2003-05-01 H.J. Lu <hjl@gnu.org>
[binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 # Copyright 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5 #
6 # This file is part of GDB.
7 #
8 # This program is free software; you can redistribute it and/or modify
9 # it under the terms of the GNU General Public License as published by
10 # the Free Software Foundation; either version 2 of the License, or
11 # (at your option) any later version.
12 #
13 # This program is distributed in the hope that it will be useful,
14 # but WITHOUT ANY WARRANTY; without even the implied warranty of
15 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 # GNU General Public License for more details.
17 #
18 # You should have received a copy of the GNU General Public License
19 # along with this program; if not, write to the Free Software
20 # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21
22 # Make certain that the script is running in an internationalized
23 # environment.
24 LANG=c ; export LANG
25 LC_ALL=c ; export LC_ALL
26
27
28 compare_new ()
29 {
30 file=$1
31 if test ! -r ${file}
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40 }
41
42
43 # Format of the input table
44 read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
45
46 do_read ()
47 {
48 comment=""
49 class=""
50 while read line
51 do
52 if test "${line}" = ""
53 then
54 continue
55 elif test "${line}" = "#" -a "${comment}" = ""
56 then
57 continue
58 elif expr "${line}" : "#" > /dev/null
59 then
60 comment="${comment}
61 ${line}"
62 else
63
64 # The semantics of IFS varies between different SH's. Some
65 # treat ``::' as three fields while some treat it as just too.
66 # Work around this by eliminating ``::'' ....
67 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
68
69 OFS="${IFS}" ; IFS="[:]"
70 eval read ${read} <<EOF
71 ${line}
72 EOF
73 IFS="${OFS}"
74
75 # .... and then going back through each field and strip out those
76 # that ended up with just that space character.
77 for r in ${read}
78 do
79 if eval test \"\${${r}}\" = \"\ \"
80 then
81 eval ${r}=""
82 fi
83 done
84
85 case "${level}" in
86 1 ) gt_level=">= GDB_MULTI_ARCH_PARTIAL" ;;
87 2 ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
88 "" ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
89 * ) error "Error: bad level for ${function}" 1>&2 ; kill $$ ; exit 1 ;;
90 esac
91
92 case "${class}" in
93 m ) staticdefault="${predefault}" ;;
94 M ) staticdefault="0" ;;
95 * ) test "${staticdefault}" || staticdefault=0 ;;
96 esac
97 # NOT YET: Breaks BELIEVE_PCC_PROMOTION and confuses non-
98 # multi-arch defaults.
99 # test "${predefault}" || predefault=0
100
101 # come up with a format, use a few guesses for variables
102 case ":${class}:${fmt}:${print}:" in
103 :[vV]::: )
104 if [ "${returntype}" = int ]
105 then
106 fmt="%d"
107 print="${macro}"
108 elif [ "${returntype}" = long ]
109 then
110 fmt="%ld"
111 print="${macro}"
112 fi
113 ;;
114 esac
115 test "${fmt}" || fmt="%ld"
116 test "${print}" || print="(long) ${macro}"
117
118 case "${class}" in
119 F | V | M )
120 case "${invalid_p}" in
121 "" )
122 if test -n "${predefault}" -a "${predefault}" != "0"
123 then
124 #invalid_p="gdbarch->${function} == ${predefault}"
125 predicate="gdbarch->${function} != ${predefault}"
126 else
127 # filled in later
128 predicate=""
129 fi
130 ;;
131 * )
132 echo "Predicate function ${function} with invalid_p." 1>&2
133 kill $$
134 exit 1
135 ;;
136 esac
137 esac
138
139 # PREDEFAULT is a valid fallback definition of MEMBER when
140 # multi-arch is not enabled. This ensures that the
141 # default value, when multi-arch is the same as the
142 # default value when not multi-arch. POSTDEFAULT is
143 # always a valid definition of MEMBER as this again
144 # ensures consistency.
145
146 if [ -n "${postdefault}" ]
147 then
148 fallbackdefault="${postdefault}"
149 elif [ -n "${predefault}" ]
150 then
151 fallbackdefault="${predefault}"
152 else
153 fallbackdefault="0"
154 fi
155
156 #NOT YET: See gdbarch.log for basic verification of
157 # database
158
159 break
160 fi
161 done
162 if [ -n "${class}" ]
163 then
164 true
165 else
166 false
167 fi
168 }
169
170
171 fallback_default_p ()
172 {
173 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
174 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
175 }
176
177 class_is_variable_p ()
178 {
179 case "${class}" in
180 *v* | *V* ) true ;;
181 * ) false ;;
182 esac
183 }
184
185 class_is_function_p ()
186 {
187 case "${class}" in
188 *f* | *F* | *m* | *M* ) true ;;
189 * ) false ;;
190 esac
191 }
192
193 class_is_multiarch_p ()
194 {
195 case "${class}" in
196 *m* | *M* ) true ;;
197 * ) false ;;
198 esac
199 }
200
201 class_is_predicate_p ()
202 {
203 case "${class}" in
204 *F* | *V* | *M* ) true ;;
205 * ) false ;;
206 esac
207 }
208
209 class_is_info_p ()
210 {
211 case "${class}" in
212 *i* ) true ;;
213 * ) false ;;
214 esac
215 }
216
217
218 # dump out/verify the doco
219 for field in ${read}
220 do
221 case ${field} in
222
223 class ) : ;;
224
225 # # -> line disable
226 # f -> function
227 # hiding a function
228 # F -> function + predicate
229 # hiding a function + predicate to test function validity
230 # v -> variable
231 # hiding a variable
232 # V -> variable + predicate
233 # hiding a variable + predicate to test variables validity
234 # i -> set from info
235 # hiding something from the ``struct info'' object
236 # m -> multi-arch function
237 # hiding a multi-arch function (parameterised with the architecture)
238 # M -> multi-arch function + predicate
239 # hiding a multi-arch function + predicate to test function validity
240
241 level ) : ;;
242
243 # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
244 # LEVEL is a predicate on checking that a given method is
245 # initialized (using INVALID_P).
246
247 macro ) : ;;
248
249 # The name of the MACRO that this method is to be accessed by.
250
251 returntype ) : ;;
252
253 # For functions, the return type; for variables, the data type
254
255 function ) : ;;
256
257 # For functions, the member function name; for variables, the
258 # variable name. Member function names are always prefixed with
259 # ``gdbarch_'' for name-space purity.
260
261 formal ) : ;;
262
263 # The formal argument list. It is assumed that the formal
264 # argument list includes the actual name of each list element.
265 # A function with no arguments shall have ``void'' as the
266 # formal argument list.
267
268 actual ) : ;;
269
270 # The list of actual arguments. The arguments specified shall
271 # match the FORMAL list given above. Functions with out
272 # arguments leave this blank.
273
274 attrib ) : ;;
275
276 # Any GCC attributes that should be attached to the function
277 # declaration. At present this field is unused.
278
279 staticdefault ) : ;;
280
281 # To help with the GDB startup a static gdbarch object is
282 # created. STATICDEFAULT is the value to insert into that
283 # static gdbarch object. Since this a static object only
284 # simple expressions can be used.
285
286 # If STATICDEFAULT is empty, zero is used.
287
288 predefault ) : ;;
289
290 # An initial value to assign to MEMBER of the freshly
291 # malloc()ed gdbarch object. After initialization, the
292 # freshly malloc()ed object is passed to the target
293 # architecture code for further updates.
294
295 # If PREDEFAULT is empty, zero is used.
296
297 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
298 # INVALID_P are specified, PREDEFAULT will be used as the
299 # default for the non- multi-arch target.
300
301 # A zero PREDEFAULT function will force the fallback to call
302 # internal_error().
303
304 # Variable declarations can refer to ``gdbarch'' which will
305 # contain the current architecture. Care should be taken.
306
307 postdefault ) : ;;
308
309 # A value to assign to MEMBER of the new gdbarch object should
310 # the target architecture code fail to change the PREDEFAULT
311 # value.
312
313 # If POSTDEFAULT is empty, no post update is performed.
314
315 # If both INVALID_P and POSTDEFAULT are non-empty then
316 # INVALID_P will be used to determine if MEMBER should be
317 # changed to POSTDEFAULT.
318
319 # If a non-empty POSTDEFAULT and a zero INVALID_P are
320 # specified, POSTDEFAULT will be used as the default for the
321 # non- multi-arch target (regardless of the value of
322 # PREDEFAULT).
323
324 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
325
326 # Variable declarations can refer to ``gdbarch'' which will
327 # contain the current architecture. Care should be taken.
328
329 invalid_p ) : ;;
330
331 # A predicate equation that validates MEMBER. Non-zero is
332 # returned if the code creating the new architecture failed to
333 # initialize MEMBER or the initialized the member is invalid.
334 # If POSTDEFAULT is non-empty then MEMBER will be updated to
335 # that value. If POSTDEFAULT is empty then internal_error()
336 # is called.
337
338 # If INVALID_P is empty, a check that MEMBER is no longer
339 # equal to PREDEFAULT is used.
340
341 # The expression ``0'' disables the INVALID_P check making
342 # PREDEFAULT a legitimate value.
343
344 # See also PREDEFAULT and POSTDEFAULT.
345
346 fmt ) : ;;
347
348 # printf style format string that can be used to print out the
349 # MEMBER. Sometimes "%s" is useful. For functions, this is
350 # ignored and the function address is printed.
351
352 # If FMT is empty, ``%ld'' is used.
353
354 print ) : ;;
355
356 # An optional equation that casts MEMBER to a value suitable
357 # for formatting by FMT.
358
359 # If PRINT is empty, ``(long)'' is used.
360
361 print_p ) : ;;
362
363 # An optional indicator for any predicte to wrap around the
364 # print member code.
365
366 # () -> Call a custom function to do the dump.
367 # exp -> Wrap print up in ``if (${print_p}) ...
368 # ``'' -> No predicate
369
370 # If PRINT_P is empty, ``1'' is always used.
371
372 description ) : ;;
373
374 # Currently unused.
375
376 *)
377 echo "Bad field ${field}"
378 exit 1;;
379 esac
380 done
381
382
383 function_list ()
384 {
385 # See below (DOCO) for description of each field
386 cat <<EOF
387 i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
388 #
389 i:2:TARGET_BYTE_ORDER:int:byte_order::::BFD_ENDIAN_BIG
390 #
391 i:2:TARGET_OSABI:enum gdb_osabi:osabi::::GDB_OSABI_UNKNOWN
392 # Number of bits in a char or unsigned char for the target machine.
393 # Just like CHAR_BIT in <limits.h> but describes the target machine.
394 # v:2:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
395 #
396 # Number of bits in a short or unsigned short for the target machine.
397 v:2:TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
398 # Number of bits in an int or unsigned int for the target machine.
399 v:2:TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
400 # Number of bits in a long or unsigned long for the target machine.
