gdb/
[binutils-gdb.git] / gdb / frame.c
1 /* Cache and manage frames for GDB, the GNU debugger.
2
3 Copyright (C) 1986, 1987, 1989, 1991, 1994, 1995, 1996, 1998, 2000, 2001,
4 2002, 2003, 2004, 2007, 2008, 2009, 2010, 2011
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "frame.h"
24 #include "target.h"
25 #include "value.h"
26 #include "inferior.h" /* for inferior_ptid */
27 #include "regcache.h"
28 #include "gdb_assert.h"
29 #include "gdb_string.h"
30 #include "user-regs.h"
31 #include "gdb_obstack.h"
32 #include "dummy-frame.h"
33 #include "sentinel-frame.h"
34 #include "gdbcore.h"
35 #include "annotate.h"
36 #include "language.h"
37 #include "frame-unwind.h"
38 #include "frame-base.h"
39 #include "command.h"
40 #include "gdbcmd.h"
41 #include "observer.h"
42 #include "objfiles.h"
43 #include "exceptions.h"
44 #include "gdbthread.h"
45 #include "block.h"
46 #include "inline-frame.h"
47 #include "tracepoint.h"
48
49 static struct frame_info *get_prev_frame_1 (struct frame_info *this_frame);
50 static struct frame_info *get_prev_frame_raw (struct frame_info *this_frame);
51
52 /* We keep a cache of stack frames, each of which is a "struct
53 frame_info". The innermost one gets allocated (in
54 wait_for_inferior) each time the inferior stops; current_frame
55 points to it. Additional frames get allocated (in get_prev_frame)
56 as needed, and are chained through the next and prev fields. Any
57 time that the frame cache becomes invalid (most notably when we
58 execute something, but also if we change how we interpret the
59 frames (e.g. "set heuristic-fence-post" in mips-tdep.c, or anything
60 which reads new symbols)), we should call reinit_frame_cache. */
61
62 struct frame_info
63 {
64 /* Level of this frame. The inner-most (youngest) frame is at level
65 0. As you move towards the outer-most (oldest) frame, the level
66 increases. This is a cached value. It could just as easily be
67 computed by counting back from the selected frame to the inner
68 most frame. */
69 /* NOTE: cagney/2002-04-05: Perhaps a level of ``-1'' should be
70 reserved to indicate a bogus frame - one that has been created
71 just to keep GDB happy (GDB always needs a frame). For the
72 moment leave this as speculation. */
73 int level;
74
75 /* The frame's program space. */
76 struct program_space *pspace;
77
78 /* The frame's address space. */
79 struct address_space *aspace;
80
81 /* The frame's low-level unwinder and corresponding cache. The
82 low-level unwinder is responsible for unwinding register values
83 for the previous frame. The low-level unwind methods are
84 selected based on the presence, or otherwise, of register unwind
85 information such as CFI. */
86 void *prologue_cache;
87 const struct frame_unwind *unwind;
88
89 /* Cached copy of the previous frame's architecture. */
90 struct
91 {
92 int p;
93 struct gdbarch *arch;
94 } prev_arch;
95
96 /* Cached copy of the previous frame's resume address. */
97 struct {
98 int p;
99 CORE_ADDR value;
100 } prev_pc;
101
102 /* Cached copy of the previous frame's function address. */
103 struct
104 {
105 CORE_ADDR addr;
106 int p;
107 } prev_func;
108
109 /* This frame's ID. */
110 struct
111 {
112 int p;
113 struct frame_id value;
114 } this_id;
115
116 /* The frame's high-level base methods, and corresponding cache.
117 The high level base methods are selected based on the frame's
118 debug info. */
119 const struct frame_base *base;
120 void *base_cache;
121
122 /* Pointers to the next (down, inner, younger) and previous (up,
123 outer, older) frame_info's in the frame cache. */
124 struct frame_info *next; /* down, inner, younger */
125 int prev_p;
126 struct frame_info *prev; /* up, outer, older */
127
128 /* The reason why we could not set PREV, or UNWIND_NO_REASON if we
129 could. Only valid when PREV_P is set. */
130 enum unwind_stop_reason stop_reason;
131 };
132
133 /* A frame stash used to speed up frame lookups. */
134
135 /* We currently only stash one frame at a time, as this seems to be
136 sufficient for now. */
137 static struct frame_info *frame_stash = NULL;
138
139 /* Add the following FRAME to the frame stash. */
140
141 static void
142 frame_stash_add (struct frame_info *frame)
143 {
144 frame_stash = frame;
145 }
146
147 /* Search the frame stash for an entry with the given frame ID.
148 If found, return that frame. Otherwise return NULL. */
149
150 static struct frame_info *
151 frame_stash_find (struct frame_id id)
152 {
153 if (frame_stash && frame_id_eq (frame_stash->this_id.value, id))
154 return frame_stash;
155
156 return NULL;
157 }
158
159 /* Invalidate the frame stash by removing all entries in it. */
160
161 static void
162 frame_stash_invalidate (void)
163 {
164 frame_stash = NULL;
165 }
166
167 /* Flag to control debugging. */
168
169 int frame_debug;
170 static void
171 show_frame_debug (struct ui_file *file, int from_tty,
172 struct cmd_list_element *c, const char *value)
173 {
174 fprintf_filtered (file, _("Frame debugging is %s.\n"), value);
175 }
176
177 /* Flag to indicate whether backtraces should stop at main et.al. */
178
179 static int backtrace_past_main;
180 static void
181 show_backtrace_past_main (struct ui_file *file, int from_tty,
182 struct cmd_list_element *c, const char *value)
183 {
184 fprintf_filtered (file,
185 _("Whether backtraces should "
186 "continue past \"main\" is %s.\n"),
187 value);
188 }
189
190 static int backtrace_past_entry;
191 static void
192 show_backtrace_past_entry (struct ui_file *file, int from_tty,
193 struct cmd_list_element *c, const char *value)
194 {
195 fprintf_filtered (file, _("Whether backtraces should continue past the "
196 "entry point of a program is %s.\n"),
197 value);
198 }
199
200 static int backtrace_limit = INT_MAX;
201 static void
202 show_backtrace_limit (struct ui_file *file, int from_tty,
203 struct cmd_list_element *c, const char *value)
204 {
205 fprintf_filtered (file,
206 _("An upper bound on the number "
207 "of backtrace levels is %s.\n"),
208 value);
209 }
210
211
212 static void
213 fprint_field (struct ui_file *file, const char *name, int p, CORE_ADDR addr)
214 {
215 if (p)
216 fprintf_unfiltered (file, "%s=%s", name, hex_string (addr));
217 else
218 fprintf_unfiltered (file, "!%s", name);
219 }
220
221 void
222 fprint_frame_id (struct ui_file *file, struct frame_id id)
223 {
224 fprintf_unfiltered (file, "{");
225 fprint_field (file, "stack", id.stack_addr_p, id.stack_addr);
226 fprintf_unfiltered (file, ",");
227 fprint_field (file, "code", id.code_addr_p, id.code_addr);
228 fprintf_unfiltered (file, ",");
229 fprint_field (file, "special", id.special_addr_p, id.special_addr);
230 if (id.inline_depth)
231 fprintf_unfiltered (file, ",inlined=%d", id.inline_depth);
232 fprintf_unfiltered (file, "}");
233 }
234
235 static void
236 fprint_frame_type (struct ui_file *file, enum frame_type type)
237 {
238 switch (type)
239 {
240 case NORMAL_FRAME:
241 fprintf_unfiltered (file, "NORMAL_FRAME");
242 return;
243 case DUMMY_FRAME:
244 fprintf_unfiltered (file, "DUMMY_FRAME");
245 return;
246 case INLINE_FRAME:
247 fprintf_unfiltered (file, "INLINE_FRAME");
248 return;
249 case SENTINEL_FRAME:
250 fprintf_unfiltered (file, "SENTINEL_FRAME");
251 return;
252 case SIGTRAMP_FRAME:
253 fprintf_unfiltered (file, "SIGTRAMP_FRAME");
254 return;
255 case ARCH_FRAME:
256 fprintf_unfiltered (file, "ARCH_FRAME");
257 return;
258 default:
259 fprintf_unfiltered (file, "<unknown type>");
260 return;
261 };
262 }
263
264 static void
265 fprint_frame (struct ui_file *file, struct frame_info *fi)
266 {
267 if (fi == NULL)
268 {
269 fprintf_unfiltered (file, "<NULL frame>");
270 return;
271 }
272 fprintf_unfiltered (file, "{");
273 fprintf_unfiltered (file, "level=%d", fi->level);
274 fprintf_unfiltered (file, ",");
275 fprintf_unfiltered (file, "type=");
276 if (fi->unwind != NULL)
277 fprint_frame_type (file, fi->unwind->type);
278 else
279 fprintf_unfiltered (file, "<unknown>");
280 fprintf_unfiltered (file, ",");
281 fprintf_unfiltered (file, "unwind=");
282 if (fi->unwind != NULL)
283 gdb_print_host_address (fi->unwind, file);
284 else
285 fprintf_unfiltered (file, "<unknown>");
286 fprintf_unfiltered (file, ",");
287 fprintf_unfiltered (file, "pc=");
288 if (fi->next != NULL && fi->next->prev_pc.p)
289 fprintf_unfiltered (file, "%s", hex_string (fi->next->prev_pc.value));
290 else
291 fprintf_unfiltered (file, "<unknown>");
292 fprintf_unfiltered (file, ",");
293 fprintf_unfiltered (file, "id=");
294 if (fi->this_id.p)
295 fprint_frame_id (file, fi->this_id.value);
296 else
297 fprintf_unfiltered (file, "<unknown>");
298 fprintf_unfiltered (file, ",");
299 fprintf_unfiltered (file, "func=");
300 if (fi->next != NULL && fi->next->prev_func.p)
301 fprintf_unfiltered (file, "%s", hex_string (fi->next->prev_func.addr));
302 else
303 fprintf_unfiltered (file, "<unknown>");
304 fprintf_unfiltered (file, "}");
305 }
306
307 /* Given FRAME, return the enclosing normal frame for inlined
308 function frames. Otherwise return the original frame. */
309
310 static struct frame_info *
311 skip_inlined_frames (struct frame_info *frame)
312 {
313 while (get_frame_type (frame) == INLINE_FRAME)
314 frame = get_prev_frame (frame);
315
316 return frame;
317 }
318
319 /* Return a frame uniq ID that can be used to, later, re-find the
320 frame. */
321
322 struct frame_id
323 get_frame_id (struct frame_info *fi)
324 {
325 if (fi == NULL)
326 return null_frame_id;
327
328 if (!fi->this_id.p)
329 {
330 if (frame_debug)
331 fprintf_unfiltered (gdb_stdlog, "{ get_frame_id (fi=%d) ",
332 fi->level);
333 /* Find the unwinder. */
334 if (fi->unwind == NULL)
335 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
336 /* Find THIS frame's ID. */
337 /* Default to outermost if no ID is found. */
338 fi->this_id.value = outer_frame_id;
339 fi->unwind->this_id (fi, &fi->prologue_cache, &fi->this_id.value);
340 gdb_assert (frame_id_p (fi->this_id.value));
341 fi->this_id.p = 1;
342 if (frame_debug)
343 {
344 fprintf_unfiltered (gdb_stdlog, "-> ");
345 fprint_frame_id (gdb_stdlog, fi->this_id.value);
346 fprintf_unfiltered (gdb_stdlog, " }\n");
347 }
348 }
349
350 frame_stash_add (fi);
351
352 return fi->this_id.value;
353 }
354
355 struct frame_id
356 get_stack_frame_id (struct frame_info *next_frame)
357 {
358 return get_frame_id (skip_inlined_frames (next_frame));
359 }
360
361 struct frame_id
362 frame_unwind_caller_id (struct frame_info *next_frame)
363 {
364 struct frame_info *this_frame;
