* gdbarch.sh (NAME_OF_MALLOC): New variable in the architecture
[binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 # Copyright 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5 #
6 # This file is part of GDB.
7 #
8 # This program is free software; you can redistribute it and/or modify
9 # it under the terms of the GNU General Public License as published by
10 # the Free Software Foundation; either version 2 of the License, or
11 # (at your option) any later version.
12 #
13 # This program is distributed in the hope that it will be useful,
14 # but WITHOUT ANY WARRANTY; without even the implied warranty of
15 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 # GNU General Public License for more details.
17 #
18 # You should have received a copy of the GNU General Public License
19 # along with this program; if not, write to the Free Software
20 # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21
22 # Make certain that the script is running in an internationalized
23 # environment.
24 LANG=c ; export LANG
25 LC_ALL=c ; export LC_ALL
26
27
28 compare_new ()
29 {
30 file=$1
31 if test ! -r ${file}
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40 }
41
42
43 # Format of the input table
44 read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
45
46 do_read ()
47 {
48 comment=""
49 class=""
50 while read line
51 do
52 if test "${line}" = ""
53 then
54 continue
55 elif test "${line}" = "#" -a "${comment}" = ""
56 then
57 continue
58 elif expr "${line}" : "#" > /dev/null
59 then
60 comment="${comment}
61 ${line}"
62 else
63
64 # The semantics of IFS varies between different SH's. Some
65 # treat ``::' as three fields while some treat it as just too.
66 # Work around this by eliminating ``::'' ....
67 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
68
69 OFS="${IFS}" ; IFS="[:]"
70 eval read ${read} <<EOF
71 ${line}
72 EOF
73 IFS="${OFS}"
74
75 # .... and then going back through each field and strip out those
76 # that ended up with just that space character.
77 for r in ${read}
78 do
79 if eval test \"\${${r}}\" = \"\ \"
80 then
81 eval ${r}=""
82 fi
83 done
84
85 case "${level}" in
86 1 ) gt_level=">= GDB_MULTI_ARCH_PARTIAL" ;;
87 2 ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
88 "" ) ;;
89 * ) error "Error: bad level for ${function}" 1>&2 ; kill $$ ; exit 1 ;;
90 esac
91
92 case "${class}" in
93 m ) staticdefault="${predefault}" ;;
94 M ) staticdefault="0" ;;
95 * ) test "${staticdefault}" || staticdefault=0 ;;
96 esac
97 # NOT YET: Breaks BELIEVE_PCC_PROMOTION and confuses non-
98 # multi-arch defaults.
99 # test "${predefault}" || predefault=0
100
101 # come up with a format, use a few guesses for variables
102 case ":${class}:${fmt}:${print}:" in
103 :[vV]::: )
104 if [ "${returntype}" = int ]
105 then
106 fmt="%d"
107 print="${macro}"
108 elif [ "${returntype}" = long ]
109 then
110 fmt="%ld"
111 print="${macro}"
112 fi
113 ;;
114 esac
115 test "${fmt}" || fmt="%ld"
116 test "${print}" || print="(long) ${macro}"
117
118 case "${invalid_p}" in
119 0 ) valid_p=1 ;;
120 "" )
121 if [ -n "${predefault}" ]
122 then
123 #invalid_p="gdbarch->${function} == ${predefault}"
124 valid_p="gdbarch->${function} != ${predefault}"
125 else
126 #invalid_p="gdbarch->${function} == 0"
127 valid_p="gdbarch->${function} != 0"
128 fi
129 ;;
130 * ) valid_p="!(${invalid_p})"
131 esac
132
133 # PREDEFAULT is a valid fallback definition of MEMBER when
134 # multi-arch is not enabled. This ensures that the
135 # default value, when multi-arch is the same as the
136 # default value when not multi-arch. POSTDEFAULT is
137 # always a valid definition of MEMBER as this again
138 # ensures consistency.
139
140 if [ -n "${postdefault}" ]
141 then
142 fallbackdefault="${postdefault}"
143 elif [ -n "${predefault}" ]
144 then
145 fallbackdefault="${predefault}"
146 else
147 fallbackdefault="0"
148 fi
149
150 #NOT YET: See gdbarch.log for basic verification of
151 # database
152
153 break
154 fi
155 done
156 if [ -n "${class}" ]
157 then
158 true
159 else
160 false
161 fi
162 }
163
164
165 fallback_default_p ()
166 {
167 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
168 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
169 }
170
171 class_is_variable_p ()
172 {
173 case "${class}" in
174 *v* | *V* ) true ;;
175 * ) false ;;
176 esac
177 }
178
179 class_is_function_p ()
180 {
181 case "${class}" in
182 *f* | *F* | *m* | *M* ) true ;;
183 * ) false ;;
184 esac
185 }
186
187 class_is_multiarch_p ()
188 {
189 case "${class}" in
190 *m* | *M* ) true ;;
191 * ) false ;;
192 esac
193 }
194
195 class_is_predicate_p ()
196 {
197 case "${class}" in
198 *F* | *V* | *M* ) true ;;
199 * ) false ;;
200 esac
201 }
202
203 class_is_info_p ()
204 {
205 case "${class}" in
206 *i* ) true ;;
207 * ) false ;;
208 esac
209 }
210
211
212 # dump out/verify the doco
213 for field in ${read}
214 do
215 case ${field} in
216
217 class ) : ;;
218
219 # # -> line disable
220 # f -> function
221 # hiding a function
222 # F -> function + predicate
223 # hiding a function + predicate to test function validity
224 # v -> variable
225 # hiding a variable
226 # V -> variable + predicate
227 # hiding a variable + predicate to test variables validity
228 # i -> set from info
229 # hiding something from the ``struct info'' object
230 # m -> multi-arch function
231 # hiding a multi-arch function (parameterised with the architecture)
232 # M -> multi-arch function + predicate
233 # hiding a multi-arch function + predicate to test function validity
234
235 level ) : ;;
236
237 # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
238 # LEVEL is a predicate on checking that a given method is
239 # initialized (using INVALID_P).
240
241 macro ) : ;;
242
243 # The name of the MACRO that this method is to be accessed by.
244
245 returntype ) : ;;
246
247 # For functions, the return type; for variables, the data type
248
249 function ) : ;;
250
251 # For functions, the member function name; for variables, the
252 # variable name. Member function names are always prefixed with
253 # ``gdbarch_'' for name-space purity.
254
255 formal ) : ;;
256
257 # The formal argument list. It is assumed that the formal
258 # argument list includes the actual name of each list element.
259 # A function with no arguments shall have ``void'' as the
260 # formal argument list.
261
262 actual ) : ;;
263
264 # The list of actual arguments. The arguments specified shall
265 # match the FORMAL list given above. Functions with out
266 # arguments leave this blank.
267
268 attrib ) : ;;
269
270 # Any GCC attributes that should be attached to the function
271 # declaration. At present this field is unused.
272
273 staticdefault ) : ;;
274
275 # To help with the GDB startup a static gdbarch object is
276 # created. STATICDEFAULT is the value to insert into that
277 # static gdbarch object. Since this a static object only
278 # simple expressions can be used.
279
280 # If STATICDEFAULT is empty, zero is used.
281
282 predefault ) : ;;
283
284 # An initial value to assign to MEMBER of the freshly
285 # malloc()ed gdbarch object. After initialization, the
286 # freshly malloc()ed object is passed to the target
287 # architecture code for further updates.
288
289 # If PREDEFAULT is empty, zero is used.
290
291 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
292 # INVALID_P are specified, PREDEFAULT will be used as the
293 # default for the non- multi-arch target.
294
295 # A zero PREDEFAULT function will force the fallback to call
296 # internal_error().
297
298 # Variable declarations can refer to ``gdbarch'' which will
299 # contain the current architecture. Care should be taken.
300
301 postdefault ) : ;;
302
303 # A value to assign to MEMBER of the new gdbarch object should
304 # the target architecture code fail to change the PREDEFAULT
305 # value.
306
307 # If POSTDEFAULT is empty, no post update is performed.
308
309 # If both INVALID_P and POSTDEFAULT are non-empty then
310 # INVALID_P will be used to determine if MEMBER should be
311 # changed to POSTDEFAULT.
312
313 # If a non-empty POSTDEFAULT and a zero INVALID_P are
314 # specified, POSTDEFAULT will be used as the default for the
315 # non- multi-arch target (regardless of the value of
316 # PREDEFAULT).
317
318 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
319
320 # Variable declarations can refer to ``gdbarch'' which will
321 # contain the current architecture. Care should be taken.
322
323 invalid_p ) : ;;
324
325 # A predicate equation that validates MEMBER. Non-zero is
326 # returned if the code creating the new architecture failed to
327 # initialize MEMBER or the initialized the member is invalid.
328 # If POSTDEFAULT is non-empty then MEMBER will be updated to
329 # that value. If POSTDEFAULT is empty then internal_error()
330 # is called.
331
332 # If INVALID_P is empty, a check that MEMBER is no longer
333 # equal to PREDEFAULT is used.
334
335 # The expression ``0'' disables the INVALID_P check making
336 # PREDEFAULT a legitimate value.
337
338 # See also PREDEFAULT and POSTDEFAULT.
339
340 fmt ) : ;;
341
342 # printf style format string that can be used to print out the
343 # MEMBER. Sometimes "%s" is useful. For functions, this is
344 # ignored and the function address is printed.
345
346 # If FMT is empty, ``%ld'' is used.
347
348 print ) : ;;
349
350 # An optional equation that casts MEMBER to a value suitable
351 # for formatting by FMT.
352
353 # If PRINT is empty, ``(long)'' is used.
354
355 print_p ) : ;;
356
357 # An optional indicator for any predicte to wrap around the
358 # print member code.
359
360 # () -> Call a custom function to do the dump.
361 # exp -> Wrap print up in ``if (${print_p}) ...
362 # ``'' -> No predicate
363
364 # If PRINT_P is empty, ``1'' is always used.
365
366 description ) : ;;
367
368 # Currently unused.
369
370 *)
371 echo "Bad field ${field}"
372 exit 1;;
373 esac
374 done
375
376
377 function_list ()
378 {
379 # See below (DOCO) for description of each field
380 cat <<EOF
381 i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
382 #
383 i:2:TARGET_BYTE_ORDER:int:byte_order::::BFD_ENDIAN_BIG
384 # Number of bits in a char or unsigned char for the target machine.
