Add shared library support for FR-V FDPIC ABI.
[binutils-gdb.git] / gdb / frv-tdep.c
1 /* Target-dependent code for the Fujitsu FR-V, for GDB, the GNU Debugger.
2 Copyright 2002, 2003, 2004 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21 #include "defs.h"
22 #include "gdb_string.h"
23 #include "inferior.h"
24 #include "gdbcore.h"
25 #include "arch-utils.h"
26 #include "regcache.h"
27 #include "frame.h"
28 #include "frame-unwind.h"
29 #include "frame-base.h"
30 #include "trad-frame.h"
31 #include "dis-asm.h"
32 #include "gdb_assert.h"
33 #include "sim-regno.h"
34 #include "gdb/sim-frv.h"
35 #include "opcodes/frv-desc.h" /* for the H_SPR_... enums */
36 #include "symtab.h"
37 #include "elf-bfd.h"
38 #include "elf/frv.h"
39 #include "osabi.h"
40 #include "frv-tdep.h"
41
42 extern void _initialize_frv_tdep (void);
43
44 static gdbarch_init_ftype frv_gdbarch_init;
45
46 static gdbarch_register_name_ftype frv_register_name;
47 static gdbarch_breakpoint_from_pc_ftype frv_breakpoint_from_pc;
48 static gdbarch_adjust_breakpoint_address_ftype frv_gdbarch_adjust_breakpoint_address;
49 static gdbarch_skip_prologue_ftype frv_skip_prologue;
50
51 /* Register numbers. The order in which these appear define the
52 remote protocol, so take care in changing them. */
53 enum {
54 /* Register numbers 0 -- 63 are always reserved for general-purpose
55 registers. The chip at hand may have less. */
56 first_gpr_regnum = 0,
57 sp_regnum = 1,
58 fp_regnum = 2,
59 struct_return_regnum = 3,
60 last_gpr_regnum = 63,
61
62 /* Register numbers 64 -- 127 are always reserved for floating-point
63 registers. The chip at hand may have less. */
64 first_fpr_regnum = 64,
65 last_fpr_regnum = 127,
66
67 /* The PC register. */
68 pc_regnum = 128,
69
70 /* Register numbers 129 on up are always reserved for special-purpose
71 registers. */
72 first_spr_regnum = 129,
73 psr_regnum = 129,
74 ccr_regnum = 130,
75 cccr_regnum = 131,
76 fdpic_loadmap_exec_regnum = 132,
77 fdpic_loadmap_interp_regnum = 133,
78 tbr_regnum = 135,
79 brr_regnum = 136,
80 dbar0_regnum = 137,
81 dbar1_regnum = 138,
82 dbar2_regnum = 139,
83 dbar3_regnum = 140,
84 lr_regnum = 145,
85 lcr_regnum = 146,
86 iacc0h_regnum = 147,
87 iacc0l_regnum = 148,
88 last_spr_regnum = 148,
89
90 /* The total number of registers we know exist. */
91 frv_num_regs = last_spr_regnum + 1,
92
93 /* Pseudo registers */
94 first_pseudo_regnum = frv_num_regs,
95
96 /* iacc0 - the 64-bit concatenation of iacc0h and iacc0l. */
97 iacc0_regnum = first_pseudo_regnum + 0,
98
99 last_pseudo_regnum = iacc0_regnum,
100 frv_num_pseudo_regs = last_pseudo_regnum - first_pseudo_regnum + 1,
101 };
102
103 static LONGEST frv_call_dummy_words[] =
104 {0};
105
106
107 struct frv_unwind_cache /* was struct frame_extra_info */
108 {
109 /* The previous frame's inner-most stack address. Used as this
110 frame ID's stack_addr. */
111 CORE_ADDR prev_sp;
112
113 /* The frame's base, optionally used by the high-level debug info. */
114 CORE_ADDR base;
115
116 /* Table indicating the location of each and every register. */
117 struct trad_frame_saved_reg *saved_regs;
118 };
119
120
121 /* A structure describing a particular variant of the FRV.
122 We allocate and initialize one of these structures when we create
123 the gdbarch object for a variant.
124
125 At the moment, all the FR variants we support differ only in which
126 registers are present; the portable code of GDB knows that
127 registers whose names are the empty string don't exist, so the
128 `register_names' array captures all the per-variant information we
129 need.
130
131 in the future, if we need to have per-variant maps for raw size,
132 virtual type, etc., we should replace register_names with an array
133 of structures, each of which gives all the necessary info for one
134 register. Don't stick parallel arrays in here --- that's so
135 Fortran. */
136 struct gdbarch_tdep
137 {
138 /* Which ABI is in use? */
139 enum frv_abi frv_abi;
140
141 /* How many general-purpose registers does this variant have? */
142 int num_gprs;
143
144 /* How many floating-point registers does this variant have? */
145 int num_fprs;
146
147 /* How many hardware watchpoints can it support? */
148 int num_hw_watchpoints;
149
150 /* How many hardware breakpoints can it support? */
151 int num_hw_breakpoints;
152
153 /* Register names. */
154 char **register_names;
155 };
156
157 #define CURRENT_VARIANT (gdbarch_tdep (current_gdbarch))
158
159 /* Return the FR-V ABI associated with GDBARCH. */
160 enum frv_abi
161 frv_abi (struct gdbarch *gdbarch)
162 {
163 return gdbarch_tdep (gdbarch)->frv_abi;
164 }
165
166 /* Fetch the interpreter and executable loadmap addresses (for shared
167 library support) for the FDPIC ABI. Return 0 if successful, -1 if
168 not. (E.g, -1 will be returned if the ABI isn't the FDPIC ABI.) */
169 int
170 frv_fdpic_loadmap_addresses (struct gdbarch *gdbarch, CORE_ADDR *interp_addr,
171 CORE_ADDR *exec_addr)
172 {
173 if (frv_abi (gdbarch) != FRV_ABI_FDPIC)
174 return -1;
175 else
176 {
177 if (interp_addr != NULL)
178 {
179 ULONGEST val;
180 regcache_cooked_read_unsigned (current_regcache,
181 fdpic_loadmap_interp_regnum, &val);
182 *interp_addr = val;
183 }
184 if (exec_addr != NULL)
185 {
186 ULONGEST val;
187 regcache_cooked_read_unsigned (current_regcache,
188 fdpic_loadmap_exec_regnum, &val);
189 *exec_addr = val;
190 }
191 return 0;
192 }
193 }
194
195 /* Allocate a new variant structure, and set up default values for all
196 the fields. */
197 static struct gdbarch_tdep *
198 new_variant (void)
199 {
200 struct gdbarch_tdep *var;
201 int r;
202 char buf[20];
203
204 var = xmalloc (sizeof (*var));
