2003-03-26 Andrew Cagney <cagney@redhat.com>
[binutils-gdb.git] / gdb / frv-tdep.c
1 /* Target-dependent code for the Fujitsu FR-V, for GDB, the GNU Debugger.
2 Copyright 2002, 2003 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21 #include "defs.h"
22 #include "inferior.h"
23 #include "symfile.h" /* for entry_point_address */
24 #include "gdbcore.h"
25 #include "arch-utils.h"
26 #include "regcache.h"
27
28 extern void _initialize_frv_tdep (void);
29
30 static gdbarch_init_ftype frv_gdbarch_init;
31
32 static gdbarch_register_name_ftype frv_register_name;
33 static gdbarch_register_raw_size_ftype frv_register_raw_size;
34 static gdbarch_register_virtual_size_ftype frv_register_virtual_size;
35 static gdbarch_register_virtual_type_ftype frv_register_virtual_type;
36 static gdbarch_register_byte_ftype frv_register_byte;
37 static gdbarch_breakpoint_from_pc_ftype frv_breakpoint_from_pc;
38 static gdbarch_skip_prologue_ftype frv_skip_prologue;
39 static gdbarch_deprecated_extract_return_value_ftype frv_extract_return_value;
40 static gdbarch_deprecated_extract_struct_value_address_ftype frv_extract_struct_value_address;
41 static gdbarch_use_struct_convention_ftype frv_use_struct_convention;
42 static gdbarch_frameless_function_invocation_ftype frv_frameless_function_invocation;
43 static gdbarch_init_extra_frame_info_ftype stupid_useless_init_extra_frame_info;
44 static gdbarch_push_arguments_ftype frv_push_arguments;
45 static gdbarch_push_return_address_ftype frv_push_return_address;
46 static gdbarch_saved_pc_after_call_ftype frv_saved_pc_after_call;
47
48 static void frv_pop_frame_regular (struct frame_info *frame);
49
50 /* Register numbers. You can change these as needed, but don't forget
51 to update the simulator accordingly. */
52 enum {
53 /* The total number of registers we know exist. */
54 frv_num_regs = 147,
55
56 /* Register numbers 0 -- 63 are always reserved for general-purpose
57 registers. The chip at hand may have less. */
58 first_gpr_regnum = 0,
59 sp_regnum = 1,
60 fp_regnum = 2,
61 struct_return_regnum = 3,
62 last_gpr_regnum = 63,
63
64 /* Register numbers 64 -- 127 are always reserved for floating-point
65 registers. The chip at hand may have less. */
66 first_fpr_regnum = 64,
67 last_fpr_regnum = 127,
68
69 /* Register numbers 128 on up are always reserved for special-purpose
70 registers. */
71 first_spr_regnum = 128,
72 pc_regnum = 128,
73 psr_regnum = 129,
74 ccr_regnum = 130,
75 cccr_regnum = 131,
76 tbr_regnum = 135,
77 brr_regnum = 136,
78 dbar0_regnum = 137,
79 dbar1_regnum = 138,
80 dbar2_regnum = 139,
81 dbar3_regnum = 140,
82 lr_regnum = 145,
83 lcr_regnum = 146,
84 last_spr_regnum = 146
85 };
86
87 static LONGEST frv_call_dummy_words[] =
88 {0};
89
90
91 /* The contents of this structure can only be trusted after we've
92 frv_frame_init_saved_regs on the frame. */
93 struct frame_extra_info
94 {
95 /* The offset from our frame pointer to our caller's stack
96 pointer. */
97 int fp_to_callers_sp_offset;
98
99 /* Non-zero if we've saved our return address on the stack yet.
100 Zero if it's still sitting in the link register. */
101 int lr_saved_on_stack;
102 };
103
104
105 /* A structure describing a particular variant of the FRV.
106 We allocate and initialize one of these structures when we create
107 the gdbarch object for a variant.
108
109 At the moment, all the FR variants we support differ only in which
110 registers are present; the portable code of GDB knows that
111 registers whose names are the empty string don't exist, so the
112 `register_names' array captures all the per-variant information we
113 need.
