* mips-tdep.c (mips_n32n64_push_dummy_call): Fix a typo in a
[binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
6 # Free Software Foundation, Inc.
7 #
8 # This file is part of GDB.
9 #
10 # This program is free software; you can redistribute it and/or modify
11 # it under the terms of the GNU General Public License as published by
12 # the Free Software Foundation; either version 2 of the License, or
13 # (at your option) any later version.
14 #
15 # This program is distributed in the hope that it will be useful,
16 # but WITHOUT ANY WARRANTY; without even the implied warranty of
17 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 # GNU General Public License for more details.
19 #
20 # You should have received a copy of the GNU General Public License
21 # along with this program; if not, write to the Free Software
22 # Foundation, Inc., 51 Franklin Street, Fifth Floor,
23 # Boston, MA 02110-1301, USA.
24
25 # Make certain that the script is not running in an internationalized
26 # environment.
27 LANG=c ; export LANG
28 LC_ALL=c ; export LC_ALL
29
30
31 compare_new ()
32 {
33 file=$1
34 if test ! -r ${file}
35 then
36 echo "${file} missing? cp new-${file} ${file}" 1>&2
37 elif diff -u ${file} new-${file}
38 then
39 echo "${file} unchanged" 1>&2
40 else
41 echo "${file} has changed? cp new-${file} ${file}" 1>&2
42 fi
43 }
44
45
46 # Format of the input table
47 read="class macro returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
48
49 do_read ()
50 {
51 comment=""
52 class=""
53 while read line
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
59 then
60 continue
61 elif expr "${line}" : "#" > /dev/null
62 then
63 comment="${comment}
64 ${line}"
65 else
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
71
72 OFS="${IFS}" ; IFS="[:]"
73 eval read ${read} <<EOF
74 ${line}
75 EOF
76 IFS="${OFS}"
77
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
95 FUNCTION=`echo ${function} | tr '[a-z]' '[A-Z]'`
96 if test "x${macro}" = "x="
97 then
98 # Provide a UCASE version of function (for when there isn't MACRO)
99 macro="${FUNCTION}"
100 elif test "${macro}" = "${FUNCTION}"
101 then
102 echo "${function}: Specify = for macro field" 1>&2
103 kill $$
104 exit 1
105 fi
106
107 # Check that macro definition wasn't supplied for multi-arch
108 case "${class}" in
109 [mM] )
110 if test "${macro}" != ""
111 then
112 echo "Error: Function ${function} multi-arch yet macro ${macro} supplied" 1>&2
113 kill $$
114 exit 1
115 fi
116 esac
117
118 case "${class}" in
119 m ) staticdefault="${predefault}" ;;
120 M ) staticdefault="0" ;;
121 * ) test "${staticdefault}" || staticdefault=0 ;;
122 esac
123
124 case "${class}" in
125 F | V | M )
126 case "${invalid_p}" in
127 "" )
128 if test -n "${predefault}"
129 then
130 #invalid_p="gdbarch->${function} == ${predefault}"
131 predicate="gdbarch->${function} != ${predefault}"
132 elif class_is_variable_p
133 then
134 predicate="gdbarch->${function} != 0"
135 elif class_is_function_p
136 then
137 predicate="gdbarch->${function} != NULL"
138 fi
139 ;;
140 * )
141 echo "Predicate function ${function} with invalid_p." 1>&2
142 kill $$
143 exit 1
144 ;;
145 esac
146 esac
147
148 # PREDEFAULT is a valid fallback definition of MEMBER when
149 # multi-arch is not enabled. This ensures that the
150 # default value, when multi-arch is the same as the
151 # default value when not multi-arch. POSTDEFAULT is
152 # always a valid definition of MEMBER as this again
153 # ensures consistency.
154
155 if [ -n "${postdefault}" ]
156 then
157 fallbackdefault="${postdefault}"
158 elif [ -n "${predefault}" ]
159 then
160 fallbackdefault="${predefault}"
161 else
162 fallbackdefault="0"
163 fi
164
165 #NOT YET: See gdbarch.log for basic verification of
166 # database
167
168 break
169 fi
170 done
171 if [ -n "${class}" ]
172 then
173 true
174 else
175 false
176 fi
177 }
178
179
180 fallback_default_p ()
181 {
182 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
183 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
184 }
185
186 class_is_variable_p ()
187 {
188 case "${class}" in
189 *v* | *V* ) true ;;
190 * ) false ;;
191 esac
192 }
193
194 class_is_function_p ()
195 {
196 case "${class}" in
197 *f* | *F* | *m* | *M* ) true ;;
198 * ) false ;;
199 esac
200 }
201
202 class_is_multiarch_p ()
203 {
204 case "${class}" in
205 *m* | *M* ) true ;;
206 * ) false ;;
207 esac
208 }
209
210 class_is_predicate_p ()
211 {
212 case "${class}" in
213 *F* | *V* | *M* ) true ;;
214 * ) false ;;
215 esac
216 }
217
218 class_is_info_p ()
219 {
220 case "${class}" in
221 *i* ) true ;;
222 * ) false ;;
223 esac
224 }
225
226
227 # dump out/verify the doco
228 for field in ${read}
229 do
230 case ${field} in
231
232 class ) : ;;
233
234 # # -> line disable
235 # f -> function
236 # hiding a function
237 # F -> function + predicate
238 # hiding a function + predicate to test function validity
239 # v -> variable
240 # hiding a variable
241 # V -> variable + predicate
242 # hiding a variable + predicate to test variables validity
243 # i -> set from info
244 # hiding something from the ``struct info'' object
245 # m -> multi-arch function
246 # hiding a multi-arch function (parameterised with the architecture)
247 # M -> multi-arch function + predicate
248 # hiding a multi-arch function + predicate to test function validity
249
250 macro ) : ;;
251
252 # The name of the legacy C macro by which this method can be
253 # accessed. If empty, no macro is defined. If "=", a macro
254 # formed from the upper-case function name is used.
255
256 returntype ) : ;;
257
258 # For functions, the return type; for variables, the data type
259
260 function ) : ;;
261
262 # For functions, the member function name; for variables, the
263 # variable name. Member function names are always prefixed with
264 # ``gdbarch_'' for name-space purity.
265
266 formal ) : ;;
267
268 # The formal argument list. It is assumed that the formal
269 # argument list includes the actual name of each list element.
270 # A function with no arguments shall have ``void'' as the
271 # formal argument list.
272
273 actual ) : ;;
274
275 # The list of actual arguments. The arguments specified shall
276 # match the FORMAL list given above. Functions with out
277 # arguments leave this blank.
278
279 staticdefault ) : ;;
280
281 # To help with the GDB startup a static gdbarch object is
282 # created. STATICDEFAULT is the value to insert into that
283 # static gdbarch object. Since this a static object only
284 # simple expressions can be used.
285
286 # If STATICDEFAULT is empty, zero is used.
287
288 predefault ) : ;;
289
290 # An initial value to assign to MEMBER of the freshly
291 # malloc()ed gdbarch object. After initialization, the
292 # freshly malloc()ed object is passed to the target
293 # architecture code for further updates.
294
295 # If PREDEFAULT is empty, zero is used.
296
297 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
298 # INVALID_P are specified, PREDEFAULT will be used as the
299 # default for the non- multi-arch target.
300
301 # A zero PREDEFAULT function will force the fallback to call
302 # internal_error().
303
304 # Variable declarations can refer to ``gdbarch'' which will
305 # contain the current architecture. Care should be taken.
306
307 postdefault ) : ;;
308
309 # A value to assign to MEMBER of the new gdbarch object should
310 # the target architecture code fail to change the PREDEFAULT
311 # value.
312
313 # If POSTDEFAULT is empty, no post update is performed.
314
315 # If both INVALID_P and POSTDEFAULT are non-empty then
316 # INVALID_P will be used to determine if MEMBER should be
317 # changed to POSTDEFAULT.
318
319 # If a non-empty POSTDEFAULT and a zero INVALID_P are
320 # specified, POSTDEFAULT will be used as the default for the
321 # non- multi-arch target (regardless of the value of
322 # PREDEFAULT).
323
324 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
325
326 # Variable declarations can refer to ``current_gdbarch'' which
327 # will contain the current architecture. Care should be
328 # taken.
329
330 invalid_p ) : ;;
331
332 # A predicate equation that validates MEMBER. Non-zero is
333 # returned if the code creating the new architecture failed to
334 # initialize MEMBER or the initialized the member is invalid.
335 # If POSTDEFAULT is non-empty then MEMBER will be updated to
336 # that value. If POSTDEFAULT is empty then internal_error()
337 # is called.
338
339 # If INVALID_P is empty, a check that MEMBER is no longer
340 # equal to PREDEFAULT is used.
341
342 # The expression ``0'' disables the INVALID_P check making
343 # PREDEFAULT a legitimate value.
344
345 # See also PREDEFAULT and POSTDEFAULT.
346
347 print ) : ;;
348
349 # An optional expression that convers MEMBER to a value
350 # suitable for formatting using %s.
351
352 # If PRINT is empty, paddr_nz (for CORE_ADDR) or paddr_d
353 # (anything else) is used.
