Remove MAX_REGISTER_SIZE from frame.c
[binutils-gdb.git] / gdb / frame.c
1 /* Cache and manage frames for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "target.h"
23 #include "value.h"
24 #include "inferior.h" /* for inferior_ptid */
25 #include "regcache.h"
26 #include "user-regs.h"
27 #include "gdb_obstack.h"
28 #include "dummy-frame.h"
29 #include "sentinel-frame.h"
30 #include "gdbcore.h"
31 #include "annotate.h"
32 #include "language.h"
33 #include "frame-unwind.h"
34 #include "frame-base.h"
35 #include "command.h"
36 #include "gdbcmd.h"
37 #include "observer.h"
38 #include "objfiles.h"
39 #include "gdbthread.h"
40 #include "block.h"
41 #include "inline-frame.h"
42 #include "tracepoint.h"
43 #include "hashtab.h"
44 #include "valprint.h"
45
46 /* The sentinel frame terminates the innermost end of the frame chain.
47 If unwound, it returns the information needed to construct an
48 innermost frame.
49
50 The current frame, which is the innermost frame, can be found at
51 sentinel_frame->prev. */
52
53 static struct frame_info *sentinel_frame;
54
55 static struct frame_info *get_prev_frame_raw (struct frame_info *this_frame);
56 static const char *frame_stop_reason_symbol_string (enum unwind_stop_reason reason);
57
58 /* Status of some values cached in the frame_info object. */
59
60 enum cached_copy_status
61 {
62 /* Value is unknown. */
63 CC_UNKNOWN,
64
65 /* We have a value. */
66 CC_VALUE,
67
68 /* Value was not saved. */
69 CC_NOT_SAVED,
70
71 /* Value is unavailable. */
72 CC_UNAVAILABLE
73 };
74
75 /* We keep a cache of stack frames, each of which is a "struct
76 frame_info". The innermost one gets allocated (in
77 wait_for_inferior) each time the inferior stops; sentinel_frame
78 points to it. Additional frames get allocated (in get_prev_frame)
79 as needed, and are chained through the next and prev fields. Any
80 time that the frame cache becomes invalid (most notably when we
81 execute something, but also if we change how we interpret the
82 frames (e.g. "set heuristic-fence-post" in mips-tdep.c, or anything
83 which reads new symbols)), we should call reinit_frame_cache. */
84
85 struct frame_info
86 {
87 /* Level of this frame. The inner-most (youngest) frame is at level
88 0. As you move towards the outer-most (oldest) frame, the level
89 increases. This is a cached value. It could just as easily be
90 computed by counting back from the selected frame to the inner
91 most frame. */
92 /* NOTE: cagney/2002-04-05: Perhaps a level of ``-1'' should be
93 reserved to indicate a bogus frame - one that has been created
94 just to keep GDB happy (GDB always needs a frame). For the
95 moment leave this as speculation. */
96 int level;
97
98 /* The frame's program space. */
99 struct program_space *pspace;
100
101 /* The frame's address space. */
102 struct address_space *aspace;
103
104 /* The frame's low-level unwinder and corresponding cache. The
105 low-level unwinder is responsible for unwinding register values
106 for the previous frame. The low-level unwind methods are
107 selected based on the presence, or otherwise, of register unwind
108 information such as CFI. */
109 void *prologue_cache;
110 const struct frame_unwind *unwind;
111
112 /* Cached copy of the previous frame's architecture. */
113 struct
114 {
115 int p;
116 struct gdbarch *arch;
117 } prev_arch;
118
119 /* Cached copy of the previous frame's resume address. */
120 struct {
121 enum cached_copy_status status;
122 CORE_ADDR value;
123 } prev_pc;
124
125 /* Cached copy of the previous frame's function address. */
126 struct
127 {
128 CORE_ADDR addr;
129 int p;
130 } prev_func;
131
132 /* This frame's ID. */
133 struct
134 {
135 int p;
136 struct frame_id value;
137 } this_id;
138
139 /* The frame's high-level base methods, and corresponding cache.
140 The high level base methods are selected based on the frame's
141 debug info. */
142 const struct frame_base *base;
143 void *base_cache;
144
145 /* Pointers to the next (down, inner, younger) and previous (up,
146 outer, older) frame_info's in the frame cache. */
147 struct frame_info *next; /* down, inner, younger */
148 int prev_p;
149 struct frame_info *prev; /* up, outer, older */
150
151 /* The reason why we could not set PREV, or UNWIND_NO_REASON if we
152 could. Only valid when PREV_P is set. */
153 enum unwind_stop_reason stop_reason;
154
155 /* A frame specific string describing the STOP_REASON in more detail.
156 Only valid when PREV_P is set, but even then may still be NULL. */
157 const char *stop_string;
158 };
159
160 /* A frame stash used to speed up frame lookups. Create a hash table
161 to stash frames previously accessed from the frame cache for
162 quicker subsequent retrieval. The hash table is emptied whenever
163 the frame cache is invalidated. */
164
165 static htab_t frame_stash;
166
167 /* Internal function to calculate a hash from the frame_id addresses,
168 using as many valid addresses as possible. Frames below level 0
169 are not stored in the hash table. */
170
171 static hashval_t
172 frame_addr_hash (const void *ap)
173 {
174 const struct frame_info *frame = (const struct frame_info *) ap;
175 const struct frame_id f_id = frame->this_id.value;
176 hashval_t hash = 0;
177
178 gdb_assert (f_id.stack_status != FID_STACK_INVALID
179 || f_id.code_addr_p
180 || f_id.special_addr_p);
181
182 if (f_id.stack_status == FID_STACK_VALID)
183 hash = iterative_hash (&f_id.stack_addr,
184 sizeof (f_id.stack_addr), hash);
185 if (f_id.code_addr_p)
186 hash = iterative_hash (&f_id.code_addr,
187 sizeof (f_id.code_addr), hash);
188 if (f_id.special_addr_p)
189 hash = iterative_hash (&f_id.special_addr,
190 sizeof (f_id.special_addr), hash);
191
192 return hash;
193 }
194
195 /* Internal equality function for the hash table. This function
196 defers equality operations to frame_id_eq. */
197
198 static int
199 frame_addr_hash_eq (const void *a, const void *b)
200 {
201 const struct frame_info *f_entry = (const struct frame_info *) a;
202 const struct frame_info *f_element = (const struct frame_info *) b;
203
204 return frame_id_eq (f_entry->this_id.value,
205 f_element->this_id.value);
206 }
207
208 /* Internal function to create the frame_stash hash table. 100 seems
209 to be a good compromise to start the hash table at. */
210
211 static void
212 frame_stash_create (void)
213 {
214 frame_stash = htab_create (100,
215 frame_addr_hash,
216 frame_addr_hash_eq,
217 NULL);
218 }
219
220 /* Internal function to add a frame to the frame_stash hash table.
221 Returns false if a frame with the same ID was already stashed, true
222 otherwise. */
223
224 static int
225 frame_stash_add (struct frame_info *frame)
226 {
227 struct frame_info **slot;
228
229 /* Do not try to stash the sentinel frame. */
230 gdb_assert (frame->level >= 0);
231
232 slot = (struct frame_info **) htab_find_slot (frame_stash,
233 frame,
234 INSERT);
235
236 /* If we already have a frame in the stack with the same id, we
237 either have a stack cycle (corrupted stack?), or some bug
238 elsewhere in GDB. In any case, ignore the duplicate and return
239 an indication to the caller. */
240 if (*slot != NULL)
241 return 0;
242
243 *slot = frame;
244 return 1;
245 }
246
247 /* Internal function to search the frame stash for an entry with the
248 given frame ID. If found, return that frame. Otherwise return
249 NULL. */
250
251 static struct frame_info *
252 frame_stash_find (struct frame_id id)
253 {
254 struct frame_info dummy;
255 struct frame_info *frame;
256
257 dummy.this_id.value = id;
258 frame = (struct frame_info *) htab_find (frame_stash, &dummy);
259 return frame;
260 }
261
262 /* Internal function to invalidate the frame stash by removing all
263 entries in it. This only occurs when the frame cache is
264 invalidated. */
265
266 static void
267 frame_stash_invalidate (void)
268 {
269 htab_empty (frame_stash);
270 }
271
272 /* Flag to control debugging. */
273
274 unsigned int frame_debug;
275 static void
276 show_frame_debug (struct ui_file *file, int from_tty,
277 struct cmd_list_element *c, const char *value)
278 {
279 fprintf_filtered (file, _("Frame debugging is %s.\n"), value);
280 }
281
282 /* Flag to indicate whether backtraces should stop at main et.al. */
283
284 static int backtrace_past_main;
285 static void
286 show_backtrace_past_main (struct ui_file *file, int from_tty,
287 struct cmd_list_element *c, const char *value)
288 {
289 fprintf_filtered (file,
290 _("Whether backtraces should "
291 "continue past \"main\" is %s.\n"),
292 value);
293 }
294
295 static int backtrace_past_entry;
296 static void
297 show_backtrace_past_entry (struct ui_file *file, int from_tty,
298 struct cmd_list_element *c, const char *value)
299 {
300 fprintf_filtered (file, _("Whether backtraces should continue past the "
301 "entry point of a program is %s.\n"),
302 value);
303 }
304
305 static unsigned int backtrace_limit = UINT_MAX;
306 static void
307 show_backtrace_limit (struct ui_file *file, int from_tty,
308 struct cmd_list_element *c, const char *value)
309 {
310 fprintf_filtered (file,
311 _("An upper bound on the number "
312 "of backtrace levels is %s.\n"),
313 value);
314 }
315
316
317 static void
318 fprint_field (struct ui_file *file, const char *name, int p, CORE_ADDR addr)
319 {
320 if (p)
321 fprintf_unfiltered (file, "%s=%s", name, hex_string (addr));
322 else
323 fprintf_unfiltered (file, "!%s", name);
324 }
325
326 void
327 fprint_frame_id (struct ui_file *file, struct frame_id id)
328 {
329 fprintf_unfiltered (file, "{");
330
331 if (id.stack_status == FID_STACK_INVALID)
332 fprintf_unfiltered (file, "!stack");
333 else if (id.stack_status == FID_STACK_UNAVAILABLE)
334 fprintf_unfiltered (file, "stack=<unavailable>");
335 else if (id.stack_status == FID_STACK_SENTINEL)
336 fprintf_unfiltered (file, "stack=<sentinel>");
337 else
338 fprintf_unfiltered (file, "stack=%s", hex_string (id.stack_addr));
339 fprintf_unfiltered (file, ",");
340
341 fprint_field (file, "code", id.code_addr_p, id.code_addr);
342 fprintf_unfiltered (file, ",");
343
344 fprint_field (file, "special", id.special_addr_p, id.special_addr);
345
346 if (id.artificial_depth)
347 fprintf_unfiltered (file, ",artificial=%d", id.artificial_depth);
348
349 fprintf_unfiltered (file, "}");
350 }
351
352 static void
353 fprint_frame_type (struct ui_file *file, enum frame_type type)
354 {
355 switch (type)
356 {
357 case NORMAL_FRAME:
358 fprintf_unfiltered (file, "NORMAL_FRAME");
359 return;
360 case DUMMY_FRAME:
361 fprintf_unfiltered (file, "DUMMY_FRAME");
362 return;
363 case INLINE_FRAME:
364 fprintf_unfiltered (file, "INLINE_FRAME");
365 return;
366 case TAILCALL_FRAME:
367 fprintf_unfiltered (file, "TAILCALL_FRAME");
368 return;
369 case SIGTRAMP_FRAME:
370 fprintf_unfiltered (file, "SIGTRAMP_FRAME");
371 return;
372 case ARCH_FRAME:
373 fprintf_unfiltered (file, "ARCH_FRAME");
374 return;
375 case SENTINEL_FRAME:
376 fprintf_unfiltered (file, "SENTINEL_FRAME");
377 return;
378 default:
379 fprintf_unfiltered (file, "<unknown type>");
380 return;
381 };
382 }
383
384 static void
385 fprint_frame (struct ui_file *file, struct frame_info *fi)
386 {
387 if (fi == NULL)
388 {
389 fprintf_unfiltered (file, "<NULL frame>");
390 return;
391 }
392 fprintf_unfiltered (file, "{");
393 fprintf_unfiltered (file, "level=%d", fi->level);
394 fprintf_unfiltered (file, ",");
395 fprintf_unfiltered (file, "type=");
396 if (fi->unwind != NULL)
397 fprint_frame_type (file, fi->unwind->type);
398 else
399 fprintf_unfiltered (file, "<unknown>");
400 fprintf_unfiltered (file, ",");
401 fprintf_unfiltered (file, "unwind=");
402 if (fi->unwind != NULL)
403 gdb_print_host_address (fi->unwind, file);
404 else
405 fprintf_unfiltered (file, "<unknown>");
406 fprintf_unfiltered (file, ",");
407 fprintf_unfiltered (file, "pc=");
408 if (fi->next == NULL || fi->next->prev_pc.status == CC_UNKNOWN)
409 fprintf_unfiltered (file, "<unknown>");
410 else if (fi->next->prev_pc.status == CC_VALUE)
411 fprintf_unfiltered (file, "%s",
412 hex_string (fi->next->prev_pc.value));
413 else if (fi->next->prev_pc.status == CC_NOT_SAVED)
414 val_print_not_saved (file);
415 else if (fi->next->prev_pc.status == CC_UNAVAILABLE)
416 val_print_unavailable (file);
417 fprintf_unfiltered (file, ",");
418 fprintf_unfiltered (file, "id=");
419 if (fi->this_id.p)
420 fprint_frame_id (file, fi->this_id.value);
421 else
422 fprintf_unfiltered (file, "<unknown>");
423 fprintf_unfiltered (file, ",");
424 fprintf_unfiltered (file, "func=");
425 if (fi->next != NULL && fi->next->prev_func.p)
426 fprintf_unfiltered (file, "%s", hex_string (fi->next->prev_func.addr));
427 else
428 fprintf_unfiltered (file, "<unknown>");
429 fprintf_unfiltered (file, "}");
430 }
431
432 /* Given FRAME, return the enclosing frame as found in real frames read-in from
433 inferior memory. Skip any previous frames which were made up by GDB.