365
366 /* Use get_prev_frame_1, and not get_prev_frame. The latter will truncate
367 the frame chain, leading to this function unintentionally
368 returning a null_frame_id (e.g., when a caller requests the frame
369 ID of "main()"s caller. */
370
371 next_frame = skip_inlined_frames (next_frame);
372 this_frame = get_prev_frame_1 (next_frame);
373 if (this_frame)
374 return get_frame_id (skip_inlined_frames (this_frame));
375 else
376 return null_frame_id;
377 }
378
379 const struct frame_id null_frame_id; /* All zeros. */
380 const struct frame_id outer_frame_id = { 0, 0, 0, 0, 0, 1, 0 };
381
382 struct frame_id
383 frame_id_build_special (CORE_ADDR stack_addr, CORE_ADDR code_addr,
384 CORE_ADDR special_addr)
385 {
386 struct frame_id id = null_frame_id;
387
388 id.stack_addr = stack_addr;
389 id.stack_addr_p = 1;
390 id.code_addr = code_addr;
391 id.code_addr_p = 1;
392 id.special_addr = special_addr;
393 id.special_addr_p = 1;
394 return id;
395 }
396
397 struct frame_id
398 frame_id_build (CORE_ADDR stack_addr, CORE_ADDR code_addr)
399 {
400 struct frame_id id = null_frame_id;
401
402 id.stack_addr = stack_addr;
403 id.stack_addr_p = 1;
404 id.code_addr = code_addr;
405 id.code_addr_p = 1;
406 return id;
407 }
408
409 struct frame_id
410 frame_id_build_wild (CORE_ADDR stack_addr)
411 {
412 struct frame_id id = null_frame_id;
413
414 id.stack_addr = stack_addr;
415 id.stack_addr_p = 1;
416 return id;
417 }
418
419 int
420 frame_id_p (struct frame_id l)
421 {
422 int p;
423
424 /* The frame is valid iff it has a valid stack address. */
425 p = l.stack_addr_p;
426 /* outer_frame_id is also valid. */
427 if (!p && memcmp (&l, &outer_frame_id, sizeof (l)) == 0)
428 p = 1;
429 if (frame_debug)
430 {
431 fprintf_unfiltered (gdb_stdlog, "{ frame_id_p (l=");
432 fprint_frame_id (gdb_stdlog, l);
433 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", p);
434 }
435 return p;
436 }
437
438 int
439 frame_id_inlined_p (struct frame_id l)
440 {
441 if (!frame_id_p (l))
442 return 0;
443
444 return (l.inline_depth != 0);
445 }
446
447 int
448 frame_id_eq (struct frame_id l, struct frame_id r)
449 {
450 int eq;
451
452 if (!l.stack_addr_p && l.special_addr_p
453 && !r.stack_addr_p && r.special_addr_p)
454 /* The outermost frame marker is equal to itself. This is the
455 dodgy thing about outer_frame_id, since between execution steps
456 we might step into another function - from which we can't
457 unwind either. More thought required to get rid of
458 outer_frame_id. */
459 eq = 1;
460 else if (!l.stack_addr_p || !r.stack_addr_p)
461 /* Like a NaN, if either ID is invalid, the result is false.
462 Note that a frame ID is invalid iff it is the null frame ID. */
463 eq = 0;
464 else if (l.stack_addr != r.stack_addr)
465 /* If .stack addresses are different, the frames are different. */
466 eq = 0;
467 else if (l.code_addr_p && r.code_addr_p && l.code_addr != r.code_addr)
468 /* An invalid code addr is a wild card. If .code addresses are
469 different, the frames are different. */
470 eq = 0;
471 else if (l.special_addr_p && r.special_addr_p
472 && l.special_addr != r.special_addr)
473 /* An invalid special addr is a wild card (or unused). Otherwise
474 if special addresses are different, the frames are different. */
475 eq = 0;
476 else if (l.inline_depth != r.inline_depth)
477 /* If inline depths are different, the frames must be different. */
478 eq = 0;
479 else
480 /* Frames are equal. */
481 eq = 1;
482
483 if (frame_debug)
484 {
485 fprintf_unfiltered (gdb_stdlog, "{ frame_id_eq (l=");
486 fprint_frame_id (gdb_stdlog, l);
487 fprintf_unfiltered (gdb_stdlog, ",r=");
488 fprint_frame_id (gdb_stdlog, r);
489 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", eq);
490 }
491 return eq;
492 }
493
494 /* Safety net to check whether frame ID L should be inner to
495 frame ID R, according to their stack addresses.
496
497 This method cannot be used to compare arbitrary frames, as the
498 ranges of valid stack addresses may be discontiguous (e.g. due
499 to sigaltstack).
500
501 However, it can be used as safety net to discover invalid frame
502 IDs in certain circumstances. Assuming that NEXT is the immediate
503 inner frame to THIS and that NEXT and THIS are both NORMAL frames:
504
505 * The stack address of NEXT must be inner-than-or-equal to the stack
506 address of THIS.
507
508 Therefore, if frame_id_inner (THIS, NEXT) holds, some unwind
509 error has occurred.
510
511 * If NEXT and THIS have different stack addresses, no other frame
512 in the frame chain may have a stack address in between.
513
514 Therefore, if frame_id_inner (TEST, THIS) holds, but
515 frame_id_inner (TEST, NEXT) does not hold, TEST cannot refer
516 to a valid frame in the frame chain.
517
518 The sanity checks above cannot be performed when a SIGTRAMP frame
519 is involved, because signal handlers might be executed on a different
520 stack than the stack used by the routine that caused the signal
521 to be raised. This can happen for instance when a thread exceeds
522 its maximum stack size. In this case, certain compilers implement
523 a stack overflow strategy that cause the handler to be run on a
524 different stack. */
525
526 static int
527 frame_id_inner (struct gdbarch *gdbarch, struct frame_id l, struct frame_id r)
528 {
529 int inner;
530
531 if (!l.stack_addr_p || !r.stack_addr_p)
532 /* Like NaN, any operation involving an invalid ID always fails. */
533 inner = 0;
534 else if (l.inline_depth > r.inline_depth
535 && l.stack_addr == r.stack_addr
536 && l.code_addr_p == r.code_addr_p
537 && l.special_addr_p == r.special_addr_p
538 && l.special_addr == r.special_addr)
539 {
540 /* Same function, different inlined functions. */
541 struct block *lb, *rb;
542
543 gdb_assert (l.code_addr_p && r.code_addr_p);
544
545 lb = block_for_pc (l.code_addr);
546 rb = block_for_pc (r.code_addr);
547
548 if (lb == NULL || rb == NULL)
549 /* Something's gone wrong. */
550 inner = 0;
551 else
552 /* This will return true if LB and RB are the same block, or
553 if the block with the smaller depth lexically encloses the
554 block with the greater depth. */
555 inner = contained_in (lb, rb);
556 }
557 else
558 /* Only return non-zero when strictly inner than. Note that, per
559 comment in "frame.h", there is some fuzz here. Frameless
560 functions are not strictly inner than (same .stack but
561 different .code and/or .special address). */
562 inner = gdbarch_inner_than (gdbarch, l.stack_addr, r.stack_addr);
563 if (frame_debug)
564 {
565 fprintf_unfiltered (gdb_stdlog, "{ frame_id_inner (l=");
566 fprint_frame_id (gdb_stdlog, l);
567 fprintf_unfiltered (gdb_stdlog, ",r=");
568 fprint_frame_id (gdb_stdlog, r);
569 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", inner);
570 }
571 return inner;
572 }
573
574 struct frame_info *
575 frame_find_by_id (struct frame_id id)
576 {
577 struct frame_info *frame, *prev_frame;
578
579 /* ZERO denotes the null frame, let the caller decide what to do
580 about it. Should it instead return get_current_frame()? */
581 if (!frame_id_p (id))
582 return NULL;
583
584 /* Try using the frame stash first. Finding it there removes the need
585 to perform the search by looping over all frames, which can be very
586 CPU-intensive if the number of frames is very high (the loop is O(n)
587 and get_prev_frame performs a series of checks that are relatively
588 expensive). This optimization is particularly useful when this function
589 is called from another function (such as value_fetch_lazy, case
590 VALUE_LVAL (val) == lval_register) which already loops over all frames,
591 making the overall behavior O(n^2). */
592 frame = frame_stash_find (id);
593 if (frame)
594 return frame;
595
596 for (frame = get_current_frame (); ; frame = prev_frame)
597 {
598 struct frame_id this = get_frame_id (frame);
599
600 if (frame_id_eq (id, this))
601 /* An exact match. */
602 return frame;
603
604 prev_frame = get_prev_frame (frame);
605 if (!prev_frame)
606 return NULL;
607
608 /* As a safety net to avoid unnecessary backtracing while trying
609 to find an invalid ID, we check for a common situation where
610 we can detect from comparing stack addresses that no other
611 frame in the current frame chain can have this ID. See the
612 comment at frame_id_inner for details. */
613 if (get_frame_type (frame) == NORMAL_FRAME
614 && !frame_id_inner (get_frame_arch (frame), id, this)
615 && frame_id_inner (get_frame_arch (prev_frame), id,
616 get_frame_id (prev_frame)))
617 return NULL;
618 }
619 return NULL;
620 }
621
622 static int
623 frame_unwind_pc_if_available (struct frame_info *this_frame, CORE_ADDR *pc)
624 {
625 if (!this_frame->prev_pc.p)
626 {
627 if (gdbarch_unwind_pc_p (frame_unwind_arch (this_frame)))
628 {
629 volatile struct gdb_exception ex;
630 struct gdbarch *prev_gdbarch;
631 CORE_ADDR pc = 0;
632
633 /* The right way. The `pure' way. The one true way. This
634 method depends solely on the register-unwind code to
635 determine the value of registers in THIS frame, and hence
636 the value of this frame's PC (resume address). A typical
637 implementation is no more than:
638
639 frame_unwind_register (this_frame, ISA_PC_REGNUM, buf);
640 return extract_unsigned_integer (buf, size of ISA_PC_REGNUM);
641
642 Note: this method is very heavily dependent on a correct
643 register-unwind implementation, it pays to fix that
644 method first; this method is frame type agnostic, since
645 it only deals with register values, it works with any
646 frame. This is all in stark contrast to the old
647 FRAME_SAVED_PC which would try to directly handle all the
648 different ways that a PC could be unwound. */
649 prev_gdbarch = frame_unwind_arch (this_frame);
650
651 TRY_CATCH (ex, RETURN_MASK_ERROR)
652 {
653 pc = gdbarch_unwind_pc (prev_gdbarch, this_frame);
654 }
655 if (ex.reason < 0 && ex.error == NOT_AVAILABLE_ERROR)
656 {
657 this_frame->prev_pc.p = -1;
658
659 if (frame_debug)
660 fprintf_unfiltered (gdb_stdlog,
661 "{ frame_unwind_pc (this_frame=%d)"
662 " -> <unavailable> }\n",
663 this_frame->level);
664 }
665 else if (ex.reason < 0)
666 {
667 throw_exception (ex);
668 }
669 else
670 {
671 this_frame->prev_pc.value = pc;
672 this_frame->prev_pc.p = 1;
673 if (frame_debug)
674 fprintf_unfiltered (gdb_stdlog,
675 "{ frame_unwind_pc (this_frame=%d) "
676 "-> %s }\n",
677 this_frame->level,
678 hex_string (this_frame->prev_pc.value));
679 }
680 }
681 else