354
355 garbage_at_eol ) : ;;
356
357 # Catches stray fields.
358
359 *)
360 echo "Bad field ${field}"
361 exit 1;;
362 esac
363 done
364
365
366 function_list ()
367 {
368 # See below (DOCO) for description of each field
369 cat <<EOF
370 i:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::TARGET_ARCHITECTURE->printable_name
371 #
372 i:TARGET_BYTE_ORDER:int:byte_order:::BFD_ENDIAN_BIG
373 #
374 i:TARGET_OSABI:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
375 #
376 i::const struct target_desc *:target_desc:::::::paddr_d ((long) current_gdbarch->target_desc)
377 # Number of bits in a char or unsigned char for the target machine.
378 # Just like CHAR_BIT in <limits.h> but describes the target machine.
379 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
380 #
381 # Number of bits in a short or unsigned short for the target machine.
382 v:TARGET_SHORT_BIT:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
383 # Number of bits in an int or unsigned int for the target machine.
384 v:TARGET_INT_BIT:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
385 # Number of bits in a long or unsigned long for the target machine.
386 v:TARGET_LONG_BIT:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
387 # Number of bits in a long long or unsigned long long for the target
388 # machine.
389 v:TARGET_LONG_LONG_BIT:int:long_long_bit:::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
390
391 # The ABI default bit-size and format for "float", "double", and "long
392 # double". These bit/format pairs should eventually be combined into
393 # a single object. For the moment, just initialize them as a pair.
394 # Each format describes both the big and little endian layouts (if
395 # useful).
396
397 v:TARGET_FLOAT_BIT:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
398 v:TARGET_FLOAT_FORMAT:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (current_gdbarch->float_format)
399 v:TARGET_DOUBLE_BIT:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
400 v:TARGET_DOUBLE_FORMAT:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (current_gdbarch->double_format)
401 v:TARGET_LONG_DOUBLE_BIT:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
402 v:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (current_gdbarch->long_double_format)
403
404 # For most targets, a pointer on the target and its representation as an
405 # address in GDB have the same size and "look the same". For such a
406 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
407 # / addr_bit will be set from it.
408 #
409 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
410 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
411 #
412 # ptr_bit is the size of a pointer on the target
413 v:TARGET_PTR_BIT:int:ptr_bit:::8 * sizeof (void*):TARGET_INT_BIT::0
414 # addr_bit is the size of a target address as represented in gdb
415 v:TARGET_ADDR_BIT:int:addr_bit:::8 * sizeof (void*):0:TARGET_PTR_BIT:
416 # Number of bits in a BFD_VMA for the target object file format.
417 v:TARGET_BFD_VMA_BIT:int:bfd_vma_bit:::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
418 #
419 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
420 v:TARGET_CHAR_SIGNED:int:char_signed:::1:-1:1
421 #
422 F:TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid
423 f:TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid:0:generic_target_write_pc::0
424 # UNWIND_SP is a direct replacement for TARGET_READ_SP.
425 F:TARGET_READ_SP:CORE_ADDR:read_sp:void
426 # Function for getting target's idea of a frame pointer. FIXME: GDB's
427 # whole scheme for dealing with "frames" and "frame pointers" needs a
428 # serious shakedown.
429 f:TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
430 #
431 M::void:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
432 M::void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
433 #
434 v:=:int:num_regs:::0:-1
435 # This macro gives the number of pseudo-registers that live in the
436 # register namespace but do not get fetched or stored on the target.
437 # These pseudo-registers may be aliases for other registers,
438 # combinations of other registers, or they may be computed by GDB.
439 v:=:int:num_pseudo_regs:::0:0::0
440
441 # GDB's standard (or well known) register numbers. These can map onto
442 # a real register or a pseudo (computed) register or not be defined at
443 # all (-1).
444 # SP_REGNUM will hopefully be replaced by UNWIND_SP.
445 v:=:int:sp_regnum:::-1:-1::0
446 v:=:int:pc_regnum:::-1:-1::0
447 v:=:int:ps_regnum:::-1:-1::0
448 v:=:int:fp0_regnum:::0:-1::0
449 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
450 f:=:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
451 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
452 f:=:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
453 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
454 f:=:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr::no_op_reg_to_regnum::0
455 # Convert from an sdb register number to an internal gdb register number.
456 f:=:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
457 f:=:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
458 f:=:const char *:register_name:int regnr:regnr
459
460 # Return the type of a register specified by the architecture. Only
461 # the register cache should call this function directly; others should
462 # use "register_type".
463 M::struct type *:register_type:int reg_nr:reg_nr
464 # If the value returned by DEPRECATED_REGISTER_BYTE agrees with the
465 # register offsets computed using just REGISTER_TYPE, this can be
466 # deleted. See: maint print registers. NOTE: cagney/2002-05-02: This
467 # function with predicate has a valid (callable) initial value. As a
468 # consequence, even when the predicate is false, the corresponding
469 # function works. This simplifies the migration process - old code,
470 # calling DEPRECATED_REGISTER_BYTE, doesn't need to be modified.
471 F:=:int:deprecated_register_byte:int reg_nr:reg_nr:generic_register_byte:generic_register_byte
472
473 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
474 M::struct frame_id:unwind_dummy_id:struct frame_info *info:info
475 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
476 # DEPRECATED_FP_REGNUM.
477 v:=:int:deprecated_fp_regnum:::-1:-1::0
478
479 # See gdbint.texinfo. See infcall.c.
480 M::CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
481 # DEPRECATED_REGISTER_SIZE can be deleted.
482 v:=:int:deprecated_register_size
483 v:=:int:call_dummy_location::::AT_ENTRY_POINT::0
484 M::CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr:sp, funaddr, using_gcc, args, nargs, value_type, real_pc, bp_addr
485
486 m::void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
487 M::void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
488 M::void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
489 # MAP a GDB RAW register number onto a simulator register number. See
490 # also include/...-sim.h.
491 f:=:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
492 F:=:int:register_bytes_ok:long nr_bytes:nr_bytes
493 f:=:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
494 f:=:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
495 # setjmp/longjmp support.
496 F:=:int:get_longjmp_target:CORE_ADDR *pc:pc
497 #
498 v:=:int:believe_pcc_promotion:::::::
499 #
500 f:=:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
501 f:=:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf:frame, regnum, type, buf:0
502 f:=:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
503 # Construct a value representing the contents of register REGNUM in
504 # frame FRAME, interpreted as type TYPE. The routine needs to
505 # allocate and return a struct value with all value attributes
506 # (but not the value contents) filled in.
507 f::struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
508 #
509 f:=:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
510 f:=:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
511 M::CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
512 #
513 # NOTE: kettenis/2005-09-01: Replaced by PUSH_DUMMY_CALL.
514 F:=:void:deprecated_store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp
515
516 # It has been suggested that this, well actually its predecessor,
517 # should take the type/value of the function to be called and not the
518 # return type. This is left as an exercise for the reader.
519
520 # NOTE: cagney/2004-06-13: The function stack.c:return_command uses
521 # the predicate with default hack to avoid calling STORE_RETURN_VALUE
522 # (via legacy_return_value), when a small struct is involved.
523
524 M::enum return_value_convention:return_value:struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:valtype, regcache, readbuf, writebuf::legacy_return_value
525
526 # The deprecated methods EXTRACT_RETURN_VALUE, STORE_RETURN_VALUE,
527 # DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS and
528 # DEPRECATED_USE_STRUCT_CONVENTION have all been folded into
529 # RETURN_VALUE.
530
531 f:=:void:extract_return_value:struct type *type, struct regcache *regcache, gdb_byte *valbuf:type, regcache, valbuf:0
532 f:=:void:store_return_value:struct type *type, struct regcache *regcache, const gdb_byte *valbuf:type, regcache, valbuf:0
533 f:=:int:deprecated_use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type::generic_use_struct_convention::0
534
535 # As of 2004-01-17 only the 32-bit SPARC ABI has been identified as an
536 # ABI suitable for the implementation of a robust extract
537 # struct-convention return-value address method (the sparc saves the
538 # address in the callers frame). All the other cases so far examined,
539 # the DEPRECATED_EXTRACT_STRUCT_VALUE implementation has been
540 # erreneous - the code was incorrectly assuming that the return-value
541 # address, stored in a register, was preserved across the entire
542 # function call.
543
544 # For the moment retain DEPRECATED_EXTRACT_STRUCT_VALUE as a marker of
545 # the ABIs that are still to be analyzed - perhaps this should simply
546 # be deleted. The commented out extract_returned_value_address method
547 # is provided as a starting point for the 32-bit SPARC. It, or
548 # something like it, along with changes to both infcmd.c and stack.c
549 # will be needed for that case to work. NB: It is passed the callers
550 # frame since it is only after the callee has returned that this
551 # function is used.
552
553 #M::CORE_ADDR:extract_returned_value_address:struct frame_info *caller_frame:caller_frame
554 F:=:CORE_ADDR:deprecated_extract_struct_value_address:struct regcache *regcache:regcache
555
556 #
557 f:=:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
558 f:=:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
559 f:=:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
560 M::CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
561 f:=:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
562 f:=:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
563 v:=:CORE_ADDR:decr_pc_after_break:::0:::0
564
565 # A function can be addressed by either it's "pointer" (possibly a
566 # descriptor address) or "entry point" (first executable instruction).