114
115 in the future, if we need to have per-variant maps for raw size,
116 virtual type, etc., we should replace register_names with an array
117 of structures, each of which gives all the necessary info for one
118 register. Don't stick parallel arrays in here --- that's so
119 Fortran. */
120 struct gdbarch_tdep
121 {
122 /* How many general-purpose registers does this variant have? */
123 int num_gprs;
124
125 /* How many floating-point registers does this variant have? */
126 int num_fprs;
127
128 /* How many hardware watchpoints can it support? */
129 int num_hw_watchpoints;
130
131 /* How many hardware breakpoints can it support? */
132 int num_hw_breakpoints;
133
134 /* Register names. */
135 char **register_names;
136 };
137
138 #define CURRENT_VARIANT (gdbarch_tdep (current_gdbarch))
139
140
141 /* Allocate a new variant structure, and set up default values for all
142 the fields. */
143 static struct gdbarch_tdep *
144 new_variant (void)
145 {
146 struct gdbarch_tdep *var;
147 int r;
148 char buf[20];
149
150 var = xmalloc (sizeof (*var));
151 memset (var, 0, sizeof (*var));
152
153 var->num_gprs = 64;
154 var->num_fprs = 64;
155 var->num_hw_watchpoints = 0;
156 var->num_hw_breakpoints = 0;
157
158 /* By default, don't supply any general-purpose or floating-point
159 register names. */
160 var->register_names = (char **) xmalloc (frv_num_regs * sizeof (char *));
161 for (r = 0; r < frv_num_regs; r++)
162 var->register_names[r] = "";
163
164 /* Do, however, supply default names for the special-purpose
165 registers. */
166 for (r = first_spr_regnum; r <= last_spr_regnum; ++r)
167 {
168 sprintf (buf, "x%d", r);
169 var->register_names[r] = xstrdup (buf);
170 }
171
172 var->register_names[pc_regnum] = "pc";
173 var->register_names[lr_regnum] = "lr";
174 var->register_names[lcr_regnum] = "lcr";
175
176 var->register_names[psr_regnum] = "psr";
177 var->register_names[ccr_regnum] = "ccr";
178 var->register_names[cccr_regnum] = "cccr";
179 var->register_names[tbr_regnum] = "tbr";
180
181 /* Debug registers. */
182 var->register_names[brr_regnum] = "brr";
183 var->register_names[dbar0_regnum] = "dbar0";
184 var->register_names[dbar1_regnum] = "dbar1";
185 var->register_names[dbar2_regnum] = "dbar2";
186 var->register_names[dbar3_regnum] = "dbar3";
187
188 return var;
189 }
190
191
192 /* Indicate that the variant VAR has NUM_GPRS general-purpose
193 registers, and fill in the names array appropriately. */
194 static void
195 set_variant_num_gprs (struct gdbarch_tdep *var, int num_gprs)
196 {
197 int r;
198
199 var->num_gprs = num_gprs;
200
201 for (r = 0; r < num_gprs; ++r)
202 {
203 char buf[20];
204
205 sprintf (buf, "gr%d", r);
206 var->register_names[first_gpr_regnum + r] = xstrdup (buf);
207 }
208 }
209
210
211 /* Indicate that the variant VAR has NUM_FPRS floating-point
212 registers, and fill in the names array appropriately. */
213 static void
214 set_variant_num_fprs (struct gdbarch_tdep *var, int num_fprs)
215 {
216 int r;
217
218 var->num_fprs = num_fprs;
219
220 for (r = 0; r < num_fprs; ++r)
221 {
222 char buf[20];
223
224 sprintf (buf, "fr%d", r);
225 var->register_names[first_fpr_regnum + r] = xstrdup (buf);
226 }
227 }
228
229
230 static const char *
231 frv_register_name (int reg)
232 {
233 if (reg < 0)
234 return "?toosmall?";
235 if (reg >= frv_num_regs)
236 return "?toolarge?";
237
238 return CURRENT_VARIANT->register_names[reg];
239 }
240
241
242 static int
243 frv_register_raw_size (int reg)
244 {
245 return 4;
246 }
247
248 static int
249 frv_register_virtual_size (int reg)
250 {
251 return 4;
252 }
253
254 static struct type *
255 frv_register_virtual_type (int reg)
256 {
257 if (reg >= 64 && reg <= 127)
258 return builtin_type_float;
259 else
260 return builtin_type_int;
261 }
262
263 static int
264 frv_register_byte (int reg)
265 {
266 return (reg * 4);
267 }
268
269 static const unsigned char *
270 frv_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenp)
271 {
272 static unsigned char breakpoint[] = {0xc0, 0x70, 0x00, 0x01};
273 *lenp = sizeof (breakpoint);
274 return breakpoint;
275 }
276
277 static CORE_ADDR
278 frv_frame_chain (struct frame_info *frame)
279 {
280 CORE_ADDR saved_fp_addr;
281
282 if (frame->saved_regs && frame->saved_regs[fp_regnum] != 0)
283 saved_fp_addr = frame->saved_regs[fp_regnum];
284 else
285 /* Just assume it was saved in the usual place. */
286 saved_fp_addr = frame->frame;
287
288 return read_memory_integer (saved_fp_addr, 4);
289 }
290
291 static CORE_ADDR
292 frv_frame_saved_pc (struct frame_info *frame)
293 {
294 frv_frame_init_saved_regs (frame);
295
296 /* Perhaps the prologue analyzer recorded where it was stored.
297 (As of 14 Oct 2001, it never does.) */
298 if (frame->saved_regs && frame->saved_regs[pc_regnum] != 0)
299 return read_memory_integer (frame->saved_regs[pc_regnum], 4);
300
301 /* If the prologue analyzer tells us the link register was saved on
302 the stack, get it from there. */
303 if (frame->extra_info->lr_saved_on_stack)
304 return read_memory_integer (frame->frame + 8, 4);
305
306 /* Otherwise, it's still in LR.