205 memset (var, 0, sizeof (*var));
206
207 var->frv_abi = FRV_ABI_EABI;
208 var->num_gprs = 64;
209 var->num_fprs = 64;
210 var->num_hw_watchpoints = 0;
211 var->num_hw_breakpoints = 0;
212
213 /* By default, don't supply any general-purpose or floating-point
214 register names. */
215 var->register_names
216 = (char **) xmalloc ((frv_num_regs + frv_num_pseudo_regs)
217 * sizeof (char *));
218 for (r = 0; r < frv_num_regs + frv_num_pseudo_regs; r++)
219 var->register_names[r] = "";
220
221 /* Do, however, supply default names for the known special-purpose
222 registers. */
223
224 var->register_names[pc_regnum] = "pc";
225 var->register_names[lr_regnum] = "lr";
226 var->register_names[lcr_regnum] = "lcr";
227
228 var->register_names[psr_regnum] = "psr";
229 var->register_names[ccr_regnum] = "ccr";
230 var->register_names[cccr_regnum] = "cccr";
231 var->register_names[tbr_regnum] = "tbr";
232
233 /* Debug registers. */
234 var->register_names[brr_regnum] = "brr";
235 var->register_names[dbar0_regnum] = "dbar0";
236 var->register_names[dbar1_regnum] = "dbar1";
237 var->register_names[dbar2_regnum] = "dbar2";
238 var->register_names[dbar3_regnum] = "dbar3";
239
240 /* iacc0 (Only found on MB93405.) */
241 var->register_names[iacc0h_regnum] = "iacc0h";
242 var->register_names[iacc0l_regnum] = "iacc0l";
243 var->register_names[iacc0_regnum] = "iacc0";
244
245 return var;
246 }
247
248
249 /* Indicate that the variant VAR has NUM_GPRS general-purpose
250 registers, and fill in the names array appropriately. */
251 static void
252 set_variant_num_gprs (struct gdbarch_tdep *var, int num_gprs)
253 {
254 int r;
255
256 var->num_gprs = num_gprs;
257
258 for (r = 0; r < num_gprs; ++r)
259 {
260 char buf[20];
261
262 sprintf (buf, "gr%d", r);
263 var->register_names[first_gpr_regnum + r] = xstrdup (buf);
264 }
265 }
266
267
268 /* Indicate that the variant VAR has NUM_FPRS floating-point
269 registers, and fill in the names array appropriately. */
270 static void
271 set_variant_num_fprs (struct gdbarch_tdep *var, int num_fprs)
272 {
273 int r;
274
275 var->num_fprs = num_fprs;
276
277 for (r = 0; r < num_fprs; ++r)
278 {
279 char buf[20];
280
281 sprintf (buf, "fr%d", r);
282 var->register_names[first_fpr_regnum + r] = xstrdup (buf);
283 }
284 }
285
286 static void
287 set_variant_abi_fdpic (struct gdbarch_tdep *var)
288 {
289 var->frv_abi = FRV_ABI_FDPIC;
290 var->register_names[fdpic_loadmap_exec_regnum] = xstrdup ("loadmap_exec");
291 var->register_names[fdpic_loadmap_interp_regnum] = xstrdup ("loadmap_interp");
292 }
293
294 static const char *
295 frv_register_name (int reg)
296 {
297 if (reg < 0)
298 return "?toosmall?";
299 if (reg >= frv_num_regs + frv_num_pseudo_regs)
300 return "?toolarge?";
301
302 return CURRENT_VARIANT->register_names[reg];
303 }
304
305
306 static struct type *
307 frv_register_type (struct gdbarch *gdbarch, int reg)
308 {
309 if (reg >= first_fpr_regnum && reg <= last_fpr_regnum)
310 return builtin_type_float;
311 else if (reg == iacc0_regnum)
312 return builtin_type_int64;
313 else
314 return builtin_type_int32;
315 }
316
317 static void
318 frv_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
319 int reg, void *buffer)
320 {
321 if (reg == iacc0_regnum)
322 {
323 regcache_raw_read (regcache, iacc0h_regnum, buffer);
324 regcache_raw_read (regcache, iacc0l_regnum, (bfd_byte *) buffer + 4);
325 }
326 }
327
328 static void
329 frv_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
330 int reg, const void *buffer)
331 {
332 if (reg == iacc0_regnum)
333 {
334 regcache_raw_write (regcache, iacc0h_regnum, buffer);
335 regcache_raw_write (regcache, iacc0l_regnum, (bfd_byte *) buffer + 4);
336 }
337 }
338
339 static int
340 frv_register_sim_regno (int reg)
341 {
342 static const int spr_map[] =
343 {
344 H_SPR_PSR, /* psr_regnum */
345 H_SPR_CCR, /* ccr_regnum */
346 H_SPR_CCCR, /* cccr_regnum */
347 -1, /* 132 */
348 -1, /* 133 */
349 -1, /* 134 */
350 H_SPR_TBR, /* tbr_regnum */
351 H_SPR_BRR, /* brr_regnum */
352 H_SPR_DBAR0, /* dbar0_regnum */
353 H_SPR_DBAR1, /* dbar1_regnum */
354 H_SPR_DBAR2, /* dbar2_regnum */
355 H_SPR_DBAR3, /* dbar3_regnum */
356 -1, /* 141 */
357 -1, /* 142 */
358 -1, /* 143 */
359 -1, /* 144 */
360 H_SPR_LR, /* lr_regnum */
361 H_SPR_LCR, /* lcr_regnum */
362 H_SPR_IACC0H, /* iacc0h_regnum */
363 H_SPR_IACC0L /* iacc0l_regnum */
364 };
365
366 gdb_assert (reg >= 0 && reg < NUM_REGS);
367
368 if (first_gpr_regnum <= reg && reg <= last_gpr_regnum)
369 return reg - first_gpr_regnum + SIM_FRV_GR0_REGNUM;
370 else if (first_fpr_regnum <= reg && reg <= last_fpr_regnum)
371 return reg - first_fpr_regnum + SIM_FRV_FR0_REGNUM;
372 else if (pc_regnum == reg)
373 return SIM_FRV_PC_REGNUM;
374 else if (reg >= first_spr_regnum
375 && reg < first_spr_regnum + sizeof (spr_map) / sizeof (spr_map[0]))
376 {
377 int spr_reg_offset = spr_map[reg - first_spr_regnum];
378
379 if (spr_reg_offset < 0)
380 return SIM_REGNO_DOES_NOT_EXIST;
381 else
382 return SIM_FRV_SPR0_REGNUM + spr_reg_offset;
383 }
384
385 internal_error (__FILE__, __LINE__, "Bad register number %d", reg);
386 }
387
388 static const unsigned char *
389 frv_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenp)
390 {
391 static unsigned char breakpoint[] = {0xc0, 0x70, 0x00, 0x01};
392 *lenp = sizeof (breakpoint);
393 return breakpoint;
394 }
395
396 /* Define the maximum number of instructions which may be packed into a
397 bundle (VLIW instruction). */
398 static const int max_instrs_per_bundle = 8;
399
400 /* Define the size (in bytes) of an FR-V instruction. */
401 static const int frv_instr_size = 4;
402
403 /* Adjust a breakpoint's address to account for the FR-V architecture's
