Add `set print array-indexes' tests for C/C++ arrays
[binutils-gdb.git] / gdb / frv-tdep.c
1 /* Target-dependent code for the Fujitsu FR-V, for GDB, the GNU Debugger.
2
3 Copyright (C) 2002-2022 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "inferior.h"
22 #include "gdbcore.h"
23 #include "arch-utils.h"
24 #include "regcache.h"
25 #include "frame.h"
26 #include "frame-unwind.h"
27 #include "frame-base.h"
28 #include "trad-frame.h"
29 #include "dis-asm.h"
30 #include "sim-regno.h"
31 #include "gdb/sim-frv.h"
32 #include "opcodes/frv-desc.h" /* for the H_SPR_... enums */
33 #include "symtab.h"
34 #include "elf-bfd.h"
35 #include "elf/frv.h"
36 #include "osabi.h"
37 #include "infcall.h"
38 #include "solib.h"
39 #include "frv-tdep.h"
40 #include "objfiles.h"
41 #include "gdbarch.h"
42
43 struct frv_unwind_cache /* was struct frame_extra_info */
44 {
45 /* The previous frame's inner-most stack address. Used as this
46 frame ID's stack_addr. */
47 CORE_ADDR prev_sp;
48
49 /* The frame's base, optionally used by the high-level debug info. */
50 CORE_ADDR base;
51
52 /* Table indicating the location of each and every register. */
53 trad_frame_saved_reg *saved_regs;
54 };
55
56 /* A structure describing a particular variant of the FRV.
57 We allocate and initialize one of these structures when we create
58 the gdbarch object for a variant.
59
60 At the moment, all the FR variants we support differ only in which
61 registers are present; the portable code of GDB knows that
62 registers whose names are the empty string don't exist, so the
63 `register_names' array captures all the per-variant information we
64 need.
65
66 in the future, if we need to have per-variant maps for raw size,
67 virtual type, etc., we should replace register_names with an array
68 of structures, each of which gives all the necessary info for one
69 register. Don't stick parallel arrays in here --- that's so
70 Fortran. */
71 struct frv_gdbarch_tdep : gdbarch_tdep
72 {
73 /* Which ABI is in use? */
74 enum frv_abi frv_abi {};
75
76 /* How many general-purpose registers does this variant have? */
77 int num_gprs = 0;
78
79 /* How many floating-point registers does this variant have? */
80 int num_fprs = 0;
81
82 /* How many hardware watchpoints can it support? */
83 int num_hw_watchpoints = 0;
84
85 /* How many hardware breakpoints can it support? */
86 int num_hw_breakpoints = 0;
87
88 /* Register names. */
89 const char **register_names = nullptr;
90 };
91
92 /* Return the FR-V ABI associated with GDBARCH. */
93 enum frv_abi
94 frv_abi (struct gdbarch *gdbarch)
95 {
96 frv_gdbarch_tdep *tdep = (frv_gdbarch_tdep *) gdbarch_tdep (gdbarch);
97 return tdep->frv_abi;
98 }
99
100 /* Fetch the interpreter and executable loadmap addresses (for shared
101 library support) for the FDPIC ABI. Return 0 if successful, -1 if
102 not. (E.g, -1 will be returned if the ABI isn't the FDPIC ABI.) */
103 int
104 frv_fdpic_loadmap_addresses (struct gdbarch *gdbarch, CORE_ADDR *interp_addr,
105 CORE_ADDR *exec_addr)
106 {
107 if (frv_abi (gdbarch) != FRV_ABI_FDPIC)
108 return -1;
109 else
110 {
111 struct regcache *regcache = get_current_regcache ();
112
113 if (interp_addr != NULL)
114 {
115 ULONGEST val;
116 regcache_cooked_read_unsigned (regcache,
117 fdpic_loadmap_interp_regnum, &val);
118 *interp_addr = val;
119 }
120 if (exec_addr != NULL)
121 {
122 ULONGEST val;
123 regcache_cooked_read_unsigned (regcache,
124 fdpic_loadmap_exec_regnum, &val);
125 *exec_addr = val;
126 }
127 return 0;
128 }
129 }
130
131 /* Allocate a new variant structure, and set up default values for all
132 the fields. */
133 static frv_gdbarch_tdep *
134 new_variant (void)
135 {
136 int r;
137
138 frv_gdbarch_tdep *var = new frv_gdbarch_tdep;
139
140 var->frv_abi = FRV_ABI_EABI;
141 var->num_gprs = 64;
142 var->num_fprs = 64;
143 var->num_hw_watchpoints = 0;
144 var->num_hw_breakpoints = 0;
145
146 /* By default, don't supply any general-purpose or floating-point
147 register names. */
148 var->register_names
149 = (const char **) xmalloc ((frv_num_regs + frv_num_pseudo_regs)
150 * sizeof (const char *));
151 for (r = 0; r < frv_num_regs + frv_num_pseudo_regs; r++)
152 var->register_names[r] = "";
153
154 /* Do, however, supply default names for the known special-purpose
155 registers. */
156
157 var->register_names[pc_regnum] = "pc";
158 var->register_names[lr_regnum] = "lr";
159 var->register_names[lcr_regnum] = "lcr";
160
161 var->register_names[psr_regnum] = "psr";
162 var->register_names[ccr_regnum] = "ccr";
163 var->register_names[cccr_regnum] = "cccr";
164 var->register_names[tbr_regnum] = "tbr";
165
166 /* Debug registers. */
167 var->register_names[brr_regnum] = "brr";
168 var->register_names[dbar0_regnum] = "dbar0";
169 var->register_names[dbar1_regnum] = "dbar1";
170 var->register_names[dbar2_regnum] = "dbar2";
171 var->register_names[dbar3_regnum] = "dbar3";
172
173 /* iacc0 (Only found on MB93405.) */
174 var->register_names[iacc0h_regnum] = "iacc0h";
175 var->register_names[iacc0l_regnum] = "iacc0l";
176 var->register_names[iacc0_regnum] = "iacc0";
177
178 /* fsr0 (Found on FR555 and FR501.) */
179 var->register_names[fsr0_regnum] = "fsr0";
180
181 /* acc0 - acc7. The architecture provides for the possibility of many
182 more (up to 64 total), but we don't want to make that big of a hole
183 in the G packet. If we need more in the future, we'll add them
184 elsewhere. */
185 for (r = acc0_regnum; r <= acc7_regnum; r++)
186 var->register_names[r]
187 = xstrprintf ("acc%d", r - acc0_regnum).release ();
188
189 /* accg0 - accg7: These are one byte registers. The remote protocol
190 provides the raw values packed four into a slot. accg0123 and
191 accg4567 correspond to accg0 - accg3 and accg4-accg7 respectively.
