Turn value_address and set_value_address functions into methods
[binutils-gdb.git] / gdb / frv-tdep.c
1 /* Target-dependent code for the Fujitsu FR-V, for GDB, the GNU Debugger.
2
3 Copyright (C) 2002-2023 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "inferior.h"
22 #include "gdbcore.h"
23 #include "arch-utils.h"
24 #include "regcache.h"
25 #include "frame.h"
26 #include "frame-unwind.h"
27 #include "frame-base.h"
28 #include "trad-frame.h"
29 #include "dis-asm.h"
30 #include "sim-regno.h"
31 #include "sim/sim-frv.h"
32 #include "opcodes/frv-desc.h" /* for the H_SPR_... enums */
33 #include "symtab.h"
34 #include "elf-bfd.h"
35 #include "elf/frv.h"
36 #include "osabi.h"
37 #include "infcall.h"
38 #include "solib.h"
39 #include "frv-tdep.h"
40 #include "objfiles.h"
41 #include "gdbarch.h"
42
43 struct frv_unwind_cache /* was struct frame_extra_info */
44 {
45 /* The previous frame's inner-most stack address. Used as this
46 frame ID's stack_addr. */
47 CORE_ADDR prev_sp;
48
49 /* The frame's base, optionally used by the high-level debug info. */
50 CORE_ADDR base;
51
52 /* Table indicating the location of each and every register. */
53 trad_frame_saved_reg *saved_regs;
54 };
55
56 /* A structure describing a particular variant of the FRV.
57 We allocate and initialize one of these structures when we create
58 the gdbarch object for a variant.
59
60 At the moment, all the FR variants we support differ only in which
61 registers are present; the portable code of GDB knows that
62 registers whose names are the empty string don't exist, so the
63 `register_names' array captures all the per-variant information we
64 need.
65
66 in the future, if we need to have per-variant maps for raw size,
67 virtual type, etc., we should replace register_names with an array
68 of structures, each of which gives all the necessary info for one
69 register. Don't stick parallel arrays in here --- that's so
70 Fortran. */
71 struct frv_gdbarch_tdep : gdbarch_tdep_base
72 {
73 /* Which ABI is in use? */
74 enum frv_abi frv_abi {};
75
76 /* How many general-purpose registers does this variant have? */
77 int num_gprs = 0;
78
79 /* How many floating-point registers does this variant have? */
80 int num_fprs = 0;
81
82 /* How many hardware watchpoints can it support? */
83 int num_hw_watchpoints = 0;
84
85 /* How many hardware breakpoints can it support? */
86 int num_hw_breakpoints = 0;
87
88 /* Register names. */
89 const char **register_names = nullptr;
90 };
91
92 using frv_gdbarch_tdep_up = std::unique_ptr<frv_gdbarch_tdep>;
93
94 /* Return the FR-V ABI associated with GDBARCH. */
95 enum frv_abi
96 frv_abi (struct gdbarch *gdbarch)
97 {
98 frv_gdbarch_tdep *tdep = gdbarch_tdep<frv_gdbarch_tdep> (gdbarch);
99 return tdep->frv_abi;
100 }
101
102 /* Fetch the interpreter and executable loadmap addresses (for shared
103 library support) for the FDPIC ABI. Return 0 if successful, -1 if
104 not. (E.g, -1 will be returned if the ABI isn't the FDPIC ABI.) */
105 int
106 frv_fdpic_loadmap_addresses (struct gdbarch *gdbarch, CORE_ADDR *interp_addr,
107 CORE_ADDR *exec_addr)
108 {
109 if (frv_abi (gdbarch) != FRV_ABI_FDPIC)
110 return -1;
111 else
112 {
113 struct regcache *regcache = get_current_regcache ();
114
115 if (interp_addr != NULL)
116 {
117 ULONGEST val;
118 regcache_cooked_read_unsigned (regcache,
119 fdpic_loadmap_interp_regnum, &val);
120 *interp_addr = val;
121 }
122 if (exec_addr != NULL)
123 {
124 ULONGEST val;
125 regcache_cooked_read_unsigned (regcache,
126 fdpic_loadmap_exec_regnum, &val);
127 *exec_addr = val;
128 }
129 return 0;
130 }
131 }
132
133 /* Allocate a new variant structure, and set up default values for all
134 the fields. */
135 static frv_gdbarch_tdep_up
136 new_variant ()
137 {
138 int r;
139
140 frv_gdbarch_tdep_up var (new frv_gdbarch_tdep);
141
142 var->frv_abi = FRV_ABI_EABI;
143 var->num_gprs = 64;
144 var->num_fprs = 64;
145 var->num_hw_watchpoints = 0;
146 var->num_hw_breakpoints = 0;
147
148 /* By default, don't supply any general-purpose or floating-point
149 register names. */
150 var->register_names
151 = (const char **) xmalloc ((frv_num_regs + frv_num_pseudo_regs)
152 * sizeof (const char *));
153 for (r = 0; r < frv_num_regs + frv_num_pseudo_regs; r++)
154 var->register_names[r] = "";
155
156 /* Do, however, supply default names for the known special-purpose
157 registers. */
158
159 var->register_names[pc_regnum] = "pc";
160 var->register_names[lr_regnum] = "lr";
161 var->register_names[lcr_regnum] = "lcr";
162
163 var->register_names[psr_regnum] = "psr";
164 var->register_names[ccr_regnum] = "ccr";
165 var->register_names[cccr_regnum] = "cccr";
166 var->register_names[tbr_regnum] = "tbr";
167
168 /* Debug registers. */
169 var->register_names[brr_regnum] = "brr";
170 var->register_names[dbar0_regnum] = "dbar0";
171 var->register_names[dbar1_regnum] = "dbar1";
172 var->register_names[dbar2_regnum] = "dbar2";
173 var->register_names[dbar3_regnum] = "dbar3";
174
175 /* iacc0 (Only found on MB93405.) */
176 var->register_names[iacc0h_regnum] = "iacc0h";
177 var->register_names[iacc0l_regnum] = "iacc0l";
178 var->register_names[iacc0_regnum] = "iacc0";
179
180 /* fsr0 (Found on FR555 and FR501.) */
181 var->register_names[fsr0_regnum] = "fsr0";
182
183 /* acc0 - acc7. The architecture provides for the possibility of many
184 more (up to 64 total), but we don't want to make that big of a hole
185 in the G packet. If we need more in the future, we'll add them
186 elsewhere. */
187 for (r = acc0_regnum; r <= acc7_regnum; r++)
188 var->register_names[r]
189 = xstrprintf ("acc%d", r - acc0_regnum).release ();
190
191 /* accg0 - accg7: These are one byte registers. The remote protocol
192 provides the raw values packed four into a slot. accg0123 and
193 accg4567 correspond to accg0 - accg3 and accg4-accg7 respectively.
