arc: Add ARCv2 XML target along with refactoring
[binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998-2020 Free Software Foundation, Inc.
6 #
7 # This file is part of GDB.
8 #
9 # This program is free software; you can redistribute it and/or modify
10 # it under the terms of the GNU General Public License as published by
11 # the Free Software Foundation; either version 3 of the License, or
12 # (at your option) any later version.
13 #
14 # This program is distributed in the hope that it will be useful,
15 # but WITHOUT ANY WARRANTY; without even the implied warranty of
16 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 # GNU General Public License for more details.
18 #
19 # You should have received a copy of the GNU General Public License
20 # along with this program. If not, see <http://www.gnu.org/licenses/>.
21
22 # Make certain that the script is not running in an internationalized
23 # environment.
24 LANG=C ; export LANG
25 LC_ALL=C ; export LC_ALL
26
27 # Format of the input table
28 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
29
30 do_read ()
31 {
32 comment=""
33 class=""
34 # On some SH's, 'read' trims leading and trailing whitespace by
35 # default (e.g., bash), while on others (e.g., dash), it doesn't.
36 # Set IFS to empty to disable the trimming everywhere.
37 # shellcheck disable=SC2162
38 while IFS='' read line
39 do
40 if test "${line}" = ""
41 then
42 continue
43 elif test "${line}" = "#" -a "${comment}" = ""
44 then
45 continue
46 elif expr "${line}" : "#" > /dev/null
47 then
48 comment="${comment}
49 ${line}"
50 else
51
52 # The semantics of IFS varies between different SH's. Some
53 # treat ``;;' as three fields while some treat it as just two.
54 # Work around this by eliminating ``;;'' ....
55 line="$(echo "${line}" | sed -e 's/;;/; ;/g' -e 's/;;/; ;/g')"
56
57 OFS="${IFS}" ; IFS="[;]"
58 eval read "${read}" <<EOF
59 ${line}
60 EOF
61 IFS="${OFS}"
62
63 if test -n "${garbage_at_eol:-}"
64 then
65 echo "Garbage at end-of-line in ${line}" 1>&2
66 kill $$
67 exit 1
68 fi
69
70 # .... and then going back through each field and strip out those
71 # that ended up with just that space character.
72 for r in ${read}
73 do
74 if eval test "\"\${${r}}\" = ' '"
75 then
76 eval "${r}="
77 fi
78 done
79
80 case "${class}" in
81 m ) staticdefault="${predefault:-}" ;;
82 M ) staticdefault="0" ;;
83 * ) test "${staticdefault}" || staticdefault=0 ;;
84 esac
85
86 case "${class}" in
87 F | V | M )
88 case "${invalid_p:-}" in
89 "" )
90 if test -n "${predefault}"
91 then
92 #invalid_p="gdbarch->${function} == ${predefault}"
93 predicate="gdbarch->${function:-} != ${predefault}"
94 elif class_is_variable_p
95 then
96 predicate="gdbarch->${function} != 0"
97 elif class_is_function_p
98 then
99 predicate="gdbarch->${function} != NULL"
100 fi
101 ;;
102 * )
103 echo "Predicate function ${function} with invalid_p." 1>&2
104 kill $$
105 exit 1
106 ;;
107 esac
108 esac
109
110 #NOT YET: See gdbarch.log for basic verification of
111 # database
112
113 break
114 fi
115 done
116 if [ -n "${class}" ]
117 then
118 true
119 else
120 false
121 fi
122 }
123
124
125 fallback_default_p ()
126 {
127 { [ -n "${postdefault:-}" ] && [ "x${invalid_p}" != "x0" ]; } \
128 || { [ -n "${predefault}" ] && [ "x${invalid_p}" = "x0" ]; }
129 }
130
131 class_is_variable_p ()
132 {
133 case "${class}" in
134 *v* | *V* ) true ;;
135 * ) false ;;
136 esac
137 }
138
139 class_is_function_p ()
140 {
141 case "${class}" in
142 *f* | *F* | *m* | *M* ) true ;;
143 * ) false ;;
144 esac
145 }
146
147 class_is_multiarch_p ()
148 {
149 case "${class}" in
150 *m* | *M* ) true ;;
151 * ) false ;;
152 esac
153 }
154
155 class_is_predicate_p ()
156 {
157 case "${class}" in
158 *F* | *V* | *M* ) true ;;
159 * ) false ;;
160 esac
161 }
162
163 class_is_info_p ()
164 {
165 case "${class}" in
166 *i* ) true ;;
167 * ) false ;;
168 esac
169 }
170
171
172 # dump out/verify the doco
173 for field in ${read}
174 do
175 case ${field} in
176
177 class ) : ;;
178
179 # # -> line disable
180 # f -> function
181 # hiding a function
182 # F -> function + predicate
183 # hiding a function + predicate to test function validity
184 # v -> variable
185 # hiding a variable
186 # V -> variable + predicate
187 # hiding a variable + predicate to test variables validity
188 # i -> set from info
189 # hiding something from the ``struct info'' object
190 # m -> multi-arch function
191 # hiding a multi-arch function (parameterised with the architecture)
192 # M -> multi-arch function + predicate
193 # hiding a multi-arch function + predicate to test function validity
194
195 returntype ) : ;;
196
197 # For functions, the return type; for variables, the data type
198
199 function ) : ;;
200
201 # For functions, the member function name; for variables, the
202 # variable name. Member function names are always prefixed with
203 # ``gdbarch_'' for name-space purity.
204
205 formal ) : ;;
206
207 # The formal argument list. It is assumed that the formal
208 # argument list includes the actual name of each list element.
209 # A function with no arguments shall have ``void'' as the
210 # formal argument list.
211
212 actual ) : ;;
213
214 # The list of actual arguments. The arguments specified shall
215 # match the FORMAL list given above. Functions with out
216 # arguments leave this blank.
217
218 staticdefault ) : ;;
219
220 # To help with the GDB startup a static gdbarch object is
221 # created. STATICDEFAULT is the value to insert into that
222 # static gdbarch object. Since this a static object only
223 # simple expressions can be used.
224
225 # If STATICDEFAULT is empty, zero is used.
226
227 predefault ) : ;;
228
229 # An initial value to assign to MEMBER of the freshly
230 # malloc()ed gdbarch object. After initialization, the
231 # freshly malloc()ed object is passed to the target
232 # architecture code for further updates.
233
234 # If PREDEFAULT is empty, zero is used.
235
236 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
237 # INVALID_P are specified, PREDEFAULT will be used as the
238 # default for the non- multi-arch target.
239
240 # A zero PREDEFAULT function will force the fallback to call
241 # internal_error().
242
243 # Variable declarations can refer to ``gdbarch'' which will
244 # contain the current architecture. Care should be taken.
245
246 postdefault ) : ;;
247
248 # A value to assign to MEMBER of the new gdbarch object should
249 # the target architecture code fail to change the PREDEFAULT
250 # value.
251
252 # If POSTDEFAULT is empty, no post update is performed.
253
254 # If both INVALID_P and POSTDEFAULT are non-empty then
255 # INVALID_P will be used to determine if MEMBER should be
256 # changed to POSTDEFAULT.
257
258 # If a non-empty POSTDEFAULT and a zero INVALID_P are
259 # specified, POSTDEFAULT will be used as the default for the
260 # non- multi-arch target (regardless of the value of
261 # PREDEFAULT).
262
263 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
264
265 # Variable declarations can refer to ``gdbarch'' which
266 # will contain the current architecture. Care should be
267 # taken.
268
269 invalid_p ) : ;;
270
271 # A predicate equation that validates MEMBER. Non-zero is
272 # returned if the code creating the new architecture failed to
273 # initialize MEMBER or the initialized the member is invalid.
274 # If POSTDEFAULT is non-empty then MEMBER will be updated to
275 # that value. If POSTDEFAULT is empty then internal_error()
276 # is called.
277
278 # If INVALID_P is empty, a check that MEMBER is no longer
279 # equal to PREDEFAULT is used.
280
281 # The expression ``0'' disables the INVALID_P check making
282 # PREDEFAULT a legitimate value.
283
284 # See also PREDEFAULT and POSTDEFAULT.
285
286 print ) : ;;
287
288 # An optional expression that convers MEMBER to a value
289 # suitable for formatting using %s.
290
291 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
292 # or plongest (anything else) is used.
293
294 garbage_at_eol ) : ;;
295
296 # Catches stray fields.
297
298 *)
299 echo "Bad field ${field}"
300 exit 1;;
301 esac
302 done
303
304
305 function_list ()
306 {
307 # See below (DOCO) for description of each field
308 cat <<EOF
309 i;const struct bfd_arch_info *;bfd_arch_info;;;&bfd_default_arch_struct;;;;gdbarch_bfd_arch_info (gdbarch)->printable_name
310 #
311 i;enum bfd_endian;byte_order;;;BFD_ENDIAN_BIG
312 i;enum bfd_endian;byte_order_for_code;;;BFD_ENDIAN_BIG
313 #
314 i;enum gdb_osabi;osabi;;;GDB_OSABI_UNKNOWN
315 #
316 i;const struct target_desc *;target_desc;;;;;;;host_address_to_string (gdbarch->target_desc)
317
318 # Number of bits in a short or unsigned short for the target machine.
319 v;int;short_bit;;;8 * sizeof (short);2*TARGET_CHAR_BIT;;0
320 # Number of bits in an int or unsigned int for the target machine.
321 v;int;int_bit;;;8 * sizeof (int);4*TARGET_CHAR_BIT;;0
322 # Number of bits in a long or unsigned long for the target machine.
323 v;int;long_bit;;;8 * sizeof (long);4*TARGET_CHAR_BIT;;0
324 # Number of bits in a long long or unsigned long long for the target
325 # machine.
326 v;int;long_long_bit;;;8 * sizeof (LONGEST);2*gdbarch->long_bit;;0
327
328 # The ABI default bit-size and format for "half", "float", "double", and
329 # "long double". These bit/format pairs should eventually be combined
330 # into a single object. For the moment, just initialize them as a pair.
331 # Each format describes both the big and little endian layouts (if
332 # useful).
333
334 v;int;half_bit;;;16;2*TARGET_CHAR_BIT;;0
335 v;const struct floatformat **;half_format;;;;;floatformats_ieee_half;;pformat (gdbarch->half_format)
336 v;int;float_bit;;;8 * sizeof (float);4*TARGET_CHAR_BIT;;0
337 v;const struct floatformat **;float_format;;;;;floatformats_ieee_single;;pformat (gdbarch->float_format)
338 v;int;double_bit;;;8 * sizeof (double);8*TARGET_CHAR_BIT;;0
339 v;const struct floatformat **;double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->double_format)
340 v;int;long_double_bit;;;8 * sizeof (long double);8*TARGET_CHAR_BIT;;0
341 v;const struct floatformat **;long_double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->long_double_format)
342
343 # The ABI default bit-size for "wchar_t". wchar_t is a built-in type
344 # starting with C++11.
345 v;int;wchar_bit;;;8 * sizeof (wchar_t);4*TARGET_CHAR_BIT;;0
346 # One if \`wchar_t' is signed, zero if unsigned.
347 v;int;wchar_signed;;;1;-1;1
348
349 # Returns the floating-point format to be used for values of length LENGTH.
350 # NAME, if non-NULL, is the type name, which may be used to distinguish
351 # different target formats of the same length.
352 m;const struct floatformat **;floatformat_for_type;const char *name, int length;name, length;0;default_floatformat_for_type;;0
353
354 # For most targets, a pointer on the target and its representation as an
355 # address in GDB have the same size and "look the same". For such a
356 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
357 # / addr_bit will be set from it.
358 #
359 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
360 # also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
361 # gdbarch_address_to_pointer as well.
362 #
363 # ptr_bit is the size of a pointer on the target
364 v;int;ptr_bit;;;8 * sizeof (void*);gdbarch->int_bit;;0
365 # addr_bit is the size of a target address as represented in gdb
366 v;int;addr_bit;;;8 * sizeof (void*);0;gdbarch_ptr_bit (gdbarch);
367 #
368 # dwarf2_addr_size is the target address size as used in the Dwarf debug
369 # info. For .debug_frame FDEs, this is supposed to be the target address
370 # size from the associated CU header, and which is equivalent to the
371 # DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
372 # Unfortunately there is no good way to determine this value. Therefore
373 # dwarf2_addr_size simply defaults to the target pointer size.
374 #
375 # dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
376 # defined using the target's pointer size so far.
377 #
378 # Note that dwarf2_addr_size only needs to be redefined by a target if the
379 # GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
380 # and if Dwarf versions < 4 need to be supported.