434 Return FRAME if FRAME is a non-artificial frame.
435 Return NULL if FRAME is the start of an artificial-only chain. */
436
437 static struct frame_info *
438 skip_artificial_frames (struct frame_info *frame)
439 {
440 /* Note we use get_prev_frame_always, and not get_prev_frame. The
441 latter will truncate the frame chain, leading to this function
442 unintentionally returning a null_frame_id (e.g., when the user
443 sets a backtrace limit).
444
445 Note that for record targets we may get a frame chain that consists
446 of artificial frames only. */
447 while (get_frame_type (frame) == INLINE_FRAME
448 || get_frame_type (frame) == TAILCALL_FRAME)
449 {
450 frame = get_prev_frame_always (frame);
451 if (frame == NULL)
452 break;
453 }
454
455 return frame;
456 }
457
458 struct frame_info *
459 skip_unwritable_frames (struct frame_info *frame)
460 {
461 while (gdbarch_code_of_frame_writable (get_frame_arch (frame), frame) == 0)
462 {
463 frame = get_prev_frame (frame);
464 if (frame == NULL)
465 break;
466 }
467
468 return frame;
469 }
470
471 /* See frame.h. */
472
473 struct frame_info *
474 skip_tailcall_frames (struct frame_info *frame)
475 {
476 while (get_frame_type (frame) == TAILCALL_FRAME)
477 {
478 /* Note that for record targets we may get a frame chain that consists of
479 tailcall frames only. */
480 frame = get_prev_frame (frame);
481 if (frame == NULL)
482 break;
483 }
484
485 return frame;
486 }
487
488 /* Compute the frame's uniq ID that can be used to, later, re-find the
489 frame. */
490
491 static void
492 compute_frame_id (struct frame_info *fi)
493 {
494 gdb_assert (!fi->this_id.p);
495
496 if (frame_debug)
497 fprintf_unfiltered (gdb_stdlog, "{ compute_frame_id (fi=%d) ",
498 fi->level);
499 /* Find the unwinder. */
500 if (fi->unwind == NULL)
501 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
502 /* Find THIS frame's ID. */
503 /* Default to outermost if no ID is found. */
504 fi->this_id.value = outer_frame_id;
505 fi->unwind->this_id (fi, &fi->prologue_cache, &fi->this_id.value);
506 gdb_assert (frame_id_p (fi->this_id.value));
507 fi->this_id.p = 1;
508 if (frame_debug)
509 {
510 fprintf_unfiltered (gdb_stdlog, "-> ");
511 fprint_frame_id (gdb_stdlog, fi->this_id.value);
512 fprintf_unfiltered (gdb_stdlog, " }\n");
513 }
514 }
515
516 /* Return a frame uniq ID that can be used to, later, re-find the
517 frame. */
518
519 struct frame_id
520 get_frame_id (struct frame_info *fi)
521 {
522 if (fi == NULL)
523 return null_frame_id;
524
525 if (!fi->this_id.p)
526 {
527 int stashed;
528
529 /* If we haven't computed the frame id yet, then it must be that
530 this is the current frame. Compute it now, and stash the
531 result. The IDs of other frames are computed as soon as
532 they're created, in order to detect cycles. See
533 get_prev_frame_if_no_cycle. */
534 gdb_assert (fi->level == 0);
535
536 /* Compute. */
537 compute_frame_id (fi);
538
539 /* Since this is the first frame in the chain, this should
540 always succeed. */
541 stashed = frame_stash_add (fi);
542 gdb_assert (stashed);
543 }
544
545 return fi->this_id.value;
546 }
547
548 struct frame_id
549 get_stack_frame_id (struct frame_info *next_frame)
550 {
551 return get_frame_id (skip_artificial_frames (next_frame));
552 }
553
554 struct frame_id
555 frame_unwind_caller_id (struct frame_info *next_frame)
556 {
557 struct frame_info *this_frame;
558
559 /* Use get_prev_frame_always, and not get_prev_frame. The latter
560 will truncate the frame chain, leading to this function
561 unintentionally returning a null_frame_id (e.g., when a caller
562 requests the frame ID of "main()"s caller. */
563
564 next_frame = skip_artificial_frames (next_frame);
565 if (next_frame == NULL)
566 return null_frame_id;
567
568 this_frame = get_prev_frame_always (next_frame);
569 if (this_frame)
570 return get_frame_id (skip_artificial_frames (this_frame));
571 else
572 return null_frame_id;
573 }
574
575 const struct frame_id null_frame_id = { 0 }; /* All zeros. */
576 const struct frame_id sentinel_frame_id = { 0, 0, 0, FID_STACK_SENTINEL, 0, 1, 0 };
577 const struct frame_id outer_frame_id = { 0, 0, 0, FID_STACK_INVALID, 0, 1, 0 };
578
579 struct frame_id
580 frame_id_build_special (CORE_ADDR stack_addr, CORE_ADDR code_addr,
581 CORE_ADDR special_addr)
582 {
583 struct frame_id id = null_frame_id;
584
585 id.stack_addr = stack_addr;
586 id.stack_status = FID_STACK_VALID;
587 id.code_addr = code_addr;
588 id.code_addr_p = 1;
589 id.special_addr = special_addr;
590 id.special_addr_p = 1;
591 return id;
592 }
593
594 /* See frame.h. */
595
596 struct frame_id
597 frame_id_build_unavailable_stack (CORE_ADDR code_addr)
598 {
599 struct frame_id id = null_frame_id;
600
601 id.stack_status = FID_STACK_UNAVAILABLE;
602 id.code_addr = code_addr;
603 id.code_addr_p = 1;
604 return id;
605 }
606
607 /* See frame.h. */
608
609 struct frame_id
610 frame_id_build_unavailable_stack_special (CORE_ADDR code_addr,
611 CORE_ADDR special_addr)
612 {
613 struct frame_id id = null_frame_id;
614
615 id.stack_status = FID_STACK_UNAVAILABLE;
616 id.code_addr = code_addr;
617 id.code_addr_p = 1;
618 id.special_addr = special_addr;
619 id.special_addr_p = 1;
620 return id;
621 }
622
623 struct frame_id
624 frame_id_build (CORE_ADDR stack_addr, CORE_ADDR code_addr)
625 {
626 struct frame_id id = null_frame_id;
627
628 id.stack_addr = stack_addr;
629 id.stack_status = FID_STACK_VALID;
630 id.code_addr = code_addr;
631 id.code_addr_p = 1;
632 return id;
633 }
634
635 struct frame_id
636 frame_id_build_wild (CORE_ADDR stack_addr)
637 {
638 struct frame_id id = null_frame_id;
639
640 id.stack_addr = stack_addr;
641 id.stack_status = FID_STACK_VALID;
642 return id;
643 }
644
645 int
646 frame_id_p (struct frame_id l)
647 {
648 int p;
649
650 /* The frame is valid iff it has a valid stack address. */
651 p = l.stack_status != FID_STACK_INVALID;
652 /* outer_frame_id is also valid. */
653 if (!p && memcmp (&l, &outer_frame_id, sizeof (l)) == 0)
654 p = 1;
655 if (frame_debug)
656 {
657 fprintf_unfiltered (gdb_stdlog, "{ frame_id_p (l=");
658 fprint_frame_id (gdb_stdlog, l);
659 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", p);
660 }
661 return p;
662 }
663
664 int
665 frame_id_artificial_p (struct frame_id l)
666 {
667 if (!frame_id_p (l))
668 return 0;
669
670 return (l.artificial_depth != 0);
671 }
672
673 int
674 frame_id_eq (struct frame_id l, struct frame_id r)
675 {
676 int eq;
677
678 if (l.stack_status == FID_STACK_INVALID && l.special_addr_p
679 && r.stack_status == FID_STACK_INVALID && r.special_addr_p)
680 /* The outermost frame marker is equal to itself. This is the
681 dodgy thing about outer_frame_id, since between execution steps
682 we might step into another function - from which we can't
683 unwind either. More thought required to get rid of
684 outer_frame_id. */
685 eq = 1;
686 else if (l.stack_status == FID_STACK_INVALID
687 || r.stack_status == FID_STACK_INVALID)
688 /* Like a NaN, if either ID is invalid, the result is false.
689 Note that a frame ID is invalid iff it is the null frame ID. */
690 eq = 0;
691 else if (l.stack_status != r.stack_status || l.stack_addr != r.stack_addr)
692 /* If .stack addresses are different, the frames are different. */
693 eq = 0;
694 else if (l.code_addr_p && r.code_addr_p && l.code_addr != r.code_addr)
695 /* An invalid code addr is a wild card. If .code addresses are
696 different, the frames are different. */
697 eq = 0;
698 else if (l.special_addr_p && r.special_addr_p
699 && l.special_addr != r.special_addr)
700 /* An invalid special addr is a wild card (or unused). Otherwise
701 if special addresses are different, the frames are different. */
702 eq = 0;
703 else if (l.artificial_depth != r.artificial_depth)
704 /* If artifical depths are different, the frames must be different. */
705 eq = 0;
706 else
707 /* Frames are equal. */
708 eq = 1;
709
710 if (frame_debug)
711 {
712 fprintf_unfiltered (gdb_stdlog, "{ frame_id_eq (l=");
713 fprint_frame_id (gdb_stdlog, l);
714 fprintf_unfiltered (gdb_stdlog, ",r=");
715 fprint_frame_id (gdb_stdlog, r);
716 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", eq);
717 }
718 return eq;
719 }
720
721 /* Safety net to check whether frame ID L should be inner to
722 frame ID R, according to their stack addresses.
723
724 This method cannot be used to compare arbitrary frames, as the
725 ranges of valid stack addresses may be discontiguous (e.g. due
726 to sigaltstack).
727
728 However, it can be used as safety net to discover invalid frame
729 IDs in certain circumstances. Assuming that NEXT is the immediate
730 inner frame to THIS and that NEXT and THIS are both NORMAL frames:
731
732 * The stack address of NEXT must be inner-than-or-equal to the stack
733 address of THIS.
734
735 Therefore, if frame_id_inner (THIS, NEXT) holds, some unwind
736 error has occurred.
737
738 * If NEXT and THIS have different stack addresses, no other frame
739 in the frame chain may have a stack address in between.
740
741 Therefore, if frame_id_inner (TEST, THIS) holds, but
742 frame_id_inner (TEST, NEXT) does not hold, TEST cannot refer
743 to a valid frame in the frame chain.
744
745 The sanity checks above cannot be performed when a SIGTRAMP frame
746 is involved, because signal handlers might be executed on a different
747 stack than the stack used by the routine that caused the signal
748 to be raised. This can happen for instance when a thread exceeds
749 its maximum stack size. In this case, certain compilers implement
750 a stack overflow strategy that cause the handler to be run on a
751 different stack. */
752
753 static int
754 frame_id_inner (struct gdbarch *gdbarch, struct frame_id l, struct frame_id r)
755 {
756 int inner;
757
758 if (l.stack_status != FID_STACK_VALID || r.stack_status != FID_STACK_VALID)
759 /* Like NaN, any operation involving an invalid ID always fails.
