Retire the now-unused gdbarch handle_segmentation_fault hook.
[binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998-2020 Free Software Foundation, Inc.
6 #
7 # This file is part of GDB.
8 #
9 # This program is free software; you can redistribute it and/or modify
10 # it under the terms of the GNU General Public License as published by
11 # the Free Software Foundation; either version 3 of the License, or
12 # (at your option) any later version.
13 #
14 # This program is distributed in the hope that it will be useful,
15 # but WITHOUT ANY WARRANTY; without even the implied warranty of
16 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 # GNU General Public License for more details.
18 #
19 # You should have received a copy of the GNU General Public License
20 # along with this program. If not, see <http://www.gnu.org/licenses/>.
21
22 # Make certain that the script is not running in an internationalized
23 # environment.
24 LANG=C ; export LANG
25 LC_ALL=C ; export LC_ALL
26
27 # Format of the input table
28 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
29
30 do_read ()
31 {
32 comment=""
33 class=""
34 # On some SH's, 'read' trims leading and trailing whitespace by
35 # default (e.g., bash), while on others (e.g., dash), it doesn't.
36 # Set IFS to empty to disable the trimming everywhere.
37 # shellcheck disable=SC2162
38 while IFS='' read line
39 do
40 if test "${line}" = ""
41 then
42 continue
43 elif test "${line}" = "#" -a "${comment}" = ""
44 then
45 continue
46 elif expr "${line}" : "#" > /dev/null
47 then
48 comment="${comment}
49 ${line}"
50 else
51
52 # The semantics of IFS varies between different SH's. Some
53 # treat ``;;' as three fields while some treat it as just two.
54 # Work around this by eliminating ``;;'' ....
55 line="$(echo "${line}" | sed -e 's/;;/; ;/g' -e 's/;;/; ;/g')"
56
57 OFS="${IFS}" ; IFS="[;]"
58 eval read "${read}" <<EOF
59 ${line}
60 EOF
61 IFS="${OFS}"
62
63 if test -n "${garbage_at_eol:-}"
64 then
65 echo "Garbage at end-of-line in ${line}" 1>&2
66 kill $$
67 exit 1
68 fi
69
70 # .... and then going back through each field and strip out those
71 # that ended up with just that space character.
72 for r in ${read}
73 do
74 if eval test "\"\${${r}}\" = ' '"
75 then
76 eval "${r}="
77 fi
78 done
79
80 case "${class}" in
81 m ) staticdefault="${predefault:-}" ;;
82 M ) staticdefault="0" ;;
83 * ) test "${staticdefault}" || staticdefault=0 ;;
84 esac
85
86 case "${class}" in
87 F | V | M )
88 case "${invalid_p:-}" in
89 "" )
90 if test -n "${predefault}"
91 then
92 #invalid_p="gdbarch->${function} == ${predefault}"
93 predicate="gdbarch->${function:-} != ${predefault}"
94 elif class_is_variable_p
95 then
96 predicate="gdbarch->${function} != 0"
97 elif class_is_function_p
98 then
99 predicate="gdbarch->${function} != NULL"
100 fi
101 ;;
102 * )
103 echo "Predicate function ${function} with invalid_p." 1>&2
104 kill $$
105 exit 1
106 ;;
107 esac
108 esac
109
110 #NOT YET: See gdbarch.log for basic verification of
111 # database
112
113 break
114 fi
115 done
116 if [ -n "${class}" ]
117 then
118 true
119 else
120 false
121 fi
122 }
123
124
125 fallback_default_p ()
126 {
127 { [ -n "${postdefault:-}" ] && [ "x${invalid_p}" != "x0" ]; } \
128 || { [ -n "${predefault}" ] && [ "x${invalid_p}" = "x0" ]; }
129 }
130
131 class_is_variable_p ()
132 {
133 case "${class}" in
134 *v* | *V* ) true ;;
135 * ) false ;;
136 esac
137 }
138
139 class_is_function_p ()
140 {
141 case "${class}" in
142 *f* | *F* | *m* | *M* ) true ;;
143 * ) false ;;
144 esac
145 }
146
147 class_is_multiarch_p ()
148 {
149 case "${class}" in
150 *m* | *M* ) true ;;
151 * ) false ;;
152 esac
153 }
154
155 class_is_predicate_p ()
156 {
157 case "${class}" in
158 *F* | *V* | *M* ) true ;;
159 * ) false ;;
160 esac
161 }
162
163 class_is_info_p ()
164 {
165 case "${class}" in
166 *i* ) true ;;
167 * ) false ;;
168 esac
169 }
170
171
172 # dump out/verify the doco
173 for field in ${read}
174 do
175 case ${field} in
176
177 class ) : ;;
178
179 # # -> line disable
180 # f -> function
181 # hiding a function
182 # F -> function + predicate
183 # hiding a function + predicate to test function validity
184 # v -> variable
185 # hiding a variable
186 # V -> variable + predicate
187 # hiding a variable + predicate to test variables validity
188 # i -> set from info
189 # hiding something from the ``struct info'' object
190 # m -> multi-arch function
191 # hiding a multi-arch function (parameterised with the architecture)
192 # M -> multi-arch function + predicate
193 # hiding a multi-arch function + predicate to test function validity
194
195 returntype ) : ;;
196
197 # For functions, the return type; for variables, the data type
198
199 function ) : ;;
200
201 # For functions, the member function name; for variables, the
202 # variable name. Member function names are always prefixed with
203 # ``gdbarch_'' for name-space purity.
204
205 formal ) : ;;
206
207 # The formal argument list. It is assumed that the formal
208 # argument list includes the actual name of each list element.
209 # A function with no arguments shall have ``void'' as the
210 # formal argument list.
211
212 actual ) : ;;
213
214 # The list of actual arguments. The arguments specified shall
215 # match the FORMAL list given above. Functions with out
216 # arguments leave this blank.
217
218 staticdefault ) : ;;
219
220 # To help with the GDB startup a static gdbarch object is
221 # created. STATICDEFAULT is the value to insert into that
222 # static gdbarch object. Since this a static object only
223 # simple expressions can be used.
224
225 # If STATICDEFAULT is empty, zero is used.
226
227 predefault ) : ;;
228
229 # An initial value to assign to MEMBER of the freshly
230 # malloc()ed gdbarch object. After initialization, the
231 # freshly malloc()ed object is passed to the target
232 # architecture code for further updates.
233
234 # If PREDEFAULT is empty, zero is used.
235
236 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
237 # INVALID_P are specified, PREDEFAULT will be used as the
238 # default for the non- multi-arch target.
239
240 # A zero PREDEFAULT function will force the fallback to call
241 # internal_error().
242
243 # Variable declarations can refer to ``gdbarch'' which will
244 # contain the current architecture. Care should be taken.
245
246 postdefault ) : ;;
247
248 # A value to assign to MEMBER of the new gdbarch object should
249 # the target architecture code fail to change the PREDEFAULT
250 # value.
251
252 # If POSTDEFAULT is empty, no post update is performed.
253
254 # If both INVALID_P and POSTDEFAULT are non-empty then
255 # INVALID_P will be used to determine if MEMBER should be
256 # changed to POSTDEFAULT.
257
258 # If a non-empty POSTDEFAULT and a zero INVALID_P are
259 # specified, POSTDEFAULT will be used as the default for the
260 # non- multi-arch target (regardless of the value of
261 # PREDEFAULT).
262
263 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
264
265 # Variable declarations can refer to ``gdbarch'' which
266 # will contain the current architecture. Care should be
267 # taken.
268
269 invalid_p ) : ;;
270
271 # A predicate equation that validates MEMBER. Non-zero is
272 # returned if the code creating the new architecture failed to
273 # initialize MEMBER or the initialized the member is invalid.
274 # If POSTDEFAULT is non-empty then MEMBER will be updated to
275 # that value. If POSTDEFAULT is empty then internal_error()
276 # is called.
277
278 # If INVALID_P is empty, a check that MEMBER is no longer
279 # equal to PREDEFAULT is used.
280
281 # The expression ``0'' disables the INVALID_P check making
282 # PREDEFAULT a legitimate value.
283
284 # See also PREDEFAULT and POSTDEFAULT.
285
286 print ) : ;;
287
288 # An optional expression that convers MEMBER to a value
289 # suitable for formatting using %s.
290
291 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
292 # or plongest (anything else) is used.
293
294 garbage_at_eol ) : ;;
295
296 # Catches stray fields.
297
298 *)
299 echo "Bad field ${field}"
300 exit 1;;
301 esac
302 done
303
304
305 function_list ()
306 {
307 # See below (DOCO) for description of each field
308 cat <<EOF
309 i;const struct bfd_arch_info *;bfd_arch_info;;;&bfd_default_arch_struct;;;;gdbarch_bfd_arch_info (gdbarch)->printable_name
310 #
311 i;enum bfd_endian;byte_order;;;BFD_ENDIAN_BIG
312 i;enum bfd_endian;byte_order_for_code;;;BFD_ENDIAN_BIG
313 #
314 i;enum gdb_osabi;osabi;;;GDB_OSABI_UNKNOWN
315 #
316 i;const struct target_desc *;target_desc;;;;;;;host_address_to_string (gdbarch->target_desc)
317
318 # Number of bits in a short or unsigned short for the target machine.
319 v;int;short_bit;;;8 * sizeof (short);2*TARGET_CHAR_BIT;;0
320 # Number of bits in an int or unsigned int for the target machine.
321 v;int;int_bit;;;8 * sizeof (int);4*TARGET_CHAR_BIT;;0
322 # Number of bits in a long or unsigned long for the target machine.
323 v;int;long_bit;;;8 * sizeof (long);4*TARGET_CHAR_BIT;;0
324 # Number of bits in a long long or unsigned long long for the target
325 # machine.
326 v;int;long_long_bit;;;8 * sizeof (LONGEST);2*gdbarch->long_bit;;0
327
328 # The ABI default bit-size and format for "half", "float", "double", and
329 # "long double". These bit/format pairs should eventually be combined
330 # into a single object. For the moment, just initialize them as a pair.
331 # Each format describes both the big and little endian layouts (if
332 # useful).
333
334 v;int;half_bit;;;16;2*TARGET_CHAR_BIT;;0
335 v;const struct floatformat **;half_format;;;;;floatformats_ieee_half;;pformat (gdbarch->half_format)
336 v;int;float_bit;;;8 * sizeof (float);4*TARGET_CHAR_BIT;;0
337 v;const struct floatformat **;float_format;;;;;floatformats_ieee_single;;pformat (gdbarch->float_format)
338 v;int;double_bit;;;8 * sizeof (double);8*TARGET_CHAR_BIT;;0
339 v;const struct floatformat **;double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->double_format)
340 v;int;long_double_bit;;;8 * sizeof (long double);8*TARGET_CHAR_BIT;;0
341 v;const struct floatformat **;long_double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->long_double_format)
342
343 # The ABI default bit-size for "wchar_t". wchar_t is a built-in type
344 # starting with C++11.
345 v;int;wchar_bit;;;8 * sizeof (wchar_t);4*TARGET_CHAR_BIT;;0
346 # One if \`wchar_t' is signed, zero if unsigned.
347 v;int;wchar_signed;;;1;-1;1
348
349 # Returns the floating-point format to be used for values of length LENGTH.
350 # NAME, if non-NULL, is the type name, which may be used to distinguish
351 # different target formats of the same length.
352 m;const struct floatformat **;floatformat_for_type;const char *name, int length;name, length;0;default_floatformat_for_type;;0
353
354 # For most targets, a pointer on the target and its representation as an
355 # address in GDB have the same size and "look the same". For such a
356 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
357 # / addr_bit will be set from it.
358 #
359 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
360 # also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
361 # gdbarch_address_to_pointer as well.
362 #
363 # ptr_bit is the size of a pointer on the target
364 v;int;ptr_bit;;;8 * sizeof (void*);gdbarch->int_bit;;0
365 # addr_bit is the size of a target address as represented in gdb
366 v;int;addr_bit;;;8 * sizeof (void*);0;gdbarch_ptr_bit (gdbarch);
367 #
368 # dwarf2_addr_size is the target address size as used in the Dwarf debug
369 # info. For .debug_frame FDEs, this is supposed to be the target address
370 # size from the associated CU header, and which is equivalent to the
371 # DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
372 # Unfortunately there is no good way to determine this value. Therefore
373 # dwarf2_addr_size simply defaults to the target pointer size.
374 #
375 # dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
376 # defined using the target's pointer size so far.
377 #
378 # Note that dwarf2_addr_size only needs to be redefined by a target if the
379 # GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
380 # and if Dwarf versions < 4 need to be supported.