381 v;int;dwarf2_addr_size;;;sizeof (void*);0;gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
382 #
383 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
384 v;int;char_signed;;;1;-1;1
385 #
386 F;CORE_ADDR;read_pc;readable_regcache *regcache;regcache
387 F;void;write_pc;struct regcache *regcache, CORE_ADDR val;regcache, val
388 # Function for getting target's idea of a frame pointer. FIXME: GDB's
389 # whole scheme for dealing with "frames" and "frame pointers" needs a
390 # serious shakedown.
391 m;void;virtual_frame_pointer;CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset;pc, frame_regnum, frame_offset;0;legacy_virtual_frame_pointer;;0
392 #
393 M;enum register_status;pseudo_register_read;readable_regcache *regcache, int cookednum, gdb_byte *buf;regcache, cookednum, buf
394 # Read a register into a new struct value. If the register is wholly
395 # or partly unavailable, this should call mark_value_bytes_unavailable
396 # as appropriate. If this is defined, then pseudo_register_read will
397 # never be called.
398 M;struct value *;pseudo_register_read_value;readable_regcache *regcache, int cookednum;regcache, cookednum
399 M;void;pseudo_register_write;struct regcache *regcache, int cookednum, const gdb_byte *buf;regcache, cookednum, buf
400 #
401 v;int;num_regs;;;0;-1
402 # This macro gives the number of pseudo-registers that live in the
403 # register namespace but do not get fetched or stored on the target.
404 # These pseudo-registers may be aliases for other registers,
405 # combinations of other registers, or they may be computed by GDB.
406 v;int;num_pseudo_regs;;;0;0;;0
407
408 # Assemble agent expression bytecode to collect pseudo-register REG.
409 # Return -1 if something goes wrong, 0 otherwise.
410 M;int;ax_pseudo_register_collect;struct agent_expr *ax, int reg;ax, reg
411
412 # Assemble agent expression bytecode to push the value of pseudo-register
413 # REG on the interpreter stack.
414 # Return -1 if something goes wrong, 0 otherwise.
415 M;int;ax_pseudo_register_push_stack;struct agent_expr *ax, int reg;ax, reg
416
417 # Some architectures can display additional information for specific
418 # signals.
419 # UIOUT is the output stream where the handler will place information.
420 M;void;report_signal_info;struct ui_out *uiout, enum gdb_signal siggnal;uiout, siggnal
421
422 # GDB's standard (or well known) register numbers. These can map onto
423 # a real register or a pseudo (computed) register or not be defined at
424 # all (-1).
425 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
426 v;int;sp_regnum;;;-1;-1;;0
427 v;int;pc_regnum;;;-1;-1;;0
428 v;int;ps_regnum;;;-1;-1;;0
429 v;int;fp0_regnum;;;0;-1;;0
430 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
431 m;int;stab_reg_to_regnum;int stab_regnr;stab_regnr;;no_op_reg_to_regnum;;0
432 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
433 m;int;ecoff_reg_to_regnum;int ecoff_regnr;ecoff_regnr;;no_op_reg_to_regnum;;0
434 # Convert from an sdb register number to an internal gdb register number.
435 m;int;sdb_reg_to_regnum;int sdb_regnr;sdb_regnr;;no_op_reg_to_regnum;;0
436 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
437 # Return -1 for bad REGNUM. Note: Several targets get this wrong.
438 m;int;dwarf2_reg_to_regnum;int dwarf2_regnr;dwarf2_regnr;;no_op_reg_to_regnum;;0
439 m;const char *;register_name;int regnr;regnr;;0
440
441 # Return the type of a register specified by the architecture. Only
442 # the register cache should call this function directly; others should
443 # use "register_type".
444 M;struct type *;register_type;int reg_nr;reg_nr
445
446 # Generate a dummy frame_id for THIS_FRAME assuming that the frame is
447 # a dummy frame. A dummy frame is created before an inferior call,
448 # the frame_id returned here must match the frame_id that was built
449 # for the inferior call. Usually this means the returned frame_id's
450 # stack address should match the address returned by
451 # gdbarch_push_dummy_call, and the returned frame_id's code address
452 # should match the address at which the breakpoint was set in the dummy
453 # frame.
454 m;struct frame_id;dummy_id;struct frame_info *this_frame;this_frame;;default_dummy_id;;0
455 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
456 # deprecated_fp_regnum.
457 v;int;deprecated_fp_regnum;;;-1;-1;;0
458
459 M;CORE_ADDR;push_dummy_call;struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, function_call_return_method return_method, CORE_ADDR struct_addr;function, regcache, bp_addr, nargs, args, sp, return_method, struct_addr
460 v;int;call_dummy_location;;;;AT_ENTRY_POINT;;0
461 M;CORE_ADDR;push_dummy_code;CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache;sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
462
463 # Return true if the code of FRAME is writable.
464 m;int;code_of_frame_writable;struct frame_info *frame;frame;;default_code_of_frame_writable;;0
465
466 m;void;print_registers_info;struct ui_file *file, struct frame_info *frame, int regnum, int all;file, frame, regnum, all;;default_print_registers_info;;0
467 m;void;print_float_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args;;default_print_float_info;;0
468 M;void;print_vector_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args
469 # MAP a GDB RAW register number onto a simulator register number. See
470 # also include/...-sim.h.
471 m;int;register_sim_regno;int reg_nr;reg_nr;;legacy_register_sim_regno;;0
472 m;int;cannot_fetch_register;int regnum;regnum;;cannot_register_not;;0
473 m;int;cannot_store_register;int regnum;regnum;;cannot_register_not;;0
474
475 # Determine the address where a longjmp will land and save this address
476 # in PC. Return nonzero on success.
477 #
478 # FRAME corresponds to the longjmp frame.
479 F;int;get_longjmp_target;struct frame_info *frame, CORE_ADDR *pc;frame, pc
480
481 #
482 v;int;believe_pcc_promotion;;;;;;;
483 #
484 m;int;convert_register_p;int regnum, struct type *type;regnum, type;0;generic_convert_register_p;;0
485 f;int;register_to_value;struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep;frame, regnum, type, buf, optimizedp, unavailablep;0
486 f;void;value_to_register;struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf;frame, regnum, type, buf;0
487 # Construct a value representing the contents of register REGNUM in
488 # frame FRAME_ID, interpreted as type TYPE. The routine needs to
489 # allocate and return a struct value with all value attributes
490 # (but not the value contents) filled in.
491 m;struct value *;value_from_register;struct type *type, int regnum, struct frame_id frame_id;type, regnum, frame_id;;default_value_from_register;;0
492 #
493 m;CORE_ADDR;pointer_to_address;struct type *type, const gdb_byte *buf;type, buf;;unsigned_pointer_to_address;;0
494 m;void;address_to_pointer;struct type *type, gdb_byte *buf, CORE_ADDR addr;type, buf, addr;;unsigned_address_to_pointer;;0
495 M;CORE_ADDR;integer_to_address;struct type *type, const gdb_byte *buf;type, buf
496
497 # Return the return-value convention that will be used by FUNCTION
498 # to return a value of type VALTYPE. FUNCTION may be NULL in which
499 # case the return convention is computed based only on VALTYPE.
500 #
501 # If READBUF is not NULL, extract the return value and save it in this buffer.
502 #
503 # If WRITEBUF is not NULL, it contains a return value which will be
504 # stored into the appropriate register. This can be used when we want
505 # to force the value returned by a function (see the "return" command
506 # for instance).
507 M;enum return_value_convention;return_value;struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf;function, valtype, regcache, readbuf, writebuf
508
509 # Return true if the return value of function is stored in the first hidden
510 # parameter. In theory, this feature should be language-dependent, specified
511 # by language and its ABI, such as C++. Unfortunately, compiler may
512 # implement it to a target-dependent feature. So that we need such hook here
513 # to be aware of this in GDB.
514 m;int;return_in_first_hidden_param_p;struct type *type;type;;default_return_in_first_hidden_param_p;;0
515
516 m;CORE_ADDR;skip_prologue;CORE_ADDR ip;ip;0;0
517 M;CORE_ADDR;skip_main_prologue;CORE_ADDR ip;ip
518 # On some platforms, a single function may provide multiple entry points,
519 # e.g. one that is used for function-pointer calls and a different one
520 # that is used for direct function calls.
521 # In order to ensure that breakpoints set on the function will trigger
522 # no matter via which entry point the function is entered, a platform
523 # may provide the skip_entrypoint callback. It is called with IP set
524 # to the main entry point of a function (as determined by the symbol table),
525 # and should return the address of the innermost entry point, where the
526 # actual breakpoint needs to be set. Note that skip_entrypoint is used
527 # by GDB common code even when debugging optimized code, where skip_prologue
528 # is not used.
529 M;CORE_ADDR;skip_entrypoint;CORE_ADDR ip;ip
530
531 f;int;inner_than;CORE_ADDR lhs, CORE_ADDR rhs;lhs, rhs;0;0
532 m;const gdb_byte *;breakpoint_from_pc;CORE_ADDR *pcptr, int *lenptr;pcptr, lenptr;0;default_breakpoint_from_pc;;0
533
534 # Return the breakpoint kind for this target based on *PCPTR.
535 m;int;breakpoint_kind_from_pc;CORE_ADDR *pcptr;pcptr;;0;
536
537 # Return the software breakpoint from KIND. KIND can have target
538 # specific meaning like the Z0 kind parameter.
539 # SIZE is set to the software breakpoint's length in memory.
540 m;const gdb_byte *;sw_breakpoint_from_kind;int kind, int *size;kind, size;;NULL;;0
541
542 # Return the breakpoint kind for this target based on the current
543 # processor state (e.g. the current instruction mode on ARM) and the
544 # *PCPTR. In default, it is gdbarch->breakpoint_kind_from_pc.
545 m;int;breakpoint_kind_from_current_state;struct regcache *regcache, CORE_ADDR *pcptr;regcache, pcptr;0;default_breakpoint_kind_from_current_state;;0
546
547 M;CORE_ADDR;adjust_breakpoint_address;CORE_ADDR bpaddr;bpaddr
548 m;int;memory_insert_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_insert_breakpoint;;0
549 m;int;memory_remove_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_remove_breakpoint;;0
550 v;CORE_ADDR;decr_pc_after_break;;;0;;;0
551
552 # A function can be addressed by either it's "pointer" (possibly a
553 # descriptor address) or "entry point" (first executable instruction).
554 # The method "convert_from_func_ptr_addr" converting the former to the
555 # latter. gdbarch_deprecated_function_start_offset is being used to implement
556 # a simplified subset of that functionality - the function's address
557 # corresponds to the "function pointer" and the function's start
558 # corresponds to the "function entry point" - and hence is redundant.
559
560 v;CORE_ADDR;deprecated_function_start_offset;;;0;;;0
561
562 # Return the remote protocol register number associated with this
563 # register. Normally the identity mapping.
564 m;int;remote_register_number;int regno;regno;;default_remote_register_number;;0
565
566 # Fetch the target specific address used to represent a load module.
567 F;CORE_ADDR;fetch_tls_load_module_address;struct objfile *objfile;objfile
568
569 # Return the thread-local address at OFFSET in the thread-local
570 # storage for the thread PTID and the shared library or executable
571 # file given by LM_ADDR. If that block of thread-local storage hasn't
572 # been allocated yet, this function may throw an error. LM_ADDR may
573 # be zero for statically linked multithreaded inferiors.
574
575 M;CORE_ADDR;get_thread_local_address;ptid_t ptid, CORE_ADDR lm_addr, CORE_ADDR offset;ptid, lm_addr, offset
576 #
577 v;CORE_ADDR;frame_args_skip;;;0;;;0
578 m;CORE_ADDR;unwind_pc;struct frame_info *next_frame;next_frame;;default_unwind_pc;;0
579 m;CORE_ADDR;unwind_sp;struct frame_info *next_frame;next_frame;;default_unwind_sp;;0
580 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
581 # frame-base. Enable frame-base before frame-unwind.
582 F;int;frame_num_args;struct frame_info *frame;frame
583 #
584 M;CORE_ADDR;frame_align;CORE_ADDR address;address
585 m;int;stabs_argument_has_addr;struct type *type;type;;default_stabs_argument_has_addr;;0
586 v;int;frame_red_zone_size
587 #
588 m;CORE_ADDR;convert_from_func_ptr_addr;CORE_ADDR addr, struct target_ops *targ;addr, targ;;convert_from_func_ptr_addr_identity;;0
589 # On some machines there are bits in addresses which are not really
590 # part of the address, but are used by the kernel, the hardware, etc.
591 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
592 # we get a "real" address such as one would find in a symbol table.
