Remove ada_value_print_inner
[binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998-2021 Free Software Foundation, Inc.
6 #
7 # This file is part of GDB.
8 #
9 # This program is free software; you can redistribute it and/or modify
10 # it under the terms of the GNU General Public License as published by
11 # the Free Software Foundation; either version 3 of the License, or
12 # (at your option) any later version.
13 #
14 # This program is distributed in the hope that it will be useful,
15 # but WITHOUT ANY WARRANTY; without even the implied warranty of
16 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 # GNU General Public License for more details.
18 #
19 # You should have received a copy of the GNU General Public License
20 # along with this program. If not, see <http://www.gnu.org/licenses/>.
21
22 # Make certain that the script is not running in an internationalized
23 # environment.
24 LANG=C ; export LANG
25 LC_ALL=C ; export LC_ALL
26
27 # Format of the input table
28 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
29
30 do_read ()
31 {
32 comment=""
33 class=""
34 # On some SH's, 'read' trims leading and trailing whitespace by
35 # default (e.g., bash), while on others (e.g., dash), it doesn't.
36 # Set IFS to empty to disable the trimming everywhere.
37 # shellcheck disable=SC2162
38 while IFS='' read line
39 do
40 if test "${line}" = ""
41 then
42 continue
43 elif test "${line}" = "#" -a "${comment}" = ""
44 then
45 continue
46 elif expr "${line}" : "#" > /dev/null
47 then
48 comment="${comment}
49 ${line}"
50 else
51
52 # The semantics of IFS varies between different SH's. Some
53 # treat ``;;' as three fields while some treat it as just two.
54 # Work around this by eliminating ``;;'' ....
55 line="$(echo "${line}" | sed -e 's/;;/; ;/g' -e 's/;;/; ;/g')"
56
57 OFS="${IFS}" ; IFS="[;]"
58 eval read "${read}" <<EOF
59 ${line}
60 EOF
61 IFS="${OFS}"
62
63 if test -n "${garbage_at_eol:-}"
64 then
65 echo "Garbage at end-of-line in ${line}" 1>&2
66 kill $$
67 exit 1
68 fi
69
70 # .... and then going back through each field and strip out those
71 # that ended up with just that space character.
72 for r in ${read}
73 do
74 if eval test "\"\${${r}}\" = ' '"
75 then
76 eval "${r}="
77 fi
78 done
79
80 case "${class}" in
81 m ) staticdefault="${predefault:-}" ;;
82 M ) staticdefault="0" ;;
83 * ) test "${staticdefault}" || staticdefault=0 ;;
84 esac
85
86 case "${class}" in
87 F | V | M )
88 case "${invalid_p:-}" in
89 "" )
90 if test -n "${predefault}"
91 then
92 #invalid_p="gdbarch->${function} == ${predefault}"
93 predicate="gdbarch->${function:-} != ${predefault}"
94 elif class_is_variable_p
95 then
96 predicate="gdbarch->${function} != 0"
97 elif class_is_function_p
98 then
99 predicate="gdbarch->${function} != NULL"
100 fi
101 ;;
102 * )
103 echo "Predicate function ${function} with invalid_p." 1>&2
104 kill $$
105 exit 1
106 ;;
107 esac
108 esac
109
110 #NOT YET: See gdbarch.log for basic verification of
111 # database
112
113 break
114 fi
115 done
116 if [ -n "${class}" ]
117 then
118 true
119 else
120 false
121 fi
122 }
123
124
125 fallback_default_p ()
126 {
127 { [ -n "${postdefault:-}" ] && [ "x${invalid_p}" != "x0" ]; } \
128 || { [ -n "${predefault}" ] && [ "x${invalid_p}" = "x0" ]; }
129 }
130
131 class_is_variable_p ()
132 {
133 case "${class}" in
134 *v* | *V* ) true ;;
135 * ) false ;;
136 esac
137 }
138
139 class_is_function_p ()
140 {
141 case "${class}" in
142 *f* | *F* | *m* | *M* ) true ;;
143 * ) false ;;
144 esac
145 }
146
147 class_is_multiarch_p ()
148 {
149 case "${class}" in
150 *m* | *M* ) true ;;
151 * ) false ;;
152 esac
153 }
154
155 class_is_predicate_p ()
156 {
157 case "${class}" in
158 *F* | *V* | *M* ) true ;;
159 * ) false ;;
160 esac
161 }
162
163 class_is_info_p ()
164 {
165 case "${class}" in
166 *i* ) true ;;
167 * ) false ;;
168 esac
169 }
170
171
172 # dump out/verify the doco
173 for field in ${read}
174 do
175 case ${field} in
176
177 class ) : ;;
178
179 # # -> line disable
180 # f -> function
181 # hiding a function
182 # F -> function + predicate
183 # hiding a function + predicate to test function validity
184 # v -> variable
185 # hiding a variable
186 # V -> variable + predicate
187 # hiding a variable + predicate to test variables validity
188 # i -> set from info
189 # hiding something from the ``struct info'' object
190 # m -> multi-arch function
191 # hiding a multi-arch function (parameterised with the architecture)
192 # M -> multi-arch function + predicate
193 # hiding a multi-arch function + predicate to test function validity
194
195 returntype ) : ;;
196
197 # For functions, the return type; for variables, the data type
198
199 function ) : ;;
200
201 # For functions, the member function name; for variables, the
202 # variable name. Member function names are always prefixed with
203 # ``gdbarch_'' for name-space purity.
204
205 formal ) : ;;
206
207 # The formal argument list. It is assumed that the formal
208 # argument list includes the actual name of each list element.
209 # A function with no arguments shall have ``void'' as the
210 # formal argument list.
211
212 actual ) : ;;
213
214 # The list of actual arguments. The arguments specified shall
215 # match the FORMAL list given above. Functions with out
216 # arguments leave this blank.
217
218 staticdefault ) : ;;
219
220 # To help with the GDB startup a static gdbarch object is
221 # created. STATICDEFAULT is the value to insert into that
222 # static gdbarch object. Since this a static object only
223 # simple expressions can be used.
224
225 # If STATICDEFAULT is empty, zero is used.
226
227 predefault ) : ;;
228
229 # An initial value to assign to MEMBER of the freshly
230 # malloc()ed gdbarch object. After initialization, the
231 # freshly malloc()ed object is passed to the target
232 # architecture code for further updates.
233
234 # If PREDEFAULT is empty, zero is used.
235
236 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
237 # INVALID_P are specified, PREDEFAULT will be used as the
238 # default for the non- multi-arch target.
239
240 # A zero PREDEFAULT function will force the fallback to call
241 # internal_error().
242
243 # Variable declarations can refer to ``gdbarch'' which will
244 # contain the current architecture. Care should be taken.
245
246 postdefault ) : ;;
247
248 # A value to assign to MEMBER of the new gdbarch object should
249 # the target architecture code fail to change the PREDEFAULT
250 # value.
251
252 # If POSTDEFAULT is empty, no post update is performed.
253
254 # If both INVALID_P and POSTDEFAULT are non-empty then
255 # INVALID_P will be used to determine if MEMBER should be
256 # changed to POSTDEFAULT.
257
258 # If a non-empty POSTDEFAULT and a zero INVALID_P are
259 # specified, POSTDEFAULT will be used as the default for the
260 # non- multi-arch target (regardless of the value of
261 # PREDEFAULT).
262
263 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
264
265 # Variable declarations can refer to ``gdbarch'' which
266 # will contain the current architecture. Care should be
267 # taken.
268
269 invalid_p ) : ;;
270
271 # A predicate equation that validates MEMBER. Non-zero is
272 # returned if the code creating the new architecture failed to
273 # initialize MEMBER or the initialized the member is invalid.
274 # If POSTDEFAULT is non-empty then MEMBER will be updated to
275 # that value. If POSTDEFAULT is empty then internal_error()
276 # is called.
277
278 # If INVALID_P is empty, a check that MEMBER is no longer
279 # equal to PREDEFAULT is used.
280
281 # The expression ``0'' disables the INVALID_P check making
282 # PREDEFAULT a legitimate value.
283
284 # See also PREDEFAULT and POSTDEFAULT.
285
286 print ) : ;;
287
288 # An optional expression that convers MEMBER to a value
289 # suitable for formatting using %s.
290
291 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
292 # or plongest (anything else) is used.
293
294 garbage_at_eol ) : ;;
295
296 # Catches stray fields.
297
298 *)
299 echo "Bad field ${field}"
300 exit 1;;
301 esac
302 done
303
304
305 function_list ()
306 {
307 # See below (DOCO) for description of each field
308 cat <<EOF
309 i;const struct bfd_arch_info *;bfd_arch_info;;;&bfd_default_arch_struct;;;;gdbarch_bfd_arch_info (gdbarch)->printable_name
310 #
311 i;enum bfd_endian;byte_order;;;BFD_ENDIAN_BIG
312 i;enum bfd_endian;byte_order_for_code;;;BFD_ENDIAN_BIG
313 #
314 i;enum gdb_osabi;osabi;;;GDB_OSABI_UNKNOWN
315 #
316 i;const struct target_desc *;target_desc;;;;;;;host_address_to_string (gdbarch->target_desc)
317
318 # Number of bits in a short or unsigned short for the target machine.
319 v;int;short_bit;;;8 * sizeof (short);2*TARGET_CHAR_BIT;;0
320 # Number of bits in an int or unsigned int for the target machine.
321 v;int;int_bit;;;8 * sizeof (int);4*TARGET_CHAR_BIT;;0
322 # Number of bits in a long or unsigned long for the target machine.
323 v;int;long_bit;;;8 * sizeof (long);4*TARGET_CHAR_BIT;;0
324 # Number of bits in a long long or unsigned long long for the target
325 # machine.
326 v;int;long_long_bit;;;8 * sizeof (LONGEST);2*gdbarch->long_bit;;0
327
328 # The ABI default bit-size and format for "bfloat16", "half", "float", "double", and
329 # "long double". These bit/format pairs should eventually be combined
330 # into a single object. For the moment, just initialize them as a pair.
331 # Each format describes both the big and little endian layouts (if
332 # useful).
333
334 v;int;bfloat16_bit;;;16;2*TARGET_CHAR_BIT;;0
335 v;const struct floatformat **;bfloat16_format;;;;;floatformats_bfloat16;;pformat (gdbarch->bfloat16_format)
336 v;int;half_bit;;;16;2*TARGET_CHAR_BIT;;0
337 v;const struct floatformat **;half_format;;;;;floatformats_ieee_half;;pformat (gdbarch->half_format)
338 v;int;float_bit;;;8 * sizeof (float);4*TARGET_CHAR_BIT;;0
339 v;const struct floatformat **;float_format;;;;;floatformats_ieee_single;;pformat (gdbarch->float_format)
340 v;int;double_bit;;;8 * sizeof (double);8*TARGET_CHAR_BIT;;0
341 v;const struct floatformat **;double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->double_format)
342 v;int;long_double_bit;;;8 * sizeof (long double);8*TARGET_CHAR_BIT;;0
343 v;const struct floatformat **;long_double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->long_double_format)
344
345 # The ABI default bit-size for "wchar_t". wchar_t is a built-in type
346 # starting with C++11.
347 v;int;wchar_bit;;;8 * sizeof (wchar_t);4*TARGET_CHAR_BIT;;0
348 # One if \`wchar_t' is signed, zero if unsigned.
349 v;int;wchar_signed;;;1;-1;1
350
351 # Returns the floating-point format to be used for values of length LENGTH.
352 # NAME, if non-NULL, is the type name, which may be used to distinguish
353 # different target formats of the same length.
354 m;const struct floatformat **;floatformat_for_type;const char *name, int length;name, length;0;default_floatformat_for_type;;0
355
356 # For most targets, a pointer on the target and its representation as an
357 # address in GDB have the same size and "look the same". For such a
358 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
359 # / addr_bit will be set from it.
360 #
361 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
362 # also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
363 # gdbarch_address_to_pointer as well.
364 #
365 # ptr_bit is the size of a pointer on the target
366 v;int;ptr_bit;;;8 * sizeof (void*);gdbarch->int_bit;;0
367 # addr_bit is the size of a target address as represented in gdb
368 v;int;addr_bit;;;8 * sizeof (void*);0;gdbarch_ptr_bit (gdbarch);
369 #
370 # dwarf2_addr_size is the target address size as used in the Dwarf debug
371 # info. For .debug_frame FDEs, this is supposed to be the target address
372 # size from the associated CU header, and which is equivalent to the
373 # DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
374 # Unfortunately there is no good way to determine this value. Therefore
375 # dwarf2_addr_size simply defaults to the target pointer size.
376 #
377 # dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
378 # defined using the target's pointer size so far.
379 #
380 # Note that dwarf2_addr_size only needs to be redefined by a target if the
381 # GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
382 # and if Dwarf versions < 4 need to be supported.
