* NEWS: Fix a typo. Mention hppa64-elf. Add binutils-2.11 marker.
[binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 # Copyright 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
5 #
6 # This file is part of GDB.
7 #
8 # This program is free software; you can redistribute it and/or modify
9 # it under the terms of the GNU General Public License as published by
10 # the Free Software Foundation; either version 2 of the License, or
11 # (at your option) any later version.
12 #
13 # This program is distributed in the hope that it will be useful,
14 # but WITHOUT ANY WARRANTY; without even the implied warranty of
15 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 # GNU General Public License for more details.
17 #
18 # You should have received a copy of the GNU General Public License
19 # along with this program; if not, write to the Free Software
20 # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21
22 compare_new ()
23 {
24 file=$1
25 if test ! -r ${file}
26 then
27 echo "${file} missing? cp new-${file} ${file}" 1>&2
28 elif diff -c ${file} new-${file}
29 then
30 echo "${file} unchanged" 1>&2
31 else
32 echo "${file} has changed? cp new-${file} ${file}" 1>&2
33 fi
34 }
35
36
37 # Format of the input table
38 read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
39
40 do_read ()
41 {
42 comment=""
43 class=""
44 while read line
45 do
46 if test "${line}" = ""
47 then
48 continue
49 elif test "${line}" = "#" -a "${comment}" = ""
50 then
51 continue
52 elif expr "${line}" : "#" > /dev/null
53 then
54 comment="${comment}
55 ${line}"
56 else
57
58 # The semantics of IFS varies between different SH's. Some
59 # treat ``::' as three fields while some treat it as just too.
60 # Work around this by eliminating ``::'' ....
61 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
62
63 OFS="${IFS}" ; IFS="[:]"
64 eval read ${read} <<EOF
65 ${line}
66 EOF
67 IFS="${OFS}"
68
69 # .... and then going back through each field and strip out those
70 # that ended up with just that space character.
71 for r in ${read}
72 do
73 if eval test \"\${${r}}\" = \"\ \"
74 then
75 eval ${r}=""
76 fi
77 done
78
79 test "${staticdefault}" || staticdefault=0
80 # NOT YET: Breaks BELIEVE_PCC_PROMOTION and confuses non-
81 # multi-arch defaults.
82 # test "${predefault}" || predefault=0
83 test "${fmt}" || fmt="%ld"
84 test "${print}" || print="(long) ${macro}"
85 case "${invalid_p}" in
86 0 ) valid_p=1 ;;
87 "" )
88 if [ -n "${predefault}" ]
89 then
90 #invalid_p="gdbarch->${function} == ${predefault}"
91 valid_p="gdbarch->${function} != ${predefault}"
92 else
93 #invalid_p="gdbarch->${function} == 0"
94 valid_p="gdbarch->${function} != 0"
95 fi
96 ;;
97 * ) valid_p="!(${invalid_p})"
98 esac
99
100 # PREDEFAULT is a valid fallback definition of MEMBER when
101 # multi-arch is not enabled. This ensures that the
102 # default value, when multi-arch is the same as the
103 # default value when not multi-arch. POSTDEFAULT is
104 # always a valid definition of MEMBER as this again
105 # ensures consistency.
106
107 if [ -n "${postdefault}" ]
108 then
109 fallbackdefault="${postdefault}"
110 elif [ -n "${predefault}" ]
111 then
112 fallbackdefault="${predefault}"
113 else
114 fallbackdefault=""
115 fi
116
117 #NOT YET: See gdbarch.log for basic verification of
118 # database
119
120 break
121 fi
122 done
123 if [ -n "${class}" ]
124 then
125 true
126 else
127 false
128 fi
129 }
130
131
132 fallback_default_p ()
133 {
134 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
135 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
136 }
137
138 class_is_variable_p ()
139 {
140 case "${class}" in
141 *v* | *V* ) true ;;
142 * ) false ;;
143 esac
144 }
145
146 class_is_function_p ()
147 {
148 case "${class}" in
149 *f* | *F* | *m* | *M* ) true ;;
150 * ) false ;;
151 esac
152 }
153
154 class_is_multiarch_p ()
155 {
156 case "${class}" in
157 *m* | *M* ) true ;;
158 * ) false ;;
159 esac
160 }
161
162 class_is_predicate_p ()
163 {
164 case "${class}" in
165 *F* | *V* | *M* ) true ;;
166 * ) false ;;
167 esac
168 }
169
170 class_is_info_p ()
171 {
172 case "${class}" in
173 *i* ) true ;;
174 * ) false ;;
175 esac
176 }
177
178
179 # dump out/verify the doco
180 for field in ${read}
181 do
182 case ${field} in
183
184 class ) : ;;
185
186 # # -> line disable
187 # f -> function
188 # hiding a function
189 # F -> function + predicate
190 # hiding a function + predicate to test function validity
191 # v -> variable
192 # hiding a variable
193 # V -> variable + predicate
194 # hiding a variable + predicate to test variables validity
195 # i -> set from info
196 # hiding something from the ``struct info'' object
197 # m -> multi-arch function
198 # hiding a multi-arch function (parameterised with the architecture)
199 # M -> multi-arch function + predicate
200 # hiding a multi-arch function + predicate to test function validity
201
202 level ) : ;;
203
204 # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
205 # LEVEL is a predicate on checking that a given method is
206 # initialized (using INVALID_P).
207
208 macro ) : ;;
209
210 # The name of the MACRO that this method is to be accessed by.
211
212 returntype ) : ;;
213
214 # For functions, the return type; for variables, the data type
215
216 function ) : ;;
217
218 # For functions, the member function name; for variables, the
219 # variable name. Member function names are always prefixed with
220 # ``gdbarch_'' for name-space purity.
221
222 formal ) : ;;
223
224 # The formal argument list. It is assumed that the formal
225 # argument list includes the actual name of each list element.
226 # A function with no arguments shall have ``void'' as the
227 # formal argument list.
228
229 actual ) : ;;
230
231 # The list of actual arguments. The arguments specified shall
232 # match the FORMAL list given above. Functions with out
233 # arguments leave this blank.
234
235 attrib ) : ;;
236
237 # Any GCC attributes that should be attached to the function
238 # declaration. At present this field is unused.
239
240 staticdefault ) : ;;
241
242 # To help with the GDB startup a static gdbarch object is
243 # created. STATICDEFAULT is the value to insert into that
244 # static gdbarch object. Since this a static object only
245 # simple expressions can be used.
246
247 # If STATICDEFAULT is empty, zero is used.
248
249 predefault ) : ;;
250
251 # A initial value to assign to MEMBER of the freshly
252 # malloc()ed gdbarch object. After the gdbarch object has
253 # been initialized using PREDEFAULT, it is passed to the
254 # target code for further updates.
255
256 # If PREDEFAULT is empty, zero is used.
257
258 # When POSTDEFAULT is empty, a non-empty PREDEFAULT and a zero
259 # INVALID_P will be used as default values when when
260 # multi-arch is disabled. Specify a zero PREDEFAULT function
261 # to make that fallback call internal_error().
262
263 # Variable declarations can refer to ``gdbarch'' which will
264 # contain the current architecture. Care should be taken.
265
266 postdefault ) : ;;
267
268 # A value to assign to MEMBER of the new gdbarch object should
269 # the target code fail to change the PREDEFAULT value. Also
270 # use POSTDEFAULT as the fallback value for the non-
271 # multi-arch case.
272
273 # If POSTDEFAULT is empty, no post update is performed.
274
275 # If both INVALID_P and POSTDEFAULT are non-empty then
276 # INVALID_P will be used to determine if MEMBER should be
277 # changed to POSTDEFAULT.
278
279 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
280
281 # Variable declarations can refer to ``gdbarch'' which will
282 # contain the current architecture. Care should be taken.
283
284 invalid_p ) : ;;
285
286 # A predicate equation that validates MEMBER. Non-zero is
287 # returned if the code creating the new architecture failed to
288 # initialize MEMBER or the initialized the member is invalid.
289 # If POSTDEFAULT is non-empty then MEMBER will be updated to
290 # that value. If POSTDEFAULT is empty then internal_error()
291 # is called.
292
293 # If INVALID_P is empty, a check that MEMBER is no longer
294 # equal to PREDEFAULT is used.
295
296 # The expression ``0'' disables the INVALID_P check making
297 # PREDEFAULT a legitimate value.
298
299 # See also PREDEFAULT and POSTDEFAULT.
300
301 fmt ) : ;;
302
303 # printf style format string that can be used to print out the
304 # MEMBER. Sometimes "%s" is useful. For functions, this is
305 # ignored and the function address is printed.
306
307 # If FMT is empty, ``%ld'' is used.
308
309 print ) : ;;
310
311 # An optional equation that casts MEMBER to a value suitable
312 # for formatting by FMT.
313
314 # If PRINT is empty, ``(long)'' is used.
315
316 print_p ) : ;;
317
318 # An optional indicator for any predicte to wrap around the
319 # print member code.
320
321 # () -> Call a custom function to do the dump.
322 # exp -> Wrap print up in ``if (${print_p}) ...
323 # ``'' -> No predicate
324
325 # If PRINT_P is empty, ``1'' is always used.
326
327 description ) : ;;
328
329 # Currently unused.