593 # This is used only for addresses of instructions, and even then I'm
594 # not sure it's used in all contexts. It exists to deal with there
595 # being a few stray bits in the PC which would mislead us, not as some
596 # sort of generic thing to handle alignment or segmentation (it's
597 # possible it should be in TARGET_READ_PC instead).
598 m;CORE_ADDR;addr_bits_remove;CORE_ADDR addr;addr;;core_addr_identity;;0
599
600 # On some machines, not all bits of an address word are significant.
601 # For example, on AArch64, the top bits of an address known as the "tag"
602 # are ignored by the kernel, the hardware, etc. and can be regarded as
603 # additional data associated with the address.
604 v;int;significant_addr_bit;;;;;;0
605
606 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
607 # indicates if the target needs software single step. An ISA method to
608 # implement it.
609 #
610 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
611 # target can single step. If not, then implement single step using breakpoints.
612 #
613 # Return a vector of addresses on which the software single step
614 # breakpoints should be inserted. NULL means software single step is
615 # not used.
616 # Multiple breakpoints may be inserted for some instructions such as
617 # conditional branch. However, each implementation must always evaluate
618 # the condition and only put the breakpoint at the branch destination if
619 # the condition is true, so that we ensure forward progress when stepping
620 # past a conditional branch to self.
621 F;std::vector<CORE_ADDR>;software_single_step;struct regcache *regcache;regcache
622
623 # Return non-zero if the processor is executing a delay slot and a
624 # further single-step is needed before the instruction finishes.
625 M;int;single_step_through_delay;struct frame_info *frame;frame
626 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
627 # disassembler. Perhaps objdump can handle it?
628 f;int;print_insn;bfd_vma vma, struct disassemble_info *info;vma, info;;default_print_insn;;0
629 f;CORE_ADDR;skip_trampoline_code;struct frame_info *frame, CORE_ADDR pc;frame, pc;;generic_skip_trampoline_code;;0
630
631
632 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
633 # evaluates non-zero, this is the address where the debugger will place
634 # a step-resume breakpoint to get us past the dynamic linker.
635 m;CORE_ADDR;skip_solib_resolver;CORE_ADDR pc;pc;;generic_skip_solib_resolver;;0
636 # Some systems also have trampoline code for returning from shared libs.
637 m;int;in_solib_return_trampoline;CORE_ADDR pc, const char *name;pc, name;;generic_in_solib_return_trampoline;;0
638
639 # Return true if PC lies inside an indirect branch thunk.
640 m;bool;in_indirect_branch_thunk;CORE_ADDR pc;pc;;default_in_indirect_branch_thunk;;0
641
642 # A target might have problems with watchpoints as soon as the stack
643 # frame of the current function has been destroyed. This mostly happens
644 # as the first action in a function's epilogue. stack_frame_destroyed_p()
645 # is defined to return a non-zero value if either the given addr is one
646 # instruction after the stack destroying instruction up to the trailing
647 # return instruction or if we can figure out that the stack frame has
648 # already been invalidated regardless of the value of addr. Targets
649 # which don't suffer from that problem could just let this functionality
650 # untouched.
651 m;int;stack_frame_destroyed_p;CORE_ADDR addr;addr;0;generic_stack_frame_destroyed_p;;0
652 # Process an ELF symbol in the minimal symbol table in a backend-specific
653 # way. Normally this hook is supposed to do nothing, however if required,
654 # then this hook can be used to apply tranformations to symbols that are
655 # considered special in some way. For example the MIPS backend uses it
656 # to interpret \`st_other' information to mark compressed code symbols so
657 # that they can be treated in the appropriate manner in the processing of
658 # the main symbol table and DWARF-2 records.
659 F;void;elf_make_msymbol_special;asymbol *sym, struct minimal_symbol *msym;sym, msym
660 f;void;coff_make_msymbol_special;int val, struct minimal_symbol *msym;val, msym;;default_coff_make_msymbol_special;;0
661 # Process a symbol in the main symbol table in a backend-specific way.
662 # Normally this hook is supposed to do nothing, however if required,
663 # then this hook can be used to apply tranformations to symbols that
664 # are considered special in some way. This is currently used by the
665 # MIPS backend to make sure compressed code symbols have the ISA bit
666 # set. This in turn is needed for symbol values seen in GDB to match
667 # the values used at the runtime by the program itself, for function
668 # and label references.
669 f;void;make_symbol_special;struct symbol *sym, struct objfile *objfile;sym, objfile;;default_make_symbol_special;;0
670 # Adjust the address retrieved from a DWARF-2 record other than a line
671 # entry in a backend-specific way. Normally this hook is supposed to
672 # return the address passed unchanged, however if that is incorrect for
673 # any reason, then this hook can be used to fix the address up in the
674 # required manner. This is currently used by the MIPS backend to make
675 # sure addresses in FDE, range records, etc. referring to compressed
676 # code have the ISA bit set, matching line information and the symbol
677 # table.
678 f;CORE_ADDR;adjust_dwarf2_addr;CORE_ADDR pc;pc;;default_adjust_dwarf2_addr;;0
679 # Adjust the address updated by a line entry in a backend-specific way.
680 # Normally this hook is supposed to return the address passed unchanged,
681 # however in the case of inconsistencies in these records, this hook can
682 # be used to fix them up in the required manner. This is currently used
683 # by the MIPS backend to make sure all line addresses in compressed code
684 # are presented with the ISA bit set, which is not always the case. This
685 # in turn ensures breakpoint addresses are correctly matched against the
686 # stop PC.
687 f;CORE_ADDR;adjust_dwarf2_line;CORE_ADDR addr, int rel;addr, rel;;default_adjust_dwarf2_line;;0
688 v;int;cannot_step_breakpoint;;;0;0;;0
689 # See comment in target.h about continuable, steppable and
690 # non-steppable watchpoints.
691 v;int;have_nonsteppable_watchpoint;;;0;0;;0
692 F;int;address_class_type_flags;int byte_size, int dwarf2_addr_class;byte_size, dwarf2_addr_class
693 M;const char *;address_class_type_flags_to_name;int type_flags;type_flags
694 # Execute vendor-specific DWARF Call Frame Instruction. OP is the instruction.
695 # FS are passed from the generic execute_cfa_program function.
696 m;bool;execute_dwarf_cfa_vendor_op;gdb_byte op, struct dwarf2_frame_state *fs;op, fs;;default_execute_dwarf_cfa_vendor_op;;0
697
698 # Return the appropriate type_flags for the supplied address class.
699 # This function should return 1 if the address class was recognized and
700 # type_flags was set, zero otherwise.
701 M;int;address_class_name_to_type_flags;const char *name, int *type_flags_ptr;name, type_flags_ptr
702 # Is a register in a group
703 m;int;register_reggroup_p;int regnum, struct reggroup *reggroup;regnum, reggroup;;default_register_reggroup_p;;0
704 # Fetch the pointer to the ith function argument.
705 F;CORE_ADDR;fetch_pointer_argument;struct frame_info *frame, int argi, struct type *type;frame, argi, type
706
707 # Iterate over all supported register notes in a core file. For each
708 # supported register note section, the iterator must call CB and pass
709 # CB_DATA unchanged. If REGCACHE is not NULL, the iterator can limit
710 # the supported register note sections based on the current register
711 # values. Otherwise it should enumerate all supported register note
712 # sections.
713 M;void;iterate_over_regset_sections;iterate_over_regset_sections_cb *cb, void *cb_data, const struct regcache *regcache;cb, cb_data, regcache
714
715 # Create core file notes
716 M;char *;make_corefile_notes;bfd *obfd, int *note_size;obfd, note_size
717
718 # Find core file memory regions
719 M;int;find_memory_regions;find_memory_region_ftype func, void *data;func, data
720
721 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
722 # core file into buffer READBUF with length LEN. Return the number of bytes read
723 # (zero indicates failure).
724 # failed, otherwise, return the red length of READBUF.
725 M;ULONGEST;core_xfer_shared_libraries;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len
726
727 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
728 # libraries list from core file into buffer READBUF with length LEN.
729 # Return the number of bytes read (zero indicates failure).
730 M;ULONGEST;core_xfer_shared_libraries_aix;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len
731
732 # How the core target converts a PTID from a core file to a string.
733 M;std::string;core_pid_to_str;ptid_t ptid;ptid
734
735 # How the core target extracts the name of a thread from a core file.
736 M;const char *;core_thread_name;struct thread_info *thr;thr
737
738 # Read offset OFFSET of TARGET_OBJECT_SIGNAL_INFO signal information
739 # from core file into buffer READBUF with length LEN. Return the number
740 # of bytes read (zero indicates EOF, a negative value indicates failure).
741 M;LONGEST;core_xfer_siginfo;gdb_byte *readbuf, ULONGEST offset, ULONGEST len; readbuf, offset, len
742
743 # BFD target to use when generating a core file.
744 V;const char *;gcore_bfd_target;;;0;0;;;pstring (gdbarch->gcore_bfd_target)
745
746 # If the elements of C++ vtables are in-place function descriptors rather
747 # than normal function pointers (which may point to code or a descriptor),
748 # set this to one.
749 v;int;vtable_function_descriptors;;;0;0;;0
750
751 # Set if the least significant bit of the delta is used instead of the least
752 # significant bit of the pfn for pointers to virtual member functions.
753 v;int;vbit_in_delta;;;0;0;;0
754
755 # Advance PC to next instruction in order to skip a permanent breakpoint.
756 f;void;skip_permanent_breakpoint;struct regcache *regcache;regcache;default_skip_permanent_breakpoint;default_skip_permanent_breakpoint;;0
757
758 # The maximum length of an instruction on this architecture in bytes.
759 V;ULONGEST;max_insn_length;;;0;0
760
761 # Copy the instruction at FROM to TO, and make any adjustments
762 # necessary to single-step it at that address.
763 #
764 # REGS holds the state the thread's registers will have before
765 # executing the copied instruction; the PC in REGS will refer to FROM,
766 # not the copy at TO. The caller should update it to point at TO later.
767 #
768 # Return a pointer to data of the architecture's choice to be passed
769 # to gdbarch_displaced_step_fixup.
770 #
771 # For a general explanation of displaced stepping and how GDB uses it,
772 # see the comments in infrun.c.
773 #
774 # The TO area is only guaranteed to have space for
775 # gdbarch_max_insn_length (arch) bytes, so this function must not
776 # write more bytes than that to that area.
777 #
778 # If you do not provide this function, GDB assumes that the
779 # architecture does not support displaced stepping.
780 #
781 # If the instruction cannot execute out of line, return NULL. The
782 # core falls back to stepping past the instruction in-line instead in
783 # that case.
784 M;displaced_step_closure_up;displaced_step_copy_insn;CORE_ADDR from, CORE_ADDR to, struct regcache *regs;from, to, regs
785
786 # Return true if GDB should use hardware single-stepping to execute
787 # the displaced instruction identified by CLOSURE. If false,
788 # GDB will simply restart execution at the displaced instruction
789 # location, and it is up to the target to ensure GDB will receive
790 # control again (e.g. by placing a software breakpoint instruction
791 # into the displaced instruction buffer).
792 #
793 # The default implementation returns false on all targets that
794 # provide a gdbarch_software_single_step routine, and true otherwise.
795 m;int;displaced_step_hw_singlestep;struct displaced_step_closure *closure;closure;;default_displaced_step_hw_singlestep;;0
796
797 # Fix up the state resulting from successfully single-stepping a
798 # displaced instruction, to give the result we would have gotten from
799 # stepping the instruction in its original location.
800 #
801 # REGS is the register state resulting from single-stepping the
802 # displaced instruction.
803 #
804 # CLOSURE is the result from the matching call to
805 # gdbarch_displaced_step_copy_insn.
806 #
807 # If you provide gdbarch_displaced_step_copy_insn.but not this
808 # function, then GDB assumes that no fixup is needed after
809 # single-stepping the instruction.
810 #
811 # For a general explanation of displaced stepping and how GDB uses it,
812 # see the comments in infrun.c.
813 M;void;displaced_step_fixup;struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs;closure, from, to, regs;;NULL
814
815 # Return the address of an appropriate place to put displaced
816 # instructions while we step over them. There need only be one such
817 # place, since we're only stepping one thread over a breakpoint at a
818 # time.
819 #
820 # For a general explanation of displaced stepping and how GDB uses it,
821 # see the comments in infrun.c.
822 m;CORE_ADDR;displaced_step_location;void;;;NULL;;(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
823
824 # Relocate an instruction to execute at a different address. OLDLOC
825 # is the address in the inferior memory where the instruction to
826 # relocate is currently at. On input, TO points to the destination
827 # where we want the instruction to be copied (and possibly adjusted)
828 # to. On output, it points to one past the end of the resulting
829 # instruction(s). The effect of executing the instruction at TO shall
830 # be the same as if executing it at FROM. For example, call
831 # instructions that implicitly push the return address on the stack
832 # should be adjusted to return to the instruction after OLDLOC;
833 # relative branches, and other PC-relative instructions need the
834 # offset adjusted; etc.