385 # Just like CHAR_BIT in <limits.h> but describes the target machine.
386 # v::TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
387 #
388 # Number of bits in a short or unsigned short for the target machine.
389 v::TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
390 # Number of bits in an int or unsigned int for the target machine.
391 v::TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
392 # Number of bits in a long or unsigned long for the target machine.
393 v::TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
394 # Number of bits in a long long or unsigned long long for the target
395 # machine.
396 v::TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
397 # Number of bits in a float for the target machine.
398 v::TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
399 # Number of bits in a double for the target machine.
400 v::TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
401 # Number of bits in a long double for the target machine.
402 v::TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
403 # For most targets, a pointer on the target and its representation as an
404 # address in GDB have the same size and "look the same". For such a
405 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
406 # / addr_bit will be set from it.
407 #
408 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
409 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
410 #
411 # ptr_bit is the size of a pointer on the target
412 v::TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
413 # addr_bit is the size of a target address as represented in gdb
414 v::TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
415 # Number of bits in a BFD_VMA for the target object file format.
416 v::TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
417 #
418 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
419 v::TARGET_CHAR_SIGNED:int:char_signed::::1:-1:1::::
420 #
421 f::TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid::0:generic_target_read_pc::0
422 f::TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
423 f::TARGET_READ_FP:CORE_ADDR:read_fp:void:::0:generic_target_read_fp::0
424 f::TARGET_READ_SP:CORE_ADDR:read_sp:void:::0:generic_target_read_sp::0
425 f::TARGET_WRITE_SP:void:write_sp:CORE_ADDR val:val::0:generic_target_write_sp::0
426 # Function for getting target's idea of a frame pointer. FIXME: GDB's
427 # whole scheme for dealing with "frames" and "frame pointers" needs a
428 # serious shakedown.
429 f::TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset::0:legacy_virtual_frame_pointer::0
430 #
431 M:::void:pseudo_register_read:struct regcache *regcache, int cookednum, void *buf:regcache, cookednum, buf:
432 M:::void:pseudo_register_write:struct regcache *regcache, int cookednum, const void *buf:regcache, cookednum, buf:
433 #
434 v:2:NUM_REGS:int:num_regs::::0:-1
435 # This macro gives the number of pseudo-registers that live in the
436 # register namespace but do not get fetched or stored on the target.
437 # These pseudo-registers may be aliases for other registers,
438 # combinations of other registers, or they may be computed by GDB.
439 v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
440
441 # GDB's standard (or well known) register numbers. These can map onto
442 # a real register or a pseudo (computed) register or not be defined at
443 # all (-1).
444 v:2:SP_REGNUM:int:sp_regnum::::-1:-1::0
445 v:2:FP_REGNUM:int:fp_regnum::::-1:-1::0
446 v:2:PC_REGNUM:int:pc_regnum::::-1:-1::0
447 v:2:PS_REGNUM:int:ps_regnum::::-1:-1::0
448 v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
449 v:2:NPC_REGNUM:int:npc_regnum::::0:-1::0
450 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
451 f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
452 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
453 f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
454 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
455 f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
456 # Convert from an sdb register number to an internal gdb register number.
457 # This should be defined in tm.h, if REGISTER_NAMES is not set up
458 # to map one to one onto the sdb register numbers.
459 f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
460 f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
461 f:2:REGISTER_NAME:const char *:register_name:int regnr:regnr:::legacy_register_name::0
462 v:2:REGISTER_SIZE:int:register_size::::0:-1
463 v:2:REGISTER_BYTES:int:register_bytes::::0:-1
464 f:2:REGISTER_BYTE:int:register_byte:int reg_nr:reg_nr::generic_register_byte:generic_register_byte::0
465 f:2:REGISTER_RAW_SIZE:int:register_raw_size:int reg_nr:reg_nr::generic_register_size:generic_register_size::0
466 v:2:MAX_REGISTER_RAW_SIZE:int:max_register_raw_size::::0:-1
467 f:2:REGISTER_VIRTUAL_SIZE:int:register_virtual_size:int reg_nr:reg_nr::generic_register_size:generic_register_size::0
468 v:2:MAX_REGISTER_VIRTUAL_SIZE:int:max_register_virtual_size::::0:-1
469 f:2:REGISTER_VIRTUAL_TYPE:struct type *:register_virtual_type:int reg_nr:reg_nr::0:0
470 #
471 F:2:DO_REGISTERS_INFO:void:do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs
472 m:2:PRINT_REGISTERS_INFO:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all:::default_print_registers_info::0
473 M:2:PRINT_FLOAT_INFO:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
474 M:2:PRINT_VECTOR_INFO:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
475 # MAP a GDB RAW register number onto a simulator register number. See
476 # also include/...-sim.h.
477 f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::legacy_register_sim_regno::0
478 F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes::0:0
479 f:2:CANNOT_FETCH_REGISTER:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
480 f:2:CANNOT_STORE_REGISTER:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
481 # setjmp/longjmp support.
482 F:2:GET_LONGJMP_TARGET:int:get_longjmp_target:CORE_ADDR *pc:pc::0:0
483 #
484 # Non multi-arch DUMMY_FRAMES are a mess (multi-arch ones are not that
485 # much better but at least they are vaguely consistent). The headers
486 # and body contain convoluted #if/#else sequences for determine how
487 # things should be compiled. Instead of trying to mimic that
488 # behaviour here (and hence entrench it further) gdbarch simply
489 # reqires that these methods be set up from the word go. This also
490 # avoids any potential problems with moving beyond multi-arch partial.
491 v:1:USE_GENERIC_DUMMY_FRAMES:int:use_generic_dummy_frames::::0:-1
492 v:1:CALL_DUMMY_LOCATION:int:call_dummy_location::::0:0
493 f:2:CALL_DUMMY_ADDRESS:CORE_ADDR:call_dummy_address:void:::0:0::gdbarch->call_dummy_location == AT_ENTRY_POINT && gdbarch->call_dummy_address == 0
494 v:2:CALL_DUMMY_START_OFFSET:CORE_ADDR:call_dummy_start_offset::::0:-1:::0x%08lx
495 v:2:CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:call_dummy_breakpoint_offset::::0:-1::gdbarch->call_dummy_breakpoint_offset_p && gdbarch->call_dummy_breakpoint_offset == -1:0x%08lx::CALL_DUMMY_BREAKPOINT_OFFSET_P
496 v:1:CALL_DUMMY_BREAKPOINT_OFFSET_P:int:call_dummy_breakpoint_offset_p::::0:-1
497 v:2:CALL_DUMMY_LENGTH:int:call_dummy_length::::0:-1:::::CALL_DUMMY_LOCATION == BEFORE_TEXT_END || CALL_DUMMY_LOCATION == AFTER_TEXT_END
498 f:1:PC_IN_CALL_DUMMY:int:pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::0:0
499 v:1:CALL_DUMMY_P:int:call_dummy_p::::0:-1
500 v:2:CALL_DUMMY_WORDS:LONGEST *:call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
501 v:2:SIZEOF_CALL_DUMMY_WORDS:int:sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0:0x%08lx
502 v:1:CALL_DUMMY_STACK_ADJUST_P:int:call_dummy_stack_adjust_p::::0:-1:::0x%08lx
503 v:2:CALL_DUMMY_STACK_ADJUST:int:call_dummy_stack_adjust::::0:::gdbarch->call_dummy_stack_adjust_p && gdbarch->call_dummy_stack_adjust == 0:0x%08lx::CALL_DUMMY_STACK_ADJUST_P
504 f:2:FIX_CALL_DUMMY:void:fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p:::0
505 f:2:INIT_FRAME_PC_FIRST:void:init_frame_pc_first:int fromleaf, struct frame_info *prev:fromleaf, prev:::init_frame_pc_noop::0
506 f:2:INIT_FRAME_PC:void:init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev:::init_frame_pc_default::0
507 #
508 v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
509 v:2:BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type:::::::
510 f:2:COERCE_FLOAT_TO_DOUBLE:int:coerce_float_to_double:struct type *formal, struct type *actual:formal, actual:::default_coerce_float_to_double::0
511 f:2:GET_SAVED_REGISTER:void:get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval:::generic_unwind_get_saved_register::0
512 #
513 f:2:REGISTER_CONVERTIBLE:int:register_convertible:int nr:nr:::generic_register_convertible_not::0
514 f:2:REGISTER_CONVERT_TO_VIRTUAL:void:register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
515 f:2:REGISTER_CONVERT_TO_RAW:void:register_convert_to_raw:struct type *type, int regnum, char *from, char *to:type, regnum, from, to:::0::0
516 #
517 f:1:CONVERT_REGISTER_P:int:convert_register_p:int regnum:regnum::0:legacy_convert_register_p::0
518 f:1:REGISTER_TO_VALUE:void:register_to_value:int regnum, struct type *type, char *from, char *to:regnum, type, from, to::0:legacy_register_to_value::0
519 f:1:VALUE_TO_REGISTER:void:value_to_register:struct type *type, int regnum, char *from, char *to:type, regnum, from, to::0:legacy_value_to_register::0
520 #
521 f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, void *buf:type, buf:::unsigned_pointer_to_address::0
522 f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
523 F:2:INTEGER_TO_ADDRESS:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf
524 #
525 f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
526 f:2:PUSH_ARGUMENTS:CORE_ADDR:push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr:::default_push_arguments::0
527 f:2:PUSH_DUMMY_FRAME:void:push_dummy_frame:void:-:::0
528 F:2:PUSH_RETURN_ADDRESS:CORE_ADDR:push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp:::0
529 f:2:POP_FRAME:void:pop_frame:void:-:::0
530 #
531 f:2:STORE_STRUCT_RETURN:void:store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp:::0
532 #
533 f::EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, struct regcache *regcache, void *valbuf:type, regcache, valbuf:::legacy_extract_return_value::0
534 f::STORE_RETURN_VALUE:void:store_return_value:struct type *type, struct regcache *regcache, const void *valbuf:type, regcache, valbuf:::legacy_store_return_value::0
535 f::DEPRECATED_EXTRACT_RETURN_VALUE:void:deprecated_extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf
536 f::DEPRECATED_STORE_RETURN_VALUE:void:deprecated_store_return_value:struct type *type, char *valbuf:type, valbuf
537 #
538 F:2:EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:extract_struct_value_address:struct regcache *regcache:regcache:::0
539 F:2:DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:deprecated_extract_struct_value_address:char *regbuf:regbuf:::0
540 f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::generic_use_struct_convention::0
541 #
542 f:2:FRAME_INIT_SAVED_REGS:void:frame_init_saved_regs:struct frame_info *frame:frame::0:0
543 F:2:INIT_EXTRA_FRAME_INFO:void:init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame:::0
544 #
545 f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
546 f:2:PROLOGUE_FRAMELESS_P:int:prologue_frameless_p:CORE_ADDR ip:ip::0:generic_prologue_frameless_p::0
547 f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
548 f:2:BREAKPOINT_FROM_PC:const unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::legacy_breakpoint_from_pc::0
549 f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
550 f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
551 v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:-1
552 f::PREPARE_TO_PROCEED:int:prepare_to_proceed:int select_it:select_it::0:default_prepare_to_proceed::0
553 v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:-1
554 #
555 f:2:REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
556 #
557 v:2:FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:-1
558 f:2:FRAMELESS_FUNCTION_INVOCATION:int:frameless_function_invocation:struct frame_info *fi:fi:::generic_frameless_function_invocation_not::0
559 f:2:FRAME_CHAIN:CORE_ADDR:frame_chain:struct frame_info *frame:frame::0:0
560 # Define a default FRAME_CHAIN_VALID, in the form that is suitable for
561 # most targets. If FRAME_CHAIN_VALID returns zero it means that the
562 # given frame is the outermost one and has no caller.