330
331 *) exit 1;;
332 esac
333 done
334
335
336 function_list ()
337 {
338 # See below (DOCO) for description of each field
339 cat <<EOF
340 i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
341 #
342 i:2:TARGET_BYTE_ORDER:int:byte_order::::BIG_ENDIAN
343 # Number of bits in a char or unsigned char for the target machine.
344 # Just like CHAR_BIT in <limits.h> but describes the target machine.
345 # v::TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
346 #
347 # Number of bits in a short or unsigned short for the target machine.
348 v::TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
349 # Number of bits in an int or unsigned int for the target machine.
350 v::TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
351 # Number of bits in a long or unsigned long for the target machine.
352 v::TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
353 # Number of bits in a long long or unsigned long long for the target
354 # machine.
355 v::TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
356 # Number of bits in a float for the target machine.
357 v::TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
358 # Number of bits in a double for the target machine.
359 v::TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
360 # Number of bits in a long double for the target machine.
361 v::TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):2*TARGET_DOUBLE_BIT::0
362 # For most targets, a pointer on the target and its representation as an
363 # address in GDB have the same size and "look the same". For such a
364 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
365 # / addr_bit will be set from it.
366 #
367 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
368 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
369 #
370 # ptr_bit is the size of a pointer on the target
371 v::TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
372 # addr_bit is the size of a target address as represented in gdb
373 v::TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
374 # Number of bits in a BFD_VMA for the target object file format.
375 v::TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
376 #
377 v::IEEE_FLOAT:int:ieee_float::::0:0::0:::
378 #
379 f::TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid::0:generic_target_read_pc::0
380 f::TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
381 f::TARGET_READ_FP:CORE_ADDR:read_fp:void:::0:generic_target_read_fp::0
382 f::TARGET_WRITE_FP:void:write_fp:CORE_ADDR val:val::0:generic_target_write_fp::0
383 f::TARGET_READ_SP:CORE_ADDR:read_sp:void:::0:generic_target_read_sp::0
384 f::TARGET_WRITE_SP:void:write_sp:CORE_ADDR val:val::0:generic_target_write_sp::0
385 #
386 M:::void:register_read:int regnum, char *buf:regnum, buf:
387 M:::void:register_write:int regnum, char *buf:regnum, buf:
388 #
389 v:2:NUM_REGS:int:num_regs::::0:-1
390 # This macro gives the number of pseudo-registers that live in the
391 # register namespace but do not get fetched or stored on the target.
392 # These pseudo-registers may be aliases for other registers,
393 # combinations of other registers, or they may be computed by GDB.
394 v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
395 v:2:SP_REGNUM:int:sp_regnum::::0:-1
396 v:2:FP_REGNUM:int:fp_regnum::::0:-1
397 v:2:PC_REGNUM:int:pc_regnum::::0:-1
398 v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
399 v:2:NPC_REGNUM:int:npc_regnum::::0:-1::0
400 v:2:NNPC_REGNUM:int:nnpc_regnum::::0:-1::0
401 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
402 f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
403 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
404 f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
405 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
406 f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
407 # Convert from an sdb register number to an internal gdb register number.
408 # This should be defined in tm.h, if REGISTER_NAMES is not set up
409 # to map one to one onto the sdb register numbers.
410 f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
411 f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
412 f:2:REGISTER_NAME:char *:register_name:int regnr:regnr:::legacy_register_name::0
413 v:2:REGISTER_SIZE:int:register_size::::0:-1
414 v:2:REGISTER_BYTES:int:register_bytes::::0:-1
415 f:2:REGISTER_BYTE:int:register_byte:int reg_nr:reg_nr::0:0
416 f:2:REGISTER_RAW_SIZE:int:register_raw_size:int reg_nr:reg_nr::0:0
417 v:2:MAX_REGISTER_RAW_SIZE:int:max_register_raw_size::::0:-1
418 f:2:REGISTER_VIRTUAL_SIZE:int:register_virtual_size:int reg_nr:reg_nr::0:0
419 v:2:MAX_REGISTER_VIRTUAL_SIZE:int:max_register_virtual_size::::0:-1
420 f:2:REGISTER_VIRTUAL_TYPE:struct type *:register_virtual_type:int reg_nr:reg_nr::0:0
421 f:2:DO_REGISTERS_INFO:void:do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs:::do_registers_info::0
422 # MAP a GDB RAW register number onto a simulator register number. See
423 # also include/...-sim.h.
424 f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::default_register_sim_regno::0
425 F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes::0:0
426 #
427 v:1:USE_GENERIC_DUMMY_FRAMES:int:use_generic_dummy_frames::::0:-1
428 v:2:CALL_DUMMY_LOCATION:int:call_dummy_location::::0:0
429 f:2:CALL_DUMMY_ADDRESS:CORE_ADDR:call_dummy_address:void:::0:0::gdbarch->call_dummy_location == AT_ENTRY_POINT && gdbarch->call_dummy_address == 0
430 v:2:CALL_DUMMY_START_OFFSET:CORE_ADDR:call_dummy_start_offset::::0:-1:::0x%08lx
431 v:2:CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:call_dummy_breakpoint_offset::::0:-1:::0x%08lx::CALL_DUMMY_BREAKPOINT_OFFSET_P
432 v:1:CALL_DUMMY_BREAKPOINT_OFFSET_P:int:call_dummy_breakpoint_offset_p::::0:-1
433 v:2:CALL_DUMMY_LENGTH:int:call_dummy_length::::0:-1:::::CALL_DUMMY_LOCATION == BEFORE_TEXT_END || CALL_DUMMY_LOCATION == AFTER_TEXT_END
434 f:2:PC_IN_CALL_DUMMY:int:pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::0:0
435 v:1:CALL_DUMMY_P:int:call_dummy_p::::0:-1
436 v:2:CALL_DUMMY_WORDS:LONGEST *:call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
437 v:2:SIZEOF_CALL_DUMMY_WORDS:int:sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0:0x%08lx
438 v:1:CALL_DUMMY_STACK_ADJUST_P:int:call_dummy_stack_adjust_p::::0:-1:::0x%08lx
439 v:2:CALL_DUMMY_STACK_ADJUST:int:call_dummy_stack_adjust::::0:::gdbarch->call_dummy_stack_adjust_p && gdbarch->call_dummy_stack_adjust == 0:0x%08lx::CALL_DUMMY_STACK_ADJUST_P
440 f:2:FIX_CALL_DUMMY:void:fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p:::0
441 #
442 v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
443 v:2:BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type:::::::
444 f:2:COERCE_FLOAT_TO_DOUBLE:int:coerce_float_to_double:struct type *formal, struct type *actual:formal, actual:::default_coerce_float_to_double::0
445 f:1:GET_SAVED_REGISTER:void:get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval::generic_get_saved_register:0
446 #
447 f:1:REGISTER_CONVERTIBLE:int:register_convertible:int nr:nr:::generic_register_convertible_not::0
448 f:2:REGISTER_CONVERT_TO_VIRTUAL:void:register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
449 f:2:REGISTER_CONVERT_TO_RAW:void:register_convert_to_raw:struct type *type, int regnum, char *from, char *to:type, regnum, from, to:::0::0
450 # This function is called when the value of a pseudo-register needs to
451 # be updated. Typically it will be defined on a per-architecture
452 # basis.
453 f:2:FETCH_PSEUDO_REGISTER:void:fetch_pseudo_register:int regnum:regnum:::0::0
454 # This function is called when the value of a pseudo-register needs to
455 # be set or stored. Typically it will be defined on a
456 # per-architecture basis.
457 f:2:STORE_PSEUDO_REGISTER:void:store_pseudo_register:int regnum:regnum:::0::0
458 #
459 f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, void *buf:type, buf:::unsigned_pointer_to_address::0
460 f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
461 #
462 f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
463 f:2:EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf::0:0
464 f:1:PUSH_ARGUMENTS:CORE_ADDR:push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr::0:0
465 f:2:PUSH_DUMMY_FRAME:void:push_dummy_frame:void:-:::0
466 f:1:PUSH_RETURN_ADDRESS:CORE_ADDR:push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp:::0
467 f:2:POP_FRAME:void:pop_frame:void:-:::0
468 #
469 # I wish that these would just go away....
