* frv-tdep.c, frv-tdep.h (first_gpr_regnum, sp_regnum, fp_regnum)
[binutils-gdb.git] / gdb / frv-tdep.c
1 /* Target-dependent code for the Fujitsu FR-V, for GDB, the GNU Debugger.
2 Copyright 2002, 2003, 2004 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21 #include "defs.h"
22 #include "gdb_string.h"
23 #include "inferior.h"
24 #include "gdbcore.h"
25 #include "arch-utils.h"
26 #include "regcache.h"
27 #include "frame.h"
28 #include "frame-unwind.h"
29 #include "frame-base.h"
30 #include "trad-frame.h"
31 #include "dis-asm.h"
32 #include "gdb_assert.h"
33 #include "sim-regno.h"
34 #include "gdb/sim-frv.h"
35 #include "opcodes/frv-desc.h" /* for the H_SPR_... enums */
36 #include "symtab.h"
37 #include "elf-bfd.h"
38 #include "elf/frv.h"
39 #include "osabi.h"
40 #include "frv-tdep.h"
41
42 extern void _initialize_frv_tdep (void);
43
44 static gdbarch_init_ftype frv_gdbarch_init;
45
46 static gdbarch_register_name_ftype frv_register_name;
47 static gdbarch_breakpoint_from_pc_ftype frv_breakpoint_from_pc;
48 static gdbarch_adjust_breakpoint_address_ftype frv_gdbarch_adjust_breakpoint_address;
49 static gdbarch_skip_prologue_ftype frv_skip_prologue;
50
51 static LONGEST frv_call_dummy_words[] =
52 {0};
53
54
55 struct frv_unwind_cache /* was struct frame_extra_info */
56 {
57 /* The previous frame's inner-most stack address. Used as this
58 frame ID's stack_addr. */
59 CORE_ADDR prev_sp;
60
61 /* The frame's base, optionally used by the high-level debug info. */
62 CORE_ADDR base;
63
64 /* Table indicating the location of each and every register. */
65 struct trad_frame_saved_reg *saved_regs;
66 };
67
68
69 /* A structure describing a particular variant of the FRV.
70 We allocate and initialize one of these structures when we create
71 the gdbarch object for a variant.
72
73 At the moment, all the FR variants we support differ only in which
74 registers are present; the portable code of GDB knows that
75 registers whose names are the empty string don't exist, so the
76 `register_names' array captures all the per-variant information we
77 need.
78
79 in the future, if we need to have per-variant maps for raw size,
80 virtual type, etc., we should replace register_names with an array
81 of structures, each of which gives all the necessary info for one
82 register. Don't stick parallel arrays in here --- that's so
83 Fortran. */
84 struct gdbarch_tdep
85 {
86 /* Which ABI is in use? */
87 enum frv_abi frv_abi;
88
89 /* How many general-purpose registers does this variant have? */
90 int num_gprs;
91
92 /* How many floating-point registers does this variant have? */
93 int num_fprs;
94
95 /* How many hardware watchpoints can it support? */
96 int num_hw_watchpoints;
97
98 /* How many hardware breakpoints can it support? */
99 int num_hw_breakpoints;
100
101 /* Register names. */
102 char **register_names;
103 };
104
105 #define CURRENT_VARIANT (gdbarch_tdep (current_gdbarch))
106
107 /* Return the FR-V ABI associated with GDBARCH. */
108 enum frv_abi
109 frv_abi (struct gdbarch *gdbarch)
110 {
111 return gdbarch_tdep (gdbarch)->frv_abi;
112 }
113
114 /* Fetch the interpreter and executable loadmap addresses (for shared
115 library support) for the FDPIC ABI. Return 0 if successful, -1 if
116 not. (E.g, -1 will be returned if the ABI isn't the FDPIC ABI.) */
117 int
118 frv_fdpic_loadmap_addresses (struct gdbarch *gdbarch, CORE_ADDR *interp_addr,
119 CORE_ADDR *exec_addr)
120 {
121 if (frv_abi (gdbarch) != FRV_ABI_FDPIC)
122 return -1;
123 else
124 {
125 if (interp_addr != NULL)
126 {
127 ULONGEST val;
128 regcache_cooked_read_unsigned (current_regcache,
129 fdpic_loadmap_interp_regnum, &val);
130 *interp_addr = val;
131 }
132 if (exec_addr != NULL)
133 {
134 ULONGEST val;
135 regcache_cooked_read_unsigned (current_regcache,
136 fdpic_loadmap_exec_regnum, &val);
137 *exec_addr = val;
138 }
139 return 0;
140 }
141 }
142
143 /* Allocate a new variant structure, and set up default values for all
144 the fields. */
145 static struct gdbarch_tdep *
146 new_variant (void)
147 {
148 struct gdbarch_tdep *var;
149 int r;
150 char buf[20];
151
152 var = xmalloc (sizeof (*var));
153 memset (var, 0, sizeof (*var));
154
155 var->frv_abi = FRV_ABI_EABI;
156 var->num_gprs = 64;
157 var->num_fprs = 64;
158 var->num_hw_watchpoints = 0;
159 var->num_hw_breakpoints = 0;
160
161 /* By default, don't supply any general-purpose or floating-point
162 register names. */
163 var->register_names
164 = (char **) xmalloc ((frv_num_regs + frv_num_pseudo_regs)
165 * sizeof (char *));
166 for (r = 0; r < frv_num_regs + frv_num_pseudo_regs; r++)
167 var->register_names[r] = "";
168
169 /* Do, however, supply default names for the known special-purpose
170 registers. */
171
172 var->register_names[pc_regnum] = "pc";
173 var->register_names[lr_regnum] = "lr";
174 var->register_names[lcr_regnum] = "lcr";
175
176 var->register_names[psr_regnum] = "psr";
177 var->register_names[ccr_regnum] = "ccr";
178 var->register_names[cccr_regnum] = "cccr";
179 var->register_names[tbr_regnum] = "tbr";
180
181 /* Debug registers. */
182 var->register_names[brr_regnum] = "brr";
183 var->register_names[dbar0_regnum] = "dbar0";
184 var->register_names[dbar1_regnum] = "dbar1";
185 var->register_names[dbar2_regnum] = "dbar2";
186 var->register_names[dbar3_regnum] = "dbar3";
187
188 /* iacc0 (Only found on MB93405.) */
189 var->register_names[iacc0h_regnum] = "iacc0h";
190 var->register_names[iacc0l_regnum] = "iacc0l";
191 var->register_names[iacc0_regnum] = "iacc0";
192
193 return var;
194 }
195
196
197 /* Indicate that the variant VAR has NUM_GPRS general-purpose
198 registers, and fill in the names array appropriately. */
199 static void
200 set_variant_num_gprs (struct gdbarch_tdep *var, int num_gprs)
201 {
202 int r;
203
204 var->num_gprs = num_gprs;
205