404 constraint that a break instruction must not appear as any but the
405 first instruction in the bundle. */
406 static CORE_ADDR
407 frv_gdbarch_adjust_breakpoint_address (struct gdbarch *gdbarch, CORE_ADDR bpaddr)
408 {
409 int count = max_instrs_per_bundle;
410 CORE_ADDR addr = bpaddr - frv_instr_size;
411 CORE_ADDR func_start = get_pc_function_start (bpaddr);
412
413 /* Find the end of the previous packing sequence. This will be indicated
414 by either attempting to access some inaccessible memory or by finding
415 an instruction word whose packing bit is set to one. */
416 while (count-- > 0 && addr >= func_start)
417 {
418 char instr[frv_instr_size];
419 int status;
420
421 status = read_memory_nobpt (addr, instr, sizeof instr);
422
423 if (status != 0)
424 break;
425
426 /* This is a big endian architecture, so byte zero will have most
427 significant byte. The most significant bit of this byte is the
428 packing bit. */
429 if (instr[0] & 0x80)
430 break;
431
432 addr -= frv_instr_size;
433 }
434
435 if (count > 0)
436 bpaddr = addr + frv_instr_size;
437
438 return bpaddr;
439 }
440
441
442 /* Return true if REG is a caller-saves ("scratch") register,
443 false otherwise. */
444 static int
445 is_caller_saves_reg (int reg)
446 {
447 return ((4 <= reg && reg <= 7)
448 || (14 <= reg && reg <= 15)
449 || (32 <= reg && reg <= 47));
450 }
451
452
453 /* Return true if REG is a callee-saves register, false otherwise. */
454 static int
455 is_callee_saves_reg (int reg)
456 {
457 return ((16 <= reg && reg <= 31)
458 || (48 <= reg && reg <= 63));
459 }
460
461
462 /* Return true if REG is an argument register, false otherwise. */
463 static int
464 is_argument_reg (int reg)
465 {
466 return (8 <= reg && reg <= 13);
467 }
468
469 /* Scan an FR-V prologue, starting at PC, until frame->PC.
470 If FRAME is non-zero, fill in its saved_regs with appropriate addresses.
471 We assume FRAME's saved_regs array has already been allocated and cleared.
472 Return the first PC value after the prologue.
473
474 Note that, for unoptimized code, we almost don't need this function
475 at all; all arguments and locals live on the stack, so we just need
476 the FP to find everything. The catch: structures passed by value
477 have their addresses living in registers; they're never spilled to
478 the stack. So if you ever want to be able to get to these
479 arguments in any frame but the top, you'll need to do this serious
480 prologue analysis. */
481 static CORE_ADDR
482 frv_analyze_prologue (CORE_ADDR pc, struct frame_info *next_frame,
483 struct frv_unwind_cache *info)
484 {
485 /* When writing out instruction bitpatterns, we use the following
486 letters to label instruction fields:
487 P - The parallel bit. We don't use this.
488 J - The register number of GRj in the instruction description.
489 K - The register number of GRk in the instruction description.
490 I - The register number of GRi.
491 S - a signed imediate offset.
492 U - an unsigned immediate offset.
493
494 The dots below the numbers indicate where hex digit boundaries
495 fall, to make it easier to check the numbers. */
496
497 /* Non-zero iff we've seen the instruction that initializes the
498 frame pointer for this function's frame. */
499 int fp_set = 0;
500
501 /* If fp_set is non_zero, then this is the distance from
502 the stack pointer to frame pointer: fp = sp + fp_offset. */
503 int fp_offset = 0;
504
505 /* Total size of frame prior to any alloca operations. */
506 int framesize = 0;
507
508 /* Flag indicating if lr has been saved on the stack. */
509 int lr_saved_on_stack = 0;
510
511 /* The number of the general-purpose register we saved the return
512 address ("link register") in, or -1 if we haven't moved it yet. */
513 int lr_save_reg = -1;
514
515 /* Offset (from sp) at which lr has been saved on the stack. */
516
517 int lr_sp_offset = 0;
518
519 /* If gr_saved[i] is non-zero, then we've noticed that general
520 register i has been saved at gr_sp_offset[i] from the stack
521 pointer. */
522 char gr_saved[64];
523 int gr_sp_offset[64];
524
525 /* The address of the most recently scanned prologue instruction. */
526 CORE_ADDR last_prologue_pc;
527
528 /* The address of the next instruction. */
529 CORE_ADDR next_pc;
530
531 /* The upper bound to of the pc values to scan. */
532 CORE_ADDR lim_pc;
533
534 memset (gr_saved, 0, sizeof (gr_saved));
535
536 last_prologue_pc = pc;
537
538 /* Try to compute an upper limit (on how far to scan) based on the
539 line number info. */
540 lim_pc = skip_prologue_using_sal (pc);
541 /* If there's no line number info, lim_pc will be 0. In that case,
542 set the limit to be 100 instructions away from pc. Hopefully, this
543 will be far enough away to account for the entire prologue. Don't
544 worry about overshooting the end of the function. The scan loop
545 below contains some checks to avoid scanning unreasonably far. */
546 if (lim_pc == 0)
547 lim_pc = pc + 400;
548
549 /* If we have a frame, we don't want to scan past the frame's pc. This
550 will catch those cases where the pc is in the prologue. */
551 if (next_frame)
552 {
553 CORE_ADDR frame_pc = frame_pc_unwind (next_frame);
554 if (frame_pc < lim_pc)
555 lim_pc = frame_pc;
556 }
557
558 /* Scan the prologue. */
559 while (pc < lim_pc)
560 {
561 LONGEST op = read_memory_integer (pc, 4);
562 next_pc = pc + 4;
563
564 /* The tests in this chain of ifs should be in order of
565 decreasing selectivity, so that more particular patterns get
566 to fire before less particular patterns. */
567
568 /* Some sort of control transfer instruction: stop scanning prologue.