194 We don't provide names for accg0123 and accg4567 since the user will
195 likely not want to see these raw values. */
196
197 for (r = accg0_regnum; r <= accg7_regnum; r++)
198 var->register_names[r]
199 = xstrprintf ("accg%d", r - accg0_regnum).release ();
200
201 /* msr0 and msr1. */
202
203 var->register_names[msr0_regnum] = "msr0";
204 var->register_names[msr1_regnum] = "msr1";
205
206 /* gner and fner registers. */
207 var->register_names[gner0_regnum] = "gner0";
208 var->register_names[gner1_regnum] = "gner1";
209 var->register_names[fner0_regnum] = "fner0";
210 var->register_names[fner1_regnum] = "fner1";
211
212 return var;
213 }
214
215
216 /* Indicate that the variant VAR has NUM_GPRS general-purpose
217 registers, and fill in the names array appropriately. */
218 static void
219 set_variant_num_gprs (frv_gdbarch_tdep *var, int num_gprs)
220 {
221 int r;
222
223 var->num_gprs = num_gprs;
224
225 for (r = 0; r < num_gprs; ++r)
226 {
227 char buf[20];
228
229 xsnprintf (buf, sizeof (buf), "gr%d", r);
230 var->register_names[first_gpr_regnum + r] = xstrdup (buf);
231 }
232 }
233
234
235 /* Indicate that the variant VAR has NUM_FPRS floating-point
236 registers, and fill in the names array appropriately. */
237 static void
238 set_variant_num_fprs (frv_gdbarch_tdep *var, int num_fprs)
239 {
240 int r;
241
242 var->num_fprs = num_fprs;
243
244 for (r = 0; r < num_fprs; ++r)
245 {
246 char buf[20];
247
248 xsnprintf (buf, sizeof (buf), "fr%d", r);
249 var->register_names[first_fpr_regnum + r] = xstrdup (buf);
250 }
251 }
252
253 static void
254 set_variant_abi_fdpic (frv_gdbarch_tdep *var)
255 {
256 var->frv_abi = FRV_ABI_FDPIC;
257 var->register_names[fdpic_loadmap_exec_regnum] = xstrdup ("loadmap_exec");
258 var->register_names[fdpic_loadmap_interp_regnum]
259 = xstrdup ("loadmap_interp");
260 }
261
262 static void
263 set_variant_scratch_registers (frv_gdbarch_tdep *var)
264 {
265 var->register_names[scr0_regnum] = xstrdup ("scr0");
266 var->register_names[scr1_regnum] = xstrdup ("scr1");
267 var->register_names[scr2_regnum] = xstrdup ("scr2");
268 var->register_names[scr3_regnum] = xstrdup ("scr3");
269 }
270
271 static const char *
272 frv_register_name (struct gdbarch *gdbarch, int reg)
273 {
274 frv_gdbarch_tdep *tdep = gdbarch_tdep<frv_gdbarch_tdep> (gdbarch);
275 return tdep->register_names[reg];
276 }
277
278
279 static struct type *
280 frv_register_type (struct gdbarch *gdbarch, int reg)
281 {
282 if (reg >= first_fpr_regnum && reg <= last_fpr_regnum)
283 return builtin_type (gdbarch)->builtin_float;
284 else if (reg == iacc0_regnum)
285 return builtin_type (gdbarch)->builtin_int64;
286 else
287 return builtin_type (gdbarch)->builtin_int32;
288 }
289
290 static enum register_status
291 frv_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
292 int reg, gdb_byte *buffer)
293 {
294 enum register_status status;
295
296 if (reg == iacc0_regnum)
297 {
298 status = regcache->raw_read (iacc0h_regnum, buffer);
299 if (status == REG_VALID)
300 status = regcache->raw_read (iacc0l_regnum, (bfd_byte *) buffer + 4);
301 }
302 else if (accg0_regnum <= reg && reg <= accg7_regnum)
303 {
304 /* The accg raw registers have four values in each slot with the
305 lowest register number occupying the first byte. */
306
307 int raw_regnum = accg0123_regnum + (reg - accg0_regnum) / 4;
308 int byte_num = (reg - accg0_regnum) % 4;
309 gdb_byte buf[4];
310
311 status = regcache->raw_read (raw_regnum, buf);
312 if (status == REG_VALID)
313 {
314 memset (buffer, 0, 4);
315 /* FR-V is big endian, so put the requested byte in the
316 first byte of the buffer allocated to hold the
317 pseudo-register. */
318 buffer[0] = buf[byte_num];
319 }
320 }
321 else
322 gdb_assert_not_reached ("invalid pseudo register number");
323
324 return status;
325 }
326
327 static void
328 frv_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
329 int reg, const gdb_byte *buffer)
330 {
331 if (reg == iacc0_regnum)
332 {
333 regcache->raw_write (iacc0h_regnum, buffer);
334 regcache->raw_write (iacc0l_regnum, (bfd_byte *) buffer + 4);
335 }
336 else if (accg0_regnum <= reg && reg <= accg7_regnum)
337 {
338 /* The accg raw registers have four values in each slot with the
339 lowest register number occupying the first byte. */
340
341 int raw_regnum = accg0123_regnum + (reg - accg0_regnum) / 4;
342 int byte_num = (reg - accg0_regnum) % 4;
343 gdb_byte buf[4];
344
345 regcache->raw_read (raw_regnum, buf);
346 buf[byte_num] = ((bfd_byte *) buffer)[0];
347 regcache->raw_write (raw_regnum, buf);
348 }
349 }
350
351 static int
352 frv_register_sim_regno (struct gdbarch *gdbarch, int reg)
353 {
354 static const int spr_map[] =
355 {
356 H_SPR_PSR, /* psr_regnum */
357 H_SPR_CCR, /* ccr_regnum */
358 H_SPR_CCCR, /* cccr_regnum */
359 -1, /* fdpic_loadmap_exec_regnum */
360 -1, /* fdpic_loadmap_interp_regnum */
361 -1, /* 134 */
362 H_SPR_TBR, /* tbr_regnum */
363 H_SPR_BRR, /* brr_regnum */
364 H_SPR_DBAR0, /* dbar0_regnum */
365 H_SPR_DBAR1, /* dbar1_regnum */
366 H_SPR_DBAR2, /* dbar2_regnum */
367 H_SPR_DBAR3, /* dbar3_regnum */
368 H_SPR_SCR0, /* scr0_regnum */
369 H_SPR_SCR1, /* scr1_regnum */
370 H_SPR_SCR2, /* scr2_regnum */
371 H_SPR_SCR3, /* scr3_regnum */
372 H_SPR_LR, /* lr_regnum */
373 H_SPR_LCR, /* lcr_regnum */
374 H_SPR_IACC0H, /* iacc0h_regnum */
375 H_SPR_IACC0L, /* iacc0l_regnum */
376 H_SPR_FSR0, /* fsr0_regnum */
377 /* FIXME: Add infrastructure for fetching/setting ACC and ACCG regs. */
378 -1, /* acc0_regnum */
379 -1, /* acc1_regnum */
380 -1, /* acc2_regnum */
381 -1, /* acc3_regnum */
382 -1, /* acc4_regnum */
383 -1, /* acc5_regnum */
384 -1, /* acc6_regnum */
385 -1, /* acc7_regnum */
386 -1, /* acc0123_regnum */
387 -1, /* acc4567_regnum */
388 H_SPR_MSR0, /* msr0_regnum */
389 H_SPR_MSR1, /* msr1_regnum */
390 H_SPR_GNER0, /* gner0_regnum */
391 H_SPR_GNER1, /* gner1_regnum */
392 H_SPR_FNER0, /* fner0_regnum */
393 H_SPR_FNER1, /* fner1_regnum */
394 };
395
396 gdb_assert (reg >= 0 && reg < gdbarch_num_regs (gdbarch));
397
398 if (first_gpr_regnum <= reg && reg <= last_gpr_regnum)
399 return reg - first_gpr_regnum + SIM_FRV_GR0_REGNUM;
400 else if (first_fpr_regnum <= reg && reg <= last_fpr_regnum)
401 return reg - first_fpr_regnum + SIM_FRV_FR0_REGNUM;
402 else if (pc_regnum == reg)
403 return SIM_FRV_PC_REGNUM;
404 else if (reg >= first_spr_regnum
405 && reg < first_spr_regnum + sizeof (spr_map) / sizeof (spr_map[0]))
406 {
407 int spr_reg_offset = spr_map[reg - first_spr_regnum];
408