401 v:2:TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
402 # Number of bits in a long long or unsigned long long for the target
403 # machine.
404 v:2:TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
405 # Number of bits in a float for the target machine.
406 v:2:TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
407 # Number of bits in a double for the target machine.
408 v:2:TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
409 # Number of bits in a long double for the target machine.
410 v:2:TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
411 # For most targets, a pointer on the target and its representation as an
412 # address in GDB have the same size and "look the same". For such a
413 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
414 # / addr_bit will be set from it.
415 #
416 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
417 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
418 #
419 # ptr_bit is the size of a pointer on the target
420 v:2:TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
421 # addr_bit is the size of a target address as represented in gdb
422 v:2:TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
423 # Number of bits in a BFD_VMA for the target object file format.
424 v:2:TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
425 #
426 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
427 v:2:TARGET_CHAR_SIGNED:int:char_signed::::1:-1:1::::
428 #
429 f:2:TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid::0:generic_target_read_pc::0
430 f:2:TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
431 # This is simply not needed. See value_of_builtin_frame_fp_reg and
432 # call_function_by_hand.
433 F::DEPRECATED_TARGET_READ_FP:CORE_ADDR:deprecated_target_read_fp:void
434 f:2:TARGET_READ_SP:CORE_ADDR:read_sp:void:::0:generic_target_read_sp::0
435 # The dummy call frame SP should be set by push_dummy_call.
436 F:2:DEPRECATED_DUMMY_WRITE_SP:void:deprecated_dummy_write_sp:CORE_ADDR val:val
437 # Function for getting target's idea of a frame pointer. FIXME: GDB's
438 # whole scheme for dealing with "frames" and "frame pointers" needs a
439 # serious shakedown.
440 f:2:TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset::0:legacy_virtual_frame_pointer::0
441 #
442 M:::void:pseudo_register_read:struct regcache *regcache, int cookednum, void *buf:regcache, cookednum, buf:
443 M:::void:pseudo_register_write:struct regcache *regcache, int cookednum, const void *buf:regcache, cookednum, buf:
444 #
445 v:2:NUM_REGS:int:num_regs::::0:-1
446 # This macro gives the number of pseudo-registers that live in the
447 # register namespace but do not get fetched or stored on the target.
448 # These pseudo-registers may be aliases for other registers,
449 # combinations of other registers, or they may be computed by GDB.
450 v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
451
452 # GDB's standard (or well known) register numbers. These can map onto
453 # a real register or a pseudo (computed) register or not be defined at
454 # all (-1).
455 v:2:SP_REGNUM:int:sp_regnum::::-1:-1::0
456 # This is simply not needed. See value_of_builtin_frame_fp_reg and
457 # call_function_by_hand.
458 v:2:DEPRECATED_FP_REGNUM:int:deprecated_fp_regnum::::-1:-1::0
459 v:2:PC_REGNUM:int:pc_regnum::::-1:-1::0
460 v:2:PS_REGNUM:int:ps_regnum::::-1:-1::0
461 v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
462 v:2:NPC_REGNUM:int:npc_regnum::::0:-1::0
463 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
464 f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
465 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
466 f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
467 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
468 f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
469 # Convert from an sdb register number to an internal gdb register number.
470 # This should be defined in tm.h, if REGISTER_NAMES is not set up
471 # to map one to one onto the sdb register numbers.
472 f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
473 f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
474 f:2:REGISTER_NAME:const char *:register_name:int regnr:regnr:::legacy_register_name::0
475 v:2:REGISTER_SIZE:int:register_size::::0:-1
476 v:2:REGISTER_BYTES:int:register_bytes::::0:-1
477 f:2:REGISTER_BYTE:int:register_byte:int reg_nr:reg_nr::generic_register_byte:generic_register_byte::0
478 # The methods REGISTER_VIRTUAL_TYPE, MAX_REGISTER_RAW_SIZE,
479 # MAX_REGISTER_VIRTUAL_SIZE, MAX_REGISTER_RAW_SIZE,
480 # REGISTER_VIRTUAL_SIZE and REGISTER_RAW_SIZE are all being replaced
481 # by REGISTER_TYPE.
482 f:2:REGISTER_RAW_SIZE:int:register_raw_size:int reg_nr:reg_nr::generic_register_size:generic_register_size::0
483 # The methods REGISTER_VIRTUAL_TYPE, MAX_REGISTER_RAW_SIZE,
484 # MAX_REGISTER_VIRTUAL_SIZE, MAX_REGISTER_RAW_SIZE,
485 # REGISTER_VIRTUAL_SIZE and REGISTER_RAW_SIZE are all being replaced
486 # by REGISTER_TYPE.
487 V:2:DEPRECATED_MAX_REGISTER_RAW_SIZE:int:deprecated_max_register_raw_size
488 # The methods REGISTER_VIRTUAL_TYPE, MAX_REGISTER_RAW_SIZE,
489 # MAX_REGISTER_VIRTUAL_SIZE, MAX_REGISTER_RAW_SIZE,
490 # REGISTER_VIRTUAL_SIZE and REGISTER_RAW_SIZE are all being replaced
491 # by REGISTER_TYPE.
492 f:2:REGISTER_VIRTUAL_SIZE:int:register_virtual_size:int reg_nr:reg_nr::generic_register_size:generic_register_size::0
493 # The methods REGISTER_VIRTUAL_TYPE, MAX_REGISTER_RAW_SIZE,
494 # MAX_REGISTER_VIRTUAL_SIZE, MAX_REGISTER_RAW_SIZE,
495 # REGISTER_VIRTUAL_SIZE and REGISTER_RAW_SIZE are all being replaced
496 # by REGISTER_TYPE.
497 V:2:DEPRECATED_MAX_REGISTER_VIRTUAL_SIZE:int:deprecated_max_register_virtual_size
498 # The methods REGISTER_VIRTUAL_TYPE, MAX_REGISTER_RAW_SIZE,
499 # MAX_REGISTER_VIRTUAL_SIZE, MAX_REGISTER_RAW_SIZE,
500 # REGISTER_VIRTUAL_SIZE and REGISTER_RAW_SIZE have all being replaced
501 # by REGISTER_TYPE.
502 F:2:REGISTER_VIRTUAL_TYPE:struct type *:register_virtual_type:int reg_nr:reg_nr::0:0
503 M:2:REGISTER_TYPE:struct type *:register_type:int reg_nr:reg_nr::0:
504 #
505 F:2:DEPRECATED_DO_REGISTERS_INFO:void:deprecated_do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs
506 m:2:PRINT_REGISTERS_INFO:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all:::default_print_registers_info::0
507 M:2:PRINT_FLOAT_INFO:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
508 M:2:PRINT_VECTOR_INFO:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
509 # MAP a GDB RAW register number onto a simulator register number. See
510 # also include/...-sim.h.
511 f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::legacy_register_sim_regno::0
512 F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes::0:0
513 f:2:CANNOT_FETCH_REGISTER:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
514 f:2:CANNOT_STORE_REGISTER:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
515 # setjmp/longjmp support.
516 F:2:GET_LONGJMP_TARGET:int:get_longjmp_target:CORE_ADDR *pc:pc::0:0
517 #
518 # Non multi-arch DUMMY_FRAMES are a mess (multi-arch ones are not that
519 # much better but at least they are vaguely consistent). The headers
520 # and body contain convoluted #if/#else sequences for determine how
521 # things should be compiled. Instead of trying to mimic that
522 # behaviour here (and hence entrench it further) gdbarch simply
523 # reqires that these methods be set up from the word go. This also
524 # avoids any potential problems with moving beyond multi-arch partial.
525 v::DEPRECATED_USE_GENERIC_DUMMY_FRAMES:int:deprecated_use_generic_dummy_frames:::::1::0
526 v::CALL_DUMMY_LOCATION:int:call_dummy_location:::::AT_ENTRY_POINT::0
527 f::CALL_DUMMY_ADDRESS:CORE_ADDR:call_dummy_address:void::::entry_point_address::0
528 v::CALL_DUMMY_START_OFFSET:CORE_ADDR:call_dummy_start_offset
529 v::CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:call_dummy_breakpoint_offset
530 v::CALL_DUMMY_LENGTH:int:call_dummy_length
531 # NOTE: cagney/2002-11-24: This function with predicate has a valid
532 # (callable) initial value. As a consequence, even when the predicate
533 # is false, the corresponding function works. This simplifies the
534 # migration process - old code, calling DEPRECATED_PC_IN_CALL_DUMMY(),
535 # doesn't need to be modified.
536 F::DEPRECATED_PC_IN_CALL_DUMMY:int:deprecated_pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::generic_pc_in_call_dummy:generic_pc_in_call_dummy
537 v::CALL_DUMMY_WORDS:LONGEST *:call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
538 v::SIZEOF_CALL_DUMMY_WORDS:int:sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0
539 V:2:DEPRECATED_CALL_DUMMY_STACK_ADJUST:int:deprecated_call_dummy_stack_adjust::::0
540 F::FIX_CALL_DUMMY:void:fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p
541 F:2:DEPRECATED_INIT_FRAME_PC_FIRST:CORE_ADDR:deprecated_init_frame_pc_first:int fromleaf, struct frame_info *prev:fromleaf, prev
542 F:2:DEPRECATED_INIT_FRAME_PC:CORE_ADDR:deprecated_init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev
543 #
544 v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
545 v::BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type:::::::
546 F:2:DEPRECATED_GET_SAVED_REGISTER:void:deprecated_get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval
547 #
548 f:2:REGISTER_CONVERTIBLE:int:register_convertible:int nr:nr:::generic_register_convertible_not::0
549 f:2:REGISTER_CONVERT_TO_VIRTUAL:void:register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
550 f:2:REGISTER_CONVERT_TO_RAW:void:register_convert_to_raw:struct type *type, int regnum, char *from, char *to:type, regnum, from, to:::0::0
551 #
552 f:1:CONVERT_REGISTER_P:int:convert_register_p:int regnum:regnum::0:legacy_convert_register_p::0
553 f:1:REGISTER_TO_VALUE:void:register_to_value:int regnum, struct type *type, char *from, char *to:regnum, type, from, to::0:legacy_register_to_value::0
554 f:1:VALUE_TO_REGISTER:void:value_to_register:struct type *type, int regnum, char *from, char *to:type, regnum, from, to::0:legacy_value_to_register::0
555 #
556 f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, const void *buf:type, buf:::unsigned_pointer_to_address::0
557 f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
558 F:2:INTEGER_TO_ADDRESS:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf
559 #
560 f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
561 # Replaced by PUSH_DUMMY_CALL
562 F:2:DEPRECATED_PUSH_ARGUMENTS:CORE_ADDR:deprecated_push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr
563 M::PUSH_DUMMY_CALL:CORE_ADDR:push_dummy_call:struct regcache *regcache, CORE_ADDR dummy_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:regcache, dummy_addr, nargs, args, sp, struct_return, struct_addr
564 F:2:DEPRECATED_PUSH_DUMMY_FRAME:void:deprecated_push_dummy_frame:void:-:::0
565 # NOTE: This can be handled directly in push_dummy_call.