383 v;int;dwarf2_addr_size;;;sizeof (void*);0;gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
384 #
385 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
386 v;int;char_signed;;;1;-1;1
387 #
388 F;CORE_ADDR;read_pc;readable_regcache *regcache;regcache
389 F;void;write_pc;struct regcache *regcache, CORE_ADDR val;regcache, val
390 # Function for getting target's idea of a frame pointer. FIXME: GDB's
391 # whole scheme for dealing with "frames" and "frame pointers" needs a
392 # serious shakedown.
393 m;void;virtual_frame_pointer;CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset;pc, frame_regnum, frame_offset;0;legacy_virtual_frame_pointer;;0
394 #
395 M;enum register_status;pseudo_register_read;readable_regcache *regcache, int cookednum, gdb_byte *buf;regcache, cookednum, buf
396 # Read a register into a new struct value. If the register is wholly
397 # or partly unavailable, this should call mark_value_bytes_unavailable
398 # as appropriate. If this is defined, then pseudo_register_read will
399 # never be called.
400 M;struct value *;pseudo_register_read_value;readable_regcache *regcache, int cookednum;regcache, cookednum
401 M;void;pseudo_register_write;struct regcache *regcache, int cookednum, const gdb_byte *buf;regcache, cookednum, buf
402 #
403 v;int;num_regs;;;0;-1
404 # This macro gives the number of pseudo-registers that live in the
405 # register namespace but do not get fetched or stored on the target.
406 # These pseudo-registers may be aliases for other registers,
407 # combinations of other registers, or they may be computed by GDB.
408 v;int;num_pseudo_regs;;;0;0;;0
409
410 # Assemble agent expression bytecode to collect pseudo-register REG.
411 # Return -1 if something goes wrong, 0 otherwise.
412 M;int;ax_pseudo_register_collect;struct agent_expr *ax, int reg;ax, reg
413
414 # Assemble agent expression bytecode to push the value of pseudo-register
415 # REG on the interpreter stack.
416 # Return -1 if something goes wrong, 0 otherwise.
417 M;int;ax_pseudo_register_push_stack;struct agent_expr *ax, int reg;ax, reg
418
419 # Some architectures can display additional information for specific
420 # signals.
421 # UIOUT is the output stream where the handler will place information.
422 M;void;report_signal_info;struct ui_out *uiout, enum gdb_signal siggnal;uiout, siggnal
423
424 # GDB's standard (or well known) register numbers. These can map onto
425 # a real register or a pseudo (computed) register or not be defined at
426 # all (-1).
427 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
428 v;int;sp_regnum;;;-1;-1;;0
429 v;int;pc_regnum;;;-1;-1;;0
430 v;int;ps_regnum;;;-1;-1;;0
431 v;int;fp0_regnum;;;0;-1;;0
432 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
433 m;int;stab_reg_to_regnum;int stab_regnr;stab_regnr;;no_op_reg_to_regnum;;0
434 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
435 m;int;ecoff_reg_to_regnum;int ecoff_regnr;ecoff_regnr;;no_op_reg_to_regnum;;0
436 # Convert from an sdb register number to an internal gdb register number.
437 m;int;sdb_reg_to_regnum;int sdb_regnr;sdb_regnr;;no_op_reg_to_regnum;;0
438 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
439 # Return -1 for bad REGNUM. Note: Several targets get this wrong.
440 m;int;dwarf2_reg_to_regnum;int dwarf2_regnr;dwarf2_regnr;;no_op_reg_to_regnum;;0
441 m;const char *;register_name;int regnr;regnr;;0
442
443 # Return the type of a register specified by the architecture. Only
444 # the register cache should call this function directly; others should
445 # use "register_type".
446 M;struct type *;register_type;int reg_nr;reg_nr
447
448 # Generate a dummy frame_id for THIS_FRAME assuming that the frame is
449 # a dummy frame. A dummy frame is created before an inferior call,
450 # the frame_id returned here must match the frame_id that was built
451 # for the inferior call. Usually this means the returned frame_id's
452 # stack address should match the address returned by
453 # gdbarch_push_dummy_call, and the returned frame_id's code address
454 # should match the address at which the breakpoint was set in the dummy
455 # frame.
456 m;struct frame_id;dummy_id;struct frame_info *this_frame;this_frame;;default_dummy_id;;0
457 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
458 # deprecated_fp_regnum.
459 v;int;deprecated_fp_regnum;;;-1;-1;;0
460
461 M;CORE_ADDR;push_dummy_call;struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, function_call_return_method return_method, CORE_ADDR struct_addr;function, regcache, bp_addr, nargs, args, sp, return_method, struct_addr
462 v;int;call_dummy_location;;;;AT_ENTRY_POINT;;0
463 M;CORE_ADDR;push_dummy_code;CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache;sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
464
465 # Return true if the code of FRAME is writable.
466 m;int;code_of_frame_writable;struct frame_info *frame;frame;;default_code_of_frame_writable;;0
467
468 m;void;print_registers_info;struct ui_file *file, struct frame_info *frame, int regnum, int all;file, frame, regnum, all;;default_print_registers_info;;0
469 m;void;print_float_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args;;default_print_float_info;;0
470 M;void;print_vector_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args
471 # MAP a GDB RAW register number onto a simulator register number. See
472 # also include/...-sim.h.
473 m;int;register_sim_regno;int reg_nr;reg_nr;;legacy_register_sim_regno;;0
474 m;int;cannot_fetch_register;int regnum;regnum;;cannot_register_not;;0
475 m;int;cannot_store_register;int regnum;regnum;;cannot_register_not;;0
476
477 # Determine the address where a longjmp will land and save this address
478 # in PC. Return nonzero on success.
479 #
480 # FRAME corresponds to the longjmp frame.
481 F;int;get_longjmp_target;struct frame_info *frame, CORE_ADDR *pc;frame, pc
482
483 #
484 v;int;believe_pcc_promotion;;;;;;;
485 #
486 m;int;convert_register_p;int regnum, struct type *type;regnum, type;0;generic_convert_register_p;;0
487 f;int;register_to_value;struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep;frame, regnum, type, buf, optimizedp, unavailablep;0
488 f;void;value_to_register;struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf;frame, regnum, type, buf;0
489 # Construct a value representing the contents of register REGNUM in
490 # frame FRAME_ID, interpreted as type TYPE. The routine needs to
491 # allocate and return a struct value with all value attributes
492 # (but not the value contents) filled in.
493 m;struct value *;value_from_register;struct type *type, int regnum, struct frame_id frame_id;type, regnum, frame_id;;default_value_from_register;;0
494 #
495 m;CORE_ADDR;pointer_to_address;struct type *type, const gdb_byte *buf;type, buf;;unsigned_pointer_to_address;;0
496 m;void;address_to_pointer;struct type *type, gdb_byte *buf, CORE_ADDR addr;type, buf, addr;;unsigned_address_to_pointer;;0
497 M;CORE_ADDR;integer_to_address;struct type *type, const gdb_byte *buf;type, buf
498
499 # Return the return-value convention that will be used by FUNCTION
500 # to return a value of type VALTYPE. FUNCTION may be NULL in which
501 # case the return convention is computed based only on VALTYPE.
502 #
503 # If READBUF is not NULL, extract the return value and save it in this buffer.
504 #
505 # If WRITEBUF is not NULL, it contains a return value which will be
506 # stored into the appropriate register. This can be used when we want
507 # to force the value returned by a function (see the "return" command
508 # for instance).
509 M;enum return_value_convention;return_value;struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf;function, valtype, regcache, readbuf, writebuf
510
511 # Return true if the return value of function is stored in the first hidden
512 # parameter. In theory, this feature should be language-dependent, specified
513 # by language and its ABI, such as C++. Unfortunately, compiler may
514 # implement it to a target-dependent feature. So that we need such hook here
515 # to be aware of this in GDB.
516 m;int;return_in_first_hidden_param_p;struct type *type;type;;default_return_in_first_hidden_param_p;;0
517
518 m;CORE_ADDR;skip_prologue;CORE_ADDR ip;ip;0;0
519 M;CORE_ADDR;skip_main_prologue;CORE_ADDR ip;ip
520 # On some platforms, a single function may provide multiple entry points,
521 # e.g. one that is used for function-pointer calls and a different one
522 # that is used for direct function calls.
523 # In order to ensure that breakpoints set on the function will trigger
524 # no matter via which entry point the function is entered, a platform
525 # may provide the skip_entrypoint callback. It is called with IP set
526 # to the main entry point of a function (as determined by the symbol table),
527 # and should return the address of the innermost entry point, where the
528 # actual breakpoint needs to be set. Note that skip_entrypoint is used
529 # by GDB common code even when debugging optimized code, where skip_prologue
530 # is not used.
531 M;CORE_ADDR;skip_entrypoint;CORE_ADDR ip;ip
532
533 f;int;inner_than;CORE_ADDR lhs, CORE_ADDR rhs;lhs, rhs;0;0
534 m;const gdb_byte *;breakpoint_from_pc;CORE_ADDR *pcptr, int *lenptr;pcptr, lenptr;0;default_breakpoint_from_pc;;0
535
536 # Return the breakpoint kind for this target based on *PCPTR.
537 m;int;breakpoint_kind_from_pc;CORE_ADDR *pcptr;pcptr;;0;
538
539 # Return the software breakpoint from KIND. KIND can have target
540 # specific meaning like the Z0 kind parameter.
541 # SIZE is set to the software breakpoint's length in memory.
542 m;const gdb_byte *;sw_breakpoint_from_kind;int kind, int *size;kind, size;;NULL;;0
543
544 # Return the breakpoint kind for this target based on the current
545 # processor state (e.g. the current instruction mode on ARM) and the
546 # *PCPTR. In default, it is gdbarch->breakpoint_kind_from_pc.
547 m;int;breakpoint_kind_from_current_state;struct regcache *regcache, CORE_ADDR *pcptr;regcache, pcptr;0;default_breakpoint_kind_from_current_state;;0
548
549 M;CORE_ADDR;adjust_breakpoint_address;CORE_ADDR bpaddr;bpaddr
550 m;int;memory_insert_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_insert_breakpoint;;0
551 m;int;memory_remove_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_remove_breakpoint;;0
552 v;CORE_ADDR;decr_pc_after_break;;;0;;;0
553
554 # A function can be addressed by either it's "pointer" (possibly a
555 # descriptor address) or "entry point" (first executable instruction).
556 # The method "convert_from_func_ptr_addr" converting the former to the
557 # latter. gdbarch_deprecated_function_start_offset is being used to implement
558 # a simplified subset of that functionality - the function's address
559 # corresponds to the "function pointer" and the function's start
560 # corresponds to the "function entry point" - and hence is redundant.
561
562 v;CORE_ADDR;deprecated_function_start_offset;;;0;;;0
563
564 # Return the remote protocol register number associated with this
565 # register. Normally the identity mapping.
566 m;int;remote_register_number;int regno;regno;;default_remote_register_number;;0
567
568 # Fetch the target specific address used to represent a load module.
569 F;CORE_ADDR;fetch_tls_load_module_address;struct objfile *objfile;objfile
570
571 # Return the thread-local address at OFFSET in the thread-local
572 # storage for the thread PTID and the shared library or executable
573 # file given by LM_ADDR. If that block of thread-local storage hasn't
574 # been allocated yet, this function may throw an error. LM_ADDR may
575 # be zero for statically linked multithreaded inferiors.
576
577 M;CORE_ADDR;get_thread_local_address;ptid_t ptid, CORE_ADDR lm_addr, CORE_ADDR offset;ptid, lm_addr, offset
578 #
579 v;CORE_ADDR;frame_args_skip;;;0;;;0
580 m;CORE_ADDR;unwind_pc;struct frame_info *next_frame;next_frame;;default_unwind_pc;;0
581 m;CORE_ADDR;unwind_sp;struct frame_info *next_frame;next_frame;;default_unwind_sp;;0
582 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
583 # frame-base. Enable frame-base before frame-unwind.
584 F;int;frame_num_args;struct frame_info *frame;frame
585 #
586 M;CORE_ADDR;frame_align;CORE_ADDR address;address
587 m;int;stabs_argument_has_addr;struct type *type;type;;default_stabs_argument_has_addr;;0
588 v;int;frame_red_zone_size
589 #
590 m;CORE_ADDR;convert_from_func_ptr_addr;CORE_ADDR addr, struct target_ops *targ;addr, targ;;convert_from_func_ptr_addr_identity;;0
591 # On some machines there are bits in addresses which are not really
592 # part of the address, but are used by the kernel, the hardware, etc.
593 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
594 # we get a "real" address such as one would find in a symbol table.
595 # This is used only for addresses of instructions, and even then I'm
596 # not sure it's used in all contexts. It exists to deal with there
597 # being a few stray bits in the PC which would mislead us, not as some
598 # sort of generic thing to handle alignment or segmentation (it's
599 # possible it should be in TARGET_READ_PC instead).
600 m;CORE_ADDR;addr_bits_remove;CORE_ADDR addr;addr;;core_addr_identity;;0
601
602 # On some machines, not all bits of an address word are significant.