381 v;int;dwarf2_addr_size;;;sizeof (void*);0;gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
382 #
383 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
384 v;int;char_signed;;;1;-1;1
385 #
386 F;CORE_ADDR;read_pc;readable_regcache *regcache;regcache
387 F;void;write_pc;struct regcache *regcache, CORE_ADDR val;regcache, val
388 # Function for getting target's idea of a frame pointer. FIXME: GDB's
389 # whole scheme for dealing with "frames" and "frame pointers" needs a
390 # serious shakedown.
391 m;void;virtual_frame_pointer;CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset;pc, frame_regnum, frame_offset;0;legacy_virtual_frame_pointer;;0
392 #
393 M;enum register_status;pseudo_register_read;readable_regcache *regcache, int cookednum, gdb_byte *buf;regcache, cookednum, buf
394 # Read a register into a new struct value. If the register is wholly
395 # or partly unavailable, this should call mark_value_bytes_unavailable
396 # as appropriate. If this is defined, then pseudo_register_read will
397 # never be called.
398 M;struct value *;pseudo_register_read_value;readable_regcache *regcache, int cookednum;regcache, cookednum
399 M;void;pseudo_register_write;struct regcache *regcache, int cookednum, const gdb_byte *buf;regcache, cookednum, buf
400 #
401 v;int;num_regs;;;0;-1
402 # This macro gives the number of pseudo-registers that live in the
403 # register namespace but do not get fetched or stored on the target.
404 # These pseudo-registers may be aliases for other registers,
405 # combinations of other registers, or they may be computed by GDB.
406 v;int;num_pseudo_regs;;;0;0;;0
407
408 # Assemble agent expression bytecode to collect pseudo-register REG.
409 # Return -1 if something goes wrong, 0 otherwise.
410 M;int;ax_pseudo_register_collect;struct agent_expr *ax, int reg;ax, reg
411
412 # Assemble agent expression bytecode to push the value of pseudo-register
413 # REG on the interpreter stack.
414 # Return -1 if something goes wrong, 0 otherwise.
415 M;int;ax_pseudo_register_push_stack;struct agent_expr *ax, int reg;ax, reg
416
417 # Some architectures can display additional information for specific
418 # signals.
419 # UIOUT is the output stream where the handler will place information.
420 M;void;report_signal_info;struct ui_out *uiout, enum gdb_signal siggnal;uiout, siggnal
421
422 # GDB's standard (or well known) register numbers. These can map onto
423 # a real register or a pseudo (computed) register or not be defined at
424 # all (-1).
425 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
426 v;int;sp_regnum;;;-1;-1;;0
427 v;int;pc_regnum;;;-1;-1;;0
428 v;int;ps_regnum;;;-1;-1;;0
429 v;int;fp0_regnum;;;0;-1;;0
430 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
431 m;int;stab_reg_to_regnum;int stab_regnr;stab_regnr;;no_op_reg_to_regnum;;0
432 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
433 m;int;ecoff_reg_to_regnum;int ecoff_regnr;ecoff_regnr;;no_op_reg_to_regnum;;0
434 # Convert from an sdb register number to an internal gdb register number.
435 m;int;sdb_reg_to_regnum;int sdb_regnr;sdb_regnr;;no_op_reg_to_regnum;;0
436 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
437 # Return -1 for bad REGNUM. Note: Several targets get this wrong.
438 m;int;dwarf2_reg_to_regnum;int dwarf2_regnr;dwarf2_regnr;;no_op_reg_to_regnum;;0
439 m;const char *;register_name;int regnr;regnr;;0
440
441 # Return the type of a register specified by the architecture. Only
442 # the register cache should call this function directly; others should
443 # use "register_type".
444 M;struct type *;register_type;int reg_nr;reg_nr
445
446 # Generate a dummy frame_id for THIS_FRAME assuming that the frame is
447 # a dummy frame. A dummy frame is created before an inferior call,
448 # the frame_id returned here must match the frame_id that was built
449 # for the inferior call. Usually this means the returned frame_id's
450 # stack address should match the address returned by
451 # gdbarch_push_dummy_call, and the returned frame_id's code address
452 # should match the address at which the breakpoint was set in the dummy
453 # frame.
454 m;struct frame_id;dummy_id;struct frame_info *this_frame;this_frame;;default_dummy_id;;0
455 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
456 # deprecated_fp_regnum.
457 v;int;deprecated_fp_regnum;;;-1;-1;;0
458
459 M;CORE_ADDR;push_dummy_call;struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, function_call_return_method return_method, CORE_ADDR struct_addr;function, regcache, bp_addr, nargs, args, sp, return_method, struct_addr
460 v;int;call_dummy_location;;;;AT_ENTRY_POINT;;0
461 M;CORE_ADDR;push_dummy_code;CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache;sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
462
463 # Return true if the code of FRAME is writable.
464 m;int;code_of_frame_writable;struct frame_info *frame;frame;;default_code_of_frame_writable;;0
465
466 m;void;print_registers_info;struct ui_file *file, struct frame_info *frame, int regnum, int all;file, frame, regnum, all;;default_print_registers_info;;0
467 m;void;print_float_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args;;default_print_float_info;;0
468 M;void;print_vector_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args
469 # MAP a GDB RAW register number onto a simulator register number. See
470 # also include/...-sim.h.
471 m;int;register_sim_regno;int reg_nr;reg_nr;;legacy_register_sim_regno;;0
472 m;int;cannot_fetch_register;int regnum;regnum;;cannot_register_not;;0
473 m;int;cannot_store_register;int regnum;regnum;;cannot_register_not;;0
474
475 # Determine the address where a longjmp will land and save this address
476 # in PC. Return nonzero on success.
477 #
478 # FRAME corresponds to the longjmp frame.
479 F;int;get_longjmp_target;struct frame_info *frame, CORE_ADDR *pc;frame, pc
480
481 #
482 v;int;believe_pcc_promotion;;;;;;;
483 #
484 m;int;convert_register_p;int regnum, struct type *type;regnum, type;0;generic_convert_register_p;;0
485 f;int;register_to_value;struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep;frame, regnum, type, buf, optimizedp, unavailablep;0
486 f;void;value_to_register;struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf;frame, regnum, type, buf;0
487 # Construct a value representing the contents of register REGNUM in
488 # frame FRAME_ID, interpreted as type TYPE. The routine needs to
489 # allocate and return a struct value with all value attributes
490 # (but not the value contents) filled in.
491 m;struct value *;value_from_register;struct type *type, int regnum, struct frame_id frame_id;type, regnum, frame_id;;default_value_from_register;;0
492 #
493 m;CORE_ADDR;pointer_to_address;struct type *type, const gdb_byte *buf;type, buf;;unsigned_pointer_to_address;;0
494 m;void;address_to_pointer;struct type *type, gdb_byte *buf, CORE_ADDR addr;type, buf, addr;;unsigned_address_to_pointer;;0
495 M;CORE_ADDR;integer_to_address;struct type *type, const gdb_byte *buf;type, buf
496
497 # Return the return-value convention that will be used by FUNCTION
498 # to return a value of type VALTYPE. FUNCTION may be NULL in which
499 # case the return convention is computed based only on VALTYPE.
500 #
501 # If READBUF is not NULL, extract the return value and save it in this buffer.
502 #
503 # If WRITEBUF is not NULL, it contains a return value which will be
504 # stored into the appropriate register. This can be used when we want
505 # to force the value returned by a function (see the "return" command
506 # for instance).
507 M;enum return_value_convention;return_value;struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf;function, valtype, regcache, readbuf, writebuf
508
509 # Return true if the return value of function is stored in the first hidden
510 # parameter. In theory, this feature should be language-dependent, specified
511 # by language and its ABI, such as C++. Unfortunately, compiler may
512 # implement it to a target-dependent feature. So that we need such hook here
513 # to be aware of this in GDB.
514 m;int;return_in_first_hidden_param_p;struct type *type;type;;default_return_in_first_hidden_param_p;;0
515
516 m;CORE_ADDR;skip_prologue;CORE_ADDR ip;ip;0;0
517 M;CORE_ADDR;skip_main_prologue;CORE_ADDR ip;ip
518 # On some platforms, a single function may provide multiple entry points,
519 # e.g. one that is used for function-pointer calls and a different one
520 # that is used for direct function calls.
521 # In order to ensure that breakpoints set on the function will trigger
522 # no matter via which entry point the function is entered, a platform
523 # may provide the skip_entrypoint callback. It is called with IP set
524 # to the main entry point of a function (as determined by the symbol table),
525 # and should return the address of the innermost entry point, where the
526 # actual breakpoint needs to be set. Note that skip_entrypoint is used
527 # by GDB common code even when debugging optimized code, where skip_prologue
528 # is not used.
529 M;CORE_ADDR;skip_entrypoint;CORE_ADDR ip;ip
530
531 f;int;inner_than;CORE_ADDR lhs, CORE_ADDR rhs;lhs, rhs;0;0
532 m;const gdb_byte *;breakpoint_from_pc;CORE_ADDR *pcptr, int *lenptr;pcptr, lenptr;0;default_breakpoint_from_pc;;0
533
534 # Return the breakpoint kind for this target based on *PCPTR.
535 m;int;breakpoint_kind_from_pc;CORE_ADDR *pcptr;pcptr;;0;
536
537 # Return the software breakpoint from KIND. KIND can have target
538 # specific meaning like the Z0 kind parameter.
539 # SIZE is set to the software breakpoint's length in memory.
540 m;const gdb_byte *;sw_breakpoint_from_kind;int kind, int *size;kind, size;;NULL;;0
541
542 # Return the breakpoint kind for this target based on the current
543 # processor state (e.g. the current instruction mode on ARM) and the
544 # *PCPTR. In default, it is gdbarch->breakpoint_kind_from_pc.
545 m;int;breakpoint_kind_from_current_state;struct regcache *regcache, CORE_ADDR *pcptr;regcache, pcptr;0;default_breakpoint_kind_from_current_state;;0
546
547 M;CORE_ADDR;adjust_breakpoint_address;CORE_ADDR bpaddr;bpaddr
548 m;int;memory_insert_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_insert_breakpoint;;0
549 m;int;memory_remove_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_remove_breakpoint;;0
550 v;CORE_ADDR;decr_pc_after_break;;;0;;;0
551
552 # A function can be addressed by either it's "pointer" (possibly a
553 # descriptor address) or "entry point" (first executable instruction).
554 # The method "convert_from_func_ptr_addr" converting the former to the
555 # latter. gdbarch_deprecated_function_start_offset is being used to implement
556 # a simplified subset of that functionality - the function's address
557 # corresponds to the "function pointer" and the function's start
558 # corresponds to the "function entry point" - and hence is redundant.
559
560 v;CORE_ADDR;deprecated_function_start_offset;;;0;;;0
561
562 # Return the remote protocol register number associated with this
563 # register. Normally the identity mapping.
564 m;int;remote_register_number;int regno;regno;;default_remote_register_number;;0
565
566 # Fetch the target specific address used to represent a load module.
567 F;CORE_ADDR;fetch_tls_load_module_address;struct objfile *objfile;objfile
568
569 # Return the thread-local address at OFFSET in the thread-local
570 # storage for the thread PTID and the shared library or executable
571 # file given by LM_ADDR. If that block of thread-local storage hasn't
572 # been allocated yet, this function may throw an error. LM_ADDR may
573 # be zero for statically linked multithreaded inferiors.
574
575 M;CORE_ADDR;get_thread_local_address;ptid_t ptid, CORE_ADDR lm_addr, CORE_ADDR offset;ptid, lm_addr, offset
576 #
577 v;CORE_ADDR;frame_args_skip;;;0;;;0
578 m;CORE_ADDR;unwind_pc;struct frame_info *next_frame;next_frame;;default_unwind_pc;;0
579 m;CORE_ADDR;unwind_sp;struct frame_info *next_frame;next_frame;;default_unwind_sp;;0
580 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
581 # frame-base. Enable frame-base before frame-unwind.
582 F;int;frame_num_args;struct frame_info *frame;frame
583 #
584 M;CORE_ADDR;frame_align;CORE_ADDR address;address
585 m;int;stabs_argument_has_addr;struct type *type;type;;default_stabs_argument_has_addr;;0
586 v;int;frame_red_zone_size
587 #
588 m;CORE_ADDR;convert_from_func_ptr_addr;CORE_ADDR addr, struct target_ops *targ;addr, targ;;convert_from_func_ptr_addr_identity;;0
589 # On some machines there are bits in addresses which are not really
590 # part of the address, but are used by the kernel, the hardware, etc.