569 Integer Conditional Branch:
570 X XXXX XX 0000110 XX XXXXXXXXXXXXXXXX
571 Floating-point / media Conditional Branch:
572 X XXXX XX 0000111 XX XXXXXXXXXXXXXXXX
573 LCR Conditional Branch to LR
574 X XXXX XX 0001110 XX XX 001 X XXXXXXXXXX
575 Integer conditional Branches to LR
576 X XXXX XX 0001110 XX XX 010 X XXXXXXXXXX
577 X XXXX XX 0001110 XX XX 011 X XXXXXXXXXX
578 Floating-point/Media Branches to LR
579 X XXXX XX 0001110 XX XX 110 X XXXXXXXXXX
580 X XXXX XX 0001110 XX XX 111 X XXXXXXXXXX
581 Jump and Link
582 X XXXXX X 0001100 XXXXXX XXXXXX XXXXXX
583 X XXXXX X 0001101 XXXXXX XXXXXX XXXXXX
584 Call
585 X XXXXXX 0001111 XXXXXXXXXXXXXXXXXX
586 Return from Trap
587 X XXXXX X 0000101 XXXXXX XXXXXX XXXXXX
588 Integer Conditional Trap
589 X XXXX XX 0000100 XXXXXX XXXX 00 XXXXXX
590 X XXXX XX 0011100 XXXXXX XXXXXXXXXXXX
591 Floating-point /media Conditional Trap
592 X XXXX XX 0000100 XXXXXX XXXX 01 XXXXXX
593 X XXXX XX 0011101 XXXXXX XXXXXXXXXXXX
594 Break
595 X XXXX XX 0000100 XXXXXX XXXX 11 XXXXXX
596 Media Trap
597 X XXXX XX 0000100 XXXXXX XXXX 10 XXXXXX */
598 if ((op & 0x01d80000) == 0x00180000 /* Conditional branches and Call */
599 || (op & 0x01f80000) == 0x00300000 /* Jump and Link */
600 || (op & 0x01f80000) == 0x00100000 /* Return from Trap, Trap */
601 || (op & 0x01f80000) == 0x00700000) /* Trap immediate */
602 {
603 /* Stop scanning; not in prologue any longer. */
604 break;
605 }
606
607 /* Loading something from memory into fp probably means that
608 we're in the epilogue. Stop scanning the prologue.
609 ld @(GRi, GRk), fp
610 X 000010 0000010 XXXXXX 000100 XXXXXX
611 ldi @(GRi, d12), fp
612 X 000010 0110010 XXXXXX XXXXXXXXXXXX */
613 else if ((op & 0x7ffc0fc0) == 0x04080100
614 || (op & 0x7ffc0000) == 0x04c80000)
615 {
616 break;
617 }
618
619 /* Setting the FP from the SP:
620 ori sp, 0, fp
621 P 000010 0100010 000001 000000000000 = 0x04881000
622 0 111111 1111111 111111 111111111111 = 0x7fffffff
623 . . . . . . . .
624 We treat this as part of the prologue. */
625 else if ((op & 0x7fffffff) == 0x04881000)
626 {
627 fp_set = 1;
628 fp_offset = 0;
629 last_prologue_pc = next_pc;
630 }
631
632 /* Move the link register to the scratch register grJ, before saving:
633 movsg lr, grJ
634 P 000100 0000011 010000 000111 JJJJJJ = 0x080d01c0
635 0 111111 1111111 111111 111111 000000 = 0x7fffffc0
636 . . . . . . . .
637 We treat this as part of the prologue. */
638 else if ((op & 0x7fffffc0) == 0x080d01c0)
639 {
640 int gr_j = op & 0x3f;
641
642 /* If we're moving it to a scratch register, that's fine. */
643 if (is_caller_saves_reg (gr_j))
644 {
645 lr_save_reg = gr_j;
646 last_prologue_pc = next_pc;
647 }
648 }
649
650 /* To save multiple callee-saves registers on the stack, at
651 offset zero:
652
653 std grK,@(sp,gr0)
654 P KKKKKK 0000011 000001 000011 000000 = 0x000c10c0
655 0 000000 1111111 111111 111111 111111 = 0x01ffffff
656
657 stq grK,@(sp,gr0)
658 P KKKKKK 0000011 000001 000100 000000 = 0x000c1100
659 0 000000 1111111 111111 111111 111111 = 0x01ffffff
660 . . . . . . . .
661 We treat this as part of the prologue, and record the register's
662 saved address in the frame structure. */
663 else if ((op & 0x01ffffff) == 0x000c10c0
664 || (op & 0x01ffffff) == 0x000c1100)
665 {
666 int gr_k = ((op >> 25) & 0x3f);
667 int ope = ((op >> 6) & 0x3f);
668 int count;
669 int i;
670
671 /* Is it an std or an stq? */
672 if (ope == 0x03)
673 count = 2;
674 else
675 count = 4;
676
677 /* Is it really a callee-saves register? */
678 if (is_callee_saves_reg (gr_k))
679 {
680 for (i = 0; i < count; i++)
681 {
682 gr_saved[gr_k + i] = 1;
683 gr_sp_offset[gr_k + i] = 4 * i;
684 }
685 last_prologue_pc = next_pc;
686 }
687 }
688
689 /* Adjusting the stack pointer. (The stack pointer is GR1.)
690 addi sp, S, sp
691 P 000001 0010000 000001 SSSSSSSSSSSS = 0x02401000
692 0 111111 1111111 111111 000000000000 = 0x7ffff000
693 . . . . . . . .
694 We treat this as part of the prologue. */
695 else if ((op & 0x7ffff000) == 0x02401000)
696 {
697 if (framesize == 0)
698 {
699 /* Sign-extend the twelve-bit field.
700 (Isn't there a better way to do this?) */
701 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
702
703 framesize -= s;
704 last_prologue_pc = pc;
705 }
706 else
707 {
708 /* If the prologue is being adjusted again, we've
709 likely gone too far; i.e. we're probably in the
710 epilogue. */
711 break;
712 }
713 }
714
715 /* Setting the FP to a constant distance from the SP:
716 addi sp, S, fp
717 P 000010 0010000 000001 SSSSSSSSSSSS = 0x04401000
718 0 111111 1111111 111111 000000000000 = 0x7ffff000
719 . . . . . . . .
720 We treat this as part of the prologue. */
721 else if ((op & 0x7ffff000) == 0x04401000)
722 {
723 /* Sign-extend the twelve-bit field.
724 (Isn't there a better way to do this?) */
725 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
726 fp_set = 1;
727 fp_offset = s;
728 last_prologue_pc = pc;
729 }
730
731 /* To spill an argument register to a scratch register:
732 ori GRi, 0, GRk
733 P KKKKKK 0100010 IIIIII 000000000000 = 0x00880000
734 0 000000 1111111 000000 111111111111 = 0x01fc0fff
735 . . . . . . . .
736 For the time being, we treat this as a prologue instruction,
737 assuming that GRi is an argument register. This one's kind
738 of suspicious, because it seems like it could be part of a
739 legitimate body instruction. But we only come here when the
740 source info wasn't helpful, so we have to do the best we can.
741 Hopefully once GCC and GDB agree on how to emit line number
742 info for prologues, then this code will never come into play. */
743 else if ((op & 0x01fc0fff) == 0x00880000)
744 {
745 int gr_i = ((op >> 12) & 0x3f);
746
747 /* Make sure that the source is an arg register; if it is, we'll
748 treat it as a prologue instruction. */
749 if (is_argument_reg (gr_i))
750 last_prologue_pc = next_pc;
751 }
752
753 /* To spill 16-bit values to the stack:
754 sthi GRk, @(fp, s)
755 P KKKKKK 1010001 000010 SSSSSSSSSSSS = 0x01442000
756 0 000000 1111111 111111 000000000000 = 0x01fff000
757 . . . . . . . .
