* gdb.base/annota3.exp: Add missing newline.
[binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 # Copyright 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5 #
6 # This file is part of GDB.
7 #
8 # This program is free software; you can redistribute it and/or modify
9 # it under the terms of the GNU General Public License as published by
10 # the Free Software Foundation; either version 2 of the License, or
11 # (at your option) any later version.
12 #
13 # This program is distributed in the hope that it will be useful,
14 # but WITHOUT ANY WARRANTY; without even the implied warranty of
15 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 # GNU General Public License for more details.
17 #
18 # You should have received a copy of the GNU General Public License
19 # along with this program; if not, write to the Free Software
20 # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21
22 # Make certain that the script is running in an internationalized
23 # environment.
24 LANG=c ; export LANG
25 LC_ALL=c ; export LC_ALL
26
27
28 compare_new ()
29 {
30 file=$1
31 if test ! -r ${file}
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40 }
41
42
43 # Format of the input table
44 read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
45
46 do_read ()
47 {
48 comment=""
49 class=""
50 while read line
51 do
52 if test "${line}" = ""
53 then
54 continue
55 elif test "${line}" = "#" -a "${comment}" = ""
56 then
57 continue
58 elif expr "${line}" : "#" > /dev/null
59 then
60 comment="${comment}
61 ${line}"
62 else
63
64 # The semantics of IFS varies between different SH's. Some
65 # treat ``::' as three fields while some treat it as just too.
66 # Work around this by eliminating ``::'' ....
67 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
68
69 OFS="${IFS}" ; IFS="[:]"
70 eval read ${read} <<EOF
71 ${line}
72 EOF
73 IFS="${OFS}"
74
75 # .... and then going back through each field and strip out those
76 # that ended up with just that space character.
77 for r in ${read}
78 do
79 if eval test \"\${${r}}\" = \"\ \"
80 then
81 eval ${r}=""
82 fi
83 done
84
85 case "${level}" in
86 1 ) gt_level=">= GDB_MULTI_ARCH_PARTIAL" ;;
87 2 ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
88 "" ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
89 * ) error "Error: bad level for ${function}" 1>&2 ; kill $$ ; exit 1 ;;
90 esac
91
92 case "${class}" in
93 m ) staticdefault="${predefault}" ;;
94 M ) staticdefault="0" ;;
95 * ) test "${staticdefault}" || staticdefault=0 ;;
96 esac
97
98 # come up with a format, use a few guesses for variables
99 case ":${class}:${fmt}:${print}:" in
100 :[vV]::: )
101 if [ "${returntype}" = int ]
102 then
103 fmt="%d"
104 print="${macro}"
105 elif [ "${returntype}" = long ]
106 then
107 fmt="%ld"
108 print="${macro}"
109 fi
110 ;;
111 esac
112 test "${fmt}" || fmt="%ld"
113 test "${print}" || print="(long) ${macro}"
114
115 case "${class}" in
116 F | V | M )
117 case "${invalid_p}" in
118 "" )
119 if test -n "${predefault}"
120 then
121 #invalid_p="gdbarch->${function} == ${predefault}"
122 predicate="gdbarch->${function} != ${predefault}"
123 elif class_is_variable_p
124 then
125 predicate="gdbarch->${function} != 0"
126 elif class_is_function_p
127 then
128 predicate="gdbarch->${function} != NULL"
129 fi
130 ;;
131 * )
132 echo "Predicate function ${function} with invalid_p." 1>&2
133 kill $$
134 exit 1
135 ;;
136 esac
137 esac
138
139 # PREDEFAULT is a valid fallback definition of MEMBER when
140 # multi-arch is not enabled. This ensures that the
141 # default value, when multi-arch is the same as the
142 # default value when not multi-arch. POSTDEFAULT is
143 # always a valid definition of MEMBER as this again
144 # ensures consistency.
145
146 if [ -n "${postdefault}" ]
147 then
148 fallbackdefault="${postdefault}"
149 elif [ -n "${predefault}" ]
150 then
151 fallbackdefault="${predefault}"
152 else
153 fallbackdefault="0"
154 fi
155
156 #NOT YET: See gdbarch.log for basic verification of
157 # database
158
159 break
160 fi
161 done
162 if [ -n "${class}" ]
163 then
164 true
165 else
166 false
167 fi
168 }
169
170
171 fallback_default_p ()
172 {
173 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
174 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
175 }
176
177 class_is_variable_p ()
178 {
179 case "${class}" in
180 *v* | *V* ) true ;;
181 * ) false ;;
182 esac
183 }
184
185 class_is_function_p ()
186 {
187 case "${class}" in
188 *f* | *F* | *m* | *M* ) true ;;
189 * ) false ;;
190 esac
191 }
192
193 class_is_multiarch_p ()
194 {
195 case "${class}" in
196 *m* | *M* ) true ;;
197 * ) false ;;
198 esac
199 }
200
201 class_is_predicate_p ()
202 {
203 case "${class}" in
204 *F* | *V* | *M* ) true ;;
205 * ) false ;;
206 esac
207 }
208
209 class_is_info_p ()
210 {
211 case "${class}" in
212 *i* ) true ;;
213 * ) false ;;
214 esac
215 }
216
217
218 # dump out/verify the doco
219 for field in ${read}
220 do
221 case ${field} in
222
223 class ) : ;;
224
225 # # -> line disable
226 # f -> function
227 # hiding a function
228 # F -> function + predicate
229 # hiding a function + predicate to test function validity
230 # v -> variable
231 # hiding a variable
232 # V -> variable + predicate
233 # hiding a variable + predicate to test variables validity
234 # i -> set from info
235 # hiding something from the ``struct info'' object
236 # m -> multi-arch function
237 # hiding a multi-arch function (parameterised with the architecture)
238 # M -> multi-arch function + predicate
239 # hiding a multi-arch function + predicate to test function validity
240
241 level ) : ;;
242
243 # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
244 # LEVEL is a predicate on checking that a given method is
245 # initialized (using INVALID_P).
246
247 macro ) : ;;
248
249 # The name of the MACRO that this method is to be accessed by.
250
251 returntype ) : ;;
252
253 # For functions, the return type; for variables, the data type
254
255 function ) : ;;
256
257 # For functions, the member function name; for variables, the
258 # variable name. Member function names are always prefixed with
259 # ``gdbarch_'' for name-space purity.
260
261 formal ) : ;;
262
263 # The formal argument list. It is assumed that the formal
264 # argument list includes the actual name of each list element.
265 # A function with no arguments shall have ``void'' as the
266 # formal argument list.
267
268 actual ) : ;;
269
270 # The list of actual arguments. The arguments specified shall
271 # match the FORMAL list given above. Functions with out
272 # arguments leave this blank.
273
274 attrib ) : ;;
275
276 # Any GCC attributes that should be attached to the function
277 # declaration. At present this field is unused.
278
279 staticdefault ) : ;;
280
281 # To help with the GDB startup a static gdbarch object is
282 # created. STATICDEFAULT is the value to insert into that
283 # static gdbarch object. Since this a static object only
284 # simple expressions can be used.
285
286 # If STATICDEFAULT is empty, zero is used.
287
288 predefault ) : ;;
289
290 # An initial value to assign to MEMBER of the freshly
291 # malloc()ed gdbarch object. After initialization, the
292 # freshly malloc()ed object is passed to the target
293 # architecture code for further updates.
294
295 # If PREDEFAULT is empty, zero is used.
296
297 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
298 # INVALID_P are specified, PREDEFAULT will be used as the
299 # default for the non- multi-arch target.
300
301 # A zero PREDEFAULT function will force the fallback to call
302 # internal_error().
303
304 # Variable declarations can refer to ``gdbarch'' which will
305 # contain the current architecture. Care should be taken.
306
307 postdefault ) : ;;
308
309 # A value to assign to MEMBER of the new gdbarch object should
310 # the target architecture code fail to change the PREDEFAULT
311 # value.
312
313 # If POSTDEFAULT is empty, no post update is performed.
314
315 # If both INVALID_P and POSTDEFAULT are non-empty then
316 # INVALID_P will be used to determine if MEMBER should be
317 # changed to POSTDEFAULT.
318
319 # If a non-empty POSTDEFAULT and a zero INVALID_P are
320 # specified, POSTDEFAULT will be used as the default for the
321 # non- multi-arch target (regardless of the value of
322 # PREDEFAULT).
323
324 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
325
326 # Variable declarations can refer to ``gdbarch'' which will
327 # contain the current architecture. Care should be taken.
328
329 invalid_p ) : ;;
330
331 # A predicate equation that validates MEMBER. Non-zero is
332 # returned if the code creating the new architecture failed to
333 # initialize MEMBER or the initialized the member is invalid.
334 # If POSTDEFAULT is non-empty then MEMBER will be updated to
335 # that value. If POSTDEFAULT is empty then internal_error()
336 # is called.
337
338 # If INVALID_P is empty, a check that MEMBER is no longer
339 # equal to PREDEFAULT is used.
340
341 # The expression ``0'' disables the INVALID_P check making
342 # PREDEFAULT a legitimate value.
343
344 # See also PREDEFAULT and POSTDEFAULT.
345
346 fmt ) : ;;
347
348 # printf style format string that can be used to print out the
349 # MEMBER. Sometimes "%s" is useful. For functions, this is
350 # ignored and the function address is printed.
351
352 # If FMT is empty, ``%ld'' is used.
353
354 print ) : ;;
355
356 # An optional equation that casts MEMBER to a value suitable
357 # for formatting by FMT.
358
359 # If PRINT is empty, ``(long)'' is used.
360
361 print_p ) : ;;
362
363 # An optional indicator for any predicte to wrap around the
364 # print member code.
365
366 # () -> Call a custom function to do the dump.
367 # exp -> Wrap print up in ``if (${print_p}) ...
368 # ``'' -> No predicate
369
370 # If PRINT_P is empty, ``1'' is always used.
371
372 description ) : ;;
373
374 # Currently unused.
375
376 *)
377 echo "Bad field ${field}"
378 exit 1;;
379 esac
380 done
381
382
383 function_list ()
384 {
385 # See below (DOCO) for description of each field
386 cat <<EOF
387 i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
388 #
389 i:2:TARGET_BYTE_ORDER:int:byte_order::::BFD_ENDIAN_BIG
390 #
391 i:2:TARGET_OSABI:enum gdb_osabi:osabi::::GDB_OSABI_UNKNOWN
392 # Number of bits in a char or unsigned char for the target machine.
393 # Just like CHAR_BIT in <limits.h> but describes the target machine.
394 # v:2:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
395 #
396 # Number of bits in a short or unsigned short for the target machine.