567 # The method "convert_from_func_ptr_addr" converting the former to the
568 # latter. DEPRECATED_FUNCTION_START_OFFSET is being used to implement
569 # a simplified subset of that functionality - the function's address
570 # corresponds to the "function pointer" and the function's start
571 # corresponds to the "function entry point" - and hence is redundant.
572
573 v:=:CORE_ADDR:deprecated_function_start_offset:::0:::0
574
575 m::void:remote_translate_xfer_address:struct regcache *regcache, CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:regcache, gdb_addr, gdb_len, rem_addr, rem_len::generic_remote_translate_xfer_address::0
576
577 # Return the remote protocol register number associated with this
578 # register. Normally the identity mapping.
579 m::int:remote_register_number:int regno:regno::default_remote_register_number::0
580
581 # Fetch the target specific address used to represent a load module.
582 F:=:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
583 #
584 v:=:CORE_ADDR:frame_args_skip:::0:::0
585 M::CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
586 M::CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
587 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
588 # frame-base. Enable frame-base before frame-unwind.
589 F:=:int:frame_num_args:struct frame_info *frame:frame
590 #
591 # DEPRECATED_STACK_ALIGN has been replaced by an initial aligning call
592 # to frame_align and the requirement that methods such as
593 # push_dummy_call and frame_red_zone_size maintain correct stack/frame
594 # alignment.
595 F:=:CORE_ADDR:deprecated_stack_align:CORE_ADDR sp:sp
596 M::CORE_ADDR:frame_align:CORE_ADDR address:address
597 # DEPRECATED_REG_STRUCT_HAS_ADDR has been replaced by
598 # stabs_argument_has_addr.
599 F:=:int:deprecated_reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type
600 m::int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
601 v:=:int:frame_red_zone_size
602 #
603 m::CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
604 # On some machines there are bits in addresses which are not really
605 # part of the address, but are used by the kernel, the hardware, etc.
606 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
607 # we get a "real" address such as one would find in a symbol table.
608 # This is used only for addresses of instructions, and even then I'm
609 # not sure it's used in all contexts. It exists to deal with there
610 # being a few stray bits in the PC which would mislead us, not as some
611 # sort of generic thing to handle alignment or segmentation (it's
612 # possible it should be in TARGET_READ_PC instead).
613 f:=:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
614 # It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
615 # ADDR_BITS_REMOVE.
616 f:=:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
617
618 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
619 # indicates if the target needs software single step. An ISA method to
620 # implement it.
621 #
622 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts
623 # breakpoints using the breakpoint system instead of blatting memory directly
624 # (as with rs6000).
625 #
626 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
627 # target can single step. If not, then implement single step using breakpoints.
628 #
629 # A return value of 1 means that the software_single_step breakpoints
630 # were inserted; 0 means they were not.
631 F:=:int:software_single_step:struct regcache *regcache:regcache
632
633 # Return non-zero if the processor is executing a delay slot and a
634 # further single-step is needed before the instruction finishes.
635 M::int:single_step_through_delay:struct frame_info *frame:frame
636 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
637 # disassembler. Perhaps objdump can handle it?
638 f:TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
639 f:=:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc::generic_skip_trampoline_code::0
640
641
642 # If IN_SOLIB_DYNSYM_RESOLVE_CODE returns true, and SKIP_SOLIB_RESOLVER
643 # evaluates non-zero, this is the address where the debugger will place
644 # a step-resume breakpoint to get us past the dynamic linker.
645 m::CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
646 # Some systems also have trampoline code for returning from shared libs.
647 f:=:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_return_trampoline::0
648
649 # A target might have problems with watchpoints as soon as the stack
650 # frame of the current function has been destroyed. This mostly happens
651 # as the first action in a funtion's epilogue. in_function_epilogue_p()
652 # is defined to return a non-zero value if either the given addr is one
653 # instruction after the stack destroying instruction up to the trailing
654 # return instruction or if we can figure out that the stack frame has
655 # already been invalidated regardless of the value of addr. Targets
656 # which don't suffer from that problem could just let this functionality
657 # untouched.
658 m::int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
659 # Given a vector of command-line arguments, return a newly allocated
660 # string which, when passed to the create_inferior function, will be
661 # parsed (on Unix systems, by the shell) to yield the same vector.
662 # This function should call error() if the argument vector is not
663 # representable for this target or if this target does not support
664 # command-line arguments.
665 # ARGC is the number of elements in the vector.
666 # ARGV is an array of strings, one per argument.
667 m::char *:construct_inferior_arguments:int argc, char **argv:argc, argv::construct_inferior_arguments::0
668 f:=:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
669 f:=:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
670 v:=:const char *:name_of_malloc:::"malloc":"malloc"::0:NAME_OF_MALLOC
671 v:=:int:cannot_step_breakpoint:::0:0::0
672 v:=:int:have_nonsteppable_watchpoint:::0:0::0
673 F:=:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
674 M::const char *:address_class_type_flags_to_name:int type_flags:type_flags
675 M::int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
676 # Is a register in a group
677 m::int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
678 # Fetch the pointer to the ith function argument.
679 F:=:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
680
681 # Return the appropriate register set for a core file section with
682 # name SECT_NAME and size SECT_SIZE.
683 M::const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
684
685 # If the elements of C++ vtables are in-place function descriptors rather
686 # than normal function pointers (which may point to code or a descriptor),
687 # set this to one.
688 v::int:vtable_function_descriptors:::0:0::0
689
690 # Set if the least significant bit of the delta is used instead of the least
691 # significant bit of the pfn for pointers to virtual member functions.
692 v::int:vbit_in_delta:::0:0::0
693 EOF
694 }
695
696 #
697 # The .log file
698 #
699 exec > new-gdbarch.log
700 function_list | while do_read
701 do
702 cat <<EOF
703 ${class} ${returntype} ${function} ($formal)
704 EOF
705 for r in ${read}
706 do
707 eval echo \"\ \ \ \ ${r}=\${${r}}\"
708 done
709 if class_is_predicate_p && fallback_default_p
710 then
711 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
712 kill $$
713 exit 1
714 fi
715 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
716 then
717 echo "Error: postdefault is useless when invalid_p=0" 1>&2
718 kill $$
719 exit 1
720 fi
721 if class_is_multiarch_p
722 then
723 if class_is_predicate_p ; then :
724 elif test "x${predefault}" = "x"
725 then
726 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
727 kill $$
728 exit 1
729 fi
730 fi
731 echo ""
732 done
733
734 exec 1>&2
735 compare_new gdbarch.log
736
737
738 copyright ()
739 {
740 cat <<EOF
741 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
742
743 /* Dynamic architecture support for GDB, the GNU debugger.
744
745 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
746 Free Software Foundation, Inc.
747
748 This file is part of GDB.
749
750 This program is free software; you can redistribute it and/or modify
751 it under the terms of the GNU General Public License as published by
752 the Free Software Foundation; either version 2 of the License, or
753 (at your option) any later version.
754
755 This program is distributed in the hope that it will be useful,
756 but WITHOUT ANY WARRANTY; without even the implied warranty of
757 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
758 GNU General Public License for more details.
759
760 You should have received a copy of the GNU General Public License
761 along with this program; if not, write to the Free Software
762 Foundation, Inc., 51 Franklin Street, Fifth Floor,
763 Boston, MA 02110-1301, USA. */
764
765 /* This file was created with the aid of \`\`gdbarch.sh''.
766
767 The Bourne shell script \`\`gdbarch.sh'' creates the files
768 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
769 against the existing \`\`gdbarch.[hc]''. Any differences found
770 being reported.