566 F:2:DEPRECATED_PUSH_RETURN_ADDRESS:CORE_ADDR:deprecated_push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp:::0
567 F:2:DEPRECATED_POP_FRAME:void:deprecated_pop_frame:void:-:::0
568 # NOTE: cagney/2003-03-24: Replaced by PUSH_ARGUMENTS.
569 F:2:DEPRECATED_STORE_STRUCT_RETURN:void:deprecated_store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp:::0
570 #
571 f:2:EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, struct regcache *regcache, void *valbuf:type, regcache, valbuf:::legacy_extract_return_value::0
572 f:2:STORE_RETURN_VALUE:void:store_return_value:struct type *type, struct regcache *regcache, const void *valbuf:type, regcache, valbuf:::legacy_store_return_value::0
573 f:2:DEPRECATED_EXTRACT_RETURN_VALUE:void:deprecated_extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf
574 f:2:DEPRECATED_STORE_RETURN_VALUE:void:deprecated_store_return_value:struct type *type, char *valbuf:type, valbuf
575 #
576 F:2:EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:extract_struct_value_address:struct regcache *regcache:regcache:::0
577 F:2:DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:deprecated_extract_struct_value_address:char *regbuf:regbuf:::0
578 f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::generic_use_struct_convention::0
579 #
580 F:2:DEPRECATED_FRAME_INIT_SAVED_REGS:void:deprecated_frame_init_saved_regs:struct frame_info *frame:frame:::0
581 F:2:DEPRECATED_INIT_EXTRA_FRAME_INFO:void:deprecated_init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame:::0
582 #
583 f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
584 f:2:PROLOGUE_FRAMELESS_P:int:prologue_frameless_p:CORE_ADDR ip:ip::0:generic_prologue_frameless_p::0
585 f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
586 f:2:BREAKPOINT_FROM_PC:const unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::legacy_breakpoint_from_pc::0
587 f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
588 f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
589 v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:-1
590 f:2:PREPARE_TO_PROCEED:int:prepare_to_proceed:int select_it:select_it::0:default_prepare_to_proceed::0
591 v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:-1
592 #
593 f:2:REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
594 #
595 v:2:FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:-1
596 f:2:FRAMELESS_FUNCTION_INVOCATION:int:frameless_function_invocation:struct frame_info *fi:fi:::generic_frameless_function_invocation_not::0
597 F:2:DEPRECATED_FRAME_CHAIN:CORE_ADDR:deprecated_frame_chain:struct frame_info *frame:frame::0:0
598 F:2:DEPRECATED_FRAME_CHAIN_VALID:int:deprecated_frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe::0:0
599 # DEPRECATED_FRAME_SAVED_PC has been replaced by UNWIND_PC. Please
600 # note, per UNWIND_PC's doco, that while the two have similar
601 # interfaces they have very different underlying implementations.
602 F:2:DEPRECATED_FRAME_SAVED_PC:CORE_ADDR:deprecated_frame_saved_pc:struct frame_info *fi:fi::0:0
603 M::UNWIND_PC:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame:
604 f:2:FRAME_ARGS_ADDRESS:CORE_ADDR:frame_args_address:struct frame_info *fi:fi::0:get_frame_base::0
605 f:2:FRAME_LOCALS_ADDRESS:CORE_ADDR:frame_locals_address:struct frame_info *fi:fi::0:get_frame_base::0
606 F::DEPRECATED_SAVED_PC_AFTER_CALL:CORE_ADDR:deprecated_saved_pc_after_call:struct frame_info *frame:frame
607 f:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame::0:0
608 #
609 F:2:STACK_ALIGN:CORE_ADDR:stack_align:CORE_ADDR sp:sp::0:0
610 M:::CORE_ADDR:frame_align:CORE_ADDR address:address
611 # NOTE: cagney/2003-03-24: This is better handled by PUSH_ARGUMENTS.
612 v:2:DEPRECATED_EXTRA_STACK_ALIGNMENT_NEEDED:int:deprecated_extra_stack_alignment_needed::::0:0::0:::
613 F:2:REG_STRUCT_HAS_ADDR:int:reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type::0:0
614 # FIXME: kettenis/2003-03-08: This should be replaced by a function
615 # parametrized with (at least) the regcache.
616 F:2:SAVE_DUMMY_FRAME_TOS:void:save_dummy_frame_tos:CORE_ADDR sp:sp::0:0
617 M::UNWIND_DUMMY_ID:struct frame_id:unwind_dummy_id:struct frame_info *info:info::0:0
618 v:2:PARM_BOUNDARY:int:parm_boundary
619 #
620 v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (gdbarch)::%s:(TARGET_FLOAT_FORMAT)->name
621 v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (gdbarch)::%s:(TARGET_DOUBLE_FORMAT)->name
622 v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::default_double_format (gdbarch)::%s:(TARGET_LONG_DOUBLE_FORMAT)->name
623 f:2:CONVERT_FROM_FUNC_PTR_ADDR:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr:addr:::core_addr_identity::0
624 # On some machines there are bits in addresses which are not really
625 # part of the address, but are used by the kernel, the hardware, etc.
626 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
627 # we get a "real" address such as one would find in a symbol table.
628 # This is used only for addresses of instructions, and even then I'm
629 # not sure it's used in all contexts. It exists to deal with there
630 # being a few stray bits in the PC which would mislead us, not as some
631 # sort of generic thing to handle alignment or segmentation (it's
632 # possible it should be in TARGET_READ_PC instead).
633 f:2:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
634 # It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
635 # ADDR_BITS_REMOVE.
636 f:2:SMASH_TEXT_ADDRESS:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr:::core_addr_identity::0
637 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
638 # the target needs software single step. An ISA method to implement it.
639 #
640 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
641 # using the breakpoint system instead of blatting memory directly (as with rs6000).
642 #
643 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
644 # single step. If not, then implement single step using breakpoints.
645 F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p::0:0
646 f:2:TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, disassemble_info *info:vma, info:::legacy_print_insn::0
647 f:2:SKIP_TRAMPOLINE_CODE:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc:::generic_skip_trampoline_code::0
648
649
650 # For SVR4 shared libraries, each call goes through a small piece of
651 # trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
652 # to nonzero if we are currently stopped in one of these.
653 f:2:IN_SOLIB_CALL_TRAMPOLINE:int:in_solib_call_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_call_trampoline::0
654
655 # Some systems also have trampoline code for returning from shared libs.
656 f:2:IN_SOLIB_RETURN_TRAMPOLINE:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_return_trampoline::0
657
658 # Sigtramp is a routine that the kernel calls (which then calls the
659 # signal handler). On most machines it is a library routine that is
660 # linked into the executable.
661 #
662 # This macro, given a program counter value and the name of the
663 # function in which that PC resides (which can be null if the name is
664 # not known), returns nonzero if the PC and name show that we are in
665 # sigtramp.
666 #
667 # On most machines just see if the name is sigtramp (and if we have
668 # no name, assume we are not in sigtramp).
669 #
670 # FIXME: cagney/2002-04-21: The function find_pc_partial_function
671 # calls find_pc_sect_partial_function() which calls PC_IN_SIGTRAMP.
672 # This means PC_IN_SIGTRAMP function can't be implemented by doing its
673 # own local NAME lookup.
674 #
675 # FIXME: cagney/2002-04-21: PC_IN_SIGTRAMP is something of a mess.
676 # Some code also depends on SIGTRAMP_START and SIGTRAMP_END but other
677 # does not.
678 f:2:PC_IN_SIGTRAMP:int:pc_in_sigtramp:CORE_ADDR pc, char *name:pc, name:::legacy_pc_in_sigtramp::0
679 F:2:SIGTRAMP_START:CORE_ADDR:sigtramp_start:CORE_ADDR pc:pc
680 F:2:SIGTRAMP_END:CORE_ADDR:sigtramp_end:CORE_ADDR pc:pc
681 # A target might have problems with watchpoints as soon as the stack
682 # frame of the current function has been destroyed. This mostly happens
683 # as the first action in a funtion's epilogue. in_function_epilogue_p()
684 # is defined to return a non-zero value if either the given addr is one
685 # instruction after the stack destroying instruction up to the trailing
686 # return instruction or if we can figure out that the stack frame has
687 # already been invalidated regardless of the value of addr. Targets
688 # which don't suffer from that problem could just let this functionality
689 # untouched.
690 m:::int:in_function_epilogue_p:CORE_ADDR addr:addr::0:generic_in_function_epilogue_p::0
691 # Given a vector of command-line arguments, return a newly allocated
692 # string which, when passed to the create_inferior function, will be
693 # parsed (on Unix systems, by the shell) to yield the same vector.
694 # This function should call error() if the argument vector is not
695 # representable for this target or if this target does not support
696 # command-line arguments.
697 # ARGC is the number of elements in the vector.
698 # ARGV is an array of strings, one per argument.
699 m::CONSTRUCT_INFERIOR_ARGUMENTS:char *:construct_inferior_arguments:int argc, char **argv:argc, argv:::construct_inferior_arguments::0
700 F:2:DWARF2_BUILD_FRAME_INFO:void:dwarf2_build_frame_info:struct objfile *objfile:objfile:::0
701 f:2:ELF_MAKE_MSYMBOL_SPECIAL:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym:::default_elf_make_msymbol_special::0
702 f:2:COFF_MAKE_MSYMBOL_SPECIAL:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym:::default_coff_make_msymbol_special::0
703 v:2:NAME_OF_MALLOC:const char *:name_of_malloc::::"malloc":"malloc"::0:%s:NAME_OF_MALLOC
704 v:2:CANNOT_STEP_BREAKPOINT:int:cannot_step_breakpoint::::0:0::0
705 v:2:HAVE_NONSTEPPABLE_WATCHPOINT:int:have_nonsteppable_watchpoint::::0:0::0
706 F:2:ADDRESS_CLASS_TYPE_FLAGS:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
707 M:2:ADDRESS_CLASS_TYPE_FLAGS_TO_NAME:const char *:address_class_type_flags_to_name:int type_flags:type_flags:
708 M:2:ADDRESS_CLASS_NAME_TO_TYPE_FLAGS:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
709 # Is a register in a group
710 m:::int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup:::default_register_reggroup_p::0
711 EOF
712 }
713
714 #
715 # The .log file
716 #
717 exec > new-gdbarch.log
718 function_list | while do_read
719 do
720 cat <<EOF
721 ${class} ${macro}(${actual})
722 ${returntype} ${function} ($formal)${attrib}
723 EOF
724 for r in ${read}
725 do
726 eval echo \"\ \ \ \ ${r}=\${${r}}\"
727 done
728 if class_is_predicate_p && fallback_default_p
729 then
730 echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
731 kill $$
732 exit 1
733 fi
734 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
735 then
736 echo "Error: postdefault is useless when invalid_p=0" 1>&2
737 kill $$
738 exit 1
739 fi
740 if class_is_multiarch_p
741 then
742 if class_is_predicate_p ; then :
743 elif test "x${predefault}" = "x"
744 then
745 echo "Error: pure multi-arch function must have a predefault" 1>&2
746 kill $$
747 exit 1
748 fi
749 fi
750 echo ""
751 done
752
753 exec 1>&2
754 compare_new gdbarch.log
755
756
757 copyright ()
758 {
759 cat <<EOF
760 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
761
762 /* Dynamic architecture support for GDB, the GNU debugger.