760 Likewise if either ID has an unavailable stack address. */
761 inner = 0;
762 else if (l.artificial_depth > r.artificial_depth
763 && l.stack_addr == r.stack_addr
764 && l.code_addr_p == r.code_addr_p
765 && l.special_addr_p == r.special_addr_p
766 && l.special_addr == r.special_addr)
767 {
768 /* Same function, different inlined functions. */
769 const struct block *lb, *rb;
770
771 gdb_assert (l.code_addr_p && r.code_addr_p);
772
773 lb = block_for_pc (l.code_addr);
774 rb = block_for_pc (r.code_addr);
775
776 if (lb == NULL || rb == NULL)
777 /* Something's gone wrong. */
778 inner = 0;
779 else
780 /* This will return true if LB and RB are the same block, or
781 if the block with the smaller depth lexically encloses the
782 block with the greater depth. */
783 inner = contained_in (lb, rb);
784 }
785 else
786 /* Only return non-zero when strictly inner than. Note that, per
787 comment in "frame.h", there is some fuzz here. Frameless
788 functions are not strictly inner than (same .stack but
789 different .code and/or .special address). */
790 inner = gdbarch_inner_than (gdbarch, l.stack_addr, r.stack_addr);
791 if (frame_debug)
792 {
793 fprintf_unfiltered (gdb_stdlog, "{ frame_id_inner (l=");
794 fprint_frame_id (gdb_stdlog, l);
795 fprintf_unfiltered (gdb_stdlog, ",r=");
796 fprint_frame_id (gdb_stdlog, r);
797 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", inner);
798 }
799 return inner;
800 }
801
802 struct frame_info *
803 frame_find_by_id (struct frame_id id)
804 {
805 struct frame_info *frame, *prev_frame;
806
807 /* ZERO denotes the null frame, let the caller decide what to do
808 about it. Should it instead return get_current_frame()? */
809 if (!frame_id_p (id))
810 return NULL;
811
812 /* Check for the sentinel frame. */
813 if (frame_id_eq (id, sentinel_frame_id))
814 return sentinel_frame;
815
816 /* Try using the frame stash first. Finding it there removes the need
817 to perform the search by looping over all frames, which can be very
818 CPU-intensive if the number of frames is very high (the loop is O(n)
819 and get_prev_frame performs a series of checks that are relatively
820 expensive). This optimization is particularly useful when this function
821 is called from another function (such as value_fetch_lazy, case
822 VALUE_LVAL (val) == lval_register) which already loops over all frames,
823 making the overall behavior O(n^2). */
824 frame = frame_stash_find (id);
825 if (frame)
826 return frame;
827
828 for (frame = get_current_frame (); ; frame = prev_frame)
829 {
830 struct frame_id self = get_frame_id (frame);
831
832 if (frame_id_eq (id, self))
833 /* An exact match. */
834 return frame;
835
836 prev_frame = get_prev_frame (frame);
837 if (!prev_frame)
838 return NULL;
839
840 /* As a safety net to avoid unnecessary backtracing while trying
841 to find an invalid ID, we check for a common situation where
842 we can detect from comparing stack addresses that no other
843 frame in the current frame chain can have this ID. See the
844 comment at frame_id_inner for details. */
845 if (get_frame_type (frame) == NORMAL_FRAME
846 && !frame_id_inner (get_frame_arch (frame), id, self)
847 && frame_id_inner (get_frame_arch (prev_frame), id,
848 get_frame_id (prev_frame)))
849 return NULL;
850 }
851 return NULL;
852 }
853
854 static CORE_ADDR
855 frame_unwind_pc (struct frame_info *this_frame)
856 {
857 if (this_frame->prev_pc.status == CC_UNKNOWN)
858 {
859 if (gdbarch_unwind_pc_p (frame_unwind_arch (this_frame)))
860 {
861 struct gdbarch *prev_gdbarch;
862 CORE_ADDR pc = 0;
863 int pc_p = 0;
864
865 /* The right way. The `pure' way. The one true way. This
866 method depends solely on the register-unwind code to
867 determine the value of registers in THIS frame, and hence
868 the value of this frame's PC (resume address). A typical
869 implementation is no more than:
870
871 frame_unwind_register (this_frame, ISA_PC_REGNUM, buf);
872 return extract_unsigned_integer (buf, size of ISA_PC_REGNUM);
873
874 Note: this method is very heavily dependent on a correct
875 register-unwind implementation, it pays to fix that
876 method first; this method is frame type agnostic, since
877 it only deals with register values, it works with any
878 frame. This is all in stark contrast to the old
879 FRAME_SAVED_PC which would try to directly handle all the
880 different ways that a PC could be unwound. */
881 prev_gdbarch = frame_unwind_arch (this_frame);
882
883 TRY
884 {
885 pc = gdbarch_unwind_pc (prev_gdbarch, this_frame);
886 pc_p = 1;
887 }
888 CATCH (ex, RETURN_MASK_ERROR)
889 {
890 if (ex.error == NOT_AVAILABLE_ERROR)
891 {
892 this_frame->prev_pc.status = CC_UNAVAILABLE;
893
894 if (frame_debug)
895 fprintf_unfiltered (gdb_stdlog,
896 "{ frame_unwind_pc (this_frame=%d)"
897 " -> <unavailable> }\n",
898 this_frame->level);
899 }
900 else if (ex.error == OPTIMIZED_OUT_ERROR)
901 {
902 this_frame->prev_pc.status = CC_NOT_SAVED;
903
904 if (frame_debug)
905 fprintf_unfiltered (gdb_stdlog,
906 "{ frame_unwind_pc (this_frame=%d)"
907 " -> <not saved> }\n",
908 this_frame->level);
909 }
910 else
911 throw_exception (ex);
912 }
913 END_CATCH
914
915 if (pc_p)
916 {
917 this_frame->prev_pc.value = pc;
918 this_frame->prev_pc.status = CC_VALUE;
919 if (frame_debug)
920 fprintf_unfiltered (gdb_stdlog,
921 "{ frame_unwind_pc (this_frame=%d) "
922 "-> %s }\n",
923 this_frame->level,
924 hex_string (this_frame->prev_pc.value));
925 }
926 }
927 else
928 internal_error (__FILE__, __LINE__, _("No unwind_pc method"));
929 }
930
931 if (this_frame->prev_pc.status == CC_VALUE)
932 return this_frame->prev_pc.value;
933 else if (this_frame->prev_pc.status == CC_UNAVAILABLE)
934 throw_error (NOT_AVAILABLE_ERROR, _("PC not available"));
935 else if (this_frame->prev_pc.status == CC_NOT_SAVED)
936 throw_error (OPTIMIZED_OUT_ERROR, _("PC not saved"));
937 else
938 internal_error (__FILE__, __LINE__,
939 "unexpected prev_pc status: %d",
940 (int) this_frame->prev_pc.status);
941 }
942
943 CORE_ADDR
944 frame_unwind_caller_pc (struct frame_info *this_frame)
945 {
946 this_frame = skip_artificial_frames (this_frame);
947
948 /* We must have a non-artificial frame. The caller is supposed to check
949 the result of frame_unwind_caller_id (), which returns NULL_FRAME_ID
950 in this case. */
951 gdb_assert (this_frame != NULL);
952
953 return frame_unwind_pc (this_frame);
954 }
955
956 int
957 get_frame_func_if_available (struct frame_info *this_frame, CORE_ADDR *pc)
958 {
959 struct frame_info *next_frame = this_frame->next;
960
961 if (!next_frame->prev_func.p)
962 {
963 CORE_ADDR addr_in_block;
964
965 /* Make certain that this, and not the adjacent, function is
966 found. */
967 if (!get_frame_address_in_block_if_available (this_frame, &addr_in_block))
968 {
969 next_frame->prev_func.p = -1;
970 if (frame_debug)
971 fprintf_unfiltered (gdb_stdlog,
972 "{ get_frame_func (this_frame=%d)"
973 " -> unavailable }\n",
974 this_frame->level);
975 }
976 else
977 {
978 next_frame->prev_func.p = 1;
979 next_frame->prev_func.addr = get_pc_function_start (addr_in_block);
980 if (frame_debug)
981 fprintf_unfiltered (gdb_stdlog,
982 "{ get_frame_func (this_frame=%d) -> %s }\n",
983 this_frame->level,
984 hex_string (next_frame->prev_func.addr));
985 }
986 }
987
988 if (next_frame->prev_func.p < 0)
989 {
990 *pc = -1;
991 return 0;
992 }
993 else
994 {
995 *pc = next_frame->prev_func.addr;
996 return 1;
997 }
998 }
999
1000 CORE_ADDR
1001 get_frame_func (struct frame_info *this_frame)
1002 {
1003 CORE_ADDR pc;
1004
1005 if (!get_frame_func_if_available (this_frame, &pc))
1006 throw_error (NOT_AVAILABLE_ERROR, _("PC not available"));
1007
1008 return pc;
1009 }
1010
1011 static enum register_status
1012 do_frame_register_read (void *src, int regnum, gdb_byte *buf)
1013 {
1014 if (!deprecated_frame_register_read ((struct frame_info *) src, regnum, buf))
1015 return REG_UNAVAILABLE;
1016 else
1017 return REG_VALID;
1018 }
1019
1020 struct regcache *
1021 frame_save_as_regcache (struct frame_info *this_frame)
1022 {
1023 struct address_space *aspace = get_frame_address_space (this_frame);
1024 struct regcache *regcache = regcache_xmalloc (get_frame_arch (this_frame),
1025 aspace);
1026 struct cleanup *cleanups = make_cleanup_regcache_xfree (regcache);
1027
1028 regcache_save (regcache, do_frame_register_read, this_frame);
1029 discard_cleanups (cleanups);
1030 return regcache;
1031 }
1032
1033 void
1034 frame_pop (struct frame_info *this_frame)
1035 {
1036 struct frame_info *prev_frame;
1037 struct regcache *scratch;
1038 struct cleanup *cleanups;
1039
1040 if (get_frame_type (this_frame) == DUMMY_FRAME)
1041 {
1042 /* Popping a dummy frame involves restoring more than just registers.
1043 dummy_frame_pop does all the work. */
1044 dummy_frame_pop (get_frame_id (this_frame), inferior_ptid);
1045 return;
1046 }
1047
1048 /* Ensure that we have a frame to pop to. */
1049 prev_frame = get_prev_frame_always (this_frame);
1050
1051 if (!prev_frame)
1052 error (_("Cannot pop the initial frame."));
1053
1054 /* Ignore TAILCALL_FRAME type frames, they were executed already before
1055 entering THISFRAME. */
1056 prev_frame = skip_tailcall_frames (prev_frame);
1057
1058 if (prev_frame == NULL)
1059 error (_("Cannot find the caller frame."));
1060
1061 /* Make a copy of all the register values unwound from this frame.
1062 Save them in a scratch buffer so that there isn't a race between
1063 trying to extract the old values from the current regcache while
1064 at the same time writing new values into that same cache. */
1065 scratch = frame_save_as_regcache (prev_frame);
1066 cleanups = make_cleanup_regcache_xfree (scratch);
1067
1068 /* FIXME: cagney/2003-03-16: It should be possible to tell the
1069 target's register cache that it is about to be hit with a burst
1070 register transfer and that the sequence of register writes should
1071 be batched. The pair target_prepare_to_store() and
1072 target_store_registers() kind of suggest this functionality.
1073 Unfortunately, they don't implement it. Their lack of a formal
1074 definition can lead to targets writing back bogus values
1075 (arguably a bug in the target code mind). */
1076 /* Now copy those saved registers into the current regcache.