409 if (spr_reg_offset < 0)
410 return SIM_REGNO_DOES_NOT_EXIST;
411 else
412 return SIM_FRV_SPR0_REGNUM + spr_reg_offset;
413 }
414
415 internal_error (_("Bad register number %d"), reg);
416 }
417
418 constexpr gdb_byte frv_break_insn[] = {0xc0, 0x70, 0x00, 0x01};
419
420 typedef BP_MANIPULATION (frv_break_insn) frv_breakpoint;
421
422 /* Define the maximum number of instructions which may be packed into a
423 bundle (VLIW instruction). */
424 static const int max_instrs_per_bundle = 8;
425
426 /* Define the size (in bytes) of an FR-V instruction. */
427 static const int frv_instr_size = 4;
428
429 /* Adjust a breakpoint's address to account for the FR-V architecture's
430 constraint that a break instruction must not appear as any but the
431 first instruction in the bundle. */
432 static CORE_ADDR
433 frv_adjust_breakpoint_address (struct gdbarch *gdbarch, CORE_ADDR bpaddr)
434 {
435 int count = max_instrs_per_bundle;
436 CORE_ADDR addr = bpaddr - frv_instr_size;
437 CORE_ADDR func_start = get_pc_function_start (bpaddr);
438
439 /* Find the end of the previous packing sequence. This will be indicated
440 by either attempting to access some inaccessible memory or by finding
441 an instruction word whose packing bit is set to one. */
442 while (count-- > 0 && addr >= func_start)
443 {
444 gdb_byte instr[frv_instr_size];
445 int status;
446
447 status = target_read_memory (addr, instr, sizeof instr);
448
449 if (status != 0)
450 break;
451
452 /* This is a big endian architecture, so byte zero will have most
453 significant byte. The most significant bit of this byte is the
454 packing bit. */
455 if (instr[0] & 0x80)
456 break;
457
458 addr -= frv_instr_size;
459 }
460
461 if (count > 0)
462 bpaddr = addr + frv_instr_size;
463
464 return bpaddr;
465 }
466
467
468 /* Return true if REG is a caller-saves ("scratch") register,
469 false otherwise. */
470 static int
471 is_caller_saves_reg (int reg)
472 {
473 return ((4 <= reg && reg <= 7)
474 || (14 <= reg && reg <= 15)
475 || (32 <= reg && reg <= 47));
476 }
477
478
479 /* Return true if REG is a callee-saves register, false otherwise. */
480 static int
481 is_callee_saves_reg (int reg)
482 {
483 return ((16 <= reg && reg <= 31)
484 || (48 <= reg && reg <= 63));
485 }
486
487
488 /* Return true if REG is an argument register, false otherwise. */
489 static int
490 is_argument_reg (int reg)
491 {
492 return (8 <= reg && reg <= 13);
493 }
494
495 /* Scan an FR-V prologue, starting at PC, until frame->PC.
496 If FRAME is non-zero, fill in its saved_regs with appropriate addresses.
497 We assume FRAME's saved_regs array has already been allocated and cleared.
498 Return the first PC value after the prologue.
499
500 Note that, for unoptimized code, we almost don't need this function
501 at all; all arguments and locals live on the stack, so we just need
502 the FP to find everything. The catch: structures passed by value
503 have their addresses living in registers; they're never spilled to
504 the stack. So if you ever want to be able to get to these
505 arguments in any frame but the top, you'll need to do this serious
506 prologue analysis. */
507 static CORE_ADDR
508 frv_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
509 frame_info_ptr this_frame,
510 struct frv_unwind_cache *info)
511 {
512 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
513
514 /* When writing out instruction bitpatterns, we use the following
515 letters to label instruction fields:
516 P - The parallel bit. We don't use this.
517 J - The register number of GRj in the instruction description.
518 K - The register number of GRk in the instruction description.
519 I - The register number of GRi.
520 S - a signed immediate offset.
521 U - an unsigned immediate offset.
522
523 The dots below the numbers indicate where hex digit boundaries
524 fall, to make it easier to check the numbers. */
525
526 /* Non-zero iff we've seen the instruction that initializes the
527 frame pointer for this function's frame. */
528 int fp_set = 0;
529
530 /* If fp_set is non_zero, then this is the distance from
531 the stack pointer to frame pointer: fp = sp + fp_offset. */
532 int fp_offset = 0;
533
534 /* Total size of frame prior to any alloca operations. */
535 int framesize = 0;
536
537 /* Flag indicating if lr has been saved on the stack. */
538 int lr_saved_on_stack = 0;
539
540 /* The number of the general-purpose register we saved the return
541 address ("link register") in, or -1 if we haven't moved it yet. */
542 int lr_save_reg = -1;
543
544 /* Offset (from sp) at which lr has been saved on the stack. */
545
546 int lr_sp_offset = 0;
547
548 /* If gr_saved[i] is non-zero, then we've noticed that general
549 register i has been saved at gr_sp_offset[i] from the stack
550 pointer. */
551 char gr_saved[64];
552 int gr_sp_offset[64];
553
554 /* The address of the most recently scanned prologue instruction. */
555 CORE_ADDR last_prologue_pc;
556
557 /* The address of the next instruction. */
558 CORE_ADDR next_pc;
559
560 /* The upper bound to of the pc values to scan. */
561 CORE_ADDR lim_pc;
562
563 memset (gr_saved, 0, sizeof (gr_saved));
564
565 last_prologue_pc = pc;
566
567 /* Try to compute an upper limit (on how far to scan) based on the
568 line number info. */
569 lim_pc = skip_prologue_using_sal (gdbarch, pc);
570 /* If there's no line number info, lim_pc will be 0. In that case,
571 set the limit to be 100 instructions away from pc. Hopefully, this
572 will be far enough away to account for the entire prologue. Don't
573 worry about overshooting the end of the function. The scan loop
574 below contains some checks to avoid scanning unreasonably far. */
575 if (lim_pc == 0)
576 lim_pc = pc + 400;
577
578 /* If we have a frame, we don't want to scan past the frame's pc. This
579 will catch those cases where the pc is in the prologue. */
580 if (this_frame)
581 {
582 CORE_ADDR frame_pc = get_frame_pc (this_frame);
583 if (frame_pc < lim_pc)
584 lim_pc = frame_pc;
585 }
586
587 /* Scan the prologue. */
588 while (pc < lim_pc)
589 {
590 gdb_byte buf[frv_instr_size];
591 LONGEST op;
592
593 if (target_read_memory (pc, buf, sizeof buf) != 0)
594 break;
595 op = extract_signed_integer (buf, byte_order);
596
597 next_pc = pc + 4;
598
599 /* The tests in this chain of ifs should be in order of
600 decreasing selectivity, so that more particular patterns get
601 to fire before less particular patterns. */
602
603 /* Some sort of control transfer instruction: stop scanning prologue.