192 We don't provide names for accg0123 and accg4567 since the user will
193 likely not want to see these raw values. */
194
195 for (r = accg0_regnum; r <= accg7_regnum; r++)
196 var->register_names[r]
197 = xstrprintf ("accg%d", r - accg0_regnum).release ();
198
199 /* msr0 and msr1. */
200
201 var->register_names[msr0_regnum] = "msr0";
202 var->register_names[msr1_regnum] = "msr1";
203
204 /* gner and fner registers. */
205 var->register_names[gner0_regnum] = "gner0";
206 var->register_names[gner1_regnum] = "gner1";
207 var->register_names[fner0_regnum] = "fner0";
208 var->register_names[fner1_regnum] = "fner1";
209
210 return var;
211 }
212
213
214 /* Indicate that the variant VAR has NUM_GPRS general-purpose
215 registers, and fill in the names array appropriately. */
216 static void
217 set_variant_num_gprs (frv_gdbarch_tdep *var, int num_gprs)
218 {
219 int r;
220
221 var->num_gprs = num_gprs;
222
223 for (r = 0; r < num_gprs; ++r)
224 {
225 char buf[20];
226
227 xsnprintf (buf, sizeof (buf), "gr%d", r);
228 var->register_names[first_gpr_regnum + r] = xstrdup (buf);
229 }
230 }
231
232
233 /* Indicate that the variant VAR has NUM_FPRS floating-point
234 registers, and fill in the names array appropriately. */
235 static void
236 set_variant_num_fprs (frv_gdbarch_tdep *var, int num_fprs)
237 {
238 int r;
239
240 var->num_fprs = num_fprs;
241
242 for (r = 0; r < num_fprs; ++r)
243 {
244 char buf[20];
245
246 xsnprintf (buf, sizeof (buf), "fr%d", r);
247 var->register_names[first_fpr_regnum + r] = xstrdup (buf);
248 }
249 }
250
251 static void
252 set_variant_abi_fdpic (frv_gdbarch_tdep *var)
253 {
254 var->frv_abi = FRV_ABI_FDPIC;
255 var->register_names[fdpic_loadmap_exec_regnum] = xstrdup ("loadmap_exec");
256 var->register_names[fdpic_loadmap_interp_regnum]
257 = xstrdup ("loadmap_interp");
258 }
259
260 static void
261 set_variant_scratch_registers (frv_gdbarch_tdep *var)
262 {
263 var->register_names[scr0_regnum] = xstrdup ("scr0");
264 var->register_names[scr1_regnum] = xstrdup ("scr1");
265 var->register_names[scr2_regnum] = xstrdup ("scr2");
266 var->register_names[scr3_regnum] = xstrdup ("scr3");
267 }
268
269 static const char *
270 frv_register_name (struct gdbarch *gdbarch, int reg)
271 {
272 if (reg < 0)
273 return "?toosmall?";
274
275 if (reg >= frv_num_regs + frv_num_pseudo_regs)
276 return "?toolarge?";
277
278 frv_gdbarch_tdep *tdep = (frv_gdbarch_tdep *) gdbarch_tdep (gdbarch);
279 return tdep->register_names[reg];
280 }
281
282
283 static struct type *
284 frv_register_type (struct gdbarch *gdbarch, int reg)
285 {
286 if (reg >= first_fpr_regnum && reg <= last_fpr_regnum)
287 return builtin_type (gdbarch)->builtin_float;
288 else if (reg == iacc0_regnum)
289 return builtin_type (gdbarch)->builtin_int64;
290 else
291 return builtin_type (gdbarch)->builtin_int32;
292 }
293
294 static enum register_status
295 frv_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
296 int reg, gdb_byte *buffer)
297 {
298 enum register_status status;
299
300 if (reg == iacc0_regnum)
301 {
302 status = regcache->raw_read (iacc0h_regnum, buffer);
303 if (status == REG_VALID)
304 status = regcache->raw_read (iacc0l_regnum, (bfd_byte *) buffer + 4);
305 }
306 else if (accg0_regnum <= reg && reg <= accg7_regnum)
307 {
308 /* The accg raw registers have four values in each slot with the
309 lowest register number occupying the first byte. */
310
311 int raw_regnum = accg0123_regnum + (reg - accg0_regnum) / 4;
312 int byte_num = (reg - accg0_regnum) % 4;
313 gdb_byte buf[4];
314
315 status = regcache->raw_read (raw_regnum, buf);
316 if (status == REG_VALID)
317 {
318 memset (buffer, 0, 4);
319 /* FR-V is big endian, so put the requested byte in the
320 first byte of the buffer allocated to hold the
321 pseudo-register. */
322 buffer[0] = buf[byte_num];
323 }
324 }
325 else
326 gdb_assert_not_reached ("invalid pseudo register number");
327
328 return status;
329 }
330
331 static void
332 frv_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
333 int reg, const gdb_byte *buffer)
334 {
335 if (reg == iacc0_regnum)
336 {
337 regcache->raw_write (iacc0h_regnum, buffer);
338 regcache->raw_write (iacc0l_regnum, (bfd_byte *) buffer + 4);
339 }
340 else if (accg0_regnum <= reg && reg <= accg7_regnum)
341 {
342 /* The accg raw registers have four values in each slot with the
343 lowest register number occupying the first byte. */
344
345 int raw_regnum = accg0123_regnum + (reg - accg0_regnum) / 4;
346 int byte_num = (reg - accg0_regnum) % 4;
347 gdb_byte buf[4];
348
349 regcache->raw_read (raw_regnum, buf);
350 buf[byte_num] = ((bfd_byte *) buffer)[0];
351 regcache->raw_write (raw_regnum, buf);
352 }
353 }
354
355 static int
356 frv_register_sim_regno (struct gdbarch *gdbarch, int reg)
357 {
358 static const int spr_map[] =
359 {
360 H_SPR_PSR, /* psr_regnum */
361 H_SPR_CCR, /* ccr_regnum */
362 H_SPR_CCCR, /* cccr_regnum */
363 -1, /* fdpic_loadmap_exec_regnum */
364 -1, /* fdpic_loadmap_interp_regnum */
365 -1, /* 134 */
366 H_SPR_TBR, /* tbr_regnum */
367 H_SPR_BRR, /* brr_regnum */
368 H_SPR_DBAR0, /* dbar0_regnum */
369 H_SPR_DBAR1, /* dbar1_regnum */
370 H_SPR_DBAR2, /* dbar2_regnum */
371 H_SPR_DBAR3, /* dbar3_regnum */
372 H_SPR_SCR0, /* scr0_regnum */
373 H_SPR_SCR1, /* scr1_regnum */
374 H_SPR_SCR2, /* scr2_regnum */
375 H_SPR_SCR3, /* scr3_regnum */
376 H_SPR_LR, /* lr_regnum */
377 H_SPR_LCR, /* lcr_regnum */
378 H_SPR_IACC0H, /* iacc0h_regnum */
379 H_SPR_IACC0L, /* iacc0l_regnum */
380 H_SPR_FSR0, /* fsr0_regnum */
381 /* FIXME: Add infrastructure for fetching/setting ACC and ACCG regs. */
382 -1, /* acc0_regnum */
383 -1, /* acc1_regnum */
384 -1, /* acc2_regnum */
385 -1, /* acc3_regnum */
386 -1, /* acc4_regnum */
387 -1, /* acc5_regnum */
388 -1, /* acc6_regnum */
389 -1, /* acc7_regnum */
390 -1, /* acc0123_regnum */
391 -1, /* acc4567_regnum */
392 H_SPR_MSR0, /* msr0_regnum */
393 H_SPR_MSR1, /* msr1_regnum */
394 H_SPR_GNER0, /* gner0_regnum */
395 H_SPR_GNER1, /* gner1_regnum */
396 H_SPR_FNER0, /* fner0_regnum */
397 H_SPR_FNER1, /* fner1_regnum */
398 };
399
400 gdb_assert (reg >= 0 && reg < gdbarch_num_regs (gdbarch));
401
402 if (first_gpr_regnum <= reg && reg <= last_gpr_regnum)
403 return reg - first_gpr_regnum + SIM_FRV_GR0_REGNUM;
404 else if (first_fpr_regnum <= reg && reg <= last_fpr_regnum)
405 return reg - first_fpr_regnum + SIM_FRV_FR0_REGNUM;
406 else if (pc_regnum == reg)
407 return SIM_FRV_PC_REGNUM;
408 else if (reg >= first_spr_regnum
409 && reg < first_spr_regnum + sizeof (spr_map) / sizeof (spr_map[0]))
410 {