397 v:2:TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
398 # Number of bits in an int or unsigned int for the target machine.
399 v:2:TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
400 # Number of bits in a long or unsigned long for the target machine.
401 v:2:TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
402 # Number of bits in a long long or unsigned long long for the target
403 # machine.
404 v:2:TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
405 # Number of bits in a float for the target machine.
406 v:2:TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
407 # Number of bits in a double for the target machine.
408 v:2:TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
409 # Number of bits in a long double for the target machine.
410 v:2:TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
411 # For most targets, a pointer on the target and its representation as an
412 # address in GDB have the same size and "look the same". For such a
413 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
414 # / addr_bit will be set from it.
415 #
416 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
417 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
418 #
419 # ptr_bit is the size of a pointer on the target
420 v:2:TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
421 # addr_bit is the size of a target address as represented in gdb
422 v:2:TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
423 # Number of bits in a BFD_VMA for the target object file format.
424 v:2:TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
425 #
426 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
427 v:2:TARGET_CHAR_SIGNED:int:char_signed::::1:-1:1::::
428 #
429 F:2:TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid
430 f:2:TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
431 # UNWIND_SP is a direct replacement for TARGET_READ_SP.
432 F:2:TARGET_READ_SP:CORE_ADDR:read_sp:void
433 # Function for getting target's idea of a frame pointer. FIXME: GDB's
434 # whole scheme for dealing with "frames" and "frame pointers" needs a
435 # serious shakedown.
436 f:2:TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset::0:legacy_virtual_frame_pointer::0
437 #
438 M:::void:pseudo_register_read:struct regcache *regcache, int cookednum, void *buf:regcache, cookednum, buf
439 M:::void:pseudo_register_write:struct regcache *regcache, int cookednum, const void *buf:regcache, cookednum, buf
440 #
441 v:2:NUM_REGS:int:num_regs::::0:-1
442 # This macro gives the number of pseudo-registers that live in the
443 # register namespace but do not get fetched or stored on the target.
444 # These pseudo-registers may be aliases for other registers,
445 # combinations of other registers, or they may be computed by GDB.
446 v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
447
448 # GDB's standard (or well known) register numbers. These can map onto
449 # a real register or a pseudo (computed) register or not be defined at
450 # all (-1).
451 # SP_REGNUM will hopefully be replaced by UNWIND_SP.
452 v:2:SP_REGNUM:int:sp_regnum::::-1:-1::0
453 v:2:PC_REGNUM:int:pc_regnum::::-1:-1::0
454 v:2:PS_REGNUM:int:ps_regnum::::-1:-1::0
455 v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
456 v:2:NPC_REGNUM:int:npc_regnum::::0:-1::0
457 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
458 f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
459 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
460 f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
461 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
462 f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
463 # Convert from an sdb register number to an internal gdb register number.
464 # This should be defined in tm.h, if REGISTER_NAMES is not set up
465 # to map one to one onto the sdb register numbers.
466 f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
467 f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
468 f::REGISTER_NAME:const char *:register_name:int regnr:regnr
469
470 # REGISTER_TYPE is a direct replacement for REGISTER_VIRTUAL_TYPE.
471 M:2:REGISTER_TYPE:struct type *:register_type:int reg_nr:reg_nr
472 # REGISTER_TYPE is a direct replacement for REGISTER_VIRTUAL_TYPE.
473 F:2:REGISTER_VIRTUAL_TYPE:struct type *:deprecated_register_virtual_type:int reg_nr:reg_nr
474 # DEPRECATED_REGISTER_BYTES can be deleted. The value is computed
475 # from REGISTER_TYPE.
476 v::DEPRECATED_REGISTER_BYTES:int:deprecated_register_bytes
477 # If the value returned by DEPRECATED_REGISTER_BYTE agrees with the
478 # register offsets computed using just REGISTER_TYPE, this can be
479 # deleted. See: maint print registers. NOTE: cagney/2002-05-02: This
480 # function with predicate has a valid (callable) initial value. As a
481 # consequence, even when the predicate is false, the corresponding
482 # function works. This simplifies the migration process - old code,
483 # calling DEPRECATED_REGISTER_BYTE, doesn't need to be modified.
484 F::REGISTER_BYTE:int:deprecated_register_byte:int reg_nr:reg_nr::generic_register_byte:generic_register_byte
485 # If all registers have identical raw and virtual sizes and those
486 # sizes agree with the value computed from REGISTER_TYPE,
487 # DEPRECATED_REGISTER_RAW_SIZE can be deleted. See: maint print
488 # registers.
489 F:2:REGISTER_RAW_SIZE:int:deprecated_register_raw_size:int reg_nr:reg_nr::generic_register_size:generic_register_size
490 # If all registers have identical raw and virtual sizes and those
491 # sizes agree with the value computed from REGISTER_TYPE,
492 # DEPRECATED_REGISTER_VIRTUAL_SIZE can be deleted. See: maint print
493 # registers.
494 F:2:REGISTER_VIRTUAL_SIZE:int:deprecated_register_virtual_size:int reg_nr:reg_nr::generic_register_size:generic_register_size
495 # DEPRECATED_MAX_REGISTER_RAW_SIZE can be deleted. It has been
496 # replaced by the constant MAX_REGISTER_SIZE.
497 V:2:DEPRECATED_MAX_REGISTER_RAW_SIZE:int:deprecated_max_register_raw_size
498 # DEPRECATED_MAX_REGISTER_VIRTUAL_SIZE can be deleted. It has been
499 # replaced by the constant MAX_REGISTER_SIZE.
500 V:2:DEPRECATED_MAX_REGISTER_VIRTUAL_SIZE:int:deprecated_max_register_virtual_size
501
502 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
503 M::UNWIND_DUMMY_ID:struct frame_id:unwind_dummy_id:struct frame_info *info:info
504 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
505 # SAVE_DUMMY_FRAME_TOS.
506 F:2:DEPRECATED_SAVE_DUMMY_FRAME_TOS:void:deprecated_save_dummy_frame_tos:CORE_ADDR sp:sp
507 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
508 # DEPRECATED_FP_REGNUM.
509 v:2:DEPRECATED_FP_REGNUM:int:deprecated_fp_regnum::::-1:-1::0
510 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
511 # DEPRECATED_TARGET_READ_FP.
512 F::DEPRECATED_TARGET_READ_FP:CORE_ADDR:deprecated_target_read_fp:void
513
514 # See gdbint.texinfo. See infcall.c. New, all singing all dancing,
515 # replacement for DEPRECATED_PUSH_ARGUMENTS.
516 M::PUSH_DUMMY_CALL:CORE_ADDR:push_dummy_call:CORE_ADDR func_addr, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:func_addr, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
517 # PUSH_DUMMY_CALL is a direct replacement for DEPRECATED_PUSH_ARGUMENTS.
518 F:2:DEPRECATED_PUSH_ARGUMENTS:CORE_ADDR:deprecated_push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr
519 # DEPRECATED_USE_GENERIC_DUMMY_FRAMES can be deleted. Always true.
520 v::DEPRECATED_USE_GENERIC_DUMMY_FRAMES:int:deprecated_use_generic_dummy_frames:::::1::0
521 # Implement PUSH_RETURN_ADDRESS, and then merge in
522 # DEPRECATED_PUSH_RETURN_ADDRESS.
523 F:2:DEPRECATED_PUSH_RETURN_ADDRESS:CORE_ADDR:deprecated_push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp
524 # Implement PUSH_DUMMY_CALL, then merge in DEPRECATED_DUMMY_WRITE_SP.
525 F:2:DEPRECATED_DUMMY_WRITE_SP:void:deprecated_dummy_write_sp:CORE_ADDR val:val
526 # DEPRECATED_REGISTER_SIZE can be deleted.
527 v::DEPRECATED_REGISTER_SIZE:int:deprecated_register_size
528 v::CALL_DUMMY_LOCATION:int:call_dummy_location:::::AT_ENTRY_POINT::0
529 f::CALL_DUMMY_ADDRESS:CORE_ADDR:call_dummy_address:void::::entry_point_address::0
530 # DEPRECATED_CALL_DUMMY_START_OFFSET can be deleted.
531 v::DEPRECATED_CALL_DUMMY_START_OFFSET:CORE_ADDR:deprecated_call_dummy_start_offset
532 # DEPRECATED_CALL_DUMMY_BREAKPOINT_OFFSET can be deleted.
533 v::DEPRECATED_CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:deprecated_call_dummy_breakpoint_offset
534 # DEPRECATED_CALL_DUMMY_LENGTH can be deleted.
535 v::DEPRECATED_CALL_DUMMY_LENGTH:int:deprecated_call_dummy_length
536 # DEPRECATED_CALL_DUMMY_WORDS can be deleted.
537 v::DEPRECATED_CALL_DUMMY_WORDS:LONGEST *:deprecated_call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
538 # Implement PUSH_DUMMY_CALL, then delete DEPRECATED_SIZEOF_CALL_DUMMY_WORDS.
539 v::DEPRECATED_SIZEOF_CALL_DUMMY_WORDS:int:deprecated_sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0
540 # Implement PUSH_DUMMY_CALL, then delete DEPRECATED_CALL_DUMMY_STACK_ADJUST.
541 V:2:DEPRECATED_CALL_DUMMY_STACK_ADJUST:int:deprecated_call_dummy_stack_adjust
542 # DEPRECATED_FIX_CALL_DUMMY can be deleted. For the SPARC, implement
543 # PUSH_DUMMY_CODE and set CALL_DUMMY_LOCATION to ON_STACK.
544 F::DEPRECATED_FIX_CALL_DUMMY:void:deprecated_fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p
545 # This is a replacement for DEPRECATED_FIX_CALL_DUMMY et.al.
546 M::PUSH_DUMMY_CODE:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr:sp, funaddr, using_gcc, args, nargs, value_type, real_pc, bp_addr
547 # Implement PUSH_DUMMY_CALL, then delete DEPRECATED_PUSH_DUMMY_FRAME.
548 F:2:DEPRECATED_PUSH_DUMMY_FRAME:void:deprecated_push_dummy_frame:void:-
549 # Implement PUSH_DUMMY_CALL, then delete
550 # DEPRECATED_EXTRA_STACK_ALIGNMENT_NEEDED.
551 v:2:DEPRECATED_EXTRA_STACK_ALIGNMENT_NEEDED:int:deprecated_extra_stack_alignment_needed::::0:0::0:::
552
553 F:2:DEPRECATED_DO_REGISTERS_INFO:void:deprecated_do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs
554 m:2:PRINT_REGISTERS_INFO:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all:::default_print_registers_info::0
555 M:2:PRINT_FLOAT_INFO:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
556 M:2:PRINT_VECTOR_INFO:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
557 # MAP a GDB RAW register number onto a simulator register number. See
558 # also include/...-sim.h.