682 internal_error (__FILE__, __LINE__, _("No unwind_pc method"));
683 }
684 if (this_frame->prev_pc.p < 0)
685 {
686 *pc = -1;
687 return 0;
688 }
689 else
690 {
691 *pc = this_frame->prev_pc.value;
692 return 1;
693 }
694 }
695
696 static CORE_ADDR
697 frame_unwind_pc (struct frame_info *this_frame)
698 {
699 CORE_ADDR pc;
700
701 if (!frame_unwind_pc_if_available (this_frame, &pc))
702 throw_error (NOT_AVAILABLE_ERROR, _("PC not available"));
703 else
704 return pc;
705 }
706
707 CORE_ADDR
708 frame_unwind_caller_pc (struct frame_info *this_frame)
709 {
710 return frame_unwind_pc (skip_inlined_frames (this_frame));
711 }
712
713 int
714 get_frame_func_if_available (struct frame_info *this_frame, CORE_ADDR *pc)
715 {
716 struct frame_info *next_frame = this_frame->next;
717
718 if (!next_frame->prev_func.p)
719 {
720 CORE_ADDR addr_in_block;
721
722 /* Make certain that this, and not the adjacent, function is
723 found. */
724 if (!get_frame_address_in_block_if_available (this_frame, &addr_in_block))
725 {
726 next_frame->prev_func.p = -1;
727 if (frame_debug)
728 fprintf_unfiltered (gdb_stdlog,
729 "{ get_frame_func (this_frame=%d)"
730 " -> unavailable }\n",
731 this_frame->level);
732 }
733 else
734 {
735 next_frame->prev_func.p = 1;
736 next_frame->prev_func.addr = get_pc_function_start (addr_in_block);
737 if (frame_debug)
738 fprintf_unfiltered (gdb_stdlog,
739 "{ get_frame_func (this_frame=%d) -> %s }\n",
740 this_frame->level,
741 hex_string (next_frame->prev_func.addr));
742 }
743 }
744
745 if (next_frame->prev_func.p < 0)
746 {
747 *pc = -1;
748 return 0;
749 }
750 else
751 {
752 *pc = next_frame->prev_func.addr;
753 return 1;
754 }
755 }
756
757 CORE_ADDR
758 get_frame_func (struct frame_info *this_frame)
759 {
760 CORE_ADDR pc;
761
762 if (!get_frame_func_if_available (this_frame, &pc))
763 throw_error (NOT_AVAILABLE_ERROR, _("PC not available"));
764
765 return pc;
766 }
767
768 static enum register_status
769 do_frame_register_read (void *src, int regnum, gdb_byte *buf)
770 {
771 if (!frame_register_read (src, regnum, buf))
772 return REG_UNAVAILABLE;
773 else
774 return REG_VALID;
775 }
776
777 struct regcache *
778 frame_save_as_regcache (struct frame_info *this_frame)
779 {
780 struct address_space *aspace = get_frame_address_space (this_frame);
781 struct regcache *regcache = regcache_xmalloc (get_frame_arch (this_frame),
782 aspace);
783 struct cleanup *cleanups = make_cleanup_regcache_xfree (regcache);
784
785 regcache_save (regcache, do_frame_register_read, this_frame);
786 discard_cleanups (cleanups);
787 return regcache;
788 }
789
790 void
791 frame_pop (struct frame_info *this_frame)
792 {
793 struct frame_info *prev_frame;
794 struct regcache *scratch;
795 struct cleanup *cleanups;
796
797 if (get_frame_type (this_frame) == DUMMY_FRAME)
798 {
799 /* Popping a dummy frame involves restoring more than just registers.
800 dummy_frame_pop does all the work. */
801 dummy_frame_pop (get_frame_id (this_frame));
802 return;
803 }
804
805 /* Ensure that we have a frame to pop to. */
806 prev_frame = get_prev_frame_1 (this_frame);
807
808 if (!prev_frame)
809 error (_("Cannot pop the initial frame."));
810
811 /* Make a copy of all the register values unwound from this frame.
812 Save them in a scratch buffer so that there isn't a race between
813 trying to extract the old values from the current regcache while
814 at the same time writing new values into that same cache. */
815 scratch = frame_save_as_regcache (prev_frame);
816 cleanups = make_cleanup_regcache_xfree (scratch);
817
818 /* FIXME: cagney/2003-03-16: It should be possible to tell the
819 target's register cache that it is about to be hit with a burst
820 register transfer and that the sequence of register writes should
821 be batched. The pair target_prepare_to_store() and
822 target_store_registers() kind of suggest this functionality.
823 Unfortunately, they don't implement it. Their lack of a formal
824 definition can lead to targets writing back bogus values
825 (arguably a bug in the target code mind). */
826 /* Now copy those saved registers into the current regcache.
827 Here, regcache_cpy() calls regcache_restore(). */
828 regcache_cpy (get_current_regcache (), scratch);
829 do_cleanups (cleanups);
830
831 /* We've made right mess of GDB's local state, just discard
832 everything. */
833 reinit_frame_cache ();
834 }
835
836 void
837 frame_register_unwind (struct frame_info *frame, int regnum,
838 int *optimizedp, int *unavailablep,
839 enum lval_type *lvalp, CORE_ADDR *addrp,
840 int *realnump, gdb_byte *bufferp)
841 {
842 struct value *value;
843
844 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
845 that the value proper does not need to be fetched. */
846 gdb_assert (optimizedp != NULL);
847 gdb_assert (lvalp != NULL);
848 gdb_assert (addrp != NULL);
849 gdb_assert (realnump != NULL);
850 /* gdb_assert (bufferp != NULL); */
851
852 value = frame_unwind_register_value (frame, regnum);
853
854 gdb_assert (value != NULL);
855
856 *optimizedp = value_optimized_out (value);
857 *unavailablep = !value_entirely_available (value);
858 *lvalp = VALUE_LVAL (value);
859 *addrp = value_address (value);
860 *realnump = VALUE_REGNUM (value);
861
862 if (bufferp)
863 {
864 if (!*optimizedp && !*unavailablep)
865 memcpy (bufferp, value_contents_all (value),
866 TYPE_LENGTH (value_type (value)));
867 else
868 memset (bufferp, 0, TYPE_LENGTH (value_type (value)));
869 }
870
871 /* Dispose of the new value. This prevents watchpoints from
872 trying to watch the saved frame pointer. */
873 release_value (value);
874 value_free (value);
875 }
876
877 void
878 frame_register (struct frame_info *frame, int regnum,
879 int *optimizedp, int *unavailablep, enum lval_type *lvalp,
880 CORE_ADDR *addrp, int *realnump, gdb_byte *bufferp)
881 {
882 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
883 that the value proper does not need to be fetched. */
884 gdb_assert (optimizedp != NULL);
885 gdb_assert (lvalp != NULL);
886 gdb_assert (addrp != NULL);
887 gdb_assert (realnump != NULL);
888 /* gdb_assert (bufferp != NULL); */
889
890 /* Obtain the register value by unwinding the register from the next
891 (more inner frame). */
892 gdb_assert (frame != NULL && frame->next != NULL);
893 frame_register_unwind (frame->next, regnum, optimizedp, unavailablep,
894 lvalp, addrp, realnump, bufferp);
895 }
896
897 void
898 frame_unwind_register (struct frame_info *frame, int regnum, gdb_byte *buf)
899 {
900 int optimized;
901 int unavailable;
902 CORE_ADDR addr;
903 int realnum;
904 enum lval_type lval;
905
906 frame_register_unwind (frame, regnum, &optimized, &unavailable,
907 &lval, &addr, &realnum, buf);
908 }
909
910 void
911 get_frame_register (struct frame_info *frame,
912 int regnum, gdb_byte *buf)
913 {
914 frame_unwind_register (frame->next, regnum, buf);
915 }
916
917 struct value *
918 frame_unwind_register_value (struct frame_info *frame, int regnum)
919 {
920 struct gdbarch *gdbarch;
921 struct value *value;
922
923 gdb_assert (frame != NULL);
924 gdbarch = frame_unwind_arch (frame);
925
926 if (frame_debug)
927 {
928 fprintf_unfiltered (gdb_stdlog,
929 "{ frame_unwind_register_value "
930 "(frame=%d,regnum=%d(%s),...) ",
931 frame->level, regnum,
932 user_reg_map_regnum_to_name (gdbarch, regnum));
933 }
934
935 /* Find the unwinder. */
936 if (frame->unwind == NULL)
937 frame_unwind_find_by_frame (frame, &frame->prologue_cache);
938
939 /* Ask this frame to unwind its register. */
940 value = frame->unwind->prev_register (frame, &frame->prologue_cache, regnum);
941
942 if (frame_debug)
943 {
944 fprintf_unfiltered (gdb_stdlog, "->");
945 if (value_optimized_out (value))
946 fprintf_unfiltered (gdb_stdlog, " optimized out");
947 else
948 {
949 if (VALUE_LVAL (value) == lval_register)
950 fprintf_unfiltered (gdb_stdlog, " register=%d",
951 VALUE_REGNUM (value));
952 else if (VALUE_LVAL (value) == lval_memory)
953 fprintf_unfiltered (gdb_stdlog, " address=%s",
954 paddress (gdbarch,
955 value_address (value)));
956 else
957 fprintf_unfiltered (gdb_stdlog, " computed");
958
959 if (value_lazy (value))
960 fprintf_unfiltered (gdb_stdlog, " lazy");
961 else
962 {
963 int i;
964 const gdb_byte *buf = value_contents (value);
965
966 fprintf_unfiltered (gdb_stdlog, " bytes=");
967 fprintf_unfiltered (gdb_stdlog, "[");
968 for (i = 0; i < register_size (gdbarch, regnum); i++)
969 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
970 fprintf_unfiltered (gdb_stdlog, "]");
971 }
972 }
973
974 fprintf_unfiltered (gdb_stdlog, " }\n");
975 }
976
977 return value;
978 }
979
980 struct value *
981 get_frame_register_value (struct frame_info *frame, int regnum)
982 {
983 return frame_unwind_register_value (frame->next, regnum);
984 }
985
986 LONGEST
987 frame_unwind_register_signed (struct frame_info *frame, int regnum)
988 {
989 struct gdbarch *gdbarch = frame_unwind_arch (frame);
990 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
991 int size = register_size (gdbarch, regnum);
992 gdb_byte buf[MAX_REGISTER_SIZE];
993
994 frame_unwind_register (frame, regnum, buf);
995 return extract_signed_integer (buf, size, byte_order);
996 }
997
998 LONGEST
999 get_frame_register_signed (struct frame_info *frame, int regnum)
1000 {
1001 return frame_unwind_register_signed (frame->next, regnum);
1002 }
1003
1004 ULONGEST
1005 frame_unwind_register_unsigned (struct frame_info *frame, int regnum)
1006 {
1007 struct gdbarch *gdbarch = frame_unwind_arch (frame);
1008 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1009 int size = register_size (gdbarch, regnum);
1010 gdb_byte buf[MAX_REGISTER_SIZE];
1011
1012 frame_unwind_register (frame, regnum, buf);
1013 return extract_unsigned_integer (buf, size, byte_order);
1014 }
1015
1016 ULONGEST
1017 get_frame_register_unsigned (struct frame_info *frame, int regnum)
1018 {
1019 return frame_unwind_register_unsigned (frame->next, regnum);
1020 }
1021
1022 void
1023 put_frame_register (struct frame_info *frame, int regnum,
1024 const gdb_byte *buf)
1025 {
1026 struct gdbarch *gdbarch = get_frame_arch (frame);
1027 int realnum;
1028 int optim;
1029 int unavail;
1030 enum lval_type lval;
1031 CORE_ADDR addr;
1032
1033 frame_register (frame, regnum, &optim, &unavail,
1034 &lval, &addr, &realnum, NULL);
1035 if (optim)
1036 error (_("Attempt to assign to a value that was optimized out."));
1037 switch (lval)
1038 {
1039 case lval_memory:
1040 {
1041 /* FIXME: write_memory doesn't yet take constant buffers.