563 #
564 # XXXX - both default and alternate frame_chain_valid functions are
565 # deprecated. New code should use dummy frames and one of the generic
566 # functions.
567 f:2:FRAME_CHAIN_VALID:int:frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe:::generic_func_frame_chain_valid::0
568 f:2:FRAME_SAVED_PC:CORE_ADDR:frame_saved_pc:struct frame_info *fi:fi::0:0
569 f:2:FRAME_ARGS_ADDRESS:CORE_ADDR:frame_args_address:struct frame_info *fi:fi::0:0
570 f:2:FRAME_LOCALS_ADDRESS:CORE_ADDR:frame_locals_address:struct frame_info *fi:fi::0:0
571 f:2:SAVED_PC_AFTER_CALL:CORE_ADDR:saved_pc_after_call:struct frame_info *frame:frame::0:0
572 f:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame::0:0
573 #
574 F:2:STACK_ALIGN:CORE_ADDR:stack_align:CORE_ADDR sp:sp::0:0
575 v:2:EXTRA_STACK_ALIGNMENT_NEEDED:int:extra_stack_alignment_needed::::0:1::0:::
576 F:2:REG_STRUCT_HAS_ADDR:int:reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type::0:0
577 F:2:SAVE_DUMMY_FRAME_TOS:void:save_dummy_frame_tos:CORE_ADDR sp:sp::0:0
578 v:2:PARM_BOUNDARY:int:parm_boundary
579 #
580 v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (gdbarch)
581 v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (gdbarch)
582 v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::default_double_format (gdbarch)
583 f:2:CONVERT_FROM_FUNC_PTR_ADDR:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr:addr:::core_addr_identity::0
584 # On some machines there are bits in addresses which are not really
585 # part of the address, but are used by the kernel, the hardware, etc.
586 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
587 # we get a "real" address such as one would find in a symbol table.
588 # This is used only for addresses of instructions, and even then I'm
589 # not sure it's used in all contexts. It exists to deal with there
590 # being a few stray bits in the PC which would mislead us, not as some
591 # sort of generic thing to handle alignment or segmentation (it's
592 # possible it should be in TARGET_READ_PC instead).
593 f:2:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
594 # It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
595 # ADDR_BITS_REMOVE.
596 f:2:SMASH_TEXT_ADDRESS:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr:::core_addr_identity::0
597 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
598 # the target needs software single step. An ISA method to implement it.
599 #
600 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
601 # using the breakpoint system instead of blatting memory directly (as with rs6000).
602 #
603 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
604 # single step. If not, then implement single step using breakpoints.
605 F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p::0:0
606 f:2:TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, disassemble_info *info:vma, info:::legacy_print_insn::0
607 f:2:SKIP_TRAMPOLINE_CODE:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc:::generic_skip_trampoline_code::0
608
609
610 # For SVR4 shared libraries, each call goes through a small piece of
611 # trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
612 # to nonzero if we are currently stopped in one of these.
613 f:2:IN_SOLIB_CALL_TRAMPOLINE:int:in_solib_call_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_call_trampoline::0
614
615 # Some systems also have trampoline code for returning from shared libs.
616 f:2:IN_SOLIB_RETURN_TRAMPOLINE:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_return_trampoline::0
617
618 # Sigtramp is a routine that the kernel calls (which then calls the
619 # signal handler). On most machines it is a library routine that is
620 # linked into the executable.
621 #
622 # This macro, given a program counter value and the name of the
623 # function in which that PC resides (which can be null if the name is
624 # not known), returns nonzero if the PC and name show that we are in
625 # sigtramp.
626 #
627 # On most machines just see if the name is sigtramp (and if we have
628 # no name, assume we are not in sigtramp).
629 #
630 # FIXME: cagney/2002-04-21: The function find_pc_partial_function
631 # calls find_pc_sect_partial_function() which calls PC_IN_SIGTRAMP.
632 # This means PC_IN_SIGTRAMP function can't be implemented by doing its
633 # own local NAME lookup.
634 #
635 # FIXME: cagney/2002-04-21: PC_IN_SIGTRAMP is something of a mess.
636 # Some code also depends on SIGTRAMP_START and SIGTRAMP_END but other
637 # does not.
638 f:2:PC_IN_SIGTRAMP:int:pc_in_sigtramp:CORE_ADDR pc, char *name:pc, name:::legacy_pc_in_sigtramp::0
639 F:2:SIGTRAMP_START:CORE_ADDR:sigtramp_start:CORE_ADDR pc:pc
640 f:2:SIGTRAMP_END:CORE_ADDR:sigtramp_end:CORE_ADDR pc:pc:::::0
641 # A target might have problems with watchpoints as soon as the stack
642 # frame of the current function has been destroyed. This mostly happens
643 # as the first action in a funtion's epilogue. in_function_epilogue_p()
644 # is defined to return a non-zero value if either the given addr is one
645 # instruction after the stack destroying instruction up to the trailing
646 # return instruction or if we can figure out that the stack frame has
647 # already been invalidated regardless of the value of addr. Targets
648 # which don't suffer from that problem could just let this functionality
649 # untouched.
650 m:::int:in_function_epilogue_p:CORE_ADDR addr:addr::0:generic_in_function_epilogue_p::0
651 # Given a vector of command-line arguments, return a newly allocated
652 # string which, when passed to the create_inferior function, will be
653 # parsed (on Unix systems, by the shell) to yield the same vector.
654 # This function should call error() if the argument vector is not
655 # representable for this target or if this target does not support
656 # command-line arguments.
657 # ARGC is the number of elements in the vector.
658 # ARGV is an array of strings, one per argument.
659 m::CONSTRUCT_INFERIOR_ARGUMENTS:char *:construct_inferior_arguments:int argc, char **argv:argc, argv:::construct_inferior_arguments::0
660 F:2:DWARF2_BUILD_FRAME_INFO:void:dwarf2_build_frame_info:struct objfile *objfile:objfile:::0
661 f:2:ELF_MAKE_MSYMBOL_SPECIAL:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym:::default_elf_make_msymbol_special::0
662 f:2:COFF_MAKE_MSYMBOL_SPECIAL:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym:::default_coff_make_msymbol_special::0
663 v::NAME_OF_MALLOC:const char *:name_of_malloc::::"malloc":"malloc"::0
664 EOF
665 }
666
667 #
668 # The .log file
669 #
670 exec > new-gdbarch.log
671 function_list | while do_read
672 do
673 cat <<EOF
674 ${class} ${macro}(${actual})
675 ${returntype} ${function} ($formal)${attrib}
676 EOF
677 for r in ${read}
678 do
679 eval echo \"\ \ \ \ ${r}=\${${r}}\"
680 done
681 # #fallbackdefault=${fallbackdefault}
682 # #valid_p=${valid_p}
683 #EOF
684 if class_is_predicate_p && fallback_default_p
685 then
686 echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
687 kill $$
688 exit 1
689 fi
690 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
691 then
692 echo "Error: postdefault is useless when invalid_p=0" 1>&2
693 kill $$
694 exit 1
695 fi
696 if class_is_multiarch_p
697 then
698 if class_is_predicate_p ; then :
699 elif test "x${predefault}" = "x"
700 then
701 echo "Error: pure multi-arch function must have a predefault" 1>&2
702 kill $$
703 exit 1
704 fi
705 fi
706 echo ""
707 done
708
709 exec 1>&2
710 compare_new gdbarch.log
711
712
713 copyright ()
714 {
715 cat <<EOF
716 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
717
718 /* Dynamic architecture support for GDB, the GNU debugger.
719 Copyright 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
720
721 This file is part of GDB.
722
723 This program is free software; you can redistribute it and/or modify
724 it under the terms of the GNU General Public License as published by
725 the Free Software Foundation; either version 2 of the License, or
726 (at your option) any later version.
727
728 This program is distributed in the hope that it will be useful,
729 but WITHOUT ANY WARRANTY; without even the implied warranty of
730 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
731 GNU General Public License for more details.
732
733 You should have received a copy of the GNU General Public License
734 along with this program; if not, write to the Free Software
735 Foundation, Inc., 59 Temple Place - Suite 330,
736 Boston, MA 02111-1307, USA. */
737
738 /* This file was created with the aid of \`\`gdbarch.sh''.
739
740 The Bourne shell script \`\`gdbarch.sh'' creates the files
741 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
742 against the existing \`\`gdbarch.[hc]''. Any differences found
743 being reported.