591 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
592 # we get a "real" address such as one would find in a symbol table.
593 # This is used only for addresses of instructions, and even then I'm
594 # not sure it's used in all contexts. It exists to deal with there
595 # being a few stray bits in the PC which would mislead us, not as some
596 # sort of generic thing to handle alignment or segmentation (it's
597 # possible it should be in TARGET_READ_PC instead).
598 m;CORE_ADDR;addr_bits_remove;CORE_ADDR addr;addr;;core_addr_identity;;0
599
600 # On some machines, not all bits of an address word are significant.
601 # For example, on AArch64, the top bits of an address known as the "tag"
602 # are ignored by the kernel, the hardware, etc. and can be regarded as
603 # additional data associated with the address.
604 v;int;significant_addr_bit;;;;;;0
605
606 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
607 # indicates if the target needs software single step. An ISA method to
608 # implement it.
609 #
610 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
611 # target can single step. If not, then implement single step using breakpoints.
612 #
613 # Return a vector of addresses on which the software single step
614 # breakpoints should be inserted. NULL means software single step is
615 # not used.
616 # Multiple breakpoints may be inserted for some instructions such as
617 # conditional branch. However, each implementation must always evaluate
618 # the condition and only put the breakpoint at the branch destination if
619 # the condition is true, so that we ensure forward progress when stepping
620 # past a conditional branch to self.
621 F;std::vector<CORE_ADDR>;software_single_step;struct regcache *regcache;regcache
622
623 # Return non-zero if the processor is executing a delay slot and a
624 # further single-step is needed before the instruction finishes.
625 M;int;single_step_through_delay;struct frame_info *frame;frame
626 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
627 # disassembler. Perhaps objdump can handle it?
628 f;int;print_insn;bfd_vma vma, struct disassemble_info *info;vma, info;;default_print_insn;;0
629 f;CORE_ADDR;skip_trampoline_code;struct frame_info *frame, CORE_ADDR pc;frame, pc;;generic_skip_trampoline_code;;0
630
631
632 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
633 # evaluates non-zero, this is the address where the debugger will place
634 # a step-resume breakpoint to get us past the dynamic linker.
635 m;CORE_ADDR;skip_solib_resolver;CORE_ADDR pc;pc;;generic_skip_solib_resolver;;0
636 # Some systems also have trampoline code for returning from shared libs.
637 m;int;in_solib_return_trampoline;CORE_ADDR pc, const char *name;pc, name;;generic_in_solib_return_trampoline;;0
638
639 # Return true if PC lies inside an indirect branch thunk.
640 m;bool;in_indirect_branch_thunk;CORE_ADDR pc;pc;;default_in_indirect_branch_thunk;;0
641
642 # A target might have problems with watchpoints as soon as the stack
643 # frame of the current function has been destroyed. This mostly happens
644 # as the first action in a function's epilogue. stack_frame_destroyed_p()
645 # is defined to return a non-zero value if either the given addr is one
646 # instruction after the stack destroying instruction up to the trailing
647 # return instruction or if we can figure out that the stack frame has
648 # already been invalidated regardless of the value of addr. Targets
649 # which don't suffer from that problem could just let this functionality
650 # untouched.
651 m;int;stack_frame_destroyed_p;CORE_ADDR addr;addr;0;generic_stack_frame_destroyed_p;;0
652 # Process an ELF symbol in the minimal symbol table in a backend-specific
653 # way. Normally this hook is supposed to do nothing, however if required,
654 # then this hook can be used to apply tranformations to symbols that are
655 # considered special in some way. For example the MIPS backend uses it
656 # to interpret \`st_other' information to mark compressed code symbols so
657 # that they can be treated in the appropriate manner in the processing of
658 # the main symbol table and DWARF-2 records.
659 F;void;elf_make_msymbol_special;asymbol *sym, struct minimal_symbol *msym;sym, msym
660 f;void;coff_make_msymbol_special;int val, struct minimal_symbol *msym;val, msym;;default_coff_make_msymbol_special;;0
661 # Process a symbol in the main symbol table in a backend-specific way.
662 # Normally this hook is supposed to do nothing, however if required,
663 # then this hook can be used to apply tranformations to symbols that
664 # are considered special in some way. This is currently used by the
665 # MIPS backend to make sure compressed code symbols have the ISA bit
666 # set. This in turn is needed for symbol values seen in GDB to match
667 # the values used at the runtime by the program itself, for function
668 # and label references.
669 f;void;make_symbol_special;struct symbol *sym, struct objfile *objfile;sym, objfile;;default_make_symbol_special;;0
670 # Adjust the address retrieved from a DWARF-2 record other than a line
671 # entry in a backend-specific way. Normally this hook is supposed to
672 # return the address passed unchanged, however if that is incorrect for
673 # any reason, then this hook can be used to fix the address up in the
674 # required manner. This is currently used by the MIPS backend to make
675 # sure addresses in FDE, range records, etc. referring to compressed
676 # code have the ISA bit set, matching line information and the symbol
677 # table.
678 f;CORE_ADDR;adjust_dwarf2_addr;CORE_ADDR pc;pc;;default_adjust_dwarf2_addr;;0
679 # Adjust the address updated by a line entry in a backend-specific way.
680 # Normally this hook is supposed to return the address passed unchanged,
681 # however in the case of inconsistencies in these records, this hook can
682 # be used to fix them up in the required manner. This is currently used
683 # by the MIPS backend to make sure all line addresses in compressed code
684 # are presented with the ISA bit set, which is not always the case. This
685 # in turn ensures breakpoint addresses are correctly matched against the
686 # stop PC.
687 f;CORE_ADDR;adjust_dwarf2_line;CORE_ADDR addr, int rel;addr, rel;;default_adjust_dwarf2_line;;0
688 v;int;cannot_step_breakpoint;;;0;0;;0
689 # See comment in target.h about continuable, steppable and
690 # non-steppable watchpoints.
691 v;int;have_nonsteppable_watchpoint;;;0;0;;0
692 F;int;address_class_type_flags;int byte_size, int dwarf2_addr_class;byte_size, dwarf2_addr_class
693 M;const char *;address_class_type_flags_to_name;int type_flags;type_flags
694 # Execute vendor-specific DWARF Call Frame Instruction. OP is the instruction.
695 # FS are passed from the generic execute_cfa_program function.
696 m;bool;execute_dwarf_cfa_vendor_op;gdb_byte op, struct dwarf2_frame_state *fs;op, fs;;default_execute_dwarf_cfa_vendor_op;;0
697
698 # Return the appropriate type_flags for the supplied address class.
699 # This function should return 1 if the address class was recognized and
700 # type_flags was set, zero otherwise.
701 M;int;address_class_name_to_type_flags;const char *name, int *type_flags_ptr;name, type_flags_ptr
702 # Is a register in a group
703 m;int;register_reggroup_p;int regnum, struct reggroup *reggroup;regnum, reggroup;;default_register_reggroup_p;;0
704 # Fetch the pointer to the ith function argument.
705 F;CORE_ADDR;fetch_pointer_argument;struct frame_info *frame, int argi, struct type *type;frame, argi, type
706
707 # Iterate over all supported register notes in a core file. For each
708 # supported register note section, the iterator must call CB and pass
709 # CB_DATA unchanged. If REGCACHE is not NULL, the iterator can limit
710 # the supported register note sections based on the current register
711 # values. Otherwise it should enumerate all supported register note
712 # sections.
713 M;void;iterate_over_regset_sections;iterate_over_regset_sections_cb *cb, void *cb_data, const struct regcache *regcache;cb, cb_data, regcache
714
715 # Create core file notes
716 M;char *;make_corefile_notes;bfd *obfd, int *note_size;obfd, note_size
717
718 # Find core file memory regions
719 M;int;find_memory_regions;find_memory_region_ftype func, void *data;func, data
720
721 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
722 # core file into buffer READBUF with length LEN. Return the number of bytes read
723 # (zero indicates failure).
724 # failed, otherwise, return the red length of READBUF.
725 M;ULONGEST;core_xfer_shared_libraries;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len
726
727 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
728 # libraries list from core file into buffer READBUF with length LEN.
729 # Return the number of bytes read (zero indicates failure).
730 M;ULONGEST;core_xfer_shared_libraries_aix;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len
731
732 # How the core target converts a PTID from a core file to a string.
733 M;std::string;core_pid_to_str;ptid_t ptid;ptid
734
735 # How the core target extracts the name of a thread from a core file.
736 M;const char *;core_thread_name;struct thread_info *thr;thr
737
738 # Read offset OFFSET of TARGET_OBJECT_SIGNAL_INFO signal information
739 # from core file into buffer READBUF with length LEN. Return the number
740 # of bytes read (zero indicates EOF, a negative value indicates failure).
741 M;LONGEST;core_xfer_siginfo;gdb_byte *readbuf, ULONGEST offset, ULONGEST len; readbuf, offset, len
742
743 # BFD target to use when generating a core file.
744 V;const char *;gcore_bfd_target;;;0;0;;;pstring (gdbarch->gcore_bfd_target)
745
746 # If the elements of C++ vtables are in-place function descriptors rather
747 # than normal function pointers (which may point to code or a descriptor),
748 # set this to one.
749 v;int;vtable_function_descriptors;;;0;0;;0
750
751 # Set if the least significant bit of the delta is used instead of the least
752 # significant bit of the pfn for pointers to virtual member functions.
753 v;int;vbit_in_delta;;;0;0;;0
754
755 # Advance PC to next instruction in order to skip a permanent breakpoint.
756 f;void;skip_permanent_breakpoint;struct regcache *regcache;regcache;default_skip_permanent_breakpoint;default_skip_permanent_breakpoint;;0
757
758 # The maximum length of an instruction on this architecture in bytes.
759 V;ULONGEST;max_insn_length;;;0;0
760
761 # Copy the instruction at FROM to TO, and make any adjustments
762 # necessary to single-step it at that address.
763 #
764 # REGS holds the state the thread's registers will have before
765 # executing the copied instruction; the PC in REGS will refer to FROM,
766 # not the copy at TO. The caller should update it to point at TO later.
767 #
768 # Return a pointer to data of the architecture's choice to be passed
769 # to gdbarch_displaced_step_fixup.
770 #
771 # For a general explanation of displaced stepping and how GDB uses it,
772 # see the comments in infrun.c.
773 #
774 # The TO area is only guaranteed to have space for
775 # gdbarch_max_insn_length (arch) bytes, so this function must not
776 # write more bytes than that to that area.
777 #
778 # If you do not provide this function, GDB assumes that the
779 # architecture does not support displaced stepping.
780 #
781 # If the instruction cannot execute out of line, return NULL. The
782 # core falls back to stepping past the instruction in-line instead in
783 # that case.
784 M;displaced_step_closure_up;displaced_step_copy_insn;CORE_ADDR from, CORE_ADDR to, struct regcache *regs;from, to, regs
785
786 # Return true if GDB should use hardware single-stepping to execute
787 # the displaced instruction identified by CLOSURE. If false,
788 # GDB will simply restart execution at the displaced instruction
789 # location, and it is up to the target to ensure GDB will receive
790 # control again (e.g. by placing a software breakpoint instruction
791 # into the displaced instruction buffer).
792 #
793 # The default implementation returns false on all targets that
794 # provide a gdbarch_software_single_step routine, and true otherwise.
795 m;int;displaced_step_hw_singlestep;struct displaced_step_closure *closure;closure;;default_displaced_step_hw_singlestep;;0
796
797 # Fix up the state resulting from successfully single-stepping a
798 # displaced instruction, to give the result we would have gotten from
799 # stepping the instruction in its original location.
800 #
801 # REGS is the register state resulting from single-stepping the
802 # displaced instruction.
803 #
804 # CLOSURE is the result from the matching call to
805 # gdbarch_displaced_step_copy_insn.
806 #
807 # If you provide gdbarch_displaced_step_copy_insn.but not this
808 # function, then GDB assumes that no fixup is needed after
809 # single-stepping the instruction.
810 #
811 # For a general explanation of displaced stepping and how GDB uses it,
812 # see the comments in infrun.c.
813 M;void;displaced_step_fixup;struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs;closure, from, to, regs;;NULL
814
815 # Return the address of an appropriate place to put displaced
816 # instructions while we step over them. There need only be one such
817 # place, since we're only stepping one thread over a breakpoint at a
818 # time.
819 #
820 # For a general explanation of displaced stepping and how GDB uses it,
821 # see the comments in infrun.c.