835 M;void;relocate_instruction;CORE_ADDR *to, CORE_ADDR from;to, from;;NULL
836
837 # Refresh overlay mapped state for section OSECT.
838 F;void;overlay_update;struct obj_section *osect;osect
839
840 M;const struct target_desc *;core_read_description;struct target_ops *target, bfd *abfd;target, abfd
841
842 # Set if the address in N_SO or N_FUN stabs may be zero.
843 v;int;sofun_address_maybe_missing;;;0;0;;0
844
845 # Parse the instruction at ADDR storing in the record execution log
846 # the registers REGCACHE and memory ranges that will be affected when
847 # the instruction executes, along with their current values.
848 # Return -1 if something goes wrong, 0 otherwise.
849 M;int;process_record;struct regcache *regcache, CORE_ADDR addr;regcache, addr
850
851 # Save process state after a signal.
852 # Return -1 if something goes wrong, 0 otherwise.
853 M;int;process_record_signal;struct regcache *regcache, enum gdb_signal signal;regcache, signal
854
855 # Signal translation: translate inferior's signal (target's) number
856 # into GDB's representation. The implementation of this method must
857 # be host independent. IOW, don't rely on symbols of the NAT_FILE
858 # header (the nm-*.h files), the host <signal.h> header, or similar
859 # headers. This is mainly used when cross-debugging core files ---
860 # "Live" targets hide the translation behind the target interface
861 # (target_wait, target_resume, etc.).
862 M;enum gdb_signal;gdb_signal_from_target;int signo;signo
863
864 # Signal translation: translate the GDB's internal signal number into
865 # the inferior's signal (target's) representation. The implementation
866 # of this method must be host independent. IOW, don't rely on symbols
867 # of the NAT_FILE header (the nm-*.h files), the host <signal.h>
868 # header, or similar headers.
869 # Return the target signal number if found, or -1 if the GDB internal
870 # signal number is invalid.
871 M;int;gdb_signal_to_target;enum gdb_signal signal;signal
872
873 # Extra signal info inspection.
874 #
875 # Return a type suitable to inspect extra signal information.
876 M;struct type *;get_siginfo_type;void;
877
878 # Record architecture-specific information from the symbol table.
879 M;void;record_special_symbol;struct objfile *objfile, asymbol *sym;objfile, sym
880
881 # Function for the 'catch syscall' feature.
882
883 # Get architecture-specific system calls information from registers.
884 M;LONGEST;get_syscall_number;thread_info *thread;thread
885
886 # The filename of the XML syscall for this architecture.
887 v;const char *;xml_syscall_file;;;0;0;;0;pstring (gdbarch->xml_syscall_file)
888
889 # Information about system calls from this architecture
890 v;struct syscalls_info *;syscalls_info;;;0;0;;0;host_address_to_string (gdbarch->syscalls_info)
891
892 # SystemTap related fields and functions.
893
894 # A NULL-terminated array of prefixes used to mark an integer constant
895 # on the architecture's assembly.
896 # For example, on x86 integer constants are written as:
897 #
898 # \$10 ;; integer constant 10
899 #
900 # in this case, this prefix would be the character \`\$\'.
901 v;const char *const *;stap_integer_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_prefixes)
902
903 # A NULL-terminated array of suffixes used to mark an integer constant
904 # on the architecture's assembly.
905 v;const char *const *;stap_integer_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_suffixes)
906
907 # A NULL-terminated array of prefixes used to mark a register name on
908 # the architecture's assembly.
909 # For example, on x86 the register name is written as:
910 #
911 # \%eax ;; register eax
912 #
913 # in this case, this prefix would be the character \`\%\'.
914 v;const char *const *;stap_register_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_prefixes)
915
916 # A NULL-terminated array of suffixes used to mark a register name on
917 # the architecture's assembly.
918 v;const char *const *;stap_register_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_suffixes)
919
920 # A NULL-terminated array of prefixes used to mark a register
921 # indirection on the architecture's assembly.
922 # For example, on x86 the register indirection is written as:
923 #
924 # \(\%eax\) ;; indirecting eax
925 #
926 # in this case, this prefix would be the charater \`\(\'.
927 #
928 # Please note that we use the indirection prefix also for register
929 # displacement, e.g., \`4\(\%eax\)\' on x86.
930 v;const char *const *;stap_register_indirection_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_prefixes)
931
932 # A NULL-terminated array of suffixes used to mark a register
933 # indirection on the architecture's assembly.
934 # For example, on x86 the register indirection is written as:
935 #
936 # \(\%eax\) ;; indirecting eax
937 #
938 # in this case, this prefix would be the charater \`\)\'.
939 #
940 # Please note that we use the indirection suffix also for register
941 # displacement, e.g., \`4\(\%eax\)\' on x86.
942 v;const char *const *;stap_register_indirection_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_suffixes)
943
944 # Prefix(es) used to name a register using GDB's nomenclature.
945 #
946 # For example, on PPC a register is represented by a number in the assembly
947 # language (e.g., \`10\' is the 10th general-purpose register). However,
948 # inside GDB this same register has an \`r\' appended to its name, so the 10th
949 # register would be represented as \`r10\' internally.
950 v;const char *;stap_gdb_register_prefix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_prefix)
951
952 # Suffix used to name a register using GDB's nomenclature.
953 v;const char *;stap_gdb_register_suffix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_suffix)
954
955 # Check if S is a single operand.
956 #
957 # Single operands can be:
958 # \- Literal integers, e.g. \`\$10\' on x86
959 # \- Register access, e.g. \`\%eax\' on x86
960 # \- Register indirection, e.g. \`\(\%eax\)\' on x86
961 # \- Register displacement, e.g. \`4\(\%eax\)\' on x86
962 #
963 # This function should check for these patterns on the string
964 # and return 1 if some were found, or zero otherwise. Please try to match
965 # as much info as you can from the string, i.e., if you have to match
966 # something like \`\(\%\', do not match just the \`\(\'.
967 M;int;stap_is_single_operand;const char *s;s
968
969 # Function used to handle a "special case" in the parser.
970 #
971 # A "special case" is considered to be an unknown token, i.e., a token
972 # that the parser does not know how to parse. A good example of special
973 # case would be ARM's register displacement syntax:
974 #
975 # [R0, #4] ;; displacing R0 by 4
976 #
977 # Since the parser assumes that a register displacement is of the form:
978 #
979 # <number> <indirection_prefix> <register_name> <indirection_suffix>
980 #
981 # it means that it will not be able to recognize and parse this odd syntax.
982 # Therefore, we should add a special case function that will handle this token.
983 #
984 # This function should generate the proper expression form of the expression
985 # using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
986 # and so on). It should also return 1 if the parsing was successful, or zero
987 # if the token was not recognized as a special token (in this case, returning
988 # zero means that the special parser is deferring the parsing to the generic
989 # parser), and should advance the buffer pointer (p->arg).
990 M;int;stap_parse_special_token;struct stap_parse_info *p;p
991
992 # Perform arch-dependent adjustments to a register name.
993 #
994 # In very specific situations, it may be necessary for the register
995 # name present in a SystemTap probe's argument to be handled in a
996 # special way. For example, on i386, GCC may over-optimize the
997 # register allocation and use smaller registers than necessary. In
998 # such cases, the client that is reading and evaluating the SystemTap
999 # probe (ourselves) will need to actually fetch values from the wider
1000 # version of the register in question.
1001 #
1002 # To illustrate the example, consider the following probe argument
1003 # (i386):
1004 #
1005 # 4@%ax
1006 #
1007 # This argument says that its value can be found at the %ax register,
1008 # which is a 16-bit register. However, the argument's prefix says
1009 # that its type is "uint32_t", which is 32-bit in size. Therefore, in
1010 # this case, GDB should actually fetch the probe's value from register
1011 # %eax, not %ax. In this scenario, this function would actually
1012 # replace the register name from %ax to %eax.
1013 #
1014 # The rationale for this can be found at PR breakpoints/24541.
1015 M;std::string;stap_adjust_register;struct stap_parse_info *p, const std::string \&regname, int regnum;p, regname, regnum
1016
1017 # DTrace related functions.
1018
1019 # The expression to compute the NARTGth+1 argument to a DTrace USDT probe.
1020 # NARG must be >= 0.
1021 M;void;dtrace_parse_probe_argument;struct expr_builder *builder, int narg;builder, narg
1022
1023 # True if the given ADDR does not contain the instruction sequence
1024 # corresponding to a disabled DTrace is-enabled probe.
1025 M;int;dtrace_probe_is_enabled;CORE_ADDR addr;addr
1026
1027 # Enable a DTrace is-enabled probe at ADDR.
1028 M;void;dtrace_enable_probe;CORE_ADDR addr;addr
1029
1030 # Disable a DTrace is-enabled probe at ADDR.
1031 M;void;dtrace_disable_probe;CORE_ADDR addr;addr
1032
1033 # True if the list of shared libraries is one and only for all
1034 # processes, as opposed to a list of shared libraries per inferior.
1035 # This usually means that all processes, although may or may not share
1036 # an address space, will see the same set of symbols at the same
1037 # addresses.
1038 v;int;has_global_solist;;;0;0;;0
1039
1040 # On some targets, even though each inferior has its own private
1041 # address space, the debug interface takes care of making breakpoints
1042 # visible to all address spaces automatically. For such cases,
1043 # this property should be set to true.
1044 v;int;has_global_breakpoints;;;0;0;;0
1045
1046 # True if inferiors share an address space (e.g., uClinux).
1047 m;int;has_shared_address_space;void;;;default_has_shared_address_space;;0
1048
1049 # True if a fast tracepoint can be set at an address.
1050 m;int;fast_tracepoint_valid_at;CORE_ADDR addr, std::string *msg;addr, msg;;default_fast_tracepoint_valid_at;;0
1051
1052 # Guess register state based on tracepoint location. Used for tracepoints
1053 # where no registers have been collected, but there's only one location,
1054 # allowing us to guess the PC value, and perhaps some other registers.
1055 # On entry, regcache has all registers marked as unavailable.
1056 m;void;guess_tracepoint_registers;struct regcache *regcache, CORE_ADDR addr;regcache, addr;;default_guess_tracepoint_registers;;0
1057
1058 # Return the "auto" target charset.
1059 f;const char *;auto_charset;void;;default_auto_charset;default_auto_charset;;0
1060 # Return the "auto" target wide charset.
1061 f;const char *;auto_wide_charset;void;;default_auto_wide_charset;default_auto_wide_charset;;0
1062
1063 # If non-empty, this is a file extension that will be opened in place
1064 # of the file extension reported by the shared library list.
1065 #
1066 # This is most useful for toolchains that use a post-linker tool,
1067 # where the names of the files run on the target differ in extension
1068 # compared to the names of the files GDB should load for debug info.
1069 v;const char *;solib_symbols_extension;;;;;;;pstring (gdbarch->solib_symbols_extension)
1070
1071 # If true, the target OS has DOS-based file system semantics. That
1072 # is, absolute paths include a drive name, and the backslash is
1073 # considered a directory separator.
1074 v;int;has_dos_based_file_system;;;0;0;;0
1075
1076 # Generate bytecodes to collect the return address in a frame.
1077 # Since the bytecodes run on the target, possibly with GDB not even
1078 # connected, the full unwinding machinery is not available, and
1079 # typically this function will issue bytecodes for one or more likely
1080 # places that the return address may be found.
1081 m;void;gen_return_address;struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope;ax, value, scope;;default_gen_return_address;;0
1082
1083 # Implement the "info proc" command.
1084 M;void;info_proc;const char *args, enum info_proc_what what;args, what
1085
1086 # Implement the "info proc" command for core files. Noe that there
1087 # are two "info_proc"-like methods on gdbarch -- one for core files,
1088 # one for live targets.
1089 M;void;core_info_proc;const char *args, enum info_proc_what what;args, what
1090
1091 # Iterate over all objfiles in the order that makes the most sense
1092 # for the architecture to make global symbol searches.
1093 #
1094 # CB is a callback function where OBJFILE is the objfile to be searched,
1095 # and CB_DATA a pointer to user-defined data (the same data that is passed
1096 # when calling this gdbarch method). The iteration stops if this function
1097 # returns nonzero.
1098 #
1099 # CB_DATA is a pointer to some user-defined data to be passed to
1100 # the callback.