771
772 If editing this file, please also run gdbarch.sh and merge any
773 changes into that script. Conversely, when making sweeping changes
774 to this file, modifying gdbarch.sh and using its output may prove
775 easier. */
776
777 EOF
778 }
779
780 #
781 # The .h file
782 #
783
784 exec > new-gdbarch.h
785 copyright
786 cat <<EOF
787 #ifndef GDBARCH_H
788 #define GDBARCH_H
789
790 struct floatformat;
791 struct ui_file;
792 struct frame_info;
793 struct value;
794 struct objfile;
795 struct minimal_symbol;
796 struct regcache;
797 struct reggroup;
798 struct regset;
799 struct disassemble_info;
800 struct target_ops;
801 struct obstack;
802 struct bp_target_info;
803 struct target_desc;
804
805 extern struct gdbarch *current_gdbarch;
806 EOF
807
808 # function typedef's
809 printf "\n"
810 printf "\n"
811 printf "/* The following are pre-initialized by GDBARCH. */\n"
812 function_list | while do_read
813 do
814 if class_is_info_p
815 then
816 printf "\n"
817 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
818 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
819 if test -n "${macro}"
820 then
821 printf "#if !defined (GDB_TM_FILE) && defined (${macro})\n"
822 printf "#error \"Non multi-arch definition of ${macro}\"\n"
823 printf "#endif\n"
824 printf "#if !defined (${macro})\n"
825 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
826 printf "#endif\n"
827 fi
828 fi
829 done
830
831 # function typedef's
832 printf "\n"
833 printf "\n"
834 printf "/* The following are initialized by the target dependent code. */\n"
835 function_list | while do_read
836 do
837 if [ -n "${comment}" ]
838 then
839 echo "${comment}" | sed \
840 -e '2 s,#,/*,' \
841 -e '3,$ s,#, ,' \
842 -e '$ s,$, */,'
843 fi
844
845 if class_is_predicate_p
846 then
847 if test -n "${macro}"
848 then
849 printf "\n"
850 printf "#if defined (${macro})\n"
851 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
852 printf "#if !defined (${macro}_P)\n"
853 printf "#define ${macro}_P() (1)\n"
854 printf "#endif\n"
855 printf "#endif\n"
856 fi
857 printf "\n"
858 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
859 if test -n "${macro}"
860 then
861 printf "#if !defined (GDB_TM_FILE) && defined (${macro}_P)\n"
862 printf "#error \"Non multi-arch definition of ${macro}\"\n"
863 printf "#endif\n"
864 printf "#if !defined (${macro}_P)\n"
865 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
866 printf "#endif\n"
867 fi
868 fi
869 if class_is_variable_p
870 then
871 printf "\n"
872 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
873 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
874 if test -n "${macro}"
875 then
876 printf "#if !defined (GDB_TM_FILE) && defined (${macro})\n"
877 printf "#error \"Non multi-arch definition of ${macro}\"\n"
878 printf "#endif\n"
879 printf "#if !defined (${macro})\n"
880 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
881 printf "#endif\n"
882 fi
883 fi
884 if class_is_function_p
885 then
886 printf "\n"
887 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
888 then
889 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
890 elif class_is_multiarch_p
891 then
892 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
893 else
894 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
895 fi
896 if [ "x${formal}" = "xvoid" ]
897 then
898 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
899 else
900 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
901 fi
902 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
903 if test -n "${macro}"
904 then
905 printf "#if !defined (GDB_TM_FILE) && defined (${macro})\n"
906 printf "#error \"Non multi-arch definition of ${macro}\"\n"
907 printf "#endif\n"
908 if [ "x${actual}" = "x" ]
909 then
910 d="#define ${macro}() (gdbarch_${function} (current_gdbarch))"
911 elif [ "x${actual}" = "x-" ]
912 then
913 d="#define ${macro} (gdbarch_${function} (current_gdbarch))"
914 else
915 d="#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))"
916 fi
917 printf "#if !defined (${macro})\n"
918 if [ "x${actual}" = "x" ]
919 then
920 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
921 elif [ "x${actual}" = "x-" ]
922 then
923 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
924 else
925 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
926 fi
927 printf "#endif\n"
928 fi
929 fi
930 done
931
932 # close it off
933 cat <<EOF
934
935 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
936
937
938 /* Mechanism for co-ordinating the selection of a specific
939 architecture.
940
941 GDB targets (*-tdep.c) can register an interest in a specific
942 architecture. Other GDB components can register a need to maintain
943 per-architecture data.
944
945 The mechanisms below ensures that there is only a loose connection
946 between the set-architecture command and the various GDB
947 components. Each component can independently register their need
948 to maintain architecture specific data with gdbarch.
949
950 Pragmatics:
951
952 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
953 didn't scale.
954
955 The more traditional mega-struct containing architecture specific
956 data for all the various GDB components was also considered. Since
957 GDB is built from a variable number of (fairly independent)
958 components it was determined that the global aproach was not
959 applicable. */
960
961
962 /* Register a new architectural family with GDB.
963
964 Register support for the specified ARCHITECTURE with GDB. When
965 gdbarch determines that the specified architecture has been
966 selected, the corresponding INIT function is called.
967
968 --
969
970 The INIT function takes two parameters: INFO which contains the
971 information available to gdbarch about the (possibly new)
972 architecture; ARCHES which is a list of the previously created
973 \`\`struct gdbarch'' for this architecture.
974
975 The INFO parameter is, as far as possible, be pre-initialized with
976 information obtained from INFO.ABFD or the global defaults.
977
978 The ARCHES parameter is a linked list (sorted most recently used)
979 of all the previously created architures for this architecture
980 family. The (possibly NULL) ARCHES->gdbarch can used to access
981 values from the previously selected architecture for this
982 architecture family. The global \`\`current_gdbarch'' shall not be
983 used.
984
985 The INIT function shall return any of: NULL - indicating that it
986 doesn't recognize the selected architecture; an existing \`\`struct
987 gdbarch'' from the ARCHES list - indicating that the new
988 architecture is just a synonym for an earlier architecture (see
989 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
990 - that describes the selected architecture (see gdbarch_alloc()).
991
992 The DUMP_TDEP function shall print out all target specific values.
993 Care should be taken to ensure that the function works in both the
994 multi-arch and non- multi-arch cases. */
995
996 struct gdbarch_list
997 {
998 struct gdbarch *gdbarch;
999 struct gdbarch_list *next;
1000 };
1001
1002 struct gdbarch_info
1003 {
1004 /* Use default: NULL (ZERO). */
1005 const struct bfd_arch_info *bfd_arch_info;
1006
1007 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1008 int byte_order;
1009
1010 /* Use default: NULL (ZERO). */
1011 bfd *abfd;
1012
1013 /* Use default: NULL (ZERO). */
1014 struct gdbarch_tdep_info *tdep_info;
1015
1016 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1017 enum gdb_osabi osabi;
1018
1019 /* Use default: NULL (ZERO). */
1020 const struct target_desc *target_desc;
1021 };
1022
1023 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1024 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1025
1026 /* DEPRECATED - use gdbarch_register() */
1027 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1028
1029 extern void gdbarch_register (enum bfd_architecture architecture,
1030 gdbarch_init_ftype *,
1031 gdbarch_dump_tdep_ftype *);
1032
1033
1034 /* Return a freshly allocated, NULL terminated, array of the valid
1035 architecture names. Since architectures are registered during the
1036 _initialize phase this function only returns useful information
1037 once initialization has been completed. */
1038
1039 extern const char **gdbarch_printable_names (void);
1040
1041
1042 /* Helper function. Search the list of ARCHES for a GDBARCH that
1043 matches the information provided by INFO. */
1044
1045 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1046
1047
1048 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1049 basic initialization using values obtained from the INFO and TDEP
1050 parameters. set_gdbarch_*() functions are called to complete the
1051 initialization of the object. */
1052
1053 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1054
1055
1056 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1057 It is assumed that the caller freeds the \`\`struct
1058 gdbarch_tdep''. */
1059
1060 extern void gdbarch_free (struct gdbarch *);
1061
1062
1063 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1064 obstack. The memory is freed when the corresponding architecture
1065 is also freed. */
1066
1067 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1068 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1069 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1070
1071
1072 /* Helper function. Force an update of the current architecture.
1073
1074 The actual architecture selected is determined by INFO, \`\`(gdb) set
1075 architecture'' et.al., the existing architecture and BFD's default
1076 architecture. INFO should be initialized to zero and then selected
1077 fields should be updated.
1078
1079 Returns non-zero if the update succeeds */
1080
1081 extern int gdbarch_update_p (struct gdbarch_info info);
1082
1083
1084 /* Helper function. Find an architecture matching info.
1085
1086 INFO should be initialized using gdbarch_info_init, relevant fields
1087 set, and then finished using gdbarch_info_fill.
1088
1089 Returns the corresponding architecture, or NULL if no matching
1090 architecture was found. "current_gdbarch" is not updated. */
1091
1092 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1093
1094
1095 /* Helper function. Set the global "current_gdbarch" to "gdbarch".
1096
1097 FIXME: kettenis/20031124: Of the functions that follow, only
1098 gdbarch_from_bfd is supposed to survive. The others will
1099 dissappear since in the future GDB will (hopefully) be truly
1100 multi-arch. However, for now we're still stuck with the concept of
1101 a single active architecture. */
1102
1103 extern void deprecated_current_gdbarch_select_hack (struct gdbarch *gdbarch);
1104
1105
1106 /* Register per-architecture data-pointer.
1107
1108 Reserve space for a per-architecture data-pointer. An identifier
1109 for the reserved data-pointer is returned. That identifer should
1110 be saved in a local static variable.
1111
1112 Memory for the per-architecture data shall be allocated using
1113 gdbarch_obstack_zalloc. That memory will be deleted when the
1114 corresponding architecture object is deleted.
1115
1116 When a previously created architecture is re-selected, the
1117 per-architecture data-pointer for that previous architecture is
1118 restored. INIT() is not re-called.
1119
1120 Multiple registrarants for any architecture are allowed (and
1121 strongly encouraged). */
1122
1123 struct gdbarch_data;
1124
1125 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1126 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1127 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1128 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1129 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1130 struct gdbarch_data *data,
1131 void *pointer);
1132
1133 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1134
1135
1136
1137 /* Register per-architecture memory region.
1138
1139 Provide a memory-region swap mechanism. Per-architecture memory
1140 region are created. These memory regions are swapped whenever the
1141 architecture is changed. For a new architecture, the memory region
1142 is initialized with zero (0) and the INIT function is called.