470 f:2:D10V_MAKE_DADDR:CORE_ADDR:d10v_make_daddr:CORE_ADDR x:x:::0::0
471 f:2:D10V_MAKE_IADDR:CORE_ADDR:d10v_make_iaddr:CORE_ADDR x:x:::0::0
472 f:2:D10V_DADDR_P:int:d10v_daddr_p:CORE_ADDR x:x:::0::0
473 f:2:D10V_IADDR_P:int:d10v_iaddr_p:CORE_ADDR x:x:::0::0
474 f:2:D10V_CONVERT_DADDR_TO_RAW:CORE_ADDR:d10v_convert_daddr_to_raw:CORE_ADDR x:x:::0::0
475 f:2:D10V_CONVERT_IADDR_TO_RAW:CORE_ADDR:d10v_convert_iaddr_to_raw:CORE_ADDR x:x:::0::0
476 #
477 f:2:STORE_STRUCT_RETURN:void:store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp:::0
478 f:2:STORE_RETURN_VALUE:void:store_return_value:struct type *type, char *valbuf:type, valbuf:::0
479 f:2:EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:extract_struct_value_address:char *regbuf:regbuf:::0
480 f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::0
481 #
482 f:2:FRAME_INIT_SAVED_REGS:void:frame_init_saved_regs:struct frame_info *frame:frame::0:0
483 f:2:INIT_EXTRA_FRAME_INFO:void:init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame:::0
484 #
485 f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
486 f:2:PROLOGUE_FRAMELESS_P:int:prologue_frameless_p:CORE_ADDR ip:ip::0:generic_prologue_frameless_p::0
487 f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
488 f:2:BREAKPOINT_FROM_PC:unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::legacy_breakpoint_from_pc::0
489 f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
490 f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
491 v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:-1
492 f::PREPARE_TO_PROCEED:int:prepare_to_proceed:int select_it:select_it::0:default_prepare_to_proceed::0
493 v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:-1
494 #
495 f:2:REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
496 #
497 v:2:FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:-1
498 f:2:FRAMELESS_FUNCTION_INVOCATION:int:frameless_function_invocation:struct frame_info *fi:fi:::generic_frameless_function_invocation_not::0
499 f:2:FRAME_CHAIN:CORE_ADDR:frame_chain:struct frame_info *frame:frame::0:0
500 f:1:FRAME_CHAIN_VALID:int:frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe::0:0
501 f:2:FRAME_SAVED_PC:CORE_ADDR:frame_saved_pc:struct frame_info *fi:fi::0:0
502 f:2:FRAME_ARGS_ADDRESS:CORE_ADDR:frame_args_address:struct frame_info *fi:fi::0:0
503 f:2:FRAME_LOCALS_ADDRESS:CORE_ADDR:frame_locals_address:struct frame_info *fi:fi::0:0
504 f:2:SAVED_PC_AFTER_CALL:CORE_ADDR:saved_pc_after_call:struct frame_info *frame:frame::0:0
505 f:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame::0:0
506 #
507 F:2:STACK_ALIGN:CORE_ADDR:stack_align:CORE_ADDR sp:sp::0:0
508 v:1:EXTRA_STACK_ALIGNMENT_NEEDED:int:extra_stack_alignment_needed::::0:1::0:::
509 F:2:REG_STRUCT_HAS_ADDR:int:reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type::0:0
510 F:2:SAVE_DUMMY_FRAME_TOS:void:save_dummy_frame_tos:CORE_ADDR sp:sp::0:0
511 v:2:PARM_BOUNDARY:int:parm_boundary
512 #
513 v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (gdbarch)
514 v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (gdbarch)
515 v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::&floatformat_unknown
516 f:2:CONVERT_FROM_FUNC_PTR_ADDR:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr:addr:::default_convert_from_func_ptr_addr::0
517 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
518 # the target needs software single step. An ISA method to implement it.
519 #
520 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
521 # using the breakpoint system instead of blatting memory directly (as with rs6000).
522 #
523 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
524 # single step. If not, then implement single step using breakpoints.
525 F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p::0:0
526 EOF
527 }
528
529 #
530 # The .log file
531 #
532 exec > new-gdbarch.log
533 function_list | while do_read
534 do
535 cat <<EOF
536 ${class} ${macro}(${actual})
537 ${returntype} ${function} ($formal)${attrib}
538 EOF
539 for r in ${read}
540 do
541 eval echo \"\ \ \ \ ${r}=\${${r}}\"
542 done
543 # #fallbackdefault=${fallbackdefault}
544 # #valid_p=${valid_p}
545 #EOF
546 if class_is_predicate_p && fallback_default_p
547 then
548 echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
549 kill $$
550 exit 1
551 fi
552 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
553 then
554 echo "Error: postdefault is useless when invalid_p=0" 1>&2
555 kill $$
556 exit 1
557 fi
558 echo ""
559 done
560
561 exec 1>&2
562 compare_new gdbarch.log
563
564
565 copyright ()
566 {
567 cat <<EOF
568 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
569
570 /* Dynamic architecture support for GDB, the GNU debugger.
571 Copyright 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
572
573 This file is part of GDB.
574
575 This program is free software; you can redistribute it and/or modify
576 it under the terms of the GNU General Public License as published by
577 the Free Software Foundation; either version 2 of the License, or
578 (at your option) any later version.
579
580 This program is distributed in the hope that it will be useful,
581 but WITHOUT ANY WARRANTY; without even the implied warranty of
582 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
583 GNU General Public License for more details.
584
585 You should have received a copy of the GNU General Public License
586 along with this program; if not, write to the Free Software
587 Foundation, Inc., 59 Temple Place - Suite 330,
588 Boston, MA 02111-1307, USA. */
589
590 /* This file was created with the aid of \`\`gdbarch.sh''.
591
592 The Bourne shell script \`\`gdbarch.sh'' creates the files
593 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
594 against the existing \`\`gdbarch.[hc]''. Any differences found
595 being reported.
596
597 If editing this file, please also run gdbarch.sh and merge any
598 changes into that script. Conversely, when making sweeping changes
599 to this file, modifying gdbarch.sh and using its output may prove
600 easier. */
601
602 EOF
603 }
604
605 #
606 # The .h file
607 #
608
609 exec > new-gdbarch.h
610 copyright
611 cat <<EOF
612 #ifndef GDBARCH_H
613 #define GDBARCH_H
614
615 struct frame_info;
616 struct value;
617
618
619 extern struct gdbarch *current_gdbarch;
620
621
622 /* If any of the following are defined, the target wasn't correctly
623 converted. */
624
625 #if GDB_MULTI_ARCH
626 #if defined (EXTRA_FRAME_INFO)
627 #error "EXTRA_FRAME_INFO: replaced by struct frame_extra_info"
628 #endif
629 #endif
630
631 #if GDB_MULTI_ARCH
632 #if defined (FRAME_FIND_SAVED_REGS)
633 #error "FRAME_FIND_SAVED_REGS: replaced by FRAME_INIT_SAVED_REGS"
634 #endif
635 #endif
636 EOF
637
638 # function typedef's
639 printf "\n"
640 printf "\n"
641 printf "/* The following are pre-initialized by GDBARCH. */\n"
642 function_list | while do_read
643 do
644 if class_is_info_p
645 then
646 printf "\n"
647 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
648 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
649 printf "#if GDB_MULTI_ARCH\n"
650 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro})\n"
651 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
652 printf "#endif\n"
653 printf "#endif\n"
654 fi
655 done
656
657 # function typedef's
658 printf "\n"
659 printf "\n"
660 printf "/* The following are initialized by the target dependent code. */\n"
661 function_list | while do_read
662 do
663 if [ -n "${comment}" ]
664 then
665 echo "${comment}" | sed \
666 -e '2 s,#,/*,' \
667 -e '3,$ s,#, ,' \
668 -e '$ s,$, */,'
669 fi
670 if class_is_multiarch_p
671 then
672 if class_is_predicate_p
673 then
674 printf "\n"
675 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
676 fi
677 else
678 if class_is_predicate_p
679 then
680 printf "\n"
681 printf "#if defined (${macro})\n"
682 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
683 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
684 printf "#if !defined (${macro}_P)\n"
685 printf "#define ${macro}_P() (1)\n"
686 printf "#endif\n"
687 printf "#endif\n"
688 printf "\n"
689 printf "/* Default predicate for non- multi-arch targets. */\n"
690 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro}_P)\n"
691 printf "#define ${macro}_P() (0)\n"
692 printf "#endif\n"
693 printf "\n"
694 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
695 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro}_P)\n"
696 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
697 printf "#endif\n"
698 fi
699 fi
700 if class_is_variable_p
701 then
702 if fallback_default_p || class_is_predicate_p
703 then
704 printf "\n"
705 printf "/* Default (value) for non- multi-arch platforms. */\n"
706 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
707 echo "#define ${macro} (${fallbackdefault})" \
708 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
709 printf "#endif\n"
710 fi
711 printf "\n"
712 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
713 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
714 printf "#if GDB_MULTI_ARCH\n"
715 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro})\n"
716 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
717 printf "#endif\n"
718 printf "#endif\n"
719 fi
720 if class_is_function_p
721 then
722 if class_is_multiarch_p ; then :
723 elif fallback_default_p || class_is_predicate_p
724 then
725 printf "\n"
726 printf "/* Default (function) for non- multi-arch platforms. */\n"
727 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
728 if [ "x${fallbackdefault}" = "x0" ]
729 then
730 printf "#define ${macro}(${actual}) (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
731 else
732 # FIXME: Should be passing current_gdbarch through!
733 echo "#define ${macro}(${actual}) (${fallbackdefault} (${actual}))" \
734 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
735 fi
736 printf "#endif\n"
737 fi
738 printf "\n"
739 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
740 then
741 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
742 elif class_is_multiarch_p
743 then
744 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
745 else
746 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
747 fi
748 if [ "x${formal}" = "xvoid" ]
749 then
750 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
751 else
752 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
753 fi
754 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
755 if class_is_multiarch_p ; then :
756 else
757 printf "#if GDB_MULTI_ARCH\n"
758 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro})\n"
759 if [ "x${actual}" = "x" ]
760 then
761 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
762 elif [ "x${actual}" = "x-" ]
763 then
764 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
765 else
766 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
767 fi
768 printf "#endif\n"
769 printf "#endif\n"
770 fi
771 fi
772 done
773
774 # close it off
775 cat <<EOF
776
777 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
778
779
780 /* Mechanism for co-ordinating the selection of a specific
781 architecture.
