");
2157 fprint_frame (gdb_stdlog, NULL);
2158 fprintf_unfiltered (gdb_stdlog, " // no saved PC }\n");
2159 }
2160
2161 this_frame->stop_reason = UNWIND_NO_SAVED_PC;
2162 this_frame->prev = NULL;
2163 return NULL;
2164 }
2165 }
2166
2167 return get_prev_frame_if_no_cycle (this_frame);
2168 }
2169
2170 /* Return a "struct frame_info" corresponding to the frame that called
2171 THIS_FRAME. Returns NULL if there is no such frame.
2172
2173 Unlike get_prev_frame, this function always tries to unwind the
2174 frame. */
2175
2176 struct frame_info *
2177 get_prev_frame_always (struct frame_info *this_frame)
2178 {
2179 struct frame_info *prev_frame = NULL;
2180
2181 try
2182 {
2183 prev_frame = get_prev_frame_always_1 (this_frame);
2184 }
2185 catch (const gdb_exception_error &ex)
2186 {
2187 if (ex.error == MEMORY_ERROR)
2188 {
2189 this_frame->stop_reason = UNWIND_MEMORY_ERROR;
2190 if (ex.message != NULL)
2191 {
2192 char *stop_string;
2193 size_t size;
2194
2195 /* The error needs to live as long as the frame does.
2196 Allocate using stack local STOP_STRING then assign the
2197 pointer to the frame, this allows the STOP_STRING on the
2198 frame to be of type 'const char *'. */
2199 size = ex.message->size () + 1;
2200 stop_string = (char *) frame_obstack_zalloc (size);
2201 memcpy (stop_string, ex.what (), size);
2202 this_frame->stop_string = stop_string;
2203 }
2204 prev_frame = NULL;
2205 }
2206 else
2207 throw;
2208 }
2209
2210 return prev_frame;
2211 }
2212
2213 /* Construct a new "struct frame_info" and link it previous to
2214 this_frame. */
2215
2216 static struct frame_info *
2217 get_prev_frame_raw (struct frame_info *this_frame)
2218 {
2219 struct frame_info *prev_frame;
2220
2221 /* Allocate the new frame but do not wire it in to the frame chain.
2222 Some (bad) code in INIT_FRAME_EXTRA_INFO tries to look along
2223 frame->next to pull some fancy tricks (of course such code is, by
2224 definition, recursive). Try to prevent it.
2225
2226 There is no reason to worry about memory leaks, should the
2227 remainder of the function fail. The allocated memory will be
2228 quickly reclaimed when the frame cache is flushed, and the `we've
2229 been here before' check above will stop repeated memory
2230 allocation calls. */
2231 prev_frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
2232 prev_frame->level = this_frame->level + 1;
2233
2234 /* For now, assume we don't have frame chains crossing address
2235 spaces. */
2236 prev_frame->pspace = this_frame->pspace;
2237 prev_frame->aspace = this_frame->aspace;
2238
2239 /* Don't yet compute ->unwind (and hence ->type). It is computed
2240 on-demand in get_frame_type, frame_register_unwind, and
2241 get_frame_id. */
2242
2243 /* Don't yet compute the frame's ID. It is computed on-demand by
2244 get_frame_id(). */
2245
2246 /* The unwound frame ID is validate at the start of this function,
2247 as part of the logic to decide if that frame should be further
2248 unwound, and not here while the prev frame is being created.
2249 Doing this makes it possible for the user to examine a frame that
2250 has an invalid frame ID.