1143
1144 Memory regions are swapped / initialized in the order that they are
1145 registered. NULL DATA and/or INIT values can be specified.
1146
1147 New code should use gdbarch_data_register_*(). */
1148
1149 typedef void (gdbarch_swap_ftype) (void);
1150 extern void deprecated_register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1151 #define DEPRECATED_REGISTER_GDBARCH_SWAP(VAR) deprecated_register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1152
1153
1154
1155 /* Set the dynamic target-system-dependent parameters (architecture,
1156 byte-order, ...) using information found in the BFD */
1157
1158 extern void set_gdbarch_from_file (bfd *);
1159
1160
1161 /* Initialize the current architecture to the "first" one we find on
1162 our list. */
1163
1164 extern void initialize_current_architecture (void);
1165
1166 /* gdbarch trace variable */
1167 extern int gdbarch_debug;
1168
1169 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1170
1171 #endif
1172 EOF
1173 exec 1>&2
1174 #../move-if-change new-gdbarch.h gdbarch.h
1175 compare_new gdbarch.h
1176
1177
1178 #
1179 # C file
1180 #
1181
1182 exec > new-gdbarch.c
1183 copyright
1184 cat <<EOF
1185
1186 #include "defs.h"
1187 #include "arch-utils.h"
1188
1189 #include "gdbcmd.h"
1190 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1191 #include "symcat.h"
1192
1193 #include "floatformat.h"
1194
1195 #include "gdb_assert.h"
1196 #include "gdb_string.h"
1197 #include "gdb-events.h"
1198 #include "reggroups.h"
1199 #include "osabi.h"
1200 #include "gdb_obstack.h"
1201
1202 /* Static function declarations */
1203
1204 static void alloc_gdbarch_data (struct gdbarch *);
1205
1206 /* Non-zero if we want to trace architecture code. */
1207
1208 #ifndef GDBARCH_DEBUG
1209 #define GDBARCH_DEBUG 0
1210 #endif
1211 int gdbarch_debug = GDBARCH_DEBUG;
1212 static void
1213 show_gdbarch_debug (struct ui_file *file, int from_tty,
1214 struct cmd_list_element *c, const char *value)
1215 {
1216 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1217 }
1218
1219 static const char *
1220 pformat (const struct floatformat **format)
1221 {
1222 if (format == NULL)
1223 return "(null)";
1224 else
1225 /* Just print out one of them - this is only for diagnostics. */
1226 return format[0]->name;
1227 }
1228
1229 EOF
1230
1231 # gdbarch open the gdbarch object
1232 printf "\n"
1233 printf "/* Maintain the struct gdbarch object */\n"
1234 printf "\n"
1235 printf "struct gdbarch\n"
1236 printf "{\n"
1237 printf " /* Has this architecture been fully initialized? */\n"
1238 printf " int initialized_p;\n"
1239 printf "\n"
1240 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1241 printf " struct obstack *obstack;\n"
1242 printf "\n"
1243 printf " /* basic architectural information */\n"
1244 function_list | while do_read
1245 do
1246 if class_is_info_p
1247 then
1248 printf " ${returntype} ${function};\n"
1249 fi
1250 done
1251 printf "\n"
1252 printf " /* target specific vector. */\n"
1253 printf " struct gdbarch_tdep *tdep;\n"
1254 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1255 printf "\n"
1256 printf " /* per-architecture data-pointers */\n"
1257 printf " unsigned nr_data;\n"
1258 printf " void **data;\n"
1259 printf "\n"
1260 printf " /* per-architecture swap-regions */\n"
1261 printf " struct gdbarch_swap *swap;\n"
1262 printf "\n"
1263 cat <<EOF
1264 /* Multi-arch values.
1265
1266 When extending this structure you must:
1267
1268 Add the field below.
1269
1270 Declare set/get functions and define the corresponding
1271 macro in gdbarch.h.
1272
1273 gdbarch_alloc(): If zero/NULL is not a suitable default,
1274 initialize the new field.
1275
1276 verify_gdbarch(): Confirm that the target updated the field
1277 correctly.
1278
1279 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1280 field is dumped out
1281
1282 \`\`startup_gdbarch()'': Append an initial value to the static
1283 variable (base values on the host's c-type system).
1284
1285 get_gdbarch(): Implement the set/get functions (probably using
1286 the macro's as shortcuts).
1287
1288 */
1289
1290 EOF
1291 function_list | while do_read
1292 do
1293 if class_is_variable_p
1294 then
1295 printf " ${returntype} ${function};\n"
1296 elif class_is_function_p
1297 then
1298 printf " gdbarch_${function}_ftype *${function};\n"
1299 fi
1300 done
1301 printf "};\n"
1302
1303 # A pre-initialized vector
1304 printf "\n"
1305 printf "\n"
1306 cat <<EOF
1307 /* The default architecture uses host values (for want of a better
1308 choice). */
1309 EOF
1310 printf "\n"
1311 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1312 printf "\n"
1313 printf "struct gdbarch startup_gdbarch =\n"
1314 printf "{\n"
1315 printf " 1, /* Always initialized. */\n"
1316 printf " NULL, /* The obstack. */\n"
1317 printf " /* basic architecture information */\n"
1318 function_list | while do_read
1319 do
1320 if class_is_info_p
1321 then
1322 printf " ${staticdefault}, /* ${function} */\n"
1323 fi
1324 done
1325 cat <<EOF
1326 /* target specific vector and its dump routine */
1327 NULL, NULL,
1328 /*per-architecture data-pointers and swap regions */
1329 0, NULL, NULL,
1330 /* Multi-arch values */
1331 EOF
1332 function_list | while do_read
1333 do
1334 if class_is_function_p || class_is_variable_p
1335 then
1336 printf " ${staticdefault}, /* ${function} */\n"
1337 fi
1338 done
1339 cat <<EOF
1340 /* startup_gdbarch() */
1341 };
1342
1343 struct gdbarch *current_gdbarch = &startup_gdbarch;
1344 EOF
1345
1346 # Create a new gdbarch struct
1347 cat <<EOF
1348
1349 /* Create a new \`\`struct gdbarch'' based on information provided by
1350 \`\`struct gdbarch_info''. */
1351 EOF
1352 printf "\n"
1353 cat <<EOF
1354 struct gdbarch *
1355 gdbarch_alloc (const struct gdbarch_info *info,
1356 struct gdbarch_tdep *tdep)
1357 {
1358 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1359 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1360 the current local architecture and not the previous global
1361 architecture. This ensures that the new architectures initial
1362 values are not influenced by the previous architecture. Once
1363 everything is parameterised with gdbarch, this will go away. */
1364 struct gdbarch *current_gdbarch;
1365
1366 /* Create an obstack for allocating all the per-architecture memory,
1367 then use that to allocate the architecture vector. */
1368 struct obstack *obstack = XMALLOC (struct obstack);
1369 obstack_init (obstack);
1370 current_gdbarch = obstack_alloc (obstack, sizeof (*current_gdbarch));
1371 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1372 current_gdbarch->obstack = obstack;
1373
1374 alloc_gdbarch_data (current_gdbarch);
1375
1376 current_gdbarch->tdep = tdep;
1377 EOF
1378 printf "\n"
1379 function_list | while do_read
1380 do
1381 if class_is_info_p
1382 then
1383 printf " current_gdbarch->${function} = info->${function};\n"
1384 fi
1385 done
1386 printf "\n"
1387 printf " /* Force the explicit initialization of these. */\n"
1388 function_list | while do_read
1389 do
1390 if class_is_function_p || class_is_variable_p
1391 then
1392 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1393 then
1394 printf " current_gdbarch->${function} = ${predefault};\n"
1395 fi
1396 fi
1397 done
1398 cat <<EOF
1399 /* gdbarch_alloc() */
1400
1401 return current_gdbarch;
1402 }
1403 EOF
1404
1405 # Free a gdbarch struct.
1406 printf "\n"
1407 printf "\n"
1408 cat <<EOF
1409 /* Allocate extra space using the per-architecture obstack. */
1410
1411 void *
1412 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1413 {
1414 void *data = obstack_alloc (arch->obstack, size);
1415 memset (data, 0, size);
1416 return data;
1417 }
1418
1419
1420 /* Free a gdbarch struct. This should never happen in normal
1421 operation --- once you've created a gdbarch, you keep it around.