763 Copyright 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
764
765 This file is part of GDB.
766
767 This program is free software; you can redistribute it and/or modify
768 it under the terms of the GNU General Public License as published by
769 the Free Software Foundation; either version 2 of the License, or
770 (at your option) any later version.
771
772 This program is distributed in the hope that it will be useful,
773 but WITHOUT ANY WARRANTY; without even the implied warranty of
774 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
775 GNU General Public License for more details.
776
777 You should have received a copy of the GNU General Public License
778 along with this program; if not, write to the Free Software
779 Foundation, Inc., 59 Temple Place - Suite 330,
780 Boston, MA 02111-1307, USA. */
781
782 /* This file was created with the aid of \`\`gdbarch.sh''.
783
784 The Bourne shell script \`\`gdbarch.sh'' creates the files
785 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
786 against the existing \`\`gdbarch.[hc]''. Any differences found
787 being reported.
788
789 If editing this file, please also run gdbarch.sh and merge any
790 changes into that script. Conversely, when making sweeping changes
791 to this file, modifying gdbarch.sh and using its output may prove
792 easier. */
793
794 EOF
795 }
796
797 #
798 # The .h file
799 #
800
801 exec > new-gdbarch.h
802 copyright
803 cat <<EOF
804 #ifndef GDBARCH_H
805 #define GDBARCH_H
806
807 #include "dis-asm.h" /* Get defs for disassemble_info, which unfortunately is a typedef. */
808 #if !GDB_MULTI_ARCH
809 /* Pull in function declarations refered to, indirectly, via macros. */
810 #include "inferior.h" /* For unsigned_address_to_pointer(). */
811 #include "symfile.h" /* For entry_point_address(). */
812 #endif
813
814 struct floatformat;
815 struct ui_file;
816 struct frame_info;
817 struct value;
818 struct objfile;
819 struct minimal_symbol;
820 struct regcache;
821 struct reggroup;
822
823 extern struct gdbarch *current_gdbarch;
824
825
826 /* If any of the following are defined, the target wasn't correctly
827 converted. */
828
829 #if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
830 #error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
831 #endif
832 EOF
833
834 # function typedef's
835 printf "\n"
836 printf "\n"
837 printf "/* The following are pre-initialized by GDBARCH. */\n"
838 function_list | while do_read
839 do
840 if class_is_info_p
841 then
842 printf "\n"
843 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
844 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
845 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
846 printf "#error \"Non multi-arch definition of ${macro}\"\n"
847 printf "#endif\n"
848 printf "#if GDB_MULTI_ARCH\n"
849 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
850 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
851 printf "#endif\n"
852 printf "#endif\n"
853 fi
854 done
855
856 # function typedef's
857 printf "\n"
858 printf "\n"
859 printf "/* The following are initialized by the target dependent code. */\n"
860 function_list | while do_read
861 do
862 if [ -n "${comment}" ]
863 then
864 echo "${comment}" | sed \
865 -e '2 s,#,/*,' \
866 -e '3,$ s,#, ,' \
867 -e '$ s,$, */,'
868 fi
869 if class_is_multiarch_p
870 then
871 if class_is_predicate_p
872 then
873 printf "\n"
874 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
875 fi
876 else
877 if class_is_predicate_p
878 then
879 printf "\n"
880 printf "#if defined (${macro})\n"
881 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
882 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
883 printf "#if !defined (${macro}_P)\n"
884 printf "#define ${macro}_P() (1)\n"
885 printf "#endif\n"
886 printf "#endif\n"
887 printf "\n"
888 printf "/* Default predicate for non- multi-arch targets. */\n"
889 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro}_P)\n"
890 printf "#define ${macro}_P() (0)\n"
891 printf "#endif\n"
892 printf "\n"
893 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
894 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro}_P)\n"
895 printf "#error \"Non multi-arch definition of ${macro}\"\n"
896 printf "#endif\n"
897 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro}_P)\n"
898 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
899 printf "#endif\n"
900 fi
901 fi
902 if class_is_variable_p
903 then
904 if fallback_default_p || class_is_predicate_p
905 then
906 printf "\n"
907 printf "/* Default (value) for non- multi-arch platforms. */\n"
908 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
909 echo "#define ${macro} (${fallbackdefault})" \
910 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
911 printf "#endif\n"
912 fi
913 printf "\n"
914 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
915 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
916 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
917 printf "#error \"Non multi-arch definition of ${macro}\"\n"
918 printf "#endif\n"
919 if test "${level}" = ""
920 then
921 printf "#if !defined (${macro})\n"
922 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
923 printf "#endif\n"
924 else
925 printf "#if GDB_MULTI_ARCH\n"
926 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
927 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
928 printf "#endif\n"
929 printf "#endif\n"
930 fi
931 fi
932 if class_is_function_p
933 then
934 if class_is_multiarch_p ; then :
935 elif fallback_default_p || class_is_predicate_p
936 then
937 printf "\n"
938 printf "/* Default (function) for non- multi-arch platforms. */\n"
939 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
940 if [ "x${fallbackdefault}" = "x0" ]
941 then
942 if [ "x${actual}" = "x-" ]
943 then
944 printf "#define ${macro} (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
945 else
946 printf "#define ${macro}(${actual}) (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
947 fi
948 else
949 # FIXME: Should be passing current_gdbarch through!
950 echo "#define ${macro}(${actual}) (${fallbackdefault} (${actual}))" \
951 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
952 fi
953 printf "#endif\n"
954 fi
955 printf "\n"
956 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
957 then
958 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
959 elif class_is_multiarch_p
960 then
961 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
962 else
963 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
964 fi
965 if [ "x${formal}" = "xvoid" ]
966 then
967 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
968 else
969 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
970 fi
971 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
972 if class_is_multiarch_p ; then :
973 else
974 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
975 printf "#error \"Non multi-arch definition of ${macro}\"\n"
976 printf "#endif\n"
977 printf "#if GDB_MULTI_ARCH\n"
978 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
979 if [ "x${actual}" = "x" ]
980 then
981 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
982 elif [ "x${actual}" = "x-" ]
983 then
984 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
985 else
986 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
987 fi
988 printf "#endif\n"
989 printf "#endif\n"
990 fi
991 fi
992 done
993
994 # close it off
995 cat <<EOF
996
997 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
998
999
1000 /* Mechanism for co-ordinating the selection of a specific
1001 architecture.
1002
1003 GDB targets (*-tdep.c) can register an interest in a specific
1004 architecture. Other GDB components can register a need to maintain
1005 per-architecture data.
1006
1007 The mechanisms below ensures that there is only a loose connection
1008 between the set-architecture command and the various GDB
1009 components. Each component can independently register their need
1010 to maintain architecture specific data with gdbarch.
1011
1012 Pragmatics:
1013
1014 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1015 didn't scale.
1016
1017 The more traditional mega-struct containing architecture specific
1018 data for all the various GDB components was also considered. Since
1019 GDB is built from a variable number of (fairly independent)
1020 components it was determined that the global aproach was not
1021 applicable. */
1022
1023
1024 /* Register a new architectural family with GDB.
1025
1026 Register support for the specified ARCHITECTURE with GDB. When
1027 gdbarch determines that the specified architecture has been
1028 selected, the corresponding INIT function is called.
1029
1030 --
1031
1032 The INIT function takes two parameters: INFO which contains the
1033 information available to gdbarch about the (possibly new)
1034 architecture; ARCHES which is a list of the previously created
1035 \`\`struct gdbarch'' for this architecture.
1036
1037 The INFO parameter is, as far as possible, be pre-initialized with
1038 information obtained from INFO.ABFD or the previously selected
1039 architecture.
1040
1041 The ARCHES parameter is a linked list (sorted most recently used)
1042 of all the previously created architures for this architecture
1043 family. The (possibly NULL) ARCHES->gdbarch can used to access
1044 values from the previously selected architecture for this
1045 architecture family. The global \`\`current_gdbarch'' shall not be
1046 used.
1047
1048 The INIT function shall return any of: NULL - indicating that it
1049 doesn't recognize the selected architecture; an existing \`\`struct
1050 gdbarch'' from the ARCHES list - indicating that the new
1051 architecture is just a synonym for an earlier architecture (see
1052 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1053 - that describes the selected architecture (see gdbarch_alloc()).
1054
1055 The DUMP_TDEP function shall print out all target specific values.
1056 Care should be taken to ensure that the function works in both the
1057 multi-arch and non- multi-arch cases. */
1058
1059 struct gdbarch_list
1060 {
1061 struct gdbarch *gdbarch;
1062 struct gdbarch_list *next;
1063 };
1064
1065 struct gdbarch_info
1066 {
1067 /* Use default: NULL (ZERO). */
1068 const struct bfd_arch_info *bfd_arch_info;
1069
1070 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1071 int byte_order;
1072
1073 /* Use default: NULL (ZERO). */
1074 bfd *abfd;
1075
1076 /* Use default: NULL (ZERO). */
1077 struct gdbarch_tdep_info *tdep_info;
1078
1079 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1080 enum gdb_osabi osabi;
1081 };
1082
1083 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1084 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1085
1086 /* DEPRECATED - use gdbarch_register() */
1087 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1088
1089 extern void gdbarch_register (enum bfd_architecture architecture,
1090 gdbarch_init_ftype *,
1091 gdbarch_dump_tdep_ftype *);
1092
1093
1094 /* Return a freshly allocated, NULL terminated, array of the valid
1095 architecture names. Since architectures are registered during the
1096 _initialize phase this function only returns useful information
1097 once initialization has been completed. */
1098
1099 extern const char **gdbarch_printable_names (void);
1100
1101
1102 /* Helper function. Search the list of ARCHES for a GDBARCH that
1103 matches the information provided by INFO. */
1104
1105 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1106
1107
1108 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1109 basic initialization using values obtained from the INFO andTDEP
1110 parameters. set_gdbarch_*() functions are called to complete the
1111 initialization of the object. */
1112
1113 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1114
1115
1116 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1117 It is assumed that the caller freeds the \`\`struct
1118 gdbarch_tdep''. */
1119
1120 extern void gdbarch_free (struct gdbarch *);
1121
1122
1123 /* Helper function. Force an update of the current architecture.