307 However, if FRAME isn't the youngest frame, this is kind of
308 suspicious --- if this frame called somebody else, then its LR
309 has certainly been overwritten. */
310 if (! frame->next)
311 return read_register (lr_regnum);
312
313 /* By default, assume it's saved in the standard place, relative to
314 the frame pointer. */
315 return read_memory_integer (frame->frame + 8, 4);
316 }
317
318
319 /* Return true if REG is a caller-saves ("scratch") register,
320 false otherwise. */
321 static int
322 is_caller_saves_reg (int reg)
323 {
324 return ((4 <= reg && reg <= 7)
325 || (14 <= reg && reg <= 15)
326 || (32 <= reg && reg <= 47));
327 }
328
329
330 /* Return true if REG is a callee-saves register, false otherwise. */
331 static int
332 is_callee_saves_reg (int reg)
333 {
334 return ((16 <= reg && reg <= 31)
335 || (48 <= reg && reg <= 63));
336 }
337
338
339 /* Return true if REG is an argument register, false otherwise. */
340 static int
341 is_argument_reg (int reg)
342 {
343 return (8 <= reg && reg <= 13);
344 }
345
346
347 /* Scan an FR-V prologue, starting at PC, until frame->PC.
348 If FRAME is non-zero, fill in its saved_regs with appropriate addresses.
349 We assume FRAME's saved_regs array has already been allocated and cleared.
350 Return the first PC value after the prologue.
351
352 Note that, for unoptimized code, we almost don't need this function
353 at all; all arguments and locals live on the stack, so we just need
354 the FP to find everything. The catch: structures passed by value
355 have their addresses living in registers; they're never spilled to
356 the stack. So if you ever want to be able to get to these
357 arguments in any frame but the top, you'll need to do this serious
358 prologue analysis. */
359 static CORE_ADDR
360 frv_analyze_prologue (CORE_ADDR pc, struct frame_info *frame)
361 {
362 /* When writing out instruction bitpatterns, we use the following
363 letters to label instruction fields:
364 P - The parallel bit. We don't use this.
365 J - The register number of GRj in the instruction description.
366 K - The register number of GRk in the instruction description.
367 I - The register number of GRi.
368 S - a signed imediate offset.
369 U - an unsigned immediate offset.
370
371 The dots below the numbers indicate where hex digit boundaries
372 fall, to make it easier to check the numbers. */
373
374 /* Non-zero iff we've seen the instruction that initializes the
375 frame pointer for this function's frame. */
376 int fp_set = 0;
377
378 /* If fp_set is non_zero, then this is the distance from
379 the stack pointer to frame pointer: fp = sp + fp_offset. */
380 int fp_offset = 0;
381
382 /* Total size of frame prior to any alloca operations. */
383 int framesize = 0;
384
385 /* The number of the general-purpose register we saved the return
386 address ("link register") in, or -1 if we haven't moved it yet. */
387 int lr_save_reg = -1;
388
389 /* Non-zero iff we've saved the LR onto the stack. */
390 int lr_saved_on_stack = 0;
391
392 /* If gr_saved[i] is non-zero, then we've noticed that general
393 register i has been saved at gr_sp_offset[i] from the stack
394 pointer. */
395 char gr_saved[64];
396 int gr_sp_offset[64];
397
398 memset (gr_saved, 0, sizeof (gr_saved));
399
400 while (! frame || pc < frame->pc)
401 {
402 LONGEST op = read_memory_integer (pc, 4);
403
404 /* The tests in this chain of ifs should be in order of
405 decreasing selectivity, so that more particular patterns get
406 to fire before less particular patterns. */
407
408 /* Setting the FP from the SP:
409 ori sp, 0, fp
410 P 000010 0100010 000001 000000000000 = 0x04881000
411 0 111111 1111111 111111 111111111111 = 0x7fffffff
412 . . . . . . . .
413 We treat this as part of the prologue. */
414 if ((op & 0x7fffffff) == 0x04881000)
415 {
416 fp_set = 1;
417 fp_offset = 0;
418 }
419
420 /* Move the link register to the scratch register grJ, before saving:
421 movsg lr, grJ
422 P 000100 0000011 010000 000111 JJJJJJ = 0x080d01c0
423 0 111111 1111111 111111 111111 000000 = 0x7fffffc0
424 . . . . . . . .
425 We treat this as part of the prologue. */
426 else if ((op & 0x7fffffc0) == 0x080d01c0)
427 {
428 int gr_j = op & 0x3f;
429
430 /* If we're moving it to a scratch register, that's fine. */
431 if (is_caller_saves_reg (gr_j))
432 lr_save_reg = gr_j;
433 /* Otherwise it's not a prologue instruction that we
434 recognize. */
435 else
436 break;
437 }
438
439 /* To save multiple callee-saves registers on the stack, at
440 offset zero:
441
442 std grK,@(sp,gr0)
443 P KKKKKK 0000011 000001 000011 000000 = 0x000c10c0
444 0 000000 1111111 111111 111111 111111 = 0x01ffffff
445
446 stq grK,@(sp,gr0)
447 P KKKKKK 0000011 000001 000100 000000 = 0x000c1100
448 0 000000 1111111 111111 111111 111111 = 0x01ffffff
449 . . . . . . . .