1422 However, if an architecture's init function encounters an error
1423 building the structure, it may need to clean up a partially
1424 constructed gdbarch. */
1425
1426 void
1427 gdbarch_free (struct gdbarch *arch)
1428 {
1429 struct obstack *obstack;
1430 gdb_assert (arch != NULL);
1431 gdb_assert (!arch->initialized_p);
1432 obstack = arch->obstack;
1433 obstack_free (obstack, 0); /* Includes the ARCH. */
1434 xfree (obstack);
1435 }
1436 EOF
1437
1438 # verify a new architecture
1439 cat <<EOF
1440
1441
1442 /* Ensure that all values in a GDBARCH are reasonable. */
1443
1444 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1445 just happens to match the global variable \`\`current_gdbarch''. That
1446 way macros refering to that variable get the local and not the global
1447 version - ulgh. Once everything is parameterised with gdbarch, this
1448 will go away. */
1449
1450 static void
1451 verify_gdbarch (struct gdbarch *current_gdbarch)
1452 {
1453 struct ui_file *log;
1454 struct cleanup *cleanups;
1455 long dummy;
1456 char *buf;
1457 log = mem_fileopen ();
1458 cleanups = make_cleanup_ui_file_delete (log);
1459 /* fundamental */
1460 if (current_gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1461 fprintf_unfiltered (log, "\n\tbyte-order");
1462 if (current_gdbarch->bfd_arch_info == NULL)
1463 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1464 /* Check those that need to be defined for the given multi-arch level. */
1465 EOF
1466 function_list | while do_read
1467 do
1468 if class_is_function_p || class_is_variable_p
1469 then
1470 if [ "x${invalid_p}" = "x0" ]
1471 then
1472 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1473 elif class_is_predicate_p
1474 then
1475 printf " /* Skip verify of ${function}, has predicate */\n"
1476 # FIXME: See do_read for potential simplification
1477 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1478 then
1479 printf " if (${invalid_p})\n"
1480 printf " current_gdbarch->${function} = ${postdefault};\n"
1481 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1482 then
1483 printf " if (current_gdbarch->${function} == ${predefault})\n"
1484 printf " current_gdbarch->${function} = ${postdefault};\n"
1485 elif [ -n "${postdefault}" ]
1486 then
1487 printf " if (current_gdbarch->${function} == 0)\n"
1488 printf " current_gdbarch->${function} = ${postdefault};\n"
1489 elif [ -n "${invalid_p}" ]
1490 then
1491 printf " if (${invalid_p})\n"
1492 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1493 elif [ -n "${predefault}" ]
1494 then
1495 printf " if (current_gdbarch->${function} == ${predefault})\n"
1496 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1497 fi
1498 fi
1499 done
1500 cat <<EOF
1501 buf = ui_file_xstrdup (log, &dummy);
1502 make_cleanup (xfree, buf);
1503 if (strlen (buf) > 0)
1504 internal_error (__FILE__, __LINE__,
1505 _("verify_gdbarch: the following are invalid ...%s"),
1506 buf);
1507 do_cleanups (cleanups);
1508 }
1509 EOF
1510
1511 # dump the structure
1512 printf "\n"
1513 printf "\n"
1514 cat <<EOF
1515 /* Print out the details of the current architecture. */
1516
1517 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1518 just happens to match the global variable \`\`current_gdbarch''. That
1519 way macros refering to that variable get the local and not the global
1520 version - ulgh. Once everything is parameterised with gdbarch, this
1521 will go away. */
1522
1523 void
1524 gdbarch_dump (struct gdbarch *current_gdbarch, struct ui_file *file)
1525 {
1526 const char *gdb_xm_file = "<not-defined>";
1527 const char *gdb_nm_file = "<not-defined>";
1528 const char *gdb_tm_file = "<not-defined>";
1529 #if defined (GDB_XM_FILE)
1530 gdb_xm_file = GDB_XM_FILE;
1531 #endif
1532 fprintf_unfiltered (file,
1533 "gdbarch_dump: GDB_XM_FILE = %s\\n",
1534 gdb_xm_file);
1535 #if defined (GDB_NM_FILE)
1536 gdb_nm_file = GDB_NM_FILE;
1537 #endif
1538 fprintf_unfiltered (file,
1539 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1540 gdb_nm_file);
1541 #if defined (GDB_TM_FILE)
1542 gdb_tm_file = GDB_TM_FILE;
1543 #endif
1544 fprintf_unfiltered (file,
1545 "gdbarch_dump: GDB_TM_FILE = %s\\n",
1546 gdb_tm_file);
1547 EOF
1548 function_list | sort -t: -k 4 | while do_read
1549 do
1550 # First the predicate
1551 if class_is_predicate_p
1552 then
1553 if test -n "${macro}"
1554 then
1555 printf "#ifdef ${macro}_P\n"
1556 printf " fprintf_unfiltered (file,\n"
1557 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1558 printf " \"${macro}_P()\",\n"
1559 printf " XSTRING (${macro}_P ()));\n"
1560 printf "#endif\n"
1561 fi
1562 printf " fprintf_unfiltered (file,\n"
1563 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1564 printf " gdbarch_${function}_p (current_gdbarch));\n"
1565 fi
1566 # Print the macro definition.
1567 if test -n "${macro}"
1568 then
1569 printf "#ifdef ${macro}\n"
1570 if class_is_function_p
1571 then
1572 printf " fprintf_unfiltered (file,\n"
1573 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1574 printf " \"${macro}(${actual})\",\n"
1575 printf " XSTRING (${macro} (${actual})));\n"
1576 else
1577 printf " fprintf_unfiltered (file,\n"
1578 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1579 printf " XSTRING (${macro}));\n"
1580 fi
1581 printf "#endif\n"
1582 fi
1583 # Print the corresponding value.
1584 if class_is_function_p
1585 then
1586 printf " fprintf_unfiltered (file,\n"
1587 printf " \"gdbarch_dump: ${function} = <0x%%lx>\\\\n\",\n"
1588 printf " (long) current_gdbarch->${function});\n"
1589 else
1590 # It is a variable
1591 case "${print}:${returntype}" in
1592 :CORE_ADDR )
1593 fmt="0x%s"
1594 print="paddr_nz (current_gdbarch->${function})"
1595 ;;
1596 :* )
1597 fmt="%s"
1598 print="paddr_d (current_gdbarch->${function})"
1599 ;;
1600 * )
1601 fmt="%s"
1602 ;;
1603 esac
1604 printf " fprintf_unfiltered (file,\n"
1605 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1606 printf " ${print});\n"
1607 fi
1608 done
1609 cat <<EOF
1610 if (current_gdbarch->dump_tdep != NULL)
1611 current_gdbarch->dump_tdep (current_gdbarch, file);
1612 }
1613 EOF
1614
1615
1616 # GET/SET
1617 printf "\n"
1618 cat <<EOF
1619 struct gdbarch_tdep *
1620 gdbarch_tdep (struct gdbarch *gdbarch)
1621 {
1622 if (gdbarch_debug >= 2)
1623 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1624 return gdbarch->tdep;
1625 }
1626 EOF
1627 printf "\n"
1628 function_list | while do_read
1629 do
1630 if class_is_predicate_p
1631 then
1632 printf "\n"
1633 printf "int\n"
1634 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1635 printf "{\n"
1636 printf " gdb_assert (gdbarch != NULL);\n"
1637 printf " return ${predicate};\n"
1638 printf "}\n"
1639 fi
1640 if class_is_function_p
1641 then
1642 printf "\n"
1643 printf "${returntype}\n"
1644 if [ "x${formal}" = "xvoid" ]
1645 then
1646 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1647 else
1648 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1649 fi
1650 printf "{\n"
1651 printf " gdb_assert (gdbarch != NULL);\n"
1652 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1653 if class_is_predicate_p && test -n "${predefault}"
1654 then
1655 # Allow a call to a function with a predicate.