1124
1125 The actual architecture selected is determined by INFO, \`\`(gdb) set
1126 architecture'' et.al., the existing architecture and BFD's default
1127 architecture. INFO should be initialized to zero and then selected
1128 fields should be updated.
1129
1130 Returns non-zero if the update succeeds */
1131
1132 extern int gdbarch_update_p (struct gdbarch_info info);
1133
1134
1135
1136 /* Register per-architecture data-pointer.
1137
1138 Reserve space for a per-architecture data-pointer. An identifier
1139 for the reserved data-pointer is returned. That identifer should
1140 be saved in a local static variable.
1141
1142 The per-architecture data-pointer is either initialized explicitly
1143 (set_gdbarch_data()) or implicitly (by INIT() via a call to
1144 gdbarch_data()). FREE() is called to delete either an existing
1145 data-pointer overridden by set_gdbarch_data() or when the
1146 architecture object is being deleted.
1147
1148 When a previously created architecture is re-selected, the
1149 per-architecture data-pointer for that previous architecture is
1150 restored. INIT() is not re-called.
1151
1152 Multiple registrarants for any architecture are allowed (and
1153 strongly encouraged). */
1154
1155 struct gdbarch_data;
1156
1157 typedef void *(gdbarch_data_init_ftype) (struct gdbarch *gdbarch);
1158 typedef void (gdbarch_data_free_ftype) (struct gdbarch *gdbarch,
1159 void *pointer);
1160 extern struct gdbarch_data *register_gdbarch_data (gdbarch_data_init_ftype *init,
1161 gdbarch_data_free_ftype *free);
1162 extern void set_gdbarch_data (struct gdbarch *gdbarch,
1163 struct gdbarch_data *data,
1164 void *pointer);
1165
1166 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1167
1168
1169 /* Register per-architecture memory region.
1170
1171 Provide a memory-region swap mechanism. Per-architecture memory
1172 region are created. These memory regions are swapped whenever the
1173 architecture is changed. For a new architecture, the memory region
1174 is initialized with zero (0) and the INIT function is called.
1175
1176 Memory regions are swapped / initialized in the order that they are
1177 registered. NULL DATA and/or INIT values can be specified.
1178
1179 New code should use register_gdbarch_data(). */
1180
1181 typedef void (gdbarch_swap_ftype) (void);
1182 extern void register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1183 #define REGISTER_GDBARCH_SWAP(VAR) register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1184
1185
1186
1187 /* The target-system-dependent byte order is dynamic */
1188
1189 extern int target_byte_order;
1190 #ifndef TARGET_BYTE_ORDER
1191 #define TARGET_BYTE_ORDER (target_byte_order + 0)
1192 #endif
1193
1194 extern int target_byte_order_auto;
1195 #ifndef TARGET_BYTE_ORDER_AUTO
1196 #define TARGET_BYTE_ORDER_AUTO (target_byte_order_auto + 0)
1197 #endif
1198
1199
1200
1201 /* The target-system-dependent BFD architecture is dynamic */
1202
1203 extern int target_architecture_auto;
1204 #ifndef TARGET_ARCHITECTURE_AUTO
1205 #define TARGET_ARCHITECTURE_AUTO (target_architecture_auto + 0)
1206 #endif
1207
1208 extern const struct bfd_arch_info *target_architecture;
1209 #ifndef TARGET_ARCHITECTURE
1210 #define TARGET_ARCHITECTURE (target_architecture + 0)
1211 #endif
1212
1213
1214 /* The target-system-dependent disassembler is semi-dynamic */
1215
1216 /* Use gdb_disassemble, and gdbarch_print_insn instead. */
1217 extern int (*deprecated_tm_print_insn) (bfd_vma, disassemble_info*);
1218
1219 /* Use set_gdbarch_print_insn instead. */
1220 extern disassemble_info deprecated_tm_print_insn_info;
1221
1222 /* Set the dynamic target-system-dependent parameters (architecture,
1223 byte-order, ...) using information found in the BFD */
1224
1225 extern void set_gdbarch_from_file (bfd *);
1226
1227
1228 /* Initialize the current architecture to the "first" one we find on
1229 our list. */
1230
1231 extern void initialize_current_architecture (void);
1232
1233 /* For non-multiarched targets, do any initialization of the default
1234 gdbarch object necessary after the _initialize_MODULE functions
1235 have run. */
1236 extern void initialize_non_multiarch (void);
1237
1238 /* gdbarch trace variable */
1239 extern int gdbarch_debug;
1240
1241 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1242
1243 #endif
1244 EOF
1245 exec 1>&2
1246 #../move-if-change new-gdbarch.h gdbarch.h
1247 compare_new gdbarch.h
1248
1249
1250 #
1251 # C file
1252 #
1253
1254 exec > new-gdbarch.c
1255 copyright
1256 cat <<EOF
1257
1258 #include "defs.h"
1259 #include "arch-utils.h"
1260
1261 #if GDB_MULTI_ARCH
1262 #include "gdbcmd.h"
1263 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1264 #else
1265 /* Just include everything in sight so that the every old definition
1266 of macro is visible. */
1267 #include "gdb_string.h"
1268 #include <ctype.h>
1269 #include "symtab.h"
1270 #include "frame.h"
1271 #include "inferior.h"
1272 #include "breakpoint.h"
1273 #include "gdb_wait.h"
1274 #include "gdbcore.h"
1275 #include "gdbcmd.h"
1276 #include "target.h"
1277 #include "gdbthread.h"
1278 #include "annotate.h"
1279 #include "symfile.h" /* for overlay functions */
1280 #include "value.h" /* For old tm.h/nm.h macros. */
1281 #endif
1282 #include "symcat.h"
1283
1284 #include "floatformat.h"
1285
1286 #include "gdb_assert.h"
1287 #include "gdb_string.h"
1288 #include "gdb-events.h"
1289 #include "reggroups.h"
1290 #include "osabi.h"
1291 #include "symfile.h" /* For entry_point_address. */
1292
1293 /* Static function declarations */
1294
1295 static void verify_gdbarch (struct gdbarch *gdbarch);
1296 static void alloc_gdbarch_data (struct gdbarch *);
1297 static void free_gdbarch_data (struct gdbarch *);
1298 static void init_gdbarch_swap (struct gdbarch *);
1299 static void clear_gdbarch_swap (struct gdbarch *);
1300 static void swapout_gdbarch_swap (struct gdbarch *);
1301 static void swapin_gdbarch_swap (struct gdbarch *);
1302
1303 /* Non-zero if we want to trace architecture code. */
1304
1305 #ifndef GDBARCH_DEBUG
1306 #define GDBARCH_DEBUG 0
1307 #endif
1308 int gdbarch_debug = GDBARCH_DEBUG;
1309
1310 EOF
1311
1312 # gdbarch open the gdbarch object
1313 printf "\n"
1314 printf "/* Maintain the struct gdbarch object */\n"
1315 printf "\n"
1316 printf "struct gdbarch\n"
1317 printf "{\n"
1318 printf " /* Has this architecture been fully initialized? */\n"
1319 printf " int initialized_p;\n"
1320 printf " /* basic architectural information */\n"
1321 function_list | while do_read
1322 do
1323 if class_is_info_p
1324 then
1325 printf " ${returntype} ${function};\n"
1326 fi
1327 done
1328 printf "\n"
1329 printf " /* target specific vector. */\n"
1330 printf " struct gdbarch_tdep *tdep;\n"
1331 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1332 printf "\n"
1333 printf " /* per-architecture data-pointers */\n"
1334 printf " unsigned nr_data;\n"
1335 printf " void **data;\n"
1336 printf "\n"
1337 printf " /* per-architecture swap-regions */\n"
1338 printf " struct gdbarch_swap *swap;\n"
1339 printf "\n"
1340 cat <<EOF
1341 /* Multi-arch values.
1342
1343 When extending this structure you must:
1344
1345 Add the field below.
1346
1347 Declare set/get functions and define the corresponding
1348 macro in gdbarch.h.
1349
1350 gdbarch_alloc(): If zero/NULL is not a suitable default,
1351 initialize the new field.
1352
1353 verify_gdbarch(): Confirm that the target updated the field
1354 correctly.
1355
1356 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1357 field is dumped out
1358
1359 \`\`startup_gdbarch()'': Append an initial value to the static
1360 variable (base values on the host's c-type system).
1361
1362 get_gdbarch(): Implement the set/get functions (probably using
1363 the macro's as shortcuts).
1364
1365 */
1366
1367 EOF
1368 function_list | while do_read
1369 do
1370 if class_is_variable_p
1371 then
1372 printf " ${returntype} ${function};\n"
1373 elif class_is_function_p
1374 then
1375 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
1376 fi
1377 done
1378 printf "};\n"
1379
1380 # A pre-initialized vector
1381 printf "\n"
1382 printf "\n"
1383 cat <<EOF
1384 /* The default architecture uses host values (for want of a better
1385 choice). */
1386 EOF
1387 printf "\n"
1388 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1389 printf "\n"
1390 printf "struct gdbarch startup_gdbarch =\n"
1391 printf "{\n"
1392 printf " 1, /* Always initialized. */\n"
1393 printf " /* basic architecture information */\n"
1394 function_list | while do_read
1395 do
1396 if class_is_info_p
1397 then
1398 printf " ${staticdefault},\n"
1399 fi
1400 done
1401 cat <<EOF
1402 /* target specific vector and its dump routine */
1403 NULL, NULL,
1404 /*per-architecture data-pointers and swap regions */
1405 0, NULL, NULL,
1406 /* Multi-arch values */
1407 EOF
1408 function_list | while do_read
1409 do
1410 if class_is_function_p || class_is_variable_p
1411 then
1412 printf " ${staticdefault},\n"
1413 fi
1414 done
1415 cat <<EOF
1416 /* startup_gdbarch() */
1417 };
1418
1419 struct gdbarch *current_gdbarch = &startup_gdbarch;
1420
1421 /* Do any initialization needed for a non-multiarch configuration
1422 after the _initialize_MODULE functions have been run. */
1423 void
1424 initialize_non_multiarch (void)
1425 {
1426 alloc_gdbarch_data (&startup_gdbarch);
1427 /* Ensure that all swap areas are zeroed so that they again think
1428 they are starting from scratch. */
1429 clear_gdbarch_swap (&startup_gdbarch);
1430 init_gdbarch_swap (&startup_gdbarch);
1431 }
1432 EOF
1433
1434 # Create a new gdbarch struct
1435 printf "\n"
1436 printf "\n"
1437 cat <<EOF
1438 /* Create a new \`\`struct gdbarch'' based on information provided by
1439 \`\`struct gdbarch_info''. */
1440 EOF
1441 printf "\n"
1442 cat <<EOF
1443 struct gdbarch *
1444 gdbarch_alloc (const struct gdbarch_info *info,
1445 struct gdbarch_tdep *tdep)
1446 {
1447 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1448 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1449 the current local architecture and not the previous global
1450 architecture. This ensures that the new architectures initial
1451 values are not influenced by the previous architecture. Once
1452 everything is parameterised with gdbarch, this will go away. */
1453 struct gdbarch *current_gdbarch = XMALLOC (struct gdbarch);
1454 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1455
1456 alloc_gdbarch_data (current_gdbarch);
1457
1458 current_gdbarch->tdep = tdep;
1459 EOF
1460 printf "\n"
1461 function_list | while do_read
1462 do
1463 if class_is_info_p
1464 then
1465 printf " current_gdbarch->${function} = info->${function};\n"
1466 fi
1467 done
1468 printf "\n"
1469 printf " /* Force the explicit initialization of these. */\n"
1470 function_list | while do_read
1471 do
1472 if class_is_function_p || class_is_variable_p
1473 then
1474 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1475 then
1476 printf " current_gdbarch->${function} = ${predefault};\n"
1477 fi
1478 fi
1479 done
1480 cat <<EOF
1481 /* gdbarch_alloc() */
1482
1483 return current_gdbarch;
1484 }
1485 EOF
1486
1487 # Free a gdbarch struct.