2251
2252 Some very old VAX code noted: [...] For the sake of argument,
2253 suppose that the stack is somewhat trashed (which is one reason
2254 that "info frame" exists). So, return 0 (indicating we don't
2255 know the address of the arglist) if we don't know what frame this
2256 frame calls. */
2257
2258 /* Link it in. */
2259 this_frame->prev = prev_frame;
2260 prev_frame->next = this_frame;
2261
2262 if (frame_debug)
2263 {
2264 fprintf_unfiltered (gdb_stdlog, "-> ");
2265 fprint_frame (gdb_stdlog, prev_frame);
2266 fprintf_unfiltered (gdb_stdlog, " }\n");
2267 }
2268
2269 return prev_frame;
2270 }
2271
2272 /* Debug routine to print a NULL frame being returned. */
2273
2274 static void
2275 frame_debug_got_null_frame (struct frame_info *this_frame,
2276 const char *reason)
2277 {
2278 if (frame_debug)
2279 {
2280 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame (this_frame=");
2281 if (this_frame != NULL)
2282 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
2283 else
2284 fprintf_unfiltered (gdb_stdlog, "<NULL>");
2285 fprintf_unfiltered (gdb_stdlog, ") -> // %s}\n", reason);
2286 }
2287 }
2288
2289 /* Is this (non-sentinel) frame in the "main"() function? */
2290
2291 static bool
2292 inside_main_func (frame_info *this_frame)
2293 {
2294 if (symfile_objfile == nullptr)
2295 return false;
2296
2297 bound_minimal_symbol msymbol
2298 = lookup_minimal_symbol (main_name (), NULL, symfile_objfile);
2299 if (msymbol.minsym == nullptr)
2300 return false;
2301
2302 /* Make certain that the code, and not descriptor, address is
2303 returned. */
2304 CORE_ADDR maddr
2305 = gdbarch_convert_from_func_ptr_addr (get_frame_arch (this_frame),
2306 BMSYMBOL_VALUE_ADDRESS (msymbol),
2307 current_top_target ());
2308
2309 return maddr == get_frame_func (this_frame);
2310 }
2311
2312 /* Test whether THIS_FRAME is inside the process entry point function. */
2313
2314 static bool
2315 inside_entry_func (frame_info *this_frame)
2316 {
2317 CORE_ADDR entry_point;
2318
2319 if (!entry_point_address_query (&entry_point))
2320 return false;
2321
2322 return get_frame_func (this_frame) == entry_point;
2323 }
2324
2325 /* Return a structure containing various interesting information about
2326 the frame that called THIS_FRAME. Returns NULL if there is entier
2327 no such frame or the frame fails any of a set of target-independent
2328 condition that should terminate the frame chain (e.g., as unwinding
2329 past main()).
2330
2331 This function should not contain target-dependent tests, such as
2332 checking whether the program-counter is zero. */
2333
2334 struct frame_info *
2335 get_prev_frame (struct frame_info *this_frame)
2336 {
2337 CORE_ADDR frame_pc;
2338 int frame_pc_p;
2339
2340 /* There is always a frame. If this assertion fails, suspect that
2341 something should be calling get_selected_frame() or
2342 get_current_frame(). */
2343 gdb_assert (this_frame != NULL);
2344
2345 /* If this_frame is the current frame, then compute and stash
2346 its frame id prior to fetching and computing the frame id of the
2347 previous frame. Otherwise, the cycle detection code in
2348 get_prev_frame_if_no_cycle() will not work correctly. When
2349 get_frame_id() is called later on, an assertion error will
2350 be triggered in the event of a cycle between the current
2351 frame and its previous frame. */
2352 if (this_frame->level == 0)
2353 get_frame_id (this_frame);
2354
2355 frame_pc_p = get_frame_pc_if_available (this_frame, &frame_pc);
2356
2357 /* tausq/2004-12-07: Dummy frames are skipped because it doesn't make much
2358 sense to stop unwinding at a dummy frame. One place where a dummy
2359 frame may have an address "inside_main_func" is on HPUX. On HPUX, the
2360 pcsqh register (space register for the instruction at the head of the
2361 instruction queue) cannot be written directly; the only way to set it
2362 is to branch to code that is in the target space. In order to implement
2363 frame dummies on HPUX, the called function is made to jump back to where
2364 the inferior was when the user function was called. If gdb was inside
2365 the main function when we created the dummy frame, the dummy frame will
2366 point inside the main function. */
2367 if (this_frame->level >= 0
2368 && get_frame_type (this_frame) == NORMAL_FRAME
2369 && !user_set_backtrace_options.backtrace_past_main