603 # For example, on AArch64, the top bits of an address known as the "tag"
604 # are ignored by the kernel, the hardware, etc. and can be regarded as
605 # additional data associated with the address.
606 v;int;significant_addr_bit;;;;;;0
607
608 # Return a string representation of the memory tag TAG.
609 m;std::string;memtag_to_string;struct value *tag;tag;;default_memtag_to_string;;0
610
611 # Return true if ADDRESS contains a tag and false otherwise. ADDRESS
612 # must be either a pointer or a reference type.
613 m;bool;tagged_address_p;struct value *address;address;;default_tagged_address_p;;0
614
615 # Return true if the tag from ADDRESS matches the memory tag for that
616 # particular address. Return false otherwise.
617 m;bool;memtag_matches_p;struct value *address;address;;default_memtag_matches_p;;0
618
619 # Set the tags of type TAG_TYPE, for the memory address range
620 # [ADDRESS, ADDRESS + LENGTH) to TAGS.
621 # Return true if successful and false otherwise.
622 m;bool;set_memtags;struct value *address, size_t length, const gdb::byte_vector \&tags, memtag_type tag_type;address, length, tags, tag_type;;default_set_memtags;;0
623
624 # Return the tag of type TAG_TYPE associated with the memory address ADDRESS,
625 # assuming ADDRESS is tagged.
626 m;struct value *;get_memtag;struct value *address, memtag_type tag_type;address, tag_type;;default_get_memtag;;0
627
628 # memtag_granule_size is the size of the allocation tag granule, for
629 # architectures that support memory tagging.
630 # This is 0 for architectures that do not support memory tagging.
631 # For a non-zero value, this represents the number of bytes of memory per tag.
632 v;CORE_ADDR;memtag_granule_size;;;;;;0
633
634 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
635 # indicates if the target needs software single step. An ISA method to
636 # implement it.
637 #
638 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
639 # target can single step. If not, then implement single step using breakpoints.
640 #
641 # Return a vector of addresses on which the software single step
642 # breakpoints should be inserted. NULL means software single step is
643 # not used.
644 # Multiple breakpoints may be inserted for some instructions such as
645 # conditional branch. However, each implementation must always evaluate
646 # the condition and only put the breakpoint at the branch destination if
647 # the condition is true, so that we ensure forward progress when stepping
648 # past a conditional branch to self.
649 F;std::vector<CORE_ADDR>;software_single_step;struct regcache *regcache;regcache
650
651 # Return non-zero if the processor is executing a delay slot and a
652 # further single-step is needed before the instruction finishes.
653 M;int;single_step_through_delay;struct frame_info *frame;frame
654 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
655 # disassembler. Perhaps objdump can handle it?
656 f;int;print_insn;bfd_vma vma, struct disassemble_info *info;vma, info;;default_print_insn;;0
657 f;CORE_ADDR;skip_trampoline_code;struct frame_info *frame, CORE_ADDR pc;frame, pc;;generic_skip_trampoline_code;;0
658
659
660 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
661 # evaluates non-zero, this is the address where the debugger will place
662 # a step-resume breakpoint to get us past the dynamic linker.
663 m;CORE_ADDR;skip_solib_resolver;CORE_ADDR pc;pc;;generic_skip_solib_resolver;;0
664 # Some systems also have trampoline code for returning from shared libs.
665 m;int;in_solib_return_trampoline;CORE_ADDR pc, const char *name;pc, name;;generic_in_solib_return_trampoline;;0
666
667 # Return true if PC lies inside an indirect branch thunk.
668 m;bool;in_indirect_branch_thunk;CORE_ADDR pc;pc;;default_in_indirect_branch_thunk;;0
669
670 # A target might have problems with watchpoints as soon as the stack
671 # frame of the current function has been destroyed. This mostly happens
672 # as the first action in a function's epilogue. stack_frame_destroyed_p()
673 # is defined to return a non-zero value if either the given addr is one
674 # instruction after the stack destroying instruction up to the trailing
675 # return instruction or if we can figure out that the stack frame has
676 # already been invalidated regardless of the value of addr. Targets
677 # which don't suffer from that problem could just let this functionality
678 # untouched.
679 m;int;stack_frame_destroyed_p;CORE_ADDR addr;addr;0;generic_stack_frame_destroyed_p;;0
680 # Process an ELF symbol in the minimal symbol table in a backend-specific
681 # way. Normally this hook is supposed to do nothing, however if required,
682 # then this hook can be used to apply tranformations to symbols that are
683 # considered special in some way. For example the MIPS backend uses it
684 # to interpret \`st_other' information to mark compressed code symbols so
685 # that they can be treated in the appropriate manner in the processing of
686 # the main symbol table and DWARF-2 records.
687 F;void;elf_make_msymbol_special;asymbol *sym, struct minimal_symbol *msym;sym, msym
688 f;void;coff_make_msymbol_special;int val, struct minimal_symbol *msym;val, msym;;default_coff_make_msymbol_special;;0
689 # Process a symbol in the main symbol table in a backend-specific way.
690 # Normally this hook is supposed to do nothing, however if required,
691 # then this hook can be used to apply tranformations to symbols that
692 # are considered special in some way. This is currently used by the
693 # MIPS backend to make sure compressed code symbols have the ISA bit
694 # set. This in turn is needed for symbol values seen in GDB to match
695 # the values used at the runtime by the program itself, for function
696 # and label references.
697 f;void;make_symbol_special;struct symbol *sym, struct objfile *objfile;sym, objfile;;default_make_symbol_special;;0
698 # Adjust the address retrieved from a DWARF-2 record other than a line
699 # entry in a backend-specific way. Normally this hook is supposed to
700 # return the address passed unchanged, however if that is incorrect for
701 # any reason, then this hook can be used to fix the address up in the
702 # required manner. This is currently used by the MIPS backend to make
703 # sure addresses in FDE, range records, etc. referring to compressed
704 # code have the ISA bit set, matching line information and the symbol
705 # table.
706 f;CORE_ADDR;adjust_dwarf2_addr;CORE_ADDR pc;pc;;default_adjust_dwarf2_addr;;0
707 # Adjust the address updated by a line entry in a backend-specific way.
708 # Normally this hook is supposed to return the address passed unchanged,
709 # however in the case of inconsistencies in these records, this hook can
710 # be used to fix them up in the required manner. This is currently used
711 # by the MIPS backend to make sure all line addresses in compressed code
712 # are presented with the ISA bit set, which is not always the case. This
713 # in turn ensures breakpoint addresses are correctly matched against the
714 # stop PC.
715 f;CORE_ADDR;adjust_dwarf2_line;CORE_ADDR addr, int rel;addr, rel;;default_adjust_dwarf2_line;;0
716 v;int;cannot_step_breakpoint;;;0;0;;0
717 # See comment in target.h about continuable, steppable and
718 # non-steppable watchpoints.
719 v;int;have_nonsteppable_watchpoint;;;0;0;;0
720 F;type_instance_flags;address_class_type_flags;int byte_size, int dwarf2_addr_class;byte_size, dwarf2_addr_class
721 M;const char *;address_class_type_flags_to_name;type_instance_flags type_flags;type_flags
722 # Execute vendor-specific DWARF Call Frame Instruction. OP is the instruction.
723 # FS are passed from the generic execute_cfa_program function.
724 m;bool;execute_dwarf_cfa_vendor_op;gdb_byte op, struct dwarf2_frame_state *fs;op, fs;;default_execute_dwarf_cfa_vendor_op;;0
725
726 # Return the appropriate type_flags for the supplied address class.
727 # This function should return true if the address class was recognized and
728 # type_flags was set, false otherwise.
729 M;bool;address_class_name_to_type_flags;const char *name, type_instance_flags *type_flags_ptr;name, type_flags_ptr
730 # Is a register in a group
731 m;int;register_reggroup_p;int regnum, struct reggroup *reggroup;regnum, reggroup;;default_register_reggroup_p;;0
732 # Fetch the pointer to the ith function argument.
733 F;CORE_ADDR;fetch_pointer_argument;struct frame_info *frame, int argi, struct type *type;frame, argi, type
734
735 # Iterate over all supported register notes in a core file. For each
736 # supported register note section, the iterator must call CB and pass
737 # CB_DATA unchanged. If REGCACHE is not NULL, the iterator can limit
738 # the supported register note sections based on the current register
739 # values. Otherwise it should enumerate all supported register note
740 # sections.
741 M;void;iterate_over_regset_sections;iterate_over_regset_sections_cb *cb, void *cb_data, const struct regcache *regcache;cb, cb_data, regcache
742
743 # Create core file notes
744 M;gdb::unique_xmalloc_ptr<char>;make_corefile_notes;bfd *obfd, int *note_size;obfd, note_size
745
746 # Find core file memory regions
747 M;int;find_memory_regions;find_memory_region_ftype func, void *data;func, data
748
749 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
750 # core file into buffer READBUF with length LEN. Return the number of bytes read
751 # (zero indicates failure).
752 # failed, otherwise, return the red length of READBUF.
753 M;ULONGEST;core_xfer_shared_libraries;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len
754
755 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
756 # libraries list from core file into buffer READBUF with length LEN.
757 # Return the number of bytes read (zero indicates failure).
758 M;ULONGEST;core_xfer_shared_libraries_aix;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len
759
760 # How the core target converts a PTID from a core file to a string.
761 M;std::string;core_pid_to_str;ptid_t ptid;ptid
762
763 # How the core target extracts the name of a thread from a core file.
764 M;const char *;core_thread_name;struct thread_info *thr;thr
765
766 # Read offset OFFSET of TARGET_OBJECT_SIGNAL_INFO signal information
767 # from core file into buffer READBUF with length LEN. Return the number
768 # of bytes read (zero indicates EOF, a negative value indicates failure).
769 M;LONGEST;core_xfer_siginfo;gdb_byte *readbuf, ULONGEST offset, ULONGEST len; readbuf, offset, len
770
771 # BFD target to use when generating a core file.
772 V;const char *;gcore_bfd_target;;;0;0;;;pstring (gdbarch->gcore_bfd_target)
773
774 # If the elements of C++ vtables are in-place function descriptors rather
775 # than normal function pointers (which may point to code or a descriptor),
776 # set this to one.
777 v;int;vtable_function_descriptors;;;0;0;;0
778
779 # Set if the least significant bit of the delta is used instead of the least
780 # significant bit of the pfn for pointers to virtual member functions.
781 v;int;vbit_in_delta;;;0;0;;0
782
783 # Advance PC to next instruction in order to skip a permanent breakpoint.
784 f;void;skip_permanent_breakpoint;struct regcache *regcache;regcache;default_skip_permanent_breakpoint;default_skip_permanent_breakpoint;;0
785
786 # The maximum length of an instruction on this architecture in bytes.
787 V;ULONGEST;max_insn_length;;;0;0
788
789 # Copy the instruction at FROM to TO, and make any adjustments
790 # necessary to single-step it at that address.
791 #
792 # REGS holds the state the thread's registers will have before
793 # executing the copied instruction; the PC in REGS will refer to FROM,
794 # not the copy at TO. The caller should update it to point at TO later.
795 #
796 # Return a pointer to data of the architecture's choice to be passed
797 # to gdbarch_displaced_step_fixup.
798 #
799 # For a general explanation of displaced stepping and how GDB uses it,
800 # see the comments in infrun.c.
801 #
802 # The TO area is only guaranteed to have space for
803 # gdbarch_max_insn_length (arch) bytes, so this function must not
804 # write more bytes than that to that area.
805 #
806 # If you do not provide this function, GDB assumes that the
807 # architecture does not support displaced stepping.
808 #
809 # If the instruction cannot execute out of line, return NULL. The
810 # core falls back to stepping past the instruction in-line instead in
811 # that case.
812 M;displaced_step_copy_insn_closure_up;displaced_step_copy_insn;CORE_ADDR from, CORE_ADDR to, struct regcache *regs;from, to, regs
813
814 # Return true if GDB should use hardware single-stepping to execute a displaced
815 # step instruction. If false, GDB will simply restart execution at the
816 # displaced instruction location, and it is up to the target to ensure GDB will
817 # receive control again (e.g. by placing a software breakpoint instruction into
818 # the displaced instruction buffer).
819 #
820 # The default implementation returns false on all targets that provide a
821 # gdbarch_software_single_step routine, and true otherwise.
822 m;bool;displaced_step_hw_singlestep;void;;;default_displaced_step_hw_singlestep;;0
823
824 # Fix up the state resulting from successfully single-stepping a
825 # displaced instruction, to give the result we would have gotten from
826 # stepping the instruction in its original location.
827 #
828 # REGS is the register state resulting from single-stepping the
829 # displaced instruction.
830 #
831 # CLOSURE is the result from the matching call to
832 # gdbarch_displaced_step_copy_insn.
833 #
834 # If you provide gdbarch_displaced_step_copy_insn.but not this
835 # function, then GDB assumes that no fixup is needed after
836 # single-stepping the instruction.