1042 Arrrg! */
1043 gdb_byte tmp[MAX_REGISTER_SIZE];
1044
1045 memcpy (tmp, buf, register_size (gdbarch, regnum));
1046 write_memory (addr, tmp, register_size (gdbarch, regnum));
1047 break;
1048 }
1049 case lval_register:
1050 regcache_cooked_write (get_current_regcache (), realnum, buf);
1051 break;
1052 default:
1053 error (_("Attempt to assign to an unmodifiable value."));
1054 }
1055 }
1056
1057 /* frame_register_read ()
1058
1059 Find and return the value of REGNUM for the specified stack frame.
1060 The number of bytes copied is REGISTER_SIZE (REGNUM).
1061
1062 Returns 0 if the register value could not be found. */
1063
1064 int
1065 frame_register_read (struct frame_info *frame, int regnum,
1066 gdb_byte *myaddr)
1067 {
1068 int optimized;
1069 int unavailable;
1070 enum lval_type lval;
1071 CORE_ADDR addr;
1072 int realnum;
1073
1074 frame_register (frame, regnum, &optimized, &unavailable,
1075 &lval, &addr, &realnum, myaddr);
1076
1077 return !optimized && !unavailable;
1078 }
1079
1080 int
1081 get_frame_register_bytes (struct frame_info *frame, int regnum,
1082 CORE_ADDR offset, int len, gdb_byte *myaddr,
1083 int *optimizedp, int *unavailablep)
1084 {
1085 struct gdbarch *gdbarch = get_frame_arch (frame);
1086 int i;
1087 int maxsize;
1088 int numregs;
1089
1090 /* Skip registers wholly inside of OFFSET. */
1091 while (offset >= register_size (gdbarch, regnum))
1092 {
1093 offset -= register_size (gdbarch, regnum);
1094 regnum++;
1095 }
1096
1097 /* Ensure that we will not read beyond the end of the register file.
1098 This can only ever happen if the debug information is bad. */
1099 maxsize = -offset;
1100 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1101 for (i = regnum; i < numregs; i++)
1102 {
1103 int thissize = register_size (gdbarch, i);
1104
1105 if (thissize == 0)
1106 break; /* This register is not available on this architecture. */
1107 maxsize += thissize;
1108 }
1109 if (len > maxsize)
1110 error (_("Bad debug information detected: "
1111 "Attempt to read %d bytes from registers."), len);
1112
1113 /* Copy the data. */
1114 while (len > 0)
1115 {
1116 int curr_len = register_size (gdbarch, regnum) - offset;
1117
1118 if (curr_len > len)
1119 curr_len = len;
1120
1121 if (curr_len == register_size (gdbarch, regnum))
1122 {
1123 enum lval_type lval;
1124 CORE_ADDR addr;
1125 int realnum;
1126
1127 frame_register (frame, regnum, optimizedp, unavailablep,
1128 &lval, &addr, &realnum, myaddr);
1129 if (*optimizedp || *unavailablep)
1130 return 0;
1131 }
1132 else
1133 {
1134 gdb_byte buf[MAX_REGISTER_SIZE];
1135 enum lval_type lval;
1136 CORE_ADDR addr;
1137 int realnum;
1138
1139 frame_register (frame, regnum, optimizedp, unavailablep,
1140 &lval, &addr, &realnum, buf);
1141 if (*optimizedp || *unavailablep)
1142 return 0;
1143 memcpy (myaddr, buf + offset, curr_len);
1144 }
1145
1146 myaddr += curr_len;
1147 len -= curr_len;
1148 offset = 0;
1149 regnum++;
1150 }
1151
1152 *optimizedp = 0;
1153 *unavailablep = 0;
1154 return 1;
1155 }
1156
1157 void
1158 put_frame_register_bytes (struct frame_info *frame, int regnum,
1159 CORE_ADDR offset, int len, const gdb_byte *myaddr)
1160 {
1161 struct gdbarch *gdbarch = get_frame_arch (frame);
1162
1163 /* Skip registers wholly inside of OFFSET. */
1164 while (offset >= register_size (gdbarch, regnum))
1165 {
1166 offset -= register_size (gdbarch, regnum);
1167 regnum++;
1168 }
1169
1170 /* Copy the data. */
1171 while (len > 0)
1172 {
1173 int curr_len = register_size (gdbarch, regnum) - offset;
1174
1175 if (curr_len > len)
1176 curr_len = len;
1177
1178 if (curr_len == register_size (gdbarch, regnum))
1179 {
1180 put_frame_register (frame, regnum, myaddr);
1181 }
1182 else
1183 {
1184 gdb_byte buf[MAX_REGISTER_SIZE];
1185
1186 frame_register_read (frame, regnum, buf);
1187 memcpy (buf + offset, myaddr, curr_len);
1188 put_frame_register (frame, regnum, buf);
1189 }
1190
1191 myaddr += curr_len;
1192 len -= curr_len;
1193 offset = 0;
1194 regnum++;
1195 }
1196 }
1197
1198 /* Create a sentinel frame. */
1199
1200 static struct frame_info *
1201 create_sentinel_frame (struct program_space *pspace, struct regcache *regcache)
1202 {
1203 struct frame_info *frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
1204
1205 frame->level = -1;
1206 frame->pspace = pspace;
1207 frame->aspace = get_regcache_aspace (regcache);
1208 /* Explicitly initialize the sentinel frame's cache. Provide it
1209 with the underlying regcache. In the future additional
1210 information, such as the frame's thread will be added. */
1211 frame->prologue_cache = sentinel_frame_cache (regcache);
1212 /* For the moment there is only one sentinel frame implementation. */
1213 frame->unwind = &sentinel_frame_unwind;
1214 /* Link this frame back to itself. The frame is self referential
1215 (the unwound PC is the same as the pc), so make it so. */
1216 frame->next = frame;
1217 /* Make the sentinel frame's ID valid, but invalid. That way all
1218 comparisons with it should fail. */
1219 frame->this_id.p = 1;
1220 frame->this_id.value = null_frame_id;
1221 if (frame_debug)
1222 {
1223 fprintf_unfiltered (gdb_stdlog, "{ create_sentinel_frame (...) -> ");
1224 fprint_frame (gdb_stdlog, frame);
1225 fprintf_unfiltered (gdb_stdlog, " }\n");
1226 }
1227 return frame;
1228 }
1229
1230 /* Info about the innermost stack frame (contents of FP register). */
1231
1232 static struct frame_info *current_frame;
1233
1234 /* Cache for frame addresses already read by gdb. Valid only while
1235 inferior is stopped. Control variables for the frame cache should
1236 be local to this module. */
1237
1238 static struct obstack frame_cache_obstack;
1239
1240 void *
1241 frame_obstack_zalloc (unsigned long size)
1242 {
1243 void *data = obstack_alloc (&frame_cache_obstack, size);
1244
1245 memset (data, 0, size);
1246 return data;
1247 }
1248
1249 /* Return the innermost (currently executing) stack frame. This is
1250 split into two functions. The function unwind_to_current_frame()
1251 is wrapped in catch exceptions so that, even when the unwind of the
1252 sentinel frame fails, the function still returns a stack frame. */
1253
1254 static int
1255 unwind_to_current_frame (struct ui_out *ui_out, void *args)
1256 {
1257 struct frame_info *frame = get_prev_frame (args);
1258
1259 /* A sentinel frame can fail to unwind, e.g., because its PC value
1260 lands in somewhere like start. */
1261 if (frame == NULL)
1262 return 1;
1263 current_frame = frame;
1264 return 0;
1265 }
1266
1267 struct frame_info *
1268 get_current_frame (void)
1269 {
1270 /* First check, and report, the lack of registers. Having GDB
1271 report "No stack!" or "No memory" when the target doesn't even
1272 have registers is very confusing. Besides, "printcmd.exp"
1273 explicitly checks that ``print $pc'' with no registers prints "No
1274 registers". */
1275 if (!target_has_registers)
1276 error (_("No registers."));
1277 if (!target_has_stack)
1278 error (_("No stack."));
1279 if (!target_has_memory)
1280 error (_("No memory."));
1281 /* Traceframes are effectively a substitute for the live inferior. */
1282 if (get_traceframe_number () < 0)
1283 {
1284 if (ptid_equal (inferior_ptid, null_ptid))
1285 error (_("No selected thread."));
1286 if (is_exited (inferior_ptid))
1287 error (_("Invalid selected thread."));
1288 if (is_executing (inferior_ptid))
1289 error (_("Target is executing."));
1290 }
1291
1292 if (current_frame == NULL)
1293 {
1294 struct frame_info *sentinel_frame =
1295 create_sentinel_frame (current_program_space, get_current_regcache ());
1296 if (catch_exceptions (uiout, unwind_to_current_frame, sentinel_frame,
1297 RETURN_MASK_ERROR) != 0)
1298 {
1299 /* Oops! Fake a current frame? Is this useful? It has a PC
1300 of zero, for instance. */
1301 current_frame = sentinel_frame;
1302 }
1303 }
1304 return current_frame;
1305 }
1306
1307 /* The "selected" stack frame is used by default for local and arg
1308 access. May be zero, for no selected frame. */
1309
1310 static struct frame_info *selected_frame;
1311
1312 int
1313 has_stack_frames (void)
1314 {
1315 if (!target_has_registers || !target_has_stack || !target_has_memory)
1316 return 0;
1317
1318 /* No current inferior, no frame. */
1319 if (ptid_equal (inferior_ptid, null_ptid))
1320 return 0;
1321
1322 /* Don't try to read from a dead thread. */
1323 if (is_exited (inferior_ptid))
1324 return 0;
1325
1326 /* ... or from a spinning thread. */
1327 if (is_executing (inferior_ptid))
1328 return 0;
1329
1330 return 1;
1331 }
1332
1333 /* Return the selected frame. Always non-NULL (unless there isn't an
1334 inferior sufficient for creating a frame) in which case an error is
1335 thrown. */
1336
1337 struct frame_info *
1338 get_selected_frame (const char *message)
1339 {
1340 if (selected_frame == NULL)
1341 {
1342 if (message != NULL && !has_stack_frames ())
1343 error (("%s"), message);
1344 /* Hey! Don't trust this. It should really be re-finding the
1345 last selected frame of the currently selected thread. This,
1346 though, is better than nothing. */
1347 select_frame (get_current_frame ());
1348 }
1349 /* There is always a frame. */
1350 gdb_assert (selected_frame != NULL);
1351 return selected_frame;
1352 }
1353
1354 /* If there is a selected frame, return it. Otherwise, return NULL. */
1355
1356 struct frame_info *
1357 get_selected_frame_if_set (void)
1358 {
1359 return selected_frame;
1360 }
1361
1362 /* This is a variant of get_selected_frame() which can be called when
1363 the inferior does not have a frame; in that case it will return
1364 NULL instead of calling error(). */
1365
1366 struct frame_info *
1367 deprecated_safe_get_selected_frame (void)
1368 {
1369 if (!has_stack_frames ())
1370 return NULL;
1371 return get_selected_frame (NULL);
1372 }
1373
1374 /* Select frame FI (or NULL - to invalidate the current frame). */
1375
1376 void
1377 select_frame (struct frame_info *fi)
1378 {
1379 selected_frame = fi;
1380 /* NOTE: cagney/2002-05-04: FI can be NULL. This occurs when the
1381 frame is being invalidated. */
1382 if (deprecated_selected_frame_level_changed_hook)
1383 deprecated_selected_frame_level_changed_hook (frame_relative_level (fi));
1384
1385 /* FIXME: kseitz/2002-08-28: It would be nice to call
1386 selected_frame_level_changed_event() right here, but due to limitations
1387 in the current interfaces, we would end up flooding UIs with events
1388 because select_frame() is used extensively internally.