2370 && frame_pc_p
2371 && inside_main_func (this_frame))
2372 /* Don't unwind past main(). Note, this is done _before_ the
2373 frame has been marked as previously unwound. That way if the
2374 user later decides to enable unwinds past main(), that will
2375 automatically happen. */
2376 {
2377 frame_debug_got_null_frame (this_frame, "inside main func");
2378 return NULL;
2379 }
2380
2381 /* If the user's backtrace limit has been exceeded, stop. We must
2382 add two to the current level; one of those accounts for backtrace_limit
2383 being 1-based and the level being 0-based, and the other accounts for
2384 the level of the new frame instead of the level of the current
2385 frame. */
2386 if (this_frame->level + 2 > user_set_backtrace_options.backtrace_limit)
2387 {
2388 frame_debug_got_null_frame (this_frame, "backtrace limit exceeded");
2389 return NULL;
2390 }
2391
2392 /* If we're already inside the entry function for the main objfile,
2393 then it isn't valid. Don't apply this test to a dummy frame -
2394 dummy frame PCs typically land in the entry func. Don't apply
2395 this test to the sentinel frame. Sentinel frames should always
2396 be allowed to unwind. */
2397 /* NOTE: cagney/2003-07-07: Fixed a bug in inside_main_func() -
2398 wasn't checking for "main" in the minimal symbols. With that
2399 fixed asm-source tests now stop in "main" instead of halting the
2400 backtrace in weird and wonderful ways somewhere inside the entry
2401 file. Suspect that tests for inside the entry file/func were
2402 added to work around that (now fixed) case. */
2403 /* NOTE: cagney/2003-07-15: danielj (if I'm reading it right)
2404 suggested having the inside_entry_func test use the
2405 inside_main_func() msymbol trick (along with entry_point_address()
2406 I guess) to determine the address range of the start function.
2407 That should provide a far better stopper than the current
2408 heuristics. */
2409 /* NOTE: tausq/2004-10-09: this is needed if, for example, the compiler
2410 applied tail-call optimizations to main so that a function called
2411 from main returns directly to the caller of main. Since we don't
2412 stop at main, we should at least stop at the entry point of the
2413 application. */
2414 if (this_frame->level >= 0
2415 && get_frame_type (this_frame) == NORMAL_FRAME
2416 && !user_set_backtrace_options.backtrace_past_entry
2417 && frame_pc_p
2418 && inside_entry_func (this_frame))
2419 {
2420 frame_debug_got_null_frame (this_frame, "inside entry func");
2421 return NULL;
2422 }
2423
2424 /* Assume that the only way to get a zero PC is through something
2425 like a SIGSEGV or a dummy frame, and hence that NORMAL frames
2426 will never unwind a zero PC. */
2427 if (this_frame->level > 0
2428 && (get_frame_type (this_frame) == NORMAL_FRAME
2429 || get_frame_type (this_frame) == INLINE_FRAME)
2430 && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME
2431 && frame_pc_p && frame_pc == 0)
2432 {
2433 frame_debug_got_null_frame (this_frame, "zero PC");
2434 return NULL;
2435 }
2436
2437 return get_prev_frame_always (this_frame);
2438 }
2439
2440 struct frame_id
2441 get_prev_frame_id_by_id (struct frame_id id)
2442 {
2443 struct frame_id prev_id;
2444 struct frame_info *frame;
2445
2446 frame = frame_find_by_id (id);
2447
2448 if (frame != NULL)
2449 prev_id = get_frame_id (get_prev_frame (frame));
2450 else
2451 prev_id = null_frame_id;
2452
2453 return prev_id;
2454 }
2455
2456 CORE_ADDR
2457 get_frame_pc (struct frame_info *frame)
2458 {
2459 gdb_assert (frame->next != NULL);
2460 return frame_unwind_pc (frame->next);
2461 }
2462
2463 bool
2464 get_frame_pc_if_available (frame_info *frame, CORE_ADDR *pc)
2465 {
2466
2467 gdb_assert (frame->next != NULL);
2468
2469 try
2470 {
2471 *pc = frame_unwind_pc (frame->next);
2472 }
2473 catch (const gdb_exception_error &ex)
2474 {
2475 if (ex.error == NOT_AVAILABLE_ERROR)
2476 return false;
2477 else
2478 throw;
2479 }
2480
2481 return true;
2482 }
2483
2484 /* Return an address that falls within THIS_FRAME's code block. */
2485
2486 CORE_ADDR
2487 get_frame_address_in_block (struct frame_info *this_frame)
2488 {
2489 /* A draft address. */
2490 CORE_ADDR pc = get_frame_pc (this_frame);
2491
2492 struct frame_info *next_frame = this_frame->next;
2493
2494 /* Calling get_frame_pc returns the resume address for THIS_FRAME.