559 f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::legacy_register_sim_regno::0
560 F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes
561 f:2:CANNOT_FETCH_REGISTER:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
562 f:2:CANNOT_STORE_REGISTER:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
563 # setjmp/longjmp support.
564 F:2:GET_LONGJMP_TARGET:int:get_longjmp_target:CORE_ADDR *pc:pc
565 # NOTE: cagney/2002-11-24: This function with predicate has a valid
566 # (callable) initial value. As a consequence, even when the predicate
567 # is false, the corresponding function works. This simplifies the
568 # migration process - old code, calling DEPRECATED_PC_IN_CALL_DUMMY(),
569 # doesn't need to be modified.
570 F::DEPRECATED_PC_IN_CALL_DUMMY:int:deprecated_pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::generic_pc_in_call_dummy:generic_pc_in_call_dummy
571 F:2:DEPRECATED_INIT_FRAME_PC_FIRST:CORE_ADDR:deprecated_init_frame_pc_first:int fromleaf, struct frame_info *prev:fromleaf, prev
572 F:2:DEPRECATED_INIT_FRAME_PC:CORE_ADDR:deprecated_init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev
573 #
574 v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
575 v::BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type:::::::
576 F:2:DEPRECATED_GET_SAVED_REGISTER:void:deprecated_get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval
577 #
578 # For register <-> value conversions, replaced by CONVERT_REGISTER_P et.al.
579 # For raw <-> cooked register conversions, replaced by pseudo registers.
580 f:2:DEPRECATED_REGISTER_CONVERTIBLE:int:deprecated_register_convertible:int nr:nr:::deprecated_register_convertible_not::0
581 # For register <-> value conversions, replaced by CONVERT_REGISTER_P et.al.
582 # For raw <-> cooked register conversions, replaced by pseudo registers.
583 f:2:DEPRECATED_REGISTER_CONVERT_TO_VIRTUAL:void:deprecated_register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
584 # For register <-> value conversions, replaced by CONVERT_REGISTER_P et.al.
585 # For raw <-> cooked register conversions, replaced by pseudo registers.
586 f:2:DEPRECATED_REGISTER_CONVERT_TO_RAW:void:deprecated_register_convert_to_raw:struct type *type, int regnum, const char *from, char *to:type, regnum, from, to:::0::0
587 #
588 f:1:CONVERT_REGISTER_P:int:convert_register_p:int regnum, struct type *type:regnum, type::0:legacy_convert_register_p::0
589 f:1:REGISTER_TO_VALUE:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, void *buf:frame, regnum, type, buf::0:legacy_register_to_value::0
590 f:1:VALUE_TO_REGISTER:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const void *buf:frame, regnum, type, buf::0:legacy_value_to_register::0
591 #
592 f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, const void *buf:type, buf:::unsigned_pointer_to_address::0
593 f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
594 F:2:INTEGER_TO_ADDRESS:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf
595 #
596 f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
597 F:2:DEPRECATED_POP_FRAME:void:deprecated_pop_frame:void:-
598 # NOTE: cagney/2003-03-24: Replaced by PUSH_ARGUMENTS.
599 F:2:DEPRECATED_STORE_STRUCT_RETURN:void:deprecated_store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp
600 #
601 f:2:EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, struct regcache *regcache, void *valbuf:type, regcache, valbuf:::legacy_extract_return_value::0
602 f:2:STORE_RETURN_VALUE:void:store_return_value:struct type *type, struct regcache *regcache, const void *valbuf:type, regcache, valbuf:::legacy_store_return_value::0
603 f:2:DEPRECATED_EXTRACT_RETURN_VALUE:void:deprecated_extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf
604 f:2:DEPRECATED_STORE_RETURN_VALUE:void:deprecated_store_return_value:struct type *type, char *valbuf:type, valbuf
605 #
606 F:2:EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:extract_struct_value_address:struct regcache *regcache:regcache
607 F:2:DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:deprecated_extract_struct_value_address:char *regbuf:regbuf
608 f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::generic_use_struct_convention::0
609 #
610 F:2:DEPRECATED_FRAME_INIT_SAVED_REGS:void:deprecated_frame_init_saved_regs:struct frame_info *frame:frame
611 F:2:DEPRECATED_INIT_EXTRA_FRAME_INFO:void:deprecated_init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame
612 #
613 f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
614 f:2:PROLOGUE_FRAMELESS_P:int:prologue_frameless_p:CORE_ADDR ip:ip::0:generic_prologue_frameless_p::0
615 f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
616 f::BREAKPOINT_FROM_PC:const unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::0:
617 f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
618 f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
619 v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:-1
620 v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:-1
621 #
622 m::REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:struct regcache *regcache, CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:regcache, gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
623 #
624 v:2:FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:-1
625 f:2:FRAMELESS_FUNCTION_INVOCATION:int:frameless_function_invocation:struct frame_info *fi:fi:::generic_frameless_function_invocation_not::0
626 F:2:DEPRECATED_FRAME_CHAIN:CORE_ADDR:deprecated_frame_chain:struct frame_info *frame:frame
627 F:2:DEPRECATED_FRAME_CHAIN_VALID:int:deprecated_frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe
628 # DEPRECATED_FRAME_SAVED_PC has been replaced by UNWIND_PC. Please
629 # note, per UNWIND_PC's doco, that while the two have similar
630 # interfaces they have very different underlying implementations.
631 F:2:DEPRECATED_FRAME_SAVED_PC:CORE_ADDR:deprecated_frame_saved_pc:struct frame_info *fi:fi
632 M::UNWIND_PC:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
633 M::UNWIND_SP:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
634 # DEPRECATED_FRAME_ARGS_ADDRESS as been replaced by the per-frame
635 # frame-base. Enable frame-base before frame-unwind.
636 F::DEPRECATED_FRAME_ARGS_ADDRESS:CORE_ADDR:deprecated_frame_args_address:struct frame_info *fi:fi::get_frame_base:get_frame_base
637 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
638 # frame-base. Enable frame-base before frame-unwind.
639 F::DEPRECATED_FRAME_LOCALS_ADDRESS:CORE_ADDR:deprecated_frame_locals_address:struct frame_info *fi:fi::get_frame_base:get_frame_base
640 F::DEPRECATED_SAVED_PC_AFTER_CALL:CORE_ADDR:deprecated_saved_pc_after_call:struct frame_info *frame:frame
641 F:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame
642 #
643 F:2:STACK_ALIGN:CORE_ADDR:stack_align:CORE_ADDR sp:sp
644 M:::CORE_ADDR:frame_align:CORE_ADDR address:address
645 F:2:REG_STRUCT_HAS_ADDR:int:reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type
646 v:2:PARM_BOUNDARY:int:parm_boundary
647 #
648 v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (gdbarch)::%s:(TARGET_FLOAT_FORMAT)->name
649 v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (gdbarch)::%s:(TARGET_DOUBLE_FORMAT)->name
650 v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::default_double_format (gdbarch)::%s:(TARGET_LONG_DOUBLE_FORMAT)->name
651 f:2:CONVERT_FROM_FUNC_PTR_ADDR:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr:addr:::core_addr_identity::0
652 # On some machines there are bits in addresses which are not really
653 # part of the address, but are used by the kernel, the hardware, etc.
654 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
655 # we get a "real" address such as one would find in a symbol table.
656 # This is used only for addresses of instructions, and even then I'm
657 # not sure it's used in all contexts. It exists to deal with there
658 # being a few stray bits in the PC which would mislead us, not as some
659 # sort of generic thing to handle alignment or segmentation (it's
660 # possible it should be in TARGET_READ_PC instead).
661 f:2:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
662 # It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
663 # ADDR_BITS_REMOVE.
664 f:2:SMASH_TEXT_ADDRESS:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr:::core_addr_identity::0
665 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
666 # the target needs software single step. An ISA method to implement it.
667 #
668 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
669 # using the breakpoint system instead of blatting memory directly (as with rs6000).
670 #
671 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
672 # single step. If not, then implement single step using breakpoints.
673 F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p
674 f:2:TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, disassemble_info *info:vma, info:::legacy_print_insn::0
675 f:2:SKIP_TRAMPOLINE_CODE:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc:::generic_skip_trampoline_code::0
676
677
678 # For SVR4 shared libraries, each call goes through a small piece of
679 # trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
680 # to nonzero if we are currently stopped in one of these.
681 f:2:IN_SOLIB_CALL_TRAMPOLINE:int:in_solib_call_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_call_trampoline::0
682
683 # Some systems also have trampoline code for returning from shared libs.
684 f:2:IN_SOLIB_RETURN_TRAMPOLINE:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_return_trampoline::0
685
686 # Sigtramp is a routine that the kernel calls (which then calls the
687 # signal handler). On most machines it is a library routine that is
688 # linked into the executable.
689 #
690 # This macro, given a program counter value and the name of the
691 # function in which that PC resides (which can be null if the name is
692 # not known), returns nonzero if the PC and name show that we are in
693 # sigtramp.
694 #
695 # On most machines just see if the name is sigtramp (and if we have
696 # no name, assume we are not in sigtramp).
697 #
698 # FIXME: cagney/2002-04-21: The function find_pc_partial_function
699 # calls find_pc_sect_partial_function() which calls PC_IN_SIGTRAMP.
700 # This means PC_IN_SIGTRAMP function can't be implemented by doing its
701 # own local NAME lookup.
702 #
703 # FIXME: cagney/2002-04-21: PC_IN_SIGTRAMP is something of a mess.
704 # Some code also depends on SIGTRAMP_START and SIGTRAMP_END but other
705 # does not.
706 f:2:PC_IN_SIGTRAMP:int:pc_in_sigtramp:CORE_ADDR pc, char *name:pc, name:::legacy_pc_in_sigtramp::0
707 F:2:SIGTRAMP_START:CORE_ADDR:sigtramp_start:CORE_ADDR pc:pc
708 F:2:SIGTRAMP_END:CORE_ADDR:sigtramp_end:CORE_ADDR pc:pc
709 # A target might have problems with watchpoints as soon as the stack
710 # frame of the current function has been destroyed. This mostly happens
711 # as the first action in a funtion's epilogue. in_function_epilogue_p()
712 # is defined to return a non-zero value if either the given addr is one
713 # instruction after the stack destroying instruction up to the trailing
714 # return instruction or if we can figure out that the stack frame has
715 # already been invalidated regardless of the value of addr. Targets
716 # which don't suffer from that problem could just let this functionality
717 # untouched.