837 #
838 # For a general explanation of displaced stepping and how GDB uses it,
839 # see the comments in infrun.c.
840 M;void;displaced_step_fixup;struct displaced_step_copy_insn_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs;closure, from, to, regs;;NULL
841
842 # Prepare THREAD for it to displaced step the instruction at its current PC.
843 #
844 # Throw an exception if any unexpected error happens.
845 M;displaced_step_prepare_status;displaced_step_prepare;thread_info *thread, CORE_ADDR &displaced_pc;thread, displaced_pc
846
847 # Clean up after a displaced step of THREAD.
848 m;displaced_step_finish_status;displaced_step_finish;thread_info *thread, gdb_signal sig;thread, sig;;NULL;;(! gdbarch->displaced_step_finish) != (! gdbarch->displaced_step_prepare)
849
850 # Return the closure associated to the displaced step buffer that is at ADDR.
851 F;const displaced_step_copy_insn_closure *;displaced_step_copy_insn_closure_by_addr;inferior *inf, CORE_ADDR addr;inf, addr
852
853 # PARENT_INF has forked and CHILD_PTID is the ptid of the child. Restore the
854 # contents of all displaced step buffers in the child's address space.
855 f;void;displaced_step_restore_all_in_ptid;inferior *parent_inf, ptid_t child_ptid;parent_inf, child_ptid
856
857 # Relocate an instruction to execute at a different address. OLDLOC
858 # is the address in the inferior memory where the instruction to
859 # relocate is currently at. On input, TO points to the destination
860 # where we want the instruction to be copied (and possibly adjusted)
861 # to. On output, it points to one past the end of the resulting
862 # instruction(s). The effect of executing the instruction at TO shall
863 # be the same as if executing it at FROM. For example, call
864 # instructions that implicitly push the return address on the stack
865 # should be adjusted to return to the instruction after OLDLOC;
866 # relative branches, and other PC-relative instructions need the
867 # offset adjusted; etc.
868 M;void;relocate_instruction;CORE_ADDR *to, CORE_ADDR from;to, from;;NULL
869
870 # Refresh overlay mapped state for section OSECT.
871 F;void;overlay_update;struct obj_section *osect;osect
872
873 M;const struct target_desc *;core_read_description;struct target_ops *target, bfd *abfd;target, abfd
874
875 # Set if the address in N_SO or N_FUN stabs may be zero.
876 v;int;sofun_address_maybe_missing;;;0;0;;0
877
878 # Parse the instruction at ADDR storing in the record execution log
879 # the registers REGCACHE and memory ranges that will be affected when
880 # the instruction executes, along with their current values.
881 # Return -1 if something goes wrong, 0 otherwise.
882 M;int;process_record;struct regcache *regcache, CORE_ADDR addr;regcache, addr
883
884 # Save process state after a signal.
885 # Return -1 if something goes wrong, 0 otherwise.
886 M;int;process_record_signal;struct regcache *regcache, enum gdb_signal signal;regcache, signal
887
888 # Signal translation: translate inferior's signal (target's) number
889 # into GDB's representation. The implementation of this method must
890 # be host independent. IOW, don't rely on symbols of the NAT_FILE
891 # header (the nm-*.h files), the host <signal.h> header, or similar
892 # headers. This is mainly used when cross-debugging core files ---
893 # "Live" targets hide the translation behind the target interface
894 # (target_wait, target_resume, etc.).
895 M;enum gdb_signal;gdb_signal_from_target;int signo;signo
896
897 # Signal translation: translate the GDB's internal signal number into
898 # the inferior's signal (target's) representation. The implementation
899 # of this method must be host independent. IOW, don't rely on symbols
900 # of the NAT_FILE header (the nm-*.h files), the host <signal.h>
901 # header, or similar headers.
902 # Return the target signal number if found, or -1 if the GDB internal
903 # signal number is invalid.
904 M;int;gdb_signal_to_target;enum gdb_signal signal;signal
905
906 # Extra signal info inspection.
907 #
908 # Return a type suitable to inspect extra signal information.
909 M;struct type *;get_siginfo_type;void;
910
911 # Record architecture-specific information from the symbol table.
912 M;void;record_special_symbol;struct objfile *objfile, asymbol *sym;objfile, sym
913
914 # Function for the 'catch syscall' feature.
915
916 # Get architecture-specific system calls information from registers.
917 M;LONGEST;get_syscall_number;thread_info *thread;thread
918
919 # The filename of the XML syscall for this architecture.
920 v;const char *;xml_syscall_file;;;0;0;;0;pstring (gdbarch->xml_syscall_file)
921
922 # Information about system calls from this architecture
923 v;struct syscalls_info *;syscalls_info;;;0;0;;0;host_address_to_string (gdbarch->syscalls_info)
924
925 # SystemTap related fields and functions.
926
927 # A NULL-terminated array of prefixes used to mark an integer constant
928 # on the architecture's assembly.
929 # For example, on x86 integer constants are written as:
930 #
931 # \$10 ;; integer constant 10
932 #
933 # in this case, this prefix would be the character \`\$\'.
934 v;const char *const *;stap_integer_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_prefixes)
935
936 # A NULL-terminated array of suffixes used to mark an integer constant
937 # on the architecture's assembly.
938 v;const char *const *;stap_integer_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_suffixes)
939
940 # A NULL-terminated array of prefixes used to mark a register name on
941 # the architecture's assembly.
942 # For example, on x86 the register name is written as:
943 #
944 # \%eax ;; register eax
945 #
946 # in this case, this prefix would be the character \`\%\'.
947 v;const char *const *;stap_register_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_prefixes)
948
949 # A NULL-terminated array of suffixes used to mark a register name on
950 # the architecture's assembly.
951 v;const char *const *;stap_register_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_suffixes)
952
953 # A NULL-terminated array of prefixes used to mark a register
954 # indirection on the architecture's assembly.
955 # For example, on x86 the register indirection is written as:
956 #
957 # \(\%eax\) ;; indirecting eax
958 #
959 # in this case, this prefix would be the charater \`\(\'.
960 #
961 # Please note that we use the indirection prefix also for register
962 # displacement, e.g., \`4\(\%eax\)\' on x86.
963 v;const char *const *;stap_register_indirection_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_prefixes)
964
965 # A NULL-terminated array of suffixes used to mark a register
966 # indirection on the architecture's assembly.
967 # For example, on x86 the register indirection is written as:
968 #
969 # \(\%eax\) ;; indirecting eax
970 #
971 # in this case, this prefix would be the charater \`\)\'.
972 #
973 # Please note that we use the indirection suffix also for register
974 # displacement, e.g., \`4\(\%eax\)\' on x86.
975 v;const char *const *;stap_register_indirection_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_suffixes)
976
977 # Prefix(es) used to name a register using GDB's nomenclature.
978 #
979 # For example, on PPC a register is represented by a number in the assembly
980 # language (e.g., \`10\' is the 10th general-purpose register). However,
981 # inside GDB this same register has an \`r\' appended to its name, so the 10th
982 # register would be represented as \`r10\' internally.
983 v;const char *;stap_gdb_register_prefix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_prefix)
984
985 # Suffix used to name a register using GDB's nomenclature.
986 v;const char *;stap_gdb_register_suffix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_suffix)
987
988 # Check if S is a single operand.
989 #
990 # Single operands can be:
991 # \- Literal integers, e.g. \`\$10\' on x86
992 # \- Register access, e.g. \`\%eax\' on x86
993 # \- Register indirection, e.g. \`\(\%eax\)\' on x86
994 # \- Register displacement, e.g. \`4\(\%eax\)\' on x86
995 #
996 # This function should check for these patterns on the string
997 # and return 1 if some were found, or zero otherwise. Please try to match
998 # as much info as you can from the string, i.e., if you have to match
999 # something like \`\(\%\', do not match just the \`\(\'.
1000 M;int;stap_is_single_operand;const char *s;s
1001
1002 # Function used to handle a "special case" in the parser.
1003 #
1004 # A "special case" is considered to be an unknown token, i.e., a token
1005 # that the parser does not know how to parse. A good example of special
1006 # case would be ARM's register displacement syntax:
1007 #
1008 # [R0, #4] ;; displacing R0 by 4
1009 #
1010 # Since the parser assumes that a register displacement is of the form:
1011 #
1012 # <number> <indirection_prefix> <register_name> <indirection_suffix>
1013 #
1014 # it means that it will not be able to recognize and parse this odd syntax.
1015 # Therefore, we should add a special case function that will handle this token.
1016 #
1017 # This function should generate the proper expression form of the expression
1018 # using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
1019 # and so on). It should also return 1 if the parsing was successful, or zero
1020 # if the token was not recognized as a special token (in this case, returning
1021 # zero means that the special parser is deferring the parsing to the generic
1022 # parser), and should advance the buffer pointer (p->arg).
1023 M;expr::operation_up;stap_parse_special_token;struct stap_parse_info *p;p
1024
1025 # Perform arch-dependent adjustments to a register name.
1026 #
1027 # In very specific situations, it may be necessary for the register
1028 # name present in a SystemTap probe's argument to be handled in a
1029 # special way. For example, on i386, GCC may over-optimize the
1030 # register allocation and use smaller registers than necessary. In
1031 # such cases, the client that is reading and evaluating the SystemTap
1032 # probe (ourselves) will need to actually fetch values from the wider
1033 # version of the register in question.
1034 #
1035 # To illustrate the example, consider the following probe argument
1036 # (i386):
1037 #
1038 # 4@%ax
1039 #
1040 # This argument says that its value can be found at the %ax register,
1041 # which is a 16-bit register. However, the argument's prefix says
1042 # that its type is "uint32_t", which is 32-bit in size. Therefore, in
1043 # this case, GDB should actually fetch the probe's value from register
1044 # %eax, not %ax. In this scenario, this function would actually
1045 # replace the register name from %ax to %eax.
1046 #
1047 # The rationale for this can be found at PR breakpoints/24541.
1048 M;std::string;stap_adjust_register;struct stap_parse_info *p, const std::string \&regname, int regnum;p, regname, regnum
1049
1050 # DTrace related functions.
1051
1052 # The expression to compute the NARTGth+1 argument to a DTrace USDT probe.
1053 # NARG must be >= 0.
1054 M;expr::operation_up;dtrace_parse_probe_argument;int narg;narg
1055
1056 # True if the given ADDR does not contain the instruction sequence
1057 # corresponding to a disabled DTrace is-enabled probe.
1058 M;int;dtrace_probe_is_enabled;CORE_ADDR addr;addr
1059
1060 # Enable a DTrace is-enabled probe at ADDR.
1061 M;void;dtrace_enable_probe;CORE_ADDR addr;addr
1062
1063 # Disable a DTrace is-enabled probe at ADDR.
1064 M;void;dtrace_disable_probe;CORE_ADDR addr;addr
1065
1066 # True if the list of shared libraries is one and only for all
1067 # processes, as opposed to a list of shared libraries per inferior.
1068 # This usually means that all processes, although may or may not share
1069 # an address space, will see the same set of symbols at the same
1070 # addresses.
1071 v;int;has_global_solist;;;0;0;;0
1072
1073 # On some targets, even though each inferior has its own private
1074 # address space, the debug interface takes care of making breakpoints
1075 # visible to all address spaces automatically. For such cases,
1076 # this property should be set to true.
1077 v;int;has_global_breakpoints;;;0;0;;0
1078
1079 # True if inferiors share an address space (e.g., uClinux).
1080 m;int;has_shared_address_space;void;;;default_has_shared_address_space;;0
1081
1082 # True if a fast tracepoint can be set at an address.
1083 m;int;fast_tracepoint_valid_at;CORE_ADDR addr, std::string *msg;addr, msg;;default_fast_tracepoint_valid_at;;0
1084
1085 # Guess register state based on tracepoint location. Used for tracepoints
1086 # where no registers have been collected, but there's only one location,
1087 # allowing us to guess the PC value, and perhaps some other registers.
1088 # On entry, regcache has all registers marked as unavailable.
1089 m;void;guess_tracepoint_registers;struct regcache *regcache, CORE_ADDR addr;regcache, addr;;default_guess_tracepoint_registers;;0
1090
1091 # Return the "auto" target charset.
1092 f;const char *;auto_charset;void;;default_auto_charset;default_auto_charset;;0
1093 # Return the "auto" target wide charset.
1094 f;const char *;auto_wide_charset;void;;default_auto_wide_charset;default_auto_wide_charset;;0
1095
1096 # If non-empty, this is a file extension that will be opened in place
1097 # of the file extension reported by the shared library list.
1098 #
1099 # This is most useful for toolchains that use a post-linker tool,
1100 # where the names of the files run on the target differ in extension
1101 # compared to the names of the files GDB should load for debug info.
1102 v;const char *;solib_symbols_extension;;;;;;;pstring (gdbarch->solib_symbols_extension)
1103
1104 # If true, the target OS has DOS-based file system semantics. That
1105 # is, absolute paths include a drive name, and the backslash is
1106 # considered a directory separator.