782
783 GDB targets (*-tdep.c) can register an interest in a specific
784 architecture. Other GDB components can register a need to maintain
785 per-architecture data.
786
787 The mechanisms below ensures that there is only a loose connection
788 between the set-architecture command and the various GDB
789 components. Each component can independently register their need
790 to maintain architecture specific data with gdbarch.
791
792 Pragmatics:
793
794 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
795 didn't scale.
796
797 The more traditional mega-struct containing architecture specific
798 data for all the various GDB components was also considered. Since
799 GDB is built from a variable number of (fairly independent)
800 components it was determined that the global aproach was not
801 applicable. */
802
803
804 /* Register a new architectural family with GDB.
805
806 Register support for the specified ARCHITECTURE with GDB. When
807 gdbarch determines that the specified architecture has been
808 selected, the corresponding INIT function is called.
809
810 --
811
812 The INIT function takes two parameters: INFO which contains the
813 information available to gdbarch about the (possibly new)
814 architecture; ARCHES which is a list of the previously created
815 \`\`struct gdbarch'' for this architecture.
816
817 The INIT function parameter INFO shall, as far as possible, be
818 pre-initialized with information obtained from INFO.ABFD or
819 previously selected architecture (if similar). INIT shall ensure
820 that the INFO.BYTE_ORDER is non-zero.
821
822 The INIT function shall return any of: NULL - indicating that it
823 doesn't recognize the selected architecture; an existing \`\`struct
824 gdbarch'' from the ARCHES list - indicating that the new
825 architecture is just a synonym for an earlier architecture (see
826 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
827 - that describes the selected architecture (see gdbarch_alloc()).
828
829 The DUMP_TDEP function shall print out all target specific values.
830 Care should be taken to ensure that the function works in both the
831 multi-arch and non- multi-arch cases. */
832
833 struct gdbarch_list
834 {
835 struct gdbarch *gdbarch;
836 struct gdbarch_list *next;
837 };
838
839 struct gdbarch_info
840 {
841 /* Use default: NULL (ZERO). */
842 const struct bfd_arch_info *bfd_arch_info;
843
844 /* Use default: 0 (ZERO). */
845 int byte_order;
846
847 /* Use default: NULL (ZERO). */
848 bfd *abfd;
849
850 /* Use default: NULL (ZERO). */
851 struct gdbarch_tdep_info *tdep_info;
852 };
853
854 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
855 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
856
857 /* DEPRECATED - use gdbarch_register() */
858 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
859
860 extern void gdbarch_register (enum bfd_architecture architecture,
861 gdbarch_init_ftype *,
862 gdbarch_dump_tdep_ftype *);
863
864
865 /* Return a freshly allocated, NULL terminated, array of the valid
866 architecture names. Since architectures are registered during the
867 _initialize phase this function only returns useful information
868 once initialization has been completed. */
869
870 extern const char **gdbarch_printable_names (void);
871
872
873 /* Helper function. Search the list of ARCHES for a GDBARCH that
874 matches the information provided by INFO. */
875
876 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
877
878
879 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
880 basic initialization using values obtained from the INFO andTDEP
881 parameters. set_gdbarch_*() functions are called to complete the
882 initialization of the object. */
883
884 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
885
886
887 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
888 It is assumed that the caller freeds the \`\`struct
889 gdbarch_tdep''. */
890
891 extern void gdbarch_free (struct gdbarch *);
892
893
894 /* Helper function. Force an update of the current architecture.
895
896 The actual architecture selected is determined by INFO, \`\`(gdb) set
897 architecture'' et.al., the existing architecture and BFD's default
898 architecture. INFO should be initialized to zero and then selected
899 fields should be updated.
900
901 Returns non-zero if the update succeeds */
902
903 extern int gdbarch_update_p (struct gdbarch_info info);
904
905
906
907 /* Register per-architecture data-pointer.
908
909 Reserve space for a per-architecture data-pointer. An identifier
910 for the reserved data-pointer is returned. That identifer should
911 be saved in a local static variable.
912
913 The per-architecture data-pointer can be initialized in one of two
914 ways: The value can be set explicitly using a call to
915 set_gdbarch_data(); the value can be set implicitly using the value
916 returned by a non-NULL INIT() callback. INIT(), when non-NULL is
917 called after the basic architecture vector has been created.
918
919 When a previously created architecture is re-selected, the
920 per-architecture data-pointer for that previous architecture is
921 restored. INIT() is not called.
922
923 During initialization, multiple assignments of the data-pointer are
924 allowed, non-NULL values are deleted by calling FREE(). If the
925 architecture is deleted using gdbarch_free() all non-NULL data
926 pointers are also deleted using FREE().
927
928 Multiple registrarants for any architecture are allowed (and
929 strongly encouraged). */
930
931 struct gdbarch_data;
932
933 typedef void *(gdbarch_data_init_ftype) (struct gdbarch *gdbarch);
934 typedef void (gdbarch_data_free_ftype) (struct gdbarch *gdbarch,
935 void *pointer);
936 extern struct gdbarch_data *register_gdbarch_data (gdbarch_data_init_ftype *init,
937 gdbarch_data_free_ftype *free);
938 extern void set_gdbarch_data (struct gdbarch *gdbarch,
939 struct gdbarch_data *data,
940 void *pointer);
941
942 extern void *gdbarch_data (struct gdbarch_data*);
943
944
945 /* Register per-architecture memory region.
946
947 Provide a memory-region swap mechanism. Per-architecture memory
948 region are created. These memory regions are swapped whenever the
949 architecture is changed. For a new architecture, the memory region
950 is initialized with zero (0) and the INIT function is called.
951
952 Memory regions are swapped / initialized in the order that they are
953 registered. NULL DATA and/or INIT values can be specified.
954
955 New code should use register_gdbarch_data(). */
956
957 typedef void (gdbarch_swap_ftype) (void);
958 extern void register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
959 #define REGISTER_GDBARCH_SWAP(VAR) register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
960
961
962
963 /* The target-system-dependent byte order is dynamic */
964
965 /* TARGET_BYTE_ORDER_SELECTABLE_P determines if the target endianness
966 is selectable at runtime. The user can use the \`\`set endian''
967 command to change it. TARGET_BYTE_ORDER_AUTO is nonzero when
968 target_byte_order should be auto-detected (from the program image
969 say). */
970
971 #if GDB_MULTI_ARCH
972 /* Multi-arch GDB is always bi-endian. */
973 #define TARGET_BYTE_ORDER_SELECTABLE_P 1
974 #endif
975
976 #ifndef TARGET_BYTE_ORDER_SELECTABLE_P
977 /* compat - Catch old targets that define TARGET_BYTE_ORDER_SLECTABLE
978 when they should have defined TARGET_BYTE_ORDER_SELECTABLE_P 1 */
979 #ifdef TARGET_BYTE_ORDER_SELECTABLE
980 #define TARGET_BYTE_ORDER_SELECTABLE_P 1
981 #else
982 #define TARGET_BYTE_ORDER_SELECTABLE_P 0
983 #endif
984 #endif
985
986 extern int target_byte_order;
987 #ifdef TARGET_BYTE_ORDER_SELECTABLE
988 /* compat - Catch old targets that define TARGET_BYTE_ORDER_SELECTABLE
989 and expect defs.h to re-define TARGET_BYTE_ORDER. */
990 #undef TARGET_BYTE_ORDER
991 #endif
992 #ifndef TARGET_BYTE_ORDER
993 #define TARGET_BYTE_ORDER (target_byte_order + 0)
994 #endif
995
996 extern int target_byte_order_auto;
997 #ifndef TARGET_BYTE_ORDER_AUTO
998 #define TARGET_BYTE_ORDER_AUTO (target_byte_order_auto + 0)
999 #endif
1000
1001
1002
1003 /* The target-system-dependent BFD architecture is dynamic */
1004
1005 extern int target_architecture_auto;
1006 #ifndef TARGET_ARCHITECTURE_AUTO
1007 #define TARGET_ARCHITECTURE_AUTO (target_architecture_auto + 0)
1008 #endif
1009
1010 extern const struct bfd_arch_info *target_architecture;
1011 #ifndef TARGET_ARCHITECTURE
1012 #define TARGET_ARCHITECTURE (target_architecture + 0)
1013 #endif
1014
1015
1016 /* The target-system-dependent disassembler is semi-dynamic */
1017
1018 #include "dis-asm.h" /* Get defs for disassemble_info */
1019
1020 extern int dis_asm_read_memory (bfd_vma memaddr, bfd_byte *myaddr,
1021 unsigned int len, disassemble_info *info);
1022
1023 extern void dis_asm_memory_error (int status, bfd_vma memaddr,
1024 disassemble_info *info);
1025
1026 extern void dis_asm_print_address (bfd_vma addr,
1027 disassemble_info *info);
1028
1029 extern int (*tm_print_insn) (bfd_vma, disassemble_info*);
1030 extern disassemble_info tm_print_insn_info;
1031 #ifndef TARGET_PRINT_INSN
1032 #define TARGET_PRINT_INSN(vma, info) (*tm_print_insn) (vma, info)
1033 #endif
1034 #ifndef TARGET_PRINT_INSN_INFO
1035 #define TARGET_PRINT_INSN_INFO (&tm_print_insn_info)
1036 #endif
1037
1038
1039
1040 /* Explicit test for D10V architecture.