718 m:::int:in_function_epilogue_p:CORE_ADDR addr:addr::0:generic_in_function_epilogue_p::0
719 # Given a vector of command-line arguments, return a newly allocated
720 # string which, when passed to the create_inferior function, will be
721 # parsed (on Unix systems, by the shell) to yield the same vector.
722 # This function should call error() if the argument vector is not
723 # representable for this target or if this target does not support
724 # command-line arguments.
725 # ARGC is the number of elements in the vector.
726 # ARGV is an array of strings, one per argument.
727 m::CONSTRUCT_INFERIOR_ARGUMENTS:char *:construct_inferior_arguments:int argc, char **argv:argc, argv:::construct_inferior_arguments::0
728 f:2:ELF_MAKE_MSYMBOL_SPECIAL:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym:::default_elf_make_msymbol_special::0
729 f:2:COFF_MAKE_MSYMBOL_SPECIAL:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym:::default_coff_make_msymbol_special::0
730 v:2:NAME_OF_MALLOC:const char *:name_of_malloc::::"malloc":"malloc"::0:%s:NAME_OF_MALLOC
731 v:2:CANNOT_STEP_BREAKPOINT:int:cannot_step_breakpoint::::0:0::0
732 v:2:HAVE_NONSTEPPABLE_WATCHPOINT:int:have_nonsteppable_watchpoint::::0:0::0
733 F:2:ADDRESS_CLASS_TYPE_FLAGS:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
734 M:2:ADDRESS_CLASS_TYPE_FLAGS_TO_NAME:const char *:address_class_type_flags_to_name:int type_flags:type_flags
735 M:2:ADDRESS_CLASS_NAME_TO_TYPE_FLAGS:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
736 # Is a register in a group
737 m:::int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup:::default_register_reggroup_p::0
738 # Fetch the pointer to the ith function argument.
739 F::FETCH_POINTER_ARGUMENT:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
740 EOF
741 }
742
743 #
744 # The .log file
745 #
746 exec > new-gdbarch.log
747 function_list | while do_read
748 do
749 cat <<EOF
750 ${class} ${macro}(${actual})
751 ${returntype} ${function} ($formal)${attrib}
752 EOF
753 for r in ${read}
754 do
755 eval echo \"\ \ \ \ ${r}=\${${r}}\"
756 done
757 if class_is_predicate_p && fallback_default_p
758 then
759 echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
760 kill $$
761 exit 1
762 fi
763 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
764 then
765 echo "Error: postdefault is useless when invalid_p=0" 1>&2
766 kill $$
767 exit 1
768 fi
769 if class_is_multiarch_p
770 then
771 if class_is_predicate_p ; then :
772 elif test "x${predefault}" = "x"
773 then
774 echo "Error: pure multi-arch function must have a predefault" 1>&2
775 kill $$
776 exit 1
777 fi
778 fi
779 echo ""
780 done
781
782 exec 1>&2
783 compare_new gdbarch.log
784
785
786 copyright ()
787 {
788 cat <<EOF
789 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
790
791 /* Dynamic architecture support for GDB, the GNU debugger.
792 Copyright 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
793
794 This file is part of GDB.
795
796 This program is free software; you can redistribute it and/or modify
797 it under the terms of the GNU General Public License as published by
798 the Free Software Foundation; either version 2 of the License, or
799 (at your option) any later version.
800
801 This program is distributed in the hope that it will be useful,
802 but WITHOUT ANY WARRANTY; without even the implied warranty of
803 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
804 GNU General Public License for more details.
805
806 You should have received a copy of the GNU General Public License
807 along with this program; if not, write to the Free Software
808 Foundation, Inc., 59 Temple Place - Suite 330,
809 Boston, MA 02111-1307, USA. */
810
811 /* This file was created with the aid of \`\`gdbarch.sh''.
812
813 The Bourne shell script \`\`gdbarch.sh'' creates the files
814 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
815 against the existing \`\`gdbarch.[hc]''. Any differences found
816 being reported.
817
818 If editing this file, please also run gdbarch.sh and merge any
819 changes into that script. Conversely, when making sweeping changes
820 to this file, modifying gdbarch.sh and using its output may prove
821 easier. */
822
823 EOF
824 }
825
826 #
827 # The .h file
828 #
829
830 exec > new-gdbarch.h
831 copyright
832 cat <<EOF
833 #ifndef GDBARCH_H
834 #define GDBARCH_H
835
836 #include "dis-asm.h" /* Get defs for disassemble_info, which unfortunately is a typedef. */
837
838 struct floatformat;
839 struct ui_file;
840 struct frame_info;
841 struct value;
842 struct objfile;
843 struct minimal_symbol;
844 struct regcache;
845 struct reggroup;
846
847 extern struct gdbarch *current_gdbarch;
848
849
850 /* If any of the following are defined, the target wasn't correctly
851 converted. */
852
853 #if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
854 #error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
855 #endif
856 EOF
857
858 # function typedef's
859 printf "\n"
860 printf "\n"
861 printf "/* The following are pre-initialized by GDBARCH. */\n"
862 function_list | while do_read
863 do
864 if class_is_info_p
865 then
866 printf "\n"
867 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
868 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
869 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
870 printf "#error \"Non multi-arch definition of ${macro}\"\n"
871 printf "#endif\n"
872 printf "#if !defined (${macro})\n"
873 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
874 printf "#endif\n"
875 fi
876 done
877
878 # function typedef's
879 printf "\n"
880 printf "\n"
881 printf "/* The following are initialized by the target dependent code. */\n"
882 function_list | while do_read
883 do
884 if [ -n "${comment}" ]
885 then
886 echo "${comment}" | sed \
887 -e '2 s,#,/*,' \
888 -e '3,$ s,#, ,' \
889 -e '$ s,$, */,'
890 fi
891 if class_is_multiarch_p
892 then
893 if class_is_predicate_p
894 then
895 printf "\n"
896 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
897 fi
898 else
899 if class_is_predicate_p
900 then
901 printf "\n"
902 printf "#if defined (${macro})\n"
903 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
904 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
905 printf "#if !defined (${macro}_P)\n"
906 printf "#define ${macro}_P() (1)\n"
907 printf "#endif\n"
908 printf "#endif\n"
909 printf "\n"
910 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
911 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro}_P)\n"
912 printf "#error \"Non multi-arch definition of ${macro}\"\n"
913 printf "#endif\n"
914 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro}_P)\n"
915 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
916 printf "#endif\n"
917 fi
918 fi
919 if class_is_variable_p
920 then
921 printf "\n"
922 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
923 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
924 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
925 printf "#error \"Non multi-arch definition of ${macro}\"\n"
926 printf "#endif\n"
927 printf "#if !defined (${macro})\n"
928 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
929 printf "#endif\n"
930 fi
931 if class_is_function_p
932 then
933 printf "\n"
934 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
935 then
936 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
937 elif class_is_multiarch_p
938 then
939 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
940 else
941 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
942 fi
943 if [ "x${formal}" = "xvoid" ]
944 then
945 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
946 else
947 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
948 fi
949 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
950 if class_is_multiarch_p ; then :
951 else
952 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
953 printf "#error \"Non multi-arch definition of ${macro}\"\n"
954 printf "#endif\n"
955 if [ "x${actual}" = "x" ]
956 then
957 d="#define ${macro}() (gdbarch_${function} (current_gdbarch))"
958 elif [ "x${actual}" = "x-" ]
959 then
960 d="#define ${macro} (gdbarch_${function} (current_gdbarch))"
961 else
962 d="#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))"
963 fi
964 printf "#if !defined (${macro})\n"
965 if [ "x${actual}" = "x" ]
966 then
967 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
968 elif [ "x${actual}" = "x-" ]
969 then
970 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
971 else
972 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
973 fi
974 printf "#endif\n"
975 fi
976 fi
977 done
978
979 # close it off
980 cat <<EOF
981
982 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
983
984
985 /* Mechanism for co-ordinating the selection of a specific
986 architecture.
987
988 GDB targets (*-tdep.c) can register an interest in a specific
989 architecture. Other GDB components can register a need to maintain
990 per-architecture data.
991
992 The mechanisms below ensures that there is only a loose connection
993 between the set-architecture command and the various GDB
994 components. Each component can independently register their need
995 to maintain architecture specific data with gdbarch.
996
997 Pragmatics:
998
999 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1000 didn't scale.
1001
1002 The more traditional mega-struct containing architecture specific
1003 data for all the various GDB components was also considered. Since
1004 GDB is built from a variable number of (fairly independent)
1005 components it was determined that the global aproach was not
1006 applicable. */
1007
1008
1009 /* Register a new architectural family with GDB.
1010
1011 Register support for the specified ARCHITECTURE with GDB. When
1012 gdbarch determines that the specified architecture has been
1013 selected, the corresponding INIT function is called.
1014
1015 --
1016
1017 The INIT function takes two parameters: INFO which contains the
1018 information available to gdbarch about the (possibly new)
1019 architecture; ARCHES which is a list of the previously created
1020 \`\`struct gdbarch'' for this architecture.
1021
1022 The INFO parameter is, as far as possible, be pre-initialized with
1023 information obtained from INFO.ABFD or the previously selected
1024 architecture.
1025
1026 The ARCHES parameter is a linked list (sorted most recently used)
1027 of all the previously created architures for this architecture
1028 family. The (possibly NULL) ARCHES->gdbarch can used to access
1029 values from the previously selected architecture for this
1030 architecture family. The global \`\`current_gdbarch'' shall not be
1031 used.
1032
1033 The INIT function shall return any of: NULL - indicating that it
1034 doesn't recognize the selected architecture; an existing \`\`struct
1035 gdbarch'' from the ARCHES list - indicating that the new
1036 architecture is just a synonym for an earlier architecture (see
1037 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1038 - that describes the selected architecture (see gdbarch_alloc()).