1107 v;int;has_dos_based_file_system;;;0;0;;0
1108
1109 # Generate bytecodes to collect the return address in a frame.
1110 # Since the bytecodes run on the target, possibly with GDB not even
1111 # connected, the full unwinding machinery is not available, and
1112 # typically this function will issue bytecodes for one or more likely
1113 # places that the return address may be found.
1114 m;void;gen_return_address;struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope;ax, value, scope;;default_gen_return_address;;0
1115
1116 # Implement the "info proc" command.
1117 M;void;info_proc;const char *args, enum info_proc_what what;args, what
1118
1119 # Implement the "info proc" command for core files. Noe that there
1120 # are two "info_proc"-like methods on gdbarch -- one for core files,
1121 # one for live targets.
1122 M;void;core_info_proc;const char *args, enum info_proc_what what;args, what
1123
1124 # Iterate over all objfiles in the order that makes the most sense
1125 # for the architecture to make global symbol searches.
1126 #
1127 # CB is a callback function where OBJFILE is the objfile to be searched,
1128 # and CB_DATA a pointer to user-defined data (the same data that is passed
1129 # when calling this gdbarch method). The iteration stops if this function
1130 # returns nonzero.
1131 #
1132 # CB_DATA is a pointer to some user-defined data to be passed to
1133 # the callback.
1134 #
1135 # If not NULL, CURRENT_OBJFILE corresponds to the objfile being
1136 # inspected when the symbol search was requested.
1137 m;void;iterate_over_objfiles_in_search_order;iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile;cb, cb_data, current_objfile;0;default_iterate_over_objfiles_in_search_order;;0
1138
1139 # Ravenscar arch-dependent ops.
1140 v;struct ravenscar_arch_ops *;ravenscar_ops;;;NULL;NULL;;0;host_address_to_string (gdbarch->ravenscar_ops)
1141
1142 # Return non-zero if the instruction at ADDR is a call; zero otherwise.
1143 m;int;insn_is_call;CORE_ADDR addr;addr;;default_insn_is_call;;0
1144
1145 # Return non-zero if the instruction at ADDR is a return; zero otherwise.
1146 m;int;insn_is_ret;CORE_ADDR addr;addr;;default_insn_is_ret;;0
1147
1148 # Return non-zero if the instruction at ADDR is a jump; zero otherwise.
1149 m;int;insn_is_jump;CORE_ADDR addr;addr;;default_insn_is_jump;;0
1150
1151 # Return true if there's a program/permanent breakpoint planted in
1152 # memory at ADDRESS, return false otherwise.
1153 m;bool;program_breakpoint_here_p;CORE_ADDR address;address;;default_program_breakpoint_here_p;;0
1154
1155 # Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
1156 # Return 0 if *READPTR is already at the end of the buffer.
1157 # Return -1 if there is insufficient buffer for a whole entry.
1158 # Return 1 if an entry was read into *TYPEP and *VALP.
1159 M;int;auxv_parse;gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp;readptr, endptr, typep, valp
1160
1161 # Print the description of a single auxv entry described by TYPE and VAL
1162 # to FILE.
1163 m;void;print_auxv_entry;struct ui_file *file, CORE_ADDR type, CORE_ADDR val;file, type, val;;default_print_auxv_entry;;0
1164
1165 # Find the address range of the current inferior's vsyscall/vDSO, and
1166 # write it to *RANGE. If the vsyscall's length can't be determined, a
1167 # range with zero length is returned. Returns true if the vsyscall is
1168 # found, false otherwise.
1169 m;int;vsyscall_range;struct mem_range *range;range;;default_vsyscall_range;;0
1170
1171 # Allocate SIZE bytes of PROT protected page aligned memory in inferior.
1172 # PROT has GDB_MMAP_PROT_* bitmask format.
1173 # Throw an error if it is not possible. Returned address is always valid.
1174 f;CORE_ADDR;infcall_mmap;CORE_ADDR size, unsigned prot;size, prot;;default_infcall_mmap;;0
1175
1176 # Deallocate SIZE bytes of memory at ADDR in inferior from gdbarch_infcall_mmap.
1177 # Print a warning if it is not possible.
1178 f;void;infcall_munmap;CORE_ADDR addr, CORE_ADDR size;addr, size;;default_infcall_munmap;;0
1179
1180 # Return string (caller has to use xfree for it) with options for GCC
1181 # to produce code for this target, typically "-m64", "-m32" or "-m31".
1182 # These options are put before CU's DW_AT_producer compilation options so that
1183 # they can override it.
1184 m;std::string;gcc_target_options;void;;;default_gcc_target_options;;0
1185
1186 # Return a regular expression that matches names used by this
1187 # architecture in GNU configury triplets. The result is statically
1188 # allocated and must not be freed. The default implementation simply
1189 # returns the BFD architecture name, which is correct in nearly every
1190 # case.
1191 m;const char *;gnu_triplet_regexp;void;;;default_gnu_triplet_regexp;;0
1192
1193 # Return the size in 8-bit bytes of an addressable memory unit on this
1194 # architecture. This corresponds to the number of 8-bit bytes associated to
1195 # each address in memory.
1196 m;int;addressable_memory_unit_size;void;;;default_addressable_memory_unit_size;;0
1197
1198 # Functions for allowing a target to modify its disassembler options.
1199 v;const char *;disassembler_options_implicit;;;0;0;;0;pstring (gdbarch->disassembler_options_implicit)
1200 v;char **;disassembler_options;;;0;0;;0;pstring_ptr (gdbarch->disassembler_options)
1201 v;const disasm_options_and_args_t *;valid_disassembler_options;;;0;0;;0;host_address_to_string (gdbarch->valid_disassembler_options)
1202
1203 # Type alignment override method. Return the architecture specific
1204 # alignment required for TYPE. If there is no special handling
1205 # required for TYPE then return the value 0, GDB will then apply the
1206 # default rules as laid out in gdbtypes.c:type_align.
1207 m;ULONGEST;type_align;struct type *type;type;;default_type_align;;0
1208
1209 # Return a string containing any flags for the given PC in the given FRAME.
1210 f;std::string;get_pc_address_flags;frame_info *frame, CORE_ADDR pc;frame, pc;;default_get_pc_address_flags;;0
1211
1212 # Read core file mappings
1213 m;void;read_core_file_mappings;struct bfd *cbfd, gdb::function_view<void (ULONGEST count)> pre_loop_cb, gdb::function_view<void (int num, ULONGEST start, ULONGEST end, ULONGEST file_ofs, const char *filename)> loop_cb;cbfd, pre_loop_cb, loop_cb;;default_read_core_file_mappings;;0
1214
1215 EOF
1216 }
1217
1218 #
1219 # The .log file
1220 #
1221 exec > gdbarch.log
1222 function_list | while do_read
1223 do
1224 cat <<EOF
1225 ${class} ${returntype:-} ${function} (${formal:-})
1226 EOF
1227 for r in ${read}
1228 do
1229 eval echo "\" ${r}=\${${r}}\""
1230 done
1231 if class_is_predicate_p && fallback_default_p
1232 then
1233 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
1234 kill $$
1235 exit 1
1236 fi
1237 if [ "x${invalid_p}" = "x0" ] && [ -n "${postdefault}" ]
1238 then
1239 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1240 kill $$
1241 exit 1
1242 fi
1243 if class_is_multiarch_p
1244 then
1245 if class_is_predicate_p ; then :
1246 elif test "x${predefault}" = "x"
1247 then
1248 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
1249 kill $$
1250 exit 1
1251 fi
1252 fi
1253 echo ""
1254 done
1255
1256 exec 1>&2
1257
1258
1259 copyright ()
1260 {
1261 cat <<EOF
1262 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1263 /* vi:set ro: */
1264
1265 /* Dynamic architecture support for GDB, the GNU debugger.
1266
1267 Copyright (C) 1998-2021 Free Software Foundation, Inc.
1268
1269 This file is part of GDB.
1270
1271 This program is free software; you can redistribute it and/or modify
1272 it under the terms of the GNU General Public License as published by
1273 the Free Software Foundation; either version 3 of the License, or
1274 (at your option) any later version.
1275
1276 This program is distributed in the hope that it will be useful,
1277 but WITHOUT ANY WARRANTY; without even the implied warranty of
1278 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1279 GNU General Public License for more details.
1280
1281 You should have received a copy of the GNU General Public License
1282 along with this program. If not, see <http://www.gnu.org/licenses/>. */
1283
1284 /* This file was created with the aid of \`\`gdbarch.sh''. */
1285
1286 EOF
1287 }
1288
1289 #
1290 # The .h file
1291 #
1292
1293 exec > new-gdbarch.h
1294 copyright
1295 cat <<EOF
1296 #ifndef GDBARCH_H
1297 #define GDBARCH_H
1298
1299 #include <vector>
1300 #include "frame.h"
1301 #include "dis-asm.h"
1302 #include "gdb_obstack.h"
1303 #include "infrun.h"
1304 #include "osabi.h"
1305 #include "displaced-stepping.h"
1306
1307 struct floatformat;
1308 struct ui_file;
1309 struct value;
1310 struct objfile;
1311 struct obj_section;
1312 struct minimal_symbol;
1313 struct regcache;
1314 struct reggroup;
1315 struct regset;
1316 struct disassemble_info;
1317 struct target_ops;
1318 struct obstack;
1319 struct bp_target_info;
1320 struct target_desc;
1321 struct symbol;
1322 struct syscall;
1323 struct agent_expr;
1324 struct axs_value;
1325 struct stap_parse_info;
1326 struct expr_builder;
1327 struct ravenscar_arch_ops;
1328 struct mem_range;
1329 struct syscalls_info;
1330 struct thread_info;
1331 struct ui_out;
1332 struct inferior;
1333
1334 #include "regcache.h"
1335
1336 /* The architecture associated with the inferior through the
1337 connection to the target.
1338
1339 The architecture vector provides some information that is really a
1340 property of the inferior, accessed through a particular target:
1341 ptrace operations; the layout of certain RSP packets; the solib_ops
1342 vector; etc. To differentiate architecture accesses to
1343 per-inferior/target properties from
1344 per-thread/per-frame/per-objfile properties, accesses to
1345 per-inferior/target properties should be made through this
1346 gdbarch. */
1347
1348 /* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
1349 extern struct gdbarch *target_gdbarch (void);
1350
1351 /* Callback type for the 'iterate_over_objfiles_in_search_order'
1352 gdbarch method. */
1353
1354 typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1355 (struct objfile *objfile, void *cb_data);
1356
1357 /* Callback type for regset section iterators. The callback usually
1358 invokes the REGSET's supply or collect method, to which it must
1359 pass a buffer - for collects this buffer will need to be created using
1360 COLLECT_SIZE, for supply the existing buffer being read from should
1361 be at least SUPPLY_SIZE. SECT_NAME is a BFD section name, and HUMAN_NAME
1362 is used for diagnostic messages. CB_DATA should have been passed
1363 unchanged through the iterator. */
1364
1365 typedef void (iterate_over_regset_sections_cb)
1366 (const char *sect_name, int supply_size, int collect_size,
1367 const struct regset *regset, const char *human_name, void *cb_data);
1368
1369 /* For a function call, does the function return a value using a
1370 normal value return or a structure return - passing a hidden
1371 argument pointing to storage. For the latter, there are two
1372 cases: language-mandated structure return and target ABI
1373 structure return. */
1374
1375 enum function_call_return_method
1376 {
1377 /* Standard value return. */
1378 return_method_normal = 0,
1379
1380 /* Language ABI structure return. This is handled
1381 by passing the return location as the first parameter to
1382 the function, even preceding "this". */
1383 return_method_hidden_param,
1384
1385 /* Target ABI struct return. This is target-specific; for instance,
1386 on ia64 the first argument is passed in out0 but the hidden
1387 structure return pointer would normally be passed in r8. */
1388 return_method_struct,
1389 };
1390
1391 enum class memtag_type
1392 {
1393 /* Logical tag, the tag that is stored in unused bits of a pointer to a
1394 virtual address. */
1395 logical = 0,
1396
1397 /* Allocation tag, the tag that is associated with every granule of memory in
1398 the physical address space. Allocation tags are used to validate memory
1399 accesses via pointers containing logical tags. */
1400 allocation,
1401 };
1402
1403 EOF
1404
1405 # function typedef's
1406 printf "\n"
1407 printf "\n"
1408 printf "/* The following are pre-initialized by GDBARCH. */\n"
1409 function_list | while do_read
1410 do
1411 if class_is_info_p
1412 then
1413 printf "\n"
1414 printf "extern %s gdbarch_%s (struct gdbarch *gdbarch);\n" "$returntype" "$function"
1415 printf "/* set_gdbarch_%s() - not applicable - pre-initialized. */\n" "$function"
1416 fi
1417 done
1418
1419 # function typedef's
1420 printf "\n"
1421 printf "\n"
1422 printf "/* The following are initialized by the target dependent code. */\n"
1423 function_list | while do_read
1424 do
1425 if [ -n "${comment}" ]
1426 then
1427 echo "${comment}" | sed \
1428 -e '2 s,#,/*,' \
1429 -e '3,$ s,#, ,' \
1430 -e '$ s,$, */,'
1431 fi
1432
1433 if class_is_predicate_p
1434 then
1435 printf "\n"
1436 printf "extern bool gdbarch_%s_p (struct gdbarch *gdbarch);\n" "$function"
1437 fi
1438 if class_is_variable_p
1439 then
1440 printf "\n"
1441 printf "extern %s gdbarch_%s (struct gdbarch *gdbarch);\n" "$returntype" "$function"
1442 printf "extern void set_gdbarch_%s (struct gdbarch *gdbarch, %s %s);\n" "$function" "$returntype" "$function"
1443 fi
1444 if class_is_function_p
1445 then
1446 printf "\n"
1447 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
1448 then
1449 printf "typedef %s (gdbarch_%s_ftype) (struct gdbarch *gdbarch);\n" "$returntype" "$function"
1450 elif class_is_multiarch_p
1451 then
1452 printf "typedef %s (gdbarch_%s_ftype) (struct gdbarch *gdbarch, %s);\n" "$returntype" "$function" "$formal"
1453 else
1454 printf "typedef %s (gdbarch_%s_ftype) (%s);\n" "$returntype" "$function" "$formal"
1455 fi
1456 if [ "x${formal}" = "xvoid" ]
1457 then
1458 printf "extern %s gdbarch_%s (struct gdbarch *gdbarch);\n" "$returntype" "$function"
1459 else
1460 printf "extern %s gdbarch_%s (struct gdbarch *gdbarch, %s);\n" "$returntype" "$function" "$formal"
1461 fi
1462 printf "extern void set_gdbarch_%s (struct gdbarch *gdbarch, gdbarch_%s_ftype *%s);\n" "$function" "$function" "$function"
1463 fi
1464 done
1465
1466 # close it off
1467 cat <<EOF
1468
1469 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1470
1471
1472 /* Mechanism for co-ordinating the selection of a specific
1473 architecture.