1041 USE of these macro's is *STRONGLY* discouraged. */
1042
1043 #define GDB_TARGET_IS_D10V (TARGET_ARCHITECTURE->arch == bfd_arch_d10v)
1044
1045
1046 /* Fallback definition for EXTRACT_STRUCT_VALUE_ADDRESS */
1047 #ifndef EXTRACT_STRUCT_VALUE_ADDRESS
1048 #define EXTRACT_STRUCT_VALUE_ADDRESS_P (0)
1049 #define EXTRACT_STRUCT_VALUE_ADDRESS(X) (internal_error (__FILE__, __LINE__, "gdbarch: EXTRACT_STRUCT_VALUE_ADDRESS"), 0)
1050 #else
1051 #ifndef EXTRACT_STRUCT_VALUE_ADDRESS_P
1052 #define EXTRACT_STRUCT_VALUE_ADDRESS_P (1)
1053 #endif
1054 #endif
1055
1056
1057 /* Set the dynamic target-system-dependent parameters (architecture,
1058 byte-order, ...) using information found in the BFD */
1059
1060 extern void set_gdbarch_from_file (bfd *);
1061
1062
1063 /* Initialize the current architecture to the "first" one we find on
1064 our list. */
1065
1066 extern void initialize_current_architecture (void);
1067
1068 /* For non-multiarched targets, do any initialization of the default
1069 gdbarch object necessary after the _initialize_MODULE functions
1070 have run. */
1071 extern void initialize_non_multiarch ();
1072
1073 /* gdbarch trace variable */
1074 extern int gdbarch_debug;
1075
1076 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1077
1078 #endif
1079 EOF
1080 exec 1>&2
1081 #../move-if-change new-gdbarch.h gdbarch.h
1082 compare_new gdbarch.h
1083
1084
1085 #
1086 # C file
1087 #
1088
1089 exec > new-gdbarch.c
1090 copyright
1091 cat <<EOF
1092
1093 #include "defs.h"
1094 #include "arch-utils.h"
1095
1096 #if GDB_MULTI_ARCH
1097 #include "gdbcmd.h"
1098 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1099 #else
1100 /* Just include everything in sight so that the every old definition
1101 of macro is visible. */
1102 #include "gdb_string.h"
1103 #include <ctype.h>
1104 #include "symtab.h"
1105 #include "frame.h"
1106 #include "inferior.h"
1107 #include "breakpoint.h"
1108 #include "gdb_wait.h"
1109 #include "gdbcore.h"
1110 #include "gdbcmd.h"
1111 #include "target.h"
1112 #include "gdbthread.h"
1113 #include "annotate.h"
1114 #include "symfile.h" /* for overlay functions */
1115 #endif
1116 #include "symcat.h"
1117
1118 #include "floatformat.h"
1119
1120 #include "gdb_assert.h"
1121
1122 /* Static function declarations */
1123
1124 static void verify_gdbarch (struct gdbarch *gdbarch);
1125 static void alloc_gdbarch_data (struct gdbarch *);
1126 static void init_gdbarch_data (struct gdbarch *);
1127 static void free_gdbarch_data (struct gdbarch *);
1128 static void init_gdbarch_swap (struct gdbarch *);
1129 static void swapout_gdbarch_swap (struct gdbarch *);
1130 static void swapin_gdbarch_swap (struct gdbarch *);
1131
1132 /* Convenience macro for allocting typesafe memory. */
1133
1134 #ifndef XMALLOC
1135 #define XMALLOC(TYPE) (TYPE*) xmalloc (sizeof (TYPE))
1136 #endif
1137
1138
1139 /* Non-zero if we want to trace architecture code. */
1140
1141 #ifndef GDBARCH_DEBUG
1142 #define GDBARCH_DEBUG 0
1143 #endif
1144 int gdbarch_debug = GDBARCH_DEBUG;
1145
1146 EOF
1147
1148 # gdbarch open the gdbarch object
1149 printf "\n"
1150 printf "/* Maintain the struct gdbarch object */\n"
1151 printf "\n"
1152 printf "struct gdbarch\n"
1153 printf "{\n"
1154 printf " /* basic architectural information */\n"
1155 function_list | while do_read
1156 do
1157 if class_is_info_p
1158 then
1159 printf " ${returntype} ${function};\n"
1160 fi
1161 done
1162 printf "\n"
1163 printf " /* target specific vector. */\n"
1164 printf " struct gdbarch_tdep *tdep;\n"
1165 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1166 printf "\n"
1167 printf " /* per-architecture data-pointers */\n"
1168 printf " unsigned nr_data;\n"
1169 printf " void **data;\n"
1170 printf "\n"
1171 printf " /* per-architecture swap-regions */\n"
1172 printf " struct gdbarch_swap *swap;\n"
1173 printf "\n"
1174 cat <<EOF
1175 /* Multi-arch values.
1176
1177 When extending this structure you must:
1178
1179 Add the field below.
1180
1181 Declare set/get functions and define the corresponding
1182 macro in gdbarch.h.
1183
1184 gdbarch_alloc(): If zero/NULL is not a suitable default,
1185 initialize the new field.
1186
1187 verify_gdbarch(): Confirm that the target updated the field
1188 correctly.
1189
1190 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1191 field is dumped out
1192
1193 \`\`startup_gdbarch()'': Append an initial value to the static
1194 variable (base values on the host's c-type system).
1195
1196 get_gdbarch(): Implement the set/get functions (probably using
1197 the macro's as shortcuts).
1198
1199 */
1200
1201 EOF
1202 function_list | while do_read
1203 do
1204 if class_is_variable_p
1205 then
1206 printf " ${returntype} ${function};\n"
1207 elif class_is_function_p
1208 then
1209 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
1210 fi
1211 done
1212 printf "};\n"
1213
1214 # A pre-initialized vector
1215 printf "\n"
1216 printf "\n"
1217 cat <<EOF
1218 /* The default architecture uses host values (for want of a better
1219 choice). */
1220 EOF
1221 printf "\n"
1222 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1223 printf "\n"
1224 printf "struct gdbarch startup_gdbarch =\n"
1225 printf "{\n"
1226 printf " /* basic architecture information */\n"
1227 function_list | while do_read
1228 do
1229 if class_is_info_p
1230 then
1231 printf " ${staticdefault},\n"
1232 fi
1233 done
1234 cat <<EOF
1235 /* target specific vector and its dump routine */
1236 NULL, NULL,
1237 /*per-architecture data-pointers and swap regions */
1238 0, NULL, NULL,
1239 /* Multi-arch values */
1240 EOF
1241 function_list | while do_read
1242 do
1243 if class_is_function_p || class_is_variable_p
1244 then
1245 printf " ${staticdefault},\n"
1246 fi
1247 done
1248 cat <<EOF
1249 /* startup_gdbarch() */
1250 };
1251
1252 struct gdbarch *current_gdbarch = &startup_gdbarch;
1253
1254 /* Do any initialization needed for a non-multiarch configuration
1255 after the _initialize_MODULE functions have been run. */
1256 void
1257 initialize_non_multiarch ()
1258 {
1259 alloc_gdbarch_data (&startup_gdbarch);
1260 init_gdbarch_data (&startup_gdbarch);
1261 }
1262 EOF
1263
1264 # Create a new gdbarch struct
1265 printf "\n"
1266 printf "\n"
1267 cat <<EOF
1268 /* Create a new \`\`struct gdbarch'' based on information provided by
1269 \`\`struct gdbarch_info''. */
1270 EOF
1271 printf "\n"
1272 cat <<EOF
1273 struct gdbarch *
1274 gdbarch_alloc (const struct gdbarch_info *info,
1275 struct gdbarch_tdep *tdep)
1276 {
1277 struct gdbarch *gdbarch = XMALLOC (struct gdbarch);
1278 memset (gdbarch, 0, sizeof (*gdbarch));
1279
1280 alloc_gdbarch_data (gdbarch);
1281
1282 gdbarch->tdep = tdep;
1283 EOF
1284 printf "\n"
1285 function_list | while do_read
1286 do
1287 if class_is_info_p
1288 then
1289 printf " gdbarch->${function} = info->${function};\n"
1290 fi
1291 done
1292 printf "\n"
1293 printf " /* Force the explicit initialization of these. */\n"
1294 function_list | while do_read
1295 do
1296 if class_is_function_p || class_is_variable_p
1297 then
1298 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1299 then
1300 printf " gdbarch->${function} = ${predefault};\n"
1301 fi
1302 fi
1303 done
1304 cat <<EOF
1305 /* gdbarch_alloc() */
1306
1307 return gdbarch;
1308 }
1309 EOF
1310
1311 # Free a gdbarch struct.
1312 printf "\n"
1313 printf "\n"
1314 cat <<EOF
1315 /* Free a gdbarch struct. This should never happen in normal
1316 operation --- once you've created a gdbarch, you keep it around.