2495 Normally the resume address is inside the body of the function
2496 associated with THIS_FRAME, but there is a special case: when
2497 calling a function which the compiler knows will never return
2498 (for instance abort), the call may be the very last instruction
2499 in the calling function. The resume address will point after the
2500 call and may be at the beginning of a different function
2501 entirely.
2502
2503 If THIS_FRAME is a signal frame or dummy frame, then we should
2504 not adjust the unwound PC. For a dummy frame, GDB pushed the
2505 resume address manually onto the stack. For a signal frame, the
2506 OS may have pushed the resume address manually and invoked the
2507 handler (e.g. GNU/Linux), or invoked the trampoline which called
2508 the signal handler - but in either case the signal handler is
2509 expected to return to the trampoline. So in both of these
2510 cases we know that the resume address is executable and
2511 related. So we only need to adjust the PC if THIS_FRAME
2512 is a normal function.
2513
2514 If the program has been interrupted while THIS_FRAME is current,
2515 then clearly the resume address is inside the associated
2516 function. There are three kinds of interruption: debugger stop
2517 (next frame will be SENTINEL_FRAME), operating system
2518 signal or exception (next frame will be SIGTRAMP_FRAME),
2519 or debugger-induced function call (next frame will be
2520 DUMMY_FRAME). So we only need to adjust the PC if
2521 NEXT_FRAME is a normal function.
2522
2523 We check the type of NEXT_FRAME first, since it is already
2524 known; frame type is determined by the unwinder, and since
2525 we have THIS_FRAME we've already selected an unwinder for
2526 NEXT_FRAME.
2527
2528 If the next frame is inlined, we need to keep going until we find
2529 the real function - for instance, if a signal handler is invoked
2530 while in an inlined function, then the code address of the
2531 "calling" normal function should not be adjusted either. */
2532
2533 while (get_frame_type (next_frame) == INLINE_FRAME)
2534 next_frame = next_frame->next;
2535
2536 if ((get_frame_type (next_frame) == NORMAL_FRAME
2537 || get_frame_type (next_frame) == TAILCALL_FRAME)
2538 && (get_frame_type (this_frame) == NORMAL_FRAME
2539 || get_frame_type (this_frame) == TAILCALL_FRAME
2540 || get_frame_type (this_frame) == INLINE_FRAME))
2541 return pc - 1;
2542
2543 return pc;
2544 }
2545
2546 bool
2547 get_frame_address_in_block_if_available (frame_info *this_frame,
2548 CORE_ADDR *pc)
2549 {
2550
2551 try
2552 {
2553 *pc = get_frame_address_in_block (this_frame);
2554 }
2555 catch (const gdb_exception_error &ex)
2556 {
2557 if (ex.error == NOT_AVAILABLE_ERROR)
2558 return false;
2559 throw;
2560 }
2561
2562 return true;
2563 }
2564
2565 symtab_and_line
2566 find_frame_sal (frame_info *frame)
2567 {
2568 struct frame_info *next_frame;
2569 int notcurrent;
2570 CORE_ADDR pc;
2571
2572 if (frame_inlined_callees (frame) > 0)
2573 {
2574 struct symbol *sym;
2575
2576 /* If the current frame has some inlined callees, and we have a next
2577 frame, then that frame must be an inlined frame. In this case
2578 this frame's sal is the "call site" of the next frame's inlined
2579 function, which can not be inferred from get_frame_pc. */
2580 next_frame = get_next_frame (frame);
2581 if (next_frame)
2582 sym = get_frame_function (next_frame);
2583 else
2584 sym = inline_skipped_symbol (inferior_thread ());
2585
2586 /* If frame is inline, it certainly has symbols. */
2587 gdb_assert (sym);
2588
2589 symtab_and_line sal;
2590 if (SYMBOL_LINE (sym) != 0)
2591 {
2592 sal.symtab = symbol_symtab (sym);
2593 sal.line = SYMBOL_LINE (sym);
2594 }
2595 else
2596 /* If the symbol does not have a location, we don't know where
2597 the call site is. Do not pretend to. This is jarring, but
2598 we can't do much better. */
2599 sal.pc = get_frame_pc (frame);
2600
2601 sal.pspace = get_frame_program_space (frame);
2602 return sal;
2603 }
2604
2605 /* If FRAME is not the innermost frame, that normally means that
2606 FRAME->pc points at the return instruction (which is *after* the
2607 call instruction), and we want to get the line containing the
2608 call (because the call is where the user thinks the program is).