206 for (r = 0; r < num_gprs; ++r)
207 {
208 char buf[20];
209
210 sprintf (buf, "gr%d", r);
211 var->register_names[first_gpr_regnum + r] = xstrdup (buf);
212 }
213 }
214
215
216 /* Indicate that the variant VAR has NUM_FPRS floating-point
217 registers, and fill in the names array appropriately. */
218 static void
219 set_variant_num_fprs (struct gdbarch_tdep *var, int num_fprs)
220 {
221 int r;
222
223 var->num_fprs = num_fprs;
224
225 for (r = 0; r < num_fprs; ++r)
226 {
227 char buf[20];
228
229 sprintf (buf, "fr%d", r);
230 var->register_names[first_fpr_regnum + r] = xstrdup (buf);
231 }
232 }
233
234 static void
235 set_variant_abi_fdpic (struct gdbarch_tdep *var)
236 {
237 var->frv_abi = FRV_ABI_FDPIC;
238 var->register_names[fdpic_loadmap_exec_regnum] = xstrdup ("loadmap_exec");
239 var->register_names[fdpic_loadmap_interp_regnum] = xstrdup ("loadmap_interp");
240 }
241
242 static const char *
243 frv_register_name (int reg)
244 {
245 if (reg < 0)
246 return "?toosmall?";
247 if (reg >= frv_num_regs + frv_num_pseudo_regs)
248 return "?toolarge?";
249
250 return CURRENT_VARIANT->register_names[reg];
251 }
252
253
254 static struct type *
255 frv_register_type (struct gdbarch *gdbarch, int reg)
256 {
257 if (reg >= first_fpr_regnum && reg <= last_fpr_regnum)
258 return builtin_type_float;
259 else if (reg == iacc0_regnum)
260 return builtin_type_int64;
261 else
262 return builtin_type_int32;
263 }
264
265 static void
266 frv_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
267 int reg, void *buffer)
268 {
269 if (reg == iacc0_regnum)
270 {
271 regcache_raw_read (regcache, iacc0h_regnum, buffer);
272 regcache_raw_read (regcache, iacc0l_regnum, (bfd_byte *) buffer + 4);
273 }
274 }
275
276 static void
277 frv_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
278 int reg, const void *buffer)
279 {
280 if (reg == iacc0_regnum)
281 {
282 regcache_raw_write (regcache, iacc0h_regnum, buffer);
283 regcache_raw_write (regcache, iacc0l_regnum, (bfd_byte *) buffer + 4);
284 }
285 }
286
287 static int
288 frv_register_sim_regno (int reg)
289 {
290 static const int spr_map[] =
291 {
292 H_SPR_PSR, /* psr_regnum */
293 H_SPR_CCR, /* ccr_regnum */
294 H_SPR_CCCR, /* cccr_regnum */
295 -1, /* 132 */
296 -1, /* 133 */
297 -1, /* 134 */
298 H_SPR_TBR, /* tbr_regnum */
299 H_SPR_BRR, /* brr_regnum */
300 H_SPR_DBAR0, /* dbar0_regnum */
301 H_SPR_DBAR1, /* dbar1_regnum */
302 H_SPR_DBAR2, /* dbar2_regnum */
303 H_SPR_DBAR3, /* dbar3_regnum */
304 -1, /* 141 */
305 -1, /* 142 */
306 -1, /* 143 */
307 -1, /* 144 */
308 H_SPR_LR, /* lr_regnum */
309 H_SPR_LCR, /* lcr_regnum */
310 H_SPR_IACC0H, /* iacc0h_regnum */
311 H_SPR_IACC0L /* iacc0l_regnum */
312 };
313
314 gdb_assert (reg >= 0 && reg < NUM_REGS);
315
316 if (first_gpr_regnum <= reg && reg <= last_gpr_regnum)
317 return reg - first_gpr_regnum + SIM_FRV_GR0_REGNUM;
318 else if (first_fpr_regnum <= reg && reg <= last_fpr_regnum)
319 return reg - first_fpr_regnum + SIM_FRV_FR0_REGNUM;
320 else if (pc_regnum == reg)
321 return SIM_FRV_PC_REGNUM;
322 else if (reg >= first_spr_regnum
323 && reg < first_spr_regnum + sizeof (spr_map) / sizeof (spr_map[0]))
324 {
325 int spr_reg_offset = spr_map[reg - first_spr_regnum];
326
327 if (spr_reg_offset < 0)
328 return SIM_REGNO_DOES_NOT_EXIST;
329 else
330 return SIM_FRV_SPR0_REGNUM + spr_reg_offset;
331 }
332
333 internal_error (__FILE__, __LINE__, "Bad register number %d", reg);
334 }
335
336 static const unsigned char *
337 frv_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenp)
338 {
339 static unsigned char breakpoint[] = {0xc0, 0x70, 0x00, 0x01};
340 *lenp = sizeof (breakpoint);
341 return breakpoint;
342 }
343
344 /* Define the maximum number of instructions which may be packed into a
345 bundle (VLIW instruction). */
346 static const int max_instrs_per_bundle = 8;
347
348 /* Define the size (in bytes) of an FR-V instruction. */
349 static const int frv_instr_size = 4;
350
351 /* Adjust a breakpoint's address to account for the FR-V architecture's
352 constraint that a break instruction must not appear as any but the
353 first instruction in the bundle. */
354 static CORE_ADDR
355 frv_gdbarch_adjust_breakpoint_address (struct gdbarch *gdbarch, CORE_ADDR bpaddr)
356 {
357 int count = max_instrs_per_bundle;
358 CORE_ADDR addr = bpaddr - frv_instr_size;
359 CORE_ADDR func_start = get_pc_function_start (bpaddr);
360
361 /* Find the end of the previous packing sequence. This will be indicated
362 by either attempting to access some inaccessible memory or by finding
363 an instruction word whose packing bit is set to one. */
364 while (count-- > 0 && addr >= func_start)
365 {
366 char instr[frv_instr_size];
367 int status;
368
369 status = read_memory_nobpt (addr, instr, sizeof instr);
370
371 if (status != 0)
372 break;
373
374 /* This is a big endian architecture, so byte zero will have most
375 significant byte. The most significant bit of this byte is the
376 packing bit. */
377 if (instr[0] & 0x80)
378 break;
379
380 addr -= frv_instr_size;
381 }
382
383 if (count > 0)
384 bpaddr = addr + frv_instr_size;
385
386 return bpaddr;
387 }
388
389
390 /* Return true if REG is a caller-saves ("scratch") register,
391 false otherwise. */
392 static int
393 is_caller_saves_reg (int reg)
394 {
395 return ((4 <= reg && reg <= 7)
396 || (14 <= reg && reg <= 15)
397 || (32 <= reg && reg <= 47));
398 }
399
400
401 /* Return true if REG is a callee-saves register, false otherwise. */
402 static int
403 is_callee_saves_reg (int reg)
404 {
405 return ((16 <= reg && reg <= 31)
406 || (48 <= reg && reg <= 63));
407 }
408
409
410 /* Return true if REG is an argument register, false otherwise. */
411 static int
412 is_argument_reg (int reg)
413 {
414 return (8 <= reg && reg <= 13);
415 }
416
417 /* Scan an FR-V prologue, starting at PC, until frame->PC.