1077 Here, regcache_cpy() calls regcache_restore(). */
1078 regcache_cpy (get_current_regcache (), scratch);
1079 do_cleanups (cleanups);
1080
1081 /* We've made right mess of GDB's local state, just discard
1082 everything. */
1083 reinit_frame_cache ();
1084 }
1085
1086 void
1087 frame_register_unwind (struct frame_info *frame, int regnum,
1088 int *optimizedp, int *unavailablep,
1089 enum lval_type *lvalp, CORE_ADDR *addrp,
1090 int *realnump, gdb_byte *bufferp)
1091 {
1092 struct value *value;
1093
1094 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
1095 that the value proper does not need to be fetched. */
1096 gdb_assert (optimizedp != NULL);
1097 gdb_assert (lvalp != NULL);
1098 gdb_assert (addrp != NULL);
1099 gdb_assert (realnump != NULL);
1100 /* gdb_assert (bufferp != NULL); */
1101
1102 value = frame_unwind_register_value (frame, regnum);
1103
1104 gdb_assert (value != NULL);
1105
1106 *optimizedp = value_optimized_out (value);
1107 *unavailablep = !value_entirely_available (value);
1108 *lvalp = VALUE_LVAL (value);
1109 *addrp = value_address (value);
1110 if (*lvalp == lval_register)
1111 *realnump = VALUE_REGNUM (value);
1112 else
1113 *realnump = -1;
1114
1115 if (bufferp)
1116 {
1117 if (!*optimizedp && !*unavailablep)
1118 memcpy (bufferp, value_contents_all (value),
1119 TYPE_LENGTH (value_type (value)));
1120 else
1121 memset (bufferp, 0, TYPE_LENGTH (value_type (value)));
1122 }
1123
1124 /* Dispose of the new value. This prevents watchpoints from
1125 trying to watch the saved frame pointer. */
1126 release_value (value);
1127 value_free (value);
1128 }
1129
1130 void
1131 frame_register (struct frame_info *frame, int regnum,
1132 int *optimizedp, int *unavailablep, enum lval_type *lvalp,
1133 CORE_ADDR *addrp, int *realnump, gdb_byte *bufferp)
1134 {
1135 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
1136 that the value proper does not need to be fetched. */
1137 gdb_assert (optimizedp != NULL);
1138 gdb_assert (lvalp != NULL);
1139 gdb_assert (addrp != NULL);
1140 gdb_assert (realnump != NULL);
1141 /* gdb_assert (bufferp != NULL); */
1142
1143 /* Obtain the register value by unwinding the register from the next
1144 (more inner frame). */
1145 gdb_assert (frame != NULL && frame->next != NULL);
1146 frame_register_unwind (frame->next, regnum, optimizedp, unavailablep,
1147 lvalp, addrp, realnump, bufferp);
1148 }
1149
1150 void
1151 frame_unwind_register (struct frame_info *frame, int regnum, gdb_byte *buf)
1152 {
1153 int optimized;
1154 int unavailable;
1155 CORE_ADDR addr;
1156 int realnum;
1157 enum lval_type lval;
1158
1159 frame_register_unwind (frame, regnum, &optimized, &unavailable,
1160 &lval, &addr, &realnum, buf);
1161
1162 if (optimized)
1163 throw_error (OPTIMIZED_OUT_ERROR,
1164 _("Register %d was not saved"), regnum);
1165 if (unavailable)
1166 throw_error (NOT_AVAILABLE_ERROR,
1167 _("Register %d is not available"), regnum);
1168 }
1169
1170 void
1171 get_frame_register (struct frame_info *frame,
1172 int regnum, gdb_byte *buf)
1173 {
1174 frame_unwind_register (frame->next, regnum, buf);
1175 }
1176
1177 struct value *
1178 frame_unwind_register_value (struct frame_info *frame, int regnum)
1179 {
1180 struct gdbarch *gdbarch;
1181 struct value *value;
1182
1183 gdb_assert (frame != NULL);
1184 gdbarch = frame_unwind_arch (frame);
1185
1186 if (frame_debug)
1187 {
1188 fprintf_unfiltered (gdb_stdlog,
1189 "{ frame_unwind_register_value "
1190 "(frame=%d,regnum=%d(%s),...) ",
1191 frame->level, regnum,
1192 user_reg_map_regnum_to_name (gdbarch, regnum));
1193 }
1194
1195 /* Find the unwinder. */
1196 if (frame->unwind == NULL)
1197 frame_unwind_find_by_frame (frame, &frame->prologue_cache);
1198
1199 /* Ask this frame to unwind its register. */
1200 value = frame->unwind->prev_register (frame, &frame->prologue_cache, regnum);
1201
1202 if (frame_debug)
1203 {
1204 fprintf_unfiltered (gdb_stdlog, "->");
1205 if (value_optimized_out (value))
1206 {
1207 fprintf_unfiltered (gdb_stdlog, " ");
1208 val_print_optimized_out (value, gdb_stdlog);
1209 }
1210 else
1211 {
1212 if (VALUE_LVAL (value) == lval_register)
1213 fprintf_unfiltered (gdb_stdlog, " register=%d",
1214 VALUE_REGNUM (value));
1215 else if (VALUE_LVAL (value) == lval_memory)
1216 fprintf_unfiltered (gdb_stdlog, " address=%s",
1217 paddress (gdbarch,
1218 value_address (value)));
1219 else
1220 fprintf_unfiltered (gdb_stdlog, " computed");
1221
1222 if (value_lazy (value))
1223 fprintf_unfiltered (gdb_stdlog, " lazy");
1224 else
1225 {
1226 int i;
1227 const gdb_byte *buf = value_contents (value);
1228
1229 fprintf_unfiltered (gdb_stdlog, " bytes=");
1230 fprintf_unfiltered (gdb_stdlog, "[");
1231 for (i = 0; i < register_size (gdbarch, regnum); i++)
1232 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
1233 fprintf_unfiltered (gdb_stdlog, "]");
1234 }
1235 }
1236
1237 fprintf_unfiltered (gdb_stdlog, " }\n");
1238 }
1239
1240 return value;
1241 }
1242
1243 struct value *
1244 get_frame_register_value (struct frame_info *frame, int regnum)
1245 {
1246 return frame_unwind_register_value (frame->next, regnum);
1247 }
1248
1249 LONGEST
1250 frame_unwind_register_signed (struct frame_info *frame, int regnum)
1251 {
1252 struct gdbarch *gdbarch = frame_unwind_arch (frame);
1253 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1254 int size = register_size (gdbarch, regnum);
1255 gdb_byte buf[MAX_REGISTER_SIZE];
1256
1257 frame_unwind_register (frame, regnum, buf);
1258 return extract_signed_integer (buf, size, byte_order);
1259 }
1260
1261 LONGEST
1262 get_frame_register_signed (struct frame_info *frame, int regnum)
1263 {
1264 return frame_unwind_register_signed (frame->next, regnum);
1265 }
1266
1267 ULONGEST
1268 frame_unwind_register_unsigned (struct frame_info *frame, int regnum)
1269 {
1270 struct gdbarch *gdbarch = frame_unwind_arch (frame);
1271 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1272 int size = register_size (gdbarch, regnum);
1273 gdb_byte buf[MAX_REGISTER_SIZE];
1274
1275 frame_unwind_register (frame, regnum, buf);
1276 return extract_unsigned_integer (buf, size, byte_order);
1277 }
1278
1279 ULONGEST
1280 get_frame_register_unsigned (struct frame_info *frame, int regnum)
1281 {
1282 return frame_unwind_register_unsigned (frame->next, regnum);
1283 }
1284
1285 int
1286 read_frame_register_unsigned (struct frame_info *frame, int regnum,
1287 ULONGEST *val)
1288 {
1289 struct value *regval = get_frame_register_value (frame, regnum);
1290
1291 if (!value_optimized_out (regval)
1292 && value_entirely_available (regval))
1293 {
1294 struct gdbarch *gdbarch = get_frame_arch (frame);
1295 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1296 int size = register_size (gdbarch, VALUE_REGNUM (regval));
1297
1298 *val = extract_unsigned_integer (value_contents (regval), size, byte_order);
1299 return 1;
1300 }
1301
1302 return 0;
1303 }
1304
1305 void
1306 put_frame_register (struct frame_info *frame, int regnum,
1307 const gdb_byte *buf)
1308 {
1309 struct gdbarch *gdbarch = get_frame_arch (frame);
1310 int realnum;
1311 int optim;
1312 int unavail;
1313 enum lval_type lval;
1314 CORE_ADDR addr;
1315
1316 frame_register (frame, regnum, &optim, &unavail,
1317 &lval, &addr, &realnum, NULL);
1318 if (optim)
1319 error (_("Attempt to assign to a register that was not saved."));
1320 switch (lval)
1321 {
1322 case lval_memory:
1323 {
1324 write_memory (addr, buf, register_size (gdbarch, regnum));
1325 break;
1326 }
1327 case lval_register:
1328 regcache_cooked_write (get_current_regcache (), realnum, buf);
1329 break;
1330 default:
1331 error (_("Attempt to assign to an unmodifiable value."));
1332 }
1333 }
1334
1335 /* This function is deprecated. Use get_frame_register_value instead,
1336 which provides more accurate information.
1337
1338 Find and return the value of REGNUM for the specified stack frame.
1339 The number of bytes copied is REGISTER_SIZE (REGNUM).
1340
1341 Returns 0 if the register value could not be found. */
1342
1343 int
1344 deprecated_frame_register_read (struct frame_info *frame, int regnum,
1345 gdb_byte *myaddr)
1346 {
1347 int optimized;
1348 int unavailable;
1349 enum lval_type lval;
1350 CORE_ADDR addr;
1351 int realnum;
1352
1353 frame_register (frame, regnum, &optimized, &unavailable,
1354 &lval, &addr, &realnum, myaddr);
1355
1356 return !optimized && !unavailable;
1357 }
1358
1359 int
1360 get_frame_register_bytes (struct frame_info *frame, int regnum,
1361 CORE_ADDR offset, int len, gdb_byte *myaddr,
1362 int *optimizedp, int *unavailablep)
1363 {
1364 struct gdbarch *gdbarch = get_frame_arch (frame);
1365 int i;
1366 int maxsize;
1367 int numregs;
1368
1369 /* Skip registers wholly inside of OFFSET. */
1370 while (offset >= register_size (gdbarch, regnum))
1371 {
1372 offset -= register_size (gdbarch, regnum);
1373 regnum++;
1374 }
1375
1376 /* Ensure that we will not read beyond the end of the register file.
1377 This can only ever happen if the debug information is bad. */
1378 maxsize = -offset;
1379 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1380 for (i = regnum; i < numregs; i++)
1381 {
1382 int thissize = register_size (gdbarch, i);
1383
1384 if (thissize == 0)
1385 break; /* This register is not available on this architecture. */
1386 maxsize += thissize;
1387 }
1388 if (len > maxsize)
1389 error (_("Bad debug information detected: "
1390 "Attempt to read %d bytes from registers."), len);
1391
1392 /* Copy the data. */
1393 while (len > 0)
1394 {
1395 int curr_len = register_size (gdbarch, regnum) - offset;
1396
1397 if (curr_len > len)
1398 curr_len = len;
1399
1400 if (curr_len == register_size (gdbarch, regnum))
1401 {
1402 enum lval_type lval;
1403 CORE_ADDR addr;
1404 int realnum;
1405
1406 frame_register (frame, regnum, optimizedp, unavailablep,
1407 &lval, &addr, &realnum, myaddr);
1408 if (*optimizedp || *unavailablep)
1409 return 0;
1410 }
1411 else
1412 {
1413 struct value *value = frame_unwind_register_value (frame->next,
1414 regnum);
1415 gdb_assert (value != NULL);
1416 *optimizedp = value_optimized_out (value);
1417 *unavailablep = !value_entirely_available (value);
1418
1419 if (*optimizedp || *unavailablep)
1420 {
1421 release_value (value);
1422 value_free (value);
1423 return 0;
1424 }
1425 memcpy (myaddr, value_contents_all (value) + offset, curr_len);
1426 release_value (value);
1427 value_free (value);
1428 }
1429
1430 myaddr += curr_len;
1431 len -= curr_len;
1432 offset = 0;
1433 regnum++;
1434 }
1435
1436 *optimizedp = 0;
1437 *unavailablep = 0;
1438 return 1;
1439 }
1440
1441 void
1442 put_frame_register_bytes (struct frame_info *frame, int regnum,
1443 CORE_ADDR offset, int len, const gdb_byte *myaddr)
1444 {
1445 struct gdbarch *gdbarch = get_frame_arch (frame);
1446
1447 /* Skip registers wholly inside of OFFSET. */
1448 while (offset >= register_size (gdbarch, regnum))
1449 {
1450 offset -= register_size (gdbarch, regnum);
1451 regnum++;
1452 }
1453
1454 /* Copy the data. */
1455 while (len > 0)
1456 {
1457 int curr_len = register_size (gdbarch, regnum) - offset;
1458
1459 if (curr_len > len)
1460 curr_len = len;
1461
1462 if (curr_len == register_size (gdbarch, regnum))
1463 {
1464 put_frame_register (frame, regnum, myaddr);
1465 }
1466 else
1467 {
1468 struct value *value = frame_unwind_register_value (frame->next,
1469 regnum);
1470 gdb_assert (value != NULL);
1471
1472 memcpy ((char *) value_contents_writeable (value) + offset, myaddr,
1473 curr_len);
1474 put_frame_register (frame, regnum, value_contents_raw (value));
1475 release_value (value);
1476 value_free (value);
1477 }
1478
1479 myaddr += curr_len;
1480 len -= curr_len;
1481 offset = 0;
1482 regnum++;
1483 }
1484 }
1485
1486 /* Create a sentinel frame. */
1487
1488 static struct frame_info *
1489 create_sentinel_frame (struct program_space *pspace, struct regcache *regcache)
1490 {
1491 struct frame_info *frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
1492
1493 frame->level = -1;
1494 frame->pspace = pspace;
1495 frame->aspace = get_regcache_aspace (regcache);
1496 /* Explicitly initialize the sentinel frame's cache. Provide it
1497 with the underlying regcache. In the future additional
1498 information, such as the frame's thread will be added. */
1499 frame->prologue_cache = sentinel_frame_cache (regcache);
1500 /* For the moment there is only one sentinel frame implementation. */
1501 frame->unwind = &sentinel_frame_unwind;
1502 /* Link this frame back to itself. The frame is self referential
1503 (the unwound PC is the same as the pc), so make it so. */
1504 frame->next = frame;
1505 /* The sentinel frame has a special ID. */
1506 frame->this_id.p = 1;
1507 frame->this_id.value = sentinel_frame_id;
1508 if (frame_debug)
1509 {
1510 fprintf_unfiltered (gdb_stdlog, "{ create_sentinel_frame (...) -> ");
1511 fprint_frame (gdb_stdlog, frame);
1512 fprintf_unfiltered (gdb_stdlog, " }\n");
1513 }
1514 return frame;
1515 }
1516
1517 /* Cache for frame addresses already read by gdb. Valid only while
1518 inferior is stopped. Control variables for the frame cache should
1519 be local to this module. */
1520
1521 static struct obstack frame_cache_obstack;
1522
1523 void *
1524 frame_obstack_zalloc (unsigned long size)
1525 {
1526 void *data = obstack_alloc (&frame_cache_obstack, size);
1527
1528 memset (data, 0, size);
1529 return data;
1530 }
1531
1532 static struct frame_info *get_prev_frame_always_1 (struct frame_info *this_frame);
1533
1534 struct frame_info *
1535 get_current_frame (void)
1536 {
1537 struct frame_info *current_frame;
1538
1539 /* First check, and report, the lack of registers. Having GDB
1540 report "No stack!" or "No memory" when the target doesn't even
1541 have registers is very confusing. Besides, "printcmd.exp"
1542 explicitly checks that ``print $pc'' with no registers prints "No
1543 registers". */
1544 if (!target_has_registers)
1545 error (_("No registers."));
1546 if (!target_has_stack)
1547 error (_("No stack."));
1548 if (!target_has_memory)
1549 error (_("No memory."));
1550 /* Traceframes are effectively a substitute for the live inferior. */
1551 if (get_traceframe_number () < 0)
1552 validate_registers_access ();
1553
1554 if (sentinel_frame == NULL)
1555 sentinel_frame =
1556 create_sentinel_frame (current_program_space, get_current_regcache ());
1557
1558 /* Set the current frame before computing the frame id, to avoid
1559 recursion inside compute_frame_id, in case the frame's
1560 unwinder decides to do a symbol lookup (which depends on the
1561 selected frame's block).