822 m;CORE_ADDR;displaced_step_location;void;;;NULL;;(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
823
824 # Relocate an instruction to execute at a different address. OLDLOC
825 # is the address in the inferior memory where the instruction to
826 # relocate is currently at. On input, TO points to the destination
827 # where we want the instruction to be copied (and possibly adjusted)
828 # to. On output, it points to one past the end of the resulting
829 # instruction(s). The effect of executing the instruction at TO shall
830 # be the same as if executing it at FROM. For example, call
831 # instructions that implicitly push the return address on the stack
832 # should be adjusted to return to the instruction after OLDLOC;
833 # relative branches, and other PC-relative instructions need the
834 # offset adjusted; etc.
835 M;void;relocate_instruction;CORE_ADDR *to, CORE_ADDR from;to, from;;NULL
836
837 # Refresh overlay mapped state for section OSECT.
838 F;void;overlay_update;struct obj_section *osect;osect
839
840 M;const struct target_desc *;core_read_description;struct target_ops *target, bfd *abfd;target, abfd
841
842 # Set if the address in N_SO or N_FUN stabs may be zero.
843 v;int;sofun_address_maybe_missing;;;0;0;;0
844
845 # Parse the instruction at ADDR storing in the record execution log
846 # the registers REGCACHE and memory ranges that will be affected when
847 # the instruction executes, along with their current values.
848 # Return -1 if something goes wrong, 0 otherwise.
849 M;int;process_record;struct regcache *regcache, CORE_ADDR addr;regcache, addr
850
851 # Save process state after a signal.
852 # Return -1 if something goes wrong, 0 otherwise.
853 M;int;process_record_signal;struct regcache *regcache, enum gdb_signal signal;regcache, signal
854
855 # Signal translation: translate inferior's signal (target's) number
856 # into GDB's representation. The implementation of this method must
857 # be host independent. IOW, don't rely on symbols of the NAT_FILE
858 # header (the nm-*.h files), the host <signal.h> header, or similar
859 # headers. This is mainly used when cross-debugging core files ---
860 # "Live" targets hide the translation behind the target interface
861 # (target_wait, target_resume, etc.).
862 M;enum gdb_signal;gdb_signal_from_target;int signo;signo
863
864 # Signal translation: translate the GDB's internal signal number into
865 # the inferior's signal (target's) representation. The implementation
866 # of this method must be host independent. IOW, don't rely on symbols
867 # of the NAT_FILE header (the nm-*.h files), the host <signal.h>
868 # header, or similar headers.
869 # Return the target signal number if found, or -1 if the GDB internal
870 # signal number is invalid.
871 M;int;gdb_signal_to_target;enum gdb_signal signal;signal
872
873 # Extra signal info inspection.
874 #
875 # Return a type suitable to inspect extra signal information.
876 M;struct type *;get_siginfo_type;void;
877
878 # Record architecture-specific information from the symbol table.
879 M;void;record_special_symbol;struct objfile *objfile, asymbol *sym;objfile, sym
880
881 # Function for the 'catch syscall' feature.
882
883 # Get architecture-specific system calls information from registers.
884 M;LONGEST;get_syscall_number;thread_info *thread;thread
885
886 # The filename of the XML syscall for this architecture.
887 v;const char *;xml_syscall_file;;;0;0;;0;pstring (gdbarch->xml_syscall_file)
888
889 # Information about system calls from this architecture
890 v;struct syscalls_info *;syscalls_info;;;0;0;;0;host_address_to_string (gdbarch->syscalls_info)
891
892 # SystemTap related fields and functions.
893
894 # A NULL-terminated array of prefixes used to mark an integer constant
895 # on the architecture's assembly.
896 # For example, on x86 integer constants are written as:
897 #
898 # \$10 ;; integer constant 10
899 #
900 # in this case, this prefix would be the character \`\$\'.
901 v;const char *const *;stap_integer_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_prefixes)
902
903 # A NULL-terminated array of suffixes used to mark an integer constant
904 # on the architecture's assembly.
905 v;const char *const *;stap_integer_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_suffixes)
906
907 # A NULL-terminated array of prefixes used to mark a register name on
908 # the architecture's assembly.
909 # For example, on x86 the register name is written as:
910 #
911 # \%eax ;; register eax
912 #
913 # in this case, this prefix would be the character \`\%\'.
914 v;const char *const *;stap_register_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_prefixes)
915
916 # A NULL-terminated array of suffixes used to mark a register name on
917 # the architecture's assembly.
918 v;const char *const *;stap_register_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_suffixes)
919
920 # A NULL-terminated array of prefixes used to mark a register
921 # indirection on the architecture's assembly.
922 # For example, on x86 the register indirection is written as:
923 #
924 # \(\%eax\) ;; indirecting eax
925 #
926 # in this case, this prefix would be the charater \`\(\'.
927 #
928 # Please note that we use the indirection prefix also for register
929 # displacement, e.g., \`4\(\%eax\)\' on x86.
930 v;const char *const *;stap_register_indirection_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_prefixes)
931
932 # A NULL-terminated array of suffixes used to mark a register
933 # indirection on the architecture's assembly.
934 # For example, on x86 the register indirection is written as:
935 #
936 # \(\%eax\) ;; indirecting eax
937 #
938 # in this case, this prefix would be the charater \`\)\'.
939 #
940 # Please note that we use the indirection suffix also for register
941 # displacement, e.g., \`4\(\%eax\)\' on x86.
942 v;const char *const *;stap_register_indirection_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_suffixes)
943
944 # Prefix(es) used to name a register using GDB's nomenclature.
945 #
946 # For example, on PPC a register is represented by a number in the assembly
947 # language (e.g., \`10\' is the 10th general-purpose register). However,
948 # inside GDB this same register has an \`r\' appended to its name, so the 10th
949 # register would be represented as \`r10\' internally.
950 v;const char *;stap_gdb_register_prefix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_prefix)
951
952 # Suffix used to name a register using GDB's nomenclature.
953 v;const char *;stap_gdb_register_suffix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_suffix)
954
955 # Check if S is a single operand.
956 #
957 # Single operands can be:
958 # \- Literal integers, e.g. \`\$10\' on x86
959 # \- Register access, e.g. \`\%eax\' on x86
960 # \- Register indirection, e.g. \`\(\%eax\)\' on x86
961 # \- Register displacement, e.g. \`4\(\%eax\)\' on x86
962 #
963 # This function should check for these patterns on the string
964 # and return 1 if some were found, or zero otherwise. Please try to match
965 # as much info as you can from the string, i.e., if you have to match
966 # something like \`\(\%\', do not match just the \`\(\'.
967 M;int;stap_is_single_operand;const char *s;s
968
969 # Function used to handle a "special case" in the parser.
970 #
971 # A "special case" is considered to be an unknown token, i.e., a token
972 # that the parser does not know how to parse. A good example of special
973 # case would be ARM's register displacement syntax:
974 #
975 # [R0, #4] ;; displacing R0 by 4
976 #
977 # Since the parser assumes that a register displacement is of the form:
978 #
979 # <number> <indirection_prefix> <register_name> <indirection_suffix>
980 #
981 # it means that it will not be able to recognize and parse this odd syntax.
982 # Therefore, we should add a special case function that will handle this token.
983 #
984 # This function should generate the proper expression form of the expression
985 # using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
986 # and so on). It should also return 1 if the parsing was successful, or zero
987 # if the token was not recognized as a special token (in this case, returning
988 # zero means that the special parser is deferring the parsing to the generic
989 # parser), and should advance the buffer pointer (p->arg).
990 M;int;stap_parse_special_token;struct stap_parse_info *p;p
991
992 # Perform arch-dependent adjustments to a register name.
993 #
994 # In very specific situations, it may be necessary for the register
995 # name present in a SystemTap probe's argument to be handled in a
996 # special way. For example, on i386, GCC may over-optimize the
997 # register allocation and use smaller registers than necessary. In
998 # such cases, the client that is reading and evaluating the SystemTap
999 # probe (ourselves) will need to actually fetch values from the wider
1000 # version of the register in question.
1001 #
1002 # To illustrate the example, consider the following probe argument
1003 # (i386):
1004 #
1005 # 4@%ax
1006 #
1007 # This argument says that its value can be found at the %ax register,
1008 # which is a 16-bit register. However, the argument's prefix says
1009 # that its type is "uint32_t", which is 32-bit in size. Therefore, in
1010 # this case, GDB should actually fetch the probe's value from register
1011 # %eax, not %ax. In this scenario, this function would actually
1012 # replace the register name from %ax to %eax.
1013 #
1014 # The rationale for this can be found at PR breakpoints/24541.
1015 M;std::string;stap_adjust_register;struct stap_parse_info *p, const std::string \&regname, int regnum;p, regname, regnum
1016
1017 # DTrace related functions.
1018
1019 # The expression to compute the NARTGth+1 argument to a DTrace USDT probe.
1020 # NARG must be >= 0.
1021 M;void;dtrace_parse_probe_argument;struct expr_builder *builder, int narg;builder, narg
1022
1023 # True if the given ADDR does not contain the instruction sequence
1024 # corresponding to a disabled DTrace is-enabled probe.
1025 M;int;dtrace_probe_is_enabled;CORE_ADDR addr;addr
1026
1027 # Enable a DTrace is-enabled probe at ADDR.
1028 M;void;dtrace_enable_probe;CORE_ADDR addr;addr
1029
1030 # Disable a DTrace is-enabled probe at ADDR.
1031 M;void;dtrace_disable_probe;CORE_ADDR addr;addr
1032
1033 # True if the list of shared libraries is one and only for all
1034 # processes, as opposed to a list of shared libraries per inferior.
1035 # This usually means that all processes, although may or may not share
1036 # an address space, will see the same set of symbols at the same
1037 # addresses.
1038 v;int;has_global_solist;;;0;0;;0
1039
1040 # On some targets, even though each inferior has its own private
1041 # address space, the debug interface takes care of making breakpoints
1042 # visible to all address spaces automatically. For such cases,
1043 # this property should be set to true.
1044 v;int;has_global_breakpoints;;;0;0;;0
1045
1046 # True if inferiors share an address space (e.g., uClinux).
1047 m;int;has_shared_address_space;void;;;default_has_shared_address_space;;0
1048
1049 # True if a fast tracepoint can be set at an address.
1050 m;int;fast_tracepoint_valid_at;CORE_ADDR addr, std::string *msg;addr, msg;;default_fast_tracepoint_valid_at;;0
1051
1052 # Guess register state based on tracepoint location. Used for tracepoints
1053 # where no registers have been collected, but there's only one location,
1054 # allowing us to guess the PC value, and perhaps some other registers.
1055 # On entry, regcache has all registers marked as unavailable.
1056 m;void;guess_tracepoint_registers;struct regcache *regcache, CORE_ADDR addr;regcache, addr;;default_guess_tracepoint_registers;;0
1057
1058 # Return the "auto" target charset.
1059 f;const char *;auto_charset;void;;default_auto_charset;default_auto_charset;;0
1060 # Return the "auto" target wide charset.
1061 f;const char *;auto_wide_charset;void;;default_auto_wide_charset;default_auto_wide_charset;;0
1062
1063 # If non-empty, this is a file extension that will be opened in place
1064 # of the file extension reported by the shared library list.
1065 #
1066 # This is most useful for toolchains that use a post-linker tool,
1067 # where the names of the files run on the target differ in extension
1068 # compared to the names of the files GDB should load for debug info.
1069 v;const char *;solib_symbols_extension;;;;;;;pstring (gdbarch->solib_symbols_extension)
1070
1071 # If true, the target OS has DOS-based file system semantics. That
1072 # is, absolute paths include a drive name, and the backslash is
1073 # considered a directory separator.
1074 v;int;has_dos_based_file_system;;;0;0;;0
1075
1076 # Generate bytecodes to collect the return address in a frame.
1077 # Since the bytecodes run on the target, possibly with GDB not even
1078 # connected, the full unwinding machinery is not available, and
1079 # typically this function will issue bytecodes for one or more likely
1080 # places that the return address may be found.
1081 m;void;gen_return_address;struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope;ax, value, scope;;default_gen_return_address;;0
1082
1083 # Implement the "info proc" command.
1084 M;void;info_proc;const char *args, enum info_proc_what what;args, what
1085
1086 # Implement the "info proc" command for core files. Noe that there
1087 # are two "info_proc"-like methods on gdbarch -- one for core files,
1088 # one for live targets.
1089 M;void;core_info_proc;const char *args, enum info_proc_what what;args, what
1090
1091 # Iterate over all objfiles in the order that makes the most sense
1092 # for the architecture to make global symbol searches.
1093 #
1094 # CB is a callback function where OBJFILE is the objfile to be searched,
1095 # and CB_DATA a pointer to user-defined data (the same data that is passed
1096 # when calling this gdbarch method). The iteration stops if this function
1097 # returns nonzero.