418 If FRAME is non-zero, fill in its saved_regs with appropriate addresses.
419 We assume FRAME's saved_regs array has already been allocated and cleared.
420 Return the first PC value after the prologue.
421
422 Note that, for unoptimized code, we almost don't need this function
423 at all; all arguments and locals live on the stack, so we just need
424 the FP to find everything. The catch: structures passed by value
425 have their addresses living in registers; they're never spilled to
426 the stack. So if you ever want to be able to get to these
427 arguments in any frame but the top, you'll need to do this serious
428 prologue analysis. */
429 static CORE_ADDR
430 frv_analyze_prologue (CORE_ADDR pc, struct frame_info *next_frame,
431 struct frv_unwind_cache *info)
432 {
433 /* When writing out instruction bitpatterns, we use the following
434 letters to label instruction fields:
435 P - The parallel bit. We don't use this.
436 J - The register number of GRj in the instruction description.
437 K - The register number of GRk in the instruction description.
438 I - The register number of GRi.
439 S - a signed imediate offset.
440 U - an unsigned immediate offset.
441
442 The dots below the numbers indicate where hex digit boundaries
443 fall, to make it easier to check the numbers. */
444
445 /* Non-zero iff we've seen the instruction that initializes the
446 frame pointer for this function's frame. */
447 int fp_set = 0;
448
449 /* If fp_set is non_zero, then this is the distance from
450 the stack pointer to frame pointer: fp = sp + fp_offset. */
451 int fp_offset = 0;
452
453 /* Total size of frame prior to any alloca operations. */
454 int framesize = 0;
455
456 /* Flag indicating if lr has been saved on the stack. */
457 int lr_saved_on_stack = 0;
458
459 /* The number of the general-purpose register we saved the return
460 address ("link register") in, or -1 if we haven't moved it yet. */
461 int lr_save_reg = -1;
462
463 /* Offset (from sp) at which lr has been saved on the stack. */
464
465 int lr_sp_offset = 0;
466
467 /* If gr_saved[i] is non-zero, then we've noticed that general
468 register i has been saved at gr_sp_offset[i] from the stack
469 pointer. */
470 char gr_saved[64];
471 int gr_sp_offset[64];
472
473 /* The address of the most recently scanned prologue instruction. */
474 CORE_ADDR last_prologue_pc;
475
476 /* The address of the next instruction. */
477 CORE_ADDR next_pc;
478
479 /* The upper bound to of the pc values to scan. */
480 CORE_ADDR lim_pc;
481
482 memset (gr_saved, 0, sizeof (gr_saved));
483
484 last_prologue_pc = pc;
485
486 /* Try to compute an upper limit (on how far to scan) based on the
487 line number info. */
488 lim_pc = skip_prologue_using_sal (pc);
489 /* If there's no line number info, lim_pc will be 0. In that case,
490 set the limit to be 100 instructions away from pc. Hopefully, this
491 will be far enough away to account for the entire prologue. Don't
492 worry about overshooting the end of the function. The scan loop
493 below contains some checks to avoid scanning unreasonably far. */
494 if (lim_pc == 0)
495 lim_pc = pc + 400;
496
497 /* If we have a frame, we don't want to scan past the frame's pc. This
498 will catch those cases where the pc is in the prologue. */
499 if (next_frame)
500 {
501 CORE_ADDR frame_pc = frame_pc_unwind (next_frame);
502 if (frame_pc < lim_pc)
503 lim_pc = frame_pc;
504 }
505
506 /* Scan the prologue. */
507 while (pc < lim_pc)
508 {
509 LONGEST op = read_memory_integer (pc, 4);
510 next_pc = pc + 4;
511
512 /* The tests in this chain of ifs should be in order of
513 decreasing selectivity, so that more particular patterns get
514 to fire before less particular patterns. */
515
516 /* Some sort of control transfer instruction: stop scanning prologue.
517 Integer Conditional Branch:
518 X XXXX XX 0000110 XX XXXXXXXXXXXXXXXX
519 Floating-point / media Conditional Branch:
520 X XXXX XX 0000111 XX XXXXXXXXXXXXXXXX
521 LCR Conditional Branch to LR
522 X XXXX XX 0001110 XX XX 001 X XXXXXXXXXX
523 Integer conditional Branches to LR
524 X XXXX XX 0001110 XX XX 010 X XXXXXXXXXX
525 X XXXX XX 0001110 XX XX 011 X XXXXXXXXXX
526 Floating-point/Media Branches to LR
527 X XXXX XX 0001110 XX XX 110 X XXXXXXXXXX
528 X XXXX XX 0001110 XX XX 111 X XXXXXXXXXX
529 Jump and Link
530 X XXXXX X 0001100 XXXXXX XXXXXX XXXXXX
531 X XXXXX X 0001101 XXXXXX XXXXXX XXXXXX
532 Call
533 X XXXXXX 0001111 XXXXXXXXXXXXXXXXXX
534 Return from Trap
535 X XXXXX X 0000101 XXXXXX XXXXXX XXXXXX
536 Integer Conditional Trap
537 X XXXX XX 0000100 XXXXXX XXXX 00 XXXXXX
538 X XXXX XX 0011100 XXXXXX XXXXXXXXXXXX
539 Floating-point /media Conditional Trap
540 X XXXX XX 0000100 XXXXXX XXXX 01 XXXXXX
541 X XXXX XX 0011101 XXXXXX XXXXXXXXXXXX
542 Break
543 X XXXX XX 0000100 XXXXXX XXXX 11 XXXXXX
544 Media Trap
545 X XXXX XX 0000100 XXXXXX XXXX 10 XXXXXX */
546 if ((op & 0x01d80000) == 0x00180000 /* Conditional branches and Call */
547 || (op & 0x01f80000) == 0x00300000 /* Jump and Link */
548 || (op & 0x01f80000) == 0x00100000 /* Return from Trap, Trap */
549 || (op & 0x01f80000) == 0x00700000) /* Trap immediate */
550 {
551 /* Stop scanning; not in prologue any longer. */
552 break;
553 }
554
555 /* Loading something from memory into fp probably means that
556 we're in the epilogue. Stop scanning the prologue.