1562
1563 This call must always succeed. In particular, nothing inside
1564 get_prev_frame_always_1 should try to unwind from the
1565 sentinel frame, because that could fail/throw, and we always
1566 want to leave with the current frame created and linked in --
1567 we should never end up with the sentinel frame as outermost
1568 frame. */
1569 current_frame = get_prev_frame_always_1 (sentinel_frame);
1570 gdb_assert (current_frame != NULL);
1571
1572 return current_frame;
1573 }
1574
1575 /* The "selected" stack frame is used by default for local and arg
1576 access. May be zero, for no selected frame. */
1577
1578 static struct frame_info *selected_frame;
1579
1580 int
1581 has_stack_frames (void)
1582 {
1583 if (!target_has_registers || !target_has_stack || !target_has_memory)
1584 return 0;
1585
1586 /* Traceframes are effectively a substitute for the live inferior. */
1587 if (get_traceframe_number () < 0)
1588 {
1589 /* No current inferior, no frame. */
1590 if (ptid_equal (inferior_ptid, null_ptid))
1591 return 0;
1592
1593 /* Don't try to read from a dead thread. */
1594 if (is_exited (inferior_ptid))
1595 return 0;
1596
1597 /* ... or from a spinning thread. */
1598 if (is_executing (inferior_ptid))
1599 return 0;
1600 }
1601
1602 return 1;
1603 }
1604
1605 /* Return the selected frame. Always non-NULL (unless there isn't an
1606 inferior sufficient for creating a frame) in which case an error is
1607 thrown. */
1608
1609 struct frame_info *
1610 get_selected_frame (const char *message)
1611 {
1612 if (selected_frame == NULL)
1613 {
1614 if (message != NULL && !has_stack_frames ())
1615 error (("%s"), message);
1616 /* Hey! Don't trust this. It should really be re-finding the
1617 last selected frame of the currently selected thread. This,
1618 though, is better than nothing. */
1619 select_frame (get_current_frame ());
1620 }
1621 /* There is always a frame. */
1622 gdb_assert (selected_frame != NULL);
1623 return selected_frame;
1624 }
1625
1626 /* If there is a selected frame, return it. Otherwise, return NULL. */
1627
1628 struct frame_info *
1629 get_selected_frame_if_set (void)
1630 {
1631 return selected_frame;
1632 }
1633
1634 /* This is a variant of get_selected_frame() which can be called when
1635 the inferior does not have a frame; in that case it will return
1636 NULL instead of calling error(). */
1637
1638 struct frame_info *
1639 deprecated_safe_get_selected_frame (void)
1640 {
1641 if (!has_stack_frames ())
1642 return NULL;
1643 return get_selected_frame (NULL);
1644 }
1645
1646 /* Select frame FI (or NULL - to invalidate the current frame). */
1647
1648 void
1649 select_frame (struct frame_info *fi)
1650 {
1651 selected_frame = fi;
1652 /* NOTE: cagney/2002-05-04: FI can be NULL. This occurs when the
1653 frame is being invalidated. */
1654
1655 /* FIXME: kseitz/2002-08-28: It would be nice to call
1656 selected_frame_level_changed_event() right here, but due to limitations
1657 in the current interfaces, we would end up flooding UIs with events
1658 because select_frame() is used extensively internally.
1659
1660 Once we have frame-parameterized frame (and frame-related) commands,
1661 the event notification can be moved here, since this function will only
1662 be called when the user's selected frame is being changed. */
1663
1664 /* Ensure that symbols for this frame are read in. Also, determine the
1665 source language of this frame, and switch to it if desired. */
1666 if (fi)
1667 {
1668 CORE_ADDR pc;
1669
1670 /* We retrieve the frame's symtab by using the frame PC.
1671 However we cannot use the frame PC as-is, because it usually
1672 points to the instruction following the "call", which is
1673 sometimes the first instruction of another function. So we
1674 rely on get_frame_address_in_block() which provides us with a
1675 PC which is guaranteed to be inside the frame's code
1676 block. */
1677 if (get_frame_address_in_block_if_available (fi, &pc))
1678 {
1679 struct compunit_symtab *cust = find_pc_compunit_symtab (pc);
1680
1681 if (cust != NULL
1682 && compunit_language (cust) != current_language->la_language
1683 && compunit_language (cust) != language_unknown
1684 && language_mode == language_mode_auto)
1685 set_language (compunit_language (cust));
1686 }
1687 }
1688 }
1689
1690 /* Create an arbitrary (i.e. address specified by user) or innermost frame.
1691 Always returns a non-NULL value. */
1692
1693 struct frame_info *
1694 create_new_frame (CORE_ADDR addr, CORE_ADDR pc)
1695 {
1696 struct frame_info *fi;
1697
1698 if (frame_debug)
1699 {
1700 fprintf_unfiltered (gdb_stdlog,
1701 "{ create_new_frame (addr=%s, pc=%s) ",
1702 hex_string (addr), hex_string (pc));
1703 }
1704
1705 fi = FRAME_OBSTACK_ZALLOC (struct frame_info);
1706
1707 fi->next = create_sentinel_frame (current_program_space,
1708 get_current_regcache ());
1709
1710 /* Set/update this frame's cached PC value, found in the next frame.
1711 Do this before looking for this frame's unwinder. A sniffer is
1712 very likely to read this, and the corresponding unwinder is
1713 entitled to rely that the PC doesn't magically change. */
1714 fi->next->prev_pc.value = pc;
1715 fi->next->prev_pc.status = CC_VALUE;
1716
1717 /* We currently assume that frame chain's can't cross spaces. */
1718 fi->pspace = fi->next->pspace;
1719 fi->aspace = fi->next->aspace;
1720
1721 /* Select/initialize both the unwind function and the frame's type
1722 based on the PC. */
1723 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
1724
1725 fi->this_id.p = 1;
1726 fi->this_id.value = frame_id_build (addr, pc);
1727
1728 if (frame_debug)
1729 {
1730 fprintf_unfiltered (gdb_stdlog, "-> ");
1731 fprint_frame (gdb_stdlog, fi);
1732 fprintf_unfiltered (gdb_stdlog, " }\n");
1733 }
1734
1735 return fi;
1736 }
1737
1738 /* Return the frame that THIS_FRAME calls (NULL if THIS_FRAME is the
1739 innermost frame). Be careful to not fall off the bottom of the
1740 frame chain and onto the sentinel frame. */
1741
1742 struct frame_info *
1743 get_next_frame (struct frame_info *this_frame)
1744 {
1745 if (this_frame->level > 0)
1746 return this_frame->next;
1747 else
1748 return NULL;
1749 }
1750
1751 /* Return the frame that THIS_FRAME calls. If THIS_FRAME is the
1752 innermost (i.e. current) frame, return the sentinel frame. Thus,
1753 unlike get_next_frame(), NULL will never be returned. */
1754
1755 struct frame_info *
1756 get_next_frame_sentinel_okay (struct frame_info *this_frame)
1757 {
1758 gdb_assert (this_frame != NULL);
1759
1760 /* Note that, due to the manner in which the sentinel frame is
1761 constructed, this_frame->next still works even when this_frame
1762 is the sentinel frame. But we disallow it here anyway because
1763 calling get_next_frame_sentinel_okay() on the sentinel frame
1764 is likely a coding error. */
1765 gdb_assert (this_frame != sentinel_frame);
1766
1767 return this_frame->next;
1768 }
1769
1770 /* Observer for the target_changed event. */
1771
1772 static void
1773 frame_observer_target_changed (struct target_ops *target)
1774 {
1775 reinit_frame_cache ();
1776 }
1777
1778 /* Flush the entire frame cache. */
1779
1780 void
1781 reinit_frame_cache (void)
1782 {
1783 struct frame_info *fi;
1784
1785 /* Tear down all frame caches. */
1786 for (fi = sentinel_frame; fi != NULL; fi = fi->prev)
1787 {
1788 if (fi->prologue_cache && fi->unwind->dealloc_cache)
1789 fi->unwind->dealloc_cache (fi, fi->prologue_cache);
1790 if (fi->base_cache && fi->base->unwind->dealloc_cache)
1791 fi->base->unwind->dealloc_cache (fi, fi->base_cache);
1792 }
1793
1794 /* Since we can't really be sure what the first object allocated was. */
1795 obstack_free (&frame_cache_obstack, 0);
1796 obstack_init (&frame_cache_obstack);
1797
1798 if (sentinel_frame != NULL)
1799 annotate_frames_invalid ();
1800
1801 sentinel_frame = NULL; /* Invalidate cache */
1802 select_frame (NULL);
1803 frame_stash_invalidate ();
1804 if (frame_debug)
1805 fprintf_unfiltered (gdb_stdlog, "{ reinit_frame_cache () }\n");
1806 }
1807
1808 /* Find where a register is saved (in memory or another register).
1809 The result of frame_register_unwind is just where it is saved
1810 relative to this particular frame. */
1811
1812 static void
1813 frame_register_unwind_location (struct frame_info *this_frame, int regnum,
1814 int *optimizedp, enum lval_type *lvalp,
1815 CORE_ADDR *addrp, int *realnump)
1816 {
1817 gdb_assert (this_frame == NULL || this_frame->level >= 0);
1818
1819 while (this_frame != NULL)
1820 {
1821 int unavailable;
1822
1823 frame_register_unwind (this_frame, regnum, optimizedp, &unavailable,
1824 lvalp, addrp, realnump, NULL);
1825
1826 if (*optimizedp)
1827 break;
1828
1829 if (*lvalp != lval_register)
1830 break;
1831
1832 regnum = *realnump;
1833 this_frame = get_next_frame (this_frame);
1834 }
1835 }
1836
1837 /* Called during frame unwinding to remove a previous frame pointer from a
1838 frame passed in ARG. */
1839
1840 static void
1841 remove_prev_frame (void *arg)
1842 {
1843 struct frame_info *this_frame, *prev_frame;
1844
1845 this_frame = (struct frame_info *) arg;
1846 prev_frame = this_frame->prev;
1847 gdb_assert (prev_frame != NULL);
1848
1849 prev_frame->next = NULL;
1850 this_frame->prev = NULL;
1851 }
1852
1853 /* Get the previous raw frame, and check that it is not identical to
1854 same other frame frame already in the chain. If it is, there is
1855 most likely a stack cycle, so we discard it, and mark THIS_FRAME as
1856 outermost, with UNWIND_SAME_ID stop reason. Unlike the other
1857 validity tests, that compare THIS_FRAME and the next frame, we do
1858 this right after creating the previous frame, to avoid ever ending
1859 up with two frames with the same id in the frame chain. */
1860
1861 static struct frame_info *
1862 get_prev_frame_if_no_cycle (struct frame_info *this_frame)
1863 {
1864 struct frame_info *prev_frame;
1865 struct cleanup *prev_frame_cleanup;
1866
1867 prev_frame = get_prev_frame_raw (this_frame);
1868
1869 /* Don't compute the frame id of the current frame yet. Unwinding
1870 the sentinel frame can fail (e.g., if the thread is gone and we
1871 can't thus read its registers). If we let the cycle detection
1872 code below try to compute a frame ID, then an error thrown from
1873 within the frame ID computation would result in the sentinel
1874 frame as outermost frame, which is bogus. Instead, we'll compute
1875 the current frame's ID lazily in get_frame_id. Note that there's
1876 no point in doing cycle detection when there's only one frame, so
1877 nothing is lost here. */
1878 if (prev_frame->level == 0)
1879 return prev_frame;
1880
1881 /* The cleanup will remove the previous frame that get_prev_frame_raw
1882 linked onto THIS_FRAME. */
1883 prev_frame_cleanup = make_cleanup (remove_prev_frame, this_frame);
1884
1885 compute_frame_id (prev_frame);
1886 if (!frame_stash_add (prev_frame))
1887 {
1888 /* Another frame with the same id was already in the stash. We just
1889 detected a cycle. */
1890 if (frame_debug)
1891 {
1892 fprintf_unfiltered (gdb_stdlog, "-> ");
1893 fprint_frame (gdb_stdlog, NULL);
1894 fprintf_unfiltered (gdb_stdlog, " // this frame has same ID }\n");
1895 }
1896 this_frame->stop_reason = UNWIND_SAME_ID;
1897 /* Unlink. */
1898 prev_frame->next = NULL;
1899 this_frame->prev = NULL;
1900 prev_frame = NULL;
1901 }
1902
1903 discard_cleanups (prev_frame_cleanup);
1904 return prev_frame;
1905 }
1906
1907 /* Helper function for get_prev_frame_always, this is called inside a
1908 TRY_CATCH block. Return the frame that called THIS_FRAME or NULL if
1909 there is no such frame. This may throw an exception. */
1910
1911 static struct frame_info *
1912 get_prev_frame_always_1 (struct frame_info *this_frame)
1913 {
1914 struct gdbarch *gdbarch;
1915
1916 gdb_assert (this_frame != NULL);
1917 gdbarch = get_frame_arch (this_frame);
1918
1919 if (frame_debug)
1920 {
1921 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame_always (this_frame=");
1922 if (this_frame != NULL)
1923 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1924 else
1925 fprintf_unfiltered (gdb_stdlog, "<NULL>");
1926 fprintf_unfiltered (gdb_stdlog, ") ");
1927 }
1928
1929 /* Only try to do the unwind once. */
1930 if (this_frame->prev_p)
1931 {
1932 if (frame_debug)
1933 {
1934 fprintf_unfiltered (gdb_stdlog, "-> ");
1935 fprint_frame (gdb_stdlog, this_frame->prev);
1936 fprintf_unfiltered (gdb_stdlog, " // cached \n");
1937 }
1938 return this_frame->prev;
1939 }
1940
1941 /* If the frame unwinder hasn't been selected yet, we must do so
1942 before setting prev_p; otherwise the check for misbehaved
1943 sniffers will think that this frame's sniffer tried to unwind
1944 further (see frame_cleanup_after_sniffer). */
1945 if (this_frame->unwind == NULL)
1946 frame_unwind_find_by_frame (this_frame, &this_frame->prologue_cache);
1947
1948 this_frame->prev_p = 1;
1949 this_frame->stop_reason = UNWIND_NO_REASON;
1950
1951 /* If we are unwinding from an inline frame, all of the below tests
1952 were already performed when we unwound from the next non-inline
1953 frame. We must skip them, since we can not get THIS_FRAME's ID
1954 until we have unwound all the way down to the previous non-inline
1955 frame. */
1956 if (get_frame_type (this_frame) == INLINE_FRAME)
1957 return get_prev_frame_if_no_cycle (this_frame);
1958
1959 /* Check that this frame is unwindable. If it isn't, don't try to
1960 unwind to the prev frame. */
1961 this_frame->stop_reason
1962 = this_frame->unwind->stop_reason (this_frame,
1963 &this_frame->prologue_cache);
1964
1965 if (this_frame->stop_reason != UNWIND_NO_REASON)
1966 {
1967 if (frame_debug)
1968 {
1969 enum unwind_stop_reason reason = this_frame->stop_reason;
1970
1971 fprintf_unfiltered (gdb_stdlog, "-> ");
1972 fprint_frame (gdb_stdlog, NULL);
1973 fprintf_unfiltered (gdb_stdlog, " // %s }\n",
1974 frame_stop_reason_symbol_string (reason));
1975 }
1976 return NULL;
1977 }
1978
1979 /* Check that this frame's ID isn't inner to (younger, below, next)
1980 the next frame. This happens when a frame unwind goes backwards.