411 int spr_reg_offset = spr_map[reg - first_spr_regnum];
412
413 if (spr_reg_offset < 0)
414 return SIM_REGNO_DOES_NOT_EXIST;
415 else
416 return SIM_FRV_SPR0_REGNUM + spr_reg_offset;
417 }
418
419 internal_error (__FILE__, __LINE__, _("Bad register number %d"), reg);
420 }
421
422 constexpr gdb_byte frv_break_insn[] = {0xc0, 0x70, 0x00, 0x01};
423
424 typedef BP_MANIPULATION (frv_break_insn) frv_breakpoint;
425
426 /* Define the maximum number of instructions which may be packed into a
427 bundle (VLIW instruction). */
428 static const int max_instrs_per_bundle = 8;
429
430 /* Define the size (in bytes) of an FR-V instruction. */
431 static const int frv_instr_size = 4;
432
433 /* Adjust a breakpoint's address to account for the FR-V architecture's
434 constraint that a break instruction must not appear as any but the
435 first instruction in the bundle. */
436 static CORE_ADDR
437 frv_adjust_breakpoint_address (struct gdbarch *gdbarch, CORE_ADDR bpaddr)
438 {
439 int count = max_instrs_per_bundle;
440 CORE_ADDR addr = bpaddr - frv_instr_size;
441 CORE_ADDR func_start = get_pc_function_start (bpaddr);
442
443 /* Find the end of the previous packing sequence. This will be indicated
444 by either attempting to access some inaccessible memory or by finding
445 an instruction word whose packing bit is set to one. */
446 while (count-- > 0 && addr >= func_start)
447 {
448 gdb_byte instr[frv_instr_size];
449 int status;
450
451 status = target_read_memory (addr, instr, sizeof instr);
452
453 if (status != 0)
454 break;
455
456 /* This is a big endian architecture, so byte zero will have most
457 significant byte. The most significant bit of this byte is the
458 packing bit. */
459 if (instr[0] & 0x80)
460 break;
461
462 addr -= frv_instr_size;
463 }
464
465 if (count > 0)
466 bpaddr = addr + frv_instr_size;
467
468 return bpaddr;
469 }
470
471
472 /* Return true if REG is a caller-saves ("scratch") register,
473 false otherwise. */
474 static int
475 is_caller_saves_reg (int reg)
476 {
477 return ((4 <= reg && reg <= 7)
478 || (14 <= reg && reg <= 15)
479 || (32 <= reg && reg <= 47));
480 }
481
482
483 /* Return true if REG is a callee-saves register, false otherwise. */
484 static int
485 is_callee_saves_reg (int reg)
486 {
487 return ((16 <= reg && reg <= 31)
488 || (48 <= reg && reg <= 63));
489 }
490
491
492 /* Return true if REG is an argument register, false otherwise. */
493 static int
494 is_argument_reg (int reg)
495 {
496 return (8 <= reg && reg <= 13);
497 }
498
499 /* Scan an FR-V prologue, starting at PC, until frame->PC.
500 If FRAME is non-zero, fill in its saved_regs with appropriate addresses.
501 We assume FRAME's saved_regs array has already been allocated and cleared.
502 Return the first PC value after the prologue.
503
504 Note that, for unoptimized code, we almost don't need this function
505 at all; all arguments and locals live on the stack, so we just need
506 the FP to find everything. The catch: structures passed by value
507 have their addresses living in registers; they're never spilled to
508 the stack. So if you ever want to be able to get to these
509 arguments in any frame but the top, you'll need to do this serious
510 prologue analysis. */
511 static CORE_ADDR
512 frv_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
513 struct frame_info *this_frame,
514 struct frv_unwind_cache *info)
515 {
516 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
517
518 /* When writing out instruction bitpatterns, we use the following
519 letters to label instruction fields:
520 P - The parallel bit. We don't use this.
521 J - The register number of GRj in the instruction description.
522 K - The register number of GRk in the instruction description.
523 I - The register number of GRi.
524 S - a signed immediate offset.
525 U - an unsigned immediate offset.
526
527 The dots below the numbers indicate where hex digit boundaries
528 fall, to make it easier to check the numbers. */
529
530 /* Non-zero iff we've seen the instruction that initializes the
531 frame pointer for this function's frame. */
532 int fp_set = 0;
533
534 /* If fp_set is non_zero, then this is the distance from
535 the stack pointer to frame pointer: fp = sp + fp_offset. */
536 int fp_offset = 0;
537
538 /* Total size of frame prior to any alloca operations. */
539 int framesize = 0;
540
541 /* Flag indicating if lr has been saved on the stack. */
542 int lr_saved_on_stack = 0;
543
544 /* The number of the general-purpose register we saved the return
545 address ("link register") in, or -1 if we haven't moved it yet. */
546 int lr_save_reg = -1;
547
548 /* Offset (from sp) at which lr has been saved on the stack. */
549
550 int lr_sp_offset = 0;
551
552 /* If gr_saved[i] is non-zero, then we've noticed that general
553 register i has been saved at gr_sp_offset[i] from the stack
554 pointer. */
555 char gr_saved[64];
556 int gr_sp_offset[64];
557
558 /* The address of the most recently scanned prologue instruction. */
559 CORE_ADDR last_prologue_pc;
560
561 /* The address of the next instruction. */
562 CORE_ADDR next_pc;
563
564 /* The upper bound to of the pc values to scan. */
565 CORE_ADDR lim_pc;
566
567 memset (gr_saved, 0, sizeof (gr_saved));
568
569 last_prologue_pc = pc;
570
571 /* Try to compute an upper limit (on how far to scan) based on the
572 line number info. */
573 lim_pc = skip_prologue_using_sal (gdbarch, pc);
574 /* If there's no line number info, lim_pc will be 0. In that case,
575 set the limit to be 100 instructions away from pc. Hopefully, this
576 will be far enough away to account for the entire prologue. Don't
577 worry about overshooting the end of the function. The scan loop
578 below contains some checks to avoid scanning unreasonably far. */
579 if (lim_pc == 0)
580 lim_pc = pc + 400;
581
582 /* If we have a frame, we don't want to scan past the frame's pc. This
583 will catch those cases where the pc is in the prologue. */
584 if (this_frame)
585 {
586 CORE_ADDR frame_pc = get_frame_pc (this_frame);
587 if (frame_pc < lim_pc)
588 lim_pc = frame_pc;
589 }
590
591 /* Scan the prologue. */
592 while (pc < lim_pc)
593 {
594 gdb_byte buf[frv_instr_size];
595 LONGEST op;
596
597 if (target_read_memory (pc, buf, sizeof buf) != 0)
598 break;
599 op = extract_signed_integer (buf, byte_order);
600
601 next_pc = pc + 4;
602
603 /* The tests in this chain of ifs should be in order of
604 decreasing selectivity, so that more particular patterns get
605 to fire before less particular patterns. */
606
607 /* Some sort of control transfer instruction: stop scanning prologue.