1101 #
1102 # If not NULL, CURRENT_OBJFILE corresponds to the objfile being
1103 # inspected when the symbol search was requested.
1104 m;void;iterate_over_objfiles_in_search_order;iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile;cb, cb_data, current_objfile;0;default_iterate_over_objfiles_in_search_order;;0
1105
1106 # Ravenscar arch-dependent ops.
1107 v;struct ravenscar_arch_ops *;ravenscar_ops;;;NULL;NULL;;0;host_address_to_string (gdbarch->ravenscar_ops)
1108
1109 # Return non-zero if the instruction at ADDR is a call; zero otherwise.
1110 m;int;insn_is_call;CORE_ADDR addr;addr;;default_insn_is_call;;0
1111
1112 # Return non-zero if the instruction at ADDR is a return; zero otherwise.
1113 m;int;insn_is_ret;CORE_ADDR addr;addr;;default_insn_is_ret;;0
1114
1115 # Return non-zero if the instruction at ADDR is a jump; zero otherwise.
1116 m;int;insn_is_jump;CORE_ADDR addr;addr;;default_insn_is_jump;;0
1117
1118 # Return true if there's a program/permanent breakpoint planted in
1119 # memory at ADDRESS, return false otherwise.
1120 m;bool;program_breakpoint_here_p;CORE_ADDR address;address;;default_program_breakpoint_here_p;;0
1121
1122 # Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
1123 # Return 0 if *READPTR is already at the end of the buffer.
1124 # Return -1 if there is insufficient buffer for a whole entry.
1125 # Return 1 if an entry was read into *TYPEP and *VALP.
1126 M;int;auxv_parse;gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp;readptr, endptr, typep, valp
1127
1128 # Print the description of a single auxv entry described by TYPE and VAL
1129 # to FILE.
1130 m;void;print_auxv_entry;struct ui_file *file, CORE_ADDR type, CORE_ADDR val;file, type, val;;default_print_auxv_entry;;0
1131
1132 # Find the address range of the current inferior's vsyscall/vDSO, and
1133 # write it to *RANGE. If the vsyscall's length can't be determined, a
1134 # range with zero length is returned. Returns true if the vsyscall is
1135 # found, false otherwise.
1136 m;int;vsyscall_range;struct mem_range *range;range;;default_vsyscall_range;;0
1137
1138 # Allocate SIZE bytes of PROT protected page aligned memory in inferior.
1139 # PROT has GDB_MMAP_PROT_* bitmask format.
1140 # Throw an error if it is not possible. Returned address is always valid.
1141 f;CORE_ADDR;infcall_mmap;CORE_ADDR size, unsigned prot;size, prot;;default_infcall_mmap;;0
1142
1143 # Deallocate SIZE bytes of memory at ADDR in inferior from gdbarch_infcall_mmap.
1144 # Print a warning if it is not possible.
1145 f;void;infcall_munmap;CORE_ADDR addr, CORE_ADDR size;addr, size;;default_infcall_munmap;;0
1146
1147 # Return string (caller has to use xfree for it) with options for GCC
1148 # to produce code for this target, typically "-m64", "-m32" or "-m31".
1149 # These options are put before CU's DW_AT_producer compilation options so that
1150 # they can override it.
1151 m;std::string;gcc_target_options;void;;;default_gcc_target_options;;0
1152
1153 # Return a regular expression that matches names used by this
1154 # architecture in GNU configury triplets. The result is statically
1155 # allocated and must not be freed. The default implementation simply
1156 # returns the BFD architecture name, which is correct in nearly every
1157 # case.
1158 m;const char *;gnu_triplet_regexp;void;;;default_gnu_triplet_regexp;;0
1159
1160 # Return the size in 8-bit bytes of an addressable memory unit on this
1161 # architecture. This corresponds to the number of 8-bit bytes associated to
1162 # each address in memory.
1163 m;int;addressable_memory_unit_size;void;;;default_addressable_memory_unit_size;;0
1164
1165 # Functions for allowing a target to modify its disassembler options.
1166 v;const char *;disassembler_options_implicit;;;0;0;;0;pstring (gdbarch->disassembler_options_implicit)
1167 v;char **;disassembler_options;;;0;0;;0;pstring_ptr (gdbarch->disassembler_options)
1168 v;const disasm_options_and_args_t *;valid_disassembler_options;;;0;0;;0;host_address_to_string (gdbarch->valid_disassembler_options)
1169
1170 # Type alignment override method. Return the architecture specific
1171 # alignment required for TYPE. If there is no special handling
1172 # required for TYPE then return the value 0, GDB will then apply the
1173 # default rules as laid out in gdbtypes.c:type_align.
1174 m;ULONGEST;type_align;struct type *type;type;;default_type_align;;0
1175
1176 # Return a string containing any flags for the given PC in the given FRAME.
1177 f;std::string;get_pc_address_flags;frame_info *frame, CORE_ADDR pc;frame, pc;;default_get_pc_address_flags;;0
1178
1179 # Read core file mappings
1180 m;void;read_core_file_mappings;struct bfd *cbfd,gdb::function_view<void (ULONGEST count)> pre_loop_cb,gdb::function_view<void (int num, ULONGEST start, ULONGEST end, ULONGEST file_ofs, const char *filename, const void *other)> loop_cb;cbfd, pre_loop_cb, loop_cb;;default_read_core_file_mappings;;0
1181
1182 EOF
1183 }
1184
1185 #
1186 # The .log file
1187 #
1188 exec > gdbarch.log
1189 function_list | while do_read
1190 do
1191 cat <<EOF
1192 ${class} ${returntype:-} ${function} (${formal:-})
1193 EOF
1194 for r in ${read}
1195 do
1196 eval echo "\" ${r}=\${${r}}\""
1197 done
1198 if class_is_predicate_p && fallback_default_p
1199 then
1200 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
1201 kill $$
1202 exit 1
1203 fi
1204 if [ "x${invalid_p}" = "x0" ] && [ -n "${postdefault}" ]
1205 then
1206 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1207 kill $$
1208 exit 1
1209 fi
1210 if class_is_multiarch_p
1211 then
1212 if class_is_predicate_p ; then :
1213 elif test "x${predefault}" = "x"
1214 then
1215 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
1216 kill $$
1217 exit 1
1218 fi
1219 fi
1220 echo ""
1221 done
1222
1223 exec 1>&2
1224
1225
1226 copyright ()
1227 {
1228 cat <<EOF
1229 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1230 /* vi:set ro: */
1231
1232 /* Dynamic architecture support for GDB, the GNU debugger.
1233
1234 Copyright (C) 1998-2020 Free Software Foundation, Inc.
1235
1236 This file is part of GDB.
1237
1238 This program is free software; you can redistribute it and/or modify
1239 it under the terms of the GNU General Public License as published by
1240 the Free Software Foundation; either version 3 of the License, or
1241 (at your option) any later version.
1242
1243 This program is distributed in the hope that it will be useful,
1244 but WITHOUT ANY WARRANTY; without even the implied warranty of
1245 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1246 GNU General Public License for more details.
1247
1248 You should have received a copy of the GNU General Public License
1249 along with this program. If not, see <http://www.gnu.org/licenses/>. */
1250
1251 /* This file was created with the aid of \`\`gdbarch.sh''. */
1252
1253 EOF
1254 }
1255
1256 #
1257 # The .h file
1258 #
1259
1260 exec > new-gdbarch.h
1261 copyright
1262 cat <<EOF
1263 #ifndef GDBARCH_H
1264 #define GDBARCH_H
1265
1266 #include <vector>
1267 #include "frame.h"
1268 #include "dis-asm.h"
1269 #include "gdb_obstack.h"
1270 #include "infrun.h"
1271 #include "osabi.h"
1272
1273 struct floatformat;
1274 struct ui_file;
1275 struct value;
1276 struct objfile;
1277 struct obj_section;
1278 struct minimal_symbol;
1279 struct regcache;
1280 struct reggroup;
1281 struct regset;
1282 struct disassemble_info;
1283 struct target_ops;
1284 struct obstack;
1285 struct bp_target_info;
1286 struct target_desc;
1287 struct symbol;
1288 struct syscall;
1289 struct agent_expr;
1290 struct axs_value;
1291 struct stap_parse_info;
1292 struct expr_builder;
1293 struct ravenscar_arch_ops;
1294 struct mem_range;
1295 struct syscalls_info;
1296 struct thread_info;
1297 struct ui_out;
1298
1299 #include "regcache.h"
1300
1301 /* The architecture associated with the inferior through the
1302 connection to the target.
1303
1304 The architecture vector provides some information that is really a
1305 property of the inferior, accessed through a particular target:
1306 ptrace operations; the layout of certain RSP packets; the solib_ops
1307 vector; etc. To differentiate architecture accesses to
1308 per-inferior/target properties from
1309 per-thread/per-frame/per-objfile properties, accesses to
1310 per-inferior/target properties should be made through this
1311 gdbarch. */
1312
1313 /* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
1314 extern struct gdbarch *target_gdbarch (void);
1315
1316 /* Callback type for the 'iterate_over_objfiles_in_search_order'
1317 gdbarch method. */
1318
1319 typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1320 (struct objfile *objfile, void *cb_data);
1321
1322 /* Callback type for regset section iterators. The callback usually
1323 invokes the REGSET's supply or collect method, to which it must
1324 pass a buffer - for collects this buffer will need to be created using
1325 COLLECT_SIZE, for supply the existing buffer being read from should
1326 be at least SUPPLY_SIZE. SECT_NAME is a BFD section name, and HUMAN_NAME
1327 is used for diagnostic messages. CB_DATA should have been passed
1328 unchanged through the iterator. */
1329
1330 typedef void (iterate_over_regset_sections_cb)
1331 (const char *sect_name, int supply_size, int collect_size,
1332 const struct regset *regset, const char *human_name, void *cb_data);
1333
1334 /* For a function call, does the function return a value using a
1335 normal value return or a structure return - passing a hidden
1336 argument pointing to storage. For the latter, there are two
1337 cases: language-mandated structure return and target ABI
1338 structure return. */
1339
1340 enum function_call_return_method
1341 {
1342 /* Standard value return. */
1343 return_method_normal = 0,
1344
1345 /* Language ABI structure return. This is handled
1346 by passing the return location as the first parameter to
1347 the function, even preceding "this". */
1348 return_method_hidden_param,
1349
1350 /* Target ABI struct return. This is target-specific; for instance,
1351 on ia64 the first argument is passed in out0 but the hidden
1352 structure return pointer would normally be passed in r8. */
1353 return_method_struct,
1354 };
1355
1356 EOF
1357
1358 # function typedef's
1359 printf "\n"
1360 printf "\n"
1361 printf "/* The following are pre-initialized by GDBARCH. */\n"
1362 function_list | while do_read
1363 do
1364 if class_is_info_p
1365 then
1366 printf "\n"
1367 printf "extern %s gdbarch_%s (struct gdbarch *gdbarch);\n" "$returntype" "$function"
1368 printf "/* set_gdbarch_%s() - not applicable - pre-initialized. */\n" "$function"
1369 fi
1370 done
1371
1372 # function typedef's
1373 printf "\n"
1374 printf "\n"
1375 printf "/* The following are initialized by the target dependent code. */\n"
1376 function_list | while do_read
1377 do
1378 if [ -n "${comment}" ]
1379 then
1380 echo "${comment}" | sed \
1381 -e '2 s,#,/*,' \
1382 -e '3,$ s,#, ,' \
1383 -e '$ s,$, */,'
1384 fi
1385
1386 if class_is_predicate_p
1387 then
1388 printf "\n"
1389 printf "extern int gdbarch_%s_p (struct gdbarch *gdbarch);\n" "$function"
1390 fi
1391 if class_is_variable_p
1392 then
1393 printf "\n"
1394 printf "extern %s gdbarch_%s (struct gdbarch *gdbarch);\n" "$returntype" "$function"
1395 printf "extern void set_gdbarch_%s (struct gdbarch *gdbarch, %s %s);\n" "$function" "$returntype" "$function"
1396 fi
1397 if class_is_function_p
1398 then
1399 printf "\n"
1400 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
1401 then
1402 printf "typedef %s (gdbarch_%s_ftype) (struct gdbarch *gdbarch);\n" "$returntype" "$function"
1403 elif class_is_multiarch_p
1404 then
1405 printf "typedef %s (gdbarch_%s_ftype) (struct gdbarch *gdbarch, %s);\n" "$returntype" "$function" "$formal"
1406 else
1407 printf "typedef %s (gdbarch_%s_ftype) (%s);\n" "$returntype" "$function" "$formal"
1408 fi
1409 if [ "x${formal}" = "xvoid" ]
1410 then
1411 printf "extern %s gdbarch_%s (struct gdbarch *gdbarch);\n" "$returntype" "$function"
1412 else
1413 printf "extern %s gdbarch_%s (struct gdbarch *gdbarch, %s);\n" "$returntype" "$function" "$formal"
1414 fi
1415 printf "extern void set_gdbarch_%s (struct gdbarch *gdbarch, gdbarch_%s_ftype *%s);\n" "$function" "$function" "$function"
1416 fi
1417 done
1418
1419 # close it off
1420 cat <<EOF
1421
1422 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1423
1424
1425 /* Mechanism for co-ordinating the selection of a specific
1426 architecture.