1389
1390 Once we have frame-parameterized frame (and frame-related) commands,
1391 the event notification can be moved here, since this function will only
1392 be called when the user's selected frame is being changed. */
1393
1394 /* Ensure that symbols for this frame are read in. Also, determine the
1395 source language of this frame, and switch to it if desired. */
1396 if (fi)
1397 {
1398 CORE_ADDR pc;
1399
1400 /* We retrieve the frame's symtab by using the frame PC.
1401 However we cannot use the frame PC as-is, because it usually
1402 points to the instruction following the "call", which is
1403 sometimes the first instruction of another function. So we
1404 rely on get_frame_address_in_block() which provides us with a
1405 PC which is guaranteed to be inside the frame's code
1406 block. */
1407 if (get_frame_address_in_block_if_available (fi, &pc))
1408 {
1409 struct symtab *s = find_pc_symtab (pc);
1410
1411 if (s
1412 && s->language != current_language->la_language
1413 && s->language != language_unknown
1414 && language_mode == language_mode_auto)
1415 set_language (s->language);
1416 }
1417 }
1418 }
1419
1420 /* Create an arbitrary (i.e. address specified by user) or innermost frame.
1421 Always returns a non-NULL value. */
1422
1423 struct frame_info *
1424 create_new_frame (CORE_ADDR addr, CORE_ADDR pc)
1425 {
1426 struct frame_info *fi;
1427
1428 if (frame_debug)
1429 {
1430 fprintf_unfiltered (gdb_stdlog,
1431 "{ create_new_frame (addr=%s, pc=%s) ",
1432 hex_string (addr), hex_string (pc));
1433 }
1434
1435 fi = FRAME_OBSTACK_ZALLOC (struct frame_info);
1436
1437 fi->next = create_sentinel_frame (current_program_space,
1438 get_current_regcache ());
1439
1440 /* Set/update this frame's cached PC value, found in the next frame.
1441 Do this before looking for this frame's unwinder. A sniffer is
1442 very likely to read this, and the corresponding unwinder is
1443 entitled to rely that the PC doesn't magically change. */
1444 fi->next->prev_pc.value = pc;
1445 fi->next->prev_pc.p = 1;
1446
1447 /* We currently assume that frame chain's can't cross spaces. */
1448 fi->pspace = fi->next->pspace;
1449 fi->aspace = fi->next->aspace;
1450
1451 /* Select/initialize both the unwind function and the frame's type
1452 based on the PC. */
1453 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
1454
1455 fi->this_id.p = 1;
1456 fi->this_id.value = frame_id_build (addr, pc);
1457
1458 if (frame_debug)
1459 {
1460 fprintf_unfiltered (gdb_stdlog, "-> ");
1461 fprint_frame (gdb_stdlog, fi);
1462 fprintf_unfiltered (gdb_stdlog, " }\n");
1463 }
1464
1465 return fi;
1466 }
1467
1468 /* Return the frame that THIS_FRAME calls (NULL if THIS_FRAME is the
1469 innermost frame). Be careful to not fall off the bottom of the
1470 frame chain and onto the sentinel frame. */
1471
1472 struct frame_info *
1473 get_next_frame (struct frame_info *this_frame)
1474 {
1475 if (this_frame->level > 0)
1476 return this_frame->next;
1477 else
1478 return NULL;
1479 }
1480
1481 /* Observer for the target_changed event. */
1482
1483 static void
1484 frame_observer_target_changed (struct target_ops *target)
1485 {
1486 reinit_frame_cache ();
1487 }
1488
1489 /* Flush the entire frame cache. */
1490
1491 void
1492 reinit_frame_cache (void)
1493 {
1494 struct frame_info *fi;
1495
1496 /* Tear down all frame caches. */
1497 for (fi = current_frame; fi != NULL; fi = fi->prev)
1498 {
1499 if (fi->prologue_cache && fi->unwind->dealloc_cache)
1500 fi->unwind->dealloc_cache (fi, fi->prologue_cache);
1501 if (fi->base_cache && fi->base->unwind->dealloc_cache)
1502 fi->base->unwind->dealloc_cache (fi, fi->base_cache);
1503 }
1504
1505 /* Since we can't really be sure what the first object allocated was. */
1506 obstack_free (&frame_cache_obstack, 0);
1507 obstack_init (&frame_cache_obstack);
1508
1509 if (current_frame != NULL)
1510 annotate_frames_invalid ();
1511
1512 current_frame = NULL; /* Invalidate cache */
1513 select_frame (NULL);
1514 frame_stash_invalidate ();
1515 if (frame_debug)
1516 fprintf_unfiltered (gdb_stdlog, "{ reinit_frame_cache () }\n");
1517 }
1518
1519 /* Find where a register is saved (in memory or another register).
1520 The result of frame_register_unwind is just where it is saved
1521 relative to this particular frame. */
1522
1523 static void
1524 frame_register_unwind_location (struct frame_info *this_frame, int regnum,
1525 int *optimizedp, enum lval_type *lvalp,
1526 CORE_ADDR *addrp, int *realnump)
1527 {
1528 gdb_assert (this_frame == NULL || this_frame->level >= 0);
1529
1530 while (this_frame != NULL)
1531 {
1532 int unavailable;
1533
1534 frame_register_unwind (this_frame, regnum, optimizedp, &unavailable,
1535 lvalp, addrp, realnump, NULL);
1536
1537 if (*optimizedp)
1538 break;
1539
1540 if (*lvalp != lval_register)
1541 break;
1542
1543 regnum = *realnump;
1544 this_frame = get_next_frame (this_frame);
1545 }
1546 }
1547
1548 /* Return a "struct frame_info" corresponding to the frame that called
1549 THIS_FRAME. Returns NULL if there is no such frame.
1550
1551 Unlike get_prev_frame, this function always tries to unwind the
1552 frame. */
1553
1554 static struct frame_info *
1555 get_prev_frame_1 (struct frame_info *this_frame)
1556 {
1557 struct frame_id this_id;
1558 struct gdbarch *gdbarch;
1559
1560 gdb_assert (this_frame != NULL);
1561 gdbarch = get_frame_arch (this_frame);
1562
1563 if (frame_debug)
1564 {
1565 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame_1 (this_frame=");
1566 if (this_frame != NULL)
1567 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1568 else
1569 fprintf_unfiltered (gdb_stdlog, "<NULL>");
1570 fprintf_unfiltered (gdb_stdlog, ") ");
1571 }
1572
1573 /* Only try to do the unwind once. */
1574 if (this_frame->prev_p)
1575 {
1576 if (frame_debug)
1577 {
1578 fprintf_unfiltered (gdb_stdlog, "-> ");
1579 fprint_frame (gdb_stdlog, this_frame->prev);
1580 fprintf_unfiltered (gdb_stdlog, " // cached \n");
1581 }
1582 return this_frame->prev;
1583 }
1584
1585 /* If the frame unwinder hasn't been selected yet, we must do so
1586 before setting prev_p; otherwise the check for misbehaved
1587 sniffers will think that this frame's sniffer tried to unwind
1588 further (see frame_cleanup_after_sniffer). */
1589 if (this_frame->unwind == NULL)
1590 frame_unwind_find_by_frame (this_frame, &this_frame->prologue_cache);
1591
1592 this_frame->prev_p = 1;
1593 this_frame->stop_reason = UNWIND_NO_REASON;
1594
1595 /* If we are unwinding from an inline frame, all of the below tests
1596 were already performed when we unwound from the next non-inline
1597 frame. We must skip them, since we can not get THIS_FRAME's ID
1598 until we have unwound all the way down to the previous non-inline
1599 frame. */
1600 if (get_frame_type (this_frame) == INLINE_FRAME)
1601 return get_prev_frame_raw (this_frame);
1602
1603 /* Check that this frame's ID was valid. If it wasn't, don't try to
1604 unwind to the prev frame. Be careful to not apply this test to
1605 the sentinel frame. */
1606 this_id = get_frame_id (this_frame);
1607 if (this_frame->level >= 0 && frame_id_eq (this_id, outer_frame_id))
1608 {
1609 if (frame_debug)
1610 {
1611 fprintf_unfiltered (gdb_stdlog, "-> ");
1612 fprint_frame (gdb_stdlog, NULL);
1613 fprintf_unfiltered (gdb_stdlog, " // this ID is NULL }\n");
1614 }
1615 this_frame->stop_reason = UNWIND_NULL_ID;
1616 return NULL;
1617 }
1618
1619 /* Check that this frame's ID isn't inner to (younger, below, next)
1620 the next frame. This happens when a frame unwind goes backwards.