1488 printf "\n"
1489 printf "\n"
1490 cat <<EOF
1491 /* Free a gdbarch struct. This should never happen in normal
1492 operation --- once you've created a gdbarch, you keep it around.
1493 However, if an architecture's init function encounters an error
1494 building the structure, it may need to clean up a partially
1495 constructed gdbarch. */
1496
1497 void
1498 gdbarch_free (struct gdbarch *arch)
1499 {
1500 gdb_assert (arch != NULL);
1501 free_gdbarch_data (arch);
1502 xfree (arch);
1503 }
1504 EOF
1505
1506 # verify a new architecture
1507 printf "\n"
1508 printf "\n"
1509 printf "/* Ensure that all values in a GDBARCH are reasonable. */\n"
1510 printf "\n"
1511 cat <<EOF
1512 static void
1513 verify_gdbarch (struct gdbarch *gdbarch)
1514 {
1515 struct ui_file *log;
1516 struct cleanup *cleanups;
1517 long dummy;
1518 char *buf;
1519 /* Only perform sanity checks on a multi-arch target. */
1520 if (!GDB_MULTI_ARCH)
1521 return;
1522 log = mem_fileopen ();
1523 cleanups = make_cleanup_ui_file_delete (log);
1524 /* fundamental */
1525 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1526 fprintf_unfiltered (log, "\n\tbyte-order");
1527 if (gdbarch->bfd_arch_info == NULL)
1528 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1529 /* Check those that need to be defined for the given multi-arch level. */
1530 EOF
1531 function_list | while do_read
1532 do
1533 if class_is_function_p || class_is_variable_p
1534 then
1535 if [ "x${invalid_p}" = "x0" ]
1536 then
1537 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1538 elif class_is_predicate_p
1539 then
1540 printf " /* Skip verify of ${function}, has predicate */\n"
1541 # FIXME: See do_read for potential simplification
1542 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1543 then
1544 printf " if (${invalid_p})\n"
1545 printf " gdbarch->${function} = ${postdefault};\n"
1546 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1547 then
1548 printf " if (gdbarch->${function} == ${predefault})\n"
1549 printf " gdbarch->${function} = ${postdefault};\n"
1550 elif [ -n "${postdefault}" ]
1551 then
1552 printf " if (gdbarch->${function} == 0)\n"
1553 printf " gdbarch->${function} = ${postdefault};\n"
1554 elif [ -n "${invalid_p}" ]
1555 then
1556 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1557 printf " && (${invalid_p}))\n"
1558 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1559 elif [ -n "${predefault}" ]
1560 then
1561 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1562 printf " && (gdbarch->${function} == ${predefault}))\n"
1563 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1564 fi
1565 fi
1566 done
1567 cat <<EOF
1568 buf = ui_file_xstrdup (log, &dummy);
1569 make_cleanup (xfree, buf);
1570 if (strlen (buf) > 0)
1571 internal_error (__FILE__, __LINE__,
1572 "verify_gdbarch: the following are invalid ...%s",
1573 buf);
1574 do_cleanups (cleanups);
1575 }
1576 EOF
1577
1578 # dump the structure
1579 printf "\n"
1580 printf "\n"
1581 cat <<EOF
1582 /* Print out the details of the current architecture. */
1583
1584 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1585 just happens to match the global variable \`\`current_gdbarch''. That
1586 way macros refering to that variable get the local and not the global
1587 version - ulgh. Once everything is parameterised with gdbarch, this
1588 will go away. */
1589
1590 void
1591 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1592 {
1593 fprintf_unfiltered (file,
1594 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1595 GDB_MULTI_ARCH);
1596 EOF
1597 function_list | sort -t: -k 3 | while do_read
1598 do
1599 # First the predicate
1600 if class_is_predicate_p
1601 then
1602 if class_is_multiarch_p
1603 then
1604 printf " if (GDB_MULTI_ARCH)\n"
1605 printf " fprintf_unfiltered (file,\n"
1606 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1607 printf " gdbarch_${function}_p (current_gdbarch));\n"
1608 else
1609 printf "#ifdef ${macro}_P\n"
1610 printf " fprintf_unfiltered (file,\n"
1611 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1612 printf " \"${macro}_P()\",\n"
1613 printf " XSTRING (${macro}_P ()));\n"
1614 printf " fprintf_unfiltered (file,\n"
1615 printf " \"gdbarch_dump: ${macro}_P() = %%d\\\\n\",\n"
1616 printf " ${macro}_P ());\n"
1617 printf "#endif\n"
1618 fi
1619 fi
1620 # multiarch functions don't have macros.
1621 if class_is_multiarch_p
1622 then
1623 printf " if (GDB_MULTI_ARCH)\n"
1624 printf " fprintf_unfiltered (file,\n"
1625 printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1626 printf " (long) current_gdbarch->${function});\n"
1627 continue
1628 fi
1629 # Print the macro definition.
1630 printf "#ifdef ${macro}\n"
1631 if [ "x${returntype}" = "xvoid" ]
1632 then
1633 printf "#if GDB_MULTI_ARCH\n"
1634 printf " /* Macro might contain \`[{}]' when not multi-arch */\n"
1635 fi
1636 if class_is_function_p
1637 then
1638 printf " fprintf_unfiltered (file,\n"
1639 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1640 printf " \"${macro}(${actual})\",\n"
1641 printf " XSTRING (${macro} (${actual})));\n"
1642 else
1643 printf " fprintf_unfiltered (file,\n"
1644 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1645 printf " XSTRING (${macro}));\n"
1646 fi
1647 # Print the architecture vector value
1648 if [ "x${returntype}" = "xvoid" ]
1649 then
1650 printf "#endif\n"
1651 fi
1652 if [ "x${print_p}" = "x()" ]
1653 then
1654 printf " gdbarch_dump_${function} (current_gdbarch);\n"
1655 elif [ "x${print_p}" = "x0" ]
1656 then
1657 printf " /* skip print of ${macro}, print_p == 0. */\n"
1658 elif [ -n "${print_p}" ]
1659 then
1660 printf " if (${print_p})\n"
1661 printf " fprintf_unfiltered (file,\n"
1662 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1663 printf " ${print});\n"
1664 elif class_is_function_p
1665 then
1666 printf " if (GDB_MULTI_ARCH)\n"
1667 printf " fprintf_unfiltered (file,\n"
1668 printf " \"gdbarch_dump: ${macro} = <0x%%08lx>\\\\n\",\n"
1669 printf " (long) current_gdbarch->${function}\n"
1670 printf " /*${macro} ()*/);\n"
1671 else
1672 printf " fprintf_unfiltered (file,\n"
1673 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1674 printf " ${print});\n"
1675 fi
1676 printf "#endif\n"
1677 done
1678 cat <<EOF
1679 if (current_gdbarch->dump_tdep != NULL)
1680 current_gdbarch->dump_tdep (current_gdbarch, file);
1681 }
1682 EOF
1683
1684
1685 # GET/SET
1686 printf "\n"
1687 cat <<EOF
1688 struct gdbarch_tdep *
1689 gdbarch_tdep (struct gdbarch *gdbarch)
1690 {
1691 if (gdbarch_debug >= 2)
1692 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1693 return gdbarch->tdep;
1694 }
1695 EOF
1696 printf "\n"
1697 function_list | while do_read
1698 do
1699 if class_is_predicate_p
1700 then
1701 printf "\n"
1702 printf "int\n"
1703 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1704 printf "{\n"
1705 printf " gdb_assert (gdbarch != NULL);\n"
1706 if [ -n "${predicate}" ]
1707 then
1708 printf " return ${predicate};\n"
1709 else
1710 printf " return gdbarch->${function} != 0;\n"
1711 fi
1712 printf "}\n"
1713 fi
1714 if class_is_function_p
1715 then
1716 printf "\n"
1717 printf "${returntype}\n"
1718 if [ "x${formal}" = "xvoid" ]
1719 then
1720 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1721 else
1722 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1723 fi
1724 printf "{\n"
1725 printf " gdb_assert (gdbarch != NULL);\n"
1726 printf " if (gdbarch->${function} == 0)\n"
1727 printf " internal_error (__FILE__, __LINE__,\n"
1728 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1729 if class_is_predicate_p && test -n "${predicate}"
1730 then
1731 # Allow a call to a function with a predicate.