1317 However, if an architecture's init function encounters an error
1318 building the structure, it may need to clean up a partially
1319 constructed gdbarch. */
1320
1321 void
1322 gdbarch_free (struct gdbarch *arch)
1323 {
1324 gdb_assert (arch != NULL);
1325 free_gdbarch_data (arch);
1326 xfree (arch);
1327 }
1328 EOF
1329
1330 # verify a new architecture
1331 printf "\n"
1332 printf "\n"
1333 printf "/* Ensure that all values in a GDBARCH are reasonable. */\n"
1334 printf "\n"
1335 cat <<EOF
1336 static void
1337 verify_gdbarch (struct gdbarch *gdbarch)
1338 {
1339 /* Only perform sanity checks on a multi-arch target. */
1340 if (!GDB_MULTI_ARCH)
1341 return;
1342 /* fundamental */
1343 if (gdbarch->byte_order == 0)
1344 internal_error (__FILE__, __LINE__,
1345 "verify_gdbarch: byte-order unset");
1346 if (gdbarch->bfd_arch_info == NULL)
1347 internal_error (__FILE__, __LINE__,
1348 "verify_gdbarch: bfd_arch_info unset");
1349 /* Check those that need to be defined for the given multi-arch level. */
1350 EOF
1351 function_list | while do_read
1352 do
1353 if class_is_function_p || class_is_variable_p
1354 then
1355 if [ "x${invalid_p}" = "x0" ]
1356 then
1357 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1358 elif class_is_predicate_p
1359 then
1360 printf " /* Skip verify of ${function}, has predicate */\n"
1361 # FIXME: See do_read for potential simplification
1362 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1363 then
1364 printf " if (${invalid_p})\n"
1365 printf " gdbarch->${function} = ${postdefault};\n"
1366 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1367 then
1368 printf " if (gdbarch->${function} == ${predefault})\n"
1369 printf " gdbarch->${function} = ${postdefault};\n"
1370 elif [ -n "${postdefault}" ]
1371 then
1372 printf " if (gdbarch->${function} == 0)\n"
1373 printf " gdbarch->${function} = ${postdefault};\n"
1374 elif [ -n "${invalid_p}" ]
1375 then
1376 printf " if ((GDB_MULTI_ARCH >= ${level})\n"
1377 printf " && (${invalid_p}))\n"
1378 printf " internal_error (__FILE__, __LINE__,\n"
1379 printf " \"gdbarch: verify_gdbarch: ${function} invalid\");\n"
1380 elif [ -n "${predefault}" ]
1381 then
1382 printf " if ((GDB_MULTI_ARCH >= ${level})\n"
1383 printf " && (gdbarch->${function} == ${predefault}))\n"
1384 printf " internal_error (__FILE__, __LINE__,\n"
1385 printf " \"gdbarch: verify_gdbarch: ${function} invalid\");\n"
1386 fi
1387 fi
1388 done
1389 cat <<EOF
1390 }
1391 EOF
1392
1393 # dump the structure
1394 printf "\n"
1395 printf "\n"
1396 cat <<EOF
1397 /* Print out the details of the current architecture. */
1398
1399 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1400 just happens to match the global variable \`\`current_gdbarch''. That
1401 way macros refering to that variable get the local and not the global
1402 version - ulgh. Once everything is parameterised with gdbarch, this
1403 will go away. */
1404
1405 void
1406 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1407 {
1408 fprintf_unfiltered (file,
1409 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1410 GDB_MULTI_ARCH);
1411 EOF
1412 function_list | while do_read
1413 do
1414 # multiarch functions don't have macros.
1415 class_is_multiarch_p && continue
1416 if [ "x${returntype}" = "xvoid" ]
1417 then
1418 printf "#if defined (${macro}) && GDB_MULTI_ARCH\n"
1419 printf " /* Macro might contain \`[{}]' when not multi-arch */\n"
1420 else
1421 printf "#ifdef ${macro}\n"
1422 fi
1423 if class_is_function_p
1424 then
1425 printf " fprintf_unfiltered (file,\n"
1426 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1427 printf " \"${macro}(${actual})\",\n"
1428 printf " XSTRING (${macro} (${actual})));\n"
1429 else
1430 printf " fprintf_unfiltered (file,\n"
1431 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1432 printf " XSTRING (${macro}));\n"
1433 fi
1434 printf "#endif\n"
1435 done
1436 function_list | while do_read
1437 do
1438 if class_is_multiarch_p
1439 then
1440 printf " if (GDB_MULTI_ARCH)\n"
1441 printf " fprintf_unfiltered (file,\n"
1442 printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1443 printf " (long) current_gdbarch->${function});\n"
1444 continue
1445 fi
1446 printf "#ifdef ${macro}\n"
1447 if [ "x${print_p}" = "x()" ]
1448 then
1449 printf " gdbarch_dump_${function} (current_gdbarch);\n"
1450 elif [ "x${print_p}" = "x0" ]
1451 then
1452 printf " /* skip print of ${macro}, print_p == 0. */\n"
1453 elif [ -n "${print_p}" ]
1454 then
1455 printf " if (${print_p})\n"
1456 printf " fprintf_unfiltered (file,\n"
1457 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1458 printf " ${print});\n"
1459 elif class_is_function_p
1460 then
1461 printf " if (GDB_MULTI_ARCH)\n"
1462 printf " fprintf_unfiltered (file,\n"
1463 printf " \"gdbarch_dump: ${macro} = 0x%%08lx\\\\n\",\n"
1464 printf " (long) current_gdbarch->${function}\n"
1465 printf " /*${macro} ()*/);\n"
1466 else
1467 printf " fprintf_unfiltered (file,\n"
1468 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1469 printf " ${print});\n"
1470 fi
1471 printf "#endif\n"
1472 done
1473 cat <<EOF
1474 if (current_gdbarch->dump_tdep != NULL)
1475 current_gdbarch->dump_tdep (current_gdbarch, file);
1476 }
1477 EOF
1478
1479
1480 # GET/SET
1481 printf "\n"
1482 cat <<EOF
1483 struct gdbarch_tdep *
1484 gdbarch_tdep (struct gdbarch *gdbarch)
1485 {
1486 if (gdbarch_debug >= 2)
1487 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1488 return gdbarch->tdep;
1489 }
1490 EOF
1491 printf "\n"
1492 function_list | while do_read
1493 do
1494 if class_is_predicate_p
1495 then
1496 printf "\n"
1497 printf "int\n"
1498 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1499 printf "{\n"
1500 if [ -n "${valid_p}" ]
1501 then
1502 printf " return ${valid_p};\n"
1503 else
1504 printf "#error \"gdbarch_${function}_p: not defined\"\n"
1505 fi
1506 printf "}\n"
1507 fi
1508 if class_is_function_p
1509 then
1510 printf "\n"
1511 printf "${returntype}\n"
1512 if [ "x${formal}" = "xvoid" ]
1513 then
1514 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1515 else
1516 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1517 fi
1518 printf "{\n"
1519 printf " if (gdbarch->${function} == 0)\n"
1520 printf " internal_error (__FILE__, __LINE__,\n"
1521 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1522 printf " if (gdbarch_debug >= 2)\n"
1523 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1524 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1525 then
1526 if class_is_multiarch_p
1527 then
1528 params="gdbarch"
1529 else
1530 params=""
1531 fi
1532 else
1533 if class_is_multiarch_p
1534 then
1535 params="gdbarch, ${actual}"
1536 else
1537 params="${actual}"
1538 fi
1539 fi
1540 if [ "x${returntype}" = "xvoid" ]
1541 then
1542 printf " gdbarch->${function} (${params});\n"
1543 else
1544 printf " return gdbarch->${function} (${params});\n"
1545 fi
1546 printf "}\n"
1547 printf "\n"
1548 printf "void\n"
1549 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1550 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1551 printf "{\n"
1552 printf " gdbarch->${function} = ${function};\n"
1553 printf "}\n"
1554 elif class_is_variable_p
1555 then
1556 printf "\n"
1557 printf "${returntype}\n"
1558 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1559 printf "{\n"
1560 if [ "x${invalid_p}" = "x0" ]
1561 then
1562 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1563 elif [ -n "${invalid_p}" ]
1564 then
1565 printf " if (${invalid_p})\n"
1566 printf " internal_error (__FILE__, __LINE__,\n"
1567 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1568 elif [ -n "${predefault}" ]
1569 then
1570 printf " if (gdbarch->${function} == ${predefault})\n"
1571 printf " internal_error (__FILE__, __LINE__,\n"
1572 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1573 fi
1574 printf " if (gdbarch_debug >= 2)\n"
1575 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1576 printf " return gdbarch->${function};\n"
1577 printf "}\n"
1578 printf "\n"
1579 printf "void\n"
1580 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1581 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1582 printf "{\n"