604 Integer Conditional Branch:
605 X XXXX XX 0000110 XX XXXXXXXXXXXXXXXX
606 Floating-point / media Conditional Branch:
607 X XXXX XX 0000111 XX XXXXXXXXXXXXXXXX
608 LCR Conditional Branch to LR
609 X XXXX XX 0001110 XX XX 001 X XXXXXXXXXX
610 Integer conditional Branches to LR
611 X XXXX XX 0001110 XX XX 010 X XXXXXXXXXX
612 X XXXX XX 0001110 XX XX 011 X XXXXXXXXXX
613 Floating-point/Media Branches to LR
614 X XXXX XX 0001110 XX XX 110 X XXXXXXXXXX
615 X XXXX XX 0001110 XX XX 111 X XXXXXXXXXX
616 Jump and Link
617 X XXXXX X 0001100 XXXXXX XXXXXX XXXXXX
618 X XXXXX X 0001101 XXXXXX XXXXXX XXXXXX
619 Call
620 X XXXXXX 0001111 XXXXXXXXXXXXXXXXXX
621 Return from Trap
622 X XXXXX X 0000101 XXXXXX XXXXXX XXXXXX
623 Integer Conditional Trap
624 X XXXX XX 0000100 XXXXXX XXXX 00 XXXXXX
625 X XXXX XX 0011100 XXXXXX XXXXXXXXXXXX
626 Floating-point /media Conditional Trap
627 X XXXX XX 0000100 XXXXXX XXXX 01 XXXXXX
628 X XXXX XX 0011101 XXXXXX XXXXXXXXXXXX
629 Break
630 X XXXX XX 0000100 XXXXXX XXXX 11 XXXXXX
631 Media Trap
632 X XXXX XX 0000100 XXXXXX XXXX 10 XXXXXX */
633 if ((op & 0x01d80000) == 0x00180000 /* Conditional branches and Call */
634 || (op & 0x01f80000) == 0x00300000 /* Jump and Link */
635 || (op & 0x01f80000) == 0x00100000 /* Return from Trap, Trap */
636 || (op & 0x01f80000) == 0x00700000) /* Trap immediate */
637 {
638 /* Stop scanning; not in prologue any longer. */
639 break;
640 }
641
642 /* Loading something from memory into fp probably means that
643 we're in the epilogue. Stop scanning the prologue.
644 ld @(GRi, GRk), fp
645 X 000010 0000010 XXXXXX 000100 XXXXXX
646 ldi @(GRi, d12), fp
647 X 000010 0110010 XXXXXX XXXXXXXXXXXX */
648 else if ((op & 0x7ffc0fc0) == 0x04080100
649 || (op & 0x7ffc0000) == 0x04c80000)
650 {
651 break;
652 }
653
654 /* Setting the FP from the SP:
655 ori sp, 0, fp
656 P 000010 0100010 000001 000000000000 = 0x04881000
657 0 111111 1111111 111111 111111111111 = 0x7fffffff
658 . . . . . . . .
659 We treat this as part of the prologue. */
660 else if ((op & 0x7fffffff) == 0x04881000)
661 {
662 fp_set = 1;
663 fp_offset = 0;
664 last_prologue_pc = next_pc;
665 }
666
667 /* Move the link register to the scratch register grJ, before saving:
668 movsg lr, grJ
669 P 000100 0000011 010000 000111 JJJJJJ = 0x080d01c0
670 0 111111 1111111 111111 111111 000000 = 0x7fffffc0
671 . . . . . . . .
672 We treat this as part of the prologue. */
673 else if ((op & 0x7fffffc0) == 0x080d01c0)
674 {
675 int gr_j = op & 0x3f;
676
677 /* If we're moving it to a scratch register, that's fine. */
678 if (is_caller_saves_reg (gr_j))
679 {
680 lr_save_reg = gr_j;
681 last_prologue_pc = next_pc;
682 }
683 }
684
685 /* To save multiple callee-saves registers on the stack, at
686 offset zero:
687
688 std grK,@(sp,gr0)
689 P KKKKKK 0000011 000001 000011 000000 = 0x000c10c0
690 0 000000 1111111 111111 111111 111111 = 0x01ffffff
691
692 stq grK,@(sp,gr0)
693 P KKKKKK 0000011 000001 000100 000000 = 0x000c1100
694 0 000000 1111111 111111 111111 111111 = 0x01ffffff
695 . . . . . . . .
696 We treat this as part of the prologue, and record the register's
697 saved address in the frame structure. */
698 else if ((op & 0x01ffffff) == 0x000c10c0
699 || (op & 0x01ffffff) == 0x000c1100)
700 {
701 int gr_k = ((op >> 25) & 0x3f);
702 int ope = ((op >> 6) & 0x3f);
703 int count;
704 int i;
705
706 /* Is it an std or an stq? */
707 if (ope == 0x03)
708 count = 2;
709 else
710 count = 4;
711
712 /* Is it really a callee-saves register? */
713 if (is_callee_saves_reg (gr_k))
714 {
715 for (i = 0; i < count; i++)
716 {
717 gr_saved[gr_k + i] = 1;
718 gr_sp_offset[gr_k + i] = 4 * i;
719 }
720 last_prologue_pc = next_pc;
721 }
722 }
723
724 /* Adjusting the stack pointer. (The stack pointer is GR1.)
725 addi sp, S, sp
726 P 000001 0010000 000001 SSSSSSSSSSSS = 0x02401000
727 0 111111 1111111 111111 000000000000 = 0x7ffff000
728 . . . . . . . .
729 We treat this as part of the prologue. */
730 else if ((op & 0x7ffff000) == 0x02401000)
731 {
732 if (framesize == 0)
733 {
734 /* Sign-extend the twelve-bit field.
735 (Isn't there a better way to do this?) */
736 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
737
738 framesize -= s;
739 last_prologue_pc = pc;
740 }
741 else
742 {
743 /* If the prologue is being adjusted again, we've
744 likely gone too far; i.e. we're probably in the
745 epilogue. */
746 break;
747 }
748 }
749
750 /* Setting the FP to a constant distance from the SP:
751 addi sp, S, fp
752 P 000010 0010000 000001 SSSSSSSSSSSS = 0x04401000
753 0 111111 1111111 111111 000000000000 = 0x7ffff000
754 . . . . . . . .
755 We treat this as part of the prologue. */
756 else if ((op & 0x7ffff000) == 0x04401000)
757 {
758 /* Sign-extend the twelve-bit field.
759 (Isn't there a better way to do this?) */
760 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
761 fp_set = 1;
762 fp_offset = s;
763 last_prologue_pc = pc;
764 }
765
766 /* To spill an argument register to a scratch register:
767 ori GRi, 0, GRk
768 P KKKKKK 0100010 IIIIII 000000000000 = 0x00880000
769 0 000000 1111111 000000 111111111111 = 0x01fc0fff
770 . . . . . . . .
771 For the time being, we treat this as a prologue instruction,
772 assuming that GRi is an argument register. This one's kind
773 of suspicious, because it seems like it could be part of a
774 legitimate body instruction. But we only come here when the
775 source info wasn't helpful, so we have to do the best we can.