608 Integer Conditional Branch:
609 X XXXX XX 0000110 XX XXXXXXXXXXXXXXXX
610 Floating-point / media Conditional Branch:
611 X XXXX XX 0000111 XX XXXXXXXXXXXXXXXX
612 LCR Conditional Branch to LR
613 X XXXX XX 0001110 XX XX 001 X XXXXXXXXXX
614 Integer conditional Branches to LR
615 X XXXX XX 0001110 XX XX 010 X XXXXXXXXXX
616 X XXXX XX 0001110 XX XX 011 X XXXXXXXXXX
617 Floating-point/Media Branches to LR
618 X XXXX XX 0001110 XX XX 110 X XXXXXXXXXX
619 X XXXX XX 0001110 XX XX 111 X XXXXXXXXXX
620 Jump and Link
621 X XXXXX X 0001100 XXXXXX XXXXXX XXXXXX
622 X XXXXX X 0001101 XXXXXX XXXXXX XXXXXX
623 Call
624 X XXXXXX 0001111 XXXXXXXXXXXXXXXXXX
625 Return from Trap
626 X XXXXX X 0000101 XXXXXX XXXXXX XXXXXX
627 Integer Conditional Trap
628 X XXXX XX 0000100 XXXXXX XXXX 00 XXXXXX
629 X XXXX XX 0011100 XXXXXX XXXXXXXXXXXX
630 Floating-point /media Conditional Trap
631 X XXXX XX 0000100 XXXXXX XXXX 01 XXXXXX
632 X XXXX XX 0011101 XXXXXX XXXXXXXXXXXX
633 Break
634 X XXXX XX 0000100 XXXXXX XXXX 11 XXXXXX
635 Media Trap
636 X XXXX XX 0000100 XXXXXX XXXX 10 XXXXXX */
637 if ((op & 0x01d80000) == 0x00180000 /* Conditional branches and Call */
638 || (op & 0x01f80000) == 0x00300000 /* Jump and Link */
639 || (op & 0x01f80000) == 0x00100000 /* Return from Trap, Trap */
640 || (op & 0x01f80000) == 0x00700000) /* Trap immediate */
641 {
642 /* Stop scanning; not in prologue any longer. */
643 break;
644 }
645
646 /* Loading something from memory into fp probably means that
647 we're in the epilogue. Stop scanning the prologue.
648 ld @(GRi, GRk), fp
649 X 000010 0000010 XXXXXX 000100 XXXXXX
650 ldi @(GRi, d12), fp
651 X 000010 0110010 XXXXXX XXXXXXXXXXXX */
652 else if ((op & 0x7ffc0fc0) == 0x04080100
653 || (op & 0x7ffc0000) == 0x04c80000)
654 {
655 break;
656 }
657
658 /* Setting the FP from the SP:
659 ori sp, 0, fp
660 P 000010 0100010 000001 000000000000 = 0x04881000
661 0 111111 1111111 111111 111111111111 = 0x7fffffff
662 . . . . . . . .
663 We treat this as part of the prologue. */
664 else if ((op & 0x7fffffff) == 0x04881000)
665 {
666 fp_set = 1;
667 fp_offset = 0;
668 last_prologue_pc = next_pc;
669 }
670
671 /* Move the link register to the scratch register grJ, before saving:
672 movsg lr, grJ
673 P 000100 0000011 010000 000111 JJJJJJ = 0x080d01c0
674 0 111111 1111111 111111 111111 000000 = 0x7fffffc0
675 . . . . . . . .
676 We treat this as part of the prologue. */
677 else if ((op & 0x7fffffc0) == 0x080d01c0)
678 {
679 int gr_j = op & 0x3f;
680
681 /* If we're moving it to a scratch register, that's fine. */
682 if (is_caller_saves_reg (gr_j))
683 {
684 lr_save_reg = gr_j;
685 last_prologue_pc = next_pc;
686 }
687 }
688
689 /* To save multiple callee-saves registers on the stack, at
690 offset zero:
691
692 std grK,@(sp,gr0)
693 P KKKKKK 0000011 000001 000011 000000 = 0x000c10c0
694 0 000000 1111111 111111 111111 111111 = 0x01ffffff
695
696 stq grK,@(sp,gr0)
697 P KKKKKK 0000011 000001 000100 000000 = 0x000c1100
698 0 000000 1111111 111111 111111 111111 = 0x01ffffff
699 . . . . . . . .
700 We treat this as part of the prologue, and record the register's
701 saved address in the frame structure. */
702 else if ((op & 0x01ffffff) == 0x000c10c0
703 || (op & 0x01ffffff) == 0x000c1100)
704 {
705 int gr_k = ((op >> 25) & 0x3f);
706 int ope = ((op >> 6) & 0x3f);
707 int count;
708 int i;
709
710 /* Is it an std or an stq? */
711 if (ope == 0x03)
712 count = 2;
713 else
714 count = 4;
715
716 /* Is it really a callee-saves register? */
717 if (is_callee_saves_reg (gr_k))
718 {
719 for (i = 0; i < count; i++)
720 {
721 gr_saved[gr_k + i] = 1;
722 gr_sp_offset[gr_k + i] = 4 * i;
723 }
724 last_prologue_pc = next_pc;
725 }
726 }
727
728 /* Adjusting the stack pointer. (The stack pointer is GR1.)
729 addi sp, S, sp
730 P 000001 0010000 000001 SSSSSSSSSSSS = 0x02401000
731 0 111111 1111111 111111 000000000000 = 0x7ffff000
732 . . . . . . . .
733 We treat this as part of the prologue. */
734 else if ((op & 0x7ffff000) == 0x02401000)
735 {
736 if (framesize == 0)
737 {
738 /* Sign-extend the twelve-bit field.
739 (Isn't there a better way to do this?) */
740 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
741
742 framesize -= s;
743 last_prologue_pc = pc;
744 }
745 else
746 {
747 /* If the prologue is being adjusted again, we've
748 likely gone too far; i.e. we're probably in the
749 epilogue. */
750 break;
751 }
752 }
753
754 /* Setting the FP to a constant distance from the SP:
755 addi sp, S, fp
756 P 000010 0010000 000001 SSSSSSSSSSSS = 0x04401000
757 0 111111 1111111 111111 000000000000 = 0x7ffff000
758 . . . . . . . .
759 We treat this as part of the prologue. */
760 else if ((op & 0x7ffff000) == 0x04401000)
761 {
762 /* Sign-extend the twelve-bit field.
763 (Isn't there a better way to do this?) */
764 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
765 fp_set = 1;
766 fp_offset = s;
767 last_prologue_pc = pc;
768 }
769
770 /* To spill an argument register to a scratch register:
771 ori GRi, 0, GRk
772 P KKKKKK 0100010 IIIIII 000000000000 = 0x00880000
773 0 000000 1111111 000000 111111111111 = 0x01fc0fff
774 . . . . . . . .
775 For the time being, we treat this as a prologue instruction,
776 assuming that GRi is an argument register. This one's kind
777 of suspicious, because it seems like it could be part of a
778 legitimate body instruction. But we only come here when the
779 source info wasn't helpful, so we have to do the best we can.