2609 However, if the next frame is either a SIGTRAMP_FRAME or a
2610 DUMMY_FRAME, then the next frame will contain a saved interrupt
2611 PC and such a PC indicates the current (rather than next)
2612 instruction/line, consequently, for such cases, want to get the
2613 line containing fi->pc. */
2614 if (!get_frame_pc_if_available (frame, &pc))
2615 return {};
2616
2617 notcurrent = (pc != get_frame_address_in_block (frame));
2618 return find_pc_line (pc, notcurrent);
2619 }
2620
2621 /* Per "frame.h", return the ``address'' of the frame. Code should
2622 really be using get_frame_id(). */
2623 CORE_ADDR
2624 get_frame_base (struct frame_info *fi)
2625 {
2626 return get_frame_id (fi).stack_addr;
2627 }
2628
2629 /* High-level offsets into the frame. Used by the debug info. */
2630
2631 CORE_ADDR
2632 get_frame_base_address (struct frame_info *fi)
2633 {
2634 if (get_frame_type (fi) != NORMAL_FRAME)
2635 return 0;
2636 if (fi->base == NULL)
2637 fi->base = frame_base_find_by_frame (fi);
2638 /* Sneaky: If the low-level unwind and high-level base code share a
2639 common unwinder, let them share the prologue cache. */
2640 if (fi->base->unwind == fi->unwind)
2641 return fi->base->this_base (fi, &fi->prologue_cache);
2642 return fi->base->this_base (fi, &fi->base_cache);
2643 }
2644
2645 CORE_ADDR
2646 get_frame_locals_address (struct frame_info *fi)
2647 {
2648 if (get_frame_type (fi) != NORMAL_FRAME)
2649 return 0;
2650 /* If there isn't a frame address method, find it. */
2651 if (fi->base == NULL)
2652 fi->base = frame_base_find_by_frame (fi);
2653 /* Sneaky: If the low-level unwind and high-level base code share a
2654 common unwinder, let them share the prologue cache. */
2655 if (fi->base->unwind == fi->unwind)
2656 return fi->base->this_locals (fi, &fi->prologue_cache);
2657 return fi->base->this_locals (fi, &fi->base_cache);
2658 }
2659
2660 CORE_ADDR
2661 get_frame_args_address (struct frame_info *fi)
2662 {
2663 if (get_frame_type (fi) != NORMAL_FRAME)
2664 return 0;
2665 /* If there isn't a frame address method, find it. */
2666 if (fi->base == NULL)
2667 fi->base = frame_base_find_by_frame (fi);
2668 /* Sneaky: If the low-level unwind and high-level base code share a
2669 common unwinder, let them share the prologue cache. */
2670 if (fi->base->unwind == fi->unwind)
2671 return fi->base->this_args (fi, &fi->prologue_cache);
2672 return fi->base->this_args (fi, &fi->base_cache);
2673 }
2674
2675 /* Return true if the frame unwinder for frame FI is UNWINDER; false
2676 otherwise. */
2677
2678 bool
2679 frame_unwinder_is (frame_info *fi, const frame_unwind *unwinder)
2680 {
2681 if (fi->unwind == nullptr)
2682 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
2683
2684 return fi->unwind == unwinder;
2685 }
2686
2687 /* Level of the selected frame: 0 for innermost, 1 for its caller, ...