1732 printf " /* Ignore predicate (${predicate}). */\n"
1733 fi
1734 printf " if (gdbarch_debug >= 2)\n"
1735 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1736 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1737 then
1738 if class_is_multiarch_p
1739 then
1740 params="gdbarch"
1741 else
1742 params=""
1743 fi
1744 else
1745 if class_is_multiarch_p
1746 then
1747 params="gdbarch, ${actual}"
1748 else
1749 params="${actual}"
1750 fi
1751 fi
1752 if [ "x${returntype}" = "xvoid" ]
1753 then
1754 printf " gdbarch->${function} (${params});\n"
1755 else
1756 printf " return gdbarch->${function} (${params});\n"
1757 fi
1758 printf "}\n"
1759 printf "\n"
1760 printf "void\n"
1761 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1762 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1763 printf "{\n"
1764 printf " gdbarch->${function} = ${function};\n"
1765 printf "}\n"
1766 elif class_is_variable_p
1767 then
1768 printf "\n"
1769 printf "${returntype}\n"
1770 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1771 printf "{\n"
1772 printf " gdb_assert (gdbarch != NULL);\n"
1773 if [ "x${invalid_p}" = "x0" ]
1774 then
1775 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1776 elif [ -n "${invalid_p}" ]
1777 then
1778 printf " if (${invalid_p})\n"
1779 printf " internal_error (__FILE__, __LINE__,\n"
1780 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1781 elif [ -n "${predefault}" ]
1782 then
1783 printf " if (gdbarch->${function} == ${predefault})\n"
1784 printf " internal_error (__FILE__, __LINE__,\n"
1785 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1786 fi
1787 printf " if (gdbarch_debug >= 2)\n"
1788 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1789 printf " return gdbarch->${function};\n"
1790 printf "}\n"
1791 printf "\n"
1792 printf "void\n"
1793 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1794 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1795 printf "{\n"
1796 printf " gdbarch->${function} = ${function};\n"
1797 printf "}\n"
1798 elif class_is_info_p
1799 then
1800 printf "\n"
1801 printf "${returntype}\n"
1802 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1803 printf "{\n"
1804 printf " gdb_assert (gdbarch != NULL);\n"
1805 printf " if (gdbarch_debug >= 2)\n"
1806 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1807 printf " return gdbarch->${function};\n"
1808 printf "}\n"
1809 fi
1810 done
1811
1812 # All the trailing guff
1813 cat <<EOF
1814
1815
1816 /* Keep a registry of per-architecture data-pointers required by GDB
1817 modules. */
1818
1819 struct gdbarch_data
1820 {
1821 unsigned index;
1822 int init_p;
1823 gdbarch_data_init_ftype *init;
1824 gdbarch_data_free_ftype *free;
1825 };
1826
1827 struct gdbarch_data_registration
1828 {
1829 struct gdbarch_data *data;
1830 struct gdbarch_data_registration *next;
1831 };
1832
1833 struct gdbarch_data_registry
1834 {
1835 unsigned nr;
1836 struct gdbarch_data_registration *registrations;
1837 };
1838
1839 struct gdbarch_data_registry gdbarch_data_registry =
1840 {
1841 0, NULL,
1842 };
1843
1844 struct gdbarch_data *
1845 register_gdbarch_data (gdbarch_data_init_ftype *init,
1846 gdbarch_data_free_ftype *free)
1847 {
1848 struct gdbarch_data_registration **curr;
1849 /* Append the new registraration. */
1850 for (curr = &gdbarch_data_registry.registrations;
1851 (*curr) != NULL;
1852 curr = &(*curr)->next);
1853 (*curr) = XMALLOC (struct gdbarch_data_registration);
1854 (*curr)->next = NULL;
1855 (*curr)->data = XMALLOC (struct gdbarch_data);
1856 (*curr)->data->index = gdbarch_data_registry.nr++;
1857 (*curr)->data->init = init;
1858 (*curr)->data->init_p = 1;
1859 (*curr)->data->free = free;
1860 return (*curr)->data;
1861 }
1862
1863
1864 /* Create/delete the gdbarch data vector. */
1865
1866 static void
1867 alloc_gdbarch_data (struct gdbarch *gdbarch)
1868 {
1869 gdb_assert (gdbarch->data == NULL);
1870 gdbarch->nr_data = gdbarch_data_registry.nr;
1871 gdbarch->data = xcalloc (gdbarch->nr_data, sizeof (void*));
1872 }
1873
1874 static void
1875 free_gdbarch_data (struct gdbarch *gdbarch)
1876 {
1877 struct gdbarch_data_registration *rego;
1878 gdb_assert (gdbarch->data != NULL);
1879 for (rego = gdbarch_data_registry.registrations;
1880 rego != NULL;
1881 rego = rego->next)
1882 {
1883 struct gdbarch_data *data = rego->data;
1884 gdb_assert (data->index < gdbarch->nr_data);
1885 if (data->free != NULL && gdbarch->data[data->index] != NULL)
1886 {
1887 data->free (gdbarch, gdbarch->data[data->index]);
1888 gdbarch->data[data->index] = NULL;
1889 }
1890 }
1891 xfree (gdbarch->data);
1892 gdbarch->data = NULL;
1893 }
1894
1895
1896 /* Initialize the current value of the specified per-architecture
1897 data-pointer. */
1898
1899 void
1900 set_gdbarch_data (struct gdbarch *gdbarch,
1901 struct gdbarch_data *data,
1902 void *pointer)
1903 {
1904 gdb_assert (data->index < gdbarch->nr_data);
1905 if (gdbarch->data[data->index] != NULL)
1906 {
1907 gdb_assert (data->free != NULL);
1908 data->free (gdbarch, gdbarch->data[data->index]);
1909 }
1910 gdbarch->data[data->index] = pointer;
1911 }
1912
1913 /* Return the current value of the specified per-architecture
1914 data-pointer. */
1915
1916 void *
1917 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1918 {
1919 gdb_assert (data->index < gdbarch->nr_data);
1920 /* The data-pointer isn't initialized, call init() to get a value but
1921 only if the architecture initializaiton has completed. Otherwise
1922 punt - hope that the caller knows what they are doing. */
1923 if (gdbarch->data[data->index] == NULL
1924 && gdbarch->initialized_p)
1925 {
1926 /* Be careful to detect an initialization cycle. */
1927 gdb_assert (data->init_p);
1928 data->init_p = 0;
1929 gdb_assert (data->init != NULL);
1930 gdbarch->data[data->index] = data->init (gdbarch);
1931 data->init_p = 1;
1932 gdb_assert (gdbarch->data[data->index] != NULL);
1933 }
1934 return gdbarch->data[data->index];
1935 }
1936
1937
1938
1939 /* Keep a registry of swapped data required by GDB modules. */
1940
1941 struct gdbarch_swap
1942 {
1943 void *swap;
1944 struct gdbarch_swap_registration *source;
1945 struct gdbarch_swap *next;
1946 };
1947
1948 struct gdbarch_swap_registration
1949 {
1950 void *data;
1951 unsigned long sizeof_data;
1952 gdbarch_swap_ftype *init;
1953 struct gdbarch_swap_registration *next;
1954 };
1955
1956 struct gdbarch_swap_registry
1957 {
1958 int nr;
1959 struct gdbarch_swap_registration *registrations;
1960 };
1961
1962 struct gdbarch_swap_registry gdbarch_swap_registry =
1963 {
1964 0, NULL,
1965 };
1966
1967 void
1968 register_gdbarch_swap (void *data,
1969 unsigned long sizeof_data,
1970 gdbarch_swap_ftype *init)
1971 {
1972 struct gdbarch_swap_registration **rego;
1973 for (rego = &gdbarch_swap_registry.registrations;
1974 (*rego) != NULL;
1975 rego = &(*rego)->next);
1976 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1977 (*rego)->next = NULL;
1978 (*rego)->init = init;
1979 (*rego)->data = data;
1980 (*rego)->sizeof_data = sizeof_data;
1981 }
1982
1983 static void
1984 clear_gdbarch_swap (struct gdbarch *gdbarch)
1985 {
1986 struct gdbarch_swap *curr;
1987 for (curr = gdbarch->swap;
1988 curr != NULL;
1989 curr = curr->next)
1990 {
1991 memset (curr->source->data, 0, curr->source->sizeof_data);
1992 }
1993 }
1994
1995 static void
1996 init_gdbarch_swap (struct gdbarch *gdbarch)
1997 {
1998 struct gdbarch_swap_registration *rego;
1999 struct gdbarch_swap **curr = &gdbarch->swap;
2000 for (rego = gdbarch_swap_registry.registrations;
2001 rego != NULL;
2002 rego = rego->next)
2003 {
2004 if (rego->data != NULL)
2005 {
2006 (*curr) = XMALLOC (struct gdbarch_swap);
2007 (*curr)->source = rego;
2008 (*curr)->swap = xmalloc (rego->sizeof_data);
2009 (*curr)->next = NULL;
2010 curr = &(*curr)->next;
2011 }
2012 if (rego->init != NULL)
2013 rego->init ();
2014 }
2015 }
2016
2017 static void
2018 swapout_gdbarch_swap (struct gdbarch *gdbarch)
2019 {
2020 struct gdbarch_swap *curr;
2021 for (curr = gdbarch->swap;
2022 curr != NULL;
2023 curr = curr->next)
2024 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
2025 }
2026
2027 static void
2028 swapin_gdbarch_swap (struct gdbarch *gdbarch)
2029 {
2030 struct gdbarch_swap *curr;
2031 for (curr = gdbarch->swap;
2032 curr != NULL;
2033 curr = curr->next)
2034 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
2035 }
2036
2037
2038 /* Keep a registry of the architectures known by GDB. */
2039
2040 struct gdbarch_registration
2041 {
2042 enum bfd_architecture bfd_architecture;
2043 gdbarch_init_ftype *init;
2044 gdbarch_dump_tdep_ftype *dump_tdep;
2045 struct gdbarch_list *arches;
2046 struct gdbarch_registration *next;
2047 };
2048
2049 static struct gdbarch_registration *gdbarch_registry = NULL;
2050
2051 static void
2052 append_name (const char ***buf, int *nr, const char *name)
2053 {
2054 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2055 (*buf)[*nr] = name;
2056 *nr += 1;
2057 }
2058
2059 const char **
2060 gdbarch_printable_names (void)
2061 {
2062 if (GDB_MULTI_ARCH)
2063 {
2064 /* Accumulate a list of names based on the registed list of
2065 architectures. */
2066 enum bfd_architecture a;
2067 int nr_arches = 0;
2068 const char **arches = NULL;
2069 struct gdbarch_registration *rego;
2070 for (rego = gdbarch_registry;
2071 rego != NULL;
2072 rego = rego->next)
2073 {
2074 const struct bfd_arch_info *ap;
2075 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2076 if (ap == NULL)
2077 internal_error (__FILE__, __LINE__,
2078 "gdbarch_architecture_names: multi-arch unknown");
2079 do
2080 {
2081 append_name (&arches, &nr_arches, ap->printable_name);
2082 ap = ap->next;
2083 }
2084 while (ap != NULL);
2085 }
2086 append_name (&arches, &nr_arches, NULL);
2087 return arches;
2088 }
2089 else
2090 /* Just return all the architectures that BFD knows. Assume that
2091 the legacy architecture framework supports them. */
2092 return bfd_arch_list ();
2093 }
2094
2095
2096 void
2097 gdbarch_register (enum bfd_architecture bfd_architecture,
2098 gdbarch_init_ftype *init,
2099 gdbarch_dump_tdep_ftype *dump_tdep)
2100 {