557 ld @(GRi, GRk), fp
558 X 000010 0000010 XXXXXX 000100 XXXXXX
559 ldi @(GRi, d12), fp
560 X 000010 0110010 XXXXXX XXXXXXXXXXXX */
561 else if ((op & 0x7ffc0fc0) == 0x04080100
562 || (op & 0x7ffc0000) == 0x04c80000)
563 {
564 break;
565 }
566
567 /* Setting the FP from the SP:
568 ori sp, 0, fp
569 P 000010 0100010 000001 000000000000 = 0x04881000
570 0 111111 1111111 111111 111111111111 = 0x7fffffff
571 . . . . . . . .
572 We treat this as part of the prologue. */
573 else if ((op & 0x7fffffff) == 0x04881000)
574 {
575 fp_set = 1;
576 fp_offset = 0;
577 last_prologue_pc = next_pc;
578 }
579
580 /* Move the link register to the scratch register grJ, before saving:
581 movsg lr, grJ
582 P 000100 0000011 010000 000111 JJJJJJ = 0x080d01c0
583 0 111111 1111111 111111 111111 000000 = 0x7fffffc0
584 . . . . . . . .
585 We treat this as part of the prologue. */
586 else if ((op & 0x7fffffc0) == 0x080d01c0)
587 {
588 int gr_j = op & 0x3f;
589
590 /* If we're moving it to a scratch register, that's fine. */
591 if (is_caller_saves_reg (gr_j))
592 {
593 lr_save_reg = gr_j;
594 last_prologue_pc = next_pc;
595 }
596 }
597
598 /* To save multiple callee-saves registers on the stack, at
599 offset zero:
600
601 std grK,@(sp,gr0)
602 P KKKKKK 0000011 000001 000011 000000 = 0x000c10c0
603 0 000000 1111111 111111 111111 111111 = 0x01ffffff
604
605 stq grK,@(sp,gr0)
606 P KKKKKK 0000011 000001 000100 000000 = 0x000c1100
607 0 000000 1111111 111111 111111 111111 = 0x01ffffff
608 . . . . . . . .
609 We treat this as part of the prologue, and record the register's
610 saved address in the frame structure. */
611 else if ((op & 0x01ffffff) == 0x000c10c0
612 || (op & 0x01ffffff) == 0x000c1100)
613 {
614 int gr_k = ((op >> 25) & 0x3f);
615 int ope = ((op >> 6) & 0x3f);
616 int count;
617 int i;
618
619 /* Is it an std or an stq? */
620 if (ope == 0x03)
621 count = 2;
622 else
623 count = 4;
624
625 /* Is it really a callee-saves register? */
626 if (is_callee_saves_reg (gr_k))
627 {
628 for (i = 0; i < count; i++)
629 {
630 gr_saved[gr_k + i] = 1;
631 gr_sp_offset[gr_k + i] = 4 * i;
632 }
633 last_prologue_pc = next_pc;
634 }
635 }
636
637 /* Adjusting the stack pointer. (The stack pointer is GR1.)
638 addi sp, S, sp
639 P 000001 0010000 000001 SSSSSSSSSSSS = 0x02401000
640 0 111111 1111111 111111 000000000000 = 0x7ffff000
641 . . . . . . . .
642 We treat this as part of the prologue. */
643 else if ((op & 0x7ffff000) == 0x02401000)
644 {
645 if (framesize == 0)
646 {
647 /* Sign-extend the twelve-bit field.
648 (Isn't there a better way to do this?) */
649 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
650
651 framesize -= s;
652 last_prologue_pc = pc;
653 }
654 else
655 {
656 /* If the prologue is being adjusted again, we've
657 likely gone too far; i.e. we're probably in the
658 epilogue. */
659 break;
660 }
661 }
662
663 /* Setting the FP to a constant distance from the SP:
664 addi sp, S, fp
665 P 000010 0010000 000001 SSSSSSSSSSSS = 0x04401000
666 0 111111 1111111 111111 000000000000 = 0x7ffff000
667 . . . . . . . .
668 We treat this as part of the prologue. */
669 else if ((op & 0x7ffff000) == 0x04401000)
670 {
671 /* Sign-extend the twelve-bit field.
672 (Isn't there a better way to do this?) */
673 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
674 fp_set = 1;
675 fp_offset = s;
676 last_prologue_pc = pc;
677 }
678
679 /* To spill an argument register to a scratch register:
680 ori GRi, 0, GRk
681 P KKKKKK 0100010 IIIIII 000000000000 = 0x00880000
682 0 000000 1111111 000000 111111111111 = 0x01fc0fff
683 . . . . . . . .
684 For the time being, we treat this as a prologue instruction,
685 assuming that GRi is an argument register. This one's kind
686 of suspicious, because it seems like it could be part of a
687 legitimate body instruction. But we only come here when the
688 source info wasn't helpful, so we have to do the best we can.
689 Hopefully once GCC and GDB agree on how to emit line number
690 info for prologues, then this code will never come into play. */
691 else if ((op & 0x01fc0fff) == 0x00880000)
692 {
693 int gr_i = ((op >> 12) & 0x3f);
694
695 /* Make sure that the source is an arg register; if it is, we'll
696 treat it as a prologue instruction. */
697 if (is_argument_reg (gr_i))
698 last_prologue_pc = next_pc;
699 }
700
701 /* To spill 16-bit values to the stack:
702 sthi GRk, @(fp, s)
703 P KKKKKK 1010001 000010 SSSSSSSSSSSS = 0x01442000
704 0 000000 1111111 111111 000000000000 = 0x01fff000
705 . . . . . . . .
706 And for 8-bit values, we use STB instructions.
707 stbi GRk, @(fp, s)
708 P KKKKKK 1010000 000010 SSSSSSSSSSSS = 0x01402000
709 0 000000 1111111 111111 000000000000 = 0x01fff000
710 . . . . . . . .
711 We check that GRk is really an argument register, and treat
712 all such as part of the prologue. */
713 else if ( (op & 0x01fff000) == 0x01442000
714 || (op & 0x01fff000) == 0x01402000)
715 {
716 int gr_k = ((op >> 25) & 0x3f);
717
718 /* Make sure that GRk is really an argument register; treat
719 it as a prologue instruction if so. */
720 if (is_argument_reg (gr_k))
721 last_prologue_pc = next_pc;
722 }
723
724 /* To save multiple callee-saves register on the stack, at a
725 non-zero offset:
726
727 stdi GRk, @(sp, s)
728 P KKKKKK 1010011 000001 SSSSSSSSSSSS = 0x014c1000
729 0 000000 1111111 111111 000000000000 = 0x01fff000
730 . . . . . . . .