2688 or -1 for a NULL frame. */
2689
2690 int
2691 frame_relative_level (struct frame_info *fi)
2692 {
2693 if (fi == NULL)
2694 return -1;
2695 else
2696 return fi->level;
2697 }
2698
2699 enum frame_type
2700 get_frame_type (struct frame_info *frame)
2701 {
2702 if (frame->unwind == NULL)
2703 /* Initialize the frame's unwinder because that's what
2704 provides the frame's type. */
2705 frame_unwind_find_by_frame (frame, &frame->prologue_cache);
2706 return frame->unwind->type;
2707 }
2708
2709 struct program_space *
2710 get_frame_program_space (struct frame_info *frame)
2711 {
2712 return frame->pspace;
2713 }
2714
2715 struct program_space *
2716 frame_unwind_program_space (struct frame_info *this_frame)
2717 {
2718 gdb_assert (this_frame);
2719
2720 /* This is really a placeholder to keep the API consistent --- we
2721 assume for now that we don't have frame chains crossing
2722 spaces. */
2723 return this_frame->pspace;
2724 }
2725
2726 const address_space *
2727 get_frame_address_space (struct frame_info *frame)
2728 {
2729 return frame->aspace;
2730 }
2731
2732 /* Memory access methods. */
2733
2734 void
2735 get_frame_memory (struct frame_info *this_frame, CORE_ADDR addr,
2736 gdb_byte *buf, int len)
2737 {
2738 read_memory (addr, buf, len);
2739 }
2740
2741 LONGEST
2742 get_frame_memory_signed (struct frame_info *this_frame, CORE_ADDR addr,
2743 int len)
2744 {
2745 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2746 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2747
2748 return read_memory_integer (addr, len, byte_order);
2749 }
2750
2751 ULONGEST
2752 get_frame_memory_unsigned (struct frame_info *this_frame, CORE_ADDR addr,
2753 int len)
2754 {
2755 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2756 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2757
2758 return read_memory_unsigned_integer (addr, len, byte_order);
2759 }
2760
2761 bool
2762 safe_frame_unwind_memory (struct frame_info *this_frame,
2763 CORE_ADDR addr, gdb_byte *buf, int len)
2764 {
2765 /* NOTE: target_read_memory returns zero on success! */
2766 return target_read_memory (addr, buf, len) == 0;
2767 }
2768
2769 /* Architecture methods. */
2770
2771 struct gdbarch *
2772 get_frame_arch (struct frame_info *this_frame)
2773 {
2774 return frame_unwind_arch (this_frame->next);
2775 }
2776
2777 struct gdbarch *
2778 frame_unwind_arch (struct frame_info *next_frame)
2779 {
2780 if (!next_frame->prev_arch.p)
2781 {
2782 struct gdbarch *arch;
2783
2784 if (next_frame->unwind == NULL)
2785 frame_unwind_find_by_frame (next_frame, &next_frame->prologue_cache);
2786
2787 if (next_frame->unwind->prev_arch != NULL)
2788 arch = next_frame->unwind->prev_arch (next_frame,
2789 &next_frame->prologue_cache);
2790 else
2791 arch = get_frame_arch (next_frame);
2792
2793 next_frame->prev_arch.arch = arch;
2794 next_frame->prev_arch.p = true;
2795 if (frame_debug)
2796 fprintf_unfiltered (gdb_stdlog,
2797 "{ frame_unwind_arch (next_frame=%d) -> %s }\n",
2798 next_frame->level,
2799 gdbarch_bfd_arch_info (arch)->printable_name);
2800 }
2801
2802 return next_frame->prev_arch.arch;
2803 }
2804
2805 struct gdbarch *
2806 frame_unwind_caller_arch (struct frame_info *next_frame)
2807 {
2808 next_frame = skip_artificial_frames (next_frame);
2809
2810 /* We must have a non-artificial frame. The caller is supposed to check
2811 the result of frame_unwind_caller_id (), which returns NULL_FRAME_ID
2812 in this case. */
2813 gdb_assert (next_frame != NULL);
2814
2815 return frame_unwind_arch (next_frame);
2816 }
2817
2818 /* Gets the language of FRAME. */
2819
2820 enum language
2821 get_frame_language (struct frame_info *frame)
2822 {
2823 CORE_ADDR pc = 0;
2824 bool pc_p = false;
2825
2826 gdb_assert (frame!= NULL);
2827
2828 /* We determine the current frame language by looking up its