780 Hopefully once GCC and GDB agree on how to emit line number
781 info for prologues, then this code will never come into play. */
782 else if ((op & 0x01fc0fff) == 0x00880000)
783 {
784 int gr_i = ((op >> 12) & 0x3f);
785
786 /* Make sure that the source is an arg register; if it is, we'll
787 treat it as a prologue instruction. */
788 if (is_argument_reg (gr_i))
789 last_prologue_pc = next_pc;
790 }
791
792 /* To spill 16-bit values to the stack:
793 sthi GRk, @(fp, s)
794 P KKKKKK 1010001 000010 SSSSSSSSSSSS = 0x01442000
795 0 000000 1111111 111111 000000000000 = 0x01fff000
796 . . . . . . . .
797 And for 8-bit values, we use STB instructions.
798 stbi GRk, @(fp, s)
799 P KKKKKK 1010000 000010 SSSSSSSSSSSS = 0x01402000
800 0 000000 1111111 111111 000000000000 = 0x01fff000
801 . . . . . . . .
802 We check that GRk is really an argument register, and treat
803 all such as part of the prologue. */
804 else if ( (op & 0x01fff000) == 0x01442000
805 || (op & 0x01fff000) == 0x01402000)
806 {
807 int gr_k = ((op >> 25) & 0x3f);
808
809 /* Make sure that GRk is really an argument register; treat
810 it as a prologue instruction if so. */
811 if (is_argument_reg (gr_k))
812 last_prologue_pc = next_pc;
813 }
814
815 /* To save multiple callee-saves register on the stack, at a
816 non-zero offset:
817
818 stdi GRk, @(sp, s)
819 P KKKKKK 1010011 000001 SSSSSSSSSSSS = 0x014c1000
820 0 000000 1111111 111111 000000000000 = 0x01fff000
821 . . . . . . . .
822 stqi GRk, @(sp, s)
823 P KKKKKK 1010100 000001 SSSSSSSSSSSS = 0x01501000
824 0 000000 1111111 111111 000000000000 = 0x01fff000
825 . . . . . . . .
826 We treat this as part of the prologue, and record the register's
827 saved address in the frame structure. */
828 else if ((op & 0x01fff000) == 0x014c1000
829 || (op & 0x01fff000) == 0x01501000)
830 {
831 int gr_k = ((op >> 25) & 0x3f);
832 int count;
833 int i;
834
835 /* Is it a stdi or a stqi? */
836 if ((op & 0x01fff000) == 0x014c1000)
837 count = 2;
838 else
839 count = 4;
840
841 /* Is it really a callee-saves register? */
842 if (is_callee_saves_reg (gr_k))
843 {
844 /* Sign-extend the twelve-bit field.
845 (Isn't there a better way to do this?) */
846 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
847
848 for (i = 0; i < count; i++)
849 {
850 gr_saved[gr_k + i] = 1;
851 gr_sp_offset[gr_k + i] = s + (4 * i);
852 }
853 last_prologue_pc = next_pc;
854 }
855 }
856
857 /* Storing any kind of integer register at any constant offset
858 from any other register.
859
860 st GRk, @(GRi, gr0)
861 P KKKKKK 0000011 IIIIII 000010 000000 = 0x000c0080
862 0 000000 1111111 000000 111111 111111 = 0x01fc0fff
863 . . . . . . . .
864 sti GRk, @(GRi, d12)
865 P KKKKKK 1010010 IIIIII SSSSSSSSSSSS = 0x01480000
866 0 000000 1111111 000000 000000000000 = 0x01fc0000
867 . . . . . . . .
868 These could be almost anything, but a lot of prologue
869 instructions fall into this pattern, so let's decode the
870 instruction once, and then work at a higher level. */
871 else if (((op & 0x01fc0fff) == 0x000c0080)
872 || ((op & 0x01fc0000) == 0x01480000))
873 {
874 int gr_k = ((op >> 25) & 0x3f);
875 int gr_i = ((op >> 12) & 0x3f);
876 int offset;
877
878 /* Are we storing with gr0 as an offset, or using an
879 immediate value? */
880 if ((op & 0x01fc0fff) == 0x000c0080)
881 offset = 0;
882 else
883 offset = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
884
885 /* If the address isn't relative to the SP or FP, it's not a
886 prologue instruction. */
887 if (gr_i != sp_regnum && gr_i != fp_regnum)
888 {
889 /* Do nothing; not a prologue instruction. */
890 }
891
892 /* Saving the old FP in the new frame (relative to the SP). */
893 else if (gr_k == fp_regnum && gr_i == sp_regnum)
894 {
895 gr_saved[fp_regnum] = 1;
896 gr_sp_offset[fp_regnum] = offset;
897 last_prologue_pc = next_pc;
898 }
899
900 /* Saving callee-saves register(s) on the stack, relative to
901 the SP. */
902 else if (gr_i == sp_regnum
903 && is_callee_saves_reg (gr_k))
904 {
905 gr_saved[gr_k] = 1;
906 if (gr_i == sp_regnum)
907 gr_sp_offset[gr_k] = offset;
908 else
909 gr_sp_offset[gr_k] = offset + fp_offset;
910 last_prologue_pc = next_pc;
911 }
912
913 /* Saving the scratch register holding the return address. */
914 else if (lr_save_reg != -1
915 && gr_k == lr_save_reg)
916 {
917 lr_saved_on_stack = 1;
918 if (gr_i == sp_regnum)
919 lr_sp_offset = offset;
920 else
921 lr_sp_offset = offset + fp_offset;
922 last_prologue_pc = next_pc;
923 }
924
925 /* Spilling int-sized arguments to the stack. */
926 else if (is_argument_reg (gr_k))
927 last_prologue_pc = next_pc;
928 }
929 pc = next_pc;
930 }
931
932 if (this_frame && info)
933 {
934 int i;
935 ULONGEST this_base;
936
937 /* If we know the relationship between the stack and frame
938 pointers, record the addresses of the registers we noticed.
939 Note that we have to do this as a separate step at the end,
940 because instructions may save relative to the SP, but we need
941 their addresses relative to the FP. */
942 if (fp_set)
943 this_base = get_frame_register_unsigned (this_frame, fp_regnum);
944 else
945 this_base = get_frame_register_unsigned (this_frame, sp_regnum);
946
947 for (i = 0; i < 64; i++)
948 if (gr_saved[i])
949 info->saved_regs[i].set_addr (this_base - fp_offset
950 + gr_sp_offset[i]);
951
952 info->prev_sp = this_base - fp_offset + framesize;
953 info->base = this_base;
954
955 /* If LR was saved on the stack, record its location. */
956 if (lr_saved_on_stack)
957 info->saved_regs[lr_regnum].set_addr (this_base - fp_offset
958 + lr_sp_offset);
959
960 /* The call instruction moves the caller's PC in the callee's LR.
961 Since this is an unwind, do the reverse. Copy the location of LR
962 into PC (the address / regnum) so that a request for PC will be
963 converted into a request for the LR. */
964 info->saved_regs[pc_regnum] = info->saved_regs[lr_regnum];
965
966 /* Save the previous frame's computed SP value. */
967 info->saved_regs[sp_regnum].set_value (info->prev_sp);
968 }
969
970 return last_prologue_pc;
971 }
972
973
974 static CORE_ADDR
975 frv_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
976 {
977 CORE_ADDR func_addr, func_end, new_pc;
978
979 new_pc = pc;
980
981 /* If the line table has entry for a line *within* the function
982 (i.e., not in the prologue, and not past the end), then that's
983 our location. */
984 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
985 {
986 struct symtab_and_line sal;
987
988 sal = find_pc_line (func_addr, 0);
989
990 if (sal.line != 0 && sal.end < func_end)
991 {
992 new_pc = sal.end;
993 }
994 }
995
996 /* The FR-V prologue is at least five instructions long (twenty bytes).