1427
1428 GDB targets (*-tdep.c) can register an interest in a specific
1429 architecture. Other GDB components can register a need to maintain
1430 per-architecture data.
1431
1432 The mechanisms below ensures that there is only a loose connection
1433 between the set-architecture command and the various GDB
1434 components. Each component can independently register their need
1435 to maintain architecture specific data with gdbarch.
1436
1437 Pragmatics:
1438
1439 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1440 didn't scale.
1441
1442 The more traditional mega-struct containing architecture specific
1443 data for all the various GDB components was also considered. Since
1444 GDB is built from a variable number of (fairly independent)
1445 components it was determined that the global aproach was not
1446 applicable. */
1447
1448
1449 /* Register a new architectural family with GDB.
1450
1451 Register support for the specified ARCHITECTURE with GDB. When
1452 gdbarch determines that the specified architecture has been
1453 selected, the corresponding INIT function is called.
1454
1455 --
1456
1457 The INIT function takes two parameters: INFO which contains the
1458 information available to gdbarch about the (possibly new)
1459 architecture; ARCHES which is a list of the previously created
1460 \`\`struct gdbarch'' for this architecture.
1461
1462 The INFO parameter is, as far as possible, be pre-initialized with
1463 information obtained from INFO.ABFD or the global defaults.
1464
1465 The ARCHES parameter is a linked list (sorted most recently used)
1466 of all the previously created architures for this architecture
1467 family. The (possibly NULL) ARCHES->gdbarch can used to access
1468 values from the previously selected architecture for this
1469 architecture family.
1470
1471 The INIT function shall return any of: NULL - indicating that it
1472 doesn't recognize the selected architecture; an existing \`\`struct
1473 gdbarch'' from the ARCHES list - indicating that the new
1474 architecture is just a synonym for an earlier architecture (see
1475 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1476 - that describes the selected architecture (see gdbarch_alloc()).
1477
1478 The DUMP_TDEP function shall print out all target specific values.
1479 Care should be taken to ensure that the function works in both the
1480 multi-arch and non- multi-arch cases. */
1481
1482 struct gdbarch_list
1483 {
1484 struct gdbarch *gdbarch;
1485 struct gdbarch_list *next;
1486 };
1487
1488 struct gdbarch_info
1489 {
1490 /* Use default: NULL (ZERO). */
1491 const struct bfd_arch_info *bfd_arch_info;
1492
1493 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1494 enum bfd_endian byte_order;
1495
1496 enum bfd_endian byte_order_for_code;
1497
1498 /* Use default: NULL (ZERO). */
1499 bfd *abfd;
1500
1501 /* Use default: NULL (ZERO). */
1502 union
1503 {
1504 /* Architecture-specific information. The generic form for targets
1505 that have extra requirements. */
1506 struct gdbarch_tdep_info *tdep_info;
1507
1508 /* Architecture-specific target description data. Numerous targets
1509 need only this, so give them an easy way to hold it. */
1510 struct tdesc_arch_data *tdesc_data;
1511
1512 /* SPU file system ID. This is a single integer, so using the
1513 generic form would only complicate code. Other targets may
1514 reuse this member if suitable. */
1515 int *id;
1516 };
1517
1518 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1519 enum gdb_osabi osabi;
1520
1521 /* Use default: NULL (ZERO). */
1522 const struct target_desc *target_desc;
1523 };
1524
1525 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1526 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1527
1528 /* DEPRECATED - use gdbarch_register() */
1529 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1530
1531 extern void gdbarch_register (enum bfd_architecture architecture,
1532 gdbarch_init_ftype *,
1533 gdbarch_dump_tdep_ftype *);
1534
1535
1536 /* Return a freshly allocated, NULL terminated, array of the valid
1537 architecture names. Since architectures are registered during the
1538 _initialize phase this function only returns useful information
1539 once initialization has been completed. */
1540
1541 extern const char **gdbarch_printable_names (void);
1542
1543
1544 /* Helper function. Search the list of ARCHES for a GDBARCH that
1545 matches the information provided by INFO. */
1546
1547 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1548
1549
1550 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1551 basic initialization using values obtained from the INFO and TDEP
1552 parameters. set_gdbarch_*() functions are called to complete the
1553 initialization of the object. */
1554
1555 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1556
1557
1558 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1559 It is assumed that the caller freeds the \`\`struct
1560 gdbarch_tdep''. */
1561
1562 extern void gdbarch_free (struct gdbarch *);
1563
1564 /* Get the obstack owned by ARCH. */
1565
1566 extern obstack *gdbarch_obstack (gdbarch *arch);
1567
1568 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1569 obstack. The memory is freed when the corresponding architecture
1570 is also freed. */
1571
1572 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) \
1573 obstack_calloc<TYPE> (gdbarch_obstack ((GDBARCH)), (NR))
1574
1575 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) \
1576 obstack_zalloc<TYPE> (gdbarch_obstack ((GDBARCH)))
1577
1578 /* Duplicate STRING, returning an equivalent string that's allocated on the
1579 obstack associated with GDBARCH. The string is freed when the corresponding
1580 architecture is also freed. */
1581
1582 extern char *gdbarch_obstack_strdup (struct gdbarch *arch, const char *string);
1583
1584 /* Helper function. Force an update of the current architecture.
1585
1586 The actual architecture selected is determined by INFO, \`\`(gdb) set
1587 architecture'' et.al., the existing architecture and BFD's default
1588 architecture. INFO should be initialized to zero and then selected
1589 fields should be updated.
1590
1591 Returns non-zero if the update succeeds. */
1592
1593 extern int gdbarch_update_p (struct gdbarch_info info);
1594
1595
1596 /* Helper function. Find an architecture matching info.
1597
1598 INFO should be initialized using gdbarch_info_init, relevant fields
1599 set, and then finished using gdbarch_info_fill.
1600
1601 Returns the corresponding architecture, or NULL if no matching
1602 architecture was found. */
1603
1604 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1605
1606
1607 /* Helper function. Set the target gdbarch to "gdbarch". */
1608
1609 extern void set_target_gdbarch (struct gdbarch *gdbarch);
1610
1611
1612 /* Register per-architecture data-pointer.
1613
1614 Reserve space for a per-architecture data-pointer. An identifier
1615 for the reserved data-pointer is returned. That identifer should
1616 be saved in a local static variable.
1617
1618 Memory for the per-architecture data shall be allocated using
1619 gdbarch_obstack_zalloc. That memory will be deleted when the
1620 corresponding architecture object is deleted.
1621
1622 When a previously created architecture is re-selected, the
1623 per-architecture data-pointer for that previous architecture is
1624 restored. INIT() is not re-called.
1625
1626 Multiple registrarants for any architecture are allowed (and
1627 strongly encouraged). */
1628
1629 struct gdbarch_data;
1630
1631 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1632 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1633 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1634 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1635
1636 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1637
1638
1639 /* Set the dynamic target-system-dependent parameters (architecture,
1640 byte-order, ...) using information found in the BFD. */
1641
1642 extern void set_gdbarch_from_file (bfd *);
1643
1644
1645 /* Initialize the current architecture to the "first" one we find on
1646 our list. */
1647
1648 extern void initialize_current_architecture (void);
1649
1650 /* gdbarch trace variable */
1651 extern unsigned int gdbarch_debug;
1652
1653 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1654
1655 /* Return the number of cooked registers (raw + pseudo) for ARCH. */
1656
1657 static inline int
1658 gdbarch_num_cooked_regs (gdbarch *arch)
1659 {
1660 return gdbarch_num_regs (arch) + gdbarch_num_pseudo_regs (arch);
1661 }
1662
1663 #endif
1664 EOF
1665 exec 1>&2
1666 ../move-if-change new-gdbarch.h gdbarch.h
1667 rm -f new-gdbarch.h
1668
1669
1670 #
1671 # C file
1672 #
1673
1674 exec > new-gdbarch.c
1675 copyright
1676 cat <<EOF
1677
1678 #include "defs.h"
1679 #include "arch-utils.h"
1680
1681 #include "gdbcmd.h"
1682 #include "inferior.h"
1683 #include "symcat.h"
1684
1685 #include "floatformat.h"
1686 #include "reggroups.h"
1687 #include "osabi.h"
1688 #include "gdb_obstack.h"
1689 #include "observable.h"
1690 #include "regcache.h"
1691 #include "objfiles.h"
1692 #include "auxv.h"
1693 #include "frame-unwind.h"
1694 #include "dummy-frame.h"
1695
1696 /* Static function declarations */
1697
1698 static void alloc_gdbarch_data (struct gdbarch *);
1699
1700 /* Non-zero if we want to trace architecture code. */
1701
1702 #ifndef GDBARCH_DEBUG
1703 #define GDBARCH_DEBUG 0
1704 #endif
1705 unsigned int gdbarch_debug = GDBARCH_DEBUG;
1706 static void
1707 show_gdbarch_debug (struct ui_file *file, int from_tty,
1708 struct cmd_list_element *c, const char *value)
1709 {
1710 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1711 }
1712
1713 static const char *
1714 pformat (const struct floatformat **format)
1715 {
1716 if (format == NULL)
1717 return "(null)";
1718 else
1719 /* Just print out one of them - this is only for diagnostics. */
1720 return format[0]->name;
1721 }
1722
1723 static const char *
1724 pstring (const char *string)
1725 {
1726 if (string == NULL)
1727 return "(null)";
1728 return string;
1729 }
1730
1731 static const char *
1732 pstring_ptr (char **string)
1733 {
1734 if (string == NULL || *string == NULL)
1735 return "(null)";
1736 return *string;
1737 }
1738
1739 /* Helper function to print a list of strings, represented as "const
1740 char *const *". The list is printed comma-separated. */
1741
1742 static const char *
1743 pstring_list (const char *const *list)
1744 {
1745 static char ret[100];
1746 const char *const *p;
1747 size_t offset = 0;
1748
1749 if (list == NULL)
1750 return "(null)";
1751
1752 ret[0] = '\0';
1753 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1754 {
1755 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1756 offset += 2 + s;
1757 }
1758
1759 if (offset > 0)
1760 {
1761 gdb_assert (offset - 2 < sizeof (ret));
1762 ret[offset - 2] = '\0';
1763 }
1764
1765 return ret;
1766 }
1767
1768 EOF
1769
1770 # gdbarch open the gdbarch object
1771 printf "\n"
1772 printf "/* Maintain the struct gdbarch object. */\n"
1773 printf "\n"
1774 printf "struct gdbarch\n"
1775 printf "{\n"
1776 printf " /* Has this architecture been fully initialized? */\n"
1777 printf " int initialized_p;\n"
1778 printf "\n"
1779 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1780 printf " struct obstack *obstack;\n"
1781 printf "\n"
1782 printf " /* basic architectural information. */\n"
1783 function_list | while do_read
1784 do
1785 if class_is_info_p
1786 then
1787 printf " %s %s;\n" "$returntype" "$function"
1788 fi
1789 done
1790 printf "\n"
1791 printf " /* target specific vector. */\n"
1792 printf " struct gdbarch_tdep *tdep;\n"
1793 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1794 printf "\n"
1795 printf " /* per-architecture data-pointers. */\n"
1796 printf " unsigned nr_data;\n"
1797 printf " void **data;\n"
1798 printf "\n"
1799 cat <<EOF
1800 /* Multi-arch values.
1801
1802 When extending this structure you must:
1803
1804 Add the field below.
1805
1806 Declare set/get functions and define the corresponding
1807 macro in gdbarch.h.
1808
1809 gdbarch_alloc(): If zero/NULL is not a suitable default,
1810 initialize the new field.
1811
1812 verify_gdbarch(): Confirm that the target updated the field
1813 correctly.
1814
1815 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1816 field is dumped out
1817
1818 get_gdbarch(): Implement the set/get functions (probably using
1819 the macro's as shortcuts).