731 stqi GRk, @(sp, s)
732 P KKKKKK 1010100 000001 SSSSSSSSSSSS = 0x01501000
733 0 000000 1111111 111111 000000000000 = 0x01fff000
734 . . . . . . . .
735 We treat this as part of the prologue, and record the register's
736 saved address in the frame structure. */
737 else if ((op & 0x01fff000) == 0x014c1000
738 || (op & 0x01fff000) == 0x01501000)
739 {
740 int gr_k = ((op >> 25) & 0x3f);
741 int count;
742 int i;
743
744 /* Is it a stdi or a stqi? */
745 if ((op & 0x01fff000) == 0x014c1000)
746 count = 2;
747 else
748 count = 4;
749
750 /* Is it really a callee-saves register? */
751 if (is_callee_saves_reg (gr_k))
752 {
753 /* Sign-extend the twelve-bit field.
754 (Isn't there a better way to do this?) */
755 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
756
757 for (i = 0; i < count; i++)
758 {
759 gr_saved[gr_k + i] = 1;
760 gr_sp_offset[gr_k + i] = s + (4 * i);
761 }
762 last_prologue_pc = next_pc;
763 }
764 }
765
766 /* Storing any kind of integer register at any constant offset
767 from any other register.
768
769 st GRk, @(GRi, gr0)
770 P KKKKKK 0000011 IIIIII 000010 000000 = 0x000c0080
771 0 000000 1111111 000000 111111 111111 = 0x01fc0fff
772 . . . . . . . .
773 sti GRk, @(GRi, d12)
774 P KKKKKK 1010010 IIIIII SSSSSSSSSSSS = 0x01480000
775 0 000000 1111111 000000 000000000000 = 0x01fc0000
776 . . . . . . . .
777 These could be almost anything, but a lot of prologue
778 instructions fall into this pattern, so let's decode the
779 instruction once, and then work at a higher level. */
780 else if (((op & 0x01fc0fff) == 0x000c0080)
781 || ((op & 0x01fc0000) == 0x01480000))
782 {
783 int gr_k = ((op >> 25) & 0x3f);
784 int gr_i = ((op >> 12) & 0x3f);
785 int offset;
786
787 /* Are we storing with gr0 as an offset, or using an
788 immediate value? */
789 if ((op & 0x01fc0fff) == 0x000c0080)
790 offset = 0;
791 else
792 offset = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
793
794 /* If the address isn't relative to the SP or FP, it's not a
795 prologue instruction. */
796 if (gr_i != sp_regnum && gr_i != fp_regnum)
797 {
798 /* Do nothing; not a prologue instruction. */
799 }
800
801 /* Saving the old FP in the new frame (relative to the SP). */
802 else if (gr_k == fp_regnum && gr_i == sp_regnum)
803 {
804 gr_saved[fp_regnum] = 1;
805 gr_sp_offset[fp_regnum] = offset;
806 last_prologue_pc = next_pc;
807 }
808
809 /* Saving callee-saves register(s) on the stack, relative to
810 the SP. */
811 else if (gr_i == sp_regnum
812 && is_callee_saves_reg (gr_k))
813 {
814 gr_saved[gr_k] = 1;
815 if (gr_i == sp_regnum)
816 gr_sp_offset[gr_k] = offset;
817 else
818 gr_sp_offset[gr_k] = offset + fp_offset;
819 last_prologue_pc = next_pc;
820 }
821
822 /* Saving the scratch register holding the return address. */
823 else if (lr_save_reg != -1
824 && gr_k == lr_save_reg)
825 {
826 lr_saved_on_stack = 1;
827 if (gr_i == sp_regnum)
828 lr_sp_offset = offset;
829 else
830 lr_sp_offset = offset + fp_offset;
831 last_prologue_pc = next_pc;
832 }
833
834 /* Spilling int-sized arguments to the stack. */
835 else if (is_argument_reg (gr_k))
836 last_prologue_pc = next_pc;
837 }
838 pc = next_pc;
839 }
840
841 if (next_frame && info)
842 {
843 int i;
844 ULONGEST this_base;
845
846 /* If we know the relationship between the stack and frame
847 pointers, record the addresses of the registers we noticed.
848 Note that we have to do this as a separate step at the end,
849 because instructions may save relative to the SP, but we need
850 their addresses relative to the FP. */
851 if (fp_set)
852 frame_unwind_unsigned_register (next_frame, fp_regnum, &this_base);
853 else
854 frame_unwind_unsigned_register (next_frame, sp_regnum, &this_base);
855
856 for (i = 0; i < 64; i++)
857 if (gr_saved[i])
858 info->saved_regs[i].addr = this_base - fp_offset + gr_sp_offset[i];
859
860 info->prev_sp = this_base - fp_offset + framesize;
861 info->base = this_base;
862
863 /* If LR was saved on the stack, record its location. */
864 if (lr_saved_on_stack)
865 info->saved_regs[lr_regnum].addr = this_base - fp_offset + lr_sp_offset;
866
867 /* The call instruction moves the caller's PC in the callee's LR.
868 Since this is an unwind, do the reverse. Copy the location of LR
869 into PC (the address / regnum) so that a request for PC will be
870 converted into a request for the LR. */
871 info->saved_regs[pc_regnum] = info->saved_regs[lr_regnum];
872
873 /* Save the previous frame's computed SP value. */
874 trad_frame_set_value (info->saved_regs, sp_regnum, info->prev_sp);
875 }
876
877 return last_prologue_pc;
878 }
879
880
881 static CORE_ADDR
882 frv_skip_prologue (CORE_ADDR pc)
883 {
884 CORE_ADDR func_addr, func_end, new_pc;
885
886 new_pc = pc;
887
888 /* If the line table has entry for a line *within* the function
889 (i.e., not in the prologue, and not past the end), then that's
890 our location. */
891 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
892 {
893 struct symtab_and_line sal;
894
895 sal = find_pc_line (func_addr, 0);
896
897 if (sal.line != 0 && sal.end < func_end)
898 {
899 new_pc = sal.end;
900 }
901 }
902
903 /* The FR-V prologue is at least five instructions long (twenty bytes).