997 If we didn't find a real source location past that, then
998 do a full analysis of the prologue. */
999 if (new_pc < pc + 20)
1000 new_pc = frv_analyze_prologue (gdbarch, pc, 0, 0);
1001
1002 return new_pc;
1003 }
1004
1005
1006 /* Examine the instruction pointed to by PC. If it corresponds to
1007 a call to __main, return the address of the next instruction.
1008 Otherwise, return PC. */
1009
1010 static CORE_ADDR
1011 frv_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1012 {
1013 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1014 gdb_byte buf[4];
1015 unsigned long op;
1016 CORE_ADDR orig_pc = pc;
1017
1018 if (target_read_memory (pc, buf, 4))
1019 return pc;
1020 op = extract_unsigned_integer (buf, 4, byte_order);
1021
1022 /* In PIC code, GR15 may be loaded from some offset off of FP prior
1023 to the call instruction.
1024
1025 Skip over this instruction if present. It won't be present in
1026 non-PIC code, and even in PIC code, it might not be present.
1027 (This is due to the fact that GR15, the FDPIC register, already
1028 contains the correct value.)
1029
1030 The general form of the LDI is given first, followed by the
1031 specific instruction with the GRi and GRk filled in as FP and
1032 GR15.
1033
1034 ldi @(GRi, d12), GRk
1035 P KKKKKK 0110010 IIIIII SSSSSSSSSSSS = 0x00c80000
1036 0 000000 1111111 000000 000000000000 = 0x01fc0000
1037 . . . . . . . .
1038 ldi @(FP, d12), GR15
1039 P KKKKKK 0110010 IIIIII SSSSSSSSSSSS = 0x1ec82000
1040 0 001111 1111111 000010 000000000000 = 0x7ffff000
1041 . . . . . . . . */
1042
1043 if ((op & 0x7ffff000) == 0x1ec82000)
1044 {
1045 pc += 4;
1046 if (target_read_memory (pc, buf, 4))
1047 return orig_pc;
1048 op = extract_unsigned_integer (buf, 4, byte_order);
1049 }
1050
1051 /* The format of an FRV CALL instruction is as follows:
1052
1053 call label24
1054 P HHHHHH 0001111 LLLLLLLLLLLLLLLLLL = 0x003c0000
1055 0 000000 1111111 000000000000000000 = 0x01fc0000
1056 . . . . . . . .
1057
1058 where label24 is constructed by concatenating the H bits with the
1059 L bits. The call target is PC + (4 * sign_ext(label24)). */
1060
1061 if ((op & 0x01fc0000) == 0x003c0000)
1062 {
1063 LONGEST displ;
1064 CORE_ADDR call_dest;
1065 struct bound_minimal_symbol s;
1066
1067 displ = ((op & 0xfe000000) >> 7) | (op & 0x0003ffff);
1068 if ((displ & 0x00800000) != 0)
1069 displ |= ~((LONGEST) 0x00ffffff);
1070
1071 call_dest = pc + 4 * displ;
1072 s = lookup_minimal_symbol_by_pc (call_dest);
1073
1074 if (s.minsym != NULL
1075 && s.minsym->linkage_name () != NULL
1076 && strcmp (s.minsym->linkage_name (), "__main") == 0)
1077 {
1078 pc += 4;
1079 return pc;
1080 }
1081 }
1082 return orig_pc;
1083 }
1084
1085
1086 static struct frv_unwind_cache *
1087 frv_frame_unwind_cache (struct frame_info *this_frame,
1088 void **this_prologue_cache)
1089 {
1090 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1091 struct frv_unwind_cache *info;
1092
1093 if ((*this_prologue_cache))
1094 return (struct frv_unwind_cache *) (*this_prologue_cache);
1095
1096 info = FRAME_OBSTACK_ZALLOC (struct frv_unwind_cache);
1097 (*this_prologue_cache) = info;
1098 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1099
1100 /* Prologue analysis does the rest... */
1101 frv_analyze_prologue (gdbarch,
1102 get_frame_func (this_frame), this_frame, info);
1103
1104 return info;
1105 }
1106
1107 static void
1108 frv_extract_return_value (struct type *type, struct regcache *regcache,
1109 gdb_byte *valbuf)
1110 {
1111 struct gdbarch *gdbarch = regcache->arch ();
1112 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1113 int len = TYPE_LENGTH (type);
1114
1115 if (len <= 4)
1116 {
1117 ULONGEST gpr8_val;
1118 regcache_cooked_read_unsigned (regcache, 8, &gpr8_val);
1119 store_unsigned_integer (valbuf, len, byte_order, gpr8_val);
1120 }
1121 else if (len == 8)
1122 {
1123 ULONGEST regval;
1124
1125 regcache_cooked_read_unsigned (regcache, 8, &regval);
1126 store_unsigned_integer (valbuf, 4, byte_order, regval);
1127 regcache_cooked_read_unsigned (regcache, 9, &regval);
1128 store_unsigned_integer ((bfd_byte *) valbuf + 4, 4, byte_order, regval);
1129 }
1130 else
1131 internal_error (__FILE__, __LINE__,
1132 _("Illegal return value length: %d"), len);
1133 }
1134
1135 static CORE_ADDR
1136 frv_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1137 {
1138 /* Require dword alignment. */
1139 return align_down (sp, 8);
1140 }
1141
1142 static CORE_ADDR
1143 find_func_descr (struct gdbarch *gdbarch, CORE_ADDR entry_point)
1144 {
1145 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1146 CORE_ADDR descr;
1147 gdb_byte valbuf[4];
1148 CORE_ADDR start_addr;
1149
1150 /* If we can't find the function in the symbol table, then we assume
1151 that the function address is already in descriptor form. */
1152 if (!find_pc_partial_function (entry_point, NULL, &start_addr, NULL)
1153 || entry_point != start_addr)
1154 return entry_point;
1155
1156 descr = frv_fdpic_find_canonical_descriptor (entry_point);
1157
1158 if (descr != 0)
1159 return descr;
1160
1161 /* Construct a non-canonical descriptor from space allocated on
1162 the stack. */
1163
1164 descr = value_as_long (value_allocate_space_in_inferior (8));
1165 store_unsigned_integer (valbuf, 4, byte_order, entry_point);
1166 write_memory (descr, valbuf, 4);
1167 store_unsigned_integer (valbuf, 4, byte_order,
1168 frv_fdpic_find_global_pointer (entry_point));
1169 write_memory (descr + 4, valbuf, 4);
1170 return descr;
1171 }
1172
1173 static CORE_ADDR
1174 frv_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr,
1175 struct target_ops *targ)
1176 {
1177 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1178 CORE_ADDR entry_point;
1179 CORE_ADDR got_address;
1180
1181 entry_point = get_target_memory_unsigned (targ, addr, 4, byte_order);
1182 got_address = get_target_memory_unsigned (targ, addr + 4, 4, byte_order);
1183
1184 if (got_address == frv_fdpic_find_global_pointer (entry_point))