1474
1475 GDB targets (*-tdep.c) can register an interest in a specific
1476 architecture. Other GDB components can register a need to maintain
1477 per-architecture data.
1478
1479 The mechanisms below ensures that there is only a loose connection
1480 between the set-architecture command and the various GDB
1481 components. Each component can independently register their need
1482 to maintain architecture specific data with gdbarch.
1483
1484 Pragmatics:
1485
1486 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1487 didn't scale.
1488
1489 The more traditional mega-struct containing architecture specific
1490 data for all the various GDB components was also considered. Since
1491 GDB is built from a variable number of (fairly independent)
1492 components it was determined that the global aproach was not
1493 applicable. */
1494
1495
1496 /* Register a new architectural family with GDB.
1497
1498 Register support for the specified ARCHITECTURE with GDB. When
1499 gdbarch determines that the specified architecture has been
1500 selected, the corresponding INIT function is called.
1501
1502 --
1503
1504 The INIT function takes two parameters: INFO which contains the
1505 information available to gdbarch about the (possibly new)
1506 architecture; ARCHES which is a list of the previously created
1507 \`\`struct gdbarch'' for this architecture.
1508
1509 The INFO parameter is, as far as possible, be pre-initialized with
1510 information obtained from INFO.ABFD or the global defaults.
1511
1512 The ARCHES parameter is a linked list (sorted most recently used)
1513 of all the previously created architures for this architecture
1514 family. The (possibly NULL) ARCHES->gdbarch can used to access
1515 values from the previously selected architecture for this
1516 architecture family.
1517
1518 The INIT function shall return any of: NULL - indicating that it
1519 doesn't recognize the selected architecture; an existing \`\`struct
1520 gdbarch'' from the ARCHES list - indicating that the new
1521 architecture is just a synonym for an earlier architecture (see
1522 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1523 - that describes the selected architecture (see gdbarch_alloc()).
1524
1525 The DUMP_TDEP function shall print out all target specific values.
1526 Care should be taken to ensure that the function works in both the
1527 multi-arch and non- multi-arch cases. */
1528
1529 struct gdbarch_list
1530 {
1531 struct gdbarch *gdbarch;
1532 struct gdbarch_list *next;
1533 };
1534
1535 struct gdbarch_info
1536 {
1537 gdbarch_info ()
1538 /* Ensure the union is zero-initialized. Relies on the fact that there's
1539 no member larger than TDESC_DATA. */
1540 : tdesc_data ()
1541 {}
1542
1543 const struct bfd_arch_info *bfd_arch_info = nullptr;
1544
1545 enum bfd_endian byte_order = BFD_ENDIAN_UNKNOWN;
1546
1547 enum bfd_endian byte_order_for_code = BFD_ENDIAN_UNKNOWN;
1548
1549 bfd *abfd = nullptr;
1550
1551 union
1552 {
1553 /* Architecture-specific target description data. Numerous targets
1554 need only this, so give them an easy way to hold it. */
1555 struct tdesc_arch_data *tdesc_data;
1556
1557 /* SPU file system ID. This is a single integer, so using the
1558 generic form would only complicate code. Other targets may
1559 reuse this member if suitable. */
1560 int *id;
1561 };
1562
1563 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
1564
1565 const struct target_desc *target_desc = nullptr;
1566 };
1567
1568 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1569 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1570
1571 /* DEPRECATED - use gdbarch_register() */
1572 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1573
1574 extern void gdbarch_register (enum bfd_architecture architecture,
1575 gdbarch_init_ftype *,
1576 gdbarch_dump_tdep_ftype *);
1577
1578
1579 /* Return a vector of the valid architecture names. Since architectures are
1580 registered during the _initialize phase this function only returns useful
1581 information once initialization has been completed. */
1582
1583 extern std::vector<const char *> gdbarch_printable_names ();
1584
1585
1586 /* Helper function. Search the list of ARCHES for a GDBARCH that
1587 matches the information provided by INFO. */
1588
1589 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1590
1591
1592 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1593 basic initialization using values obtained from the INFO and TDEP
1594 parameters. set_gdbarch_*() functions are called to complete the
1595 initialization of the object. */
1596
1597 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1598
1599
1600 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1601 It is assumed that the caller freeds the \`\`struct
1602 gdbarch_tdep''. */
1603
1604 extern void gdbarch_free (struct gdbarch *);
1605
1606 /* Get the obstack owned by ARCH. */
1607
1608 extern obstack *gdbarch_obstack (gdbarch *arch);
1609
1610 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1611 obstack. The memory is freed when the corresponding architecture
1612 is also freed. */
1613
1614 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) \
1615 obstack_calloc<TYPE> (gdbarch_obstack ((GDBARCH)), (NR))
1616
1617 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) \
1618 obstack_zalloc<TYPE> (gdbarch_obstack ((GDBARCH)))
1619
1620 /* Duplicate STRING, returning an equivalent string that's allocated on the
1621 obstack associated with GDBARCH. The string is freed when the corresponding
1622 architecture is also freed. */
1623
1624 extern char *gdbarch_obstack_strdup (struct gdbarch *arch, const char *string);
1625
1626 /* Helper function. Force an update of the current architecture.
1627
1628 The actual architecture selected is determined by INFO, \`\`(gdb) set
1629 architecture'' et.al., the existing architecture and BFD's default
1630 architecture. INFO should be initialized to zero and then selected
1631 fields should be updated.
1632
1633 Returns non-zero if the update succeeds. */
1634
1635 extern int gdbarch_update_p (struct gdbarch_info info);
1636
1637
1638 /* Helper function. Find an architecture matching info.
1639
1640 INFO should have relevant fields set, and then finished using
1641 gdbarch_info_fill.
1642
1643 Returns the corresponding architecture, or NULL if no matching
1644 architecture was found. */
1645
1646 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1647
1648
1649 /* Helper function. Set the target gdbarch to "gdbarch". */
1650
1651 extern void set_target_gdbarch (struct gdbarch *gdbarch);
1652
1653
1654 /* Register per-architecture data-pointer.
1655
1656 Reserve space for a per-architecture data-pointer. An identifier
1657 for the reserved data-pointer is returned. That identifer should
1658 be saved in a local static variable.
1659
1660 Memory for the per-architecture data shall be allocated using
1661 gdbarch_obstack_zalloc. That memory will be deleted when the
1662 corresponding architecture object is deleted.
1663
1664 When a previously created architecture is re-selected, the
1665 per-architecture data-pointer for that previous architecture is
1666 restored. INIT() is not re-called.
1667
1668 Multiple registrarants for any architecture are allowed (and
1669 strongly encouraged). */
1670
1671 struct gdbarch_data;
1672
1673 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1674 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1675 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1676 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1677
1678 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1679
1680
1681 /* Set the dynamic target-system-dependent parameters (architecture,
1682 byte-order, ...) using information found in the BFD. */
1683
1684 extern void set_gdbarch_from_file (bfd *);
1685
1686
1687 /* Initialize the current architecture to the "first" one we find on
1688 our list. */
1689
1690 extern void initialize_current_architecture (void);
1691
1692 /* gdbarch trace variable */
1693 extern unsigned int gdbarch_debug;
1694
1695 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1696
1697 /* Return the number of cooked registers (raw + pseudo) for ARCH. */
1698
1699 static inline int
1700 gdbarch_num_cooked_regs (gdbarch *arch)
1701 {
1702 return gdbarch_num_regs (arch) + gdbarch_num_pseudo_regs (arch);
1703 }
1704
1705 #endif
1706 EOF
1707 exec 1>&2
1708 ../move-if-change new-gdbarch.h gdbarch.h
1709 rm -f new-gdbarch.h
1710
1711
1712 #
1713 # C file
1714 #
1715
1716 exec > new-gdbarch.c
1717 copyright
1718 cat <<EOF
1719
1720 #include "defs.h"
1721 #include "arch-utils.h"
1722
1723 #include "gdbcmd.h"
1724 #include "inferior.h"
1725 #include "symcat.h"
1726
1727 #include "floatformat.h"
1728 #include "reggroups.h"
1729 #include "osabi.h"
1730 #include "gdb_obstack.h"
1731 #include "observable.h"
1732 #include "regcache.h"
1733 #include "objfiles.h"
1734 #include "auxv.h"
1735 #include "frame-unwind.h"
1736 #include "dummy-frame.h"
1737
1738 /* Static function declarations */
1739
1740 static void alloc_gdbarch_data (struct gdbarch *);
1741
1742 /* Non-zero if we want to trace architecture code. */
1743
1744 #ifndef GDBARCH_DEBUG
1745 #define GDBARCH_DEBUG 0
1746 #endif
1747 unsigned int gdbarch_debug = GDBARCH_DEBUG;
1748 static void
1749 show_gdbarch_debug (struct ui_file *file, int from_tty,
1750 struct cmd_list_element *c, const char *value)
1751 {
1752 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1753 }
1754
1755 static const char *
1756 pformat (const struct floatformat **format)
1757 {
1758 if (format == NULL)
1759 return "(null)";
1760 else
1761 /* Just print out one of them - this is only for diagnostics. */
1762 return format[0]->name;
1763 }
1764
1765 static const char *
1766 pstring (const char *string)
1767 {
1768 if (string == NULL)
1769 return "(null)";
1770 return string;
1771 }
1772
1773 static const char *
1774 pstring_ptr (char **string)
1775 {
1776 if (string == NULL || *string == NULL)
1777 return "(null)";
1778 return *string;
1779 }
1780
1781 /* Helper function to print a list of strings, represented as "const
1782 char *const *". The list is printed comma-separated. */
1783
1784 static const char *
1785 pstring_list (const char *const *list)
1786 {
1787 static char ret[100];
1788 const char *const *p;
1789 size_t offset = 0;
1790
1791 if (list == NULL)
1792 return "(null)";
1793
1794 ret[0] = '\0';
1795 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1796 {
1797 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1798 offset += 2 + s;
1799 }
1800
1801 if (offset > 0)
1802 {
1803 gdb_assert (offset - 2 < sizeof (ret));
1804 ret[offset - 2] = '\0';
1805 }
1806
1807 return ret;
1808 }
1809
1810 EOF
1811
1812 # gdbarch open the gdbarch object
1813 printf "\n"
1814 printf "/* Maintain the struct gdbarch object. */\n"
1815 printf "\n"
1816 printf "struct gdbarch\n"
1817 printf "{\n"
1818 printf " /* Has this architecture been fully initialized? */\n"
1819 printf " int initialized_p;\n"
1820 printf "\n"
1821 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1822 printf " struct obstack *obstack;\n"
1823 printf "\n"
1824 printf " /* basic architectural information. */\n"
1825 function_list | while do_read
1826 do
1827 if class_is_info_p
1828 then
1829 printf " %s %s;\n" "$returntype" "$function"
1830 fi
1831 done
1832 printf "\n"
1833 printf " /* target specific vector. */\n"
1834 printf " struct gdbarch_tdep *tdep;\n"
1835 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1836 printf "\n"
1837 printf " /* per-architecture data-pointers. */\n"
1838 printf " unsigned nr_data;\n"
1839 printf " void **data;\n"
1840 printf "\n"
1841 cat <<EOF
1842 /* Multi-arch values.