776 Hopefully once GCC and GDB agree on how to emit line number
777 info for prologues, then this code will never come into play. */
778 else if ((op & 0x01fc0fff) == 0x00880000)
779 {
780 int gr_i = ((op >> 12) & 0x3f);
781
782 /* Make sure that the source is an arg register; if it is, we'll
783 treat it as a prologue instruction. */
784 if (is_argument_reg (gr_i))
785 last_prologue_pc = next_pc;
786 }
787
788 /* To spill 16-bit values to the stack:
789 sthi GRk, @(fp, s)
790 P KKKKKK 1010001 000010 SSSSSSSSSSSS = 0x01442000
791 0 000000 1111111 111111 000000000000 = 0x01fff000
792 . . . . . . . .
793 And for 8-bit values, we use STB instructions.
794 stbi GRk, @(fp, s)
795 P KKKKKK 1010000 000010 SSSSSSSSSSSS = 0x01402000
796 0 000000 1111111 111111 000000000000 = 0x01fff000
797 . . . . . . . .
798 We check that GRk is really an argument register, and treat
799 all such as part of the prologue. */
800 else if ( (op & 0x01fff000) == 0x01442000
801 || (op & 0x01fff000) == 0x01402000)
802 {
803 int gr_k = ((op >> 25) & 0x3f);
804
805 /* Make sure that GRk is really an argument register; treat
806 it as a prologue instruction if so. */
807 if (is_argument_reg (gr_k))
808 last_prologue_pc = next_pc;
809 }
810
811 /* To save multiple callee-saves register on the stack, at a
812 non-zero offset:
813
814 stdi GRk, @(sp, s)
815 P KKKKKK 1010011 000001 SSSSSSSSSSSS = 0x014c1000
816 0 000000 1111111 111111 000000000000 = 0x01fff000
817 . . . . . . . .
818 stqi GRk, @(sp, s)
819 P KKKKKK 1010100 000001 SSSSSSSSSSSS = 0x01501000
820 0 000000 1111111 111111 000000000000 = 0x01fff000
821 . . . . . . . .
822 We treat this as part of the prologue, and record the register's
823 saved address in the frame structure. */
824 else if ((op & 0x01fff000) == 0x014c1000
825 || (op & 0x01fff000) == 0x01501000)
826 {
827 int gr_k = ((op >> 25) & 0x3f);
828 int count;
829 int i;
830
831 /* Is it a stdi or a stqi? */
832 if ((op & 0x01fff000) == 0x014c1000)
833 count = 2;
834 else
835 count = 4;
836
837 /* Is it really a callee-saves register? */
838 if (is_callee_saves_reg (gr_k))
839 {
840 /* Sign-extend the twelve-bit field.
841 (Isn't there a better way to do this?) */
842 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
843
844 for (i = 0; i < count; i++)
845 {
846 gr_saved[gr_k + i] = 1;
847 gr_sp_offset[gr_k + i] = s + (4 * i);
848 }
849 last_prologue_pc = next_pc;
850 }
851 }
852
853 /* Storing any kind of integer register at any constant offset
854 from any other register.
855
856 st GRk, @(GRi, gr0)
857 P KKKKKK 0000011 IIIIII 000010 000000 = 0x000c0080
858 0 000000 1111111 000000 111111 111111 = 0x01fc0fff
859 . . . . . . . .
860 sti GRk, @(GRi, d12)
861 P KKKKKK 1010010 IIIIII SSSSSSSSSSSS = 0x01480000
862 0 000000 1111111 000000 000000000000 = 0x01fc0000
863 . . . . . . . .
864 These could be almost anything, but a lot of prologue
865 instructions fall into this pattern, so let's decode the
866 instruction once, and then work at a higher level. */
867 else if (((op & 0x01fc0fff) == 0x000c0080)
868 || ((op & 0x01fc0000) == 0x01480000))
869 {
870 int gr_k = ((op >> 25) & 0x3f);
871 int gr_i = ((op >> 12) & 0x3f);
872 int offset;
873
874 /* Are we storing with gr0 as an offset, or using an
875 immediate value? */
876 if ((op & 0x01fc0fff) == 0x000c0080)
877 offset = 0;
878 else
879 offset = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
880
881 /* If the address isn't relative to the SP or FP, it's not a
882 prologue instruction. */
883 if (gr_i != sp_regnum && gr_i != fp_regnum)
884 {
885 /* Do nothing; not a prologue instruction. */
886 }
887
888 /* Saving the old FP in the new frame (relative to the SP). */
889 else if (gr_k == fp_regnum && gr_i == sp_regnum)
890 {
891 gr_saved[fp_regnum] = 1;
892 gr_sp_offset[fp_regnum] = offset;
893 last_prologue_pc = next_pc;
894 }
895
896 /* Saving callee-saves register(s) on the stack, relative to
897 the SP. */
898 else if (gr_i == sp_regnum
899 && is_callee_saves_reg (gr_k))
900 {
901 gr_saved[gr_k] = 1;
902 if (gr_i == sp_regnum)
903 gr_sp_offset[gr_k] = offset;
904 else
905 gr_sp_offset[gr_k] = offset + fp_offset;
906 last_prologue_pc = next_pc;
907 }
908
909 /* Saving the scratch register holding the return address. */
910 else if (lr_save_reg != -1
911 && gr_k == lr_save_reg)
912 {
913 lr_saved_on_stack = 1;
914 if (gr_i == sp_regnum)
915 lr_sp_offset = offset;
916 else
917 lr_sp_offset = offset + fp_offset;
918 last_prologue_pc = next_pc;
919 }
920
921 /* Spilling int-sized arguments to the stack. */
922 else if (is_argument_reg (gr_k))
923 last_prologue_pc = next_pc;
924 }
925 pc = next_pc;
926 }
927
928 if (this_frame && info)
929 {
930 int i;
931 ULONGEST this_base;
932
933 /* If we know the relationship between the stack and frame
934 pointers, record the addresses of the registers we noticed.
935 Note that we have to do this as a separate step at the end,
936 because instructions may save relative to the SP, but we need
937 their addresses relative to the FP. */
938 if (fp_set)
939 this_base = get_frame_register_unsigned (this_frame, fp_regnum);
940 else
941 this_base = get_frame_register_unsigned (this_frame, sp_regnum);
942
943 for (i = 0; i < 64; i++)
944 if (gr_saved[i])
945 info->saved_regs[i].set_addr (this_base - fp_offset
946 + gr_sp_offset[i]);
947
948 info->prev_sp = this_base - fp_offset + framesize;
949 info->base = this_base;
950
951 /* If LR was saved on the stack, record its location. */
952 if (lr_saved_on_stack)
953 info->saved_regs[lr_regnum].set_addr (this_base - fp_offset
954 + lr_sp_offset);
955
956 /* The call instruction moves the caller's PC in the callee's LR.
957 Since this is an unwind, do the reverse. Copy the location of LR
958 into PC (the address / regnum) so that a request for PC will be
959 converted into a request for the LR. */
960 info->saved_regs[pc_regnum] = info->saved_regs[lr_regnum];
961
962 /* Save the previous frame's computed SP value. */
963 info->saved_regs[sp_regnum].set_value (info->prev_sp);
964 }
965
966 return last_prologue_pc;
967 }
968
969
970 static CORE_ADDR
971 frv_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
972 {
973 CORE_ADDR func_addr, func_end, new_pc;
974
975 new_pc = pc;
976
977 /* If the line table has entry for a line *within* the function
978 (i.e., not in the prologue, and not past the end), then that's
979 our location. */
980 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
981 {
982 struct symtab_and_line sal;
983
984 sal = find_pc_line (func_addr, 0);
985
986 if (sal.line != 0 && sal.end < func_end)
987 {
988 new_pc = sal.end;
989 }
990 }
991
992 /* The FR-V prologue is at least five instructions long (twenty bytes).