1185 return entry_point;
1186 else
1187 return addr;
1188 }
1189
1190 static CORE_ADDR
1191 frv_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1192 struct regcache *regcache, CORE_ADDR bp_addr,
1193 int nargs, struct value **args, CORE_ADDR sp,
1194 function_call_return_method return_method,
1195 CORE_ADDR struct_addr)
1196 {
1197 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1198 int argreg;
1199 int argnum;
1200 const gdb_byte *val;
1201 gdb_byte valbuf[4];
1202 struct value *arg;
1203 struct type *arg_type;
1204 int len;
1205 enum type_code typecode;
1206 CORE_ADDR regval;
1207 int stack_space;
1208 int stack_offset;
1209 enum frv_abi abi = frv_abi (gdbarch);
1210 CORE_ADDR func_addr = find_function_addr (function, NULL);
1211
1212 #if 0
1213 printf("Push %d args at sp = %x, struct_return=%d (%x)\n",
1214 nargs, (int) sp, struct_return, struct_addr);
1215 #endif
1216
1217 stack_space = 0;
1218 for (argnum = 0; argnum < nargs; ++argnum)
1219 stack_space += align_up (TYPE_LENGTH (value_type (args[argnum])), 4);
1220
1221 stack_space -= (6 * 4);
1222 if (stack_space > 0)
1223 sp -= stack_space;
1224
1225 /* Make sure stack is dword aligned. */
1226 sp = align_down (sp, 8);
1227
1228 stack_offset = 0;
1229
1230 argreg = 8;
1231
1232 if (return_method == return_method_struct)
1233 regcache_cooked_write_unsigned (regcache, struct_return_regnum,
1234 struct_addr);
1235
1236 for (argnum = 0; argnum < nargs; ++argnum)
1237 {
1238 arg = args[argnum];
1239 arg_type = check_typedef (value_type (arg));
1240 len = TYPE_LENGTH (arg_type);
1241 typecode = arg_type->code ();
1242
1243 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
1244 {
1245 store_unsigned_integer (valbuf, 4, byte_order,
1246 value_address (arg));
1247 typecode = TYPE_CODE_PTR;
1248 len = 4;
1249 val = valbuf;
1250 }
1251 else if (abi == FRV_ABI_FDPIC
1252 && len == 4
1253 && typecode == TYPE_CODE_PTR
1254 && TYPE_TARGET_TYPE (arg_type)->code () == TYPE_CODE_FUNC)
1255 {
1256 /* The FDPIC ABI requires function descriptors to be passed instead
1257 of entry points. */
1258 CORE_ADDR addr = extract_unsigned_integer
1259 (value_contents (arg).data (), 4, byte_order);
1260 addr = find_func_descr (gdbarch, addr);
1261 store_unsigned_integer (valbuf, 4, byte_order, addr);
1262 typecode = TYPE_CODE_PTR;
1263 len = 4;
1264 val = valbuf;
1265 }
1266 else
1267 {
1268 val = value_contents (arg).data ();
1269 }
1270
1271 while (len > 0)
1272 {
1273 int partial_len = (len < 4 ? len : 4);
1274
1275 if (argreg < 14)
1276 {
1277 regval = extract_unsigned_integer (val, partial_len, byte_order);
1278 #if 0
1279 printf(" Argnum %d data %x -> reg %d\n",
1280 argnum, (int) regval, argreg);
1281 #endif
1282 regcache_cooked_write_unsigned (regcache, argreg, regval);
1283 ++argreg;
1284 }
1285 else
1286 {
1287 #if 0
1288 printf(" Argnum %d data %x -> offset %d (%x)\n",
1289 argnum, *((int *)val), stack_offset,
1290 (int) (sp + stack_offset));
1291 #endif
1292 write_memory (sp + stack_offset, val, partial_len);
1293 stack_offset += align_up (partial_len, 4);
1294 }
1295 len -= partial_len;
1296 val += partial_len;
1297 }
1298 }
1299
1300 /* Set the return address. For the frv, the return breakpoint is
1301 always at BP_ADDR. */
1302 regcache_cooked_write_unsigned (regcache, lr_regnum, bp_addr);
1303
1304 if (abi == FRV_ABI_FDPIC)
1305 {
1306 /* Set the GOT register for the FDPIC ABI. */
1307 regcache_cooked_write_unsigned
1308 (regcache, first_gpr_regnum + 15,
1309 frv_fdpic_find_global_pointer (func_addr));
1310 }
1311
1312 /* Finally, update the SP register. */
1313 regcache_cooked_write_unsigned (regcache, sp_regnum, sp);
1314
1315 return sp;
1316 }
1317
1318 static void
1319 frv_store_return_value (struct type *type, struct regcache *regcache,
1320 const gdb_byte *valbuf)
1321 {
1322 int len = TYPE_LENGTH (type);
1323
1324 if (len <= 4)
1325 {
1326 bfd_byte val[4];
1327 memset (val, 0, sizeof (val));
1328 memcpy (val + (4 - len), valbuf, len);
1329 regcache->cooked_write (8, val);
1330 }
1331 else if (len == 8)
1332 {
1333 regcache->cooked_write (8, valbuf);
1334 regcache->cooked_write (9, (bfd_byte *) valbuf + 4);
1335 }
1336 else
1337 internal_error (__FILE__, __LINE__,
1338 _("Don't know how to return a %d-byte value."), len);
1339 }
1340
1341 static enum return_value_convention
1342 frv_return_value (struct gdbarch *gdbarch, struct value *function,
1343 struct type *valtype, struct regcache *regcache,
1344 gdb_byte *readbuf, const gdb_byte *writebuf)
1345 {
1346 int struct_return = valtype->code () == TYPE_CODE_STRUCT
1347 || valtype->code () == TYPE_CODE_UNION
1348 || valtype->code () == TYPE_CODE_ARRAY;
1349
1350 if (writebuf != NULL)
1351 {
1352 gdb_assert (!struct_return);
1353 frv_store_return_value (valtype, regcache, writebuf);
1354 }
1355
1356 if (readbuf != NULL)
1357 {
1358 gdb_assert (!struct_return);
1359 frv_extract_return_value (valtype, regcache, readbuf);
1360 }
1361
1362 if (struct_return)
1363 return RETURN_VALUE_STRUCT_CONVENTION;
1364 else
1365 return RETURN_VALUE_REGISTER_CONVENTION;
1366 }
1367
1368 /* Given a GDB frame, determine the address of the calling function's
1369 frame. This will be used to create a new GDB frame struct. */
1370
1371 static void
1372 frv_frame_this_id (struct frame_info *this_frame,
1373 void **this_prologue_cache, struct frame_id *this_id)
1374 {
1375 struct frv_unwind_cache *info
1376 = frv_frame_unwind_cache (this_frame, this_prologue_cache);
1377 CORE_ADDR base;
1378 CORE_ADDR func;
1379 struct bound_minimal_symbol msym_stack;
1380 struct frame_id id;
1381
1382 /* The FUNC is easy. */
1383 func = get_frame_func (this_frame);
1384
1385 /* Check if the stack is empty. */
1386 msym_stack = lookup_minimal_symbol ("_stack", NULL, NULL);
1387 if (msym_stack.minsym && info->base == BMSYMBOL_VALUE_ADDRESS (msym_stack))
1388 return;
1389
1390 /* Hopefully the prologue analysis either correctly determined the