1098 #
1099 # CB_DATA is a pointer to some user-defined data to be passed to
1100 # the callback.
1101 #
1102 # If not NULL, CURRENT_OBJFILE corresponds to the objfile being
1103 # inspected when the symbol search was requested.
1104 m;void;iterate_over_objfiles_in_search_order;iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile;cb, cb_data, current_objfile;0;default_iterate_over_objfiles_in_search_order;;0
1105
1106 # Ravenscar arch-dependent ops.
1107 v;struct ravenscar_arch_ops *;ravenscar_ops;;;NULL;NULL;;0;host_address_to_string (gdbarch->ravenscar_ops)
1108
1109 # Return non-zero if the instruction at ADDR is a call; zero otherwise.
1110 m;int;insn_is_call;CORE_ADDR addr;addr;;default_insn_is_call;;0
1111
1112 # Return non-zero if the instruction at ADDR is a return; zero otherwise.
1113 m;int;insn_is_ret;CORE_ADDR addr;addr;;default_insn_is_ret;;0
1114
1115 # Return non-zero if the instruction at ADDR is a jump; zero otherwise.
1116 m;int;insn_is_jump;CORE_ADDR addr;addr;;default_insn_is_jump;;0
1117
1118 # Return true if there's a program/permanent breakpoint planted in
1119 # memory at ADDRESS, return false otherwise.
1120 m;bool;program_breakpoint_here_p;CORE_ADDR address;address;;default_program_breakpoint_here_p;;0
1121
1122 # Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
1123 # Return 0 if *READPTR is already at the end of the buffer.
1124 # Return -1 if there is insufficient buffer for a whole entry.
1125 # Return 1 if an entry was read into *TYPEP and *VALP.
1126 M;int;auxv_parse;gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp;readptr, endptr, typep, valp
1127
1128 # Print the description of a single auxv entry described by TYPE and VAL
1129 # to FILE.
1130 m;void;print_auxv_entry;struct ui_file *file, CORE_ADDR type, CORE_ADDR val;file, type, val;;default_print_auxv_entry;;0
1131
1132 # Find the address range of the current inferior's vsyscall/vDSO, and
1133 # write it to *RANGE. If the vsyscall's length can't be determined, a
1134 # range with zero length is returned. Returns true if the vsyscall is
1135 # found, false otherwise.
1136 m;int;vsyscall_range;struct mem_range *range;range;;default_vsyscall_range;;0
1137
1138 # Allocate SIZE bytes of PROT protected page aligned memory in inferior.
1139 # PROT has GDB_MMAP_PROT_* bitmask format.
1140 # Throw an error if it is not possible. Returned address is always valid.
1141 f;CORE_ADDR;infcall_mmap;CORE_ADDR size, unsigned prot;size, prot;;default_infcall_mmap;;0
1142
1143 # Deallocate SIZE bytes of memory at ADDR in inferior from gdbarch_infcall_mmap.
1144 # Print a warning if it is not possible.
1145 f;void;infcall_munmap;CORE_ADDR addr, CORE_ADDR size;addr, size;;default_infcall_munmap;;0
1146
1147 # Return string (caller has to use xfree for it) with options for GCC
1148 # to produce code for this target, typically "-m64", "-m32" or "-m31".
1149 # These options are put before CU's DW_AT_producer compilation options so that
1150 # they can override it.
1151 m;std::string;gcc_target_options;void;;;default_gcc_target_options;;0
1152
1153 # Return a regular expression that matches names used by this
1154 # architecture in GNU configury triplets. The result is statically
1155 # allocated and must not be freed. The default implementation simply
1156 # returns the BFD architecture name, which is correct in nearly every
1157 # case.
1158 m;const char *;gnu_triplet_regexp;void;;;default_gnu_triplet_regexp;;0
1159
1160 # Return the size in 8-bit bytes of an addressable memory unit on this
1161 # architecture. This corresponds to the number of 8-bit bytes associated to
1162 # each address in memory.
1163 m;int;addressable_memory_unit_size;void;;;default_addressable_memory_unit_size;;0
1164
1165 # Functions for allowing a target to modify its disassembler options.
1166 v;const char *;disassembler_options_implicit;;;0;0;;0;pstring (gdbarch->disassembler_options_implicit)
1167 v;char **;disassembler_options;;;0;0;;0;pstring_ptr (gdbarch->disassembler_options)
1168 v;const disasm_options_and_args_t *;valid_disassembler_options;;;0;0;;0;host_address_to_string (gdbarch->valid_disassembler_options)
1169
1170 # Type alignment override method. Return the architecture specific
1171 # alignment required for TYPE. If there is no special handling
1172 # required for TYPE then return the value 0, GDB will then apply the
1173 # default rules as laid out in gdbtypes.c:type_align.
1174 m;ULONGEST;type_align;struct type *type;type;;default_type_align;;0
1175
1176 # Return a string containing any flags for the given PC in the given FRAME.
1177 f;std::string;get_pc_address_flags;frame_info *frame, CORE_ADDR pc;frame, pc;;default_get_pc_address_flags;;0
1178
1179 EOF
1180 }
1181
1182 #
1183 # The .log file
1184 #
1185 exec > gdbarch.log
1186 function_list | while do_read
1187 do
1188 cat <<EOF
1189 ${class} ${returntype:-} ${function} (${formal:-})
1190 EOF
1191 for r in ${read}
1192 do
1193 eval echo "\" ${r}=\${${r}}\""
1194 done
1195 if class_is_predicate_p && fallback_default_p
1196 then
1197 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
1198 kill $$
1199 exit 1
1200 fi
1201 if [ "x${invalid_p}" = "x0" ] && [ -n "${postdefault}" ]
1202 then
1203 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1204 kill $$
1205 exit 1
1206 fi
1207 if class_is_multiarch_p
1208 then
1209 if class_is_predicate_p ; then :
1210 elif test "x${predefault}" = "x"
1211 then
1212 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
1213 kill $$
1214 exit 1
1215 fi
1216 fi
1217 echo ""
1218 done
1219
1220 exec 1>&2
1221
1222
1223 copyright ()
1224 {
1225 cat <<EOF
1226 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1227 /* vi:set ro: */
1228
1229 /* Dynamic architecture support for GDB, the GNU debugger.
1230
1231 Copyright (C) 1998-2020 Free Software Foundation, Inc.
1232
1233 This file is part of GDB.
1234
1235 This program is free software; you can redistribute it and/or modify
1236 it under the terms of the GNU General Public License as published by
1237 the Free Software Foundation; either version 3 of the License, or
1238 (at your option) any later version.
1239
1240 This program is distributed in the hope that it will be useful,
1241 but WITHOUT ANY WARRANTY; without even the implied warranty of
1242 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1243 GNU General Public License for more details.
1244
1245 You should have received a copy of the GNU General Public License
1246 along with this program. If not, see <http://www.gnu.org/licenses/>. */
1247
1248 /* This file was created with the aid of \`\`gdbarch.sh''. */
1249
1250 EOF
1251 }
1252
1253 #
1254 # The .h file
1255 #
1256
1257 exec > new-gdbarch.h
1258 copyright
1259 cat <<EOF
1260 #ifndef GDBARCH_H
1261 #define GDBARCH_H
1262
1263 #include <vector>
1264 #include "frame.h"
1265 #include "dis-asm.h"
1266 #include "gdb_obstack.h"
1267 #include "infrun.h"
1268 #include "osabi.h"
1269
1270 struct floatformat;
1271 struct ui_file;
1272 struct value;
1273 struct objfile;
1274 struct obj_section;
1275 struct minimal_symbol;
1276 struct regcache;
1277 struct reggroup;
1278 struct regset;
1279 struct disassemble_info;
1280 struct target_ops;
1281 struct obstack;
1282 struct bp_target_info;
1283 struct target_desc;
1284 struct symbol;
1285 struct syscall;
1286 struct agent_expr;
1287 struct axs_value;
1288 struct stap_parse_info;
1289 struct expr_builder;
1290 struct ravenscar_arch_ops;
1291 struct mem_range;
1292 struct syscalls_info;
1293 struct thread_info;
1294 struct ui_out;
1295
1296 #include "regcache.h"
1297
1298 /* The architecture associated with the inferior through the
1299 connection to the target.
1300
1301 The architecture vector provides some information that is really a
1302 property of the inferior, accessed through a particular target:
1303 ptrace operations; the layout of certain RSP packets; the solib_ops
1304 vector; etc. To differentiate architecture accesses to
1305 per-inferior/target properties from
1306 per-thread/per-frame/per-objfile properties, accesses to
1307 per-inferior/target properties should be made through this
1308 gdbarch. */
1309
1310 /* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
1311 extern struct gdbarch *target_gdbarch (void);
1312
1313 /* Callback type for the 'iterate_over_objfiles_in_search_order'
1314 gdbarch method. */
1315
1316 typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1317 (struct objfile *objfile, void *cb_data);
1318
1319 /* Callback type for regset section iterators. The callback usually
1320 invokes the REGSET's supply or collect method, to which it must
1321 pass a buffer - for collects this buffer will need to be created using
1322 COLLECT_SIZE, for supply the existing buffer being read from should
1323 be at least SUPPLY_SIZE. SECT_NAME is a BFD section name, and HUMAN_NAME
1324 is used for diagnostic messages. CB_DATA should have been passed
1325 unchanged through the iterator. */
1326
1327 typedef void (iterate_over_regset_sections_cb)
1328 (const char *sect_name, int supply_size, int collect_size,
1329 const struct regset *regset, const char *human_name, void *cb_data);
1330
1331 /* For a function call, does the function return a value using a
1332 normal value return or a structure return - passing a hidden
1333 argument pointing to storage. For the latter, there are two
1334 cases: language-mandated structure return and target ABI
1335 structure return. */
1336
1337 enum function_call_return_method
1338 {
1339 /* Standard value return. */
1340 return_method_normal = 0,
1341
1342 /* Language ABI structure return. This is handled
1343 by passing the return location as the first parameter to
1344 the function, even preceding "this". */
1345 return_method_hidden_param,
1346
1347 /* Target ABI struct return. This is target-specific; for instance,
1348 on ia64 the first argument is passed in out0 but the hidden
1349 structure return pointer would normally be passed in r8. */
1350 return_method_struct,
1351 };
1352
1353 EOF
1354
1355 # function typedef's
1356 printf "\n"
1357 printf "\n"
1358 printf "/* The following are pre-initialized by GDBARCH. */\n"
1359 function_list | while do_read
1360 do
1361 if class_is_info_p
1362 then
1363 printf "\n"
1364 printf "extern %s gdbarch_%s (struct gdbarch *gdbarch);\n" "$returntype" "$function"
1365 printf "/* set_gdbarch_%s() - not applicable - pre-initialized. */\n" "$function"
1366 fi
1367 done
1368
1369 # function typedef's
1370 printf "\n"
1371 printf "\n"
1372 printf "/* The following are initialized by the target dependent code. */\n"
1373 function_list | while do_read
1374 do
1375 if [ -n "${comment}" ]
1376 then
1377 echo "${comment}" | sed \
1378 -e '2 s,#,/*,' \
1379 -e '3,$ s,#, ,' \
1380 -e '$ s,$, */,'
1381 fi
1382
1383 if class_is_predicate_p
1384 then
1385 printf "\n"
1386 printf "extern int gdbarch_%s_p (struct gdbarch *gdbarch);\n" "$function"
1387 fi
1388 if class_is_variable_p
1389 then
1390 printf "\n"
1391 printf "extern %s gdbarch_%s (struct gdbarch *gdbarch);\n" "$returntype" "$function"
1392 printf "extern void set_gdbarch_%s (struct gdbarch *gdbarch, %s %s);\n" "$function" "$returntype" "$function"
1393 fi
1394 if class_is_function_p
1395 then
1396 printf "\n"
1397 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
1398 then
1399 printf "typedef %s (gdbarch_%s_ftype) (struct gdbarch *gdbarch);\n" "$returntype" "$function"
1400 elif class_is_multiarch_p
1401 then
1402 printf "typedef %s (gdbarch_%s_ftype) (struct gdbarch *gdbarch, %s);\n" "$returntype" "$function" "$formal"
1403 else
1404 printf "typedef %s (gdbarch_%s_ftype) (%s);\n" "$returntype" "$function" "$formal"
1405 fi
1406 if [ "x${formal}" = "xvoid" ]
1407 then
1408 printf "extern %s gdbarch_%s (struct gdbarch *gdbarch);\n" "$returntype" "$function"
1409 else
1410 printf "extern %s gdbarch_%s (struct gdbarch *gdbarch, %s);\n" "$returntype" "$function" "$formal"
1411 fi
1412 printf "extern void set_gdbarch_%s (struct gdbarch *gdbarch, gdbarch_%s_ftype *%s);\n" "$function" "$function" "$function"
1413 fi
1414 done
1415
1416 # close it off
1417 cat <<EOF
1418
1419 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1420
1421
1422 /* Mechanism for co-ordinating the selection of a specific
1423 architecture.