450 We treat this as part of the prologue, and record the register's
451 saved address in the frame structure. */
452 else if ((op & 0x01ffffff) == 0x000c10c0
453 || (op & 0x01ffffff) == 0x000c1100)
454 {
455 int gr_k = ((op >> 25) & 0x3f);
456 int ope = ((op >> 6) & 0x3f);
457 int count;
458 int i;
459
460 /* Is it an std or an stq? */
461 if (ope == 0x03)
462 count = 2;
463 else
464 count = 4;
465
466 /* Is it really a callee-saves register? */
467 if (is_callee_saves_reg (gr_k))
468 {
469 for (i = 0; i < count; i++)
470 {
471 gr_saved[gr_k + i] = 1;
472 gr_sp_offset[gr_k + i] = 4 * i;
473 }
474 }
475 else
476 /* It's not a prologue instruction. */
477 break;
478 }
479
480 /* Adjusting the stack pointer. (The stack pointer is GR1.)
481 addi sp, S, sp
482 P 000001 0010000 000001 SSSSSSSSSSSS = 0x02401000
483 0 111111 1111111 111111 000000000000 = 0x7ffff000
484 . . . . . . . .
485 We treat this as part of the prologue. */
486 else if ((op & 0x7ffff000) == 0x02401000)
487 {
488 /* Sign-extend the twelve-bit field.
489 (Isn't there a better way to do this?) */
490 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
491
492 framesize -= s;
493 }
494
495 /* Setting the FP to a constant distance from the SP:
496 addi sp, S, fp
497 P 000010 0010000 000001 SSSSSSSSSSSS = 0x04401000
498 0 111111 1111111 111111 000000000000 = 0x7ffff000
499 . . . . . . . .
500 We treat this as part of the prologue. */
501 else if ((op & 0x7ffff000) == 0x04401000)
502 {
503 /* Sign-extend the twelve-bit field.
504 (Isn't there a better way to do this?) */
505 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
506 fp_set = 1;
507 fp_offset = s;
508 }
509
510 /* To spill an argument register to a scratch register:
511 ori GRi, 0, GRk
512 P KKKKKK 0100010 IIIIII 000000000000 = 0x00880000
513 0 000000 1111111 000000 111111111111 = 0x01fc0fff
514 . . . . . . . .
515 For the time being, we treat this as a prologue instruction,
516 assuming that GRi is an argument register. This one's kind
517 of suspicious, because it seems like it could be part of a
518 legitimate body instruction. But we only come here when the
519 source info wasn't helpful, so we have to do the best we can.
520 Hopefully once GCC and GDB agree on how to emit line number
521 info for prologues, then this code will never come into play. */
522 else if ((op & 0x01fc0fff) == 0x00880000)
523 {
524 int gr_i = ((op >> 12) & 0x3f);
525
526 /* If the source isn't an arg register, then this isn't a
527 prologue instruction. */
528 if (! is_argument_reg (gr_i))
529 break;
530 }
531
532 /* To spill 16-bit values to the stack:
533 sthi GRk, @(fp, s)
534 P KKKKKK 1010001 000010 SSSSSSSSSSSS = 0x01442000
535 0 000000 1111111 111111 000000000000 = 0x01fff000
536 . . . . . . . .
537 And for 8-bit values, we use STB instructions.
538 stbi GRk, @(fp, s)
539 P KKKKKK 1010000 000010 SSSSSSSSSSSS = 0x01402000
540 0 000000 1111111 111111 000000000000 = 0x01fff000
541 . . . . . . . .
542 We check that GRk is really an argument register, and treat
543 all such as part of the prologue. */
544 else if ( (op & 0x01fff000) == 0x01442000
545 || (op & 0x01fff000) == 0x01402000)
546 {
547 int gr_k = ((op >> 25) & 0x3f);
548
549 if (! is_argument_reg (gr_k))
550 break; /* Source isn't an arg register. */
551 }
552
553 /* To save multiple callee-saves register on the stack, at a
554 non-zero offset:
555
556 stdi GRk, @(sp, s)
557 P KKKKKK 1010011 000001 SSSSSSSSSSSS = 0x014c1000
558 0 000000 1111111 111111 000000000000 = 0x01fff000
559 . . . . . . . .
560 stqi GRk, @(sp, s)
561 P KKKKKK 1010100 000001 SSSSSSSSSSSS = 0x01501000
562 0 000000 1111111 111111 000000000000 = 0x01fff000
563 . . . . . . . .
564 We treat this as part of the prologue, and record the register's
565 saved address in the frame structure. */
566 else if ((op & 0x01fff000) == 0x014c1000
567 || (op & 0x01fff000) == 0x01501000)
568 {
569 int gr_k = ((op >> 25) & 0x3f);
570 int count;
571 int i;
572
573 /* Is it a stdi or a stqi? */
574 if ((op & 0x01fff000) == 0x014c1000)
575 count = 2;
576 else
577 count = 4;
578
579 /* Is it really a callee-saves register? */
580 if (is_callee_saves_reg (gr_k))
581 {
582 /* Sign-extend the twelve-bit field.