993 If we didn't find a real source location past that, then
994 do a full analysis of the prologue. */
995 if (new_pc < pc + 20)
996 new_pc = frv_analyze_prologue (gdbarch, pc, 0, 0);
997
998 return new_pc;
999 }
1000
1001
1002 /* Examine the instruction pointed to by PC. If it corresponds to
1003 a call to __main, return the address of the next instruction.
1004 Otherwise, return PC. */
1005
1006 static CORE_ADDR
1007 frv_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1008 {
1009 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1010 gdb_byte buf[4];
1011 unsigned long op;
1012 CORE_ADDR orig_pc = pc;
1013
1014 if (target_read_memory (pc, buf, 4))
1015 return pc;
1016 op = extract_unsigned_integer (buf, 4, byte_order);
1017
1018 /* In PIC code, GR15 may be loaded from some offset off of FP prior
1019 to the call instruction.
1020
1021 Skip over this instruction if present. It won't be present in
1022 non-PIC code, and even in PIC code, it might not be present.
1023 (This is due to the fact that GR15, the FDPIC register, already
1024 contains the correct value.)
1025
1026 The general form of the LDI is given first, followed by the
1027 specific instruction with the GRi and GRk filled in as FP and
1028 GR15.
1029
1030 ldi @(GRi, d12), GRk
1031 P KKKKKK 0110010 IIIIII SSSSSSSSSSSS = 0x00c80000
1032 0 000000 1111111 000000 000000000000 = 0x01fc0000
1033 . . . . . . . .
1034 ldi @(FP, d12), GR15
1035 P KKKKKK 0110010 IIIIII SSSSSSSSSSSS = 0x1ec82000
1036 0 001111 1111111 000010 000000000000 = 0x7ffff000
1037 . . . . . . . . */
1038
1039 if ((op & 0x7ffff000) == 0x1ec82000)
1040 {
1041 pc += 4;
1042 if (target_read_memory (pc, buf, 4))
1043 return orig_pc;
1044 op = extract_unsigned_integer (buf, 4, byte_order);
1045 }
1046
1047 /* The format of an FRV CALL instruction is as follows:
1048
1049 call label24
1050 P HHHHHH 0001111 LLLLLLLLLLLLLLLLLL = 0x003c0000
1051 0 000000 1111111 000000000000000000 = 0x01fc0000
1052 . . . . . . . .
1053
1054 where label24 is constructed by concatenating the H bits with the
1055 L bits. The call target is PC + (4 * sign_ext(label24)). */
1056
1057 if ((op & 0x01fc0000) == 0x003c0000)
1058 {
1059 LONGEST displ;
1060 CORE_ADDR call_dest;
1061 struct bound_minimal_symbol s;
1062
1063 displ = ((op & 0xfe000000) >> 7) | (op & 0x0003ffff);
1064 if ((displ & 0x00800000) != 0)
1065 displ |= ~((LONGEST) 0x00ffffff);
1066
1067 call_dest = pc + 4 * displ;
1068 s = lookup_minimal_symbol_by_pc (call_dest);
1069
1070 if (s.minsym != NULL
1071 && s.minsym->linkage_name () != NULL
1072 && strcmp (s.minsym->linkage_name (), "__main") == 0)
1073 {
1074 pc += 4;
1075 return pc;
1076 }
1077 }
1078 return orig_pc;
1079 }
1080
1081
1082 static struct frv_unwind_cache *
1083 frv_frame_unwind_cache (frame_info_ptr this_frame,
1084 void **this_prologue_cache)
1085 {
1086 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1087 struct frv_unwind_cache *info;
1088
1089 if ((*this_prologue_cache))
1090 return (struct frv_unwind_cache *) (*this_prologue_cache);
1091
1092 info = FRAME_OBSTACK_ZALLOC (struct frv_unwind_cache);
1093 (*this_prologue_cache) = info;
1094 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1095
1096 /* Prologue analysis does the rest... */
1097 frv_analyze_prologue (gdbarch,
1098 get_frame_func (this_frame), this_frame, info);
1099
1100 return info;
1101 }
1102
1103 static void
1104 frv_extract_return_value (struct type *type, struct regcache *regcache,
1105 gdb_byte *valbuf)
1106 {
1107 struct gdbarch *gdbarch = regcache->arch ();
1108 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1109 int len = type->length ();
1110
1111 if (len <= 4)
1112 {
1113 ULONGEST gpr8_val;
1114 regcache_cooked_read_unsigned (regcache, 8, &gpr8_val);
1115 store_unsigned_integer (valbuf, len, byte_order, gpr8_val);
1116 }
1117 else if (len == 8)
1118 {
1119 ULONGEST regval;
1120
1121 regcache_cooked_read_unsigned (regcache, 8, &regval);
1122 store_unsigned_integer (valbuf, 4, byte_order, regval);
1123 regcache_cooked_read_unsigned (regcache, 9, &regval);
1124 store_unsigned_integer ((bfd_byte *) valbuf + 4, 4, byte_order, regval);
1125 }
1126 else
1127 internal_error (_("Illegal return value length: %d"), len);
1128 }
1129
1130 static CORE_ADDR
1131 frv_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1132 {
1133 /* Require dword alignment. */
1134 return align_down (sp, 8);
1135 }
1136
1137 static CORE_ADDR
1138 find_func_descr (struct gdbarch *gdbarch, CORE_ADDR entry_point)
1139 {
1140 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1141 CORE_ADDR descr;
1142 gdb_byte valbuf[4];
1143 CORE_ADDR start_addr;
1144
1145 /* If we can't find the function in the symbol table, then we assume
1146 that the function address is already in descriptor form. */
1147 if (!find_pc_partial_function (entry_point, NULL, &start_addr, NULL)
1148 || entry_point != start_addr)
1149 return entry_point;
1150
1151 descr = frv_fdpic_find_canonical_descriptor (entry_point);
1152
1153 if (descr != 0)
1154 return descr;
1155
1156 /* Construct a non-canonical descriptor from space allocated on
1157 the stack. */
1158
1159 descr = value_as_long (value_allocate_space_in_inferior (8));
1160 store_unsigned_integer (valbuf, 4, byte_order, entry_point);
1161 write_memory (descr, valbuf, 4);
1162 store_unsigned_integer (valbuf, 4, byte_order,
1163 frv_fdpic_find_global_pointer (entry_point));
1164 write_memory (descr + 4, valbuf, 4);
1165 return descr;
1166 }
1167
1168 static CORE_ADDR
1169 frv_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr,
1170 struct target_ops *targ)
1171 {
1172 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1173 CORE_ADDR entry_point;
1174 CORE_ADDR got_address;
1175
1176 entry_point = get_target_memory_unsigned (targ, addr, 4, byte_order);
1177 got_address = get_target_memory_unsigned (targ, addr + 4, 4, byte_order);
1178
1179 if (got_address == frv_fdpic_find_global_pointer (entry_point))