1656 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1657 fi
1658 printf " if (gdbarch_debug >= 2)\n"
1659 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1660 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1661 then
1662 if class_is_multiarch_p
1663 then
1664 params="gdbarch"
1665 else
1666 params=""
1667 fi
1668 else
1669 if class_is_multiarch_p
1670 then
1671 params="gdbarch, ${actual}"
1672 else
1673 params="${actual}"
1674 fi
1675 fi
1676 if [ "x${returntype}" = "xvoid" ]
1677 then
1678 printf " gdbarch->${function} (${params});\n"
1679 else
1680 printf " return gdbarch->${function} (${params});\n"
1681 fi
1682 printf "}\n"
1683 printf "\n"
1684 printf "void\n"
1685 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1686 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1687 printf "{\n"
1688 printf " gdbarch->${function} = ${function};\n"
1689 printf "}\n"
1690 elif class_is_variable_p
1691 then
1692 printf "\n"
1693 printf "${returntype}\n"
1694 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1695 printf "{\n"
1696 printf " gdb_assert (gdbarch != NULL);\n"
1697 if [ "x${invalid_p}" = "x0" ]
1698 then
1699 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1700 elif [ -n "${invalid_p}" ]
1701 then
1702 printf " /* Check variable is valid. */\n"
1703 printf " gdb_assert (!(${invalid_p}));\n"
1704 elif [ -n "${predefault}" ]
1705 then
1706 printf " /* Check variable changed from pre-default. */\n"
1707 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1708 fi
1709 printf " if (gdbarch_debug >= 2)\n"
1710 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1711 printf " return gdbarch->${function};\n"
1712 printf "}\n"
1713 printf "\n"
1714 printf "void\n"
1715 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1716 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1717 printf "{\n"
1718 printf " gdbarch->${function} = ${function};\n"
1719 printf "}\n"
1720 elif class_is_info_p
1721 then
1722 printf "\n"
1723 printf "${returntype}\n"
1724 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1725 printf "{\n"
1726 printf " gdb_assert (gdbarch != NULL);\n"
1727 printf " if (gdbarch_debug >= 2)\n"
1728 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1729 printf " return gdbarch->${function};\n"
1730 printf "}\n"
1731 fi
1732 done
1733
1734 # All the trailing guff
1735 cat <<EOF
1736
1737
1738 /* Keep a registry of per-architecture data-pointers required by GDB
1739 modules. */
1740
1741 struct gdbarch_data
1742 {
1743 unsigned index;
1744 int init_p;
1745 gdbarch_data_pre_init_ftype *pre_init;
1746 gdbarch_data_post_init_ftype *post_init;
1747 };
1748
1749 struct gdbarch_data_registration
1750 {
1751 struct gdbarch_data *data;
1752 struct gdbarch_data_registration *next;
1753 };
1754
1755 struct gdbarch_data_registry
1756 {
1757 unsigned nr;
1758 struct gdbarch_data_registration *registrations;
1759 };
1760
1761 struct gdbarch_data_registry gdbarch_data_registry =
1762 {
1763 0, NULL,
1764 };
1765
1766 static struct gdbarch_data *
1767 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1768 gdbarch_data_post_init_ftype *post_init)
1769 {
1770 struct gdbarch_data_registration **curr;
1771 /* Append the new registraration. */
1772 for (curr = &gdbarch_data_registry.registrations;
1773 (*curr) != NULL;
1774 curr = &(*curr)->next);
1775 (*curr) = XMALLOC (struct gdbarch_data_registration);
1776 (*curr)->next = NULL;
1777 (*curr)->data = XMALLOC (struct gdbarch_data);
1778 (*curr)->data->index = gdbarch_data_registry.nr++;
1779 (*curr)->data->pre_init = pre_init;
1780 (*curr)->data->post_init = post_init;
1781 (*curr)->data->init_p = 1;
1782 return (*curr)->data;
1783 }
1784
1785 struct gdbarch_data *
1786 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1787 {
1788 return gdbarch_data_register (pre_init, NULL);
1789 }
1790
1791 struct gdbarch_data *
1792 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1793 {
1794 return gdbarch_data_register (NULL, post_init);
1795 }
1796
1797 /* Create/delete the gdbarch data vector. */
1798
1799 static void
1800 alloc_gdbarch_data (struct gdbarch *gdbarch)
1801 {
1802 gdb_assert (gdbarch->data == NULL);
1803 gdbarch->nr_data = gdbarch_data_registry.nr;
1804 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1805 }
1806
1807 /* Initialize the current value of the specified per-architecture
1808 data-pointer. */
1809
1810 void
1811 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1812 struct gdbarch_data *data,
1813 void *pointer)
1814 {
1815 gdb_assert (data->index < gdbarch->nr_data);
1816 gdb_assert (gdbarch->data[data->index] == NULL);
1817 gdb_assert (data->pre_init == NULL);
1818 gdbarch->data[data->index] = pointer;
1819 }
1820
1821 /* Return the current value of the specified per-architecture
1822 data-pointer. */
1823
1824 void *
1825 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1826 {
1827 gdb_assert (data->index < gdbarch->nr_data);
1828 if (gdbarch->data[data->index] == NULL)
1829 {
1830 /* The data-pointer isn't initialized, call init() to get a
1831 value. */
1832 if (data->pre_init != NULL)
1833 /* Mid architecture creation: pass just the obstack, and not
1834 the entire architecture, as that way it isn't possible for
1835 pre-init code to refer to undefined architecture
1836 fields. */
1837 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1838 else if (gdbarch->initialized_p
1839 && data->post_init != NULL)
1840 /* Post architecture creation: pass the entire architecture
1841 (as all fields are valid), but be careful to also detect
1842 recursive references. */
1843 {
1844 gdb_assert (data->init_p);
1845 data->init_p = 0;
1846 gdbarch->data[data->index] = data->post_init (gdbarch);
1847 data->init_p = 1;
1848 }
1849 else
1850 /* The architecture initialization hasn't completed - punt -
1851 hope that the caller knows what they are doing. Once
1852 deprecated_set_gdbarch_data has been initialized, this can be
1853 changed to an internal error. */
1854 return NULL;
1855 gdb_assert (gdbarch->data[data->index] != NULL);
1856 }
1857 return gdbarch->data[data->index];
1858 }
1859
1860
1861
1862 /* Keep a registry of swapped data required by GDB modules. */
1863
1864 struct gdbarch_swap
1865 {
1866 void *swap;
1867 struct gdbarch_swap_registration *source;
1868 struct gdbarch_swap *next;
1869 };
1870
1871 struct gdbarch_swap_registration
1872 {
1873 void *data;
1874 unsigned long sizeof_data;
1875 gdbarch_swap_ftype *init;
1876 struct gdbarch_swap_registration *next;
1877 };
1878
1879 struct gdbarch_swap_registry
1880 {
1881 int nr;
1882 struct gdbarch_swap_registration *registrations;
1883 };
1884
1885 struct gdbarch_swap_registry gdbarch_swap_registry =
1886 {
1887 0, NULL,
1888 };
1889
1890 void
1891 deprecated_register_gdbarch_swap (void *data,
1892 unsigned long sizeof_data,
1893 gdbarch_swap_ftype *init)
1894 {
1895 struct gdbarch_swap_registration **rego;
1896 for (rego = &gdbarch_swap_registry.registrations;
1897 (*rego) != NULL;
1898 rego = &(*rego)->next);
1899 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1900 (*rego)->next = NULL;
1901 (*rego)->init = init;
1902 (*rego)->data = data;
1903 (*rego)->sizeof_data = sizeof_data;
1904 }
1905
1906 static void
1907 current_gdbarch_swap_init_hack (void)
1908 {
1909 struct gdbarch_swap_registration *rego;
1910 struct gdbarch_swap **curr = &current_gdbarch->swap;
1911 for (rego = gdbarch_swap_registry.registrations;
1912 rego != NULL;
1913 rego = rego->next)
1914 {
1915 if (rego->data != NULL)
1916 {
1917 (*curr) = GDBARCH_OBSTACK_ZALLOC (current_gdbarch,
1918 struct gdbarch_swap);
1919 (*curr)->source = rego;
1920 (*curr)->swap = gdbarch_obstack_zalloc (current_gdbarch,
1921 rego->sizeof_data);
1922 (*curr)->next = NULL;
1923 curr = &(*curr)->next;
1924 }
1925 if (rego->init != NULL)
1926 rego->init ();
1927 }
1928 }
1929
1930 static struct gdbarch *
1931 current_gdbarch_swap_out_hack (void)
1932 {
1933 struct gdbarch *old_gdbarch = current_gdbarch;
1934 struct gdbarch_swap *curr;
1935
1936 gdb_assert (old_gdbarch != NULL);
1937 for (curr = old_gdbarch->swap;
1938 curr != NULL;
1939 curr = curr->next)
1940 {
1941 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1942 memset (curr->source->data, 0, curr->source->sizeof_data);
1943 }
1944 current_gdbarch = NULL;
1945 return old_gdbarch;
1946 }
1947
1948 static void
1949 current_gdbarch_swap_in_hack (struct gdbarch *new_gdbarch)
1950 {
1951 struct gdbarch_swap *curr;
1952
1953 gdb_assert (current_gdbarch == NULL);
1954 for (curr = new_gdbarch->swap;
1955 curr != NULL;
1956 curr = curr->next)
1957 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
1958 current_gdbarch = new_gdbarch;
1959 }
1960
1961
1962 /* Keep a registry of the architectures known by GDB. */
1963
1964 struct gdbarch_registration
1965 {
1966 enum bfd_architecture bfd_architecture;
1967 gdbarch_init_ftype *init;
1968 gdbarch_dump_tdep_ftype *dump_tdep;
1969 struct gdbarch_list *arches;
1970 struct gdbarch_registration *next;
1971 };
1972
1973 static struct gdbarch_registration *gdbarch_registry = NULL;
1974
1975 static void
1976 append_name (const char ***buf, int *nr, const char *name)
1977 {
1978 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1979 (*buf)[*nr] = name;
1980 *nr += 1;
1981 }
1982
1983 const char **
1984 gdbarch_printable_names (void)