583 (Isn't there a better way to do this?) */
584 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
585
586 for (i = 0; i < count; i++)
587 {
588 gr_saved[gr_k + i] = 1;
589 gr_sp_offset[gr_k + i] = s + (4 * i);
590 }
591 }
592 else
593 /* It's not a prologue instruction. */
594 break;
595 }
596
597 /* Storing any kind of integer register at any constant offset
598 from any other register.
599
600 st GRk, @(GRi, gr0)
601 P KKKKKK 0000011 IIIIII 000010 000000 = 0x000c0080
602 0 000000 1111111 000000 111111 111111 = 0x01fc0fff
603 . . . . . . . .
604 sti GRk, @(GRi, d12)
605 P KKKKKK 1010010 IIIIII SSSSSSSSSSSS = 0x01480000
606 0 000000 1111111 000000 000000000000 = 0x01fc0000
607 . . . . . . . .
608 These could be almost anything, but a lot of prologue
609 instructions fall into this pattern, so let's decode the
610 instruction once, and then work at a higher level. */
611 else if (((op & 0x01fc0fff) == 0x000c0080)
612 || ((op & 0x01fc0000) == 0x01480000))
613 {
614 int gr_k = ((op >> 25) & 0x3f);
615 int gr_i = ((op >> 12) & 0x3f);
616 int offset;
617
618 /* Are we storing with gr0 as an offset, or using an
619 immediate value? */
620 if ((op & 0x01fc0fff) == 0x000c0080)
621 offset = 0;
622 else
623 offset = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
624
625 /* If the address isn't relative to the SP or FP, it's not a
626 prologue instruction. */
627 if (gr_i != sp_regnum && gr_i != fp_regnum)
628 break;
629
630 /* Saving the old FP in the new frame (relative to the SP). */
631 if (gr_k == fp_regnum && gr_i == sp_regnum)
632 ;
633
634 /* Saving callee-saves register(s) on the stack, relative to
635 the SP. */
636 else if (gr_i == sp_regnum
637 && is_callee_saves_reg (gr_k))
638 {
639 gr_saved[gr_k] = 1;
640 gr_sp_offset[gr_k] = offset;
641 }
642
643 /* Saving the scratch register holding the return address. */
644 else if (lr_save_reg != -1
645 && gr_k == lr_save_reg)
646 lr_saved_on_stack = 1;
647
648 /* Spilling int-sized arguments to the stack. */
649 else if (is_argument_reg (gr_k))
650 ;
651
652 /* It's not a store instruction we recognize, so this must
653 be the end of the prologue. */
654 else
655 break;
656 }
657
658 /* It's not any instruction we recognize, so this must be the end
659 of the prologue. */
660 else
661 break;
662
663 pc += 4;
664 }
665
666 if (frame)
667 {
668 frame->extra_info->lr_saved_on_stack = lr_saved_on_stack;
669
670 /* If we know the relationship between the stack and frame
671 pointers, record the addresses of the registers we noticed.
672 Note that we have to do this as a separate step at the end,
673 because instructions may save relative to the SP, but we need
674 their addresses relative to the FP. */
675 if (fp_set)
676 {
677 int i;
678
679 for (i = 0; i < 64; i++)
680 if (gr_saved[i])
681 frame->saved_regs[i] = (frame->frame
682 - fp_offset + gr_sp_offset[i]);
683
684 frame->extra_info->fp_to_callers_sp_offset = framesize - fp_offset;
685 }
686 }
687
688 return pc;
689 }
690
691
692 static CORE_ADDR
693 frv_skip_prologue (CORE_ADDR pc)
694 {
695 CORE_ADDR func_addr, func_end, new_pc;
696
697 new_pc = pc;
698
699 /* If the line table has entry for a line *within* the function
700 (i.e., not in the prologue, and not past the end), then that's
701 our location. */
702 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
703 {
704 struct symtab_and_line sal;
705
706 sal = find_pc_line (func_addr, 0);
707
708 if (sal.line != 0 && sal.end < func_end)
709 {
710 new_pc = sal.end;
711 }
712 }
713
714 /* The FR-V prologue is at least five instructions long (twenty bytes).
715 If we didn't find a real source location past that, then
716 do a full analysis of the prologue. */
717 if (new_pc < pc + 20)
718 new_pc = frv_analyze_prologue (pc, 0);
719
720 return new_pc;
721 }
722
723 static void
724 frv_frame_init_saved_regs (struct frame_info *frame)
725 {
726 if (frame->saved_regs)
727 return;
728
729 frame_saved_regs_zalloc (frame);
730 frame->saved_regs[fp_regnum] = frame->frame;
731
732 /* Find the beginning of this function, so we can analyze its
733 prologue. */
734 {
735 CORE_ADDR func_addr, func_end;
736
737 if (find_pc_partial_function (frame->pc, NULL, &func_addr, &func_end))
738 frv_analyze_prologue (func_addr, frame);
739 }
740 }
741
742 /* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of
743 EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc
744 and TYPE is the type (which is known to be struct, union or array).