1820
1821 */
1822
1823 EOF
1824 function_list | while do_read
1825 do
1826 if class_is_variable_p
1827 then
1828 printf " %s %s;\n" "$returntype" "$function"
1829 elif class_is_function_p
1830 then
1831 printf " gdbarch_%s_ftype *%s;\n" "$function" "$function"
1832 fi
1833 done
1834 printf "};\n"
1835
1836 # Create a new gdbarch struct
1837 cat <<EOF
1838
1839 /* Create a new \`\`struct gdbarch'' based on information provided by
1840 \`\`struct gdbarch_info''. */
1841 EOF
1842 printf "\n"
1843 cat <<EOF
1844 struct gdbarch *
1845 gdbarch_alloc (const struct gdbarch_info *info,
1846 struct gdbarch_tdep *tdep)
1847 {
1848 struct gdbarch *gdbarch;
1849
1850 /* Create an obstack for allocating all the per-architecture memory,
1851 then use that to allocate the architecture vector. */
1852 struct obstack *obstack = XNEW (struct obstack);
1853 obstack_init (obstack);
1854 gdbarch = XOBNEW (obstack, struct gdbarch);
1855 memset (gdbarch, 0, sizeof (*gdbarch));
1856 gdbarch->obstack = obstack;
1857
1858 alloc_gdbarch_data (gdbarch);
1859
1860 gdbarch->tdep = tdep;
1861 EOF
1862 printf "\n"
1863 function_list | while do_read
1864 do
1865 if class_is_info_p
1866 then
1867 printf " gdbarch->%s = info->%s;\n" "$function" "$function"
1868 fi
1869 done
1870 printf "\n"
1871 printf " /* Force the explicit initialization of these. */\n"
1872 function_list | while do_read
1873 do
1874 if class_is_function_p || class_is_variable_p
1875 then
1876 if [ -n "${predefault}" ] && [ "x${predefault}" != "x0" ]
1877 then
1878 printf " gdbarch->%s = %s;\n" "$function" "$predefault"
1879 fi
1880 fi
1881 done
1882 cat <<EOF
1883 /* gdbarch_alloc() */
1884
1885 return gdbarch;
1886 }
1887 EOF
1888
1889 # Free a gdbarch struct.
1890 printf "\n"
1891 printf "\n"
1892 cat <<EOF
1893
1894 obstack *gdbarch_obstack (gdbarch *arch)
1895 {
1896 return arch->obstack;
1897 }
1898
1899 /* See gdbarch.h. */
1900
1901 char *
1902 gdbarch_obstack_strdup (struct gdbarch *arch, const char *string)
1903 {
1904 return obstack_strdup (arch->obstack, string);
1905 }
1906
1907
1908 /* Free a gdbarch struct. This should never happen in normal
1909 operation --- once you've created a gdbarch, you keep it around.
1910 However, if an architecture's init function encounters an error
1911 building the structure, it may need to clean up a partially
1912 constructed gdbarch. */
1913
1914 void
1915 gdbarch_free (struct gdbarch *arch)
1916 {
1917 struct obstack *obstack;
1918
1919 gdb_assert (arch != NULL);
1920 gdb_assert (!arch->initialized_p);
1921 obstack = arch->obstack;
1922 obstack_free (obstack, 0); /* Includes the ARCH. */
1923 xfree (obstack);
1924 }
1925 EOF
1926
1927 # verify a new architecture
1928 cat <<EOF
1929
1930
1931 /* Ensure that all values in a GDBARCH are reasonable. */
1932
1933 static void
1934 verify_gdbarch (struct gdbarch *gdbarch)
1935 {
1936 string_file log;
1937
1938 /* fundamental */
1939 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1940 log.puts ("\n\tbyte-order");
1941 if (gdbarch->bfd_arch_info == NULL)
1942 log.puts ("\n\tbfd_arch_info");
1943 /* Check those that need to be defined for the given multi-arch level. */
1944 EOF
1945 function_list | while do_read
1946 do
1947 if class_is_function_p || class_is_variable_p
1948 then
1949 if [ "x${invalid_p}" = "x0" ]
1950 then
1951 printf " /* Skip verify of %s, invalid_p == 0 */\n" "$function"
1952 elif class_is_predicate_p
1953 then
1954 printf " /* Skip verify of %s, has predicate. */\n" "$function"
1955 # FIXME: See do_read for potential simplification
1956 elif [ -n "${invalid_p}" ] && [ -n "${postdefault}" ]
1957 then
1958 printf " if (%s)\n" "$invalid_p"
1959 printf " gdbarch->%s = %s;\n" "$function" "$postdefault"
1960 elif [ -n "${predefault}" ] && [ -n "${postdefault}" ]
1961 then
1962 printf " if (gdbarch->%s == %s)\n" "$function" "$predefault"
1963 printf " gdbarch->%s = %s;\n" "$function" "$postdefault"
1964 elif [ -n "${postdefault}" ]
1965 then
1966 printf " if (gdbarch->%s == 0)\n" "$function"
1967 printf " gdbarch->%s = %s;\n" "$function" "$postdefault"
1968 elif [ -n "${invalid_p}" ]
1969 then
1970 printf " if (%s)\n" "$invalid_p"
1971 printf " log.puts (\"\\\\n\\\\t%s\");\n" "$function"
1972 elif [ -n "${predefault}" ]
1973 then
1974 printf " if (gdbarch->%s == %s)\n" "$function" "$predefault"
1975 printf " log.puts (\"\\\\n\\\\t%s\");\n" "$function"
1976 fi
1977 fi
1978 done
1979 cat <<EOF
1980 if (!log.empty ())
1981 internal_error (__FILE__, __LINE__,
1982 _("verify_gdbarch: the following are invalid ...%s"),
1983 log.c_str ());
1984 }
1985 EOF
1986
1987 # dump the structure
1988 printf "\n"
1989 printf "\n"
1990 cat <<EOF
1991 /* Print out the details of the current architecture. */
1992
1993 void
1994 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1995 {
1996 const char *gdb_nm_file = "<not-defined>";
1997
1998 #if defined (GDB_NM_FILE)
1999 gdb_nm_file = GDB_NM_FILE;
2000 #endif
2001 fprintf_unfiltered (file,
2002 "gdbarch_dump: GDB_NM_FILE = %s\\n",
2003 gdb_nm_file);
2004 EOF
2005 function_list | sort '-t;' -k 3 | while do_read
2006 do
2007 # First the predicate
2008 if class_is_predicate_p
2009 then
2010 printf " fprintf_unfiltered (file,\n"
2011 printf " \"gdbarch_dump: gdbarch_%s_p() = %%d\\\\n\",\n" "$function"
2012 printf " gdbarch_%s_p (gdbarch));\n" "$function"
2013 fi
2014 # Print the corresponding value.
2015 if class_is_function_p
2016 then
2017 printf " fprintf_unfiltered (file,\n"
2018 printf " \"gdbarch_dump: %s = <%%s>\\\\n\",\n" "$function"
2019 printf " host_address_to_string (gdbarch->%s));\n" "$function"
2020 else
2021 # It is a variable
2022 case "${print}:${returntype}" in
2023 :CORE_ADDR )
2024 fmt="%s"
2025 print="core_addr_to_string_nz (gdbarch->${function})"
2026 ;;
2027 :* )
2028 fmt="%s"
2029 print="plongest (gdbarch->${function})"
2030 ;;
2031 * )
2032 fmt="%s"
2033 ;;
2034 esac
2035 printf " fprintf_unfiltered (file,\n"
2036 printf " \"gdbarch_dump: %s = %s\\\\n\",\n" "$function" "$fmt"
2037 printf " %s);\n" "$print"
2038 fi
2039 done
2040 cat <<EOF
2041 if (gdbarch->dump_tdep != NULL)
2042 gdbarch->dump_tdep (gdbarch, file);
2043 }
2044 EOF
2045
2046
2047 # GET/SET
2048 printf "\n"
2049 cat <<EOF
2050 struct gdbarch_tdep *
2051 gdbarch_tdep (struct gdbarch *gdbarch)
2052 {
2053 if (gdbarch_debug >= 2)
2054 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
2055 return gdbarch->tdep;
2056 }
2057 EOF
2058 printf "\n"
2059 function_list | while do_read
2060 do
2061 if class_is_predicate_p
2062 then
2063 printf "\n"
2064 printf "int\n"
2065 printf "gdbarch_%s_p (struct gdbarch *gdbarch)\n" "$function"
2066 printf "{\n"
2067 printf " gdb_assert (gdbarch != NULL);\n"
2068 printf " return %s;\n" "$predicate"
2069 printf "}\n"
2070 fi
2071 if class_is_function_p
2072 then
2073 printf "\n"
2074 printf "%s\n" "$returntype"
2075 if [ "x${formal}" = "xvoid" ]
2076 then
2077 printf "gdbarch_%s (struct gdbarch *gdbarch)\n" "$function"
2078 else
2079 printf "gdbarch_%s (struct gdbarch *gdbarch, %s)\n" "$function" "$formal"
2080 fi
2081 printf "{\n"
2082 printf " gdb_assert (gdbarch != NULL);\n"
2083 printf " gdb_assert (gdbarch->%s != NULL);\n" "$function"
2084 if class_is_predicate_p && test -n "${predefault}"
2085 then
2086 # Allow a call to a function with a predicate.