2829 associated symtab. To retrieve this symtab, we use the frame
2830 PC. However we cannot use the frame PC as is, because it
2831 usually points to the instruction following the "call", which
2832 is sometimes the first instruction of another function. So
2833 we rely on get_frame_address_in_block(), it provides us with
2834 a PC that is guaranteed to be inside the frame's code
2835 block. */
2836
2837 try
2838 {
2839 pc = get_frame_address_in_block (frame);
2840 pc_p = true;
2841 }
2842 catch (const gdb_exception_error &ex)
2843 {
2844 if (ex.error != NOT_AVAILABLE_ERROR)
2845 throw;
2846 }
2847
2848 if (pc_p)
2849 {
2850 struct compunit_symtab *cust = find_pc_compunit_symtab (pc);
2851
2852 if (cust != NULL)
2853 return compunit_language (cust);
2854 }
2855
2856 return language_unknown;
2857 }
2858
2859 /* Stack pointer methods. */
2860
2861 CORE_ADDR
2862 get_frame_sp (struct frame_info *this_frame)
2863 {
2864 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2865
2866 /* NOTE drow/2008-06-28: gdbarch_unwind_sp could be converted to
2867 operate on THIS_FRAME now. */
2868 return gdbarch_unwind_sp (gdbarch, this_frame->next);
2869 }
2870
2871 /* Return the reason why we can't unwind past FRAME. */
2872
2873 enum unwind_stop_reason
2874 get_frame_unwind_stop_reason (struct frame_info *frame)
2875 {
2876 /* Fill-in STOP_REASON. */
2877 get_prev_frame_always (frame);
2878 gdb_assert (frame->prev_p);
2879
2880 return frame->stop_reason;
2881 }
2882
2883 /* Return a string explaining REASON. */
2884
2885 const char *
2886 unwind_stop_reason_to_string (enum unwind_stop_reason reason)
2887 {
2888 switch (reason)
2889 {
2890 #define SET(name, description) \
2891 case name: return _(description);
2892 #include "unwind_stop_reasons.def"
2893 #undef SET
2894
2895 default:
2896 internal_error (__FILE__, __LINE__,
2897 "Invalid frame stop reason");
2898 }
2899 }
2900
2901 const char *
2902 frame_stop_reason_string (struct frame_info *fi)
2903 {
2904 gdb_assert (fi->prev_p);
2905 gdb_assert (fi->prev == NULL);
2906
2907 /* Return the specific string if we have one. */
2908 if (fi->stop_string != NULL)
2909 return fi->stop_string;
2910
2911 /* Return the generic string if we have nothing better. */
2912 return unwind_stop_reason_to_string (fi->stop_reason);
2913 }
2914
2915 /* Return the enum symbol name of REASON as a string, to use in debug
2916 output. */
2917
2918 static const char *
2919 frame_stop_reason_symbol_string (enum unwind_stop_reason reason)
2920 {
2921 switch (reason)
2922 {
2923 #define SET(name, description) \
2924 case name: return #name;
2925 #include "unwind_stop_reasons.def"
2926 #undef SET
2927
2928 default:
2929 internal_error (__FILE__, __LINE__,
2930 "Invalid frame stop reason");
2931 }
2932 }
2933
2934 /* Clean up after a failed (wrong unwinder) attempt to unwind past
2935 FRAME. */
2936
2937 void
2938 frame_cleanup_after_sniffer (struct frame_info *frame)
2939 {
2940 /* The sniffer should not allocate a prologue cache if it did not
2941 match this frame. */
2942 gdb_assert (frame->prologue_cache == NULL);
2943
2944 /* No sniffer should extend the frame chain; sniff based on what is
2945 already certain. */
2946 gdb_assert (!frame->prev_p);
2947
2948 /* The sniffer should not check the frame's ID; that's circular. */
2949 gdb_assert (frame->this_id.p != frame_id_status::COMPUTED);
2950
2951 /* Clear cached fields dependent on the unwinder.
2952
2953 The previous PC is independent of the unwinder, but the previous
2954 function is not (see get_frame_address_in_block). */
2955 frame->prev_func.status = CC_UNKNOWN;
2956 frame->prev_func.addr = 0;
2957
2958 /* Discard the unwinder last, so that we can easily find it if an assertion
2959 in this function triggers. */
2960 frame->unwind = NULL;
2961 }
2962
2963 /* Set FRAME's unwinder temporarily, so that we can call a sniffer.