1621 This check is valid only if this frame and the next frame are NORMAL.
1622 See the comment at frame_id_inner for details. */
1623 if (get_frame_type (this_frame) == NORMAL_FRAME
1624 && this_frame->next->unwind->type == NORMAL_FRAME
1625 && frame_id_inner (get_frame_arch (this_frame->next), this_id,
1626 get_frame_id (this_frame->next)))
1627 {
1628 CORE_ADDR this_pc_in_block;
1629 struct minimal_symbol *morestack_msym;
1630 const char *morestack_name = NULL;
1631
1632 /* gcc -fsplit-stack __morestack can continue the stack anywhere. */
1633 this_pc_in_block = get_frame_address_in_block (this_frame);
1634 morestack_msym = lookup_minimal_symbol_by_pc (this_pc_in_block);
1635 if (morestack_msym)
1636 morestack_name = SYMBOL_LINKAGE_NAME (morestack_msym);
1637 if (!morestack_name || strcmp (morestack_name, "__morestack") != 0)
1638 {
1639 if (frame_debug)
1640 {
1641 fprintf_unfiltered (gdb_stdlog, "-> ");
1642 fprint_frame (gdb_stdlog, NULL);
1643 fprintf_unfiltered (gdb_stdlog,
1644 " // this frame ID is inner }\n");
1645 }
1646 this_frame->stop_reason = UNWIND_INNER_ID;
1647 return NULL;
1648 }
1649 }
1650
1651 /* Check that this and the next frame are not identical. If they
1652 are, there is most likely a stack cycle. As with the inner-than
1653 test above, avoid comparing the inner-most and sentinel frames. */
1654 if (this_frame->level > 0
1655 && frame_id_eq (this_id, get_frame_id (this_frame->next)))
1656 {
1657 if (frame_debug)
1658 {
1659 fprintf_unfiltered (gdb_stdlog, "-> ");
1660 fprint_frame (gdb_stdlog, NULL);
1661 fprintf_unfiltered (gdb_stdlog, " // this frame has same ID }\n");
1662 }
1663 this_frame->stop_reason = UNWIND_SAME_ID;
1664 return NULL;
1665 }
1666
1667 /* Check that this and the next frame do not unwind the PC register
1668 to the same memory location. If they do, then even though they
1669 have different frame IDs, the new frame will be bogus; two
1670 functions can't share a register save slot for the PC. This can
1671 happen when the prologue analyzer finds a stack adjustment, but
1672 no PC save.
1673
1674 This check does assume that the "PC register" is roughly a
1675 traditional PC, even if the gdbarch_unwind_pc method adjusts
1676 it (we do not rely on the value, only on the unwound PC being
1677 dependent on this value). A potential improvement would be
1678 to have the frame prev_pc method and the gdbarch unwind_pc
1679 method set the same lval and location information as
1680 frame_register_unwind. */
1681 if (this_frame->level > 0
1682 && gdbarch_pc_regnum (gdbarch) >= 0
1683 && get_frame_type (this_frame) == NORMAL_FRAME
1684 && (get_frame_type (this_frame->next) == NORMAL_FRAME
1685 || get_frame_type (this_frame->next) == INLINE_FRAME))
1686 {
1687 int optimized, realnum, nrealnum;
1688 enum lval_type lval, nlval;
1689 CORE_ADDR addr, naddr;
1690
1691 frame_register_unwind_location (this_frame,
1692 gdbarch_pc_regnum (gdbarch),
1693 &optimized, &lval, &addr, &realnum);
1694 frame_register_unwind_location (get_next_frame (this_frame),
1695 gdbarch_pc_regnum (gdbarch),
1696 &optimized, &nlval, &naddr, &nrealnum);
1697
1698 if ((lval == lval_memory && lval == nlval && addr == naddr)
1699 || (lval == lval_register && lval == nlval && realnum == nrealnum))
1700 {
1701 if (frame_debug)
1702 {
1703 fprintf_unfiltered (gdb_stdlog, "-> ");
1704 fprint_frame (gdb_stdlog, NULL);
1705 fprintf_unfiltered (gdb_stdlog, " // no saved PC }\n");
1706 }
1707
1708 this_frame->stop_reason = UNWIND_NO_SAVED_PC;
1709 this_frame->prev = NULL;
1710 return NULL;
1711 }
1712 }
1713
1714 return get_prev_frame_raw (this_frame);
1715 }
1716
1717 /* Construct a new "struct frame_info" and link it previous to
1718 this_frame. */
1719
1720 static struct frame_info *
1721 get_prev_frame_raw (struct frame_info *this_frame)
1722 {
1723 struct frame_info *prev_frame;
1724
1725 /* Allocate the new frame but do not wire it in to the frame chain.
1726 Some (bad) code in INIT_FRAME_EXTRA_INFO tries to look along
1727 frame->next to pull some fancy tricks (of course such code is, by
1728 definition, recursive). Try to prevent it.
1729
1730 There is no reason to worry about memory leaks, should the
1731 remainder of the function fail. The allocated memory will be
1732 quickly reclaimed when the frame cache is flushed, and the `we've
1733 been here before' check above will stop repeated memory
1734 allocation calls. */
1735 prev_frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
1736 prev_frame->level = this_frame->level + 1;
1737
1738 /* For now, assume we don't have frame chains crossing address
1739 spaces. */
1740 prev_frame->pspace = this_frame->pspace;
1741 prev_frame->aspace = this_frame->aspace;
1742
1743 /* Don't yet compute ->unwind (and hence ->type). It is computed
1744 on-demand in get_frame_type, frame_register_unwind, and
1745 get_frame_id. */
1746
1747 /* Don't yet compute the frame's ID. It is computed on-demand by
1748 get_frame_id(). */
1749
1750 /* The unwound frame ID is validate at the start of this function,
1751 as part of the logic to decide if that frame should be further
1752 unwound, and not here while the prev frame is being created.
1753 Doing this makes it possible for the user to examine a frame that
1754 has an invalid frame ID.
1755
1756 Some very old VAX code noted: [...] For the sake of argument,
1757 suppose that the stack is somewhat trashed (which is one reason
1758 that "info frame" exists). So, return 0 (indicating we don't
1759 know the address of the arglist) if we don't know what frame this
1760 frame calls. */
1761
1762 /* Link it in. */
1763 this_frame->prev = prev_frame;
1764 prev_frame->next = this_frame;
1765
1766 if (frame_debug)
1767 {
1768 fprintf_unfiltered (gdb_stdlog, "-> ");
1769 fprint_frame (gdb_stdlog, prev_frame);
1770 fprintf_unfiltered (gdb_stdlog, " }\n");
1771 }
1772
1773 return prev_frame;
1774 }
1775
1776 /* Debug routine to print a NULL frame being returned. */
1777
1778 static void
1779 frame_debug_got_null_frame (struct frame_info *this_frame,
1780 const char *reason)
1781 {
1782 if (frame_debug)
1783 {
1784 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame (this_frame=");
1785 if (this_frame != NULL)
1786 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1787 else
1788 fprintf_unfiltered (gdb_stdlog, "<NULL>");
1789 fprintf_unfiltered (gdb_stdlog, ") -> // %s}\n", reason);
1790 }
1791 }
1792
1793 /* Is this (non-sentinel) frame in the "main"() function? */
1794
1795 static int
1796 inside_main_func (struct frame_info *this_frame)
1797 {
1798 struct minimal_symbol *msymbol;
1799 CORE_ADDR maddr;
1800
1801 if (symfile_objfile == 0)
1802 return 0;
1803 msymbol = lookup_minimal_symbol (main_name (), NULL, symfile_objfile);
1804 if (msymbol == NULL)
1805 return 0;
1806 /* Make certain that the code, and not descriptor, address is
1807 returned. */
1808 maddr = gdbarch_convert_from_func_ptr_addr (get_frame_arch (this_frame),
1809 SYMBOL_VALUE_ADDRESS (msymbol),
1810 &current_target);
1811 return maddr == get_frame_func (this_frame);
1812 }
1813
1814 /* Test whether THIS_FRAME is inside the process entry point function. */
1815
1816 static int
1817 inside_entry_func (struct frame_info *this_frame)
1818 {
1819 CORE_ADDR entry_point;
1820
1821 if (!entry_point_address_query (&entry_point))
1822 return 0;
1823
1824 return get_frame_func (this_frame) == entry_point;
1825 }
1826
1827 /* Return a structure containing various interesting information about
1828 the frame that called THIS_FRAME. Returns NULL if there is entier
1829 no such frame or the frame fails any of a set of target-independent
1830 condition that should terminate the frame chain (e.g., as unwinding
1831 past main()).
1832
1833 This function should not contain target-dependent tests, such as
1834 checking whether the program-counter is zero. */
1835
1836 struct frame_info *
1837 get_prev_frame (struct frame_info *this_frame)
1838 {
1839 CORE_ADDR frame_pc;
1840 int frame_pc_p;
1841
1842 /* There is always a frame. If this assertion fails, suspect that
1843 something should be calling get_selected_frame() or
1844 get_current_frame(). */
1845 gdb_assert (this_frame != NULL);
1846 frame_pc_p = get_frame_pc_if_available (this_frame, &frame_pc);
1847
1848 /* tausq/2004-12-07: Dummy frames are skipped because it doesn't make much
1849 sense to stop unwinding at a dummy frame. One place where a dummy
1850 frame may have an address "inside_main_func" is on HPUX. On HPUX, the
1851 pcsqh register (space register for the instruction at the head of the
1852 instruction queue) cannot be written directly; the only way to set it
1853 is to branch to code that is in the target space. In order to implement
1854 frame dummies on HPUX, the called function is made to jump back to where
1855 the inferior was when the user function was called. If gdb was inside
1856 the main function when we created the dummy frame, the dummy frame will
1857 point inside the main function. */
1858 if (this_frame->level >= 0
1859 && get_frame_type (this_frame) == NORMAL_FRAME
1860 && !backtrace_past_main
1861 && frame_pc_p
1862 && inside_main_func (this_frame))
1863 /* Don't unwind past main(). Note, this is done _before_ the
1864 frame has been marked as previously unwound. That way if the
1865 user later decides to enable unwinds past main(), that will
1866 automatically happen. */
1867 {
1868 frame_debug_got_null_frame (this_frame, "inside main func");
1869 return NULL;
1870 }
1871
1872 /* If the user's backtrace limit has been exceeded, stop. We must
1873 add two to the current level; one of those accounts for backtrace_limit
1874 being 1-based and the level being 0-based, and the other accounts for
1875 the level of the new frame instead of the level of the current
1876 frame. */
1877 if (this_frame->level + 2 > backtrace_limit)
1878 {
1879 frame_debug_got_null_frame (this_frame, "backtrace limit exceeded");
1880 return NULL;
1881 }
1882
1883 /* If we're already inside the entry function for the main objfile,
1884 then it isn't valid. Don't apply this test to a dummy frame -
1885 dummy frame PCs typically land in the entry func. Don't apply
1886 this test to the sentinel frame. Sentinel frames should always
1887 be allowed to unwind. */
1888 /* NOTE: cagney/2003-07-07: Fixed a bug in inside_main_func() -
1889 wasn't checking for "main" in the minimal symbols. With that
1890 fixed asm-source tests now stop in "main" instead of halting the
1891 backtrace in weird and wonderful ways somewhere inside the entry
1892 file. Suspect that tests for inside the entry file/func were
1893 added to work around that (now fixed) case. */
1894 /* NOTE: cagney/2003-07-15: danielj (if I'm reading it right)
1895 suggested having the inside_entry_func test use the
1896 inside_main_func() msymbol trick (along with entry_point_address()