1985 {
1986 /* Accumulate a list of names based on the registed list of
1987 architectures. */
1988 enum bfd_architecture a;
1989 int nr_arches = 0;
1990 const char **arches = NULL;
1991 struct gdbarch_registration *rego;
1992 for (rego = gdbarch_registry;
1993 rego != NULL;
1994 rego = rego->next)
1995 {
1996 const struct bfd_arch_info *ap;
1997 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1998 if (ap == NULL)
1999 internal_error (__FILE__, __LINE__,
2000 _("gdbarch_architecture_names: multi-arch unknown"));
2001 do
2002 {
2003 append_name (&arches, &nr_arches, ap->printable_name);
2004 ap = ap->next;
2005 }
2006 while (ap != NULL);
2007 }
2008 append_name (&arches, &nr_arches, NULL);
2009 return arches;
2010 }
2011
2012
2013 void
2014 gdbarch_register (enum bfd_architecture bfd_architecture,
2015 gdbarch_init_ftype *init,
2016 gdbarch_dump_tdep_ftype *dump_tdep)
2017 {
2018 struct gdbarch_registration **curr;
2019 const struct bfd_arch_info *bfd_arch_info;
2020 /* Check that BFD recognizes this architecture */
2021 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2022 if (bfd_arch_info == NULL)
2023 {
2024 internal_error (__FILE__, __LINE__,
2025 _("gdbarch: Attempt to register unknown architecture (%d)"),
2026 bfd_architecture);
2027 }
2028 /* Check that we haven't seen this architecture before */
2029 for (curr = &gdbarch_registry;
2030 (*curr) != NULL;
2031 curr = &(*curr)->next)
2032 {
2033 if (bfd_architecture == (*curr)->bfd_architecture)
2034 internal_error (__FILE__, __LINE__,
2035 _("gdbarch: Duplicate registraration of architecture (%s)"),
2036 bfd_arch_info->printable_name);
2037 }
2038 /* log it */
2039 if (gdbarch_debug)
2040 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2041 bfd_arch_info->printable_name,
2042 (long) init);
2043 /* Append it */
2044 (*curr) = XMALLOC (struct gdbarch_registration);
2045 (*curr)->bfd_architecture = bfd_architecture;
2046 (*curr)->init = init;
2047 (*curr)->dump_tdep = dump_tdep;
2048 (*curr)->arches = NULL;
2049 (*curr)->next = NULL;
2050 }
2051
2052 void
2053 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2054 gdbarch_init_ftype *init)
2055 {
2056 gdbarch_register (bfd_architecture, init, NULL);
2057 }
2058
2059
2060 /* Look for an architecture using gdbarch_info. */
2061
2062 struct gdbarch_list *
2063 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2064 const struct gdbarch_info *info)
2065 {
2066 for (; arches != NULL; arches = arches->next)
2067 {
2068 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2069 continue;
2070 if (info->byte_order != arches->gdbarch->byte_order)
2071 continue;
2072 if (info->osabi != arches->gdbarch->osabi)
2073 continue;
2074 if (info->target_desc != arches->gdbarch->target_desc)
2075 continue;
2076 return arches;
2077 }
2078 return NULL;
2079 }
2080
2081
2082 /* Find an architecture that matches the specified INFO. Create a new
2083 architecture if needed. Return that new architecture. Assumes
2084 that there is no current architecture. */
2085
2086 static struct gdbarch *
2087 find_arch_by_info (struct gdbarch_info info)
2088 {
2089 struct gdbarch *new_gdbarch;
2090 struct gdbarch_registration *rego;
2091
2092 /* The existing architecture has been swapped out - all this code
2093 works from a clean slate. */
2094 gdb_assert (current_gdbarch == NULL);
2095
2096 /* Fill in missing parts of the INFO struct using a number of
2097 sources: "set ..."; INFOabfd supplied; and the global
2098 defaults. */
2099 gdbarch_info_fill (&info);
2100
2101 /* Must have found some sort of architecture. */
2102 gdb_assert (info.bfd_arch_info != NULL);
2103
2104 if (gdbarch_debug)
2105 {
2106 fprintf_unfiltered (gdb_stdlog,
2107 "find_arch_by_info: info.bfd_arch_info %s\n",
2108 (info.bfd_arch_info != NULL
2109 ? info.bfd_arch_info->printable_name
2110 : "(null)"));
2111 fprintf_unfiltered (gdb_stdlog,
2112 "find_arch_by_info: info.byte_order %d (%s)\n",
2113 info.byte_order,
2114 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2115 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2116 : "default"));
2117 fprintf_unfiltered (gdb_stdlog,
2118 "find_arch_by_info: info.osabi %d (%s)\n",
2119 info.osabi, gdbarch_osabi_name (info.osabi));
2120 fprintf_unfiltered (gdb_stdlog,
2121 "find_arch_by_info: info.abfd 0x%lx\n",
2122 (long) info.abfd);
2123 fprintf_unfiltered (gdb_stdlog,
2124 "find_arch_by_info: info.tdep_info 0x%lx\n",
2125 (long) info.tdep_info);
2126 }
2127
2128 /* Find the tdep code that knows about this architecture. */
2129 for (rego = gdbarch_registry;
2130 rego != NULL;
2131 rego = rego->next)
2132 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2133 break;
2134 if (rego == NULL)
2135 {
2136 if (gdbarch_debug)
2137 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2138 "No matching architecture\n");
2139 return 0;
2140 }
2141
2142 /* Ask the tdep code for an architecture that matches "info". */
2143 new_gdbarch = rego->init (info, rego->arches);
2144
2145 /* Did the tdep code like it? No. Reject the change and revert to
2146 the old architecture. */
2147 if (new_gdbarch == NULL)
2148 {
2149 if (gdbarch_debug)
2150 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2151 "Target rejected architecture\n");
2152 return NULL;
2153 }
2154
2155 /* Is this a pre-existing architecture (as determined by already
2156 being initialized)? Move it to the front of the architecture
2157 list (keeping the list sorted Most Recently Used). */
2158 if (new_gdbarch->initialized_p)
2159 {
2160 struct gdbarch_list **list;
2161 struct gdbarch_list *this;
2162 if (gdbarch_debug)
2163 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2164 "Previous architecture 0x%08lx (%s) selected\n",
2165 (long) new_gdbarch,
2166 new_gdbarch->bfd_arch_info->printable_name);
2167 /* Find the existing arch in the list. */
2168 for (list = &rego->arches;
2169 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2170 list = &(*list)->next);
2171 /* It had better be in the list of architectures. */
2172 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2173 /* Unlink THIS. */
2174 this = (*list);
2175 (*list) = this->next;
2176 /* Insert THIS at the front. */
2177 this->next = rego->arches;
2178 rego->arches = this;
2179 /* Return it. */
2180 return new_gdbarch;
2181 }
2182
2183 /* It's a new architecture. */
2184 if (gdbarch_debug)
2185 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2186 "New architecture 0x%08lx (%s) selected\n",
2187 (long) new_gdbarch,
2188 new_gdbarch->bfd_arch_info->printable_name);
2189
2190 /* Insert the new architecture into the front of the architecture
2191 list (keep the list sorted Most Recently Used). */
2192 {
2193 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2194 this->next = rego->arches;
2195 this->gdbarch = new_gdbarch;
2196 rego->arches = this;
2197 }
2198
2199 /* Check that the newly installed architecture is valid. Plug in
2200 any post init values. */
2201 new_gdbarch->dump_tdep = rego->dump_tdep;
2202 verify_gdbarch (new_gdbarch);
2203 new_gdbarch->initialized_p = 1;
2204
2205 /* Initialize any per-architecture swap areas. This phase requires
2206 a valid global CURRENT_GDBARCH. Set it momentarially, and then
2207 swap the entire architecture out. */
2208 current_gdbarch = new_gdbarch;
2209 current_gdbarch_swap_init_hack ();
2210 current_gdbarch_swap_out_hack ();
2211
2212 if (gdbarch_debug)
2213 gdbarch_dump (new_gdbarch, gdb_stdlog);
2214
2215 return new_gdbarch;
2216 }
2217
2218 struct gdbarch *
2219 gdbarch_find_by_info (struct gdbarch_info info)
2220 {
2221 /* Save the previously selected architecture, setting the global to
2222 NULL. This stops things like gdbarch->init() trying to use the
2223 previous architecture's configuration. The previous architecture
2224 may not even be of the same architecture family. The most recent
2225 architecture of the same family is found at the head of the
2226 rego->arches list. */
2227 struct gdbarch *old_gdbarch = current_gdbarch_swap_out_hack ();
2228
2229 /* Find the specified architecture. */
2230 struct gdbarch *new_gdbarch = find_arch_by_info (info);
2231
2232 /* Restore the existing architecture. */
2233 gdb_assert (current_gdbarch == NULL);
2234 current_gdbarch_swap_in_hack (old_gdbarch);
2235
2236 return new_gdbarch;
2237 }
2238
2239 /* Make the specified architecture current, swapping the existing one
2240 out. */
2241
2242 void
2243 deprecated_current_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2244 {
2245 gdb_assert (new_gdbarch != NULL);
2246 gdb_assert (current_gdbarch != NULL);
2247 gdb_assert (new_gdbarch->initialized_p);
2248 current_gdbarch_swap_out_hack ();
2249 current_gdbarch_swap_in_hack (new_gdbarch);
2250 architecture_changed_event ();
2251 reinit_frame_cache ();
2252 }
2253
2254 extern void _initialize_gdbarch (void);
2255
2256 void
2257 _initialize_gdbarch (void)
2258 {
2259 struct cmd_list_element *c;
2260
2261 add_setshow_zinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2262 Set architecture debugging."), _("\\
2263 Show architecture debugging."), _("\\
2264 When non-zero, architecture debugging is enabled."),
2265 NULL,
2266 show_gdbarch_debug,
2267 &setdebuglist, &showdebuglist);
2268 }
2269 EOF
2270
2271 # close things off
2272 exec 1>&2
2273 #../move-if-change new-gdbarch.c gdbarch.c
2274 compare_new gdbarch.c