745
746 The frv returns all structs in memory. */
747
748 static int
749 frv_use_struct_convention (int gcc_p, struct type *type)
750 {
751 return 1;
752 }
753
754 static void
755 frv_extract_return_value (struct type *type, char *regbuf, char *valbuf)
756 {
757 memcpy (valbuf, (regbuf
758 + frv_register_byte (8)
759 + (TYPE_LENGTH (type) < 4 ? 4 - TYPE_LENGTH (type) : 0)),
760 TYPE_LENGTH (type));
761 }
762
763 static CORE_ADDR
764 frv_extract_struct_value_address (char *regbuf)
765 {
766 return extract_address (regbuf + frv_register_byte (struct_return_regnum),
767 4);
768 }
769
770 static void
771 frv_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
772 {
773 write_register (struct_return_regnum, addr);
774 }
775
776 static int
777 frv_frameless_function_invocation (struct frame_info *frame)
778 {
779 return frameless_look_for_prologue (frame);
780 }
781
782 static CORE_ADDR
783 frv_saved_pc_after_call (struct frame_info *frame)
784 {
785 return read_register (lr_regnum);
786 }
787
788 static void
789 frv_init_extra_frame_info (int fromleaf, struct frame_info *frame)
790 {
791 frame_extra_info_zalloc (frame, sizeof (struct frame_extra_info));
792 frame->extra_info->fp_to_callers_sp_offset = 0;
793 frame->extra_info->lr_saved_on_stack = 0;
794 }
795
796 #define ROUND_UP(n,a) (((n)+(a)-1) & ~((a)-1))
797 #define ROUND_DOWN(n,a) ((n) & ~((a)-1))
798
799 static CORE_ADDR
800 frv_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
801 int struct_return, CORE_ADDR struct_addr)
802 {
803 int argreg;
804 int argnum;
805 char *val;
806 char valbuf[4];
807 struct value *arg;
808 struct type *arg_type;
809 int len;
810 enum type_code typecode;
811 CORE_ADDR regval;
812 int stack_space;
813 int stack_offset;
814
815 #if 0
816 printf("Push %d args at sp = %x, struct_return=%d (%x)\n",
817 nargs, (int) sp, struct_return, struct_addr);
818 #endif
819
820 stack_space = 0;
821 for (argnum = 0; argnum < nargs; ++argnum)
822 stack_space += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])), 4);
823
824 stack_space -= (6 * 4);
825 if (stack_space > 0)
826 sp -= stack_space;
827
828 /* Make sure stack is dword aligned. */
829 sp = ROUND_DOWN (sp, 8);
830
831 stack_offset = 0;
832
833 argreg = 8;
834
835 if (struct_return)
836 write_register (struct_return_regnum, struct_addr);
837
838 for (argnum = 0; argnum < nargs; ++argnum)
839 {
840 arg = args[argnum];
841 arg_type = check_typedef (VALUE_TYPE (arg));
842 len = TYPE_LENGTH (arg_type);
843 typecode = TYPE_CODE (arg_type);
844
845 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
846 {
847 store_address (valbuf, 4, VALUE_ADDRESS (arg));
848 typecode = TYPE_CODE_PTR;
849 len = 4;
850 val = valbuf;
851 }
852 else
853 {
854 val = (char *) VALUE_CONTENTS (arg);
855 }
856
857 while (len > 0)
858 {
859 int partial_len = (len < 4 ? len : 4);
860
861 if (argreg < 14)
862 {
863 regval = extract_address (val, partial_len);
864 #if 0
865 printf(" Argnum %d data %x -> reg %d\n",
866 argnum, (int) regval, argreg);
867 #endif
868 write_register (argreg, regval);
869 ++argreg;
870 }
871 else
872 {
873 #if 0
874 printf(" Argnum %d data %x -> offset %d (%x)\n",
875 argnum, *((int *)val), stack_offset, (int) (sp + stack_offset));
876 #endif
877 write_memory (sp + stack_offset, val, partial_len);
878 stack_offset += ROUND_UP(partial_len, 4);
879 }
880 len -= partial_len;
881 val += partial_len;
882 }
883 }
884 return sp;
885 }
886
887 static CORE_ADDR
888 frv_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
889 {
890 write_register (lr_regnum, CALL_DUMMY_ADDRESS ());
891 return sp;
892 }
893
894 static void
895 frv_store_return_value (struct type *type, char *valbuf)
896 {
897 int length = TYPE_LENGTH (type);
898 int reg8_offset = frv_register_byte (8);
899
900 if (length <= 4)
901 deprecated_write_register_bytes (reg8_offset + (4 - length), valbuf,
902 length);
903 else if (length == 8)
904 deprecated_write_register_bytes (reg8_offset, valbuf, length);
905 else
906 internal_error (__FILE__, __LINE__,
907 "Don't know how to return a %d-byte value.", length);
908 }
909