1424
1425 GDB targets (*-tdep.c) can register an interest in a specific
1426 architecture. Other GDB components can register a need to maintain
1427 per-architecture data.
1428
1429 The mechanisms below ensures that there is only a loose connection
1430 between the set-architecture command and the various GDB
1431 components. Each component can independently register their need
1432 to maintain architecture specific data with gdbarch.
1433
1434 Pragmatics:
1435
1436 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1437 didn't scale.
1438
1439 The more traditional mega-struct containing architecture specific
1440 data for all the various GDB components was also considered. Since
1441 GDB is built from a variable number of (fairly independent)
1442 components it was determined that the global aproach was not
1443 applicable. */
1444
1445
1446 /* Register a new architectural family with GDB.
1447
1448 Register support for the specified ARCHITECTURE with GDB. When
1449 gdbarch determines that the specified architecture has been
1450 selected, the corresponding INIT function is called.
1451
1452 --
1453
1454 The INIT function takes two parameters: INFO which contains the
1455 information available to gdbarch about the (possibly new)
1456 architecture; ARCHES which is a list of the previously created
1457 \`\`struct gdbarch'' for this architecture.
1458
1459 The INFO parameter is, as far as possible, be pre-initialized with
1460 information obtained from INFO.ABFD or the global defaults.
1461
1462 The ARCHES parameter is a linked list (sorted most recently used)
1463 of all the previously created architures for this architecture
1464 family. The (possibly NULL) ARCHES->gdbarch can used to access
1465 values from the previously selected architecture for this
1466 architecture family.
1467
1468 The INIT function shall return any of: NULL - indicating that it
1469 doesn't recognize the selected architecture; an existing \`\`struct
1470 gdbarch'' from the ARCHES list - indicating that the new
1471 architecture is just a synonym for an earlier architecture (see
1472 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1473 - that describes the selected architecture (see gdbarch_alloc()).
1474
1475 The DUMP_TDEP function shall print out all target specific values.
1476 Care should be taken to ensure that the function works in both the
1477 multi-arch and non- multi-arch cases. */
1478
1479 struct gdbarch_list
1480 {
1481 struct gdbarch *gdbarch;
1482 struct gdbarch_list *next;
1483 };
1484
1485 struct gdbarch_info
1486 {
1487 /* Use default: NULL (ZERO). */
1488 const struct bfd_arch_info *bfd_arch_info;
1489
1490 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1491 enum bfd_endian byte_order;
1492
1493 enum bfd_endian byte_order_for_code;
1494
1495 /* Use default: NULL (ZERO). */
1496 bfd *abfd;
1497
1498 /* Use default: NULL (ZERO). */
1499 union
1500 {
1501 /* Architecture-specific information. The generic form for targets
1502 that have extra requirements. */
1503 struct gdbarch_tdep_info *tdep_info;
1504
1505 /* Architecture-specific target description data. Numerous targets
1506 need only this, so give them an easy way to hold it. */
1507 struct tdesc_arch_data *tdesc_data;
1508
1509 /* SPU file system ID. This is a single integer, so using the
1510 generic form would only complicate code. Other targets may
1511 reuse this member if suitable. */
1512 int *id;
1513 };
1514
1515 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1516 enum gdb_osabi osabi;
1517
1518 /* Use default: NULL (ZERO). */
1519 const struct target_desc *target_desc;
1520 };
1521
1522 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1523 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1524
1525 /* DEPRECATED - use gdbarch_register() */
1526 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1527
1528 extern void gdbarch_register (enum bfd_architecture architecture,
1529 gdbarch_init_ftype *,
1530 gdbarch_dump_tdep_ftype *);
1531
1532
1533 /* Return a freshly allocated, NULL terminated, array of the valid
1534 architecture names. Since architectures are registered during the
1535 _initialize phase this function only returns useful information
1536 once initialization has been completed. */
1537
1538 extern const char **gdbarch_printable_names (void);
1539
1540
1541 /* Helper function. Search the list of ARCHES for a GDBARCH that
1542 matches the information provided by INFO. */
1543
1544 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1545
1546
1547 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1548 basic initialization using values obtained from the INFO and TDEP
1549 parameters. set_gdbarch_*() functions are called to complete the
1550 initialization of the object. */
1551
1552 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1553
1554
1555 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1556 It is assumed that the caller freeds the \`\`struct
1557 gdbarch_tdep''. */
1558
1559 extern void gdbarch_free (struct gdbarch *);
1560
1561 /* Get the obstack owned by ARCH. */
1562
1563 extern obstack *gdbarch_obstack (gdbarch *arch);
1564
1565 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1566 obstack. The memory is freed when the corresponding architecture
1567 is also freed. */
1568
1569 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) \
1570 obstack_calloc<TYPE> (gdbarch_obstack ((GDBARCH)), (NR))
1571
1572 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) \
1573 obstack_zalloc<TYPE> (gdbarch_obstack ((GDBARCH)))
1574
1575 /* Duplicate STRING, returning an equivalent string that's allocated on the
1576 obstack associated with GDBARCH. The string is freed when the corresponding
1577 architecture is also freed. */
1578
1579 extern char *gdbarch_obstack_strdup (struct gdbarch *arch, const char *string);
1580
1581 /* Helper function. Force an update of the current architecture.
1582
1583 The actual architecture selected is determined by INFO, \`\`(gdb) set
1584 architecture'' et.al., the existing architecture and BFD's default
1585 architecture. INFO should be initialized to zero and then selected
1586 fields should be updated.
1587
1588 Returns non-zero if the update succeeds. */
1589
1590 extern int gdbarch_update_p (struct gdbarch_info info);
1591
1592
1593 /* Helper function. Find an architecture matching info.
1594
1595 INFO should be initialized using gdbarch_info_init, relevant fields
1596 set, and then finished using gdbarch_info_fill.
1597
1598 Returns the corresponding architecture, or NULL if no matching
1599 architecture was found. */
1600
1601 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1602
1603
1604 /* Helper function. Set the target gdbarch to "gdbarch". */
1605
1606 extern void set_target_gdbarch (struct gdbarch *gdbarch);
1607
1608
1609 /* Register per-architecture data-pointer.
1610
1611 Reserve space for a per-architecture data-pointer. An identifier
1612 for the reserved data-pointer is returned. That identifer should
1613 be saved in a local static variable.
1614
1615 Memory for the per-architecture data shall be allocated using
1616 gdbarch_obstack_zalloc. That memory will be deleted when the
1617 corresponding architecture object is deleted.
1618
1619 When a previously created architecture is re-selected, the
1620 per-architecture data-pointer for that previous architecture is
1621 restored. INIT() is not re-called.
1622
1623 Multiple registrarants for any architecture are allowed (and
1624 strongly encouraged). */
1625
1626 struct gdbarch_data;
1627
1628 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1629 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1630 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1631 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1632
1633 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1634
1635
1636 /* Set the dynamic target-system-dependent parameters (architecture,
1637 byte-order, ...) using information found in the BFD. */
1638
1639 extern void set_gdbarch_from_file (bfd *);
1640
1641
1642 /* Initialize the current architecture to the "first" one we find on
1643 our list. */
1644
1645 extern void initialize_current_architecture (void);
1646
1647 /* gdbarch trace variable */
1648 extern unsigned int gdbarch_debug;
1649
1650 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1651
1652 /* Return the number of cooked registers (raw + pseudo) for ARCH. */
1653
1654 static inline int
1655 gdbarch_num_cooked_regs (gdbarch *arch)
1656 {
1657 return gdbarch_num_regs (arch) + gdbarch_num_pseudo_regs (arch);
1658 }
1659
1660 #endif
1661 EOF
1662 exec 1>&2
1663 ../move-if-change new-gdbarch.h gdbarch.h
1664 rm -f new-gdbarch.h
1665
1666
1667 #
1668 # C file
1669 #
1670
1671 exec > new-gdbarch.c
1672 copyright
1673 cat <<EOF
1674
1675 #include "defs.h"
1676 #include "arch-utils.h"
1677
1678 #include "gdbcmd.h"
1679 #include "inferior.h"
1680 #include "symcat.h"
1681
1682 #include "floatformat.h"
1683 #include "reggroups.h"
1684 #include "osabi.h"
1685 #include "gdb_obstack.h"
1686 #include "observable.h"
1687 #include "regcache.h"
1688 #include "objfiles.h"
1689 #include "auxv.h"
1690 #include "frame-unwind.h"
1691 #include "dummy-frame.h"
1692
1693 /* Static function declarations */
1694
1695 static void alloc_gdbarch_data (struct gdbarch *);
1696
1697 /* Non-zero if we want to trace architecture code. */
1698
1699 #ifndef GDBARCH_DEBUG
1700 #define GDBARCH_DEBUG 0
1701 #endif
1702 unsigned int gdbarch_debug = GDBARCH_DEBUG;
1703 static void
1704 show_gdbarch_debug (struct ui_file *file, int from_tty,
1705 struct cmd_list_element *c, const char *value)
1706 {
1707 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1708 }
1709
1710 static const char *
1711 pformat (const struct floatformat **format)
1712 {
1713 if (format == NULL)
1714 return "(null)";
1715 else
1716 /* Just print out one of them - this is only for diagnostics. */
1717 return format[0]->name;
1718 }
1719
1720 static const char *
1721 pstring (const char *string)
1722 {
1723 if (string == NULL)
1724 return "(null)";
1725 return string;
1726 }
1727
1728 static const char *
1729 pstring_ptr (char **string)
1730 {
1731 if (string == NULL || *string == NULL)
1732 return "(null)";
1733 return *string;
1734 }
1735
1736 /* Helper function to print a list of strings, represented as "const
1737 char *const *". The list is printed comma-separated. */
1738
1739 static const char *
1740 pstring_list (const char *const *list)
1741 {
1742 static char ret[100];
1743 const char *const *p;
1744 size_t offset = 0;
1745
1746 if (list == NULL)
1747 return "(null)";
1748
1749 ret[0] = '\0';
1750 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1751 {
1752 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1753 offset += 2 + s;
1754 }
1755
1756 if (offset > 0)
1757 {
1758 gdb_assert (offset - 2 < sizeof (ret));
1759 ret[offset - 2] = '\0';
1760 }
1761
1762 return ret;
1763 }
1764
1765 EOF
1766
1767 # gdbarch open the gdbarch object
1768 printf "\n"
1769 printf "/* Maintain the struct gdbarch object. */\n"
1770 printf "\n"
1771 printf "struct gdbarch\n"
1772 printf "{\n"
1773 printf " /* Has this architecture been fully initialized? */\n"
1774 printf " int initialized_p;\n"
1775 printf "\n"
1776 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1777 printf " struct obstack *obstack;\n"
1778 printf "\n"
1779 printf " /* basic architectural information. */\n"
1780 function_list | while do_read
1781 do
1782 if class_is_info_p
1783 then
1784 printf " %s %s;\n" "$returntype" "$function"
1785 fi
1786 done
1787 printf "\n"
1788 printf " /* target specific vector. */\n"
1789 printf " struct gdbarch_tdep *tdep;\n"
1790 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1791 printf "\n"
1792 printf " /* per-architecture data-pointers. */\n"
1793 printf " unsigned nr_data;\n"
1794 printf " void **data;\n"
1795 printf "\n"
1796 cat <<EOF
1797 /* Multi-arch values.
1798
1799 When extending this structure you must:
1800
1801 Add the field below.
1802
1803 Declare set/get functions and define the corresponding
1804 macro in gdbarch.h.
1805
1806 gdbarch_alloc(): If zero/NULL is not a suitable default,
1807 initialize the new field.
1808
1809 verify_gdbarch(): Confirm that the target updated the field
1810 correctly.
1811
1812 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1813 field is dumped out
1814
1815 get_gdbarch(): Implement the set/get functions (probably using
1816 the macro's as shortcuts).