2101 struct gdbarch_registration **curr;
2102 const struct bfd_arch_info *bfd_arch_info;
2103 /* Check that BFD recognizes this architecture */
2104 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2105 if (bfd_arch_info == NULL)
2106 {
2107 internal_error (__FILE__, __LINE__,
2108 "gdbarch: Attempt to register unknown architecture (%d)",
2109 bfd_architecture);
2110 }
2111 /* Check that we haven't seen this architecture before */
2112 for (curr = &gdbarch_registry;
2113 (*curr) != NULL;
2114 curr = &(*curr)->next)
2115 {
2116 if (bfd_architecture == (*curr)->bfd_architecture)
2117 internal_error (__FILE__, __LINE__,
2118 "gdbarch: Duplicate registraration of architecture (%s)",
2119 bfd_arch_info->printable_name);
2120 }
2121 /* log it */
2122 if (gdbarch_debug)
2123 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2124 bfd_arch_info->printable_name,
2125 (long) init);
2126 /* Append it */
2127 (*curr) = XMALLOC (struct gdbarch_registration);
2128 (*curr)->bfd_architecture = bfd_architecture;
2129 (*curr)->init = init;
2130 (*curr)->dump_tdep = dump_tdep;
2131 (*curr)->arches = NULL;
2132 (*curr)->next = NULL;
2133 /* When non- multi-arch, install whatever target dump routine we've
2134 been provided - hopefully that routine has been written correctly
2135 and works regardless of multi-arch. */
2136 if (!GDB_MULTI_ARCH && dump_tdep != NULL
2137 && startup_gdbarch.dump_tdep == NULL)
2138 startup_gdbarch.dump_tdep = dump_tdep;
2139 }
2140
2141 void
2142 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2143 gdbarch_init_ftype *init)
2144 {
2145 gdbarch_register (bfd_architecture, init, NULL);
2146 }
2147
2148
2149 /* Look for an architecture using gdbarch_info. Base search on only
2150 BFD_ARCH_INFO and BYTE_ORDER. */
2151
2152 struct gdbarch_list *
2153 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2154 const struct gdbarch_info *info)
2155 {
2156 for (; arches != NULL; arches = arches->next)
2157 {
2158 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2159 continue;
2160 if (info->byte_order != arches->gdbarch->byte_order)
2161 continue;
2162 if (info->osabi != arches->gdbarch->osabi)
2163 continue;
2164 return arches;
2165 }
2166 return NULL;
2167 }
2168
2169
2170 /* Update the current architecture. Return ZERO if the update request
2171 failed. */
2172
2173 int
2174 gdbarch_update_p (struct gdbarch_info info)
2175 {
2176 struct gdbarch *new_gdbarch;
2177 struct gdbarch *old_gdbarch;
2178 struct gdbarch_registration *rego;
2179
2180 /* Fill in missing parts of the INFO struct using a number of
2181 sources: \`\`set ...''; INFOabfd supplied; existing target. */
2182
2183 /* \`\`(gdb) set architecture ...'' */
2184 if (info.bfd_arch_info == NULL
2185 && !TARGET_ARCHITECTURE_AUTO)
2186 info.bfd_arch_info = TARGET_ARCHITECTURE;
2187 if (info.bfd_arch_info == NULL
2188 && info.abfd != NULL
2189 && bfd_get_arch (info.abfd) != bfd_arch_unknown
2190 && bfd_get_arch (info.abfd) != bfd_arch_obscure)
2191 info.bfd_arch_info = bfd_get_arch_info (info.abfd);
2192 if (info.bfd_arch_info == NULL)
2193 info.bfd_arch_info = TARGET_ARCHITECTURE;
2194
2195 /* \`\`(gdb) set byte-order ...'' */
2196 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2197 && !TARGET_BYTE_ORDER_AUTO)
2198 info.byte_order = TARGET_BYTE_ORDER;
2199 /* From the INFO struct. */
2200 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2201 && info.abfd != NULL)
2202 info.byte_order = (bfd_big_endian (info.abfd) ? BFD_ENDIAN_BIG
2203 : bfd_little_endian (info.abfd) ? BFD_ENDIAN_LITTLE
2204 : BFD_ENDIAN_UNKNOWN);
2205 /* From the current target. */
2206 if (info.byte_order == BFD_ENDIAN_UNKNOWN)
2207 info.byte_order = TARGET_BYTE_ORDER;
2208
2209 /* \`\`(gdb) set osabi ...'' is handled by gdbarch_lookup_osabi. */
2210 if (info.osabi == GDB_OSABI_UNINITIALIZED)
2211 info.osabi = gdbarch_lookup_osabi (info.abfd);
2212 if (info.osabi == GDB_OSABI_UNINITIALIZED)
2213 info.osabi = current_gdbarch->osabi;
2214
2215 /* Must have found some sort of architecture. */
2216 gdb_assert (info.bfd_arch_info != NULL);
2217
2218 if (gdbarch_debug)
2219 {
2220 fprintf_unfiltered (gdb_stdlog,
2221 "gdbarch_update: info.bfd_arch_info %s\n",
2222 (info.bfd_arch_info != NULL
2223 ? info.bfd_arch_info->printable_name
2224 : "(null)"));
2225 fprintf_unfiltered (gdb_stdlog,
2226 "gdbarch_update: info.byte_order %d (%s)\n",
2227 info.byte_order,
2228 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2229 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2230 : "default"));
2231 fprintf_unfiltered (gdb_stdlog,
2232 "gdbarch_update: info.osabi %d (%s)\n",
2233 info.osabi, gdbarch_osabi_name (info.osabi));
2234 fprintf_unfiltered (gdb_stdlog,
2235 "gdbarch_update: info.abfd 0x%lx\n",
2236 (long) info.abfd);
2237 fprintf_unfiltered (gdb_stdlog,
2238 "gdbarch_update: info.tdep_info 0x%lx\n",
2239 (long) info.tdep_info);
2240 }
2241
2242 /* Find the target that knows about this architecture. */
2243 for (rego = gdbarch_registry;
2244 rego != NULL;
2245 rego = rego->next)
2246 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2247 break;
2248 if (rego == NULL)
2249 {
2250 if (gdbarch_debug)
2251 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: No matching architecture\\n");
2252 return 0;
2253 }
2254
2255 /* Swap the data belonging to the old target out setting the
2256 installed data to zero. This stops the ->init() function trying
2257 to refer to the previous architecture's global data structures. */
2258 swapout_gdbarch_swap (current_gdbarch);
2259 clear_gdbarch_swap (current_gdbarch);
2260
2261 /* Save the previously selected architecture, setting the global to
2262 NULL. This stops ->init() trying to use the previous
2263 architecture's configuration. The previous architecture may not
2264 even be of the same architecture family. The most recent
2265 architecture of the same family is found at the head of the
2266 rego->arches list. */
2267 old_gdbarch = current_gdbarch;
2268 current_gdbarch = NULL;
2269
2270 /* Ask the target for a replacement architecture. */
2271 new_gdbarch = rego->init (info, rego->arches);
2272
2273 /* Did the target like it? No. Reject the change and revert to the
2274 old architecture. */
2275 if (new_gdbarch == NULL)
2276 {
2277 if (gdbarch_debug)
2278 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Target rejected architecture\\n");
2279 swapin_gdbarch_swap (old_gdbarch);
2280 current_gdbarch = old_gdbarch;
2281 return 0;
2282 }
2283
2284 /* Did the architecture change? No. Oops, put the old architecture
2285 back. */
2286 if (old_gdbarch == new_gdbarch)
2287 {
2288 if (gdbarch_debug)
2289 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Architecture 0x%08lx (%s) unchanged\\n",
2290 (long) new_gdbarch,
2291 new_gdbarch->bfd_arch_info->printable_name);
2292 swapin_gdbarch_swap (old_gdbarch);
2293 current_gdbarch = old_gdbarch;
2294 return 1;
2295 }
2296
2297 /* Is this a pre-existing architecture? Yes. Move it to the front
2298 of the list of architectures (keeping the list sorted Most
2299 Recently Used) and then copy it in. */
2300 {
2301 struct gdbarch_list **list;
2302 for (list = &rego->arches;
2303 (*list) != NULL;
2304 list = &(*list)->next)
2305 {
2306 if ((*list)->gdbarch == new_gdbarch)
2307 {
2308 struct gdbarch_list *this;
2309 if (gdbarch_debug)
2310 fprintf_unfiltered (gdb_stdlog,
2311 "gdbarch_update: Previous architecture 0x%08lx (%s) selected\n",
2312 (long) new_gdbarch,
2313 new_gdbarch->bfd_arch_info->printable_name);
2314 /* Unlink this. */
2315 this = (*list);
2316 (*list) = this->next;
2317 /* Insert in the front. */
2318 this->next = rego->arches;
2319 rego->arches = this;
2320 /* Copy the new architecture in. */
2321 current_gdbarch = new_gdbarch;
2322 swapin_gdbarch_swap (new_gdbarch);
2323 architecture_changed_event ();
2324 return 1;
2325 }
2326 }
2327 }
2328
2329 /* Prepend this new architecture to the architecture list (keep the
2330 list sorted Most Recently Used). */
2331 {
2332 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2333 this->next = rego->arches;
2334 this->gdbarch = new_gdbarch;
2335 rego->arches = this;
2336 }
2337
2338 /* Switch to this new architecture marking it initialized. */
2339 current_gdbarch = new_gdbarch;
2340 current_gdbarch->initialized_p = 1;
2341 if (gdbarch_debug)
2342 {
2343 fprintf_unfiltered (gdb_stdlog,
2344 "gdbarch_update: New architecture 0x%08lx (%s) selected\\n",
2345 (long) new_gdbarch,
2346 new_gdbarch->bfd_arch_info->printable_name);
2347 }
2348
2349 /* Check that the newly installed architecture is valid. Plug in
2350 any post init values. */
2351 new_gdbarch->dump_tdep = rego->dump_tdep;
2352 verify_gdbarch (new_gdbarch);
2353
2354 /* Initialize the per-architecture memory (swap) areas.
2355 CURRENT_GDBARCH must be update before these modules are
2356 called. */
2357 init_gdbarch_swap (new_gdbarch);
2358
2359 /* Initialize the per-architecture data. CURRENT_GDBARCH
2360 must be updated before these modules are called. */
2361 architecture_changed_event ();
2362
2363 if (gdbarch_debug)
2364 gdbarch_dump (current_gdbarch, gdb_stdlog);
2365
2366 return 1;
2367 }
2368
2369
2370 /* Disassembler */
2371
2372 /* Pointer to the target-dependent disassembly function. */
2373 int (*deprecated_tm_print_insn) (bfd_vma, disassemble_info *);
2374
2375 extern void _initialize_gdbarch (void);
2376
2377 void
2378 _initialize_gdbarch (void)
2379 {
2380 struct cmd_list_element *c;
2381
2382 add_show_from_set (add_set_cmd ("arch",
2383 class_maintenance,
2384 var_zinteger,
2385 (char *)&gdbarch_debug,
2386 "Set architecture debugging.\\n\\
2387 When non-zero, architecture debugging is enabled.", &setdebuglist),
2388 &showdebuglist);
2389 c = add_set_cmd ("archdebug",
2390 class_maintenance,
2391 var_zinteger,
2392 (char *)&gdbarch_debug,
2393 "Set architecture debugging.\\n\\
2394 When non-zero, architecture debugging is enabled.", &setlist);
2395
2396 deprecate_cmd (c, "set debug arch");
2397 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
2398 }
2399 EOF
2400
2401 # close things off
2402 exec 1>&2
2403 #../move-if-change new-gdbarch.c gdbarch.c
2404 compare_new gdbarch.c