1981 This check is valid only if this frame and the next frame are NORMAL.
1982 See the comment at frame_id_inner for details. */
1983 if (get_frame_type (this_frame) == NORMAL_FRAME
1984 && this_frame->next->unwind->type == NORMAL_FRAME
1985 && frame_id_inner (get_frame_arch (this_frame->next),
1986 get_frame_id (this_frame),
1987 get_frame_id (this_frame->next)))
1988 {
1989 CORE_ADDR this_pc_in_block;
1990 struct minimal_symbol *morestack_msym;
1991 const char *morestack_name = NULL;
1992
1993 /* gcc -fsplit-stack __morestack can continue the stack anywhere. */
1994 this_pc_in_block = get_frame_address_in_block (this_frame);
1995 morestack_msym = lookup_minimal_symbol_by_pc (this_pc_in_block).minsym;
1996 if (morestack_msym)
1997 morestack_name = MSYMBOL_LINKAGE_NAME (morestack_msym);
1998 if (!morestack_name || strcmp (morestack_name, "__morestack") != 0)
1999 {
2000 if (frame_debug)
2001 {
2002 fprintf_unfiltered (gdb_stdlog, "-> ");
2003 fprint_frame (gdb_stdlog, NULL);
2004 fprintf_unfiltered (gdb_stdlog,
2005 " // this frame ID is inner }\n");
2006 }
2007 this_frame->stop_reason = UNWIND_INNER_ID;
2008 return NULL;
2009 }
2010 }
2011
2012 /* Check that this and the next frame do not unwind the PC register
2013 to the same memory location. If they do, then even though they
2014 have different frame IDs, the new frame will be bogus; two
2015 functions can't share a register save slot for the PC. This can
2016 happen when the prologue analyzer finds a stack adjustment, but
2017 no PC save.
2018
2019 This check does assume that the "PC register" is roughly a
2020 traditional PC, even if the gdbarch_unwind_pc method adjusts
2021 it (we do not rely on the value, only on the unwound PC being
2022 dependent on this value). A potential improvement would be
2023 to have the frame prev_pc method and the gdbarch unwind_pc
2024 method set the same lval and location information as
2025 frame_register_unwind. */
2026 if (this_frame->level > 0
2027 && gdbarch_pc_regnum (gdbarch) >= 0
2028 && get_frame_type (this_frame) == NORMAL_FRAME
2029 && (get_frame_type (this_frame->next) == NORMAL_FRAME
2030 || get_frame_type (this_frame->next) == INLINE_FRAME))
2031 {
2032 int optimized, realnum, nrealnum;
2033 enum lval_type lval, nlval;
2034 CORE_ADDR addr, naddr;
2035
2036 frame_register_unwind_location (this_frame,
2037 gdbarch_pc_regnum (gdbarch),
2038 &optimized, &lval, &addr, &realnum);
2039 frame_register_unwind_location (get_next_frame (this_frame),
2040 gdbarch_pc_regnum (gdbarch),
2041 &optimized, &nlval, &naddr, &nrealnum);
2042
2043 if ((lval == lval_memory && lval == nlval && addr == naddr)
2044 || (lval == lval_register && lval == nlval && realnum == nrealnum))
2045 {
2046 if (frame_debug)
2047 {
2048 fprintf_unfiltered (gdb_stdlog, "-> ");
2049 fprint_frame (gdb_stdlog, NULL);
2050 fprintf_unfiltered (gdb_stdlog, " // no saved PC }\n");
2051 }
2052
2053 this_frame->stop_reason = UNWIND_NO_SAVED_PC;
2054 this_frame->prev = NULL;
2055 return NULL;
2056 }
2057 }
2058
2059 return get_prev_frame_if_no_cycle (this_frame);
2060 }
2061
2062 /* Return a "struct frame_info" corresponding to the frame that called
2063 THIS_FRAME. Returns NULL if there is no such frame.
2064
2065 Unlike get_prev_frame, this function always tries to unwind the
2066 frame. */
2067
2068 struct frame_info *
2069 get_prev_frame_always (struct frame_info *this_frame)
2070 {
2071 struct frame_info *prev_frame = NULL;
2072
2073 TRY
2074 {
2075 prev_frame = get_prev_frame_always_1 (this_frame);
2076 }
2077 CATCH (ex, RETURN_MASK_ERROR)
2078 {
2079 if (ex.error == MEMORY_ERROR)
2080 {
2081 this_frame->stop_reason = UNWIND_MEMORY_ERROR;
2082 if (ex.message != NULL)
2083 {
2084 char *stop_string;
2085 size_t size;
2086
2087 /* The error needs to live as long as the frame does.
2088 Allocate using stack local STOP_STRING then assign the
2089 pointer to the frame, this allows the STOP_STRING on the
2090 frame to be of type 'const char *'. */
2091 size = strlen (ex.message) + 1;
2092 stop_string = (char *) frame_obstack_zalloc (size);
2093 memcpy (stop_string, ex.message, size);
2094 this_frame->stop_string = stop_string;
2095 }
2096 prev_frame = NULL;
2097 }
2098 else
2099 throw_exception (ex);
2100 }
2101 END_CATCH
2102
2103 return prev_frame;
2104 }
2105
2106 /* Construct a new "struct frame_info" and link it previous to
2107 this_frame. */
2108
2109 static struct frame_info *
2110 get_prev_frame_raw (struct frame_info *this_frame)
2111 {
2112 struct frame_info *prev_frame;
2113
2114 /* Allocate the new frame but do not wire it in to the frame chain.
2115 Some (bad) code in INIT_FRAME_EXTRA_INFO tries to look along
2116 frame->next to pull some fancy tricks (of course such code is, by
2117 definition, recursive). Try to prevent it.
2118
2119 There is no reason to worry about memory leaks, should the
2120 remainder of the function fail. The allocated memory will be
2121 quickly reclaimed when the frame cache is flushed, and the `we've
2122 been here before' check above will stop repeated memory
2123 allocation calls. */
2124 prev_frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
2125 prev_frame->level = this_frame->level + 1;
2126
2127 /* For now, assume we don't have frame chains crossing address
2128 spaces. */
2129 prev_frame->pspace = this_frame->pspace;
2130 prev_frame->aspace = this_frame->aspace;
2131
2132 /* Don't yet compute ->unwind (and hence ->type). It is computed
2133 on-demand in get_frame_type, frame_register_unwind, and
2134 get_frame_id. */
2135
2136 /* Don't yet compute the frame's ID. It is computed on-demand by
2137 get_frame_id(). */
2138
2139 /* The unwound frame ID is validate at the start of this function,
2140 as part of the logic to decide if that frame should be further
2141 unwound, and not here while the prev frame is being created.
2142 Doing this makes it possible for the user to examine a frame that
2143 has an invalid frame ID.
2144
2145 Some very old VAX code noted: [...] For the sake of argument,
2146 suppose that the stack is somewhat trashed (which is one reason
2147 that "info frame" exists). So, return 0 (indicating we don't
2148 know the address of the arglist) if we don't know what frame this
2149 frame calls. */
2150
2151 /* Link it in. */
2152 this_frame->prev = prev_frame;
2153 prev_frame->next = this_frame;
2154
2155 if (frame_debug)
2156 {
2157 fprintf_unfiltered (gdb_stdlog, "-> ");
2158 fprint_frame (gdb_stdlog, prev_frame);
2159 fprintf_unfiltered (gdb_stdlog, " }\n");
2160 }
2161
2162 return prev_frame;
2163 }
2164
2165 /* Debug routine to print a NULL frame being returned. */
2166
2167 static void
2168 frame_debug_got_null_frame (struct frame_info *this_frame,
2169 const char *reason)
2170 {
2171 if (frame_debug)
2172 {
2173 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame (this_frame=");
2174 if (this_frame != NULL)
2175 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
2176 else
2177 fprintf_unfiltered (gdb_stdlog, "<NULL>");
2178 fprintf_unfiltered (gdb_stdlog, ") -> // %s}\n", reason);
2179 }
2180 }
2181
2182 /* Is this (non-sentinel) frame in the "main"() function? */
2183
2184 static int
2185 inside_main_func (struct frame_info *this_frame)
2186 {
2187 struct bound_minimal_symbol msymbol;
2188 CORE_ADDR maddr;
2189
2190 if (symfile_objfile == 0)
2191 return 0;
2192 msymbol = lookup_minimal_symbol (main_name (), NULL, symfile_objfile);
2193 if (msymbol.minsym == NULL)
2194 return 0;
2195 /* Make certain that the code, and not descriptor, address is
2196 returned. */
2197 maddr = gdbarch_convert_from_func_ptr_addr (get_frame_arch (this_frame),
2198 BMSYMBOL_VALUE_ADDRESS (msymbol),
2199 &current_target);
2200 return maddr == get_frame_func (this_frame);
2201 }
2202
2203 /* Test whether THIS_FRAME is inside the process entry point function. */
2204
2205 static int
2206 inside_entry_func (struct frame_info *this_frame)
2207 {
2208 CORE_ADDR entry_point;
2209
2210 if (!entry_point_address_query (&entry_point))
2211 return 0;
2212
2213 return get_frame_func (this_frame) == entry_point;
2214 }
2215
2216 /* Return a structure containing various interesting information about
2217 the frame that called THIS_FRAME. Returns NULL if there is entier
2218 no such frame or the frame fails any of a set of target-independent
2219 condition that should terminate the frame chain (e.g., as unwinding
2220 past main()).