744
745 If editing this file, please also run gdbarch.sh and merge any
746 changes into that script. Conversely, when making sweeping changes
747 to this file, modifying gdbarch.sh and using its output may prove
748 easier. */
749
750 EOF
751 }
752
753 #
754 # The .h file
755 #
756
757 exec > new-gdbarch.h
758 copyright
759 cat <<EOF
760 #ifndef GDBARCH_H
761 #define GDBARCH_H
762
763 #include "dis-asm.h" /* Get defs for disassemble_info, which unfortunately is a typedef. */
764 #if !GDB_MULTI_ARCH
765 /* Pull in function declarations refered to, indirectly, via macros. */
766 #include "value.h" /* For default_coerce_float_to_double which is referenced by a macro. */
767 #include "inferior.h" /* For unsigned_address_to_pointer(). */
768 #endif
769
770 struct frame_info;
771 struct value;
772 struct objfile;
773 struct minimal_symbol;
774 struct regcache;
775
776 extern struct gdbarch *current_gdbarch;
777
778
779 /* If any of the following are defined, the target wasn't correctly
780 converted. */
781
782 #if GDB_MULTI_ARCH
783 #if defined (EXTRA_FRAME_INFO)
784 #error "EXTRA_FRAME_INFO: replaced by struct frame_extra_info"
785 #endif
786 #endif
787
788 #if GDB_MULTI_ARCH
789 #if defined (FRAME_FIND_SAVED_REGS)
790 #error "FRAME_FIND_SAVED_REGS: replaced by FRAME_INIT_SAVED_REGS"
791 #endif
792 #endif
793
794 #if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
795 #error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
796 #endif
797 EOF
798
799 # function typedef's
800 printf "\n"
801 printf "\n"
802 printf "/* The following are pre-initialized by GDBARCH. */\n"
803 function_list | while do_read
804 do
805 if class_is_info_p
806 then
807 printf "\n"
808 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
809 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
810 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
811 printf "#error \"Non multi-arch definition of ${macro}\"\n"
812 printf "#endif\n"
813 printf "#if GDB_MULTI_ARCH\n"
814 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
815 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
816 printf "#endif\n"
817 printf "#endif\n"
818 fi
819 done
820
821 # function typedef's
822 printf "\n"
823 printf "\n"
824 printf "/* The following are initialized by the target dependent code. */\n"
825 function_list | while do_read
826 do
827 if [ -n "${comment}" ]
828 then
829 echo "${comment}" | sed \
830 -e '2 s,#,/*,' \
831 -e '3,$ s,#, ,' \
832 -e '$ s,$, */,'
833 fi
834 if class_is_multiarch_p
835 then
836 if class_is_predicate_p
837 then
838 printf "\n"
839 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
840 fi
841 else
842 if class_is_predicate_p
843 then
844 printf "\n"
845 printf "#if defined (${macro})\n"
846 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
847 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
848 printf "#if !defined (${macro}_P)\n"
849 printf "#define ${macro}_P() (1)\n"
850 printf "#endif\n"
851 printf "#endif\n"
852 printf "\n"
853 printf "/* Default predicate for non- multi-arch targets. */\n"
854 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro}_P)\n"
855 printf "#define ${macro}_P() (0)\n"
856 printf "#endif\n"
857 printf "\n"
858 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
859 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro}_P)\n"
860 printf "#error \"Non multi-arch definition of ${macro}\"\n"
861 printf "#endif\n"
862 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro}_P)\n"
863 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
864 printf "#endif\n"
865 fi
866 fi
867 if class_is_variable_p
868 then
869 if fallback_default_p || class_is_predicate_p
870 then
871 printf "\n"
872 printf "/* Default (value) for non- multi-arch platforms. */\n"
873 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
874 echo "#define ${macro} (${fallbackdefault})" \
875 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
876 printf "#endif\n"
877 fi
878 printf "\n"
879 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
880 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
881 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
882 printf "#error \"Non multi-arch definition of ${macro}\"\n"
883 printf "#endif\n"
884 printf "#if GDB_MULTI_ARCH\n"
885 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
886 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
887 printf "#endif\n"
888 printf "#endif\n"
889 fi
890 if class_is_function_p
891 then
892 if class_is_multiarch_p ; then :
893 elif fallback_default_p || class_is_predicate_p
894 then
895 printf "\n"
896 printf "/* Default (function) for non- multi-arch platforms. */\n"
897 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
898 if [ "x${fallbackdefault}" = "x0" ]
899 then
900 printf "#define ${macro}(${actual}) (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
901 else
902 # FIXME: Should be passing current_gdbarch through!
903 echo "#define ${macro}(${actual}) (${fallbackdefault} (${actual}))" \
904 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
905 fi
906 printf "#endif\n"
907 fi
908 printf "\n"
909 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
910 then
911 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
912 elif class_is_multiarch_p
913 then
914 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
915 else
916 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
917 fi
918 if [ "x${formal}" = "xvoid" ]
919 then
920 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
921 else
922 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
923 fi
924 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
925 if class_is_multiarch_p ; then :
926 else
927 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
928 printf "#error \"Non multi-arch definition of ${macro}\"\n"
929 printf "#endif\n"
930 printf "#if GDB_MULTI_ARCH\n"
931 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
932 if [ "x${actual}" = "x" ]
933 then
934 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
935 elif [ "x${actual}" = "x-" ]
936 then
937 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
938 else
939 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
940 fi
941 printf "#endif\n"
942 printf "#endif\n"
943 fi
944 fi
945 done
946
947 # close it off
948 cat <<EOF
949
950 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
951
952
953 /* Mechanism for co-ordinating the selection of a specific
954 architecture.
955
956 GDB targets (*-tdep.c) can register an interest in a specific
957 architecture. Other GDB components can register a need to maintain
958 per-architecture data.
959
960 The mechanisms below ensures that there is only a loose connection
961 between the set-architecture command and the various GDB
962 components. Each component can independently register their need
963 to maintain architecture specific data with gdbarch.
964
965 Pragmatics:
966
967 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
968 didn't scale.
969
970 The more traditional mega-struct containing architecture specific
971 data for all the various GDB components was also considered. Since
972 GDB is built from a variable number of (fairly independent)
973 components it was determined that the global aproach was not
974 applicable. */
975
976
977 /* Register a new architectural family with GDB.
978
979 Register support for the specified ARCHITECTURE with GDB. When
980 gdbarch determines that the specified architecture has been
981 selected, the corresponding INIT function is called.
982
983 --
984
985 The INIT function takes two parameters: INFO which contains the
986 information available to gdbarch about the (possibly new)
987 architecture; ARCHES which is a list of the previously created
988 \`\`struct gdbarch'' for this architecture.
989
990 The INFO parameter is, as far as possible, be pre-initialized with
991 information obtained from INFO.ABFD or the previously selected
992 architecture.
993
994 The ARCHES parameter is a linked list (sorted most recently used)
995 of all the previously created architures for this architecture
996 family. The (possibly NULL) ARCHES->gdbarch can used to access
997 values from the previously selected architecture for this
998 architecture family. The global \`\`current_gdbarch'' shall not be
999 used.
1000
1001 The INIT function shall return any of: NULL - indicating that it
1002 doesn't recognize the selected architecture; an existing \`\`struct
1003 gdbarch'' from the ARCHES list - indicating that the new
1004 architecture is just a synonym for an earlier architecture (see
1005 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1006 - that describes the selected architecture (see gdbarch_alloc()).
1007
1008 The DUMP_TDEP function shall print out all target specific values.
1009 Care should be taken to ensure that the function works in both the
1010 multi-arch and non- multi-arch cases. */
1011
1012 struct gdbarch_list
1013 {
1014 struct gdbarch *gdbarch;
1015 struct gdbarch_list *next;
1016 };
1017
1018 struct gdbarch_info
1019 {
1020 /* Use default: NULL (ZERO). */
1021 const struct bfd_arch_info *bfd_arch_info;
1022
1023 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1024 int byte_order;
1025
1026 /* Use default: NULL (ZERO). */
1027 bfd *abfd;
1028
1029 /* Use default: NULL (ZERO). */
1030 struct gdbarch_tdep_info *tdep_info;
1031 };
1032
1033 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1034 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1035
1036 /* DEPRECATED - use gdbarch_register() */
1037 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1038
1039 extern void gdbarch_register (enum bfd_architecture architecture,
1040 gdbarch_init_ftype *,
1041 gdbarch_dump_tdep_ftype *);
1042
1043
1044 /* Return a freshly allocated, NULL terminated, array of the valid
1045 architecture names. Since architectures are registered during the
1046 _initialize phase this function only returns useful information
1047 once initialization has been completed. */
1048
1049 extern const char **gdbarch_printable_names (void);
1050
1051
1052 /* Helper function. Search the list of ARCHES for a GDBARCH that
1053 matches the information provided by INFO. */
1054
1055 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1056
1057
1058 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1059 basic initialization using values obtained from the INFO andTDEP
1060 parameters. set_gdbarch_*() functions are called to complete the
1061 initialization of the object. */
1062
1063 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1064
1065
1066 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1067 It is assumed that the caller freeds the \`\`struct
1068 gdbarch_tdep''. */
1069
1070 extern void gdbarch_free (struct gdbarch *);
1071
1072
1073 /* Helper function. Force an update of the current architecture.
1074
1075 The actual architecture selected is determined by INFO, \`\`(gdb) set
1076 architecture'' et.al., the existing architecture and BFD's default
1077 architecture. INFO should be initialized to zero and then selected
1078 fields should be updated.
1079
1080 Returns non-zero if the update succeeds */
1081
1082 extern int gdbarch_update_p (struct gdbarch_info info);
1083
1084
1085
1086 /* Register per-architecture data-pointer.
1087
1088 Reserve space for a per-architecture data-pointer. An identifier
1089 for the reserved data-pointer is returned. That identifer should
1090 be saved in a local static variable.
1091
1092 The per-architecture data-pointer is either initialized explicitly
1093 (set_gdbarch_data()) or implicitly (by INIT() via a call to
1094 gdbarch_data()). FREE() is called to delete either an existing
1095 data-pointer overridden by set_gdbarch_data() or when the
1096 architecture object is being deleted.
1097
1098 When a previously created architecture is re-selected, the
1099 per-architecture data-pointer for that previous architecture is
1100 restored. INIT() is not re-called.
1101
1102 Multiple registrarants for any architecture are allowed (and
1103 strongly encouraged). */
1104
1105 struct gdbarch_data;
1106
1107 typedef void *(gdbarch_data_init_ftype) (struct gdbarch *gdbarch);
1108 typedef void (gdbarch_data_free_ftype) (struct gdbarch *gdbarch,
1109 void *pointer);
1110 extern struct gdbarch_data *register_gdbarch_data (gdbarch_data_init_ftype *init,
1111 gdbarch_data_free_ftype *free);
1112 extern void set_gdbarch_data (struct gdbarch *gdbarch,
1113 struct gdbarch_data *data,
1114 void *pointer);
1115
1116 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1117
1118
1119 /* Register per-architecture memory region.