758 And for 8-bit values, we use STB instructions.
759 stbi GRk, @(fp, s)
760 P KKKKKK 1010000 000010 SSSSSSSSSSSS = 0x01402000
761 0 000000 1111111 111111 000000000000 = 0x01fff000
762 . . . . . . . .
763 We check that GRk is really an argument register, and treat
764 all such as part of the prologue. */
765 else if ( (op & 0x01fff000) == 0x01442000
766 || (op & 0x01fff000) == 0x01402000)
767 {
768 int gr_k = ((op >> 25) & 0x3f);
769
770 /* Make sure that GRk is really an argument register; treat
771 it as a prologue instruction if so. */
772 if (is_argument_reg (gr_k))
773 last_prologue_pc = next_pc;
774 }
775
776 /* To save multiple callee-saves register on the stack, at a
777 non-zero offset:
778
779 stdi GRk, @(sp, s)
780 P KKKKKK 1010011 000001 SSSSSSSSSSSS = 0x014c1000
781 0 000000 1111111 111111 000000000000 = 0x01fff000
782 . . . . . . . .
783 stqi GRk, @(sp, s)
784 P KKKKKK 1010100 000001 SSSSSSSSSSSS = 0x01501000
785 0 000000 1111111 111111 000000000000 = 0x01fff000
786 . . . . . . . .
787 We treat this as part of the prologue, and record the register's
788 saved address in the frame structure. */
789 else if ((op & 0x01fff000) == 0x014c1000
790 || (op & 0x01fff000) == 0x01501000)
791 {
792 int gr_k = ((op >> 25) & 0x3f);
793 int count;
794 int i;
795
796 /* Is it a stdi or a stqi? */
797 if ((op & 0x01fff000) == 0x014c1000)
798 count = 2;
799 else
800 count = 4;
801
802 /* Is it really a callee-saves register? */
803 if (is_callee_saves_reg (gr_k))
804 {
805 /* Sign-extend the twelve-bit field.
806 (Isn't there a better way to do this?) */
807 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
808
809 for (i = 0; i < count; i++)
810 {
811 gr_saved[gr_k + i] = 1;
812 gr_sp_offset[gr_k + i] = s + (4 * i);
813 }
814 last_prologue_pc = next_pc;
815 }
816 }
817
818 /* Storing any kind of integer register at any constant offset
819 from any other register.
820
821 st GRk, @(GRi, gr0)
822 P KKKKKK 0000011 IIIIII 000010 000000 = 0x000c0080
823 0 000000 1111111 000000 111111 111111 = 0x01fc0fff
824 . . . . . . . .
825 sti GRk, @(GRi, d12)
826 P KKKKKK 1010010 IIIIII SSSSSSSSSSSS = 0x01480000
827 0 000000 1111111 000000 000000000000 = 0x01fc0000
828 . . . . . . . .
829 These could be almost anything, but a lot of prologue
830 instructions fall into this pattern, so let's decode the
831 instruction once, and then work at a higher level. */
832 else if (((op & 0x01fc0fff) == 0x000c0080)
833 || ((op & 0x01fc0000) == 0x01480000))
834 {
835 int gr_k = ((op >> 25) & 0x3f);
836 int gr_i = ((op >> 12) & 0x3f);
837 int offset;
838
839 /* Are we storing with gr0 as an offset, or using an
840 immediate value? */
841 if ((op & 0x01fc0fff) == 0x000c0080)
842 offset = 0;
843 else
844 offset = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
845
846 /* If the address isn't relative to the SP or FP, it's not a
847 prologue instruction. */
848 if (gr_i != sp_regnum && gr_i != fp_regnum)
849 {
850 /* Do nothing; not a prologue instruction. */
851 }
852
853 /* Saving the old FP in the new frame (relative to the SP). */
854 else if (gr_k == fp_regnum && gr_i == sp_regnum)
855 {
856 gr_saved[fp_regnum] = 1;
857 gr_sp_offset[fp_regnum] = offset;
858 last_prologue_pc = next_pc;
859 }
860
861 /* Saving callee-saves register(s) on the stack, relative to
862 the SP. */
863 else if (gr_i == sp_regnum
864 && is_callee_saves_reg (gr_k))
865 {
866 gr_saved[gr_k] = 1;
867 if (gr_i == sp_regnum)
868 gr_sp_offset[gr_k] = offset;
869 else
870 gr_sp_offset[gr_k] = offset + fp_offset;
871 last_prologue_pc = next_pc;
872 }
873
874 /* Saving the scratch register holding the return address. */
875 else if (lr_save_reg != -1
876 && gr_k == lr_save_reg)
877 {
878 lr_saved_on_stack = 1;
879 if (gr_i == sp_regnum)
880 lr_sp_offset = offset;
881 else
882 lr_sp_offset = offset + fp_offset;
883 last_prologue_pc = next_pc;
884 }
885
886 /* Spilling int-sized arguments to the stack. */
887 else if (is_argument_reg (gr_k))
888 last_prologue_pc = next_pc;
889 }
890 pc = next_pc;
891 }
892
893 if (next_frame && info)
894 {
895 int i;
896 ULONGEST this_base;
897
898 /* If we know the relationship between the stack and frame
899 pointers, record the addresses of the registers we noticed.
900 Note that we have to do this as a separate step at the end,
901 because instructions may save relative to the SP, but we need
902 their addresses relative to the FP. */
903 if (fp_set)
904 frame_unwind_unsigned_register (next_frame, fp_regnum, &this_base);
905 else
906 frame_unwind_unsigned_register (next_frame, sp_regnum, &this_base);
907
908 for (i = 0; i < 64; i++)
909 if (gr_saved[i])
910 info->saved_regs[i].addr = this_base - fp_offset + gr_sp_offset[i];
911
912 info->prev_sp = this_base - fp_offset + framesize;
913 info->base = this_base;
914
915 /* If LR was saved on the stack, record its location. */
916 if (lr_saved_on_stack)
917 info->saved_regs[lr_regnum].addr = this_base - fp_offset + lr_sp_offset;
918
919 /* The call instruction moves the caller's PC in the callee's LR.
920 Since this is an unwind, do the reverse. Copy the location of LR
921 into PC (the address / regnum) so that a request for PC will be
922 converted into a request for the LR. */
923 info->saved_regs[pc_regnum] = info->saved_regs[lr_regnum];
924
925 /* Save the previous frame's computed SP value. */
926 trad_frame_set_value (info->saved_regs, sp_regnum, info->prev_sp);
927 }
928
929 return last_prologue_pc;
930 }
931
932
933 static CORE_ADDR
934 frv_skip_prologue (CORE_ADDR pc)
935 {
936 CORE_ADDR func_addr, func_end, new_pc;
937
938 new_pc = pc;
939
940 /* If the line table has entry for a line *within* the function
941 (i.e., not in the prologue, and not past the end), then that's
942 our location. */
943 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
944 {
945 struct symtab_and_line sal;
946
947 sal = find_pc_line (func_addr, 0);
948
949 if (sal.line != 0 && sal.end < func_end)
950 {
951 new_pc = sal.end;
952 }
953 }
954
955 /* The FR-V prologue is at least five instructions long (twenty bytes).