1843
1844 When extending this structure you must:
1845
1846 Add the field below.
1847
1848 Declare set/get functions and define the corresponding
1849 macro in gdbarch.h.
1850
1851 gdbarch_alloc(): If zero/NULL is not a suitable default,
1852 initialize the new field.
1853
1854 verify_gdbarch(): Confirm that the target updated the field
1855 correctly.
1856
1857 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1858 field is dumped out
1859
1860 get_gdbarch(): Implement the set/get functions (probably using
1861 the macro's as shortcuts).
1862
1863 */
1864
1865 EOF
1866 function_list | while do_read
1867 do
1868 if class_is_variable_p
1869 then
1870 printf " %s %s;\n" "$returntype" "$function"
1871 elif class_is_function_p
1872 then
1873 printf " gdbarch_%s_ftype *%s;\n" "$function" "$function"
1874 fi
1875 done
1876 printf "};\n"
1877
1878 # Create a new gdbarch struct
1879 cat <<EOF
1880
1881 /* Create a new \`\`struct gdbarch'' based on information provided by
1882 \`\`struct gdbarch_info''. */
1883 EOF
1884 printf "\n"
1885 cat <<EOF
1886 struct gdbarch *
1887 gdbarch_alloc (const struct gdbarch_info *info,
1888 struct gdbarch_tdep *tdep)
1889 {
1890 struct gdbarch *gdbarch;
1891
1892 /* Create an obstack for allocating all the per-architecture memory,
1893 then use that to allocate the architecture vector. */
1894 struct obstack *obstack = XNEW (struct obstack);
1895 obstack_init (obstack);
1896 gdbarch = XOBNEW (obstack, struct gdbarch);
1897 memset (gdbarch, 0, sizeof (*gdbarch));
1898 gdbarch->obstack = obstack;
1899
1900 alloc_gdbarch_data (gdbarch);
1901
1902 gdbarch->tdep = tdep;
1903 EOF
1904 printf "\n"
1905 function_list | while do_read
1906 do
1907 if class_is_info_p
1908 then
1909 printf " gdbarch->%s = info->%s;\n" "$function" "$function"
1910 fi
1911 done
1912 printf "\n"
1913 printf " /* Force the explicit initialization of these. */\n"
1914 function_list | while do_read
1915 do
1916 if class_is_function_p || class_is_variable_p
1917 then
1918 if [ -n "${predefault}" ] && [ "x${predefault}" != "x0" ]
1919 then
1920 printf " gdbarch->%s = %s;\n" "$function" "$predefault"
1921 fi
1922 fi
1923 done
1924 cat <<EOF
1925 /* gdbarch_alloc() */
1926
1927 return gdbarch;
1928 }
1929 EOF
1930
1931 # Free a gdbarch struct.
1932 printf "\n"
1933 printf "\n"
1934 cat <<EOF
1935
1936 obstack *gdbarch_obstack (gdbarch *arch)
1937 {
1938 return arch->obstack;
1939 }
1940
1941 /* See gdbarch.h. */
1942
1943 char *
1944 gdbarch_obstack_strdup (struct gdbarch *arch, const char *string)
1945 {
1946 return obstack_strdup (arch->obstack, string);
1947 }
1948
1949
1950 /* Free a gdbarch struct. This should never happen in normal
1951 operation --- once you've created a gdbarch, you keep it around.
1952 However, if an architecture's init function encounters an error
1953 building the structure, it may need to clean up a partially
1954 constructed gdbarch. */
1955
1956 void
1957 gdbarch_free (struct gdbarch *arch)
1958 {
1959 struct obstack *obstack;
1960
1961 gdb_assert (arch != NULL);
1962 gdb_assert (!arch->initialized_p);
1963 obstack = arch->obstack;
1964 obstack_free (obstack, 0); /* Includes the ARCH. */
1965 xfree (obstack);
1966 }
1967 EOF
1968
1969 # verify a new architecture
1970 cat <<EOF
1971
1972
1973 /* Ensure that all values in a GDBARCH are reasonable. */
1974
1975 static void
1976 verify_gdbarch (struct gdbarch *gdbarch)
1977 {
1978 string_file log;
1979
1980 /* fundamental */
1981 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1982 log.puts ("\n\tbyte-order");
1983 if (gdbarch->bfd_arch_info == NULL)
1984 log.puts ("\n\tbfd_arch_info");
1985 /* Check those that need to be defined for the given multi-arch level. */
1986 EOF
1987 function_list | while do_read
1988 do
1989 if class_is_function_p || class_is_variable_p
1990 then
1991 if [ "x${invalid_p}" = "x0" ]
1992 then
1993 printf " /* Skip verify of %s, invalid_p == 0 */\n" "$function"
1994 elif class_is_predicate_p
1995 then
1996 printf " /* Skip verify of %s, has predicate. */\n" "$function"
1997 # FIXME: See do_read for potential simplification
1998 elif [ -n "${invalid_p}" ] && [ -n "${postdefault}" ]
1999 then
2000 printf " if (%s)\n" "$invalid_p"
2001 printf " gdbarch->%s = %s;\n" "$function" "$postdefault"
2002 elif [ -n "${predefault}" ] && [ -n "${postdefault}" ]
2003 then
2004 printf " if (gdbarch->%s == %s)\n" "$function" "$predefault"
2005 printf " gdbarch->%s = %s;\n" "$function" "$postdefault"
2006 elif [ -n "${postdefault}" ]
2007 then
2008 printf " if (gdbarch->%s == 0)\n" "$function"
2009 printf " gdbarch->%s = %s;\n" "$function" "$postdefault"
2010 elif [ -n "${invalid_p}" ]
2011 then
2012 printf " if (%s)\n" "$invalid_p"
2013 printf " log.puts (\"\\\\n\\\\t%s\");\n" "$function"
2014 elif [ -n "${predefault}" ]
2015 then
2016 printf " if (gdbarch->%s == %s)\n" "$function" "$predefault"
2017 printf " log.puts (\"\\\\n\\\\t%s\");\n" "$function"
2018 fi
2019 fi
2020 done
2021 cat <<EOF
2022 if (!log.empty ())
2023 internal_error (__FILE__, __LINE__,
2024 _("verify_gdbarch: the following are invalid ...%s"),
2025 log.c_str ());
2026 }
2027 EOF
2028
2029 # dump the structure
2030 printf "\n"
2031 printf "\n"
2032 cat <<EOF
2033 /* Print out the details of the current architecture. */
2034
2035 void
2036 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
2037 {
2038 const char *gdb_nm_file = "<not-defined>";
2039
2040 #if defined (GDB_NM_FILE)
2041 gdb_nm_file = GDB_NM_FILE;
2042 #endif
2043 fprintf_unfiltered (file,
2044 "gdbarch_dump: GDB_NM_FILE = %s\\n",
2045 gdb_nm_file);
2046 EOF
2047 function_list | sort '-t;' -k 3 | while do_read
2048 do
2049 # First the predicate
2050 if class_is_predicate_p
2051 then
2052 printf " fprintf_unfiltered (file,\n"
2053 printf " \"gdbarch_dump: gdbarch_%s_p() = %%d\\\\n\",\n" "$function"
2054 printf " gdbarch_%s_p (gdbarch));\n" "$function"
2055 fi
2056 # Print the corresponding value.
2057 if class_is_function_p
2058 then
2059 printf " fprintf_unfiltered (file,\n"
2060 printf " \"gdbarch_dump: %s = <%%s>\\\\n\",\n" "$function"
2061 printf " host_address_to_string (gdbarch->%s));\n" "$function"
2062 else
2063 # It is a variable
2064 case "${print}:${returntype}" in
2065 :CORE_ADDR )
2066 fmt="%s"
2067 print="core_addr_to_string_nz (gdbarch->${function})"
2068 ;;
2069 :* )
2070 fmt="%s"
2071 print="plongest (gdbarch->${function})"
2072 ;;
2073 * )
2074 fmt="%s"
2075 ;;
2076 esac
2077 printf " fprintf_unfiltered (file,\n"
2078 printf " \"gdbarch_dump: %s = %s\\\\n\",\n" "$function" "$fmt"
2079 printf " %s);\n" "$print"
2080 fi
2081 done
2082 cat <<EOF
2083 if (gdbarch->dump_tdep != NULL)
2084 gdbarch->dump_tdep (gdbarch, file);
2085 }
2086 EOF
2087
2088
2089 # GET/SET
2090 printf "\n"
2091 cat <<EOF
2092 struct gdbarch_tdep *
2093 gdbarch_tdep (struct gdbarch *gdbarch)
2094 {
2095 if (gdbarch_debug >= 2)
2096 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
2097 return gdbarch->tdep;
2098 }
2099 EOF
2100 printf "\n"
2101 function_list | while do_read
2102 do
2103 if class_is_predicate_p
2104 then
2105 printf "\n"
2106 printf "bool\n"
2107 printf "gdbarch_%s_p (struct gdbarch *gdbarch)\n" "$function"
2108 printf "{\n"
2109 printf " gdb_assert (gdbarch != NULL);\n"
2110 printf " return %s;\n" "$predicate"
2111 printf "}\n"
2112 fi
2113 if class_is_function_p
2114 then
2115 printf "\n"
2116 printf "%s\n" "$returntype"
2117 if [ "x${formal}" = "xvoid" ]
2118 then
2119 printf "gdbarch_%s (struct gdbarch *gdbarch)\n" "$function"
2120 else
2121 printf "gdbarch_%s (struct gdbarch *gdbarch, %s)\n" "$function" "$formal"
2122 fi
2123 printf "{\n"
2124 printf " gdb_assert (gdbarch != NULL);\n"
2125 printf " gdb_assert (gdbarch->%s != NULL);\n" "$function"
2126 if class_is_predicate_p && test -n "${predefault}"
2127 then
2128 # Allow a call to a function with a predicate.