1897 I guess) to determine the address range of the start function.
1898 That should provide a far better stopper than the current
1899 heuristics. */
1900 /* NOTE: tausq/2004-10-09: this is needed if, for example, the compiler
1901 applied tail-call optimizations to main so that a function called
1902 from main returns directly to the caller of main. Since we don't
1903 stop at main, we should at least stop at the entry point of the
1904 application. */
1905 if (this_frame->level >= 0
1906 && get_frame_type (this_frame) == NORMAL_FRAME
1907 && !backtrace_past_entry
1908 && frame_pc_p
1909 && inside_entry_func (this_frame))
1910 {
1911 frame_debug_got_null_frame (this_frame, "inside entry func");
1912 return NULL;
1913 }
1914
1915 /* Assume that the only way to get a zero PC is through something
1916 like a SIGSEGV or a dummy frame, and hence that NORMAL frames
1917 will never unwind a zero PC. */
1918 if (this_frame->level > 0
1919 && (get_frame_type (this_frame) == NORMAL_FRAME
1920 || get_frame_type (this_frame) == INLINE_FRAME)
1921 && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME
1922 && frame_pc_p && frame_pc == 0)
1923 {
1924 frame_debug_got_null_frame (this_frame, "zero PC");
1925 return NULL;
1926 }
1927
1928 return get_prev_frame_1 (this_frame);
1929 }
1930
1931 CORE_ADDR
1932 get_frame_pc (struct frame_info *frame)
1933 {
1934 gdb_assert (frame->next != NULL);
1935 return frame_unwind_pc (frame->next);
1936 }
1937
1938 int
1939 get_frame_pc_if_available (struct frame_info *frame, CORE_ADDR *pc)
1940 {
1941 volatile struct gdb_exception ex;
1942
1943 gdb_assert (frame->next != NULL);
1944
1945 TRY_CATCH (ex, RETURN_MASK_ERROR)
1946 {
1947 *pc = frame_unwind_pc (frame->next);
1948 }
1949 if (ex.reason < 0)
1950 {
1951 if (ex.error == NOT_AVAILABLE_ERROR)
1952 return 0;
1953 else
1954 throw_exception (ex);
1955 }
1956
1957 return 1;
1958 }
1959
1960 /* Return an address that falls within THIS_FRAME's code block. */
1961
1962 CORE_ADDR
1963 get_frame_address_in_block (struct frame_info *this_frame)
1964 {
1965 /* A draft address. */
1966 CORE_ADDR pc = get_frame_pc (this_frame);
1967
1968 struct frame_info *next_frame = this_frame->next;
1969
1970 /* Calling get_frame_pc returns the resume address for THIS_FRAME.
1971 Normally the resume address is inside the body of the function
1972 associated with THIS_FRAME, but there is a special case: when
1973 calling a function which the compiler knows will never return
1974 (for instance abort), the call may be the very last instruction
1975 in the calling function. The resume address will point after the
1976 call and may be at the beginning of a different function
1977 entirely.
1978
1979 If THIS_FRAME is a signal frame or dummy frame, then we should
1980 not adjust the unwound PC. For a dummy frame, GDB pushed the
1981 resume address manually onto the stack. For a signal frame, the
1982 OS may have pushed the resume address manually and invoked the
1983 handler (e.g. GNU/Linux), or invoked the trampoline which called
1984 the signal handler - but in either case the signal handler is
1985 expected to return to the trampoline. So in both of these
1986 cases we know that the resume address is executable and
1987 related. So we only need to adjust the PC if THIS_FRAME
1988 is a normal function.
1989
1990 If the program has been interrupted while THIS_FRAME is current,
1991 then clearly the resume address is inside the associated
1992 function. There are three kinds of interruption: debugger stop
1993 (next frame will be SENTINEL_FRAME), operating system
1994 signal or exception (next frame will be SIGTRAMP_FRAME),
1995 or debugger-induced function call (next frame will be
1996 DUMMY_FRAME). So we only need to adjust the PC if
1997 NEXT_FRAME is a normal function.
1998
1999 We check the type of NEXT_FRAME first, since it is already
2000 known; frame type is determined by the unwinder, and since
2001 we have THIS_FRAME we've already selected an unwinder for
2002 NEXT_FRAME.
2003
2004 If the next frame is inlined, we need to keep going until we find
2005 the real function - for instance, if a signal handler is invoked
2006 while in an inlined function, then the code address of the
2007 "calling" normal function should not be adjusted either. */
2008
2009 while (get_frame_type (next_frame) == INLINE_FRAME)
2010 next_frame = next_frame->next;
2011
2012 if (get_frame_type (next_frame) == NORMAL_FRAME
2013 && (get_frame_type (this_frame) == NORMAL_FRAME
2014 || get_frame_type (this_frame) == INLINE_FRAME))
2015 return pc - 1;
2016
2017 return pc;
2018 }
2019
2020 int
2021 get_frame_address_in_block_if_available (struct frame_info *this_frame,
2022 CORE_ADDR *pc)
2023 {
2024 volatile struct gdb_exception ex;
2025
2026 TRY_CATCH (ex, RETURN_MASK_ERROR)
2027 {
2028 *pc = get_frame_address_in_block (this_frame);
2029 }
2030 if (ex.reason < 0 && ex.error == NOT_AVAILABLE_ERROR)
2031 return 0;
2032 else if (ex.reason < 0)
2033 throw_exception (ex);
2034 else
2035 return 1;
2036 }
2037
2038 void
2039 find_frame_sal (struct frame_info *frame, struct symtab_and_line *sal)
2040 {
2041 struct frame_info *next_frame;
2042 int notcurrent;
2043 CORE_ADDR pc;
2044
2045 /* If the next frame represents an inlined function call, this frame's
2046 sal is the "call site" of that inlined function, which can not
2047 be inferred from get_frame_pc. */
2048 next_frame = get_next_frame (frame);
2049 if (frame_inlined_callees (frame) > 0)
2050 {
2051 struct symbol *sym;
2052
2053 if (next_frame)
2054 sym = get_frame_function (next_frame);
2055 else
2056 sym = inline_skipped_symbol (inferior_ptid);
2057
2058 /* If frame is inline, it certainly has symbols. */
2059 gdb_assert (sym);
2060 init_sal (sal);
2061 if (SYMBOL_LINE (sym) != 0)
2062 {
2063 sal->symtab = SYMBOL_SYMTAB (sym);
2064 sal->line = SYMBOL_LINE (sym);
2065 }
2066 else
2067 /* If the symbol does not have a location, we don't know where
2068 the call site is. Do not pretend to. This is jarring, but
2069 we can't do much better. */
2070 sal->pc = get_frame_pc (frame);
2071
2072 return;
2073 }
2074
2075 /* If FRAME is not the innermost frame, that normally means that
2076 FRAME->pc points at the return instruction (which is *after* the
2077 call instruction), and we want to get the line containing the
2078 call (because the call is where the user thinks the program is).
2079 However, if the next frame is either a SIGTRAMP_FRAME or a
2080 DUMMY_FRAME, then the next frame will contain a saved interrupt
2081 PC and such a PC indicates the current (rather than next)
2082 instruction/line, consequently, for such cases, want to get the
2083 line containing fi->pc. */
2084 if (!get_frame_pc_if_available (frame, &pc))
2085 {
2086 init_sal (sal);
2087 return;
2088 }
2089
2090 notcurrent = (pc != get_frame_address_in_block (frame));
2091 (*sal) = find_pc_line (pc, notcurrent);
2092 }
2093
2094 /* Per "frame.h", return the ``address'' of the frame. Code should
2095 really be using get_frame_id(). */
2096 CORE_ADDR
2097 get_frame_base (struct frame_info *fi)
2098 {
2099 return get_frame_id (fi).stack_addr;
2100 }
2101
2102 /* High-level offsets into the frame. Used by the debug info. */
2103
2104 CORE_ADDR
2105 get_frame_base_address (struct frame_info *fi)
2106 {
2107 if (get_frame_type (fi) != NORMAL_FRAME)
2108 return 0;
2109 if (fi->base == NULL)
2110 fi->base = frame_base_find_by_frame (fi);
2111 /* Sneaky: If the low-level unwind and high-level base code share a
2112 common unwinder, let them share the prologue cache. */
2113 if (fi->base->unwind == fi->unwind)
2114 return fi->base->this_base (fi, &fi->prologue_cache);
2115 return fi->base->this_base (fi, &fi->base_cache);
2116 }
2117
2118 CORE_ADDR
2119 get_frame_locals_address (struct frame_info *fi)
2120 {
2121 if (get_frame_type (fi) != NORMAL_FRAME)
2122 return 0;
2123 /* If there isn't a frame address method, find it. */
2124 if (fi->base == NULL)
2125 fi->base = frame_base_find_by_frame (fi);
2126 /* Sneaky: If the low-level unwind and high-level base code share a
2127 common unwinder, let them share the prologue cache. */
2128 if (fi->base->unwind == fi->unwind)
2129 return fi->base->this_locals (fi, &fi->prologue_cache);
2130 return fi->base->this_locals (fi, &fi->base_cache);
2131 }
2132
2133 CORE_ADDR
2134 get_frame_args_address (struct frame_info *fi)
2135 {
2136 if (get_frame_type (fi) != NORMAL_FRAME)
2137 return 0;
2138 /* If there isn't a frame address method, find it. */
2139 if (fi->base == NULL)
2140 fi->base = frame_base_find_by_frame (fi);
2141 /* Sneaky: If the low-level unwind and high-level base code share a
2142 common unwinder, let them share the prologue cache. */
2143 if (fi->base->unwind == fi->unwind)
2144 return fi->base->this_args (fi, &fi->prologue_cache);
2145 return fi->base->this_args (fi, &fi->base_cache);
2146 }
2147
2148 /* Return true if the frame unwinder for frame FI is UNWINDER; false
2149 otherwise. */
2150
2151 int
2152 frame_unwinder_is (struct frame_info *fi, const struct frame_unwind *unwinder)
2153 {
2154 if (fi->unwind == NULL)
2155 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
2156 return fi->unwind == unwinder;
2157 }
2158
2159 /* Level of the selected frame: 0 for innermost, 1 for its caller, ...