1583 printf " gdbarch->${function} = ${function};\n"
1584 printf "}\n"
1585 elif class_is_info_p
1586 then
1587 printf "\n"
1588 printf "${returntype}\n"
1589 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1590 printf "{\n"
1591 printf " if (gdbarch_debug >= 2)\n"
1592 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1593 printf " return gdbarch->${function};\n"
1594 printf "}\n"
1595 fi
1596 done
1597
1598 # All the trailing guff
1599 cat <<EOF
1600
1601
1602 /* Keep a registry of per-architecture data-pointers required by GDB
1603 modules. */
1604
1605 struct gdbarch_data
1606 {
1607 unsigned index;
1608 gdbarch_data_init_ftype *init;
1609 gdbarch_data_free_ftype *free;
1610 };
1611
1612 struct gdbarch_data_registration
1613 {
1614 struct gdbarch_data *data;
1615 struct gdbarch_data_registration *next;
1616 };
1617
1618 struct gdbarch_data_registry
1619 {
1620 unsigned nr;
1621 struct gdbarch_data_registration *registrations;
1622 };
1623
1624 struct gdbarch_data_registry gdbarch_data_registry =
1625 {
1626 0, NULL,
1627 };
1628
1629 struct gdbarch_data *
1630 register_gdbarch_data (gdbarch_data_init_ftype *init,
1631 gdbarch_data_free_ftype *free)
1632 {
1633 struct gdbarch_data_registration **curr;
1634 for (curr = &gdbarch_data_registry.registrations;
1635 (*curr) != NULL;
1636 curr = &(*curr)->next);
1637 (*curr) = XMALLOC (struct gdbarch_data_registration);
1638 (*curr)->next = NULL;
1639 (*curr)->data = XMALLOC (struct gdbarch_data);
1640 (*curr)->data->index = gdbarch_data_registry.nr++;
1641 (*curr)->data->init = init;
1642 (*curr)->data->free = free;
1643 return (*curr)->data;
1644 }
1645
1646
1647 /* Walk through all the registered users initializing each in turn. */
1648
1649 static void
1650 init_gdbarch_data (struct gdbarch *gdbarch)
1651 {
1652 struct gdbarch_data_registration *rego;
1653 for (rego = gdbarch_data_registry.registrations;
1654 rego != NULL;
1655 rego = rego->next)
1656 {
1657 struct gdbarch_data *data = rego->data;
1658 gdb_assert (data->index < gdbarch->nr_data);
1659 if (data->init != NULL)
1660 {
1661 void *pointer = data->init (gdbarch);
1662 set_gdbarch_data (gdbarch, data, pointer);
1663 }
1664 }
1665 }
1666
1667 /* Create/delete the gdbarch data vector. */
1668
1669 static void
1670 alloc_gdbarch_data (struct gdbarch *gdbarch)
1671 {
1672 gdb_assert (gdbarch->data == NULL);
1673 gdbarch->nr_data = gdbarch_data_registry.nr;
1674 gdbarch->data = xcalloc (gdbarch->nr_data, sizeof (void*));
1675 }
1676
1677 static void
1678 free_gdbarch_data (struct gdbarch *gdbarch)
1679 {
1680 struct gdbarch_data_registration *rego;
1681 gdb_assert (gdbarch->data != NULL);
1682 for (rego = gdbarch_data_registry.registrations;
1683 rego != NULL;
1684 rego = rego->next)
1685 {
1686 struct gdbarch_data *data = rego->data;
1687 gdb_assert (data->index < gdbarch->nr_data);
1688 if (data->free != NULL && gdbarch->data[data->index] != NULL)
1689 {
1690 data->free (gdbarch, gdbarch->data[data->index]);
1691 gdbarch->data[data->index] = NULL;
1692 }
1693 }
1694 xfree (gdbarch->data);
1695 gdbarch->data = NULL;
1696 }
1697
1698
1699 /* Initialize the current value of thee specified per-architecture
1700 data-pointer. */
1701
1702 void
1703 set_gdbarch_data (struct gdbarch *gdbarch,
1704 struct gdbarch_data *data,
1705 void *pointer)
1706 {
1707 gdb_assert (data->index < gdbarch->nr_data);
1708 if (data->free != NULL && gdbarch->data[data->index] != NULL)
1709 data->free (gdbarch, gdbarch->data[data->index]);
1710 gdbarch->data[data->index] = pointer;
1711 }
1712
1713 /* Return the current value of the specified per-architecture
1714 data-pointer. */
1715
1716 void *
1717 gdbarch_data (struct gdbarch_data *data)
1718 {
1719 gdb_assert (data->index < current_gdbarch->nr_data);
1720 return current_gdbarch->data[data->index];
1721 }
1722
1723
1724
1725 /* Keep a registry of swapped data required by GDB modules. */
1726
1727 struct gdbarch_swap
1728 {
1729 void *swap;
1730 struct gdbarch_swap_registration *source;
1731 struct gdbarch_swap *next;
1732 };
1733
1734 struct gdbarch_swap_registration
1735 {
1736 void *data;
1737 unsigned long sizeof_data;
1738 gdbarch_swap_ftype *init;
1739 struct gdbarch_swap_registration *next;
1740 };
1741
1742 struct gdbarch_swap_registry
1743 {
1744 int nr;
1745 struct gdbarch_swap_registration *registrations;
1746 };
1747
1748 struct gdbarch_swap_registry gdbarch_swap_registry =
1749 {
1750 0, NULL,
1751 };
1752
1753 void
1754 register_gdbarch_swap (void *data,
1755 unsigned long sizeof_data,
1756 gdbarch_swap_ftype *init)
1757 {
1758 struct gdbarch_swap_registration **rego;
1759 for (rego = &gdbarch_swap_registry.registrations;
1760 (*rego) != NULL;
1761 rego = &(*rego)->next);
1762 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1763 (*rego)->next = NULL;
1764 (*rego)->init = init;
1765 (*rego)->data = data;
1766 (*rego)->sizeof_data = sizeof_data;
1767 }
1768
1769
1770 static void
1771 init_gdbarch_swap (struct gdbarch *gdbarch)
1772 {
1773 struct gdbarch_swap_registration *rego;
1774 struct gdbarch_swap **curr = &gdbarch->swap;
1775 for (rego = gdbarch_swap_registry.registrations;
1776 rego != NULL;
1777 rego = rego->next)
1778 {
1779 if (rego->data != NULL)
1780 {
1781 (*curr) = XMALLOC (struct gdbarch_swap);
1782 (*curr)->source = rego;
1783 (*curr)->swap = xmalloc (rego->sizeof_data);
1784 (*curr)->next = NULL;
1785 memset (rego->data, 0, rego->sizeof_data);
1786 curr = &(*curr)->next;
1787 }
1788 if (rego->init != NULL)
1789 rego->init ();
1790 }
1791 }
1792
1793 static void
1794 swapout_gdbarch_swap (struct gdbarch *gdbarch)
1795 {
1796 struct gdbarch_swap *curr;
1797 for (curr = gdbarch->swap;
1798 curr != NULL;
1799 curr = curr->next)
1800 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1801 }
1802
1803 static void
1804 swapin_gdbarch_swap (struct gdbarch *gdbarch)
1805 {
1806 struct gdbarch_swap *curr;
1807 for (curr = gdbarch->swap;
1808 curr != NULL;
1809 curr = curr->next)
1810 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
1811 }
1812
1813
1814 /* Keep a registry of the architectures known by GDB. */
1815
1816 struct gdbarch_registration
1817 {
1818 enum bfd_architecture bfd_architecture;
1819 gdbarch_init_ftype *init;
1820 gdbarch_dump_tdep_ftype *dump_tdep;
1821 struct gdbarch_list *arches;
1822 struct gdbarch_registration *next;
1823 };
1824
1825 static struct gdbarch_registration *gdbarch_registry = NULL;
1826
1827 static void
1828 append_name (const char ***buf, int *nr, const char *name)
1829 {
1830 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1831 (*buf)[*nr] = name;
1832 *nr += 1;
1833 }
1834
1835 const char **
1836 gdbarch_printable_names (void)
1837 {
1838 if (GDB_MULTI_ARCH)
1839 {
1840 /* Accumulate a list of names based on the registed list of
1841 architectures. */
1842 enum bfd_architecture a;
1843 int nr_arches = 0;
1844 const char **arches = NULL;
1845 struct gdbarch_registration *rego;
1846 for (rego = gdbarch_registry;
1847 rego != NULL;
1848 rego = rego->next)
1849 {
1850 const struct bfd_arch_info *ap;
1851 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1852 if (ap == NULL)
1853 internal_error (__FILE__, __LINE__,
1854 "gdbarch_architecture_names: multi-arch unknown");
1855 do
1856 {
1857 append_name (&arches, &nr_arches, ap->printable_name);
1858 ap = ap->next;
1859 }
1860 while (ap != NULL);
1861 }
1862 append_name (&arches, &nr_arches, NULL);
1863 return arches;
1864 }
1865 else
1866 /* Just return all the architectures that BFD knows. Assume that
1867 the legacy architecture framework supports them. */
1868 return bfd_arch_list ();
1869 }
1870
1871
1872 void
1873 gdbarch_register (enum bfd_architecture bfd_architecture,
1874 gdbarch_init_ftype *init,
1875 gdbarch_dump_tdep_ftype *dump_tdep)
1876 {
1877 struct gdbarch_registration **curr;
1878 const struct bfd_arch_info *bfd_arch_info;
1879 /* Check that BFD recognizes this architecture */
1880 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1881 if (bfd_arch_info == NULL)
1882 {
1883 internal_error (__FILE__, __LINE__,
1884 "gdbarch: Attempt to register unknown architecture (%d)",
1885 bfd_architecture);
1886 }
1887 /* Check that we haven't seen this architecture before */