910 static void
911 frv_pop_frame (void)
912 {
913 generic_pop_current_frame (frv_pop_frame_regular);
914 }
915
916 static void
917 frv_pop_frame_regular (struct frame_info *frame)
918 {
919 CORE_ADDR fp;
920 int regno;
921
922 fp = frame->frame;
923
924 frv_frame_init_saved_regs (frame);
925
926 write_register (pc_regnum, frv_frame_saved_pc (frame));
927 for (regno = 0; regno < frv_num_regs; ++regno)
928 {
929 if (frame->saved_regs[regno]
930 && regno != pc_regnum
931 && regno != sp_regnum)
932 {
933 write_register (regno,
934 read_memory_integer (frame->saved_regs[regno], 4));
935 }
936 }
937 write_register (sp_regnum, fp + frame->extra_info->fp_to_callers_sp_offset);
938 flush_cached_frames ();
939 }
940
941
942 static void
943 frv_remote_translate_xfer_address (CORE_ADDR memaddr, int nr_bytes,
944 CORE_ADDR *targ_addr, int *targ_len)
945 {
946 *targ_addr = memaddr;
947 *targ_len = nr_bytes;
948 }
949
950
951 /* Hardware watchpoint / breakpoint support for the FR500
952 and FR400. */
953
954 int
955 frv_check_watch_resources (int type, int cnt, int ot)
956 {
957 struct gdbarch_tdep *var = CURRENT_VARIANT;
958
959 /* Watchpoints not supported on simulator. */
960 if (strcmp (target_shortname, "sim") == 0)
961 return 0;
962
963 if (type == bp_hardware_breakpoint)
964 {
965 if (var->num_hw_breakpoints == 0)
966 return 0;
967 else if (cnt <= var->num_hw_breakpoints)
968 return 1;
969 }
970 else
971 {
972 if (var->num_hw_watchpoints == 0)
973 return 0;
974 else if (ot)
975 return -1;
976 else if (cnt <= var->num_hw_watchpoints)
977 return 1;
978 }
979 return -1;
980 }
981
982
983 CORE_ADDR
984 frv_stopped_data_address (void)
985 {
986 CORE_ADDR brr, dbar0, dbar1, dbar2, dbar3;
987
988 brr = read_register (brr_regnum);
989 dbar0 = read_register (dbar0_regnum);
990 dbar1 = read_register (dbar1_regnum);
991 dbar2 = read_register (dbar2_regnum);
992 dbar3 = read_register (dbar3_regnum);
993
994 if (brr & (1<<11))
995 return dbar0;
996 else if (brr & (1<<10))
997 return dbar1;
998 else if (brr & (1<<9))
999 return dbar2;
1000 else if (brr & (1<<8))
1001 return dbar3;
1002 else
1003 return 0;
1004 }
1005
1006 static struct gdbarch *
1007 frv_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1008 {
1009 struct gdbarch *gdbarch;
1010 struct gdbarch_tdep *var;
1011
1012 /* Check to see if we've already built an appropriate architecture
1013 object for this executable. */
1014 arches = gdbarch_list_lookup_by_info (arches, &info);
1015 if (arches)
1016 return arches->gdbarch;
1017
1018 /* Select the right tdep structure for this variant. */
1019 var = new_variant ();
1020 switch (info.bfd_arch_info->mach)
1021 {
1022 case bfd_mach_frv:
1023 case bfd_mach_frvsimple:
1024 case bfd_mach_fr500:
1025 case bfd_mach_frvtomcat:
1026 set_variant_num_gprs (var, 64);
1027 set_variant_num_fprs (var, 64);
1028 break;
1029
1030 case bfd_mach_fr400:
1031 set_variant_num_gprs (var, 32);
1032 set_variant_num_fprs (var, 32);
1033 break;
1034
1035 default:
1036 /* Never heard of this variant. */
1037 return 0;
1038 }
1039
1040 gdbarch = gdbarch_alloc (&info, var);
1041
1042 /* NOTE: cagney/2002-12-06: This can be deleted when this arch is
1043 ready to unwind the PC first (see frame.c:get_prev_frame()). */
1044 set_gdbarch_deprecated_init_frame_pc (gdbarch, init_frame_pc_default);
1045
1046 set_gdbarch_short_bit (gdbarch, 16);
1047 set_gdbarch_int_bit (gdbarch, 32);
1048 set_gdbarch_long_bit (gdbarch, 32);
1049 set_gdbarch_long_long_bit (gdbarch, 64);
1050 set_gdbarch_float_bit (gdbarch, 32);
1051 set_gdbarch_double_bit (gdbarch, 64);
1052 set_gdbarch_long_double_bit (gdbarch, 64);
1053 set_gdbarch_ptr_bit (gdbarch, 32);
1054
1055 set_gdbarch_num_regs (gdbarch, frv_num_regs);
1056 set_gdbarch_sp_regnum (gdbarch, sp_regnum);
1057 set_gdbarch_fp_regnum (gdbarch, fp_regnum);
1058 set_gdbarch_pc_regnum (gdbarch, pc_regnum);
1059
1060 set_gdbarch_register_name (gdbarch, frv_register_name);
1061 set_gdbarch_register_size (gdbarch, 4);
1062 set_gdbarch_register_bytes (gdbarch, frv_num_regs * 4);
1063 set_gdbarch_register_byte (gdbarch, frv_register_byte);