1039
1040 The DUMP_TDEP function shall print out all target specific values.
1041 Care should be taken to ensure that the function works in both the
1042 multi-arch and non- multi-arch cases. */
1043
1044 struct gdbarch_list
1045 {
1046 struct gdbarch *gdbarch;
1047 struct gdbarch_list *next;
1048 };
1049
1050 struct gdbarch_info
1051 {
1052 /* Use default: NULL (ZERO). */
1053 const struct bfd_arch_info *bfd_arch_info;
1054
1055 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1056 int byte_order;
1057
1058 /* Use default: NULL (ZERO). */
1059 bfd *abfd;
1060
1061 /* Use default: NULL (ZERO). */
1062 struct gdbarch_tdep_info *tdep_info;
1063
1064 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1065 enum gdb_osabi osabi;
1066 };
1067
1068 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1069 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1070
1071 /* DEPRECATED - use gdbarch_register() */
1072 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1073
1074 extern void gdbarch_register (enum bfd_architecture architecture,
1075 gdbarch_init_ftype *,
1076 gdbarch_dump_tdep_ftype *);
1077
1078
1079 /* Return a freshly allocated, NULL terminated, array of the valid
1080 architecture names. Since architectures are registered during the
1081 _initialize phase this function only returns useful information
1082 once initialization has been completed. */
1083
1084 extern const char **gdbarch_printable_names (void);
1085
1086
1087 /* Helper function. Search the list of ARCHES for a GDBARCH that
1088 matches the information provided by INFO. */
1089
1090 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1091
1092
1093 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1094 basic initialization using values obtained from the INFO andTDEP
1095 parameters. set_gdbarch_*() functions are called to complete the
1096 initialization of the object. */
1097
1098 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1099
1100
1101 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1102 It is assumed that the caller freeds the \`\`struct
1103 gdbarch_tdep''. */
1104
1105 extern void gdbarch_free (struct gdbarch *);
1106
1107
1108 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1109 obstack. The memory is freed when the corresponding architecture
1110 is also freed. */
1111
1112 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1113 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1114 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1115
1116
1117 /* Helper function. Force an update of the current architecture.
1118
1119 The actual architecture selected is determined by INFO, \`\`(gdb) set
1120 architecture'' et.al., the existing architecture and BFD's default
1121 architecture. INFO should be initialized to zero and then selected
1122 fields should be updated.
1123
1124 Returns non-zero if the update succeeds */
1125
1126 extern int gdbarch_update_p (struct gdbarch_info info);
1127
1128
1129
1130 /* Register per-architecture data-pointer.
1131
1132 Reserve space for a per-architecture data-pointer. An identifier
1133 for the reserved data-pointer is returned. That identifer should
1134 be saved in a local static variable.
1135
1136 The per-architecture data-pointer is either initialized explicitly
1137 (set_gdbarch_data()) or implicitly (by INIT() via a call to
1138 gdbarch_data()).
1139
1140 Memory for the per-architecture data shall be allocated using
1141 gdbarch_obstack_zalloc. That memory will be deleted when the
1142 corresponding architecture object is deleted.
1143
1144 When a previously created architecture is re-selected, the
1145 per-architecture data-pointer for that previous architecture is
1146 restored. INIT() is not re-called.
1147
1148 Multiple registrarants for any architecture are allowed (and
1149 strongly encouraged). */
1150
1151 struct gdbarch_data;
1152
1153 typedef void *(gdbarch_data_init_ftype) (struct gdbarch *gdbarch);
1154 extern struct gdbarch_data *register_gdbarch_data (gdbarch_data_init_ftype *init);
1155 extern void set_gdbarch_data (struct gdbarch *gdbarch,
1156 struct gdbarch_data *data,
1157 void *pointer);
1158
1159 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1160
1161
1162 /* Register per-architecture memory region.
1163
1164 Provide a memory-region swap mechanism. Per-architecture memory
1165 region are created. These memory regions are swapped whenever the
1166 architecture is changed. For a new architecture, the memory region
1167 is initialized with zero (0) and the INIT function is called.
1168
1169 Memory regions are swapped / initialized in the order that they are
1170 registered. NULL DATA and/or INIT values can be specified.
1171
1172 New code should use register_gdbarch_data(). */
1173
1174 typedef void (gdbarch_swap_ftype) (void);
1175 extern void register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1176 #define REGISTER_GDBARCH_SWAP(VAR) register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1177
1178
1179
1180 /* The target-system-dependent byte order is dynamic */
1181
1182 extern int target_byte_order;
1183 #ifndef TARGET_BYTE_ORDER
1184 #define TARGET_BYTE_ORDER (target_byte_order + 0)
1185 #endif
1186
1187 extern int target_byte_order_auto;
1188 #ifndef TARGET_BYTE_ORDER_AUTO
1189 #define TARGET_BYTE_ORDER_AUTO (target_byte_order_auto + 0)
1190 #endif
1191
1192
1193
1194 /* The target-system-dependent BFD architecture is dynamic */
1195
1196 extern int target_architecture_auto;
1197 #ifndef TARGET_ARCHITECTURE_AUTO
1198 #define TARGET_ARCHITECTURE_AUTO (target_architecture_auto + 0)
1199 #endif
1200
1201 extern const struct bfd_arch_info *target_architecture;
1202 #ifndef TARGET_ARCHITECTURE
1203 #define TARGET_ARCHITECTURE (target_architecture + 0)
1204 #endif
1205
1206
1207 /* The target-system-dependent disassembler is semi-dynamic */
1208
1209 /* Use gdb_disassemble, and gdbarch_print_insn instead. */
1210 extern int (*deprecated_tm_print_insn) (bfd_vma, disassemble_info*);
1211
1212 /* Use set_gdbarch_print_insn instead. */
1213 extern disassemble_info deprecated_tm_print_insn_info;
1214
1215 /* Set the dynamic target-system-dependent parameters (architecture,
1216 byte-order, ...) using information found in the BFD */
1217
1218 extern void set_gdbarch_from_file (bfd *);
1219
1220
1221 /* Initialize the current architecture to the "first" one we find on
1222 our list. */
1223
1224 extern void initialize_current_architecture (void);
1225
1226 /* For non-multiarched targets, do any initialization of the default
1227 gdbarch object necessary after the _initialize_MODULE functions
1228 have run. */
1229 extern void initialize_non_multiarch (void);
1230
1231 /* gdbarch trace variable */
1232 extern int gdbarch_debug;
1233
1234 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1235
1236 #endif
1237 EOF
1238 exec 1>&2
1239 #../move-if-change new-gdbarch.h gdbarch.h
1240 compare_new gdbarch.h
1241
1242
1243 #
1244 # C file
1245 #
1246
1247 exec > new-gdbarch.c
1248 copyright
1249 cat <<EOF
1250
1251 #include "defs.h"
1252 #include "arch-utils.h"
1253
1254 #include "gdbcmd.h"
1255 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1256 #include "symcat.h"
1257
1258 #include "floatformat.h"
1259
1260 #include "gdb_assert.h"
1261 #include "gdb_string.h"
1262 #include "gdb-events.h"
1263 #include "reggroups.h"
1264 #include "osabi.h"
1265 #include "symfile.h" /* For entry_point_address. */
1266 #include "gdb_obstack.h"
1267
1268 /* Static function declarations */
1269
1270 static void verify_gdbarch (struct gdbarch *gdbarch);
1271 static void alloc_gdbarch_data (struct gdbarch *);
1272 static void init_gdbarch_swap (struct gdbarch *);
1273 static void clear_gdbarch_swap (struct gdbarch *);
1274 static void swapout_gdbarch_swap (struct gdbarch *);
1275 static void swapin_gdbarch_swap (struct gdbarch *);
1276
1277 /* Non-zero if we want to trace architecture code. */
1278
1279 #ifndef GDBARCH_DEBUG
1280 #define GDBARCH_DEBUG 0
1281 #endif
1282 int gdbarch_debug = GDBARCH_DEBUG;
1283
1284 EOF
1285
1286 # gdbarch open the gdbarch object
1287 printf "\n"
1288 printf "/* Maintain the struct gdbarch object */\n"
1289 printf "\n"
1290 printf "struct gdbarch\n"
1291 printf "{\n"
1292 printf " /* Has this architecture been fully initialized? */\n"
1293 printf " int initialized_p;\n"
1294 printf "\n"
1295 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1296 printf " struct obstack *obstack;\n"
1297 printf "\n"
1298 printf " /* basic architectural information */\n"
1299 function_list | while do_read
1300 do
1301 if class_is_info_p
1302 then
1303 printf " ${returntype} ${function};\n"
1304 fi
1305 done
1306 printf "\n"
1307 printf " /* target specific vector. */\n"
1308 printf " struct gdbarch_tdep *tdep;\n"
1309 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1310 printf "\n"
1311 printf " /* per-architecture data-pointers */\n"
1312 printf " unsigned nr_data;\n"
1313 printf " void **data;\n"
1314 printf "\n"
1315 printf " /* per-architecture swap-regions */\n"
1316 printf " struct gdbarch_swap *swap;\n"
1317 printf "\n"
1318 cat <<EOF
1319 /* Multi-arch values.
1320
1321 When extending this structure you must:
1322
1323 Add the field below.
1324
1325 Declare set/get functions and define the corresponding
1326 macro in gdbarch.h.
1327
1328 gdbarch_alloc(): If zero/NULL is not a suitable default,
1329 initialize the new field.
1330
1331 verify_gdbarch(): Confirm that the target updated the field
1332 correctly.
1333
1334 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1335 field is dumped out
1336
1337 \`\`startup_gdbarch()'': Append an initial value to the static
1338 variable (base values on the host's c-type system).
1339
1340 get_gdbarch(): Implement the set/get functions (probably using
1341 the macro's as shortcuts).