1817
1818 */
1819
1820 EOF
1821 function_list | while do_read
1822 do
1823 if class_is_variable_p
1824 then
1825 printf " %s %s;\n" "$returntype" "$function"
1826 elif class_is_function_p
1827 then
1828 printf " gdbarch_%s_ftype *%s;\n" "$function" "$function"
1829 fi
1830 done
1831 printf "};\n"
1832
1833 # Create a new gdbarch struct
1834 cat <<EOF
1835
1836 /* Create a new \`\`struct gdbarch'' based on information provided by
1837 \`\`struct gdbarch_info''. */
1838 EOF
1839 printf "\n"
1840 cat <<EOF
1841 struct gdbarch *
1842 gdbarch_alloc (const struct gdbarch_info *info,
1843 struct gdbarch_tdep *tdep)
1844 {
1845 struct gdbarch *gdbarch;
1846
1847 /* Create an obstack for allocating all the per-architecture memory,
1848 then use that to allocate the architecture vector. */
1849 struct obstack *obstack = XNEW (struct obstack);
1850 obstack_init (obstack);
1851 gdbarch = XOBNEW (obstack, struct gdbarch);
1852 memset (gdbarch, 0, sizeof (*gdbarch));
1853 gdbarch->obstack = obstack;
1854
1855 alloc_gdbarch_data (gdbarch);
1856
1857 gdbarch->tdep = tdep;
1858 EOF
1859 printf "\n"
1860 function_list | while do_read
1861 do
1862 if class_is_info_p
1863 then
1864 printf " gdbarch->%s = info->%s;\n" "$function" "$function"
1865 fi
1866 done
1867 printf "\n"
1868 printf " /* Force the explicit initialization of these. */\n"
1869 function_list | while do_read
1870 do
1871 if class_is_function_p || class_is_variable_p
1872 then
1873 if [ -n "${predefault}" ] && [ "x${predefault}" != "x0" ]
1874 then
1875 printf " gdbarch->%s = %s;\n" "$function" "$predefault"
1876 fi
1877 fi
1878 done
1879 cat <<EOF
1880 /* gdbarch_alloc() */
1881
1882 return gdbarch;
1883 }
1884 EOF
1885
1886 # Free a gdbarch struct.
1887 printf "\n"
1888 printf "\n"
1889 cat <<EOF
1890
1891 obstack *gdbarch_obstack (gdbarch *arch)
1892 {
1893 return arch->obstack;
1894 }
1895
1896 /* See gdbarch.h. */
1897
1898 char *
1899 gdbarch_obstack_strdup (struct gdbarch *arch, const char *string)
1900 {
1901 return obstack_strdup (arch->obstack, string);
1902 }
1903
1904
1905 /* Free a gdbarch struct. This should never happen in normal
1906 operation --- once you've created a gdbarch, you keep it around.
1907 However, if an architecture's init function encounters an error
1908 building the structure, it may need to clean up a partially
1909 constructed gdbarch. */
1910
1911 void
1912 gdbarch_free (struct gdbarch *arch)
1913 {
1914 struct obstack *obstack;
1915
1916 gdb_assert (arch != NULL);
1917 gdb_assert (!arch->initialized_p);
1918 obstack = arch->obstack;
1919 obstack_free (obstack, 0); /* Includes the ARCH. */
1920 xfree (obstack);
1921 }
1922 EOF
1923
1924 # verify a new architecture
1925 cat <<EOF
1926
1927
1928 /* Ensure that all values in a GDBARCH are reasonable. */
1929
1930 static void
1931 verify_gdbarch (struct gdbarch *gdbarch)
1932 {
1933 string_file log;
1934
1935 /* fundamental */
1936 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1937 log.puts ("\n\tbyte-order");
1938 if (gdbarch->bfd_arch_info == NULL)
1939 log.puts ("\n\tbfd_arch_info");
1940 /* Check those that need to be defined for the given multi-arch level. */
1941 EOF
1942 function_list | while do_read
1943 do
1944 if class_is_function_p || class_is_variable_p
1945 then
1946 if [ "x${invalid_p}" = "x0" ]
1947 then
1948 printf " /* Skip verify of %s, invalid_p == 0 */\n" "$function"
1949 elif class_is_predicate_p
1950 then
1951 printf " /* Skip verify of %s, has predicate. */\n" "$function"
1952 # FIXME: See do_read for potential simplification
1953 elif [ -n "${invalid_p}" ] && [ -n "${postdefault}" ]
1954 then
1955 printf " if (%s)\n" "$invalid_p"
1956 printf " gdbarch->%s = %s;\n" "$function" "$postdefault"
1957 elif [ -n "${predefault}" ] && [ -n "${postdefault}" ]
1958 then
1959 printf " if (gdbarch->%s == %s)\n" "$function" "$predefault"
1960 printf " gdbarch->%s = %s;\n" "$function" "$postdefault"
1961 elif [ -n "${postdefault}" ]
1962 then
1963 printf " if (gdbarch->%s == 0)\n" "$function"
1964 printf " gdbarch->%s = %s;\n" "$function" "$postdefault"
1965 elif [ -n "${invalid_p}" ]
1966 then
1967 printf " if (%s)\n" "$invalid_p"
1968 printf " log.puts (\"\\\\n\\\\t%s\");\n" "$function"
1969 elif [ -n "${predefault}" ]
1970 then
1971 printf " if (gdbarch->%s == %s)\n" "$function" "$predefault"
1972 printf " log.puts (\"\\\\n\\\\t%s\");\n" "$function"
1973 fi
1974 fi
1975 done
1976 cat <<EOF
1977 if (!log.empty ())
1978 internal_error (__FILE__, __LINE__,
1979 _("verify_gdbarch: the following are invalid ...%s"),
1980 log.c_str ());
1981 }
1982 EOF
1983
1984 # dump the structure
1985 printf "\n"
1986 printf "\n"
1987 cat <<EOF
1988 /* Print out the details of the current architecture. */
1989
1990 void
1991 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1992 {
1993 const char *gdb_nm_file = "<not-defined>";
1994
1995 #if defined (GDB_NM_FILE)
1996 gdb_nm_file = GDB_NM_FILE;
1997 #endif
1998 fprintf_unfiltered (file,
1999 "gdbarch_dump: GDB_NM_FILE = %s\\n",
2000 gdb_nm_file);
2001 EOF
2002 function_list | sort '-t;' -k 3 | while do_read
2003 do
2004 # First the predicate
2005 if class_is_predicate_p
2006 then
2007 printf " fprintf_unfiltered (file,\n"
2008 printf " \"gdbarch_dump: gdbarch_%s_p() = %%d\\\\n\",\n" "$function"
2009 printf " gdbarch_%s_p (gdbarch));\n" "$function"
2010 fi
2011 # Print the corresponding value.
2012 if class_is_function_p
2013 then
2014 printf " fprintf_unfiltered (file,\n"
2015 printf " \"gdbarch_dump: %s = <%%s>\\\\n\",\n" "$function"
2016 printf " host_address_to_string (gdbarch->%s));\n" "$function"
2017 else
2018 # It is a variable
2019 case "${print}:${returntype}" in
2020 :CORE_ADDR )
2021 fmt="%s"
2022 print="core_addr_to_string_nz (gdbarch->${function})"
2023 ;;
2024 :* )
2025 fmt="%s"
2026 print="plongest (gdbarch->${function})"
2027 ;;
2028 * )
2029 fmt="%s"
2030 ;;
2031 esac
2032 printf " fprintf_unfiltered (file,\n"
2033 printf " \"gdbarch_dump: %s = %s\\\\n\",\n" "$function" "$fmt"
2034 printf " %s);\n" "$print"
2035 fi
2036 done
2037 cat <<EOF
2038 if (gdbarch->dump_tdep != NULL)
2039 gdbarch->dump_tdep (gdbarch, file);
2040 }
2041 EOF
2042
2043
2044 # GET/SET
2045 printf "\n"
2046 cat <<EOF
2047 struct gdbarch_tdep *
2048 gdbarch_tdep (struct gdbarch *gdbarch)
2049 {
2050 if (gdbarch_debug >= 2)
2051 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
2052 return gdbarch->tdep;
2053 }
2054 EOF
2055 printf "\n"
2056 function_list | while do_read
2057 do
2058 if class_is_predicate_p
2059 then
2060 printf "\n"
2061 printf "int\n"
2062 printf "gdbarch_%s_p (struct gdbarch *gdbarch)\n" "$function"
2063 printf "{\n"
2064 printf " gdb_assert (gdbarch != NULL);\n"
2065 printf " return %s;\n" "$predicate"
2066 printf "}\n"
2067 fi
2068 if class_is_function_p
2069 then
2070 printf "\n"
2071 printf "%s\n" "$returntype"
2072 if [ "x${formal}" = "xvoid" ]
2073 then
2074 printf "gdbarch_%s (struct gdbarch *gdbarch)\n" "$function"
2075 else
2076 printf "gdbarch_%s (struct gdbarch *gdbarch, %s)\n" "$function" "$formal"
2077 fi
2078 printf "{\n"
2079 printf " gdb_assert (gdbarch != NULL);\n"
2080 printf " gdb_assert (gdbarch->%s != NULL);\n" "$function"
2081 if class_is_predicate_p && test -n "${predefault}"
2082 then
2083 # Allow a call to a function with a predicate.