2221
2222 This function should not contain target-dependent tests, such as
2223 checking whether the program-counter is zero. */
2224
2225 struct frame_info *
2226 get_prev_frame (struct frame_info *this_frame)
2227 {
2228 CORE_ADDR frame_pc;
2229 int frame_pc_p;
2230
2231 /* There is always a frame. If this assertion fails, suspect that
2232 something should be calling get_selected_frame() or
2233 get_current_frame(). */
2234 gdb_assert (this_frame != NULL);
2235
2236 /* If this_frame is the current frame, then compute and stash
2237 its frame id prior to fetching and computing the frame id of the
2238 previous frame. Otherwise, the cycle detection code in
2239 get_prev_frame_if_no_cycle() will not work correctly. When
2240 get_frame_id() is called later on, an assertion error will
2241 be triggered in the event of a cycle between the current
2242 frame and its previous frame. */
2243 if (this_frame->level == 0)
2244 get_frame_id (this_frame);
2245
2246 frame_pc_p = get_frame_pc_if_available (this_frame, &frame_pc);
2247
2248 /* tausq/2004-12-07: Dummy frames are skipped because it doesn't make much
2249 sense to stop unwinding at a dummy frame. One place where a dummy
2250 frame may have an address "inside_main_func" is on HPUX. On HPUX, the
2251 pcsqh register (space register for the instruction at the head of the
2252 instruction queue) cannot be written directly; the only way to set it
2253 is to branch to code that is in the target space. In order to implement
2254 frame dummies on HPUX, the called function is made to jump back to where
2255 the inferior was when the user function was called. If gdb was inside
2256 the main function when we created the dummy frame, the dummy frame will
2257 point inside the main function. */
2258 if (this_frame->level >= 0
2259 && get_frame_type (this_frame) == NORMAL_FRAME
2260 && !backtrace_past_main
2261 && frame_pc_p
2262 && inside_main_func (this_frame))
2263 /* Don't unwind past main(). Note, this is done _before_ the
2264 frame has been marked as previously unwound. That way if the
2265 user later decides to enable unwinds past main(), that will
2266 automatically happen. */
2267 {
2268 frame_debug_got_null_frame (this_frame, "inside main func");
2269 return NULL;
2270 }
2271
2272 /* If the user's backtrace limit has been exceeded, stop. We must
2273 add two to the current level; one of those accounts for backtrace_limit
2274 being 1-based and the level being 0-based, and the other accounts for
2275 the level of the new frame instead of the level of the current
2276 frame. */
2277 if (this_frame->level + 2 > backtrace_limit)
2278 {
2279 frame_debug_got_null_frame (this_frame, "backtrace limit exceeded");
2280 return NULL;
2281 }
2282
2283 /* If we're already inside the entry function for the main objfile,
2284 then it isn't valid. Don't apply this test to a dummy frame -
2285 dummy frame PCs typically land in the entry func. Don't apply
2286 this test to the sentinel frame. Sentinel frames should always
2287 be allowed to unwind. */
2288 /* NOTE: cagney/2003-07-07: Fixed a bug in inside_main_func() -
2289 wasn't checking for "main" in the minimal symbols. With that
2290 fixed asm-source tests now stop in "main" instead of halting the
2291 backtrace in weird and wonderful ways somewhere inside the entry
2292 file. Suspect that tests for inside the entry file/func were
2293 added to work around that (now fixed) case. */
2294 /* NOTE: cagney/2003-07-15: danielj (if I'm reading it right)
2295 suggested having the inside_entry_func test use the
2296 inside_main_func() msymbol trick (along with entry_point_address()
2297 I guess) to determine the address range of the start function.
2298 That should provide a far better stopper than the current
2299 heuristics. */
2300 /* NOTE: tausq/2004-10-09: this is needed if, for example, the compiler
2301 applied tail-call optimizations to main so that a function called
2302 from main returns directly to the caller of main. Since we don't
2303 stop at main, we should at least stop at the entry point of the
2304 application. */
2305 if (this_frame->level >= 0
2306 && get_frame_type (this_frame) == NORMAL_FRAME
2307 && !backtrace_past_entry
2308 && frame_pc_p
2309 && inside_entry_func (this_frame))
2310 {
2311 frame_debug_got_null_frame (this_frame, "inside entry func");
2312 return NULL;
2313 }
2314
2315 /* Assume that the only way to get a zero PC is through something
2316 like a SIGSEGV or a dummy frame, and hence that NORMAL frames
2317 will never unwind a zero PC. */
2318 if (this_frame->level > 0
2319 && (get_frame_type (this_frame) == NORMAL_FRAME
2320 || get_frame_type (this_frame) == INLINE_FRAME)
2321 && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME
2322 && frame_pc_p && frame_pc == 0)
2323 {
2324 frame_debug_got_null_frame (this_frame, "zero PC");
2325 return NULL;
2326 }
2327
2328 return get_prev_frame_always (this_frame);
2329 }
2330
2331 struct frame_id
2332 get_prev_frame_id_by_id (struct frame_id id)
2333 {
2334 struct frame_id prev_id;
2335 struct frame_info *frame;
2336
2337 frame = frame_find_by_id (id);
2338
2339 if (frame != NULL)
2340 prev_id = get_frame_id (get_prev_frame (frame));
2341 else
2342 prev_id = null_frame_id;
2343
2344 return prev_id;
2345 }
2346
2347 CORE_ADDR
2348 get_frame_pc (struct frame_info *frame)
2349 {
2350 gdb_assert (frame->next != NULL);
2351 return frame_unwind_pc (frame->next);
2352 }
2353
2354 int
2355 get_frame_pc_if_available (struct frame_info *frame, CORE_ADDR *pc)
2356 {
2357
2358 gdb_assert (frame->next != NULL);
2359
2360 TRY
2361 {
2362 *pc = frame_unwind_pc (frame->next);
2363 }
2364 CATCH (ex, RETURN_MASK_ERROR)
2365 {
2366 if (ex.error == NOT_AVAILABLE_ERROR)
2367 return 0;
2368 else
2369 throw_exception (ex);
2370 }
2371 END_CATCH
2372
2373 return 1;
2374 }
2375
2376 /* Return an address that falls within THIS_FRAME's code block. */
2377
2378 CORE_ADDR
2379 get_frame_address_in_block (struct frame_info *this_frame)
2380 {
2381 /* A draft address. */
2382 CORE_ADDR pc = get_frame_pc (this_frame);
2383
2384 struct frame_info *next_frame = this_frame->next;
2385
2386 /* Calling get_frame_pc returns the resume address for THIS_FRAME.
2387 Normally the resume address is inside the body of the function
2388 associated with THIS_FRAME, but there is a special case: when
2389 calling a function which the compiler knows will never return
2390 (for instance abort), the call may be the very last instruction
2391 in the calling function. The resume address will point after the
2392 call and may be at the beginning of a different function
2393 entirely.
2394
2395 If THIS_FRAME is a signal frame or dummy frame, then we should
2396 not adjust the unwound PC. For a dummy frame, GDB pushed the
2397 resume address manually onto the stack. For a signal frame, the
2398 OS may have pushed the resume address manually and invoked the
2399 handler (e.g. GNU/Linux), or invoked the trampoline which called
2400 the signal handler - but in either case the signal handler is
2401 expected to return to the trampoline. So in both of these
2402 cases we know that the resume address is executable and
2403 related. So we only need to adjust the PC if THIS_FRAME
2404 is a normal function.
2405
2406 If the program has been interrupted while THIS_FRAME is current,
2407 then clearly the resume address is inside the associated
2408 function. There are three kinds of interruption: debugger stop
2409 (next frame will be SENTINEL_FRAME), operating system
2410 signal or exception (next frame will be SIGTRAMP_FRAME),
2411 or debugger-induced function call (next frame will be
2412 DUMMY_FRAME). So we only need to adjust the PC if
2413 NEXT_FRAME is a normal function.
2414
2415 We check the type of NEXT_FRAME first, since it is already
2416 known; frame type is determined by the unwinder, and since
2417 we have THIS_FRAME we've already selected an unwinder for
2418 NEXT_FRAME.
2419
2420 If the next frame is inlined, we need to keep going until we find
2421 the real function - for instance, if a signal handler is invoked
2422 while in an inlined function, then the code address of the
2423 "calling" normal function should not be adjusted either. */
2424
2425 while (get_frame_type (next_frame) == INLINE_FRAME)
2426 next_frame = next_frame->next;
2427
2428 if ((get_frame_type (next_frame) == NORMAL_FRAME
2429 || get_frame_type (next_frame) == TAILCALL_FRAME)
2430 && (get_frame_type (this_frame) == NORMAL_FRAME
2431 || get_frame_type (this_frame) == TAILCALL_FRAME
2432 || get_frame_type (this_frame) == INLINE_FRAME))
2433 return pc - 1;
2434
2435 return pc;
2436 }
2437
2438 int
2439 get_frame_address_in_block_if_available (struct frame_info *this_frame,
2440 CORE_ADDR *pc)
2441 {
2442
2443 TRY
2444 {
2445 *pc = get_frame_address_in_block (this_frame);
2446 }
2447 CATCH (ex, RETURN_MASK_ERROR)
2448 {
2449 if (ex.error == NOT_AVAILABLE_ERROR)
2450 return 0;
2451 throw_exception (ex);
2452 }
2453 END_CATCH
2454
2455 return 1;
2456 }
2457
2458 void
2459 find_frame_sal (struct frame_info *frame, struct symtab_and_line *sal)
2460 {
2461 struct frame_info *next_frame;
2462 int notcurrent;
2463 CORE_ADDR pc;
2464
2465 /* If the next frame represents an inlined function call, this frame's
2466 sal is the "call site" of that inlined function, which can not
2467 be inferred from get_frame_pc. */
2468 next_frame = get_next_frame (frame);
2469 if (frame_inlined_callees (frame) > 0)
2470 {
2471 struct symbol *sym;
2472
2473 if (next_frame)
2474 sym = get_frame_function (next_frame);
2475 else
2476 sym = inline_skipped_symbol (inferior_ptid);
2477
2478 /* If frame is inline, it certainly has symbols. */
2479 gdb_assert (sym);
2480 init_sal (sal);
2481 if (SYMBOL_LINE (sym) != 0)
2482 {
2483 sal->symtab = symbol_symtab (sym);
2484 sal->line = SYMBOL_LINE (sym);
2485 }
2486 else
2487 /* If the symbol does not have a location, we don't know where
2488 the call site is. Do not pretend to. This is jarring, but
2489 we can't do much better. */
2490 sal->pc = get_frame_pc (frame);
2491
2492 sal->pspace = get_frame_program_space (frame);
2493
2494 return;
2495 }
2496
2497 /* If FRAME is not the innermost frame, that normally means that
2498 FRAME->pc points at the return instruction (which is *after* the
2499 call instruction), and we want to get the line containing the
2500 call (because the call is where the user thinks the program is).
2501 However, if the next frame is either a SIGTRAMP_FRAME or a
2502 DUMMY_FRAME, then the next frame will contain a saved interrupt
2503 PC and such a PC indicates the current (rather than next)
2504 instruction/line, consequently, for such cases, want to get the
2505 line containing fi->pc. */
2506 if (!get_frame_pc_if_available (frame, &pc))
2507 {
2508 init_sal (sal);
2509 return;
2510 }
2511
2512 notcurrent = (pc != get_frame_address_in_block (frame));
2513 (*sal) = find_pc_line (pc, notcurrent);
2514 }
2515
2516 /* Per "frame.h", return the ``address'' of the frame. Code should
2517 really be using get_frame_id(). */
2518 CORE_ADDR
2519 get_frame_base (struct frame_info *fi)
2520 {
2521 return get_frame_id (fi).stack_addr;
2522 }
2523
2524 /* High-level offsets into the frame. Used by the debug info. */
2525
2526 CORE_ADDR
2527 get_frame_base_address (struct frame_info *fi)
2528 {
2529 if (get_frame_type (fi) != NORMAL_FRAME)
2530 return 0;
2531 if (fi->base == NULL)
2532 fi->base = frame_base_find_by_frame (fi);
2533 /* Sneaky: If the low-level unwind and high-level base code share a
2534 common unwinder, let them share the prologue cache. */
2535 if (fi->base->unwind == fi->unwind)
2536 return fi->base->this_base (fi, &fi->prologue_cache);
2537 return fi->base->this_base (fi, &fi->base_cache);
2538 }
2539
2540 CORE_ADDR
2541 get_frame_locals_address (struct frame_info *fi)
2542 {
2543 if (get_frame_type (fi) != NORMAL_FRAME)
2544 return 0;
2545 /* If there isn't a frame address method, find it. */
2546 if (fi->base == NULL)
2547 fi->base = frame_base_find_by_frame (fi);
2548 /* Sneaky: If the low-level unwind and high-level base code share a
2549 common unwinder, let them share the prologue cache. */
2550 if (fi->base->unwind == fi->unwind)
2551 return fi->base->this_locals (fi, &fi->prologue_cache);
2552 return fi->base->this_locals (fi, &fi->base_cache);
2553 }
2554
2555 CORE_ADDR
2556 get_frame_args_address (struct frame_info *fi)
2557 {
2558 if (get_frame_type (fi) != NORMAL_FRAME)
2559 return 0;
2560 /* If there isn't a frame address method, find it. */
2561 if (fi->base == NULL)
2562 fi->base = frame_base_find_by_frame (fi);
2563 /* Sneaky: If the low-level unwind and high-level base code share a
2564 common unwinder, let them share the prologue cache. */
2565 if (fi->base->unwind == fi->unwind)
2566 return fi->base->this_args (fi, &fi->prologue_cache);
2567 return fi->base->this_args (fi, &fi->base_cache);
2568 }
2569
2570 /* Return true if the frame unwinder for frame FI is UNWINDER; false
2571 otherwise. */
2572
2573 int
2574 frame_unwinder_is (struct frame_info *fi, const struct frame_unwind *unwinder)
2575 {
2576 if (fi->unwind == NULL)
2577 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
2578 return fi->unwind == unwinder;
2579 }
2580
2581 /* Level of the selected frame: 0 for innermost, 1 for its caller, ...