1180 return entry_point;
1181 else
1182 return addr;
1183 }
1184
1185 static CORE_ADDR
1186 frv_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1187 struct regcache *regcache, CORE_ADDR bp_addr,
1188 int nargs, struct value **args, CORE_ADDR sp,
1189 function_call_return_method return_method,
1190 CORE_ADDR struct_addr)
1191 {
1192 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1193 int argreg;
1194 int argnum;
1195 const gdb_byte *val;
1196 gdb_byte valbuf[4];
1197 struct value *arg;
1198 struct type *arg_type;
1199 int len;
1200 enum type_code typecode;
1201 CORE_ADDR regval;
1202 int stack_space;
1203 int stack_offset;
1204 enum frv_abi abi = frv_abi (gdbarch);
1205 CORE_ADDR func_addr = find_function_addr (function, NULL);
1206
1207 #if 0
1208 printf("Push %d args at sp = %x, struct_return=%d (%x)\n",
1209 nargs, (int) sp, struct_return, struct_addr);
1210 #endif
1211
1212 stack_space = 0;
1213 for (argnum = 0; argnum < nargs; ++argnum)
1214 stack_space += align_up (args[argnum]->type ()->length (), 4);
1215
1216 stack_space -= (6 * 4);
1217 if (stack_space > 0)
1218 sp -= stack_space;
1219
1220 /* Make sure stack is dword aligned. */
1221 sp = align_down (sp, 8);
1222
1223 stack_offset = 0;
1224
1225 argreg = 8;
1226
1227 if (return_method == return_method_struct)
1228 regcache_cooked_write_unsigned (regcache, struct_return_regnum,
1229 struct_addr);
1230
1231 for (argnum = 0; argnum < nargs; ++argnum)
1232 {
1233 arg = args[argnum];
1234 arg_type = check_typedef (arg->type ());
1235 len = arg_type->length ();
1236 typecode = arg_type->code ();
1237
1238 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
1239 {
1240 store_unsigned_integer (valbuf, 4, byte_order,
1241 arg->address ());
1242 typecode = TYPE_CODE_PTR;
1243 len = 4;
1244 val = valbuf;
1245 }
1246 else if (abi == FRV_ABI_FDPIC
1247 && len == 4
1248 && typecode == TYPE_CODE_PTR
1249 && arg_type->target_type ()->code () == TYPE_CODE_FUNC)
1250 {
1251 /* The FDPIC ABI requires function descriptors to be passed instead
1252 of entry points. */
1253 CORE_ADDR addr = extract_unsigned_integer
1254 (value_contents (arg).data (), 4, byte_order);
1255 addr = find_func_descr (gdbarch, addr);
1256 store_unsigned_integer (valbuf, 4, byte_order, addr);
1257 typecode = TYPE_CODE_PTR;
1258 len = 4;
1259 val = valbuf;
1260 }
1261 else
1262 {
1263 val = value_contents (arg).data ();
1264 }
1265
1266 while (len > 0)
1267 {
1268 int partial_len = (len < 4 ? len : 4);
1269
1270 if (argreg < 14)
1271 {
1272 regval = extract_unsigned_integer (val, partial_len, byte_order);
1273 #if 0
1274 printf(" Argnum %d data %x -> reg %d\n",
1275 argnum, (int) regval, argreg);
1276 #endif
1277 regcache_cooked_write_unsigned (regcache, argreg, regval);
1278 ++argreg;
1279 }
1280 else
1281 {
1282 #if 0
1283 printf(" Argnum %d data %x -> offset %d (%x)\n",
1284 argnum, *((int *)val), stack_offset,
1285 (int) (sp + stack_offset));
1286 #endif
1287 write_memory (sp + stack_offset, val, partial_len);
1288 stack_offset += align_up (partial_len, 4);
1289 }
1290 len -= partial_len;
1291 val += partial_len;
1292 }
1293 }
1294
1295 /* Set the return address. For the frv, the return breakpoint is
1296 always at BP_ADDR. */
1297 regcache_cooked_write_unsigned (regcache, lr_regnum, bp_addr);
1298
1299 if (abi == FRV_ABI_FDPIC)
1300 {
1301 /* Set the GOT register for the FDPIC ABI. */
1302 regcache_cooked_write_unsigned
1303 (regcache, first_gpr_regnum + 15,
1304 frv_fdpic_find_global_pointer (func_addr));
1305 }
1306
1307 /* Finally, update the SP register. */
1308 regcache_cooked_write_unsigned (regcache, sp_regnum, sp);
1309
1310 return sp;
1311 }
1312
1313 static void
1314 frv_store_return_value (struct type *type, struct regcache *regcache,
1315 const gdb_byte *valbuf)
1316 {
1317 int len = type->length ();
1318
1319 if (len <= 4)
1320 {
1321 bfd_byte val[4];
1322 memset (val, 0, sizeof (val));
1323 memcpy (val + (4 - len), valbuf, len);
1324 regcache->cooked_write (8, val);
1325 }
1326 else if (len == 8)
1327 {
1328 regcache->cooked_write (8, valbuf);
1329 regcache->cooked_write (9, (bfd_byte *) valbuf + 4);
1330 }
1331 else
1332 internal_error (_("Don't know how to return a %d-byte value."), len);
1333 }
1334
1335 static enum return_value_convention
1336 frv_return_value (struct gdbarch *gdbarch, struct value *function,
1337 struct type *valtype, struct regcache *regcache,
1338 gdb_byte *readbuf, const gdb_byte *writebuf)
1339 {
1340 int struct_return = valtype->code () == TYPE_CODE_STRUCT
1341 || valtype->code () == TYPE_CODE_UNION
1342 || valtype->code () == TYPE_CODE_ARRAY;
1343
1344 if (writebuf != NULL)
1345 {
1346 gdb_assert (!struct_return);
1347 frv_store_return_value (valtype, regcache, writebuf);
1348 }
1349
1350 if (readbuf != NULL)
1351 {
1352 gdb_assert (!struct_return);
1353 frv_extract_return_value (valtype, regcache, readbuf);
1354 }
1355
1356 if (struct_return)
1357 return RETURN_VALUE_STRUCT_CONVENTION;
1358 else
1359 return RETURN_VALUE_REGISTER_CONVENTION;
1360 }
1361
1362 /* Given a GDB frame, determine the address of the calling function's
1363 frame. This will be used to create a new GDB frame struct. */
1364
1365 static void
1366 frv_frame_this_id (frame_info_ptr this_frame,
1367 void **this_prologue_cache, struct frame_id *this_id)
1368 {
1369 struct frv_unwind_cache *info
1370 = frv_frame_unwind_cache (this_frame, this_prologue_cache);
1371 CORE_ADDR base;
1372 CORE_ADDR func;
1373 struct bound_minimal_symbol msym_stack;
1374 struct frame_id id;
1375
1376 /* The FUNC is easy. */
1377 func = get_frame_func (this_frame);
1378
1379 /* Check if the stack is empty. */
1380 msym_stack = lookup_minimal_symbol ("_stack", NULL, NULL);
1381 if (msym_stack.minsym && info->base == msym_stack.value_address ())
1382 return;
1383
1384 /* Hopefully the prologue analysis either correctly determined the
1385 frame's base (which is the SP from the previous frame), or set