1888 for (curr = &gdbarch_registry;
1889 (*curr) != NULL;
1890 curr = &(*curr)->next)
1891 {
1892 if (bfd_architecture == (*curr)->bfd_architecture)
1893 internal_error (__FILE__, __LINE__,
1894 "gdbarch: Duplicate registraration of architecture (%s)",
1895 bfd_arch_info->printable_name);
1896 }
1897 /* log it */
1898 if (gdbarch_debug)
1899 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
1900 bfd_arch_info->printable_name,
1901 (long) init);
1902 /* Append it */
1903 (*curr) = XMALLOC (struct gdbarch_registration);
1904 (*curr)->bfd_architecture = bfd_architecture;
1905 (*curr)->init = init;
1906 (*curr)->dump_tdep = dump_tdep;
1907 (*curr)->arches = NULL;
1908 (*curr)->next = NULL;
1909 /* When non- multi-arch, install whatever target dump routine we've
1910 been provided - hopefully that routine has been written correctly
1911 and works regardless of multi-arch. */
1912 if (!GDB_MULTI_ARCH && dump_tdep != NULL
1913 && startup_gdbarch.dump_tdep == NULL)
1914 startup_gdbarch.dump_tdep = dump_tdep;
1915 }
1916
1917 void
1918 register_gdbarch_init (enum bfd_architecture bfd_architecture,
1919 gdbarch_init_ftype *init)
1920 {
1921 gdbarch_register (bfd_architecture, init, NULL);
1922 }
1923
1924
1925 /* Look for an architecture using gdbarch_info. Base search on only
1926 BFD_ARCH_INFO and BYTE_ORDER. */
1927
1928 struct gdbarch_list *
1929 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
1930 const struct gdbarch_info *info)
1931 {
1932 for (; arches != NULL; arches = arches->next)
1933 {
1934 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
1935 continue;
1936 if (info->byte_order != arches->gdbarch->byte_order)
1937 continue;
1938 return arches;
1939 }
1940 return NULL;
1941 }
1942
1943
1944 /* Update the current architecture. Return ZERO if the update request
1945 failed. */
1946
1947 int
1948 gdbarch_update_p (struct gdbarch_info info)
1949 {
1950 struct gdbarch *new_gdbarch;
1951 struct gdbarch_list **list;
1952 struct gdbarch_registration *rego;
1953
1954 /* Fill in missing parts of the INFO struct using a number of
1955 sources: \`\`set ...''; INFOabfd supplied; existing target. */
1956
1957 /* \`\`(gdb) set architecture ...'' */
1958 if (info.bfd_arch_info == NULL
1959 && !TARGET_ARCHITECTURE_AUTO)
1960 info.bfd_arch_info = TARGET_ARCHITECTURE;
1961 if (info.bfd_arch_info == NULL
1962 && info.abfd != NULL
1963 && bfd_get_arch (info.abfd) != bfd_arch_unknown
1964 && bfd_get_arch (info.abfd) != bfd_arch_obscure)
1965 info.bfd_arch_info = bfd_get_arch_info (info.abfd);
1966 if (info.bfd_arch_info == NULL)
1967 info.bfd_arch_info = TARGET_ARCHITECTURE;
1968
1969 /* \`\`(gdb) set byte-order ...'' */
1970 if (info.byte_order == 0
1971 && !TARGET_BYTE_ORDER_AUTO)
1972 info.byte_order = TARGET_BYTE_ORDER;
1973 /* From the INFO struct. */
1974 if (info.byte_order == 0
1975 && info.abfd != NULL)
1976 info.byte_order = (bfd_big_endian (info.abfd) ? BIG_ENDIAN
1977 : bfd_little_endian (info.abfd) ? LITTLE_ENDIAN
1978 : 0);
1979 /* From the current target. */
1980 if (info.byte_order == 0)
1981 info.byte_order = TARGET_BYTE_ORDER;
1982
1983 /* Must have found some sort of architecture. */
1984 gdb_assert (info.bfd_arch_info != NULL);
1985
1986 if (gdbarch_debug)
1987 {
1988 fprintf_unfiltered (gdb_stdlog,
1989 "gdbarch_update: info.bfd_arch_info %s\n",
1990 (info.bfd_arch_info != NULL
1991 ? info.bfd_arch_info->printable_name
1992 : "(null)"));
1993 fprintf_unfiltered (gdb_stdlog,
1994 "gdbarch_update: info.byte_order %d (%s)\n",
1995 info.byte_order,
1996 (info.byte_order == BIG_ENDIAN ? "big"
1997 : info.byte_order == LITTLE_ENDIAN ? "little"
1998 : "default"));
1999 fprintf_unfiltered (gdb_stdlog,
2000 "gdbarch_update: info.abfd 0x%lx\n",
2001 (long) info.abfd);
2002 fprintf_unfiltered (gdb_stdlog,
2003 "gdbarch_update: info.tdep_info 0x%lx\n",
2004 (long) info.tdep_info);
2005 }
2006
2007 /* Find the target that knows about this architecture. */
2008 for (rego = gdbarch_registry;
2009 rego != NULL;
2010 rego = rego->next)
2011 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2012 break;
2013 if (rego == NULL)
2014 {
2015 if (gdbarch_debug)
2016 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: No matching architecture\\n");
2017 return 0;
2018 }
2019
2020 /* Ask the target for a replacement architecture. */
2021 new_gdbarch = rego->init (info, rego->arches);
2022
2023 /* Did the target like it? No. Reject the change. */
2024 if (new_gdbarch == NULL)
2025 {
2026 if (gdbarch_debug)
2027 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Target rejected architecture\\n");
2028 return 0;
2029 }
2030
2031 /* Did the architecture change? No. Do nothing. */
2032 if (current_gdbarch == new_gdbarch)
2033 {
2034 if (gdbarch_debug)
2035 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Architecture 0x%08lx (%s) unchanged\\n",
2036 (long) new_gdbarch,
2037 new_gdbarch->bfd_arch_info->printable_name);
2038 return 1;
2039 }
2040
2041 /* Swap all data belonging to the old target out */
2042 swapout_gdbarch_swap (current_gdbarch);
2043
2044 /* Is this a pre-existing architecture? Yes. Swap it in. */
2045 for (list = &rego->arches;
2046 (*list) != NULL;
2047 list = &(*list)->next)
2048 {
2049 if ((*list)->gdbarch == new_gdbarch)
2050 {
2051 if (gdbarch_debug)
2052 fprintf_unfiltered (gdb_stdlog,
2053 "gdbarch_update: Previous architecture 0x%08lx (%s) selected\\n",
2054 (long) new_gdbarch,
2055 new_gdbarch->bfd_arch_info->printable_name);
2056 current_gdbarch = new_gdbarch;
2057 swapin_gdbarch_swap (new_gdbarch);
2058 return 1;
2059 }
2060 }
2061
2062 /* Append this new architecture to this targets list. */
2063 (*list) = XMALLOC (struct gdbarch_list);
2064 (*list)->next = NULL;
2065 (*list)->gdbarch = new_gdbarch;
2066
2067 /* Switch to this new architecture. Dump it out. */
2068 current_gdbarch = new_gdbarch;
2069 if (gdbarch_debug)
2070 {
2071 fprintf_unfiltered (gdb_stdlog,
2072 "gdbarch_update: New architecture 0x%08lx (%s) selected\\n",
2073 (long) new_gdbarch,
2074 new_gdbarch->bfd_arch_info->printable_name);
2075 }
2076
2077 /* Check that the newly installed architecture is valid. Plug in
2078 any post init values. */
2079 new_gdbarch->dump_tdep = rego->dump_tdep;
2080 verify_gdbarch (new_gdbarch);
2081
2082 /* Initialize the per-architecture memory (swap) areas.
2083 CURRENT_GDBARCH must be update before these modules are
2084 called. */
2085 init_gdbarch_swap (new_gdbarch);
2086
2087 /* Initialize the per-architecture data-pointer of all parties that
2088 registered an interest in this architecture. CURRENT_GDBARCH
2089 must be updated before these modules are called. */
2090 init_gdbarch_data (new_gdbarch);
2091
2092 if (gdbarch_debug)
2093 gdbarch_dump (current_gdbarch, gdb_stdlog);
2094
2095 return 1;
2096 }
2097
2098
2099 /* Disassembler */
2100
2101 /* Pointer to the target-dependent disassembly function. */
2102 int (*tm_print_insn) (bfd_vma, disassemble_info *);
2103 disassemble_info tm_print_insn_info;
2104
2105
2106 extern void _initialize_gdbarch (void);
2107
2108 void
2109 _initialize_gdbarch (void)
2110 {
2111 struct cmd_list_element *c;
2112
2113 INIT_DISASSEMBLE_INFO_NO_ARCH (tm_print_insn_info, gdb_stdout, (fprintf_ftype)fprintf_filtered);
2114 tm_print_insn_info.flavour = bfd_target_unknown_flavour;
2115 tm_print_insn_info.read_memory_func = dis_asm_read_memory;
2116 tm_print_insn_info.memory_error_func = dis_asm_memory_error;
2117 tm_print_insn_info.print_address_func = dis_asm_print_address;
2118
2119 add_show_from_set (add_set_cmd ("arch",
2120 class_maintenance,
2121 var_zinteger,
2122 (char *)&gdbarch_debug,
2123 "Set architecture debugging.\\n\\
2124 When non-zero, architecture debugging is enabled.", &setdebuglist),
2125 &showdebuglist);
2126 c = add_set_cmd ("archdebug",
2127 class_maintenance,
2128 var_zinteger,
2129 (char *)&gdbarch_debug,
2130 "Set architecture debugging.\\n\\
2131 When non-zero, architecture debugging is enabled.", &setlist);
2132
2133 deprecate_cmd (c, "set debug arch");
2134 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
2135 }
2136 EOF
2137
2138 # close things off
2139 exec 1>&2
2140 #../move-if-change new-gdbarch.c gdbarch.c
2141 compare_new gdbarch.c