1064 set_gdbarch_register_raw_size (gdbarch, frv_register_raw_size);
1065 set_gdbarch_deprecated_max_register_raw_size (gdbarch, 4);
1066 set_gdbarch_register_virtual_size (gdbarch, frv_register_virtual_size);
1067 set_gdbarch_deprecated_max_register_virtual_size (gdbarch, 4);
1068 set_gdbarch_register_virtual_type (gdbarch, frv_register_virtual_type);
1069
1070 set_gdbarch_skip_prologue (gdbarch, frv_skip_prologue);
1071 set_gdbarch_breakpoint_from_pc (gdbarch, frv_breakpoint_from_pc);
1072
1073 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
1074 set_gdbarch_frame_args_skip (gdbarch, 0);
1075 set_gdbarch_frameless_function_invocation (gdbarch, frv_frameless_function_invocation);
1076
1077 set_gdbarch_saved_pc_after_call (gdbarch, frv_saved_pc_after_call);
1078
1079 set_gdbarch_deprecated_frame_chain (gdbarch, frv_frame_chain);
1080 set_gdbarch_deprecated_frame_saved_pc (gdbarch, frv_frame_saved_pc);
1081
1082 set_gdbarch_deprecated_frame_init_saved_regs (gdbarch, frv_frame_init_saved_regs);
1083
1084 set_gdbarch_use_struct_convention (gdbarch, frv_use_struct_convention);
1085 set_gdbarch_deprecated_extract_return_value (gdbarch, frv_extract_return_value);
1086
1087 set_gdbarch_deprecated_store_struct_return (gdbarch, frv_store_struct_return);
1088 set_gdbarch_deprecated_store_return_value (gdbarch, frv_store_return_value);
1089 set_gdbarch_deprecated_extract_struct_value_address (gdbarch, frv_extract_struct_value_address);
1090
1091 /* Settings for calling functions in the inferior. */
1092 set_gdbarch_call_dummy_length (gdbarch, 0);
1093 set_gdbarch_deprecated_push_arguments (gdbarch, frv_push_arguments);
1094 set_gdbarch_push_return_address (gdbarch, frv_push_return_address);
1095 set_gdbarch_deprecated_pop_frame (gdbarch, frv_pop_frame);
1096
1097 set_gdbarch_call_dummy_p (gdbarch, 1);
1098 set_gdbarch_call_dummy_words (gdbarch, frv_call_dummy_words);
1099 set_gdbarch_sizeof_call_dummy_words (gdbarch, sizeof (frv_call_dummy_words));
1100 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
1101 set_gdbarch_deprecated_init_extra_frame_info (gdbarch, frv_init_extra_frame_info);
1102
1103 /* Settings that should be unnecessary. */
1104 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1105
1106 set_gdbarch_read_pc (gdbarch, generic_target_read_pc);
1107 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
1108 set_gdbarch_read_fp (gdbarch, generic_target_read_fp);
1109 set_gdbarch_read_sp (gdbarch, generic_target_read_sp);
1110 set_gdbarch_write_sp (gdbarch, generic_target_write_sp);
1111
1112 set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
1113 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
1114 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
1115 set_gdbarch_deprecated_pc_in_call_dummy (gdbarch, deprecated_pc_in_call_dummy_at_entry_point);
1116 set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy);
1117
1118 set_gdbarch_decr_pc_after_break (gdbarch, 0);
1119 set_gdbarch_function_start_offset (gdbarch, 0);
1120 set_gdbarch_register_convertible (gdbarch, generic_register_convertible_not);
1121
1122 set_gdbarch_remote_translate_xfer_address
1123 (gdbarch, frv_remote_translate_xfer_address);
1124
1125 /* Hardware watchpoint / breakpoint support. */
1126 switch (info.bfd_arch_info->mach)
1127 {
1128 case bfd_mach_frv:
1129 case bfd_mach_frvsimple:
1130 case bfd_mach_fr500:
1131 case bfd_mach_frvtomcat:
1132 /* fr500-style hardware debugging support. */
1133 var->num_hw_watchpoints = 4;
1134 var->num_hw_breakpoints = 4;
1135 break;
1136
1137 case bfd_mach_fr400:
1138 /* fr400-style hardware debugging support. */
1139 var->num_hw_watchpoints = 2;
1140 var->num_hw_breakpoints = 4;
1141 break;
1142
1143 default:
1144 /* Otherwise, assume we don't have hardware debugging support. */
1145 var->num_hw_watchpoints = 0;
1146 var->num_hw_breakpoints = 0;
1147 break;
1148 }
1149
1150 return gdbarch;
1151 }
1152
1153 void
1154 _initialize_frv_tdep (void)
1155 {
1156 register_gdbarch_init (bfd_arch_frv, frv_gdbarch_init);
1157
1158 tm_print_insn = print_insn_frv;
1159 }
1160
1161 \f