2160 or -1 for a NULL frame. */
2161
2162 int
2163 frame_relative_level (struct frame_info *fi)
2164 {
2165 if (fi == NULL)
2166 return -1;
2167 else
2168 return fi->level;
2169 }
2170
2171 enum frame_type
2172 get_frame_type (struct frame_info *frame)
2173 {
2174 if (frame->unwind == NULL)
2175 /* Initialize the frame's unwinder because that's what
2176 provides the frame's type. */
2177 frame_unwind_find_by_frame (frame, &frame->prologue_cache);
2178 return frame->unwind->type;
2179 }
2180
2181 struct program_space *
2182 get_frame_program_space (struct frame_info *frame)
2183 {
2184 return frame->pspace;
2185 }
2186
2187 struct program_space *
2188 frame_unwind_program_space (struct frame_info *this_frame)
2189 {
2190 gdb_assert (this_frame);
2191
2192 /* This is really a placeholder to keep the API consistent --- we
2193 assume for now that we don't have frame chains crossing
2194 spaces. */
2195 return this_frame->pspace;
2196 }
2197
2198 struct address_space *
2199 get_frame_address_space (struct frame_info *frame)
2200 {
2201 return frame->aspace;
2202 }
2203
2204 /* Memory access methods. */
2205
2206 void
2207 get_frame_memory (struct frame_info *this_frame, CORE_ADDR addr,
2208 gdb_byte *buf, int len)
2209 {
2210 read_memory (addr, buf, len);
2211 }
2212
2213 LONGEST
2214 get_frame_memory_signed (struct frame_info *this_frame, CORE_ADDR addr,
2215 int len)
2216 {
2217 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2218 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2219
2220 return read_memory_integer (addr, len, byte_order);
2221 }
2222
2223 ULONGEST
2224 get_frame_memory_unsigned (struct frame_info *this_frame, CORE_ADDR addr,
2225 int len)
2226 {
2227 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2228 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2229
2230 return read_memory_unsigned_integer (addr, len, byte_order);
2231 }
2232
2233 int
2234 safe_frame_unwind_memory (struct frame_info *this_frame,
2235 CORE_ADDR addr, gdb_byte *buf, int len)
2236 {
2237 /* NOTE: target_read_memory returns zero on success! */
2238 return !target_read_memory (addr, buf, len);
2239 }
2240
2241 /* Architecture methods. */
2242
2243 struct gdbarch *
2244 get_frame_arch (struct frame_info *this_frame)
2245 {
2246 return frame_unwind_arch (this_frame->next);
2247 }
2248
2249 struct gdbarch *
2250 frame_unwind_arch (struct frame_info *next_frame)
2251 {
2252 if (!next_frame->prev_arch.p)
2253 {
2254 struct gdbarch *arch;
2255
2256 if (next_frame->unwind == NULL)
2257 frame_unwind_find_by_frame (next_frame, &next_frame->prologue_cache);
2258
2259 if (next_frame->unwind->prev_arch != NULL)
2260 arch = next_frame->unwind->prev_arch (next_frame,
2261 &next_frame->prologue_cache);
2262 else
2263 arch = get_frame_arch (next_frame);
2264
2265 next_frame->prev_arch.arch = arch;
2266 next_frame->prev_arch.p = 1;
2267 if (frame_debug)
2268 fprintf_unfiltered (gdb_stdlog,
2269 "{ frame_unwind_arch (next_frame=%d) -> %s }\n",
2270 next_frame->level,
2271 gdbarch_bfd_arch_info (arch)->printable_name);
2272 }
2273
2274 return next_frame->prev_arch.arch;
2275 }
2276
2277 struct gdbarch *
2278 frame_unwind_caller_arch (struct frame_info *next_frame)
2279 {
2280 return frame_unwind_arch (skip_inlined_frames (next_frame));
2281 }
2282
2283 /* Stack pointer methods. */
2284
2285 CORE_ADDR
2286 get_frame_sp (struct frame_info *this_frame)
2287 {
2288 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2289
2290 /* Normality - an architecture that provides a way of obtaining any
2291 frame inner-most address. */
2292 if (gdbarch_unwind_sp_p (gdbarch))
2293 /* NOTE drow/2008-06-28: gdbarch_unwind_sp could be converted to
2294 operate on THIS_FRAME now. */
2295 return gdbarch_unwind_sp (gdbarch, this_frame->next);
2296 /* Now things are really are grim. Hope that the value returned by
2297 the gdbarch_sp_regnum register is meaningful. */
2298 if (gdbarch_sp_regnum (gdbarch) >= 0)
2299 return get_frame_register_unsigned (this_frame,
2300 gdbarch_sp_regnum (gdbarch));
2301 internal_error (__FILE__, __LINE__, _("Missing unwind SP method"));
2302 }
2303
2304 /* Return the reason why we can't unwind past FRAME. */
2305
2306 enum unwind_stop_reason
2307 get_frame_unwind_stop_reason (struct frame_info *frame)
2308 {
2309 /* If we haven't tried to unwind past this point yet, then assume
2310 that unwinding would succeed. */
2311 if (frame->prev_p == 0)
2312 return UNWIND_NO_REASON;
2313
2314 /* Otherwise, we set a reason when we succeeded (or failed) to
2315 unwind. */
2316 return frame->stop_reason;
2317 }
2318
2319 /* Return a string explaining REASON. */
2320
2321 const char *
2322 frame_stop_reason_string (enum unwind_stop_reason reason)
2323 {
2324 switch (reason)
2325 {
2326 case UNWIND_NULL_ID:
2327 return _("unwinder did not report frame ID");
2328
2329 case UNWIND_INNER_ID:
2330 return _("previous frame inner to this frame (corrupt stack?)");
2331
2332 case UNWIND_SAME_ID:
2333 return _("previous frame identical to this frame (corrupt stack?)");
2334
2335 case UNWIND_NO_SAVED_PC:
2336 return _("frame did not save the PC");
2337
2338 case UNWIND_NO_REASON:
2339 case UNWIND_FIRST_ERROR:
2340 default:
2341 internal_error (__FILE__, __LINE__,
2342 "Invalid frame stop reason");
2343 }
2344 }
2345
2346 /* Clean up after a failed (wrong unwinder) attempt to unwind past
2347 FRAME. */
2348
2349 static void
2350 frame_cleanup_after_sniffer (void *arg)
2351 {
2352 struct frame_info *frame = arg;
2353
2354 /* The sniffer should not allocate a prologue cache if it did not
2355 match this frame. */
2356 gdb_assert (frame->prologue_cache == NULL);
2357
2358 /* No sniffer should extend the frame chain; sniff based on what is
2359 already certain. */
2360 gdb_assert (!frame->prev_p);
2361
2362 /* The sniffer should not check the frame's ID; that's circular. */
2363 gdb_assert (!frame->this_id.p);
2364
2365 /* Clear cached fields dependent on the unwinder.
2366
2367 The previous PC is independent of the unwinder, but the previous
2368 function is not (see get_frame_address_in_block). */
2369 frame->prev_func.p = 0;
2370 frame->prev_func.addr = 0;
2371
2372 /* Discard the unwinder last, so that we can easily find it if an assertion
2373 in this function triggers. */
2374 frame->unwind = NULL;
2375 }
2376
2377 /* Set FRAME's unwinder temporarily, so that we can call a sniffer.
2378 Return a cleanup which should be called if unwinding fails, and
2379 discarded if it succeeds. */
2380
2381 struct cleanup *
2382 frame_prepare_for_sniffer (struct frame_info *frame,
2383 const struct frame_unwind *unwind)
2384 {
2385 gdb_assert (frame->unwind == NULL);
2386 frame->unwind = unwind;
2387 return make_cleanup (frame_cleanup_after_sniffer, frame);
2388 }
2389
2390 extern initialize_file_ftype _initialize_frame; /* -Wmissing-prototypes */
2391
2392 static struct cmd_list_element *set_backtrace_cmdlist;
2393 static struct cmd_list_element *show_backtrace_cmdlist;
2394
2395 static void
2396 set_backtrace_cmd (char *args, int from_tty)
2397 {
2398 help_list (set_backtrace_cmdlist, "set backtrace ", -1, gdb_stdout);
2399 }
2400
2401 static void
2402 show_backtrace_cmd (char *args, int from_tty)
2403 {
2404 cmd_show_list (show_backtrace_cmdlist, from_tty, "");
2405 }
2406
2407 void
2408 _initialize_frame (void)
2409 {
2410 obstack_init (&frame_cache_obstack);
2411
2412 observer_attach_target_changed (frame_observer_target_changed);
2413
2414 add_prefix_cmd ("backtrace", class_maintenance, set_backtrace_cmd, _("\
2415 Set backtrace specific variables.\n\
2416 Configure backtrace variables such as the backtrace limit"),
2417 &set_backtrace_cmdlist, "set backtrace ",
2418 0/*allow-unknown*/, &setlist);
2419 add_prefix_cmd ("backtrace", class_maintenance, show_backtrace_cmd, _("\
2420 Show backtrace specific variables\n\
2421 Show backtrace variables such as the backtrace limit"),
2422 &show_backtrace_cmdlist, "show backtrace ",
2423 0/*allow-unknown*/, &showlist);
2424
2425 add_setshow_boolean_cmd ("past-main", class_obscure,
2426 &backtrace_past_main, _("\
2427 Set whether backtraces should continue past \"main\"."), _("\
2428 Show whether backtraces should continue past \"main\"."), _("\
2429 Normally the caller of \"main\" is not of interest, so GDB will terminate\n\
2430 the backtrace at \"main\". Set this variable if you need to see the rest\n\
2431 of the stack trace."),
2432 NULL,
2433 show_backtrace_past_main,
2434 &set_backtrace_cmdlist,
2435 &show_backtrace_cmdlist);
2436
2437 add_setshow_boolean_cmd ("past-entry", class_obscure,
2438 &backtrace_past_entry, _("\
2439 Set whether backtraces should continue past the entry point of a program."),
2440 _("\
2441 Show whether backtraces should continue past the entry point of a program."),
2442 _("\
2443 Normally there are no callers beyond the entry point of a program, so GDB\n\
2444 will terminate the backtrace there. Set this variable if you need to see\n\
2445 the rest of the stack trace."),
2446 NULL,
2447 show_backtrace_past_entry,
2448 &set_backtrace_cmdlist,
2449 &show_backtrace_cmdlist);
2450
2451 add_setshow_integer_cmd ("limit", class_obscure,
2452 &backtrace_limit, _("\
2453 Set an upper bound on the number of backtrace levels."), _("\
2454 Show the upper bound on the number of backtrace levels."), _("\
2455 No more than the specified number of frames can be displayed or examined.\n\
2456 Zero is unlimited."),
2457 NULL,
2458 show_backtrace_limit,
2459 &set_backtrace_cmdlist,
2460 &show_backtrace_cmdlist);
2461
2462 /* Debug this files internals. */
2463 add_setshow_zinteger_cmd ("frame", class_maintenance, &frame_debug, _("\
2464 Set frame debugging."), _("\
2465 Show frame debugging."), _("\
2466 When non-zero, frame specific internal debugging is enabled."),
2467 NULL,
2468 show_frame_debug,
2469 &setdebuglist, &showdebuglist);
2470 }