956 If we didn't find a real source location past that, then
957 do a full analysis of the prologue. */
958 if (new_pc < pc + 20)
959 new_pc = frv_analyze_prologue (pc, 0, 0);
960
961 return new_pc;
962 }
963
964
965 static struct frv_unwind_cache *
966 frv_frame_unwind_cache (struct frame_info *next_frame,
967 void **this_prologue_cache)
968 {
969 struct gdbarch *gdbarch = get_frame_arch (next_frame);
970 CORE_ADDR pc;
971 ULONGEST prev_sp;
972 ULONGEST this_base;
973 struct frv_unwind_cache *info;
974
975 if ((*this_prologue_cache))
976 return (*this_prologue_cache);
977
978 info = FRAME_OBSTACK_ZALLOC (struct frv_unwind_cache);
979 (*this_prologue_cache) = info;
980 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
981
982 /* Prologue analysis does the rest... */
983 frv_analyze_prologue (frame_func_unwind (next_frame), next_frame, info);
984
985 return info;
986 }
987
988 static void
989 frv_extract_return_value (struct type *type, struct regcache *regcache,
990 void *valbuf)
991 {
992 int len = TYPE_LENGTH (type);
993
994 if (len <= 4)
995 {
996 ULONGEST gpr8_val;
997 regcache_cooked_read_unsigned (regcache, 8, &gpr8_val);
998 store_unsigned_integer (valbuf, len, gpr8_val);
999 }
1000 else if (len == 8)
1001 {
1002 ULONGEST regval;
1003 regcache_cooked_read_unsigned (regcache, 8, &regval);
1004 store_unsigned_integer (valbuf, 4, regval);
1005 regcache_cooked_read_unsigned (regcache, 9, &regval);
1006 store_unsigned_integer ((bfd_byte *) valbuf + 4, 4, regval);
1007 }
1008 else
1009 internal_error (__FILE__, __LINE__, "Illegal return value length: %d", len);
1010 }
1011
1012 static CORE_ADDR
1013 frv_extract_struct_value_address (struct regcache *regcache)
1014 {
1015 ULONGEST addr;
1016 regcache_cooked_read_unsigned (regcache, struct_return_regnum, &addr);
1017 return addr;
1018 }
1019
1020 static void
1021 frv_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
1022 {
1023 write_register (struct_return_regnum, addr);
1024 }
1025
1026 static int
1027 frv_frameless_function_invocation (struct frame_info *frame)
1028 {
1029 return legacy_frameless_look_for_prologue (frame);
1030 }
1031
1032 static CORE_ADDR
1033 frv_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1034 {
1035 /* Require dword alignment. */
1036 return align_down (sp, 8);
1037 }
1038
1039 static CORE_ADDR
1040 find_func_descr (struct gdbarch *gdbarch, CORE_ADDR entry_point)
1041 {
1042 CORE_ADDR descr;
1043 char valbuf[4];
1044
1045 descr = frv_fdpic_find_canonical_descriptor (entry_point);
1046
1047 if (descr != 0)
1048 return descr;
1049
1050 /* Construct a non-canonical descriptor from space allocated on
1051 the stack. */
1052
1053 descr = value_as_long (value_allocate_space_in_inferior (8));
1054 store_unsigned_integer (valbuf, 4, entry_point);
1055 write_memory (descr, valbuf, 4);
1056 store_unsigned_integer (valbuf, 4,
1057 frv_fdpic_find_global_pointer (entry_point));
1058 write_memory (descr + 4, valbuf, 4);
1059 return descr;
1060 }
1061
1062 static CORE_ADDR
1063 frv_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr,
1064 struct target_ops *targ)
1065 {
1066 CORE_ADDR entry_point;
1067 CORE_ADDR got_address;
1068
1069 entry_point = get_target_memory_unsigned (targ, addr, 4);
1070 got_address = get_target_memory_unsigned (targ, addr + 4, 4);
1071
1072 if (got_address == frv_fdpic_find_global_pointer (entry_point))
1073 return entry_point;
1074 else
1075 return addr;
1076 }
1077
1078 static CORE_ADDR
1079 frv_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
1080 struct regcache *regcache, CORE_ADDR bp_addr,
1081 int nargs, struct value **args, CORE_ADDR sp,
1082 int struct_return, CORE_ADDR struct_addr)
1083 {
1084 int argreg;
1085 int argnum;
1086 char *val;
1087 char valbuf[4];
1088 struct value *arg;
1089 struct type *arg_type;
1090 int len;
1091 enum type_code typecode;
1092 CORE_ADDR regval;
1093 int stack_space;
1094 int stack_offset;
1095 enum frv_abi abi = frv_abi (gdbarch);
1096
1097 #if 0
1098 printf("Push %d args at sp = %x, struct_return=%d (%x)\n",
1099 nargs, (int) sp, struct_return, struct_addr);
1100 #endif
1101
1102 stack_space = 0;
1103 for (argnum = 0; argnum < nargs; ++argnum)
1104 stack_space += align_up (TYPE_LENGTH (VALUE_TYPE (args[argnum])), 4);
1105
1106 stack_space -= (6 * 4);
1107 if (stack_space > 0)
1108 sp -= stack_space;
1109
1110 /* Make sure stack is dword aligned. */
1111 sp = align_down (sp, 8);
1112
1113 stack_offset = 0;
1114
1115 argreg = 8;
1116
1117 if (struct_return)
1118 regcache_cooked_write_unsigned (regcache, struct_return_regnum,
1119 struct_addr);
1120
1121 for (argnum = 0; argnum < nargs; ++argnum)
1122 {
1123 arg = args[argnum];
1124 arg_type = check_typedef (VALUE_TYPE (arg));
1125 len = TYPE_LENGTH (arg_type);
1126 typecode = TYPE_CODE (arg_type);
1127
1128 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
1129 {
1130 store_unsigned_integer (valbuf, 4, VALUE_ADDRESS (arg));
1131 typecode = TYPE_CODE_PTR;
1132 len = 4;
1133 val = valbuf;
1134 }
1135 else if (abi == FRV_ABI_FDPIC
1136 && len == 4
1137 && typecode == TYPE_CODE_PTR
1138 && TYPE_CODE (TYPE_TARGET_TYPE (arg_type)) == TYPE_CODE_FUNC)
1139 {
1140 /* The FDPIC ABI requires function descriptors to be passed instead
1141 of entry points. */
1142 store_unsigned_integer
1143 (valbuf, 4,
1144 find_func_descr (gdbarch,
1145 extract_unsigned_integer (VALUE_CONTENTS (arg),
1146 4)));
1147 typecode = TYPE_CODE_PTR;
1148 len = 4;
1149 val = valbuf;
1150 }
1151 else
1152 {
1153 val = (char *) VALUE_CONTENTS (arg);
1154 }
1155
1156 while (len > 0)
1157 {
1158 int partial_len = (len < 4 ? len : 4);
1159
1160 if (argreg < 14)
1161 {