904 If we didn't find a real source location past that, then
905 do a full analysis of the prologue. */
906 if (new_pc < pc + 20)
907 new_pc = frv_analyze_prologue (pc, 0, 0);
908
909 return new_pc;
910 }
911
912
913 static struct frv_unwind_cache *
914 frv_frame_unwind_cache (struct frame_info *next_frame,
915 void **this_prologue_cache)
916 {
917 struct gdbarch *gdbarch = get_frame_arch (next_frame);
918 CORE_ADDR pc;
919 ULONGEST prev_sp;
920 ULONGEST this_base;
921 struct frv_unwind_cache *info;
922
923 if ((*this_prologue_cache))
924 return (*this_prologue_cache);
925
926 info = FRAME_OBSTACK_ZALLOC (struct frv_unwind_cache);
927 (*this_prologue_cache) = info;
928 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
929
930 /* Prologue analysis does the rest... */
931 frv_analyze_prologue (frame_func_unwind (next_frame), next_frame, info);
932
933 return info;
934 }
935
936 static void
937 frv_extract_return_value (struct type *type, struct regcache *regcache,
938 void *valbuf)
939 {
940 int len = TYPE_LENGTH (type);
941
942 if (len <= 4)
943 {
944 ULONGEST gpr8_val;
945 regcache_cooked_read_unsigned (regcache, 8, &gpr8_val);
946 store_unsigned_integer (valbuf, len, gpr8_val);
947 }
948 else if (len == 8)
949 {
950 ULONGEST regval;
951 regcache_cooked_read_unsigned (regcache, 8, &regval);
952 store_unsigned_integer (valbuf, 4, regval);
953 regcache_cooked_read_unsigned (regcache, 9, &regval);
954 store_unsigned_integer ((bfd_byte *) valbuf + 4, 4, regval);
955 }
956 else
957 internal_error (__FILE__, __LINE__, "Illegal return value length: %d", len);
958 }
959
960 static CORE_ADDR
961 frv_extract_struct_value_address (struct regcache *regcache)
962 {
963 ULONGEST addr;
964 regcache_cooked_read_unsigned (regcache, struct_return_regnum, &addr);
965 return addr;
966 }
967
968 static void
969 frv_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
970 {
971 write_register (struct_return_regnum, addr);
972 }
973
974 static int
975 frv_frameless_function_invocation (struct frame_info *frame)
976 {
977 return legacy_frameless_look_for_prologue (frame);
978 }
979
980 static CORE_ADDR
981 frv_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
982 {
983 /* Require dword alignment. */
984 return align_down (sp, 8);
985 }
986
987 static CORE_ADDR
988 find_func_descr (struct gdbarch *gdbarch, CORE_ADDR entry_point)
989 {
990 CORE_ADDR descr;
991 char valbuf[4];
992
993 descr = frv_fdpic_find_canonical_descriptor (entry_point);
994
995 if (descr != 0)
996 return descr;
997
998 /* Construct a non-canonical descriptor from space allocated on
999 the stack. */
1000
1001 descr = value_as_long (value_allocate_space_in_inferior (8));
1002 store_unsigned_integer (valbuf, 4, entry_point);
1003 write_memory (descr, valbuf, 4);
1004 store_unsigned_integer (valbuf, 4,
1005 frv_fdpic_find_global_pointer (entry_point));
1006 write_memory (descr + 4, valbuf, 4);
1007 return descr;
1008 }
1009
1010 static CORE_ADDR
1011 frv_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr,
1012 struct target_ops *targ)
1013 {
1014 CORE_ADDR entry_point;
1015 CORE_ADDR got_address;
1016
1017 entry_point = get_target_memory_unsigned (targ, addr, 4);
1018 got_address = get_target_memory_unsigned (targ, addr + 4, 4);
1019
1020 if (got_address == frv_fdpic_find_global_pointer (entry_point))
1021 return entry_point;
1022 else
1023 return addr;
1024 }
1025
1026 static CORE_ADDR
1027 frv_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
1028 struct regcache *regcache, CORE_ADDR bp_addr,
1029 int nargs, struct value **args, CORE_ADDR sp,
1030 int struct_return, CORE_ADDR struct_addr)
1031 {
1032 int argreg;
1033 int argnum;
1034 char *val;
1035 char valbuf[4];
1036 struct value *arg;
1037 struct type *arg_type;
1038 int len;
1039 enum type_code typecode;
1040 CORE_ADDR regval;
1041 int stack_space;
1042 int stack_offset;
1043 enum frv_abi abi = frv_abi (gdbarch);
1044
1045 #if 0
1046 printf("Push %d args at sp = %x, struct_return=%d (%x)\n",
1047 nargs, (int) sp, struct_return, struct_addr);
1048 #endif
1049
1050 stack_space = 0;
1051 for (argnum = 0; argnum < nargs; ++argnum)
1052 stack_space += align_up (TYPE_LENGTH (VALUE_TYPE (args[argnum])), 4);
1053
1054 stack_space -= (6 * 4);
1055 if (stack_space > 0)
1056 sp -= stack_space;
1057
1058 /* Make sure stack is dword aligned. */
1059 sp = align_down (sp, 8);
1060
1061 stack_offset = 0;
1062
1063 argreg = 8;
1064
1065 if (struct_return)
1066 regcache_cooked_write_unsigned (regcache, struct_return_regnum,
1067 struct_addr);
1068
1069 for (argnum = 0; argnum < nargs; ++argnum)
1070 {
1071 arg = args[argnum];
1072 arg_type = check_typedef (VALUE_TYPE (arg));
1073 len = TYPE_LENGTH (arg_type);
1074 typecode = TYPE_CODE (arg_type);
1075
1076 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
1077 {
1078 store_unsigned_integer (valbuf, 4, VALUE_ADDRESS (arg));
1079 typecode = TYPE_CODE_PTR;
1080 len = 4;
1081 val = valbuf;
1082 }
1083 else if (abi == FRV_ABI_FDPIC
1084 && len == 4
1085 && typecode == TYPE_CODE_PTR
1086 && TYPE_CODE (TYPE_TARGET_TYPE (arg_type)) == TYPE_CODE_FUNC)
1087 {
1088 /* The FDPIC ABI requires function descriptors to be passed instead
1089 of entry points. */
1090 store_unsigned_integer
1091 (valbuf, 4,
1092 find_func_descr (gdbarch,
1093 extract_unsigned_integer (VALUE_CONTENTS (arg),
1094 4)));
1095 typecode = TYPE_CODE_PTR;
1096 len = 4;
1097 val = valbuf;
1098 }
1099 else
1100 {
1101 val = (char *) VALUE_CONTENTS (arg);
1102 }
1103
1104 while (len > 0)
1105 {
1106 int partial_len = (len < 4 ? len : 4);
1107
1108 if (argreg < 14)
1109 {
1110 regval = extract_unsigned_integer (val, partial_len);