2084 printf " /* Do not check predicate: %s, allow call. */\n" "$predicate"
2085 fi
2086 printf " if (gdbarch_debug >= 2)\n"
2087 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_%s called\\\\n\");\n" "$function"
2088 if [ "x${actual:-}" = "x-" ] || [ "x${actual:-}" = "x" ]
2089 then
2090 if class_is_multiarch_p
2091 then
2092 params="gdbarch"
2093 else
2094 params=""
2095 fi
2096 else
2097 if class_is_multiarch_p
2098 then
2099 params="gdbarch, ${actual}"
2100 else
2101 params="${actual}"
2102 fi
2103 fi
2104 if [ "x${returntype}" = "xvoid" ]
2105 then
2106 printf " gdbarch->%s (%s);\n" "$function" "$params"
2107 else
2108 printf " return gdbarch->%s (%s);\n" "$function" "$params"
2109 fi
2110 printf "}\n"
2111 printf "\n"
2112 printf "void\n"
2113 printf "set_gdbarch_%s (struct gdbarch *gdbarch,\n" "$function"
2114 printf " %s gdbarch_%s_ftype %s)\n" "$(echo "$function" | sed -e 's/./ /g')" "$function" "$function"
2115 printf "{\n"
2116 printf " gdbarch->%s = %s;\n" "$function" "$function"
2117 printf "}\n"
2118 elif class_is_variable_p
2119 then
2120 printf "\n"
2121 printf "%s\n" "$returntype"
2122 printf "gdbarch_%s (struct gdbarch *gdbarch)\n" "$function"
2123 printf "{\n"
2124 printf " gdb_assert (gdbarch != NULL);\n"
2125 if [ "x${invalid_p}" = "x0" ]
2126 then
2127 printf " /* Skip verify of %s, invalid_p == 0 */\n" "$function"
2128 elif [ -n "${invalid_p}" ]
2129 then
2130 printf " /* Check variable is valid. */\n"
2131 printf " gdb_assert (!(%s));\n" "$invalid_p"
2132 elif [ -n "${predefault}" ]
2133 then
2134 printf " /* Check variable changed from pre-default. */\n"
2135 printf " gdb_assert (gdbarch->%s != %s);\n" "$function" "$predefault"
2136 fi
2137 printf " if (gdbarch_debug >= 2)\n"
2138 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_%s called\\\\n\");\n" "$function"
2139 printf " return gdbarch->%s;\n" "$function"
2140 printf "}\n"
2141 printf "\n"
2142 printf "void\n"
2143 printf "set_gdbarch_%s (struct gdbarch *gdbarch,\n" "$function"
2144 printf " %s %s %s)\n" "$(echo "$function" | sed -e 's/./ /g')" "$returntype" "$function"
2145 printf "{\n"
2146 printf " gdbarch->%s = %s;\n" "$function" "$function"
2147 printf "}\n"
2148 elif class_is_info_p
2149 then
2150 printf "\n"
2151 printf "%s\n" "$returntype"
2152 printf "gdbarch_%s (struct gdbarch *gdbarch)\n" "$function"
2153 printf "{\n"
2154 printf " gdb_assert (gdbarch != NULL);\n"
2155 printf " if (gdbarch_debug >= 2)\n"
2156 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_%s called\\\\n\");\n" "$function"
2157 printf " return gdbarch->%s;\n" "$function"
2158 printf "}\n"
2159 fi
2160 done
2161
2162 # All the trailing guff
2163 cat <<EOF
2164
2165
2166 /* Keep a registry of per-architecture data-pointers required by GDB
2167 modules. */
2168
2169 struct gdbarch_data
2170 {
2171 unsigned index;
2172 int init_p;
2173 gdbarch_data_pre_init_ftype *pre_init;
2174 gdbarch_data_post_init_ftype *post_init;
2175 };
2176
2177 struct gdbarch_data_registration
2178 {
2179 struct gdbarch_data *data;
2180 struct gdbarch_data_registration *next;
2181 };
2182
2183 struct gdbarch_data_registry
2184 {
2185 unsigned nr;
2186 struct gdbarch_data_registration *registrations;
2187 };
2188
2189 struct gdbarch_data_registry gdbarch_data_registry =
2190 {
2191 0, NULL,
2192 };
2193
2194 static struct gdbarch_data *
2195 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
2196 gdbarch_data_post_init_ftype *post_init)
2197 {
2198 struct gdbarch_data_registration **curr;
2199
2200 /* Append the new registration. */
2201 for (curr = &gdbarch_data_registry.registrations;
2202 (*curr) != NULL;
2203 curr = &(*curr)->next);
2204 (*curr) = XNEW (struct gdbarch_data_registration);
2205 (*curr)->next = NULL;
2206 (*curr)->data = XNEW (struct gdbarch_data);
2207 (*curr)->data->index = gdbarch_data_registry.nr++;
2208 (*curr)->data->pre_init = pre_init;
2209 (*curr)->data->post_init = post_init;
2210 (*curr)->data->init_p = 1;
2211 return (*curr)->data;
2212 }
2213
2214 struct gdbarch_data *
2215 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2216 {
2217 return gdbarch_data_register (pre_init, NULL);
2218 }
2219
2220 struct gdbarch_data *
2221 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2222 {
2223 return gdbarch_data_register (NULL, post_init);
2224 }
2225
2226 /* Create/delete the gdbarch data vector. */
2227
2228 static void
2229 alloc_gdbarch_data (struct gdbarch *gdbarch)
2230 {
2231 gdb_assert (gdbarch->data == NULL);
2232 gdbarch->nr_data = gdbarch_data_registry.nr;
2233 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
2234 }
2235
2236 /* Return the current value of the specified per-architecture
2237 data-pointer. */
2238
2239 void *
2240 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
2241 {
2242 gdb_assert (data->index < gdbarch->nr_data);
2243 if (gdbarch->data[data->index] == NULL)
2244 {
2245 /* The data-pointer isn't initialized, call init() to get a
2246 value. */
2247 if (data->pre_init != NULL)
2248 /* Mid architecture creation: pass just the obstack, and not
2249 the entire architecture, as that way it isn't possible for
2250 pre-init code to refer to undefined architecture
2251 fields. */
2252 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2253 else if (gdbarch->initialized_p
2254 && data->post_init != NULL)
2255 /* Post architecture creation: pass the entire architecture
2256 (as all fields are valid), but be careful to also detect
2257 recursive references. */
2258 {
2259 gdb_assert (data->init_p);
2260 data->init_p = 0;
2261 gdbarch->data[data->index] = data->post_init (gdbarch);
2262 data->init_p = 1;
2263 }
2264 else
2265 internal_error (__FILE__, __LINE__,
2266 _("gdbarch post-init data field can only be used "
2267 "after gdbarch is fully initialised"));
2268 gdb_assert (gdbarch->data[data->index] != NULL);
2269 }
2270 return gdbarch->data[data->index];
2271 }
2272
2273
2274 /* Keep a registry of the architectures known by GDB. */
2275
2276 struct gdbarch_registration
2277 {
2278 enum bfd_architecture bfd_architecture;
2279 gdbarch_init_ftype *init;
2280 gdbarch_dump_tdep_ftype *dump_tdep;
2281 struct gdbarch_list *arches;
2282 struct gdbarch_registration *next;
2283 };
2284
2285 static struct gdbarch_registration *gdbarch_registry = NULL;
2286
2287 static void
2288 append_name (const char ***buf, int *nr, const char *name)
2289 {
2290 *buf = XRESIZEVEC (const char *, *buf, *nr + 1);
2291 (*buf)[*nr] = name;
2292 *nr += 1;
2293 }
2294
2295 const char **
2296 gdbarch_printable_names (void)
2297 {
2298 /* Accumulate a list of names based on the registed list of
2299 architectures. */
2300 int nr_arches = 0;
2301 const char **arches = NULL;
2302 struct gdbarch_registration *rego;
2303
2304 for (rego = gdbarch_registry;
2305 rego != NULL;
2306 rego = rego->next)
2307 {
2308 const struct bfd_arch_info *ap;
2309 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2310 if (ap == NULL)
2311 internal_error (__FILE__, __LINE__,
2312 _("gdbarch_architecture_names: multi-arch unknown"));
2313 do
2314 {
2315 append_name (&arches, &nr_arches, ap->printable_name);
2316 ap = ap->next;
2317 }
2318 while (ap != NULL);
2319 }
2320 append_name (&arches, &nr_arches, NULL);
2321 return arches;
2322 }
2323
2324
2325 void
2326 gdbarch_register (enum bfd_architecture bfd_architecture,
2327 gdbarch_init_ftype *init,
2328 gdbarch_dump_tdep_ftype *dump_tdep)
2329 {
2330 struct gdbarch_registration **curr;
2331 const struct bfd_arch_info *bfd_arch_info;
2332
2333 /* Check that BFD recognizes this architecture */
2334 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2335 if (bfd_arch_info == NULL)
2336 {
2337 internal_error (__FILE__, __LINE__,
2338 _("gdbarch: Attempt to register "
2339 "unknown architecture (%d)"),
2340 bfd_architecture);
2341 }
2342 /* Check that we haven't seen this architecture before. */
2343 for (curr = &gdbarch_registry;
2344 (*curr) != NULL;
2345 curr = &(*curr)->next)
2346 {
2347 if (bfd_architecture == (*curr)->bfd_architecture)
2348 internal_error (__FILE__, __LINE__,
2349 _("gdbarch: Duplicate registration "
2350 "of architecture (%s)"),
2351 bfd_arch_info->printable_name);
2352 }
2353 /* log it */
2354 if (gdbarch_debug)
2355 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
2356 bfd_arch_info->printable_name,
2357 host_address_to_string (init));
2358 /* Append it */
2359 (*curr) = XNEW (struct gdbarch_registration);
2360 (*curr)->bfd_architecture = bfd_architecture;
2361 (*curr)->init = init;
2362 (*curr)->dump_tdep = dump_tdep;
2363 (*curr)->arches = NULL;
2364 (*curr)->next = NULL;
2365 }
2366
2367 void
2368 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2369 gdbarch_init_ftype *init)
2370 {
2371 gdbarch_register (bfd_architecture, init, NULL);
2372 }
2373
2374
2375 /* Look for an architecture using gdbarch_info. */
2376
2377 struct gdbarch_list *
2378 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2379 const struct gdbarch_info *info)
2380 {
2381 for (; arches != NULL; arches = arches->next)
2382 {
2383 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2384 continue;
2385 if (info->byte_order != arches->gdbarch->byte_order)
2386 continue;
2387 if (info->osabi != arches->gdbarch->osabi)
2388 continue;
2389 if (info->target_desc != arches->gdbarch->target_desc)
2390 continue;
2391 return arches;
2392 }
2393 return NULL;
2394 }
2395
2396
2397 /* Find an architecture that matches the specified INFO. Create a new
2398 architecture if needed. Return that new architecture. */
2399
2400 struct gdbarch *
2401 gdbarch_find_by_info (struct gdbarch_info info)
2402 {
2403 struct gdbarch *new_gdbarch;
2404 struct gdbarch_registration *rego;
2405
2406 /* Fill in missing parts of the INFO struct using a number of
2407 sources: "set ..."; INFOabfd supplied; and the global
2408 defaults. */
2409 gdbarch_info_fill (&info);
2410
2411 /* Must have found some sort of architecture. */
2412 gdb_assert (info.bfd_arch_info != NULL);
2413
2414 if (gdbarch_debug)
2415 {
2416 fprintf_unfiltered (gdb_stdlog,
2417 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
2418 (info.bfd_arch_info != NULL
2419 ? info.bfd_arch_info->printable_name
2420 : "(null)"));
2421 fprintf_unfiltered (gdb_stdlog,
2422 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
2423 info.byte_order,
2424 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2425 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2426 : "default"));
2427 fprintf_unfiltered (gdb_stdlog,
2428 "gdbarch_find_by_info: info.osabi %d (%s)\n",
2429 info.osabi, gdbarch_osabi_name (info.osabi));
2430 fprintf_unfiltered (gdb_stdlog,
2431 "gdbarch_find_by_info: info.abfd %s\n",
2432 host_address_to_string (info.abfd));
2433 fprintf_unfiltered (gdb_stdlog,
2434 "gdbarch_find_by_info: info.tdep_info %s\n",
2435 host_address_to_string (info.tdep_info));
2436 }
2437
2438 /* Find the tdep code that knows about this architecture. */
2439 for (rego = gdbarch_registry;
2440 rego != NULL;
2441 rego = rego->next)
2442 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2443 break;
2444 if (rego == NULL)
2445 {
2446 if (gdbarch_debug)
2447 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2448 "No matching architecture\n");
2449 return 0;
2450 }
2451
2452 /* Ask the tdep code for an architecture that matches "info". */
2453 new_gdbarch = rego->init (info, rego->arches);
2454
2455 /* Did the tdep code like it? No. Reject the change and revert to
2456 the old architecture. */
2457 if (new_gdbarch == NULL)
2458 {
2459 if (gdbarch_debug)
2460 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2461 "Target rejected architecture\n");
2462 return NULL;
2463 }
2464
2465 /* Is this a pre-existing architecture (as determined by already
2466 being initialized)? Move it to the front of the architecture
2467 list (keeping the list sorted Most Recently Used). */
2468 if (new_gdbarch->initialized_p)
2469 {
2470 struct gdbarch_list **list;
2471 struct gdbarch_list *self;
2472 if (gdbarch_debug)
2473 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2474 "Previous architecture %s (%s) selected\n",
2475 host_address_to_string (new_gdbarch),
2476 new_gdbarch->bfd_arch_info->printable_name);
2477 /* Find the existing arch in the list. */
2478 for (list = &rego->arches;
2479 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2480 list = &(*list)->next);
2481 /* It had better be in the list of architectures. */
2482 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2483 /* Unlink SELF. */
2484 self = (*list);
2485 (*list) = self->next;
2486 /* Insert SELF at the front. */
2487 self->next = rego->arches;
2488 rego->arches = self;
2489 /* Return it. */
2490 return new_gdbarch;
2491 }
2492
2493 /* It's a new architecture. */
2494 if (gdbarch_debug)
2495 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2496 "New architecture %s (%s) selected\n",
2497 host_address_to_string (new_gdbarch),
2498 new_gdbarch->bfd_arch_info->printable_name);
2499
2500 /* Insert the new architecture into the front of the architecture
2501 list (keep the list sorted Most Recently Used). */
2502 {
2503 struct gdbarch_list *self = XNEW (struct gdbarch_list);
2504 self->next = rego->arches;
2505 self->gdbarch = new_gdbarch;
2506 rego->arches = self;
2507 }
2508
2509 /* Check that the newly installed architecture is valid. Plug in
2510 any post init values. */
2511 new_gdbarch->dump_tdep = rego->dump_tdep;
2512 verify_gdbarch (new_gdbarch);
2513 new_gdbarch->initialized_p = 1;
2514
2515 if (gdbarch_debug)
2516 gdbarch_dump (new_gdbarch, gdb_stdlog);
2517
2518 return new_gdbarch;
2519 }
2520
2521 /* Make the specified architecture current. */
2522
2523 void
2524 set_target_gdbarch (struct gdbarch *new_gdbarch)
2525 {
2526 gdb_assert (new_gdbarch != NULL);
2527 gdb_assert (new_gdbarch->initialized_p);
2528 current_inferior ()->gdbarch = new_gdbarch;
2529 gdb::observers::architecture_changed.notify (new_gdbarch);
2530 registers_changed ();
2531 }
2532
2533 /* Return the current inferior's arch. */
2534
2535 struct gdbarch *
2536 target_gdbarch (void)
2537 {
2538 return current_inferior ()->gdbarch;
2539 }
2540
2541 void _initialize_gdbarch ();
2542 void
2543 _initialize_gdbarch ()
2544 {
2545 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2546 Set architecture debugging."), _("\\
2547 Show architecture debugging."), _("\\
2548 When non-zero, architecture debugging is enabled."),
2549 NULL,
2550 show_gdbarch_debug,
2551 &setdebuglist, &showdebuglist);
2552 }
2553 EOF
2554
2555 # close things off
2556 exec 1>&2
2557 ../move-if-change new-gdbarch.c gdbarch.c
2558 rm -f new-gdbarch.c