1162 regval = extract_unsigned_integer (val, partial_len);
1163 #if 0
1164 printf(" Argnum %d data %x -> reg %d\n",
1165 argnum, (int) regval, argreg);
1166 #endif
1167 regcache_cooked_write_unsigned (regcache, argreg, regval);
1168 ++argreg;
1169 }
1170 else
1171 {
1172 #if 0
1173 printf(" Argnum %d data %x -> offset %d (%x)\n",
1174 argnum, *((int *)val), stack_offset, (int) (sp + stack_offset));
1175 #endif
1176 write_memory (sp + stack_offset, val, partial_len);
1177 stack_offset += align_up (partial_len, 4);
1178 }
1179 len -= partial_len;
1180 val += partial_len;
1181 }
1182 }
1183
1184 /* Set the return address. For the frv, the return breakpoint is
1185 always at BP_ADDR. */
1186 regcache_cooked_write_unsigned (regcache, lr_regnum, bp_addr);
1187
1188 if (abi == FRV_ABI_FDPIC)
1189 {
1190 /* Set the GOT register for the FDPIC ABI. */
1191 regcache_cooked_write_unsigned
1192 (regcache, first_gpr_regnum + 15,
1193 frv_fdpic_find_global_pointer (func_addr));
1194 }
1195
1196 /* Finally, update the SP register. */
1197 regcache_cooked_write_unsigned (regcache, sp_regnum, sp);
1198
1199 return sp;
1200 }
1201
1202 static void
1203 frv_store_return_value (struct type *type, struct regcache *regcache,
1204 const void *valbuf)
1205 {
1206 int len = TYPE_LENGTH (type);
1207
1208 if (len <= 4)
1209 {
1210 bfd_byte val[4];
1211 memset (val, 0, sizeof (val));
1212 memcpy (val + (4 - len), valbuf, len);
1213 regcache_cooked_write (regcache, 8, val);
1214 }
1215 else if (len == 8)
1216 {
1217 regcache_cooked_write (regcache, 8, valbuf);
1218 regcache_cooked_write (regcache, 9, (bfd_byte *) valbuf + 4);
1219 }
1220 else
1221 internal_error (__FILE__, __LINE__,
1222 "Don't know how to return a %d-byte value.", len);
1223 }
1224
1225
1226 /* Hardware watchpoint / breakpoint support for the FR500
1227 and FR400. */
1228
1229 int
1230 frv_check_watch_resources (int type, int cnt, int ot)
1231 {
1232 struct gdbarch_tdep *var = CURRENT_VARIANT;
1233
1234 /* Watchpoints not supported on simulator. */
1235 if (strcmp (target_shortname, "sim") == 0)
1236 return 0;
1237
1238 if (type == bp_hardware_breakpoint)
1239 {
1240 if (var->num_hw_breakpoints == 0)
1241 return 0;
1242 else if (cnt <= var->num_hw_breakpoints)
1243 return 1;
1244 }
1245 else
1246 {
1247 if (var->num_hw_watchpoints == 0)
1248 return 0;
1249 else if (ot)
1250 return -1;
1251 else if (cnt <= var->num_hw_watchpoints)
1252 return 1;
1253 }
1254 return -1;
1255 }
1256
1257
1258 CORE_ADDR
1259 frv_stopped_data_address (void)
1260 {
1261 CORE_ADDR brr, dbar0, dbar1, dbar2, dbar3;
1262
1263 brr = read_register (brr_regnum);
1264 dbar0 = read_register (dbar0_regnum);
1265 dbar1 = read_register (dbar1_regnum);
1266 dbar2 = read_register (dbar2_regnum);
1267 dbar3 = read_register (dbar3_regnum);
1268
1269 if (brr & (1<<11))
1270 return dbar0;
1271 else if (brr & (1<<10))
1272 return dbar1;
1273 else if (brr & (1<<9))
1274 return dbar2;
1275 else if (brr & (1<<8))
1276 return dbar3;
1277 else
1278 return 0;
1279 }
1280
1281 static CORE_ADDR
1282 frv_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1283 {
1284 return frame_unwind_register_unsigned (next_frame, pc_regnum);
1285 }
1286
1287 /* Given a GDB frame, determine the address of the calling function's
1288 frame. This will be used to create a new GDB frame struct. */
1289
1290 static void
1291 frv_frame_this_id (struct frame_info *next_frame,
1292 void **this_prologue_cache, struct frame_id *this_id)
1293 {
1294 struct frv_unwind_cache *info
1295 = frv_frame_unwind_cache (next_frame, this_prologue_cache);
1296 CORE_ADDR base;
1297 CORE_ADDR func;
1298 struct minimal_symbol *msym_stack;
1299 struct frame_id id;
1300
1301 /* The FUNC is easy. */
1302 func = frame_func_unwind (next_frame);
1303
1304 /* Check if the stack is empty. */
1305 msym_stack = lookup_minimal_symbol ("_stack", NULL, NULL);
1306 if (msym_stack && info->base == SYMBOL_VALUE_ADDRESS (msym_stack))
1307 return;
1308
1309 /* Hopefully the prologue analysis either correctly determined the
1310 frame's base (which is the SP from the previous frame), or set
1311 that base to "NULL". */
1312 base = info->prev_sp;
1313 if (base == 0)
1314 return;
1315
1316 id = frame_id_build (base, func);
1317
1318 /* Check that we're not going round in circles with the same frame
1319 ID (but avoid applying the test to sentinel frames which do go
1320 round in circles). Can't use frame_id_eq() as that doesn't yet
1321 compare the frame's PC value. */
1322 if (frame_relative_level (next_frame) >= 0
1323 && get_frame_type (next_frame) != DUMMY_FRAME
1324 && frame_id_eq (get_frame_id (next_frame), id))
1325 return;
1326
1327 (*this_id) = id;
1328 }
1329
1330 static void
1331 frv_frame_prev_register (struct frame_info *next_frame,
1332 void **this_prologue_cache,
1333 int regnum, int *optimizedp,
1334 enum lval_type *lvalp, CORE_ADDR *addrp,
1335 int *realnump, void *bufferp)
1336 {
1337 struct frv_unwind_cache *info
1338 = frv_frame_unwind_cache (next_frame, this_prologue_cache);
1339 trad_frame_prev_register (next_frame, info->saved_regs, regnum,
1340 optimizedp, lvalp, addrp, realnump, bufferp);
1341 }
1342
1343 static const struct frame_unwind frv_frame_unwind = {
1344 NORMAL_FRAME,
1345 frv_frame_this_id,
1346 frv_frame_prev_register
1347 };
1348
1349 static const struct frame_unwind *
1350 frv_frame_sniffer (struct frame_info *next_frame)
1351 {
1352 return &frv_frame_unwind;
1353 }
1354
1355 static CORE_ADDR
1356 frv_frame_base_address (struct frame_info *next_frame, void **this_cache)
1357 {
1358 struct frv_unwind_cache *info
1359 = frv_frame_unwind_cache (next_frame, this_cache);