1342
1343 */
1344
1345 EOF
1346 function_list | while do_read
1347 do
1348 if class_is_variable_p
1349 then
1350 printf " ${returntype} ${function};\n"
1351 elif class_is_function_p
1352 then
1353 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
1354 fi
1355 done
1356 printf "};\n"
1357
1358 # A pre-initialized vector
1359 printf "\n"
1360 printf "\n"
1361 cat <<EOF
1362 /* The default architecture uses host values (for want of a better
1363 choice). */
1364 EOF
1365 printf "\n"
1366 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1367 printf "\n"
1368 printf "struct gdbarch startup_gdbarch =\n"
1369 printf "{\n"
1370 printf " 1, /* Always initialized. */\n"
1371 printf " NULL, /* The obstack. */\n"
1372 printf " /* basic architecture information */\n"
1373 function_list | while do_read
1374 do
1375 if class_is_info_p
1376 then
1377 printf " ${staticdefault}, /* ${function} */\n"
1378 fi
1379 done
1380 cat <<EOF
1381 /* target specific vector and its dump routine */
1382 NULL, NULL,
1383 /*per-architecture data-pointers and swap regions */
1384 0, NULL, NULL,
1385 /* Multi-arch values */
1386 EOF
1387 function_list | while do_read
1388 do
1389 if class_is_function_p || class_is_variable_p
1390 then
1391 printf " ${staticdefault}, /* ${function} */\n"
1392 fi
1393 done
1394 cat <<EOF
1395 /* startup_gdbarch() */
1396 };
1397
1398 struct gdbarch *current_gdbarch = &startup_gdbarch;
1399
1400 /* Do any initialization needed for a non-multiarch configuration
1401 after the _initialize_MODULE functions have been run. */
1402 void
1403 initialize_non_multiarch (void)
1404 {
1405 alloc_gdbarch_data (&startup_gdbarch);
1406 /* Ensure that all swap areas are zeroed so that they again think
1407 they are starting from scratch. */
1408 clear_gdbarch_swap (&startup_gdbarch);
1409 init_gdbarch_swap (&startup_gdbarch);
1410 }
1411 EOF
1412
1413 # Create a new gdbarch struct
1414 printf "\n"
1415 printf "\n"
1416 cat <<EOF
1417 /* Create a new \`\`struct gdbarch'' based on information provided by
1418 \`\`struct gdbarch_info''. */
1419 EOF
1420 printf "\n"
1421 cat <<EOF
1422 struct gdbarch *
1423 gdbarch_alloc (const struct gdbarch_info *info,
1424 struct gdbarch_tdep *tdep)
1425 {
1426 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1427 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1428 the current local architecture and not the previous global
1429 architecture. This ensures that the new architectures initial
1430 values are not influenced by the previous architecture. Once
1431 everything is parameterised with gdbarch, this will go away. */
1432 struct gdbarch *current_gdbarch;
1433
1434 /* Create an obstack for allocating all the per-architecture memory,
1435 then use that to allocate the architecture vector. */
1436 struct obstack *obstack = XMALLOC (struct obstack);
1437 obstack_init (obstack);
1438 current_gdbarch = obstack_alloc (obstack, sizeof (*current_gdbarch));
1439 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1440 current_gdbarch->obstack = obstack;
1441
1442 alloc_gdbarch_data (current_gdbarch);
1443
1444 current_gdbarch->tdep = tdep;
1445 EOF
1446 printf "\n"
1447 function_list | while do_read
1448 do
1449 if class_is_info_p
1450 then
1451 printf " current_gdbarch->${function} = info->${function};\n"
1452 fi
1453 done
1454 printf "\n"
1455 printf " /* Force the explicit initialization of these. */\n"
1456 function_list | while do_read
1457 do
1458 if class_is_function_p || class_is_variable_p
1459 then
1460 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1461 then
1462 printf " current_gdbarch->${function} = ${predefault};\n"
1463 fi
1464 fi
1465 done
1466 cat <<EOF
1467 /* gdbarch_alloc() */
1468
1469 return current_gdbarch;
1470 }
1471 EOF
1472
1473 # Free a gdbarch struct.
1474 printf "\n"
1475 printf "\n"
1476 cat <<EOF
1477 /* Allocate extra space using the per-architecture obstack. */
1478
1479 void *
1480 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1481 {
1482 void *data = obstack_alloc (arch->obstack, size);
1483 memset (data, 0, size);
1484 return data;
1485 }
1486
1487
1488 /* Free a gdbarch struct. This should never happen in normal
1489 operation --- once you've created a gdbarch, you keep it around.
1490 However, if an architecture's init function encounters an error
1491 building the structure, it may need to clean up a partially
1492 constructed gdbarch. */
1493
1494 void
1495 gdbarch_free (struct gdbarch *arch)
1496 {
1497 struct obstack *obstack;
1498 gdb_assert (arch != NULL);
1499 gdb_assert (!arch->initialized_p);
1500 obstack = arch->obstack;
1501 obstack_free (obstack, 0); /* Includes the ARCH. */
1502 xfree (obstack);
1503 }
1504 EOF
1505
1506 # verify a new architecture
1507 printf "\n"
1508 printf "\n"
1509 printf "/* Ensure that all values in a GDBARCH are reasonable. */\n"
1510 printf "\n"
1511 cat <<EOF
1512 static void
1513 verify_gdbarch (struct gdbarch *gdbarch)
1514 {
1515 struct ui_file *log;
1516 struct cleanup *cleanups;
1517 long dummy;
1518 char *buf;
1519 log = mem_fileopen ();
1520 cleanups = make_cleanup_ui_file_delete (log);
1521 /* fundamental */
1522 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1523 fprintf_unfiltered (log, "\n\tbyte-order");
1524 if (gdbarch->bfd_arch_info == NULL)
1525 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1526 /* Check those that need to be defined for the given multi-arch level. */
1527 EOF
1528 function_list | while do_read
1529 do
1530 if class_is_function_p || class_is_variable_p
1531 then
1532 if [ "x${invalid_p}" = "x0" ]
1533 then
1534 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1535 elif class_is_predicate_p
1536 then
1537 printf " /* Skip verify of ${function}, has predicate */\n"
1538 # FIXME: See do_read for potential simplification
1539 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1540 then
1541 printf " if (${invalid_p})\n"
1542 printf " gdbarch->${function} = ${postdefault};\n"
1543 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1544 then
1545 printf " if (gdbarch->${function} == ${predefault})\n"
1546 printf " gdbarch->${function} = ${postdefault};\n"
1547 elif [ -n "${postdefault}" ]
1548 then
1549 printf " if (gdbarch->${function} == 0)\n"
1550 printf " gdbarch->${function} = ${postdefault};\n"
1551 elif [ -n "${invalid_p}" ]
1552 then
1553 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1554 printf " && (${invalid_p}))\n"
1555 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1556 elif [ -n "${predefault}" ]
1557 then
1558 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1559 printf " && (gdbarch->${function} == ${predefault}))\n"
1560 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1561 fi
1562 fi
1563 done
1564 cat <<EOF
1565 buf = ui_file_xstrdup (log, &dummy);
1566 make_cleanup (xfree, buf);
1567 if (strlen (buf) > 0)
1568 internal_error (__FILE__, __LINE__,
1569 "verify_gdbarch: the following are invalid ...%s",
1570 buf);
1571 do_cleanups (cleanups);
1572 }
1573 EOF
1574
1575 # dump the structure
1576 printf "\n"
1577 printf "\n"
1578 cat <<EOF
1579 /* Print out the details of the current architecture. */
1580
1581 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1582 just happens to match the global variable \`\`current_gdbarch''. That
1583 way macros refering to that variable get the local and not the global
1584 version - ulgh. Once everything is parameterised with gdbarch, this
1585 will go away. */
1586
1587 void
1588 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1589 {
1590 fprintf_unfiltered (file,
1591 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1592 GDB_MULTI_ARCH);
1593 EOF
1594 function_list | sort -t: -k 3 | while do_read
1595 do
1596 # First the predicate
1597 if class_is_predicate_p
1598 then
1599 if class_is_multiarch_p
1600 then
1601 printf " fprintf_unfiltered (file,\n"
1602 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1603 printf " gdbarch_${function}_p (current_gdbarch));\n"
1604 else
1605 printf "#ifdef ${macro}_P\n"
1606 printf " fprintf_unfiltered (file,\n"
1607 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1608 printf " \"${macro}_P()\",\n"
1609 printf " XSTRING (${macro}_P ()));\n"
1610 printf " fprintf_unfiltered (file,\n"
1611 printf " \"gdbarch_dump: ${macro}_P() = %%d\\\\n\",\n"
1612 printf " ${macro}_P ());\n"
1613 printf "#endif\n"
1614 fi
1615 fi
1616 # multiarch functions don't have macros.
1617 if class_is_multiarch_p
1618 then
1619 printf " fprintf_unfiltered (file,\n"
1620 printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1621 printf " (long) current_gdbarch->${function});\n"
1622 continue
1623 fi
1624 # Print the macro definition.
1625 printf "#ifdef ${macro}\n"
1626 if class_is_function_p
1627 then
1628 printf " fprintf_unfiltered (file,\n"
1629 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1630 printf " \"${macro}(${actual})\",\n"
1631 printf " XSTRING (${macro} (${actual})));\n"
1632 else
1633 printf " fprintf_unfiltered (file,\n"
1634 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1635 printf " XSTRING (${macro}));\n"
1636 fi
1637 if [ "x${print_p}" = "x()" ]
1638 then
1639 printf " gdbarch_dump_${function} (current_gdbarch);\n"
1640 elif [ "x${print_p}" = "x0" ]
1641 then
1642 printf " /* skip print of ${macro}, print_p == 0. */\n"
1643 elif [ -n "${print_p}" ]
1644 then
1645 printf " if (${print_p})\n"
1646 printf " fprintf_unfiltered (file,\n"
1647 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1648 printf " ${print});\n"
1649 elif class_is_function_p
1650 then
1651 printf " fprintf_unfiltered (file,\n"
1652 printf " \"gdbarch_dump: ${macro} = <0x%%08lx>\\\\n\",\n"
1653 printf " (long) current_gdbarch->${function}\n"
1654 printf " /*${macro} ()*/);\n"
1655 else
1656 printf " fprintf_unfiltered (file,\n"
1657 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1658 printf " ${print});\n"
1659 fi
1660 printf "#endif\n"
1661 done
1662 cat <<EOF
1663 if (current_gdbarch->dump_tdep != NULL)
1664 current_gdbarch->dump_tdep (current_gdbarch, file);
1665 }
1666 EOF
1667
1668
1669 # GET/SET
1670 printf "\n"
1671 cat <<EOF
1672 struct gdbarch_tdep *
1673 gdbarch_tdep (struct gdbarch *gdbarch)
1674 {
1675 if (gdbarch_debug >= 2)
1676 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1677 return gdbarch->tdep;
1678 }
1679 EOF
1680 printf "\n"
1681 function_list | while do_read
1682 do
1683 if class_is_predicate_p
1684 then
1685 printf "\n"
1686 printf "int\n"
1687 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1688 printf "{\n"
1689 printf " gdb_assert (gdbarch != NULL);\n"
1690 printf " return ${predicate};\n"
1691 printf "}\n"
1692 fi
1693 if class_is_function_p
1694 then
1695 printf "\n"
1696 printf "${returntype}\n"
1697 if [ "x${formal}" = "xvoid" ]
1698 then
1699 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1700 else
1701 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1702 fi
1703 printf "{\n"
1704 printf " gdb_assert (gdbarch != NULL);\n"
1705 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1706 if class_is_predicate_p && test -n "${predefault}"
1707 then
1708 # Allow a call to a function with a predicate.