1120
1121 Provide a memory-region swap mechanism. Per-architecture memory
1122 region are created. These memory regions are swapped whenever the
1123 architecture is changed. For a new architecture, the memory region
1124 is initialized with zero (0) and the INIT function is called.
1125
1126 Memory regions are swapped / initialized in the order that they are
1127 registered. NULL DATA and/or INIT values can be specified.
1128
1129 New code should use register_gdbarch_data(). */
1130
1131 typedef void (gdbarch_swap_ftype) (void);
1132 extern void register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1133 #define REGISTER_GDBARCH_SWAP(VAR) register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1134
1135
1136
1137 /* The target-system-dependent byte order is dynamic */
1138
1139 extern int target_byte_order;
1140 #ifndef TARGET_BYTE_ORDER
1141 #define TARGET_BYTE_ORDER (target_byte_order + 0)
1142 #endif
1143
1144 extern int target_byte_order_auto;
1145 #ifndef TARGET_BYTE_ORDER_AUTO
1146 #define TARGET_BYTE_ORDER_AUTO (target_byte_order_auto + 0)
1147 #endif
1148
1149
1150
1151 /* The target-system-dependent BFD architecture is dynamic */
1152
1153 extern int target_architecture_auto;
1154 #ifndef TARGET_ARCHITECTURE_AUTO
1155 #define TARGET_ARCHITECTURE_AUTO (target_architecture_auto + 0)
1156 #endif
1157
1158 extern const struct bfd_arch_info *target_architecture;
1159 #ifndef TARGET_ARCHITECTURE
1160 #define TARGET_ARCHITECTURE (target_architecture + 0)
1161 #endif
1162
1163
1164 /* The target-system-dependent disassembler is semi-dynamic */
1165
1166 extern int dis_asm_read_memory (bfd_vma memaddr, bfd_byte *myaddr,
1167 unsigned int len, disassemble_info *info);
1168
1169 extern void dis_asm_memory_error (int status, bfd_vma memaddr,
1170 disassemble_info *info);
1171
1172 extern void dis_asm_print_address (bfd_vma addr,
1173 disassemble_info *info);
1174
1175 extern int (*tm_print_insn) (bfd_vma, disassemble_info*);
1176 extern disassemble_info tm_print_insn_info;
1177 #ifndef TARGET_PRINT_INSN_INFO
1178 #define TARGET_PRINT_INSN_INFO (&tm_print_insn_info)
1179 #endif
1180
1181
1182
1183 /* Set the dynamic target-system-dependent parameters (architecture,
1184 byte-order, ...) using information found in the BFD */
1185
1186 extern void set_gdbarch_from_file (bfd *);
1187
1188
1189 /* Initialize the current architecture to the "first" one we find on
1190 our list. */
1191
1192 extern void initialize_current_architecture (void);
1193
1194 /* For non-multiarched targets, do any initialization of the default
1195 gdbarch object necessary after the _initialize_MODULE functions
1196 have run. */
1197 extern void initialize_non_multiarch (void);
1198
1199 /* gdbarch trace variable */
1200 extern int gdbarch_debug;
1201
1202 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1203
1204 #endif
1205 EOF
1206 exec 1>&2
1207 #../move-if-change new-gdbarch.h gdbarch.h
1208 compare_new gdbarch.h
1209
1210
1211 #
1212 # C file
1213 #
1214
1215 exec > new-gdbarch.c
1216 copyright
1217 cat <<EOF
1218
1219 #include "defs.h"
1220 #include "arch-utils.h"
1221
1222 #if GDB_MULTI_ARCH
1223 #include "gdbcmd.h"
1224 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1225 #else
1226 /* Just include everything in sight so that the every old definition
1227 of macro is visible. */
1228 #include "gdb_string.h"
1229 #include <ctype.h>
1230 #include "symtab.h"
1231 #include "frame.h"
1232 #include "inferior.h"
1233 #include "breakpoint.h"
1234 #include "gdb_wait.h"
1235 #include "gdbcore.h"
1236 #include "gdbcmd.h"
1237 #include "target.h"
1238 #include "gdbthread.h"
1239 #include "annotate.h"
1240 #include "symfile.h" /* for overlay functions */
1241 #include "value.h" /* For old tm.h/nm.h macros. */
1242 #endif
1243 #include "symcat.h"
1244
1245 #include "floatformat.h"
1246
1247 #include "gdb_assert.h"
1248 #include "gdb_string.h"
1249 #include "gdb-events.h"
1250
1251 /* Static function declarations */
1252
1253 static void verify_gdbarch (struct gdbarch *gdbarch);
1254 static void alloc_gdbarch_data (struct gdbarch *);
1255 static void free_gdbarch_data (struct gdbarch *);
1256 static void init_gdbarch_swap (struct gdbarch *);
1257 static void clear_gdbarch_swap (struct gdbarch *);
1258 static void swapout_gdbarch_swap (struct gdbarch *);
1259 static void swapin_gdbarch_swap (struct gdbarch *);
1260
1261 /* Non-zero if we want to trace architecture code. */
1262
1263 #ifndef GDBARCH_DEBUG
1264 #define GDBARCH_DEBUG 0
1265 #endif
1266 int gdbarch_debug = GDBARCH_DEBUG;
1267
1268 EOF
1269
1270 # gdbarch open the gdbarch object
1271 printf "\n"
1272 printf "/* Maintain the struct gdbarch object */\n"
1273 printf "\n"
1274 printf "struct gdbarch\n"
1275 printf "{\n"
1276 printf " /* Has this architecture been fully initialized? */\n"
1277 printf " int initialized_p;\n"
1278 printf " /* basic architectural information */\n"
1279 function_list | while do_read
1280 do
1281 if class_is_info_p
1282 then
1283 printf " ${returntype} ${function};\n"
1284 fi
1285 done
1286 printf "\n"
1287 printf " /* target specific vector. */\n"
1288 printf " struct gdbarch_tdep *tdep;\n"
1289 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1290 printf "\n"
1291 printf " /* per-architecture data-pointers */\n"
1292 printf " unsigned nr_data;\n"
1293 printf " void **data;\n"
1294 printf "\n"
1295 printf " /* per-architecture swap-regions */\n"
1296 printf " struct gdbarch_swap *swap;\n"
1297 printf "\n"
1298 cat <<EOF
1299 /* Multi-arch values.
1300
1301 When extending this structure you must:
1302
1303 Add the field below.
1304
1305 Declare set/get functions and define the corresponding
1306 macro in gdbarch.h.
1307
1308 gdbarch_alloc(): If zero/NULL is not a suitable default,
1309 initialize the new field.
1310
1311 verify_gdbarch(): Confirm that the target updated the field
1312 correctly.
1313
1314 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1315 field is dumped out
1316
1317 \`\`startup_gdbarch()'': Append an initial value to the static
1318 variable (base values on the host's c-type system).
1319
1320 get_gdbarch(): Implement the set/get functions (probably using
1321 the macro's as shortcuts).
1322
1323 */
1324
1325 EOF
1326 function_list | while do_read
1327 do
1328 if class_is_variable_p
1329 then
1330 printf " ${returntype} ${function};\n"
1331 elif class_is_function_p
1332 then
1333 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
1334 fi
1335 done
1336 printf "};\n"
1337
1338 # A pre-initialized vector
1339 printf "\n"
1340 printf "\n"
1341 cat <<EOF
1342 /* The default architecture uses host values (for want of a better
1343 choice). */
1344 EOF
1345 printf "\n"
1346 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1347 printf "\n"
1348 printf "struct gdbarch startup_gdbarch =\n"
1349 printf "{\n"
1350 printf " 1, /* Always initialized. */\n"
1351 printf " /* basic architecture information */\n"
1352 function_list | while do_read
1353 do
1354 if class_is_info_p
1355 then
1356 printf " ${staticdefault},\n"
1357 fi
1358 done
1359 cat <<EOF
1360 /* target specific vector and its dump routine */
1361 NULL, NULL,
1362 /*per-architecture data-pointers and swap regions */
1363 0, NULL, NULL,
1364 /* Multi-arch values */
1365 EOF
1366 function_list | while do_read
1367 do
1368 if class_is_function_p || class_is_variable_p
1369 then
1370 printf " ${staticdefault},\n"
1371 fi
1372 done
1373 cat <<EOF
1374 /* startup_gdbarch() */
1375 };
1376
1377 struct gdbarch *current_gdbarch = &startup_gdbarch;
1378
1379 /* Do any initialization needed for a non-multiarch configuration
1380 after the _initialize_MODULE functions have been run. */
1381 void
1382 initialize_non_multiarch (void)
1383 {
1384 alloc_gdbarch_data (&startup_gdbarch);
1385 /* Ensure that all swap areas are zeroed so that they again think
1386 they are starting from scratch. */
1387 clear_gdbarch_swap (&startup_gdbarch);
1388 init_gdbarch_swap (&startup_gdbarch);
1389 }
1390 EOF
1391
1392 # Create a new gdbarch struct
1393 printf "\n"
1394 printf "\n"
1395 cat <<EOF
1396 /* Create a new \`\`struct gdbarch'' based on information provided by
1397 \`\`struct gdbarch_info''. */
1398 EOF
1399 printf "\n"
1400 cat <<EOF
1401 struct gdbarch *
1402 gdbarch_alloc (const struct gdbarch_info *info,
1403 struct gdbarch_tdep *tdep)
1404 {
1405 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1406 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1407 the current local architecture and not the previous global
1408 architecture. This ensures that the new architectures initial
1409 values are not influenced by the previous architecture. Once
1410 everything is parameterised with gdbarch, this will go away. */
1411 struct gdbarch *current_gdbarch = XMALLOC (struct gdbarch);
1412 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1413
1414 alloc_gdbarch_data (current_gdbarch);
1415
1416 current_gdbarch->tdep = tdep;
1417 EOF
1418 printf "\n"
1419 function_list | while do_read
1420 do
1421 if class_is_info_p
1422 then
1423 printf " current_gdbarch->${function} = info->${function};\n"
1424 fi
1425 done
1426 printf "\n"
1427 printf " /* Force the explicit initialization of these. */\n"
1428 function_list | while do_read
1429 do
1430 if class_is_function_p || class_is_variable_p
1431 then
1432 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1433 then
1434 printf " current_gdbarch->${function} = ${predefault};\n"
1435 fi
1436 fi
1437 done
1438 cat <<EOF
1439 /* gdbarch_alloc() */
1440
1441 return current_gdbarch;
1442 }
1443 EOF
1444
1445 # Free a gdbarch struct.