1360 return info->base;
1361 }
1362
1363 static const struct frame_base frv_frame_base = {
1364 &frv_frame_unwind,
1365 frv_frame_base_address,
1366 frv_frame_base_address,
1367 frv_frame_base_address
1368 };
1369
1370 static CORE_ADDR
1371 frv_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1372 {
1373 return frame_unwind_register_unsigned (next_frame, sp_regnum);
1374 }
1375
1376
1377 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1378 dummy frame. The frame ID's base needs to match the TOS value
1379 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1380 breakpoint. */
1381
1382 static struct frame_id
1383 frv_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1384 {
1385 return frame_id_build (frv_unwind_sp (gdbarch, next_frame),
1386 frame_pc_unwind (next_frame));
1387 }
1388
1389
1390 static struct gdbarch *
1391 frv_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1392 {
1393 struct gdbarch *gdbarch;
1394 struct gdbarch_tdep *var;
1395 int elf_flags = 0;
1396
1397 /* Check to see if we've already built an appropriate architecture
1398 object for this executable. */
1399 arches = gdbarch_list_lookup_by_info (arches, &info);
1400 if (arches)
1401 return arches->gdbarch;
1402
1403 /* Select the right tdep structure for this variant. */
1404 var = new_variant ();
1405 switch (info.bfd_arch_info->mach)
1406 {
1407 case bfd_mach_frv:
1408 case bfd_mach_frvsimple:
1409 case bfd_mach_fr500:
1410 case bfd_mach_frvtomcat:
1411 case bfd_mach_fr550:
1412 set_variant_num_gprs (var, 64);
1413 set_variant_num_fprs (var, 64);
1414 break;
1415
1416 case bfd_mach_fr400:
1417 set_variant_num_gprs (var, 32);
1418 set_variant_num_fprs (var, 32);
1419 break;
1420
1421 default:
1422 /* Never heard of this variant. */
1423 return 0;
1424 }
1425
1426 /* Extract the ELF flags, if available. */
1427 if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
1428 elf_flags = elf_elfheader (info.abfd)->e_flags;
1429
1430 if (elf_flags & EF_FRV_FDPIC)
1431 set_variant_abi_fdpic (var);
1432
1433 gdbarch = gdbarch_alloc (&info, var);
1434
1435 set_gdbarch_short_bit (gdbarch, 16);
1436 set_gdbarch_int_bit (gdbarch, 32);
1437 set_gdbarch_long_bit (gdbarch, 32);
1438 set_gdbarch_long_long_bit (gdbarch, 64);
1439 set_gdbarch_float_bit (gdbarch, 32);
1440 set_gdbarch_double_bit (gdbarch, 64);
1441 set_gdbarch_long_double_bit (gdbarch, 64);
1442 set_gdbarch_ptr_bit (gdbarch, 32);
1443
1444 set_gdbarch_num_regs (gdbarch, frv_num_regs);
1445 set_gdbarch_num_pseudo_regs (gdbarch, frv_num_pseudo_regs);
1446
1447 set_gdbarch_sp_regnum (gdbarch, sp_regnum);
1448 set_gdbarch_deprecated_fp_regnum (gdbarch, fp_regnum);
1449 set_gdbarch_pc_regnum (gdbarch, pc_regnum);
1450
1451 set_gdbarch_register_name (gdbarch, frv_register_name);
1452 set_gdbarch_register_type (gdbarch, frv_register_type);
1453 set_gdbarch_register_sim_regno (gdbarch, frv_register_sim_regno);
1454
1455 set_gdbarch_pseudo_register_read (gdbarch, frv_pseudo_register_read);
1456 set_gdbarch_pseudo_register_write (gdbarch, frv_pseudo_register_write);
1457
1458 set_gdbarch_skip_prologue (gdbarch, frv_skip_prologue);
1459 set_gdbarch_breakpoint_from_pc (gdbarch, frv_breakpoint_from_pc);
1460 set_gdbarch_adjust_breakpoint_address (gdbarch, frv_gdbarch_adjust_breakpoint_address);
1461
1462 set_gdbarch_deprecated_frameless_function_invocation (gdbarch, frv_frameless_function_invocation);
1463
1464 set_gdbarch_use_struct_convention (gdbarch, always_use_struct_convention);
1465 set_gdbarch_extract_return_value (gdbarch, frv_extract_return_value);
1466
1467 set_gdbarch_deprecated_store_struct_return (gdbarch, frv_store_struct_return);
1468 set_gdbarch_store_return_value (gdbarch, frv_store_return_value);
1469 set_gdbarch_deprecated_extract_struct_value_address (gdbarch, frv_extract_struct_value_address);
1470
1471 /* Frame stuff. */
1472 set_gdbarch_unwind_pc (gdbarch, frv_unwind_pc);
1473 set_gdbarch_unwind_sp (gdbarch, frv_unwind_sp);
1474 set_gdbarch_frame_align (gdbarch, frv_frame_align);
1475 frame_unwind_append_sniffer (gdbarch, frv_frame_sniffer);
1476 frame_base_set_default (gdbarch, &frv_frame_base);
1477
1478 /* Settings for calling functions in the inferior. */
1479 set_gdbarch_push_dummy_call (gdbarch, frv_push_dummy_call);
1480 set_gdbarch_unwind_dummy_id (gdbarch, frv_unwind_dummy_id);
1481
1482 /* Settings that should be unnecessary. */
1483 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1484
1485 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
1486
1487 set_gdbarch_remote_translate_xfer_address
1488 (gdbarch, generic_remote_translate_xfer_address);
1489
1490 /* Hardware watchpoint / breakpoint support. */
1491 switch (info.bfd_arch_info->mach)
1492 {
1493 case bfd_mach_frv:
1494 case bfd_mach_frvsimple:
1495 case bfd_mach_fr500:
1496 case bfd_mach_frvtomcat:
1497 /* fr500-style hardware debugging support. */
1498 var->num_hw_watchpoints = 4;
1499 var->num_hw_breakpoints = 4;
1500 break;
1501
1502 case bfd_mach_fr400:
1503 /* fr400-style hardware debugging support. */
1504 var->num_hw_watchpoints = 2;
1505 var->num_hw_breakpoints = 4;
1506 break;
1507
1508 default:
1509 /* Otherwise, assume we don't have hardware debugging support. */
1510 var->num_hw_watchpoints = 0;
1511 var->num_hw_breakpoints = 0;
1512 break;
1513 }
1514
1515 set_gdbarch_print_insn (gdbarch, print_insn_frv);
1516 if (frv_abi (gdbarch) == FRV_ABI_FDPIC)
1517 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
1518 frv_convert_from_func_ptr_addr);
1519
1520 return gdbarch;
1521 }
1522
1523 void
1524 _initialize_frv_tdep (void)
1525 {
1526 register_gdbarch_init (bfd_arch_frv, frv_gdbarch_init);
1527 }