1709 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1710 fi
1711 printf " if (gdbarch_debug >= 2)\n"
1712 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1713 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1714 then
1715 if class_is_multiarch_p
1716 then
1717 params="gdbarch"
1718 else
1719 params=""
1720 fi
1721 else
1722 if class_is_multiarch_p
1723 then
1724 params="gdbarch, ${actual}"
1725 else
1726 params="${actual}"
1727 fi
1728 fi
1729 if [ "x${returntype}" = "xvoid" ]
1730 then
1731 printf " gdbarch->${function} (${params});\n"
1732 else
1733 printf " return gdbarch->${function} (${params});\n"
1734 fi
1735 printf "}\n"
1736 printf "\n"
1737 printf "void\n"
1738 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1739 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1740 printf "{\n"
1741 printf " gdbarch->${function} = ${function};\n"
1742 printf "}\n"
1743 elif class_is_variable_p
1744 then
1745 printf "\n"
1746 printf "${returntype}\n"
1747 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1748 printf "{\n"
1749 printf " gdb_assert (gdbarch != NULL);\n"
1750 if [ "x${invalid_p}" = "x0" ]
1751 then
1752 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1753 elif [ -n "${invalid_p}" ]
1754 then
1755 printf " /* Check variable is valid. */\n"
1756 printf " gdb_assert (!(${invalid_p}));\n"
1757 elif [ -n "${predefault}" ]
1758 then
1759 printf " /* Check variable changed from pre-default. */\n"
1760 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1761 fi
1762 printf " if (gdbarch_debug >= 2)\n"
1763 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1764 printf " return gdbarch->${function};\n"
1765 printf "}\n"
1766 printf "\n"
1767 printf "void\n"
1768 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1769 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1770 printf "{\n"
1771 printf " gdbarch->${function} = ${function};\n"
1772 printf "}\n"
1773 elif class_is_info_p
1774 then
1775 printf "\n"
1776 printf "${returntype}\n"
1777 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1778 printf "{\n"
1779 printf " gdb_assert (gdbarch != NULL);\n"
1780 printf " if (gdbarch_debug >= 2)\n"
1781 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1782 printf " return gdbarch->${function};\n"
1783 printf "}\n"
1784 fi
1785 done
1786
1787 # All the trailing guff
1788 cat <<EOF
1789
1790
1791 /* Keep a registry of per-architecture data-pointers required by GDB
1792 modules. */
1793
1794 struct gdbarch_data
1795 {
1796 unsigned index;
1797 int init_p;
1798 gdbarch_data_init_ftype *init;
1799 };
1800
1801 struct gdbarch_data_registration
1802 {
1803 struct gdbarch_data *data;
1804 struct gdbarch_data_registration *next;
1805 };
1806
1807 struct gdbarch_data_registry
1808 {
1809 unsigned nr;
1810 struct gdbarch_data_registration *registrations;
1811 };
1812
1813 struct gdbarch_data_registry gdbarch_data_registry =
1814 {
1815 0, NULL,
1816 };
1817
1818 struct gdbarch_data *
1819 register_gdbarch_data (gdbarch_data_init_ftype *init)
1820 {
1821 struct gdbarch_data_registration **curr;
1822 /* Append the new registraration. */
1823 for (curr = &gdbarch_data_registry.registrations;
1824 (*curr) != NULL;
1825 curr = &(*curr)->next);
1826 (*curr) = XMALLOC (struct gdbarch_data_registration);
1827 (*curr)->next = NULL;
1828 (*curr)->data = XMALLOC (struct gdbarch_data);
1829 (*curr)->data->index = gdbarch_data_registry.nr++;
1830 (*curr)->data->init = init;
1831 (*curr)->data->init_p = 1;
1832 return (*curr)->data;
1833 }
1834
1835
1836 /* Create/delete the gdbarch data vector. */
1837
1838 static void
1839 alloc_gdbarch_data (struct gdbarch *gdbarch)
1840 {
1841 gdb_assert (gdbarch->data == NULL);
1842 gdbarch->nr_data = gdbarch_data_registry.nr;
1843 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1844 }
1845
1846 /* Initialize the current value of the specified per-architecture
1847 data-pointer. */
1848
1849 void
1850 set_gdbarch_data (struct gdbarch *gdbarch,
1851 struct gdbarch_data *data,
1852 void *pointer)
1853 {
1854 gdb_assert (data->index < gdbarch->nr_data);
1855 gdb_assert (gdbarch->data[data->index] == NULL);
1856 gdbarch->data[data->index] = pointer;
1857 }
1858
1859 /* Return the current value of the specified per-architecture
1860 data-pointer. */
1861
1862 void *
1863 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1864 {
1865 gdb_assert (data->index < gdbarch->nr_data);
1866 /* The data-pointer isn't initialized, call init() to get a value but
1867 only if the architecture initializaiton has completed. Otherwise
1868 punt - hope that the caller knows what they are doing. */
1869 if (gdbarch->data[data->index] == NULL
1870 && gdbarch->initialized_p)
1871 {
1872 /* Be careful to detect an initialization cycle. */
1873 gdb_assert (data->init_p);
1874 data->init_p = 0;
1875 gdb_assert (data->init != NULL);
1876 gdbarch->data[data->index] = data->init (gdbarch);
1877 data->init_p = 1;
1878 gdb_assert (gdbarch->data[data->index] != NULL);
1879 }
1880 return gdbarch->data[data->index];
1881 }
1882
1883
1884
1885 /* Keep a registry of swapped data required by GDB modules. */
1886
1887 struct gdbarch_swap
1888 {
1889 void *swap;
1890 struct gdbarch_swap_registration *source;
1891 struct gdbarch_swap *next;
1892 };
1893
1894 struct gdbarch_swap_registration
1895 {
1896 void *data;
1897 unsigned long sizeof_data;
1898 gdbarch_swap_ftype *init;
1899 struct gdbarch_swap_registration *next;
1900 };
1901
1902 struct gdbarch_swap_registry
1903 {
1904 int nr;
1905 struct gdbarch_swap_registration *registrations;
1906 };
1907
1908 struct gdbarch_swap_registry gdbarch_swap_registry =
1909 {
1910 0, NULL,
1911 };
1912
1913 void
1914 register_gdbarch_swap (void *data,
1915 unsigned long sizeof_data,
1916 gdbarch_swap_ftype *init)
1917 {
1918 struct gdbarch_swap_registration **rego;
1919 for (rego = &gdbarch_swap_registry.registrations;
1920 (*rego) != NULL;
1921 rego = &(*rego)->next);
1922 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1923 (*rego)->next = NULL;
1924 (*rego)->init = init;
1925 (*rego)->data = data;
1926 (*rego)->sizeof_data = sizeof_data;
1927 }
1928
1929 static void
1930 clear_gdbarch_swap (struct gdbarch *gdbarch)
1931 {
1932 struct gdbarch_swap *curr;
1933 for (curr = gdbarch->swap;
1934 curr != NULL;
1935 curr = curr->next)
1936 {
1937 memset (curr->source->data, 0, curr->source->sizeof_data);
1938 }
1939 }
1940
1941 static void
1942 init_gdbarch_swap (struct gdbarch *gdbarch)
1943 {
1944 struct gdbarch_swap_registration *rego;
1945 struct gdbarch_swap **curr = &gdbarch->swap;
1946 for (rego = gdbarch_swap_registry.registrations;
1947 rego != NULL;
1948 rego = rego->next)
1949 {
1950 if (rego->data != NULL)
1951 {
1952 (*curr) = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct gdbarch_swap);
1953 (*curr)->source = rego;
1954 (*curr)->swap = gdbarch_obstack_zalloc (gdbarch, rego->sizeof_data);
1955 (*curr)->next = NULL;
1956 curr = &(*curr)->next;
1957 }
1958 if (rego->init != NULL)
1959 rego->init ();
1960 }
1961 }
1962
1963 static void
1964 swapout_gdbarch_swap (struct gdbarch *gdbarch)
1965 {
1966 struct gdbarch_swap *curr;
1967 for (curr = gdbarch->swap;
1968 curr != NULL;
1969 curr = curr->next)
1970 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1971 }
1972
1973 static void
1974 swapin_gdbarch_swap (struct gdbarch *gdbarch)
1975 {
1976 struct gdbarch_swap *curr;
1977 for (curr = gdbarch->swap;
1978 curr != NULL;
1979 curr = curr->next)
1980 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
1981 }
1982
1983
1984 /* Keep a registry of the architectures known by GDB. */
1985
1986 struct gdbarch_registration
1987 {
1988 enum bfd_architecture bfd_architecture;
1989 gdbarch_init_ftype *init;
1990 gdbarch_dump_tdep_ftype *dump_tdep;
1991 struct gdbarch_list *arches;
1992 struct gdbarch_registration *next;
1993 };
1994
1995 static struct gdbarch_registration *gdbarch_registry = NULL;
1996
1997 static void
1998 append_name (const char ***buf, int *nr, const char *name)
1999 {
2000 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2001 (*buf)[*nr] = name;
2002 *nr += 1;
2003 }
2004
2005 const char **
2006 gdbarch_printable_names (void)
2007 {
2008 /* Accumulate a list of names based on the registed list of
2009 architectures. */
2010 enum bfd_architecture a;
2011 int nr_arches = 0;
2012 const char **arches = NULL;
2013 struct gdbarch_registration *rego;
2014 for (rego = gdbarch_registry;
2015 rego != NULL;
2016 rego = rego->next)
2017 {
2018 const struct bfd_arch_info *ap;
2019 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2020 if (ap == NULL)
2021 internal_error (__FILE__, __LINE__,
2022 "gdbarch_architecture_names: multi-arch unknown");
2023 do
2024 {
2025 append_name (&arches, &nr_arches, ap->printable_name);
2026 ap = ap->next;
2027 }
2028 while (ap != NULL);
2029 }
2030 append_name (&arches, &nr_arches, NULL);
2031 return arches;
2032 }
2033
2034
2035 void
2036 gdbarch_register (enum bfd_architecture bfd_architecture,
2037 gdbarch_init_ftype *init,
2038 gdbarch_dump_tdep_ftype *dump_tdep)
2039 {
2040 struct gdbarch_registration **curr;
2041 const struct bfd_arch_info *bfd_arch_info;
2042 /* Check that BFD recognizes this architecture */
2043 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2044 if (bfd_arch_info == NULL)
2045 {
2046 internal_error (__FILE__, __LINE__,
2047 "gdbarch: Attempt to register unknown architecture (%d)",
2048 bfd_architecture);
2049 }