1111 #if 0
1112 printf(" Argnum %d data %x -> reg %d\n",
1113 argnum, (int) regval, argreg);
1114 #endif
1115 regcache_cooked_write_unsigned (regcache, argreg, regval);
1116 ++argreg;
1117 }
1118 else
1119 {
1120 #if 0
1121 printf(" Argnum %d data %x -> offset %d (%x)\n",
1122 argnum, *((int *)val), stack_offset, (int) (sp + stack_offset));
1123 #endif
1124 write_memory (sp + stack_offset, val, partial_len);
1125 stack_offset += align_up (partial_len, 4);
1126 }
1127 len -= partial_len;
1128 val += partial_len;
1129 }
1130 }
1131
1132 /* Set the return address. For the frv, the return breakpoint is
1133 always at BP_ADDR. */
1134 regcache_cooked_write_unsigned (regcache, lr_regnum, bp_addr);
1135
1136 if (abi == FRV_ABI_FDPIC)
1137 {
1138 /* Set the GOT register for the FDPIC ABI. */
1139 regcache_cooked_write_unsigned
1140 (regcache, first_gpr_regnum + 15,
1141 frv_fdpic_find_global_pointer (func_addr));
1142 }
1143
1144 /* Finally, update the SP register. */
1145 regcache_cooked_write_unsigned (regcache, sp_regnum, sp);
1146
1147 return sp;
1148 }
1149
1150 static void
1151 frv_store_return_value (struct type *type, struct regcache *regcache,
1152 const void *valbuf)
1153 {
1154 int len = TYPE_LENGTH (type);
1155
1156 if (len <= 4)
1157 {
1158 bfd_byte val[4];
1159 memset (val, 0, sizeof (val));
1160 memcpy (val + (4 - len), valbuf, len);
1161 regcache_cooked_write (regcache, 8, val);
1162 }
1163 else if (len == 8)
1164 {
1165 regcache_cooked_write (regcache, 8, valbuf);
1166 regcache_cooked_write (regcache, 9, (bfd_byte *) valbuf + 4);
1167 }
1168 else
1169 internal_error (__FILE__, __LINE__,
1170 "Don't know how to return a %d-byte value.", len);
1171 }
1172
1173
1174 /* Hardware watchpoint / breakpoint support for the FR500
1175 and FR400. */
1176
1177 int
1178 frv_check_watch_resources (int type, int cnt, int ot)
1179 {
1180 struct gdbarch_tdep *var = CURRENT_VARIANT;
1181
1182 /* Watchpoints not supported on simulator. */
1183 if (strcmp (target_shortname, "sim") == 0)
1184 return 0;
1185
1186 if (type == bp_hardware_breakpoint)
1187 {
1188 if (var->num_hw_breakpoints == 0)
1189 return 0;
1190 else if (cnt <= var->num_hw_breakpoints)
1191 return 1;
1192 }
1193 else
1194 {
1195 if (var->num_hw_watchpoints == 0)
1196 return 0;
1197 else if (ot)
1198 return -1;
1199 else if (cnt <= var->num_hw_watchpoints)
1200 return 1;
1201 }
1202 return -1;
1203 }
1204
1205
1206 CORE_ADDR
1207 frv_stopped_data_address (void)
1208 {
1209 CORE_ADDR brr, dbar0, dbar1, dbar2, dbar3;
1210
1211 brr = read_register (brr_regnum);
1212 dbar0 = read_register (dbar0_regnum);
1213 dbar1 = read_register (dbar1_regnum);
1214 dbar2 = read_register (dbar2_regnum);
1215 dbar3 = read_register (dbar3_regnum);
1216
1217 if (brr & (1<<11))
1218 return dbar0;
1219 else if (brr & (1<<10))
1220 return dbar1;
1221 else if (brr & (1<<9))
1222 return dbar2;
1223 else if (brr & (1<<8))
1224 return dbar3;
1225 else
1226 return 0;
1227 }
1228
1229 static CORE_ADDR
1230 frv_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1231 {
1232 return frame_unwind_register_unsigned (next_frame, pc_regnum);
1233 }
1234
1235 /* Given a GDB frame, determine the address of the calling function's
1236 frame. This will be used to create a new GDB frame struct. */
1237
1238 static void
1239 frv_frame_this_id (struct frame_info *next_frame,
1240 void **this_prologue_cache, struct frame_id *this_id)
1241 {
1242 struct frv_unwind_cache *info
1243 = frv_frame_unwind_cache (next_frame, this_prologue_cache);
1244 CORE_ADDR base;
1245 CORE_ADDR func;
1246 struct minimal_symbol *msym_stack;
1247 struct frame_id id;
1248
1249 /* The FUNC is easy. */
1250 func = frame_func_unwind (next_frame);
1251
1252 /* Check if the stack is empty. */
1253 msym_stack = lookup_minimal_symbol ("_stack", NULL, NULL);
1254 if (msym_stack && info->base == SYMBOL_VALUE_ADDRESS (msym_stack))
1255 return;
1256
1257 /* Hopefully the prologue analysis either correctly determined the
1258 frame's base (which is the SP from the previous frame), or set
1259 that base to "NULL". */
1260 base = info->prev_sp;
1261 if (base == 0)
1262 return;
1263
1264 id = frame_id_build (base, func);
1265
1266 /* Check that we're not going round in circles with the same frame
1267 ID (but avoid applying the test to sentinel frames which do go
1268 round in circles). Can't use frame_id_eq() as that doesn't yet
1269 compare the frame's PC value. */
1270 if (frame_relative_level (next_frame) >= 0
1271 && get_frame_type (next_frame) != DUMMY_FRAME
1272 && frame_id_eq (get_frame_id (next_frame), id))
1273 return;
1274
1275 (*this_id) = id;
1276 }
1277
1278 static void
1279 frv_frame_prev_register (struct frame_info *next_frame,
1280 void **this_prologue_cache,
1281 int regnum, int *optimizedp,
1282 enum lval_type *lvalp, CORE_ADDR *addrp,
1283 int *realnump, void *bufferp)
1284 {
1285 struct frv_unwind_cache *info
1286 = frv_frame_unwind_cache (next_frame, this_prologue_cache);
1287 trad_frame_prev_register (next_frame, info->saved_regs, regnum,
1288 optimizedp, lvalp, addrp, realnump, bufferp);
1289 }
1290
1291 static const struct frame_unwind frv_frame_unwind = {
1292 NORMAL_FRAME,
1293 frv_frame_this_id,
1294 frv_frame_prev_register
1295 };
1296
1297 static const struct frame_unwind *
1298 frv_frame_sniffer (struct frame_info *next_frame)
1299 {
1300 return &frv_frame_unwind;
1301 }
1302
1303 static CORE_ADDR
1304 frv_frame_base_address (struct frame_info *next_frame, void **this_cache)
1305 {
1306 struct frv_unwind_cache *info
1307 = frv_frame_unwind_cache (next_frame, this_cache);
1308 return info->base;