1446 printf "\n"
1447 printf "\n"
1448 cat <<EOF
1449 /* Free a gdbarch struct. This should never happen in normal
1450 operation --- once you've created a gdbarch, you keep it around.
1451 However, if an architecture's init function encounters an error
1452 building the structure, it may need to clean up a partially
1453 constructed gdbarch. */
1454
1455 void
1456 gdbarch_free (struct gdbarch *arch)
1457 {
1458 gdb_assert (arch != NULL);
1459 free_gdbarch_data (arch);
1460 xfree (arch);
1461 }
1462 EOF
1463
1464 # verify a new architecture
1465 printf "\n"
1466 printf "\n"
1467 printf "/* Ensure that all values in a GDBARCH are reasonable. */\n"
1468 printf "\n"
1469 cat <<EOF
1470 static void
1471 verify_gdbarch (struct gdbarch *gdbarch)
1472 {
1473 struct ui_file *log;
1474 struct cleanup *cleanups;
1475 long dummy;
1476 char *buf;
1477 /* Only perform sanity checks on a multi-arch target. */
1478 if (!GDB_MULTI_ARCH)
1479 return;
1480 log = mem_fileopen ();
1481 cleanups = make_cleanup_ui_file_delete (log);
1482 /* fundamental */
1483 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1484 fprintf_unfiltered (log, "\n\tbyte-order");
1485 if (gdbarch->bfd_arch_info == NULL)
1486 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1487 /* Check those that need to be defined for the given multi-arch level. */
1488 EOF
1489 function_list | while do_read
1490 do
1491 if class_is_function_p || class_is_variable_p
1492 then
1493 if [ "x${invalid_p}" = "x0" ]
1494 then
1495 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1496 elif class_is_predicate_p
1497 then
1498 printf " /* Skip verify of ${function}, has predicate */\n"
1499 # FIXME: See do_read for potential simplification
1500 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1501 then
1502 printf " if (${invalid_p})\n"
1503 printf " gdbarch->${function} = ${postdefault};\n"
1504 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1505 then
1506 printf " if (gdbarch->${function} == ${predefault})\n"
1507 printf " gdbarch->${function} = ${postdefault};\n"
1508 elif [ -n "${postdefault}" ]
1509 then
1510 printf " if (gdbarch->${function} == 0)\n"
1511 printf " gdbarch->${function} = ${postdefault};\n"
1512 elif [ -n "${invalid_p}" ]
1513 then
1514 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1515 printf " && (${invalid_p}))\n"
1516 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1517 elif [ -n "${predefault}" ]
1518 then
1519 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1520 printf " && (gdbarch->${function} == ${predefault}))\n"
1521 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1522 fi
1523 fi
1524 done
1525 cat <<EOF
1526 buf = ui_file_xstrdup (log, &dummy);
1527 make_cleanup (xfree, buf);
1528 if (strlen (buf) > 0)
1529 internal_error (__FILE__, __LINE__,
1530 "verify_gdbarch: the following are invalid ...%s",
1531 buf);
1532 do_cleanups (cleanups);
1533 }
1534 EOF
1535
1536 # dump the structure
1537 printf "\n"
1538 printf "\n"
1539 cat <<EOF
1540 /* Print out the details of the current architecture. */
1541
1542 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1543 just happens to match the global variable \`\`current_gdbarch''. That
1544 way macros refering to that variable get the local and not the global
1545 version - ulgh. Once everything is parameterised with gdbarch, this
1546 will go away. */
1547
1548 void
1549 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1550 {
1551 fprintf_unfiltered (file,
1552 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1553 GDB_MULTI_ARCH);
1554 EOF
1555 function_list | sort -t: +2 | while do_read
1556 do
1557 # multiarch functions don't have macros.
1558 if class_is_multiarch_p
1559 then
1560 printf " if (GDB_MULTI_ARCH)\n"
1561 printf " fprintf_unfiltered (file,\n"
1562 printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1563 printf " (long) current_gdbarch->${function});\n"
1564 continue
1565 fi
1566 # Print the macro definition.
1567 printf "#ifdef ${macro}\n"
1568 if [ "x${returntype}" = "xvoid" ]
1569 then
1570 printf "#if GDB_MULTI_ARCH\n"
1571 printf " /* Macro might contain \`[{}]' when not multi-arch */\n"
1572 fi
1573 if class_is_function_p
1574 then
1575 printf " fprintf_unfiltered (file,\n"
1576 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1577 printf " \"${macro}(${actual})\",\n"
1578 printf " XSTRING (${macro} (${actual})));\n"
1579 else
1580 printf " fprintf_unfiltered (file,\n"
1581 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1582 printf " XSTRING (${macro}));\n"
1583 fi
1584 # Print the architecture vector value
1585 if [ "x${returntype}" = "xvoid" ]
1586 then
1587 printf "#endif\n"
1588 fi
1589 if [ "x${print_p}" = "x()" ]
1590 then
1591 printf " gdbarch_dump_${function} (current_gdbarch);\n"
1592 elif [ "x${print_p}" = "x0" ]
1593 then
1594 printf " /* skip print of ${macro}, print_p == 0. */\n"
1595 elif [ -n "${print_p}" ]
1596 then
1597 printf " if (${print_p})\n"
1598 printf " fprintf_unfiltered (file,\n"
1599 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1600 printf " ${print});\n"
1601 elif class_is_function_p
1602 then
1603 printf " if (GDB_MULTI_ARCH)\n"
1604 printf " fprintf_unfiltered (file,\n"
1605 printf " \"gdbarch_dump: ${macro} = 0x%%08lx\\\\n\",\n"
1606 printf " (long) current_gdbarch->${function}\n"
1607 printf " /*${macro} ()*/);\n"
1608 else
1609 printf " fprintf_unfiltered (file,\n"
1610 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1611 printf " ${print});\n"
1612 fi
1613 printf "#endif\n"
1614 done
1615 cat <<EOF
1616 if (current_gdbarch->dump_tdep != NULL)
1617 current_gdbarch->dump_tdep (current_gdbarch, file);
1618 }
1619 EOF
1620
1621
1622 # GET/SET
1623 printf "\n"
1624 cat <<EOF
1625 struct gdbarch_tdep *
1626 gdbarch_tdep (struct gdbarch *gdbarch)
1627 {
1628 if (gdbarch_debug >= 2)
1629 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1630 return gdbarch->tdep;
1631 }
1632 EOF
1633 printf "\n"
1634 function_list | while do_read
1635 do
1636 if class_is_predicate_p
1637 then
1638 printf "\n"
1639 printf "int\n"
1640 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1641 printf "{\n"
1642 printf " gdb_assert (gdbarch != NULL);\n"
1643 if [ -n "${valid_p}" ]
1644 then
1645 printf " return ${valid_p};\n"
1646 else
1647 printf "#error \"gdbarch_${function}_p: not defined\"\n"
1648 fi
1649 printf "}\n"
1650 fi
1651 if class_is_function_p
1652 then
1653 printf "\n"
1654 printf "${returntype}\n"
1655 if [ "x${formal}" = "xvoid" ]
1656 then
1657 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1658 else
1659 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1660 fi
1661 printf "{\n"
1662 printf " gdb_assert (gdbarch != NULL);\n"
1663 printf " if (gdbarch->${function} == 0)\n"
1664 printf " internal_error (__FILE__, __LINE__,\n"
1665 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1666 printf " if (gdbarch_debug >= 2)\n"
1667 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1668 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1669 then
1670 if class_is_multiarch_p
1671 then
1672 params="gdbarch"
1673 else
1674 params=""
1675 fi
1676 else
1677 if class_is_multiarch_p
1678 then
1679 params="gdbarch, ${actual}"
1680 else
1681 params="${actual}"
1682 fi
1683 fi
1684 if [ "x${returntype}" = "xvoid" ]
1685 then
1686 printf " gdbarch->${function} (${params});\n"
1687 else
1688 printf " return gdbarch->${function} (${params});\n"
1689 fi
1690 printf "}\n"
1691 printf "\n"
1692 printf "void\n"
1693 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1694 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1695 printf "{\n"
1696 printf " gdbarch->${function} = ${function};\n"
1697 printf "}\n"
1698 elif class_is_variable_p
1699 then
1700 printf "\n"
1701 printf "${returntype}\n"
1702 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1703 printf "{\n"
1704 printf " gdb_assert (gdbarch != NULL);\n"
1705 if [ "x${invalid_p}" = "x0" ]
1706 then
1707 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1708 elif [ -n "${invalid_p}" ]
1709 then
1710 printf " if (${invalid_p})\n"
1711 printf " internal_error (__FILE__, __LINE__,\n"
1712 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1713 elif [ -n "${predefault}" ]
1714 then
1715 printf " if (gdbarch->${function} == ${predefault})\n"
1716 printf " internal_error (__FILE__, __LINE__,\n"
1717 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1718 fi
1719 printf " if (gdbarch_debug >= 2)\n"
1720 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1721 printf " return gdbarch->${function};\n"
1722 printf "}\n"
1723 printf "\n"
1724 printf "void\n"
1725 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1726 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1727 printf "{\n"
1728 printf " gdbarch->${function} = ${function};\n"
1729 printf "}\n"
1730 elif class_is_info_p
1731 then
1732 printf "\n"
1733 printf "${returntype}\n"
1734 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1735 printf "{\n"
1736 printf " gdb_assert (gdbarch != NULL);\n"