1391 frame's base (which is the SP from the previous frame), or set
1392 that base to "NULL". */
1393 base = info->prev_sp;
1394 if (base == 0)
1395 return;
1396
1397 id = frame_id_build (base, func);
1398 (*this_id) = id;
1399 }
1400
1401 static struct value *
1402 frv_frame_prev_register (struct frame_info *this_frame,
1403 void **this_prologue_cache, int regnum)
1404 {
1405 struct frv_unwind_cache *info
1406 = frv_frame_unwind_cache (this_frame, this_prologue_cache);
1407 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1408 }
1409
1410 static const struct frame_unwind frv_frame_unwind = {
1411 "frv prologue",
1412 NORMAL_FRAME,
1413 default_frame_unwind_stop_reason,
1414 frv_frame_this_id,
1415 frv_frame_prev_register,
1416 NULL,
1417 default_frame_sniffer
1418 };
1419
1420 static CORE_ADDR
1421 frv_frame_base_address (struct frame_info *this_frame, void **this_cache)
1422 {
1423 struct frv_unwind_cache *info
1424 = frv_frame_unwind_cache (this_frame, this_cache);
1425 return info->base;
1426 }
1427
1428 static const struct frame_base frv_frame_base = {
1429 &frv_frame_unwind,
1430 frv_frame_base_address,
1431 frv_frame_base_address,
1432 frv_frame_base_address
1433 };
1434
1435 static struct gdbarch *
1436 frv_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1437 {
1438 struct gdbarch *gdbarch;
1439 int elf_flags = 0;
1440
1441 /* Check to see if we've already built an appropriate architecture
1442 object for this executable. */
1443 arches = gdbarch_list_lookup_by_info (arches, &info);
1444 if (arches)
1445 return arches->gdbarch;
1446
1447 /* Select the right tdep structure for this variant. */
1448 frv_gdbarch_tdep *var = new_variant ();
1449 switch (info.bfd_arch_info->mach)
1450 {
1451 case bfd_mach_frv:
1452 case bfd_mach_frvsimple:
1453 case bfd_mach_fr300:
1454 case bfd_mach_fr500:
1455 case bfd_mach_frvtomcat:
1456 case bfd_mach_fr550:
1457 set_variant_num_gprs (var, 64);
1458 set_variant_num_fprs (var, 64);
1459 break;
1460
1461 case bfd_mach_fr400:
1462 case bfd_mach_fr450:
1463 set_variant_num_gprs (var, 32);
1464 set_variant_num_fprs (var, 32);
1465 break;
1466
1467 default:
1468 /* Never heard of this variant. */
1469 return 0;
1470 }
1471
1472 /* Extract the ELF flags, if available. */
1473 if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
1474 elf_flags = elf_elfheader (info.abfd)->e_flags;
1475
1476 if (elf_flags & EF_FRV_FDPIC)
1477 set_variant_abi_fdpic (var);
1478
1479 if (elf_flags & EF_FRV_CPU_FR450)
1480 set_variant_scratch_registers (var);
1481
1482 gdbarch = gdbarch_alloc (&info, var);
1483
1484 set_gdbarch_short_bit (gdbarch, 16);
1485 set_gdbarch_int_bit (gdbarch, 32);
1486 set_gdbarch_long_bit (gdbarch, 32);
1487 set_gdbarch_long_long_bit (gdbarch, 64);
1488 set_gdbarch_float_bit (gdbarch, 32);
1489 set_gdbarch_double_bit (gdbarch, 64);
1490 set_gdbarch_long_double_bit (gdbarch, 64);
1491 set_gdbarch_ptr_bit (gdbarch, 32);
1492
1493 set_gdbarch_num_regs (gdbarch, frv_num_regs);
1494 set_gdbarch_num_pseudo_regs (gdbarch, frv_num_pseudo_regs);
1495
1496 set_gdbarch_sp_regnum (gdbarch, sp_regnum);
1497 set_gdbarch_deprecated_fp_regnum (gdbarch, fp_regnum);
1498 set_gdbarch_pc_regnum (gdbarch, pc_regnum);
1499
1500 set_gdbarch_register_name (gdbarch, frv_register_name);
1501 set_gdbarch_register_type (gdbarch, frv_register_type);
1502 set_gdbarch_register_sim_regno (gdbarch, frv_register_sim_regno);
1503
1504 set_gdbarch_pseudo_register_read (gdbarch, frv_pseudo_register_read);
1505 set_gdbarch_pseudo_register_write (gdbarch, frv_pseudo_register_write);
1506
1507 set_gdbarch_skip_prologue (gdbarch, frv_skip_prologue);
1508 set_gdbarch_skip_main_prologue (gdbarch, frv_skip_main_prologue);
1509 set_gdbarch_breakpoint_kind_from_pc (gdbarch, frv_breakpoint::kind_from_pc);
1510 set_gdbarch_sw_breakpoint_from_kind (gdbarch, frv_breakpoint::bp_from_kind);
1511 set_gdbarch_adjust_breakpoint_address
1512 (gdbarch, frv_adjust_breakpoint_address);
1513
1514 set_gdbarch_return_value (gdbarch, frv_return_value);
1515
1516 /* Frame stuff. */
1517 set_gdbarch_frame_align (gdbarch, frv_frame_align);
1518 frame_base_set_default (gdbarch, &frv_frame_base);
1519 /* We set the sniffer lower down after the OSABI hooks have been
1520 established. */
1521
1522 /* Settings for calling functions in the inferior. */
1523 set_gdbarch_push_dummy_call (gdbarch, frv_push_dummy_call);
1524
1525 /* Settings that should be unnecessary. */
1526 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1527
1528 /* Hardware watchpoint / breakpoint support. */
1529 switch (info.bfd_arch_info->mach)
1530 {
1531 case bfd_mach_frv:
1532 case bfd_mach_frvsimple:
1533 case bfd_mach_fr300:
1534 case bfd_mach_fr500:
1535 case bfd_mach_frvtomcat:
1536 /* fr500-style hardware debugging support. */
1537 var->num_hw_watchpoints = 4;
1538 var->num_hw_breakpoints = 4;
1539 break;
1540
1541 case bfd_mach_fr400:
1542 case bfd_mach_fr450:
1543 /* fr400-style hardware debugging support. */
1544 var->num_hw_watchpoints = 2;
1545 var->num_hw_breakpoints = 4;
1546 break;
1547
1548 default:
1549 /* Otherwise, assume we don't have hardware debugging support. */
1550 var->num_hw_watchpoints = 0;
1551 var->num_hw_breakpoints = 0;
1552 break;
1553 }
1554
1555 if (frv_abi (gdbarch) == FRV_ABI_FDPIC)
1556 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
1557 frv_convert_from_func_ptr_addr);
1558
1559 set_solib_ops (gdbarch, &frv_so_ops);
1560
1561 /* Hook in ABI-specific overrides, if they have been registered. */
1562 gdbarch_init_osabi (info, gdbarch);
1563
1564 /* Set the fallback (prologue based) frame sniffer. */
1565 frame_unwind_append_unwinder (gdbarch, &frv_frame_unwind);
1566
1567 /* Enable TLS support. */
1568 set_gdbarch_fetch_tls_load_module_address (gdbarch,
1569 frv_fetch_objfile_link_map);
1570
1571 return gdbarch;
1572 }
1573
1574 void _initialize_frv_tdep ();
1575 void
1576 _initialize_frv_tdep ()
1577 {
1578 register_gdbarch_init (bfd_arch_frv, frv_gdbarch_init);
1579 }