2087 printf " /* Do not check predicate: %s, allow call. */\n" "$predicate"
2088 fi
2089 printf " if (gdbarch_debug >= 2)\n"
2090 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_%s called\\\\n\");\n" "$function"
2091 if [ "x${actual:-}" = "x-" ] || [ "x${actual:-}" = "x" ]
2092 then
2093 if class_is_multiarch_p
2094 then
2095 params="gdbarch"
2096 else
2097 params=""
2098 fi
2099 else
2100 if class_is_multiarch_p
2101 then
2102 params="gdbarch, ${actual}"
2103 else
2104 params="${actual}"
2105 fi
2106 fi
2107 if [ "x${returntype}" = "xvoid" ]
2108 then
2109 printf " gdbarch->%s (%s);\n" "$function" "$params"
2110 else
2111 printf " return gdbarch->%s (%s);\n" "$function" "$params"
2112 fi
2113 printf "}\n"
2114 printf "\n"
2115 printf "void\n"
2116 printf "set_gdbarch_%s (struct gdbarch *gdbarch,\n" "$function"
2117 printf " %s gdbarch_%s_ftype %s)\n" "$(echo "$function" | sed -e 's/./ /g')" "$function" "$function"
2118 printf "{\n"
2119 printf " gdbarch->%s = %s;\n" "$function" "$function"
2120 printf "}\n"
2121 elif class_is_variable_p
2122 then
2123 printf "\n"
2124 printf "%s\n" "$returntype"
2125 printf "gdbarch_%s (struct gdbarch *gdbarch)\n" "$function"
2126 printf "{\n"
2127 printf " gdb_assert (gdbarch != NULL);\n"
2128 if [ "x${invalid_p}" = "x0" ]
2129 then
2130 printf " /* Skip verify of %s, invalid_p == 0 */\n" "$function"
2131 elif [ -n "${invalid_p}" ]
2132 then
2133 printf " /* Check variable is valid. */\n"
2134 printf " gdb_assert (!(%s));\n" "$invalid_p"
2135 elif [ -n "${predefault}" ]
2136 then
2137 printf " /* Check variable changed from pre-default. */\n"
2138 printf " gdb_assert (gdbarch->%s != %s);\n" "$function" "$predefault"
2139 fi
2140 printf " if (gdbarch_debug >= 2)\n"
2141 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_%s called\\\\n\");\n" "$function"
2142 printf " return gdbarch->%s;\n" "$function"
2143 printf "}\n"
2144 printf "\n"
2145 printf "void\n"
2146 printf "set_gdbarch_%s (struct gdbarch *gdbarch,\n" "$function"
2147 printf " %s %s %s)\n" "$(echo "$function" | sed -e 's/./ /g')" "$returntype" "$function"
2148 printf "{\n"
2149 printf " gdbarch->%s = %s;\n" "$function" "$function"
2150 printf "}\n"
2151 elif class_is_info_p
2152 then
2153 printf "\n"
2154 printf "%s\n" "$returntype"
2155 printf "gdbarch_%s (struct gdbarch *gdbarch)\n" "$function"
2156 printf "{\n"
2157 printf " gdb_assert (gdbarch != NULL);\n"
2158 printf " if (gdbarch_debug >= 2)\n"
2159 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_%s called\\\\n\");\n" "$function"
2160 printf " return gdbarch->%s;\n" "$function"
2161 printf "}\n"
2162 fi
2163 done
2164
2165 # All the trailing guff
2166 cat <<EOF
2167
2168
2169 /* Keep a registry of per-architecture data-pointers required by GDB
2170 modules. */
2171
2172 struct gdbarch_data
2173 {
2174 unsigned index;
2175 int init_p;
2176 gdbarch_data_pre_init_ftype *pre_init;
2177 gdbarch_data_post_init_ftype *post_init;
2178 };
2179
2180 struct gdbarch_data_registration
2181 {
2182 struct gdbarch_data *data;
2183 struct gdbarch_data_registration *next;
2184 };
2185
2186 struct gdbarch_data_registry
2187 {
2188 unsigned nr;
2189 struct gdbarch_data_registration *registrations;
2190 };
2191
2192 struct gdbarch_data_registry gdbarch_data_registry =
2193 {
2194 0, NULL,
2195 };
2196
2197 static struct gdbarch_data *
2198 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
2199 gdbarch_data_post_init_ftype *post_init)
2200 {
2201 struct gdbarch_data_registration **curr;
2202
2203 /* Append the new registration. */
2204 for (curr = &gdbarch_data_registry.registrations;
2205 (*curr) != NULL;
2206 curr = &(*curr)->next);
2207 (*curr) = XNEW (struct gdbarch_data_registration);
2208 (*curr)->next = NULL;
2209 (*curr)->data = XNEW (struct gdbarch_data);
2210 (*curr)->data->index = gdbarch_data_registry.nr++;
2211 (*curr)->data->pre_init = pre_init;
2212 (*curr)->data->post_init = post_init;
2213 (*curr)->data->init_p = 1;
2214 return (*curr)->data;
2215 }
2216
2217 struct gdbarch_data *
2218 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2219 {
2220 return gdbarch_data_register (pre_init, NULL);
2221 }
2222
2223 struct gdbarch_data *
2224 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2225 {
2226 return gdbarch_data_register (NULL, post_init);
2227 }
2228
2229 /* Create/delete the gdbarch data vector. */
2230
2231 static void
2232 alloc_gdbarch_data (struct gdbarch *gdbarch)
2233 {
2234 gdb_assert (gdbarch->data == NULL);
2235 gdbarch->nr_data = gdbarch_data_registry.nr;
2236 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
2237 }
2238
2239 /* Return the current value of the specified per-architecture
2240 data-pointer. */
2241
2242 void *
2243 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
2244 {
2245 gdb_assert (data->index < gdbarch->nr_data);
2246 if (gdbarch->data[data->index] == NULL)
2247 {
2248 /* The data-pointer isn't initialized, call init() to get a
2249 value. */
2250 if (data->pre_init != NULL)
2251 /* Mid architecture creation: pass just the obstack, and not
2252 the entire architecture, as that way it isn't possible for
2253 pre-init code to refer to undefined architecture
2254 fields. */
2255 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2256 else if (gdbarch->initialized_p
2257 && data->post_init != NULL)
2258 /* Post architecture creation: pass the entire architecture
2259 (as all fields are valid), but be careful to also detect
2260 recursive references. */
2261 {
2262 gdb_assert (data->init_p);
2263 data->init_p = 0;
2264 gdbarch->data[data->index] = data->post_init (gdbarch);
2265 data->init_p = 1;
2266 }
2267 else
2268 internal_error (__FILE__, __LINE__,
2269 _("gdbarch post-init data field can only be used "
2270 "after gdbarch is fully initialised"));
2271 gdb_assert (gdbarch->data[data->index] != NULL);
2272 }
2273 return gdbarch->data[data->index];
2274 }
2275
2276
2277 /* Keep a registry of the architectures known by GDB. */
2278
2279 struct gdbarch_registration
2280 {
2281 enum bfd_architecture bfd_architecture;
2282 gdbarch_init_ftype *init;
2283 gdbarch_dump_tdep_ftype *dump_tdep;
2284 struct gdbarch_list *arches;
2285 struct gdbarch_registration *next;
2286 };
2287
2288 static struct gdbarch_registration *gdbarch_registry = NULL;
2289
2290 static void
2291 append_name (const char ***buf, int *nr, const char *name)
2292 {
2293 *buf = XRESIZEVEC (const char *, *buf, *nr + 1);
2294 (*buf)[*nr] = name;
2295 *nr += 1;
2296 }
2297
2298 const char **
2299 gdbarch_printable_names (void)
2300 {
2301 /* Accumulate a list of names based on the registed list of
2302 architectures. */
2303 int nr_arches = 0;
2304 const char **arches = NULL;
2305 struct gdbarch_registration *rego;
2306
2307 for (rego = gdbarch_registry;
2308 rego != NULL;
2309 rego = rego->next)
2310 {
2311 const struct bfd_arch_info *ap;
2312 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2313 if (ap == NULL)
2314 internal_error (__FILE__, __LINE__,
2315 _("gdbarch_architecture_names: multi-arch unknown"));
2316 do
2317 {
2318 append_name (&arches, &nr_arches, ap->printable_name);
2319 ap = ap->next;
2320 }
2321 while (ap != NULL);
2322 }
2323 append_name (&arches, &nr_arches, NULL);
2324 return arches;
2325 }
2326
2327
2328 void
2329 gdbarch_register (enum bfd_architecture bfd_architecture,
2330 gdbarch_init_ftype *init,
2331 gdbarch_dump_tdep_ftype *dump_tdep)
2332 {
2333 struct gdbarch_registration **curr;
2334 const struct bfd_arch_info *bfd_arch_info;
2335
2336 /* Check that BFD recognizes this architecture */
2337 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2338 if (bfd_arch_info == NULL)
2339 {
2340 internal_error (__FILE__, __LINE__,
2341 _("gdbarch: Attempt to register "
2342 "unknown architecture (%d)"),
2343 bfd_architecture);
2344 }
2345 /* Check that we haven't seen this architecture before. */
2346 for (curr = &gdbarch_registry;
2347 (*curr) != NULL;
2348 curr = &(*curr)->next)
2349 {
2350 if (bfd_architecture == (*curr)->bfd_architecture)
2351 internal_error (__FILE__, __LINE__,
2352 _("gdbarch: Duplicate registration "
2353 "of architecture (%s)"),
2354 bfd_arch_info->printable_name);
2355 }
2356 /* log it */
2357 if (gdbarch_debug)
2358 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
2359 bfd_arch_info->printable_name,
2360 host_address_to_string (init));
2361 /* Append it */
2362 (*curr) = XNEW (struct gdbarch_registration);
2363 (*curr)->bfd_architecture = bfd_architecture;
2364 (*curr)->init = init;
2365 (*curr)->dump_tdep = dump_tdep;
2366 (*curr)->arches = NULL;
2367 (*curr)->next = NULL;
2368 }
2369
2370 void
2371 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2372 gdbarch_init_ftype *init)
2373 {
2374 gdbarch_register (bfd_architecture, init, NULL);
2375 }
2376
2377
2378 /* Look for an architecture using gdbarch_info. */
2379
2380 struct gdbarch_list *
2381 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2382 const struct gdbarch_info *info)
2383 {
2384 for (; arches != NULL; arches = arches->next)
2385 {
2386 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2387 continue;
2388 if (info->byte_order != arches->gdbarch->byte_order)
2389 continue;
2390 if (info->osabi != arches->gdbarch->osabi)
2391 continue;
2392 if (info->target_desc != arches->gdbarch->target_desc)
2393 continue;
2394 return arches;
2395 }
2396 return NULL;
2397 }
2398
2399
2400 /* Find an architecture that matches the specified INFO. Create a new
2401 architecture if needed. Return that new architecture. */
2402
2403 struct gdbarch *
2404 gdbarch_find_by_info (struct gdbarch_info info)
2405 {
2406 struct gdbarch *new_gdbarch;
2407 struct gdbarch_registration *rego;
2408
2409 /* Fill in missing parts of the INFO struct using a number of
2410 sources: "set ..."; INFOabfd supplied; and the global
2411 defaults. */
2412 gdbarch_info_fill (&info);
2413
2414 /* Must have found some sort of architecture. */
2415 gdb_assert (info.bfd_arch_info != NULL);
2416
2417 if (gdbarch_debug)
2418 {
2419 fprintf_unfiltered (gdb_stdlog,
2420 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
2421 (info.bfd_arch_info != NULL
2422 ? info.bfd_arch_info->printable_name
2423 : "(null)"));
2424 fprintf_unfiltered (gdb_stdlog,
2425 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
2426 info.byte_order,
2427 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2428 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2429 : "default"));
2430 fprintf_unfiltered (gdb_stdlog,
2431 "gdbarch_find_by_info: info.osabi %d (%s)\n",
2432 info.osabi, gdbarch_osabi_name (info.osabi));
2433 fprintf_unfiltered (gdb_stdlog,
2434 "gdbarch_find_by_info: info.abfd %s\n",
2435 host_address_to_string (info.abfd));
2436 fprintf_unfiltered (gdb_stdlog,
2437 "gdbarch_find_by_info: info.tdep_info %s\n",
2438 host_address_to_string (info.tdep_info));
2439 }
2440
2441 /* Find the tdep code that knows about this architecture. */
2442 for (rego = gdbarch_registry;
2443 rego != NULL;
2444 rego = rego->next)
2445 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2446 break;
2447 if (rego == NULL)
2448 {
2449 if (gdbarch_debug)
2450 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2451 "No matching architecture\n");
2452 return 0;
2453 }
2454
2455 /* Ask the tdep code for an architecture that matches "info". */
2456 new_gdbarch = rego->init (info, rego->arches);
2457
2458 /* Did the tdep code like it? No. Reject the change and revert to
2459 the old architecture. */
2460 if (new_gdbarch == NULL)
2461 {
2462 if (gdbarch_debug)
2463 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2464 "Target rejected architecture\n");
2465 return NULL;
2466 }
2467
2468 /* Is this a pre-existing architecture (as determined by already
2469 being initialized)? Move it to the front of the architecture
2470 list (keeping the list sorted Most Recently Used). */
2471 if (new_gdbarch->initialized_p)
2472 {
2473 struct gdbarch_list **list;
2474 struct gdbarch_list *self;
2475 if (gdbarch_debug)
2476 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2477 "Previous architecture %s (%s) selected\n",
2478 host_address_to_string (new_gdbarch),
2479 new_gdbarch->bfd_arch_info->printable_name);
2480 /* Find the existing arch in the list. */
2481 for (list = &rego->arches;
2482 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2483 list = &(*list)->next);
2484 /* It had better be in the list of architectures. */
2485 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2486 /* Unlink SELF. */
2487 self = (*list);
2488 (*list) = self->next;
2489 /* Insert SELF at the front. */
2490 self->next = rego->arches;
2491 rego->arches = self;
2492 /* Return it. */
2493 return new_gdbarch;
2494 }
2495
2496 /* It's a new architecture. */
2497 if (gdbarch_debug)
2498 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2499 "New architecture %s (%s) selected\n",
2500 host_address_to_string (new_gdbarch),
2501 new_gdbarch->bfd_arch_info->printable_name);
2502
2503 /* Insert the new architecture into the front of the architecture
2504 list (keep the list sorted Most Recently Used). */
2505 {
2506 struct gdbarch_list *self = XNEW (struct gdbarch_list);
2507 self->next = rego->arches;
2508 self->gdbarch = new_gdbarch;
2509 rego->arches = self;
2510 }
2511
2512 /* Check that the newly installed architecture is valid. Plug in
2513 any post init values. */
2514 new_gdbarch->dump_tdep = rego->dump_tdep;
2515 verify_gdbarch (new_gdbarch);
2516 new_gdbarch->initialized_p = 1;
2517
2518 if (gdbarch_debug)
2519 gdbarch_dump (new_gdbarch, gdb_stdlog);
2520
2521 return new_gdbarch;
2522 }
2523
2524 /* Make the specified architecture current. */
2525
2526 void
2527 set_target_gdbarch (struct gdbarch *new_gdbarch)
2528 {
2529 gdb_assert (new_gdbarch != NULL);
2530 gdb_assert (new_gdbarch->initialized_p);
2531 current_inferior ()->gdbarch = new_gdbarch;
2532 gdb::observers::architecture_changed.notify (new_gdbarch);
2533 registers_changed ();
2534 }
2535
2536 /* Return the current inferior's arch. */
2537
2538 struct gdbarch *
2539 target_gdbarch (void)
2540 {
2541 return current_inferior ()->gdbarch;
2542 }
2543
2544 void _initialize_gdbarch ();
2545 void
2546 _initialize_gdbarch ()
2547 {
2548 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2549 Set architecture debugging."), _("\\
2550 Show architecture debugging."), _("\\
2551 When non-zero, architecture debugging is enabled."),
2552 NULL,
2553 show_gdbarch_debug,
2554 &setdebuglist, &showdebuglist);
2555 }
2556 EOF
2557
2558 # close things off
2559 exec 1>&2
2560 ../move-if-change new-gdbarch.c gdbarch.c
2561 rm -f new-gdbarch.c