1737 printf " if (gdbarch_debug >= 2)\n"
1738 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1739 printf " return gdbarch->${function};\n"
1740 printf "}\n"
1741 fi
1742 done
1743
1744 # All the trailing guff
1745 cat <<EOF
1746
1747
1748 /* Keep a registry of per-architecture data-pointers required by GDB
1749 modules. */
1750
1751 struct gdbarch_data
1752 {
1753 unsigned index;
1754 int init_p;
1755 gdbarch_data_init_ftype *init;
1756 gdbarch_data_free_ftype *free;
1757 };
1758
1759 struct gdbarch_data_registration
1760 {
1761 struct gdbarch_data *data;
1762 struct gdbarch_data_registration *next;
1763 };
1764
1765 struct gdbarch_data_registry
1766 {
1767 unsigned nr;
1768 struct gdbarch_data_registration *registrations;
1769 };
1770
1771 struct gdbarch_data_registry gdbarch_data_registry =
1772 {
1773 0, NULL,
1774 };
1775
1776 struct gdbarch_data *
1777 register_gdbarch_data (gdbarch_data_init_ftype *init,
1778 gdbarch_data_free_ftype *free)
1779 {
1780 struct gdbarch_data_registration **curr;
1781 /* Append the new registraration. */
1782 for (curr = &gdbarch_data_registry.registrations;
1783 (*curr) != NULL;
1784 curr = &(*curr)->next);
1785 (*curr) = XMALLOC (struct gdbarch_data_registration);
1786 (*curr)->next = NULL;
1787 (*curr)->data = XMALLOC (struct gdbarch_data);
1788 (*curr)->data->index = gdbarch_data_registry.nr++;
1789 (*curr)->data->init = init;
1790 (*curr)->data->init_p = 1;
1791 (*curr)->data->free = free;
1792 return (*curr)->data;
1793 }
1794
1795
1796 /* Create/delete the gdbarch data vector. */
1797
1798 static void
1799 alloc_gdbarch_data (struct gdbarch *gdbarch)
1800 {
1801 gdb_assert (gdbarch->data == NULL);
1802 gdbarch->nr_data = gdbarch_data_registry.nr;
1803 gdbarch->data = xcalloc (gdbarch->nr_data, sizeof (void*));
1804 }
1805
1806 static void
1807 free_gdbarch_data (struct gdbarch *gdbarch)
1808 {
1809 struct gdbarch_data_registration *rego;
1810 gdb_assert (gdbarch->data != NULL);
1811 for (rego = gdbarch_data_registry.registrations;
1812 rego != NULL;
1813 rego = rego->next)
1814 {
1815 struct gdbarch_data *data = rego->data;
1816 gdb_assert (data->index < gdbarch->nr_data);
1817 if (data->free != NULL && gdbarch->data[data->index] != NULL)
1818 {
1819 data->free (gdbarch, gdbarch->data[data->index]);
1820 gdbarch->data[data->index] = NULL;
1821 }
1822 }
1823 xfree (gdbarch->data);
1824 gdbarch->data = NULL;
1825 }
1826
1827
1828 /* Initialize the current value of the specified per-architecture
1829 data-pointer. */
1830
1831 void
1832 set_gdbarch_data (struct gdbarch *gdbarch,
1833 struct gdbarch_data *data,
1834 void *pointer)
1835 {
1836 gdb_assert (data->index < gdbarch->nr_data);
1837 if (gdbarch->data[data->index] != NULL)
1838 {
1839 gdb_assert (data->free != NULL);
1840 data->free (gdbarch, gdbarch->data[data->index]);
1841 }
1842 gdbarch->data[data->index] = pointer;
1843 }
1844
1845 /* Return the current value of the specified per-architecture
1846 data-pointer. */
1847
1848 void *
1849 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1850 {
1851 gdb_assert (data->index < gdbarch->nr_data);
1852 /* The data-pointer isn't initialized, call init() to get a value but
1853 only if the architecture initializaiton has completed. Otherwise
1854 punt - hope that the caller knows what they are doing. */
1855 if (gdbarch->data[data->index] == NULL
1856 && gdbarch->initialized_p)
1857 {
1858 /* Be careful to detect an initialization cycle. */
1859 gdb_assert (data->init_p);
1860 data->init_p = 0;
1861 gdb_assert (data->init != NULL);
1862 gdbarch->data[data->index] = data->init (gdbarch);
1863 data->init_p = 1;
1864 gdb_assert (gdbarch->data[data->index] != NULL);
1865 }
1866 return gdbarch->data[data->index];
1867 }
1868
1869
1870
1871 /* Keep a registry of swapped data required by GDB modules. */
1872
1873 struct gdbarch_swap
1874 {
1875 void *swap;
1876 struct gdbarch_swap_registration *source;
1877 struct gdbarch_swap *next;
1878 };
1879
1880 struct gdbarch_swap_registration
1881 {
1882 void *data;
1883 unsigned long sizeof_data;
1884 gdbarch_swap_ftype *init;
1885 struct gdbarch_swap_registration *next;
1886 };
1887
1888 struct gdbarch_swap_registry
1889 {
1890 int nr;
1891 struct gdbarch_swap_registration *registrations;
1892 };
1893
1894 struct gdbarch_swap_registry gdbarch_swap_registry =
1895 {
1896 0, NULL,
1897 };
1898
1899 void
1900 register_gdbarch_swap (void *data,
1901 unsigned long sizeof_data,
1902 gdbarch_swap_ftype *init)
1903 {
1904 struct gdbarch_swap_registration **rego;
1905 for (rego = &gdbarch_swap_registry.registrations;
1906 (*rego) != NULL;
1907 rego = &(*rego)->next);
1908 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1909 (*rego)->next = NULL;
1910 (*rego)->init = init;
1911 (*rego)->data = data;
1912 (*rego)->sizeof_data = sizeof_data;
1913 }
1914
1915 static void
1916 clear_gdbarch_swap (struct gdbarch *gdbarch)
1917 {
1918 struct gdbarch_swap *curr;
1919 for (curr = gdbarch->swap;
1920 curr != NULL;
1921 curr = curr->next)
1922 {
1923 memset (curr->source->data, 0, curr->source->sizeof_data);
1924 }
1925 }
1926
1927 static void
1928 init_gdbarch_swap (struct gdbarch *gdbarch)
1929 {
1930 struct gdbarch_swap_registration *rego;
1931 struct gdbarch_swap **curr = &gdbarch->swap;
1932 for (rego = gdbarch_swap_registry.registrations;
1933 rego != NULL;
1934 rego = rego->next)
1935 {
1936 if (rego->data != NULL)
1937 {
1938 (*curr) = XMALLOC (struct gdbarch_swap);
1939 (*curr)->source = rego;
1940 (*curr)->swap = xmalloc (rego->sizeof_data);
1941 (*curr)->next = NULL;
1942 curr = &(*curr)->next;
1943 }
1944 if (rego->init != NULL)
1945 rego->init ();
1946 }
1947 }
1948
1949 static void
1950 swapout_gdbarch_swap (struct gdbarch *gdbarch)
1951 {
1952 struct gdbarch_swap *curr;
1953 for (curr = gdbarch->swap;
1954 curr != NULL;
1955 curr = curr->next)
1956 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1957 }
1958
1959 static void
1960 swapin_gdbarch_swap (struct gdbarch *gdbarch)
1961 {
1962 struct gdbarch_swap *curr;
1963 for (curr = gdbarch->swap;
1964 curr != NULL;
1965 curr = curr->next)
1966 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
1967 }
1968
1969
1970 /* Keep a registry of the architectures known by GDB. */
1971
1972 struct gdbarch_registration
1973 {
1974 enum bfd_architecture bfd_architecture;
1975 gdbarch_init_ftype *init;
1976 gdbarch_dump_tdep_ftype *dump_tdep;
1977 struct gdbarch_list *arches;
1978 struct gdbarch_registration *next;
1979 };
1980
1981 static struct gdbarch_registration *gdbarch_registry = NULL;
1982
1983 static void
1984 append_name (const char ***buf, int *nr, const char *name)
1985 {
1986 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1987 (*buf)[*nr] = name;
1988 *nr += 1;
1989 }
1990
1991 const char **
1992 gdbarch_printable_names (void)
1993 {
1994 if (GDB_MULTI_ARCH)
1995 {
1996 /* Accumulate a list of names based on the registed list of
1997 architectures. */
1998 enum bfd_architecture a;
1999 int nr_arches = 0;
2000 const char **arches = NULL;
2001 struct gdbarch_registration *rego;
2002 for (rego = gdbarch_registry;
2003 rego != NULL;
2004 rego = rego->next)
2005 {
2006 const struct bfd_arch_info *ap;
2007 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2008 if (ap == NULL)
2009 internal_error (__FILE__, __LINE__,
2010 "gdbarch_architecture_names: multi-arch unknown");
2011 do
2012 {
2013 append_name (&arches, &nr_arches, ap->printable_name);
2014 ap = ap->next;
2015 }
2016 while (ap != NULL);
2017 }
2018 append_name (&arches, &nr_arches, NULL);
2019 return arches;
2020 }
2021 else
2022 /* Just return all the architectures that BFD knows. Assume that
2023 the legacy architecture framework supports them. */
2024 return bfd_arch_list ();
2025 }
2026
2027
2028 void
2029 gdbarch_register (enum bfd_architecture bfd_architecture,
2030 gdbarch_init_ftype *init,
2031 gdbarch_dump_tdep_ftype *dump_tdep)
2032 {
2033 struct gdbarch_registration **curr;
2034 const struct bfd_arch_info *bfd_arch_info;
2035 /* Check that BFD recognizes this architecture */
2036 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2037 if (bfd_arch_info == NULL)
2038 {
2039 internal_error (__FILE__, __LINE__,
2040 "gdbarch: Attempt to register unknown architecture (%d)",
2041 bfd_architecture);
2042 }
2043 /* Check that we haven't seen this architecture before */
2044 for (curr = &gdbarch_registry;
2045 (*curr) != NULL;
2046 curr = &(*curr)->next)
2047 {
2048 if (bfd_architecture == (*curr)->bfd_architecture)
2049 internal_error (__FILE__, __LINE__,
2050 "gdbarch: Duplicate registraration of architecture (%s)",
2051 bfd_arch_info->printable_name);
2052 }
2053 /* log it */
2054 if (gdbarch_debug)
2055 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2056 bfd_arch_info->printable_name,
2057 (long) init);
2058 /* Append it */
2059 (*curr) = XMALLOC (struct gdbarch_registration);
2060 (*curr)->bfd_architecture = bfd_architecture;
2061 (*curr)->init = init;
2062 (*curr)->dump_tdep = dump_tdep;