2050 /* Check that we haven't seen this architecture before */
2051 for (curr = &gdbarch_registry;
2052 (*curr) != NULL;
2053 curr = &(*curr)->next)
2054 {
2055 if (bfd_architecture == (*curr)->bfd_architecture)
2056 internal_error (__FILE__, __LINE__,
2057 "gdbarch: Duplicate registraration of architecture (%s)",
2058 bfd_arch_info->printable_name);
2059 }
2060 /* log it */
2061 if (gdbarch_debug)
2062 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2063 bfd_arch_info->printable_name,
2064 (long) init);
2065 /* Append it */
2066 (*curr) = XMALLOC (struct gdbarch_registration);
2067 (*curr)->bfd_architecture = bfd_architecture;
2068 (*curr)->init = init;
2069 (*curr)->dump_tdep = dump_tdep;
2070 (*curr)->arches = NULL;
2071 (*curr)->next = NULL;
2072 }
2073
2074 void
2075 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2076 gdbarch_init_ftype *init)
2077 {
2078 gdbarch_register (bfd_architecture, init, NULL);
2079 }
2080
2081
2082 /* Look for an architecture using gdbarch_info. Base search on only
2083 BFD_ARCH_INFO and BYTE_ORDER. */
2084
2085 struct gdbarch_list *
2086 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2087 const struct gdbarch_info *info)
2088 {
2089 for (; arches != NULL; arches = arches->next)
2090 {
2091 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2092 continue;
2093 if (info->byte_order != arches->gdbarch->byte_order)
2094 continue;
2095 if (info->osabi != arches->gdbarch->osabi)
2096 continue;
2097 return arches;
2098 }
2099 return NULL;
2100 }
2101
2102
2103 /* Update the current architecture. Return ZERO if the update request
2104 failed. */
2105
2106 int
2107 gdbarch_update_p (struct gdbarch_info info)
2108 {
2109 struct gdbarch *new_gdbarch;
2110 struct gdbarch *old_gdbarch;
2111 struct gdbarch_registration *rego;
2112
2113 /* Fill in missing parts of the INFO struct using a number of
2114 sources: \`\`set ...''; INFOabfd supplied; existing target. */
2115
2116 /* \`\`(gdb) set architecture ...'' */
2117 if (info.bfd_arch_info == NULL
2118 && !TARGET_ARCHITECTURE_AUTO)
2119 info.bfd_arch_info = TARGET_ARCHITECTURE;
2120 if (info.bfd_arch_info == NULL
2121 && info.abfd != NULL
2122 && bfd_get_arch (info.abfd) != bfd_arch_unknown
2123 && bfd_get_arch (info.abfd) != bfd_arch_obscure)
2124 info.bfd_arch_info = bfd_get_arch_info (info.abfd);
2125 if (info.bfd_arch_info == NULL)
2126 info.bfd_arch_info = TARGET_ARCHITECTURE;
2127
2128 /* \`\`(gdb) set byte-order ...'' */
2129 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2130 && !TARGET_BYTE_ORDER_AUTO)
2131 info.byte_order = TARGET_BYTE_ORDER;
2132 /* From the INFO struct. */
2133 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2134 && info.abfd != NULL)
2135 info.byte_order = (bfd_big_endian (info.abfd) ? BFD_ENDIAN_BIG
2136 : bfd_little_endian (info.abfd) ? BFD_ENDIAN_LITTLE
2137 : BFD_ENDIAN_UNKNOWN);
2138 /* From the current target. */
2139 if (info.byte_order == BFD_ENDIAN_UNKNOWN)
2140 info.byte_order = TARGET_BYTE_ORDER;
2141
2142 /* \`\`(gdb) set osabi ...'' is handled by gdbarch_lookup_osabi. */
2143 if (info.osabi == GDB_OSABI_UNINITIALIZED)
2144 info.osabi = gdbarch_lookup_osabi (info.abfd);
2145 if (info.osabi == GDB_OSABI_UNINITIALIZED)
2146 info.osabi = current_gdbarch->osabi;
2147
2148 /* Must have found some sort of architecture. */
2149 gdb_assert (info.bfd_arch_info != NULL);
2150
2151 if (gdbarch_debug)
2152 {
2153 fprintf_unfiltered (gdb_stdlog,
2154 "gdbarch_update: info.bfd_arch_info %s\n",
2155 (info.bfd_arch_info != NULL
2156 ? info.bfd_arch_info->printable_name
2157 : "(null)"));
2158 fprintf_unfiltered (gdb_stdlog,
2159 "gdbarch_update: info.byte_order %d (%s)\n",
2160 info.byte_order,
2161 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2162 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2163 : "default"));
2164 fprintf_unfiltered (gdb_stdlog,
2165 "gdbarch_update: info.osabi %d (%s)\n",
2166 info.osabi, gdbarch_osabi_name (info.osabi));
2167 fprintf_unfiltered (gdb_stdlog,
2168 "gdbarch_update: info.abfd 0x%lx\n",
2169 (long) info.abfd);
2170 fprintf_unfiltered (gdb_stdlog,
2171 "gdbarch_update: info.tdep_info 0x%lx\n",
2172 (long) info.tdep_info);
2173 }
2174
2175 /* Find the target that knows about this architecture. */
2176 for (rego = gdbarch_registry;
2177 rego != NULL;
2178 rego = rego->next)
2179 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2180 break;
2181 if (rego == NULL)
2182 {
2183 if (gdbarch_debug)
2184 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: No matching architecture\\n");
2185 return 0;
2186 }
2187
2188 /* Swap the data belonging to the old target out setting the
2189 installed data to zero. This stops the ->init() function trying
2190 to refer to the previous architecture's global data structures. */
2191 swapout_gdbarch_swap (current_gdbarch);
2192 clear_gdbarch_swap (current_gdbarch);
2193
2194 /* Save the previously selected architecture, setting the global to
2195 NULL. This stops ->init() trying to use the previous
2196 architecture's configuration. The previous architecture may not
2197 even be of the same architecture family. The most recent
2198 architecture of the same family is found at the head of the
2199 rego->arches list. */
2200 old_gdbarch = current_gdbarch;
2201 current_gdbarch = NULL;
2202
2203 /* Ask the target for a replacement architecture. */
2204 new_gdbarch = rego->init (info, rego->arches);
2205
2206 /* Did the target like it? No. Reject the change and revert to the
2207 old architecture. */
2208 if (new_gdbarch == NULL)
2209 {
2210 if (gdbarch_debug)
2211 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Target rejected architecture\\n");
2212 swapin_gdbarch_swap (old_gdbarch);
2213 current_gdbarch = old_gdbarch;
2214 return 0;
2215 }
2216
2217 /* Did the architecture change? No. Oops, put the old architecture
2218 back. */
2219 if (old_gdbarch == new_gdbarch)
2220 {
2221 if (gdbarch_debug)
2222 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Architecture 0x%08lx (%s) unchanged\\n",
2223 (long) new_gdbarch,
2224 new_gdbarch->bfd_arch_info->printable_name);
2225 swapin_gdbarch_swap (old_gdbarch);
2226 current_gdbarch = old_gdbarch;
2227 return 1;
2228 }
2229
2230 /* Is this a pre-existing architecture? Yes. Move it to the front
2231 of the list of architectures (keeping the list sorted Most
2232 Recently Used) and then copy it in. */
2233 {
2234 struct gdbarch_list **list;
2235 for (list = &rego->arches;
2236 (*list) != NULL;
2237 list = &(*list)->next)
2238 {
2239 if ((*list)->gdbarch == new_gdbarch)
2240 {
2241 struct gdbarch_list *this;
2242 if (gdbarch_debug)
2243 fprintf_unfiltered (gdb_stdlog,
2244 "gdbarch_update: Previous architecture 0x%08lx (%s) selected\n",
2245 (long) new_gdbarch,
2246 new_gdbarch->bfd_arch_info->printable_name);
2247 /* Unlink this. */
2248 this = (*list);
2249 (*list) = this->next;
2250 /* Insert in the front. */
2251 this->next = rego->arches;
2252 rego->arches = this;
2253 /* Copy the new architecture in. */
2254 current_gdbarch = new_gdbarch;
2255 swapin_gdbarch_swap (new_gdbarch);
2256 architecture_changed_event ();
2257 return 1;
2258 }
2259 }
2260 }
2261
2262 /* Prepend this new architecture to the architecture list (keep the
2263 list sorted Most Recently Used). */
2264 {
2265 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2266 this->next = rego->arches;
2267 this->gdbarch = new_gdbarch;
2268 rego->arches = this;
2269 }
2270
2271 /* Switch to this new architecture marking it initialized. */
2272 current_gdbarch = new_gdbarch;
2273 current_gdbarch->initialized_p = 1;
2274 if (gdbarch_debug)
2275 {
2276 fprintf_unfiltered (gdb_stdlog,
2277 "gdbarch_update: New architecture 0x%08lx (%s) selected\\n",
2278 (long) new_gdbarch,
2279 new_gdbarch->bfd_arch_info->printable_name);
2280 }
2281
2282 /* Check that the newly installed architecture is valid. Plug in
2283 any post init values. */
2284 new_gdbarch->dump_tdep = rego->dump_tdep;
2285 verify_gdbarch (new_gdbarch);
2286
2287 /* Initialize the per-architecture memory (swap) areas.
2288 CURRENT_GDBARCH must be update before these modules are
2289 called. */
2290 init_gdbarch_swap (new_gdbarch);
2291
2292 /* Initialize the per-architecture data. CURRENT_GDBARCH
2293 must be updated before these modules are called. */
2294 architecture_changed_event ();
2295
2296 if (gdbarch_debug)
2297 gdbarch_dump (current_gdbarch, gdb_stdlog);
2298
2299 return 1;
2300 }
2301
2302
2303 /* Disassembler */
2304
2305 /* Pointer to the target-dependent disassembly function. */
2306 int (*deprecated_tm_print_insn) (bfd_vma, disassemble_info *);
2307
2308 extern void _initialize_gdbarch (void);
2309
2310 void
2311 _initialize_gdbarch (void)
2312 {
2313 struct cmd_list_element *c;
2314
2315 add_show_from_set (add_set_cmd ("arch",
2316 class_maintenance,
2317 var_zinteger,
2318 (char *)&gdbarch_debug,
2319 "Set architecture debugging.\\n\\
2320 When non-zero, architecture debugging is enabled.", &setdebuglist),
2321 &showdebuglist);
2322 c = add_set_cmd ("archdebug",
2323 class_maintenance,
2324 var_zinteger,
2325 (char *)&gdbarch_debug,
2326 "Set architecture debugging.\\n\\
2327 When non-zero, architecture debugging is enabled.", &setlist);
2328
2329 deprecate_cmd (c, "set debug arch");
2330 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
2331 }
2332 EOF
2333
2334 # close things off
2335 exec 1>&2
2336 #../move-if-change new-gdbarch.c gdbarch.c
2337 compare_new gdbarch.c