1309 }
1310
1311 static const struct frame_base frv_frame_base = {
1312 &frv_frame_unwind,
1313 frv_frame_base_address,
1314 frv_frame_base_address,
1315 frv_frame_base_address
1316 };
1317
1318 static CORE_ADDR
1319 frv_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1320 {
1321 return frame_unwind_register_unsigned (next_frame, sp_regnum);
1322 }
1323
1324
1325 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1326 dummy frame. The frame ID's base needs to match the TOS value
1327 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1328 breakpoint. */
1329
1330 static struct frame_id
1331 frv_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1332 {
1333 return frame_id_build (frv_unwind_sp (gdbarch, next_frame),
1334 frame_pc_unwind (next_frame));
1335 }
1336
1337
1338 static struct gdbarch *
1339 frv_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1340 {
1341 struct gdbarch *gdbarch;
1342 struct gdbarch_tdep *var;
1343 int elf_flags = 0;
1344
1345 /* Check to see if we've already built an appropriate architecture
1346 object for this executable. */
1347 arches = gdbarch_list_lookup_by_info (arches, &info);
1348 if (arches)
1349 return arches->gdbarch;
1350
1351 /* Select the right tdep structure for this variant. */
1352 var = new_variant ();
1353 switch (info.bfd_arch_info->mach)
1354 {
1355 case bfd_mach_frv:
1356 case bfd_mach_frvsimple:
1357 case bfd_mach_fr500:
1358 case bfd_mach_frvtomcat:
1359 case bfd_mach_fr550:
1360 set_variant_num_gprs (var, 64);
1361 set_variant_num_fprs (var, 64);
1362 break;
1363
1364 case bfd_mach_fr400:
1365 set_variant_num_gprs (var, 32);
1366 set_variant_num_fprs (var, 32);
1367 break;
1368
1369 default:
1370 /* Never heard of this variant. */
1371 return 0;
1372 }
1373
1374 /* Extract the ELF flags, if available. */
1375 if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
1376 elf_flags = elf_elfheader (info.abfd)->e_flags;
1377
1378 if (elf_flags & EF_FRV_FDPIC)
1379 set_variant_abi_fdpic (var);
1380
1381 gdbarch = gdbarch_alloc (&info, var);
1382
1383 set_gdbarch_short_bit (gdbarch, 16);
1384 set_gdbarch_int_bit (gdbarch, 32);
1385 set_gdbarch_long_bit (gdbarch, 32);
1386 set_gdbarch_long_long_bit (gdbarch, 64);
1387 set_gdbarch_float_bit (gdbarch, 32);
1388 set_gdbarch_double_bit (gdbarch, 64);
1389 set_gdbarch_long_double_bit (gdbarch, 64);
1390 set_gdbarch_ptr_bit (gdbarch, 32);
1391
1392 set_gdbarch_num_regs (gdbarch, frv_num_regs);
1393 set_gdbarch_num_pseudo_regs (gdbarch, frv_num_pseudo_regs);
1394
1395 set_gdbarch_sp_regnum (gdbarch, sp_regnum);
1396 set_gdbarch_deprecated_fp_regnum (gdbarch, fp_regnum);
1397 set_gdbarch_pc_regnum (gdbarch, pc_regnum);
1398
1399 set_gdbarch_register_name (gdbarch, frv_register_name);
1400 set_gdbarch_register_type (gdbarch, frv_register_type);
1401 set_gdbarch_register_sim_regno (gdbarch, frv_register_sim_regno);
1402
1403 set_gdbarch_pseudo_register_read (gdbarch, frv_pseudo_register_read);
1404 set_gdbarch_pseudo_register_write (gdbarch, frv_pseudo_register_write);
1405
1406 set_gdbarch_skip_prologue (gdbarch, frv_skip_prologue);
1407 set_gdbarch_breakpoint_from_pc (gdbarch, frv_breakpoint_from_pc);
1408 set_gdbarch_adjust_breakpoint_address (gdbarch, frv_gdbarch_adjust_breakpoint_address);
1409
1410 set_gdbarch_deprecated_frameless_function_invocation (gdbarch, frv_frameless_function_invocation);
1411
1412 set_gdbarch_use_struct_convention (gdbarch, always_use_struct_convention);
1413 set_gdbarch_extract_return_value (gdbarch, frv_extract_return_value);
1414
1415 set_gdbarch_deprecated_store_struct_return (gdbarch, frv_store_struct_return);
1416 set_gdbarch_store_return_value (gdbarch, frv_store_return_value);
1417 set_gdbarch_deprecated_extract_struct_value_address (gdbarch, frv_extract_struct_value_address);
1418
1419 /* Frame stuff. */
1420 set_gdbarch_unwind_pc (gdbarch, frv_unwind_pc);
1421 set_gdbarch_unwind_sp (gdbarch, frv_unwind_sp);
1422 set_gdbarch_frame_align (gdbarch, frv_frame_align);
1423 frame_unwind_append_sniffer (gdbarch, frv_frame_sniffer);
1424 frame_base_set_default (gdbarch, &frv_frame_base);
1425
1426 /* Settings for calling functions in the inferior. */
1427 set_gdbarch_push_dummy_call (gdbarch, frv_push_dummy_call);
1428 set_gdbarch_unwind_dummy_id (gdbarch, frv_unwind_dummy_id);
1429
1430 /* Settings that should be unnecessary. */
1431 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1432
1433 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
1434
1435 set_gdbarch_remote_translate_xfer_address
1436 (gdbarch, generic_remote_translate_xfer_address);
1437
1438 /* Hardware watchpoint / breakpoint support. */
1439 switch (info.bfd_arch_info->mach)
1440 {
1441 case bfd_mach_frv:
1442 case bfd_mach_frvsimple:
1443 case bfd_mach_fr500:
1444 case bfd_mach_frvtomcat:
1445 /* fr500-style hardware debugging support. */
1446 var->num_hw_watchpoints = 4;
1447 var->num_hw_breakpoints = 4;
1448 break;
1449
1450 case bfd_mach_fr400:
1451 /* fr400-style hardware debugging support. */
1452 var->num_hw_watchpoints = 2;
1453 var->num_hw_breakpoints = 4;
1454 break;
1455
1456 default:
1457 /* Otherwise, assume we don't have hardware debugging support. */
1458 var->num_hw_watchpoints = 0;
1459 var->num_hw_breakpoints = 0;
1460 break;
1461 }
1462
1463 set_gdbarch_print_insn (gdbarch, print_insn_frv);
1464 if (frv_abi (gdbarch) == FRV_ABI_FDPIC)
1465 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
1466 frv_convert_from_func_ptr_addr);
1467
1468 return gdbarch;
1469 }
1470
1471 void
1472 _initialize_frv_tdep (void)
1473 {
1474 register_gdbarch_init (bfd_arch_frv, frv_gdbarch_init);
1475 }