1386 that base to "NULL". */
1387 base = info->prev_sp;
1388 if (base == 0)
1389 return;
1390
1391 id = frame_id_build (base, func);
1392 (*this_id) = id;
1393 }
1394
1395 static struct value *
1396 frv_frame_prev_register (frame_info_ptr this_frame,
1397 void **this_prologue_cache, int regnum)
1398 {
1399 struct frv_unwind_cache *info
1400 = frv_frame_unwind_cache (this_frame, this_prologue_cache);
1401 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1402 }
1403
1404 static const struct frame_unwind frv_frame_unwind = {
1405 "frv prologue",
1406 NORMAL_FRAME,
1407 default_frame_unwind_stop_reason,
1408 frv_frame_this_id,
1409 frv_frame_prev_register,
1410 NULL,
1411 default_frame_sniffer
1412 };
1413
1414 static CORE_ADDR
1415 frv_frame_base_address (frame_info_ptr this_frame, void **this_cache)
1416 {
1417 struct frv_unwind_cache *info
1418 = frv_frame_unwind_cache (this_frame, this_cache);
1419 return info->base;
1420 }
1421
1422 static const struct frame_base frv_frame_base = {
1423 &frv_frame_unwind,
1424 frv_frame_base_address,
1425 frv_frame_base_address,
1426 frv_frame_base_address
1427 };
1428
1429 static struct gdbarch *
1430 frv_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1431 {
1432 int elf_flags = 0;
1433
1434 /* Check to see if we've already built an appropriate architecture
1435 object for this executable. */
1436 arches = gdbarch_list_lookup_by_info (arches, &info);
1437 if (arches)
1438 return arches->gdbarch;
1439
1440 /* Select the right tdep structure for this variant. */
1441 gdbarch *gdbarch = gdbarch_alloc (&info, new_variant ());
1442 frv_gdbarch_tdep *var = gdbarch_tdep<frv_gdbarch_tdep> (gdbarch);
1443
1444 switch (info.bfd_arch_info->mach)
1445 {
1446 case bfd_mach_frv:
1447 case bfd_mach_frvsimple:
1448 case bfd_mach_fr300:
1449 case bfd_mach_fr500:
1450 case bfd_mach_frvtomcat:
1451 case bfd_mach_fr550:
1452 set_variant_num_gprs (var, 64);
1453 set_variant_num_fprs (var, 64);
1454 break;
1455
1456 case bfd_mach_fr400:
1457 case bfd_mach_fr450:
1458 set_variant_num_gprs (var, 32);
1459 set_variant_num_fprs (var, 32);
1460 break;
1461
1462 default:
1463 /* Never heard of this variant. */
1464 return 0;
1465 }
1466
1467 /* Extract the ELF flags, if available. */
1468 if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
1469 elf_flags = elf_elfheader (info.abfd)->e_flags;
1470
1471 if (elf_flags & EF_FRV_FDPIC)
1472 set_variant_abi_fdpic (var);
1473
1474 if (elf_flags & EF_FRV_CPU_FR450)
1475 set_variant_scratch_registers (var);
1476
1477 set_gdbarch_short_bit (gdbarch, 16);
1478 set_gdbarch_int_bit (gdbarch, 32);
1479 set_gdbarch_long_bit (gdbarch, 32);
1480 set_gdbarch_long_long_bit (gdbarch, 64);
1481 set_gdbarch_float_bit (gdbarch, 32);
1482 set_gdbarch_double_bit (gdbarch, 64);
1483 set_gdbarch_long_double_bit (gdbarch, 64);
1484 set_gdbarch_ptr_bit (gdbarch, 32);
1485
1486 set_gdbarch_num_regs (gdbarch, frv_num_regs);
1487 set_gdbarch_num_pseudo_regs (gdbarch, frv_num_pseudo_regs);
1488
1489 set_gdbarch_sp_regnum (gdbarch, sp_regnum);
1490 set_gdbarch_deprecated_fp_regnum (gdbarch, fp_regnum);
1491 set_gdbarch_pc_regnum (gdbarch, pc_regnum);
1492
1493 set_gdbarch_register_name (gdbarch, frv_register_name);
1494 set_gdbarch_register_type (gdbarch, frv_register_type);
1495 set_gdbarch_register_sim_regno (gdbarch, frv_register_sim_regno);
1496
1497 set_gdbarch_pseudo_register_read (gdbarch, frv_pseudo_register_read);
1498 set_gdbarch_pseudo_register_write (gdbarch, frv_pseudo_register_write);
1499
1500 set_gdbarch_skip_prologue (gdbarch, frv_skip_prologue);
1501 set_gdbarch_skip_main_prologue (gdbarch, frv_skip_main_prologue);
1502 set_gdbarch_breakpoint_kind_from_pc (gdbarch, frv_breakpoint::kind_from_pc);
1503 set_gdbarch_sw_breakpoint_from_kind (gdbarch, frv_breakpoint::bp_from_kind);
1504 set_gdbarch_adjust_breakpoint_address
1505 (gdbarch, frv_adjust_breakpoint_address);
1506
1507 set_gdbarch_return_value (gdbarch, frv_return_value);
1508
1509 /* Frame stuff. */
1510 set_gdbarch_frame_align (gdbarch, frv_frame_align);
1511 frame_base_set_default (gdbarch, &frv_frame_base);
1512 /* We set the sniffer lower down after the OSABI hooks have been
1513 established. */
1514
1515 /* Settings for calling functions in the inferior. */
1516 set_gdbarch_push_dummy_call (gdbarch, frv_push_dummy_call);
1517
1518 /* Settings that should be unnecessary. */
1519 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1520
1521 /* Hardware watchpoint / breakpoint support. */
1522 switch (info.bfd_arch_info->mach)
1523 {
1524 case bfd_mach_frv:
1525 case bfd_mach_frvsimple:
1526 case bfd_mach_fr300:
1527 case bfd_mach_fr500:
1528 case bfd_mach_frvtomcat:
1529 /* fr500-style hardware debugging support. */
1530 var->num_hw_watchpoints = 4;
1531 var->num_hw_breakpoints = 4;
1532 break;
1533
1534 case bfd_mach_fr400:
1535 case bfd_mach_fr450:
1536 /* fr400-style hardware debugging support. */
1537 var->num_hw_watchpoints = 2;
1538 var->num_hw_breakpoints = 4;
1539 break;
1540
1541 default:
1542 /* Otherwise, assume we don't have hardware debugging support. */
1543 var->num_hw_watchpoints = 0;
1544 var->num_hw_breakpoints = 0;
1545 break;
1546 }
1547
1548 if (frv_abi (gdbarch) == FRV_ABI_FDPIC)
1549 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
1550 frv_convert_from_func_ptr_addr);
1551
1552 set_gdbarch_so_ops (gdbarch, &frv_so_ops);
1553
1554 /* Hook in ABI-specific overrides, if they have been registered. */
1555 gdbarch_init_osabi (info, gdbarch);
1556
1557 /* Set the fallback (prologue based) frame sniffer. */
1558 frame_unwind_append_unwinder (gdbarch, &frv_frame_unwind);
1559
1560 /* Enable TLS support. */
1561 set_gdbarch_fetch_tls_load_module_address (gdbarch,
1562 frv_fetch_objfile_link_map);
1563
1564 return gdbarch;
1565 }
1566
1567 void _initialize_frv_tdep ();
1568 void
1569 _initialize_frv_tdep ()
1570 {
1571 gdbarch_register (bfd_arch_frv, frv_gdbarch_init);
1572 }