2063 (*curr)->arches = NULL;
2064 (*curr)->next = NULL;
2065 /* When non- multi-arch, install whatever target dump routine we've
2066 been provided - hopefully that routine has been written correctly
2067 and works regardless of multi-arch. */
2068 if (!GDB_MULTI_ARCH && dump_tdep != NULL
2069 && startup_gdbarch.dump_tdep == NULL)
2070 startup_gdbarch.dump_tdep = dump_tdep;
2071 }
2072
2073 void
2074 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2075 gdbarch_init_ftype *init)
2076 {
2077 gdbarch_register (bfd_architecture, init, NULL);
2078 }
2079
2080
2081 /* Look for an architecture using gdbarch_info. Base search on only
2082 BFD_ARCH_INFO and BYTE_ORDER. */
2083
2084 struct gdbarch_list *
2085 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2086 const struct gdbarch_info *info)
2087 {
2088 for (; arches != NULL; arches = arches->next)
2089 {
2090 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2091 continue;
2092 if (info->byte_order != arches->gdbarch->byte_order)
2093 continue;
2094 return arches;
2095 }
2096 return NULL;
2097 }
2098
2099
2100 /* Update the current architecture. Return ZERO if the update request
2101 failed. */
2102
2103 int
2104 gdbarch_update_p (struct gdbarch_info info)
2105 {
2106 struct gdbarch *new_gdbarch;
2107 struct gdbarch *old_gdbarch;
2108 struct gdbarch_registration *rego;
2109
2110 /* Fill in missing parts of the INFO struct using a number of
2111 sources: \`\`set ...''; INFOabfd supplied; existing target. */
2112
2113 /* \`\`(gdb) set architecture ...'' */
2114 if (info.bfd_arch_info == NULL
2115 && !TARGET_ARCHITECTURE_AUTO)
2116 info.bfd_arch_info = TARGET_ARCHITECTURE;
2117 if (info.bfd_arch_info == NULL
2118 && info.abfd != NULL
2119 && bfd_get_arch (info.abfd) != bfd_arch_unknown
2120 && bfd_get_arch (info.abfd) != bfd_arch_obscure)
2121 info.bfd_arch_info = bfd_get_arch_info (info.abfd);
2122 if (info.bfd_arch_info == NULL)
2123 info.bfd_arch_info = TARGET_ARCHITECTURE;
2124
2125 /* \`\`(gdb) set byte-order ...'' */
2126 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2127 && !TARGET_BYTE_ORDER_AUTO)
2128 info.byte_order = TARGET_BYTE_ORDER;
2129 /* From the INFO struct. */
2130 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2131 && info.abfd != NULL)
2132 info.byte_order = (bfd_big_endian (info.abfd) ? BFD_ENDIAN_BIG
2133 : bfd_little_endian (info.abfd) ? BFD_ENDIAN_LITTLE
2134 : BFD_ENDIAN_UNKNOWN);
2135 /* From the current target. */
2136 if (info.byte_order == BFD_ENDIAN_UNKNOWN)
2137 info.byte_order = TARGET_BYTE_ORDER;
2138
2139 /* Must have found some sort of architecture. */
2140 gdb_assert (info.bfd_arch_info != NULL);
2141
2142 if (gdbarch_debug)
2143 {
2144 fprintf_unfiltered (gdb_stdlog,
2145 "gdbarch_update: info.bfd_arch_info %s\n",
2146 (info.bfd_arch_info != NULL
2147 ? info.bfd_arch_info->printable_name
2148 : "(null)"));
2149 fprintf_unfiltered (gdb_stdlog,
2150 "gdbarch_update: info.byte_order %d (%s)\n",
2151 info.byte_order,
2152 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2153 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2154 : "default"));
2155 fprintf_unfiltered (gdb_stdlog,
2156 "gdbarch_update: info.abfd 0x%lx\n",
2157 (long) info.abfd);
2158 fprintf_unfiltered (gdb_stdlog,
2159 "gdbarch_update: info.tdep_info 0x%lx\n",
2160 (long) info.tdep_info);
2161 }
2162
2163 /* Find the target that knows about this architecture. */
2164 for (rego = gdbarch_registry;
2165 rego != NULL;
2166 rego = rego->next)
2167 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2168 break;
2169 if (rego == NULL)
2170 {
2171 if (gdbarch_debug)
2172 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: No matching architecture\\n");
2173 return 0;
2174 }
2175
2176 /* Swap the data belonging to the old target out setting the
2177 installed data to zero. This stops the ->init() function trying
2178 to refer to the previous architecture's global data structures. */
2179 swapout_gdbarch_swap (current_gdbarch);
2180 clear_gdbarch_swap (current_gdbarch);
2181
2182 /* Save the previously selected architecture, setting the global to
2183 NULL. This stops ->init() trying to use the previous
2184 architecture's configuration. The previous architecture may not
2185 even be of the same architecture family. The most recent
2186 architecture of the same family is found at the head of the
2187 rego->arches list. */
2188 old_gdbarch = current_gdbarch;
2189 current_gdbarch = NULL;
2190
2191 /* Ask the target for a replacement architecture. */
2192 new_gdbarch = rego->init (info, rego->arches);
2193
2194 /* Did the target like it? No. Reject the change and revert to the
2195 old architecture. */
2196 if (new_gdbarch == NULL)
2197 {
2198 if (gdbarch_debug)
2199 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Target rejected architecture\\n");
2200 swapin_gdbarch_swap (old_gdbarch);
2201 current_gdbarch = old_gdbarch;
2202 return 0;
2203 }
2204
2205 /* Did the architecture change? No. Oops, put the old architecture
2206 back. */
2207 if (old_gdbarch == new_gdbarch)
2208 {
2209 if (gdbarch_debug)
2210 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Architecture 0x%08lx (%s) unchanged\\n",
2211 (long) new_gdbarch,
2212 new_gdbarch->bfd_arch_info->printable_name);
2213 swapin_gdbarch_swap (old_gdbarch);
2214 current_gdbarch = old_gdbarch;
2215 return 1;
2216 }
2217
2218 /* Is this a pre-existing architecture? Yes. Move it to the front
2219 of the list of architectures (keeping the list sorted Most
2220 Recently Used) and then copy it in. */
2221 {
2222 struct gdbarch_list **list;
2223 for (list = &rego->arches;
2224 (*list) != NULL;
2225 list = &(*list)->next)
2226 {
2227 if ((*list)->gdbarch == new_gdbarch)
2228 {
2229 struct gdbarch_list *this;
2230 if (gdbarch_debug)
2231 fprintf_unfiltered (gdb_stdlog,
2232 "gdbarch_update: Previous architecture 0x%08lx (%s) selected\n",
2233 (long) new_gdbarch,
2234 new_gdbarch->bfd_arch_info->printable_name);
2235 /* Unlink this. */
2236 this = (*list);
2237 (*list) = this->next;
2238 /* Insert in the front. */
2239 this->next = rego->arches;
2240 rego->arches = this;
2241 /* Copy the new architecture in. */
2242 current_gdbarch = new_gdbarch;
2243 swapin_gdbarch_swap (new_gdbarch);
2244 architecture_changed_event ();
2245 return 1;
2246 }
2247 }
2248 }
2249
2250 /* Prepend this new architecture to the architecture list (keep the
2251 list sorted Most Recently Used). */
2252 {
2253 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2254 this->next = rego->arches;
2255 this->gdbarch = new_gdbarch;
2256 rego->arches = this;
2257 }
2258
2259 /* Switch to this new architecture marking it initialized. */
2260 current_gdbarch = new_gdbarch;
2261 current_gdbarch->initialized_p = 1;
2262 if (gdbarch_debug)
2263 {
2264 fprintf_unfiltered (gdb_stdlog,
2265 "gdbarch_update: New architecture 0x%08lx (%s) selected\\n",
2266 (long) new_gdbarch,
2267 new_gdbarch->bfd_arch_info->printable_name);
2268 }
2269
2270 /* Check that the newly installed architecture is valid. Plug in
2271 any post init values. */
2272 new_gdbarch->dump_tdep = rego->dump_tdep;
2273 verify_gdbarch (new_gdbarch);
2274
2275 /* Initialize the per-architecture memory (swap) areas.
2276 CURRENT_GDBARCH must be update before these modules are
2277 called. */
2278 init_gdbarch_swap (new_gdbarch);
2279
2280 /* Initialize the per-architecture data. CURRENT_GDBARCH
2281 must be updated before these modules are called. */
2282 architecture_changed_event ();
2283
2284 if (gdbarch_debug)
2285 gdbarch_dump (current_gdbarch, gdb_stdlog);
2286
2287 return 1;
2288 }
2289
2290
2291 /* Disassembler */
2292
2293 /* Pointer to the target-dependent disassembly function. */
2294 int (*tm_print_insn) (bfd_vma, disassemble_info *);
2295 disassemble_info tm_print_insn_info;
2296
2297
2298 extern void _initialize_gdbarch (void);
2299
2300 void
2301 _initialize_gdbarch (void)
2302 {
2303 struct cmd_list_element *c;
2304
2305 INIT_DISASSEMBLE_INFO_NO_ARCH (tm_print_insn_info, gdb_stdout, (fprintf_ftype)fprintf_filtered);
2306 tm_print_insn_info.flavour = bfd_target_unknown_flavour;
2307 tm_print_insn_info.read_memory_func = dis_asm_read_memory;
2308 tm_print_insn_info.memory_error_func = dis_asm_memory_error;
2309 tm_print_insn_info.print_address_func = dis_asm_print_address;
2310
2311 add_show_from_set (add_set_cmd ("arch",
2312 class_maintenance,
2313 var_zinteger,
2314 (char *)&gdbarch_debug,
2315 "Set architecture debugging.\\n\\
2316 When non-zero, architecture debugging is enabled.", &setdebuglist),
2317 &showdebuglist);
2318 c = add_set_cmd ("archdebug",
2319 class_maintenance,
2320 var_zinteger,
2321 (char *)&gdbarch_debug,
2322 "Set architecture debugging.\\n\\
2323 When non-zero, architecture debugging is enabled.", &setlist);
2324
2325 deprecate_cmd (c, "set debug arch");
2326 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
2327 }
2328 EOF
2329
2330 # close things off
2331 exec 1>&2
2332 #../move-if-change new-gdbarch.c gdbarch.c
2333 compare_new gdbarch.c