2964 If sniffing fails, the caller should be sure to call
2965 frame_cleanup_after_sniffer. */
2966
2967 void
2968 frame_prepare_for_sniffer (struct frame_info *frame,
2969 const struct frame_unwind *unwind)
2970 {
2971 gdb_assert (frame->unwind == NULL);
2972 frame->unwind = unwind;
2973 }
2974
2975 static struct cmd_list_element *set_backtrace_cmdlist;
2976 static struct cmd_list_element *show_backtrace_cmdlist;
2977
2978 /* Definition of the "set backtrace" settings that are exposed as
2979 "backtrace" command options. */
2980
2981 using boolean_option_def
2982 = gdb::option::boolean_option_def<set_backtrace_options>;
2983 using uinteger_option_def
2984 = gdb::option::uinteger_option_def<set_backtrace_options>;
2985
2986 const gdb::option::option_def set_backtrace_option_defs[] = {
2987
2988 boolean_option_def {
2989 "past-main",
2990 [] (set_backtrace_options *opt) { return &opt->backtrace_past_main; },
2991 show_backtrace_past_main, /* show_cmd_cb */
2992 N_("Set whether backtraces should continue past \"main\"."),
2993 N_("Show whether backtraces should continue past \"main\"."),
2994 N_("Normally the caller of \"main\" is not of interest, so GDB will terminate\n\
2995 the backtrace at \"main\". Set this if you need to see the rest\n\
2996 of the stack trace."),
2997 },
2998
2999 boolean_option_def {
3000 "past-entry",
3001 [] (set_backtrace_options *opt) { return &opt->backtrace_past_entry; },
3002 show_backtrace_past_entry, /* show_cmd_cb */
3003 N_("Set whether backtraces should continue past the entry point of a program."),
3004 N_("Show whether backtraces should continue past the entry point of a program."),
3005 N_("Normally there are no callers beyond the entry point of a program, so GDB\n\
3006 will terminate the backtrace there. Set this if you need to see\n\
3007 the rest of the stack trace."),
3008 },
3009 };
3010
3011 void _initialize_frame ();
3012 void
3013 _initialize_frame ()
3014 {
3015 obstack_init (&frame_cache_obstack);
3016
3017 frame_stash_create ();
3018
3019 gdb::observers::target_changed.attach (frame_observer_target_changed);
3020
3021 add_basic_prefix_cmd ("backtrace", class_maintenance, _("\
3022 Set backtrace specific variables.\n\
3023 Configure backtrace variables such as the backtrace limit"),
3024 &set_backtrace_cmdlist, "set backtrace ",
3025 0/*allow-unknown*/, &setlist);
3026 add_show_prefix_cmd ("backtrace", class_maintenance, _("\
3027 Show backtrace specific variables.\n\
3028 Show backtrace variables such as the backtrace limit."),
3029 &show_backtrace_cmdlist, "show backtrace ",
3030 0/*allow-unknown*/, &showlist);
3031
3032 add_setshow_uinteger_cmd ("limit", class_obscure,
3033 &user_set_backtrace_options.backtrace_limit, _("\
3034 Set an upper bound on the number of backtrace levels."), _("\
3035 Show the upper bound on the number of backtrace levels."), _("\
3036 No more than the specified number of frames can be displayed or examined.\n\
3037 Literal \"unlimited\" or zero means no limit."),
3038 NULL,
3039 show_backtrace_limit,
3040 &set_backtrace_cmdlist,
3041 &show_backtrace_cmdlist);
3042
3043 gdb::option::add_setshow_cmds_for_options
3044 (class_stack, &user_set_backtrace_options,
3045 set_backtrace_option_defs, &set_backtrace_cmdlist, &show_backtrace_cmdlist);
3046
3047 /* Debug this files internals. */
3048 add_setshow_zuinteger_cmd ("frame", class_maintenance, &frame_debug, _("\
3049 Set frame debugging."), _("\
3050 Show frame debugging."), _("\
3051 When non-zero, frame specific internal debugging is enabled."),
3052 NULL,
3053 show_frame_debug,
3054 &setdebuglist, &showdebuglist);
3055 }