2582 or -1 for a NULL frame. */
2583
2584 int
2585 frame_relative_level (struct frame_info *fi)
2586 {
2587 if (fi == NULL)
2588 return -1;
2589 else
2590 return fi->level;
2591 }
2592
2593 enum frame_type
2594 get_frame_type (struct frame_info *frame)
2595 {
2596 if (frame->unwind == NULL)
2597 /* Initialize the frame's unwinder because that's what
2598 provides the frame's type. */
2599 frame_unwind_find_by_frame (frame, &frame->prologue_cache);
2600 return frame->unwind->type;
2601 }
2602
2603 struct program_space *
2604 get_frame_program_space (struct frame_info *frame)
2605 {
2606 return frame->pspace;
2607 }
2608
2609 struct program_space *
2610 frame_unwind_program_space (struct frame_info *this_frame)
2611 {
2612 gdb_assert (this_frame);
2613
2614 /* This is really a placeholder to keep the API consistent --- we
2615 assume for now that we don't have frame chains crossing
2616 spaces. */
2617 return this_frame->pspace;
2618 }
2619
2620 struct address_space *
2621 get_frame_address_space (struct frame_info *frame)
2622 {
2623 return frame->aspace;
2624 }
2625
2626 /* Memory access methods. */
2627
2628 void
2629 get_frame_memory (struct frame_info *this_frame, CORE_ADDR addr,
2630 gdb_byte *buf, int len)
2631 {
2632 read_memory (addr, buf, len);
2633 }
2634
2635 LONGEST
2636 get_frame_memory_signed (struct frame_info *this_frame, CORE_ADDR addr,
2637 int len)
2638 {
2639 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2640 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2641
2642 return read_memory_integer (addr, len, byte_order);
2643 }
2644
2645 ULONGEST
2646 get_frame_memory_unsigned (struct frame_info *this_frame, CORE_ADDR addr,
2647 int len)
2648 {
2649 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2650 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2651
2652 return read_memory_unsigned_integer (addr, len, byte_order);
2653 }
2654
2655 int
2656 safe_frame_unwind_memory (struct frame_info *this_frame,
2657 CORE_ADDR addr, gdb_byte *buf, int len)
2658 {
2659 /* NOTE: target_read_memory returns zero on success! */
2660 return !target_read_memory (addr, buf, len);
2661 }
2662
2663 /* Architecture methods. */
2664
2665 struct gdbarch *
2666 get_frame_arch (struct frame_info *this_frame)
2667 {
2668 return frame_unwind_arch (this_frame->next);
2669 }
2670
2671 struct gdbarch *
2672 frame_unwind_arch (struct frame_info *next_frame)
2673 {
2674 if (!next_frame->prev_arch.p)
2675 {
2676 struct gdbarch *arch;
2677
2678 if (next_frame->unwind == NULL)
2679 frame_unwind_find_by_frame (next_frame, &next_frame->prologue_cache);
2680
2681 if (next_frame->unwind->prev_arch != NULL)
2682 arch = next_frame->unwind->prev_arch (next_frame,
2683 &next_frame->prologue_cache);
2684 else
2685 arch = get_frame_arch (next_frame);
2686
2687 next_frame->prev_arch.arch = arch;
2688 next_frame->prev_arch.p = 1;
2689 if (frame_debug)
2690 fprintf_unfiltered (gdb_stdlog,
2691 "{ frame_unwind_arch (next_frame=%d) -> %s }\n",
2692 next_frame->level,
2693 gdbarch_bfd_arch_info (arch)->printable_name);
2694 }
2695
2696 return next_frame->prev_arch.arch;
2697 }
2698
2699 struct gdbarch *
2700 frame_unwind_caller_arch (struct frame_info *next_frame)
2701 {
2702 next_frame = skip_artificial_frames (next_frame);
2703
2704 /* We must have a non-artificial frame. The caller is supposed to check
2705 the result of frame_unwind_caller_id (), which returns NULL_FRAME_ID
2706 in this case. */
2707 gdb_assert (next_frame != NULL);
2708
2709 return frame_unwind_arch (next_frame);
2710 }
2711
2712 /* Gets the language of FRAME. */
2713
2714 enum language
2715 get_frame_language (struct frame_info *frame)
2716 {
2717 CORE_ADDR pc = 0;
2718 int pc_p = 0;
2719
2720 gdb_assert (frame!= NULL);
2721
2722 /* We determine the current frame language by looking up its
2723 associated symtab. To retrieve this symtab, we use the frame
2724 PC. However we cannot use the frame PC as is, because it
2725 usually points to the instruction following the "call", which
2726 is sometimes the first instruction of another function. So
2727 we rely on get_frame_address_in_block(), it provides us with
2728 a PC that is guaranteed to be inside the frame's code
2729 block. */
2730
2731 TRY
2732 {
2733 pc = get_frame_address_in_block (frame);
2734 pc_p = 1;
2735 }
2736 CATCH (ex, RETURN_MASK_ERROR)
2737 {
2738 if (ex.error != NOT_AVAILABLE_ERROR)
2739 throw_exception (ex);
2740 }
2741 END_CATCH
2742
2743 if (pc_p)
2744 {
2745 struct compunit_symtab *cust = find_pc_compunit_symtab (pc);
2746
2747 if (cust != NULL)
2748 return compunit_language (cust);
2749 }
2750
2751 return language_unknown;
2752 }
2753
2754 /* Stack pointer methods. */
2755
2756 CORE_ADDR
2757 get_frame_sp (struct frame_info *this_frame)
2758 {
2759 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2760
2761 /* Normality - an architecture that provides a way of obtaining any
2762 frame inner-most address. */
2763 if (gdbarch_unwind_sp_p (gdbarch))
2764 /* NOTE drow/2008-06-28: gdbarch_unwind_sp could be converted to
2765 operate on THIS_FRAME now. */
2766 return gdbarch_unwind_sp (gdbarch, this_frame->next);
2767 /* Now things are really are grim. Hope that the value returned by
2768 the gdbarch_sp_regnum register is meaningful. */
2769 if (gdbarch_sp_regnum (gdbarch) >= 0)
2770 return get_frame_register_unsigned (this_frame,
2771 gdbarch_sp_regnum (gdbarch));
2772 internal_error (__FILE__, __LINE__, _("Missing unwind SP method"));
2773 }
2774
2775 /* Return the reason why we can't unwind past FRAME. */
2776
2777 enum unwind_stop_reason
2778 get_frame_unwind_stop_reason (struct frame_info *frame)
2779 {
2780 /* Fill-in STOP_REASON. */
2781 get_prev_frame_always (frame);
2782 gdb_assert (frame->prev_p);
2783
2784 return frame->stop_reason;
2785 }
2786
2787 /* Return a string explaining REASON. */
2788
2789 const char *
2790 unwind_stop_reason_to_string (enum unwind_stop_reason reason)
2791 {
2792 switch (reason)
2793 {
2794 #define SET(name, description) \
2795 case name: return _(description);
2796 #include "unwind_stop_reasons.def"
2797 #undef SET
2798
2799 default:
2800 internal_error (__FILE__, __LINE__,
2801 "Invalid frame stop reason");
2802 }
2803 }
2804
2805 const char *
2806 frame_stop_reason_string (struct frame_info *fi)
2807 {
2808 gdb_assert (fi->prev_p);
2809 gdb_assert (fi->prev == NULL);
2810
2811 /* Return the specific string if we have one. */
2812 if (fi->stop_string != NULL)
2813 return fi->stop_string;
2814
2815 /* Return the generic string if we have nothing better. */
2816 return unwind_stop_reason_to_string (fi->stop_reason);
2817 }
2818
2819 /* Return the enum symbol name of REASON as a string, to use in debug
2820 output. */
2821
2822 static const char *
2823 frame_stop_reason_symbol_string (enum unwind_stop_reason reason)
2824 {
2825 switch (reason)
2826 {
2827 #define SET(name, description) \
2828 case name: return #name;
2829 #include "unwind_stop_reasons.def"
2830 #undef SET
2831
2832 default:
2833 internal_error (__FILE__, __LINE__,
2834 "Invalid frame stop reason");
2835 }
2836 }
2837
2838 /* Clean up after a failed (wrong unwinder) attempt to unwind past
2839 FRAME. */
2840
2841 static void
2842 frame_cleanup_after_sniffer (void *arg)
2843 {
2844 struct frame_info *frame = (struct frame_info *) arg;
2845
2846 /* The sniffer should not allocate a prologue cache if it did not
2847 match this frame. */
2848 gdb_assert (frame->prologue_cache == NULL);
2849
2850 /* No sniffer should extend the frame chain; sniff based on what is
2851 already certain. */
2852 gdb_assert (!frame->prev_p);
2853
2854 /* The sniffer should not check the frame's ID; that's circular. */
2855 gdb_assert (!frame->this_id.p);
2856
2857 /* Clear cached fields dependent on the unwinder.
2858
2859 The previous PC is independent of the unwinder, but the previous
2860 function is not (see get_frame_address_in_block). */
2861 frame->prev_func.p = 0;
2862 frame->prev_func.addr = 0;
2863
2864 /* Discard the unwinder last, so that we can easily find it if an assertion
2865 in this function triggers. */
2866 frame->unwind = NULL;
2867 }
2868
2869 /* Set FRAME's unwinder temporarily, so that we can call a sniffer.
2870 Return a cleanup which should be called if unwinding fails, and
2871 discarded if it succeeds. */
2872
2873 struct cleanup *
2874 frame_prepare_for_sniffer (struct frame_info *frame,
2875 const struct frame_unwind *unwind)
2876 {
2877 gdb_assert (frame->unwind == NULL);
2878 frame->unwind = unwind;
2879 return make_cleanup (frame_cleanup_after_sniffer, frame);
2880 }
2881
2882 extern initialize_file_ftype _initialize_frame; /* -Wmissing-prototypes */
2883
2884 static struct cmd_list_element *set_backtrace_cmdlist;
2885 static struct cmd_list_element *show_backtrace_cmdlist;
2886
2887 static void
2888 set_backtrace_cmd (char *args, int from_tty)
2889 {
2890 help_list (set_backtrace_cmdlist, "set backtrace ", all_commands,
2891 gdb_stdout);
2892 }
2893
2894 static void
2895 show_backtrace_cmd (char *args, int from_tty)
2896 {
2897 cmd_show_list (show_backtrace_cmdlist, from_tty, "");
2898 }
2899
2900 void
2901 _initialize_frame (void)
2902 {
2903 obstack_init (&frame_cache_obstack);
2904
2905 frame_stash_create ();
2906
2907 observer_attach_target_changed (frame_observer_target_changed);
2908
2909 add_prefix_cmd ("backtrace", class_maintenance, set_backtrace_cmd, _("\
2910 Set backtrace specific variables.\n\
2911 Configure backtrace variables such as the backtrace limit"),
2912 &set_backtrace_cmdlist, "set backtrace ",
2913 0/*allow-unknown*/, &setlist);
2914 add_prefix_cmd ("backtrace", class_maintenance, show_backtrace_cmd, _("\
2915 Show backtrace specific variables\n\
2916 Show backtrace variables such as the backtrace limit"),
2917 &show_backtrace_cmdlist, "show backtrace ",
2918 0/*allow-unknown*/, &showlist);
2919
2920 add_setshow_boolean_cmd ("past-main", class_obscure,
2921 &backtrace_past_main, _("\
2922 Set whether backtraces should continue past \"main\"."), _("\
2923 Show whether backtraces should continue past \"main\"."), _("\
2924 Normally the caller of \"main\" is not of interest, so GDB will terminate\n\
2925 the backtrace at \"main\". Set this variable if you need to see the rest\n\
2926 of the stack trace."),
2927 NULL,
2928 show_backtrace_past_main,
2929 &set_backtrace_cmdlist,
2930 &show_backtrace_cmdlist);
2931
2932 add_setshow_boolean_cmd ("past-entry", class_obscure,
2933 &backtrace_past_entry, _("\
2934 Set whether backtraces should continue past the entry point of a program."),
2935 _("\
2936 Show whether backtraces should continue past the entry point of a program."),
2937 _("\
2938 Normally there are no callers beyond the entry point of a program, so GDB\n\
2939 will terminate the backtrace there. Set this variable if you need to see\n\
2940 the rest of the stack trace."),
2941 NULL,
2942 show_backtrace_past_entry,
2943 &set_backtrace_cmdlist,
2944 &show_backtrace_cmdlist);
2945
2946 add_setshow_uinteger_cmd ("limit", class_obscure,
2947 &backtrace_limit, _("\
2948 Set an upper bound on the number of backtrace levels."), _("\
2949 Show the upper bound on the number of backtrace levels."), _("\
2950 No more than the specified number of frames can be displayed or examined.\n\
2951 Literal \"unlimited\" or zero means no limit."),
2952 NULL,
2953 show_backtrace_limit,
2954 &set_backtrace_cmdlist,
2955 &show_backtrace_cmdlist);
2956
2957 /* Debug this files internals. */
2958 add_setshow_zuinteger_cmd ("frame", class_maintenance, &frame_debug, _("\
2959 Set frame debugging."), _("\
2960 Show frame debugging."), _("\
2961 When non-zero, frame specific internal debugging is enabled."),
2962 NULL,
2963 show_frame_debug,
2964 &setdebuglist, &showdebuglist);
2965 }