2129 printf " /* Do not check predicate: %s, allow call. */\n" "$predicate"
2130 fi
2131 printf " if (gdbarch_debug >= 2)\n"
2132 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_%s called\\\\n\");\n" "$function"
2133 if [ "x${actual:-}" = "x-" ] || [ "x${actual:-}" = "x" ]
2134 then
2135 if class_is_multiarch_p
2136 then
2137 params="gdbarch"
2138 else
2139 params=""
2140 fi
2141 else
2142 if class_is_multiarch_p
2143 then
2144 params="gdbarch, ${actual}"
2145 else
2146 params="${actual}"
2147 fi
2148 fi
2149 if [ "x${returntype}" = "xvoid" ]
2150 then
2151 printf " gdbarch->%s (%s);\n" "$function" "$params"
2152 else
2153 printf " return gdbarch->%s (%s);\n" "$function" "$params"
2154 fi
2155 printf "}\n"
2156 printf "\n"
2157 printf "void\n"
2158 printf "set_gdbarch_%s (struct gdbarch *gdbarch,\n" "$function"
2159 printf " %s gdbarch_%s_ftype %s)\n" "$(echo "$function" | sed -e 's/./ /g')" "$function" "$function"
2160 printf "{\n"
2161 printf " gdbarch->%s = %s;\n" "$function" "$function"
2162 printf "}\n"
2163 elif class_is_variable_p
2164 then
2165 printf "\n"
2166 printf "%s\n" "$returntype"
2167 printf "gdbarch_%s (struct gdbarch *gdbarch)\n" "$function"
2168 printf "{\n"
2169 printf " gdb_assert (gdbarch != NULL);\n"
2170 if [ "x${invalid_p}" = "x0" ]
2171 then
2172 printf " /* Skip verify of %s, invalid_p == 0 */\n" "$function"
2173 elif [ -n "${invalid_p}" ]
2174 then
2175 printf " /* Check variable is valid. */\n"
2176 printf " gdb_assert (!(%s));\n" "$invalid_p"
2177 elif [ -n "${predefault}" ]
2178 then
2179 printf " /* Check variable changed from pre-default. */\n"
2180 printf " gdb_assert (gdbarch->%s != %s);\n" "$function" "$predefault"
2181 fi
2182 printf " if (gdbarch_debug >= 2)\n"
2183 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_%s called\\\\n\");\n" "$function"
2184 printf " return gdbarch->%s;\n" "$function"
2185 printf "}\n"
2186 printf "\n"
2187 printf "void\n"
2188 printf "set_gdbarch_%s (struct gdbarch *gdbarch,\n" "$function"
2189 printf " %s %s %s)\n" "$(echo "$function" | sed -e 's/./ /g')" "$returntype" "$function"
2190 printf "{\n"
2191 printf " gdbarch->%s = %s;\n" "$function" "$function"
2192 printf "}\n"
2193 elif class_is_info_p
2194 then
2195 printf "\n"
2196 printf "%s\n" "$returntype"
2197 printf "gdbarch_%s (struct gdbarch *gdbarch)\n" "$function"
2198 printf "{\n"
2199 printf " gdb_assert (gdbarch != NULL);\n"
2200 printf " if (gdbarch_debug >= 2)\n"
2201 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_%s called\\\\n\");\n" "$function"
2202 printf " return gdbarch->%s;\n" "$function"
2203 printf "}\n"
2204 fi
2205 done
2206
2207 # All the trailing guff
2208 cat <<EOF
2209
2210
2211 /* Keep a registry of per-architecture data-pointers required by GDB
2212 modules. */
2213
2214 struct gdbarch_data
2215 {
2216 unsigned index;
2217 int init_p;
2218 gdbarch_data_pre_init_ftype *pre_init;
2219 gdbarch_data_post_init_ftype *post_init;
2220 };
2221
2222 struct gdbarch_data_registration
2223 {
2224 struct gdbarch_data *data;
2225 struct gdbarch_data_registration *next;
2226 };
2227
2228 struct gdbarch_data_registry
2229 {
2230 unsigned nr;
2231 struct gdbarch_data_registration *registrations;
2232 };
2233
2234 static struct gdbarch_data_registry gdbarch_data_registry =
2235 {
2236 0, NULL,
2237 };
2238
2239 static struct gdbarch_data *
2240 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
2241 gdbarch_data_post_init_ftype *post_init)
2242 {
2243 struct gdbarch_data_registration **curr;
2244
2245 /* Append the new registration. */
2246 for (curr = &gdbarch_data_registry.registrations;
2247 (*curr) != NULL;
2248 curr = &(*curr)->next);
2249 (*curr) = XNEW (struct gdbarch_data_registration);
2250 (*curr)->next = NULL;
2251 (*curr)->data = XNEW (struct gdbarch_data);
2252 (*curr)->data->index = gdbarch_data_registry.nr++;
2253 (*curr)->data->pre_init = pre_init;
2254 (*curr)->data->post_init = post_init;
2255 (*curr)->data->init_p = 1;
2256 return (*curr)->data;
2257 }
2258
2259 struct gdbarch_data *
2260 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2261 {
2262 return gdbarch_data_register (pre_init, NULL);
2263 }
2264
2265 struct gdbarch_data *
2266 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2267 {
2268 return gdbarch_data_register (NULL, post_init);
2269 }
2270
2271 /* Create/delete the gdbarch data vector. */
2272
2273 static void
2274 alloc_gdbarch_data (struct gdbarch *gdbarch)
2275 {
2276 gdb_assert (gdbarch->data == NULL);
2277 gdbarch->nr_data = gdbarch_data_registry.nr;
2278 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
2279 }
2280
2281 /* Return the current value of the specified per-architecture
2282 data-pointer. */
2283
2284 void *
2285 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
2286 {
2287 gdb_assert (data->index < gdbarch->nr_data);
2288 if (gdbarch->data[data->index] == NULL)
2289 {
2290 /* The data-pointer isn't initialized, call init() to get a
2291 value. */
2292 if (data->pre_init != NULL)
2293 /* Mid architecture creation: pass just the obstack, and not
2294 the entire architecture, as that way it isn't possible for
2295 pre-init code to refer to undefined architecture
2296 fields. */
2297 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2298 else if (gdbarch->initialized_p
2299 && data->post_init != NULL)
2300 /* Post architecture creation: pass the entire architecture
2301 (as all fields are valid), but be careful to also detect
2302 recursive references. */
2303 {
2304 gdb_assert (data->init_p);
2305 data->init_p = 0;
2306 gdbarch->data[data->index] = data->post_init (gdbarch);
2307 data->init_p = 1;
2308 }
2309 else
2310 internal_error (__FILE__, __LINE__,
2311 _("gdbarch post-init data field can only be used "
2312 "after gdbarch is fully initialised"));
2313 gdb_assert (gdbarch->data[data->index] != NULL);
2314 }
2315 return gdbarch->data[data->index];
2316 }
2317
2318
2319 /* Keep a registry of the architectures known by GDB. */
2320
2321 struct gdbarch_registration
2322 {
2323 enum bfd_architecture bfd_architecture;
2324 gdbarch_init_ftype *init;
2325 gdbarch_dump_tdep_ftype *dump_tdep;
2326 struct gdbarch_list *arches;
2327 struct gdbarch_registration *next;
2328 };
2329
2330 static struct gdbarch_registration *gdbarch_registry = NULL;
2331
2332 std::vector<const char *>
2333 gdbarch_printable_names ()
2334 {
2335 /* Accumulate a list of names based on the registed list of
2336 architectures. */
2337 std::vector<const char *> arches;
2338
2339 for (gdbarch_registration *rego = gdbarch_registry;
2340 rego != nullptr;
2341 rego = rego->next)
2342 {
2343 const struct bfd_arch_info *ap
2344 = bfd_lookup_arch (rego->bfd_architecture, 0);
2345 if (ap == nullptr)
2346 internal_error (__FILE__, __LINE__,
2347 _("gdbarch_architecture_names: multi-arch unknown"));
2348 do
2349 {
2350 arches.push_back (ap->printable_name);
2351 ap = ap->next;
2352 }
2353 while (ap != NULL);
2354 }
2355
2356 return arches;
2357 }
2358
2359
2360 void
2361 gdbarch_register (enum bfd_architecture bfd_architecture,
2362 gdbarch_init_ftype *init,
2363 gdbarch_dump_tdep_ftype *dump_tdep)
2364 {
2365 struct gdbarch_registration **curr;
2366 const struct bfd_arch_info *bfd_arch_info;
2367
2368 /* Check that BFD recognizes this architecture */
2369 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2370 if (bfd_arch_info == NULL)
2371 {
2372 internal_error (__FILE__, __LINE__,
2373 _("gdbarch: Attempt to register "
2374 "unknown architecture (%d)"),
2375 bfd_architecture);
2376 }
2377 /* Check that we haven't seen this architecture before. */
2378 for (curr = &gdbarch_registry;
2379 (*curr) != NULL;
2380 curr = &(*curr)->next)
2381 {
2382 if (bfd_architecture == (*curr)->bfd_architecture)
2383 internal_error (__FILE__, __LINE__,
2384 _("gdbarch: Duplicate registration "
2385 "of architecture (%s)"),
2386 bfd_arch_info->printable_name);
2387 }
2388 /* log it */
2389 if (gdbarch_debug)
2390 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
2391 bfd_arch_info->printable_name,
2392 host_address_to_string (init));
2393 /* Append it */
2394 (*curr) = XNEW (struct gdbarch_registration);
2395 (*curr)->bfd_architecture = bfd_architecture;
2396 (*curr)->init = init;
2397 (*curr)->dump_tdep = dump_tdep;
2398 (*curr)->arches = NULL;
2399 (*curr)->next = NULL;
2400 }
2401
2402 void
2403 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2404 gdbarch_init_ftype *init)
2405 {
2406 gdbarch_register (bfd_architecture, init, NULL);
2407 }
2408
2409
2410 /* Look for an architecture using gdbarch_info. */
2411
2412 struct gdbarch_list *
2413 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2414 const struct gdbarch_info *info)
2415 {
2416 for (; arches != NULL; arches = arches->next)
2417 {
2418 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2419 continue;
2420 if (info->byte_order != arches->gdbarch->byte_order)
2421 continue;
2422 if (info->osabi != arches->gdbarch->osabi)
2423 continue;
2424 if (info->target_desc != arches->gdbarch->target_desc)
2425 continue;
2426 return arches;
2427 }
2428 return NULL;
2429 }
2430
2431
2432 /* Find an architecture that matches the specified INFO. Create a new
2433 architecture if needed. Return that new architecture. */
2434
2435 struct gdbarch *
2436 gdbarch_find_by_info (struct gdbarch_info info)
2437 {
2438 struct gdbarch *new_gdbarch;
2439 struct gdbarch_registration *rego;
2440
2441 /* Fill in missing parts of the INFO struct using a number of
2442 sources: "set ..."; INFOabfd supplied; and the global
2443 defaults. */
2444 gdbarch_info_fill (&info);
2445
2446 /* Must have found some sort of architecture. */
2447 gdb_assert (info.bfd_arch_info != NULL);
2448
2449 if (gdbarch_debug)
2450 {
2451 fprintf_unfiltered (gdb_stdlog,
2452 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
2453 (info.bfd_arch_info != NULL
2454 ? info.bfd_arch_info->printable_name
2455 : "(null)"));
2456 fprintf_unfiltered (gdb_stdlog,
2457 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
2458 info.byte_order,
2459 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2460 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2461 : "default"));
2462 fprintf_unfiltered (gdb_stdlog,
2463 "gdbarch_find_by_info: info.osabi %d (%s)\n",
2464 info.osabi, gdbarch_osabi_name (info.osabi));
2465 fprintf_unfiltered (gdb_stdlog,
2466 "gdbarch_find_by_info: info.abfd %s\n",
2467 host_address_to_string (info.abfd));
2468 }
2469
2470 /* Find the tdep code that knows about this architecture. */
2471 for (rego = gdbarch_registry;
2472 rego != NULL;
2473 rego = rego->next)
2474 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2475 break;
2476 if (rego == NULL)
2477 {
2478 if (gdbarch_debug)
2479 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2480 "No matching architecture\n");
2481 return 0;
2482 }
2483
2484 /* Ask the tdep code for an architecture that matches "info". */
2485 new_gdbarch = rego->init (info, rego->arches);
2486
2487 /* Did the tdep code like it? No. Reject the change and revert to
2488 the old architecture. */
2489 if (new_gdbarch == NULL)
2490 {
2491 if (gdbarch_debug)
2492 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2493 "Target rejected architecture\n");
2494 return NULL;
2495 }
2496
2497 /* Is this a pre-existing architecture (as determined by already
2498 being initialized)? Move it to the front of the architecture
2499 list (keeping the list sorted Most Recently Used). */
2500 if (new_gdbarch->initialized_p)
2501 {
2502 struct gdbarch_list **list;
2503 struct gdbarch_list *self;
2504 if (gdbarch_debug)
2505 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2506 "Previous architecture %s (%s) selected\n",
2507 host_address_to_string (new_gdbarch),
2508 new_gdbarch->bfd_arch_info->printable_name);
2509 /* Find the existing arch in the list. */
2510 for (list = &rego->arches;
2511 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2512 list = &(*list)->next);
2513 /* It had better be in the list of architectures. */
2514 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2515 /* Unlink SELF. */
2516 self = (*list);
2517 (*list) = self->next;
2518 /* Insert SELF at the front. */
2519 self->next = rego->arches;
2520 rego->arches = self;
2521 /* Return it. */
2522 return new_gdbarch;
2523 }
2524
2525 /* It's a new architecture. */
2526 if (gdbarch_debug)
2527 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2528 "New architecture %s (%s) selected\n",
2529 host_address_to_string (new_gdbarch),
2530 new_gdbarch->bfd_arch_info->printable_name);
2531
2532 /* Insert the new architecture into the front of the architecture
2533 list (keep the list sorted Most Recently Used). */
2534 {
2535 struct gdbarch_list *self = XNEW (struct gdbarch_list);
2536 self->next = rego->arches;
2537 self->gdbarch = new_gdbarch;
2538 rego->arches = self;
2539 }
2540
2541 /* Check that the newly installed architecture is valid. Plug in
2542 any post init values. */
2543 new_gdbarch->dump_tdep = rego->dump_tdep;
2544 verify_gdbarch (new_gdbarch);
2545 new_gdbarch->initialized_p = 1;
2546
2547 if (gdbarch_debug)
2548 gdbarch_dump (new_gdbarch, gdb_stdlog);
2549
2550 return new_gdbarch;
2551 }
2552
2553 /* Make the specified architecture current. */
2554
2555 void
2556 set_target_gdbarch (struct gdbarch *new_gdbarch)
2557 {
2558 gdb_assert (new_gdbarch != NULL);
2559 gdb_assert (new_gdbarch->initialized_p);
2560 current_inferior ()->gdbarch = new_gdbarch;
2561 gdb::observers::architecture_changed.notify (new_gdbarch);
2562 registers_changed ();
2563 }
2564
2565 /* Return the current inferior's arch. */
2566
2567 struct gdbarch *
2568 target_gdbarch (void)
2569 {
2570 return current_inferior ()->gdbarch;
2571 }
2572
2573 void _initialize_gdbarch ();
2574 void
2575 _initialize_gdbarch ()
2576 {
2577 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2578 Set architecture debugging."), _("\\
2579 Show architecture debugging."), _("\\
2580 When non-zero, architecture debugging is enabled."),
2581 NULL,
2582 show_gdbarch_debug,
2583 &setdebuglist, &showdebuglist);
2584 }
2585 EOF
2586
2587 # close things off
2588 exec 1>&2
2589 ../move-if-change new-gdbarch.c gdbarch.c
2590 rm -f new-gdbarch.c